Sample records for thresholded covering algorithms

  1. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection accuracy of the proposed method is better than related methods.

  2. Continuous Change Detection and Classification (CCDC) of Land Cover Using All Available Landsat Data

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Woodcock, C. E.

    2012-12-01

    A new algorithm for Continuous Change Detection and Classification (CCDC) of land cover using all available Landsat data is developed. This new algorithm is capable of detecting many kinds of land cover change as new images are collected and at the same time provide land cover maps for any given time. To better identify land cover change, a two step cloud, cloud shadow, and snow masking algorithm is used for eliminating "noisy" observations. Next, a time series model that has components of seasonality, trend, and break estimates the surface reflectance and temperature. The time series model is updated continuously with newly acquired observations. Due to the high variability in spectral response for different kinds of land cover change, the CCDC algorithm uses a data-driven threshold derived from all seven Landsat bands. When the difference between observed and predicted exceeds the thresholds three consecutive times, a pixel is identified as land cover change. Land cover classification is done after change detection. Coefficients from the time series models and the Root Mean Square Error (RMSE) from model fitting are used as classification inputs for the Random Forest Classifier (RFC). We applied this new algorithm for one Landsat scene (Path 12 Row 31) that includes all of Rhode Island as well as much of Eastern Massachusetts and parts of Connecticut. A total of 532 Landsat images acquired between 1982 and 2011 were processed. During this period, 619,924 pixels were detected to change once (91% of total changed pixels) and 60,199 pixels were detected to change twice (8% of total changed pixels). The most frequent land cover change category is from mixed forest to low density residential which occupies more than 8% of total land cover change pixels.

  3. Typical performance of approximation algorithms for NP-hard problems

    NASA Astrophysics Data System (ADS)

    Takabe, Satoshi; Hukushima, Koji

    2016-11-01

    Typical performance of approximation algorithms is studied for randomized minimum vertex cover problems. A wide class of random graph ensembles characterized by an arbitrary degree distribution is discussed with the presentation of a theoretical framework. Herein, three approximation algorithms are examined: linear-programming relaxation, loopy-belief propagation, and the leaf-removal algorithm. The former two algorithms are analyzed using a statistical-mechanical technique, whereas the average-case analysis of the last one is conducted using the generating function method. These algorithms have a threshold in the typical performance with increasing average degree of the random graph, below which they find true optimal solutions with high probability. Our study reveals that there exist only three cases, determined by the order of the typical performance thresholds. In addition, we provide some conditions for classification of the graph ensembles and demonstrate explicitly some examples for the difference in thresholds.

  4. Intelligent Use of CFAR Algorithms

    DTIC Science & Technology

    1993-05-01

    the reference windows can raise the threshold too high in many CFAR algorithms and result in masking of targets. GCMLD is a modification of CMLD that...AD-A267 755 RL-TR-93-75 III 11 III II liiI Interim Report May 1993 INTELLIGENT USE OF CFAR ALGORITHMS Kaman Sciences Corporation P. Antonik, B...AND DATES COVERED IMay 1993 Inte ’rim Jan 92 - Se2 92 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS INTELLIGENT USE OF CFAR ALGORITHMS C - F30602-91-C-0017

  5. Low-cost Assessment for Early Vigor and Canopy Cover Estimation in Durum Wheat Using RGB Images.

    NASA Astrophysics Data System (ADS)

    Fernandez-Gallego, J. A.; Kefauver, S. C.; Aparicio Gutiérrez, N.; Nieto-Taladriz, M. T.; Araus, J. L.

    2017-12-01

    Early vigor and canopy cover is an important agronomical component for determining grain yield in wheat. Estimates of the canopy cover area at early stages of the crop cycle may contribute to efficiency of crop management practices and breeding programs. Canopy-image segmentation is complicated in field conditions by numerous factors, including soil, shadows and unexpected objects, such as rocks, weeds, plant remains, or even part of the photographer's boots (many times it appears in the scene); and the algorithms must be robust to accommodate these conditions. Field trials were carried out in two sites (Aranjuez and Valladolid, Spain) during the 2016/2017 crop season. A set of 24 varieties of durum wheat in two growing conditions (rainfed and support irrigation) per site were used to create the image database. This work uses zenithal RGB images taken from above the crop in natural light conditions. The images were taken with Canon IXUS 320HS camera in Aranjuez, holding the camera by hand, and with a Nikon D300 camera in Valladolid, using a monopod. The algorithm for early vigor and canopy cover area estimation uses three main steps: (i) Image decorrelation (ii) Colour space transformation and (iii) Canopy cover segmentation using an automatic threshold based on the image histogram. The first step was chosen to enhance the visual interpretation and separate the pixel colors into the scene; the colour space transformation contributes to further separate the colours. Finally an automatic threshold using a minimum method allows for correct segmentation and quantification of the canopy pixels. The percent of area covered by the canopy was calculated using a simple algorithm for counting pixels in the final binary segmented image. The comparative results demonstrate the algorithm's effectiveness through significant correlations between early vigor and canopy cover estimation compared to NDVI (Normalized difference vegetation index) and grain yield.

  6. A new strategy for snow-cover mapping using remote sensing data and ensemble based systems techniques

    NASA Astrophysics Data System (ADS)

    Roberge, S.; Chokmani, K.; De Sève, D.

    2012-04-01

    The snow cover plays an important role in the hydrological cycle of Quebec (Eastern Canada). Consequently, evaluating its spatial extent interests the authorities responsible for the management of water resources, especially hydropower companies. The main objective of this study is the development of a snow-cover mapping strategy using remote sensing data and ensemble based systems techniques. Planned to be tested in a near real-time operational mode, this snow-cover mapping strategy has the advantage to provide the probability of a pixel to be snow covered and its uncertainty. Ensemble systems are made of two key components. First, a method is needed to build an ensemble of classifiers that is diverse as much as possible. Second, an approach is required to combine the outputs of individual classifiers that make up the ensemble in such a way that correct decisions are amplified, and incorrect ones are cancelled out. In this study, we demonstrate the potential of ensemble systems to snow-cover mapping using remote sensing data. The chosen classifier is a sequential thresholds algorithm using NOAA-AVHRR data adapted to conditions over Eastern Canada. Its special feature is the use of a combination of six sequential thresholds varying according to the day in the winter season. Two versions of the snow-cover mapping algorithm have been developed: one is specific for autumn (from October 1st to December 31st) and the other for spring (from March 16th to May 31st). In order to build the ensemble based system, different versions of the algorithm are created by varying randomly its parameters. One hundred of the versions are included in the ensemble. The probability of a pixel to be snow, no-snow or cloud covered corresponds to the amount of votes the pixel has been classified as such by all classifiers. The overall performance of ensemble based mapping is compared to the overall performance of the chosen classifier, and also with ground observations at meteorological stations.

  7. Comparative Analysis of Daytime Fire Detection Algorithms, Using AVHRR Data for the 1995 Fire Season in Canda: Perspective for MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Y. J.; Fraser, R. H.; Jin, J.-Z.; Park, W. M.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.

  8. Machine learning based cloud mask algorithm driven by radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Chen, N.; Li, W.; Tanikawa, T.; Hori, M.; Shimada, R.; Stamnes, K. H.

    2017-12-01

    Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.

  9. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  10. A real negative selection algorithm with evolutionary preference for anomaly detection

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Chen, Wen; Li, Tao

    2017-04-01

    Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.

  11. Do we need a dynamic snow depth threshold when comparing hydrological models with remote sensing products in mountain catchments?

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Bertoldi, Giacomo; Notarnicola, Claudia; Comiti, Francesco

    2017-04-01

    To assess the performance of simulated snow cover of hydrological models, it is common practice to compare simulated data with observed ones derived from satellite images such as MODIS. However, technical and methodological limitations such as data availability of MODIS products, its spatial resolution or difficulties in finding appropriate parameterisations of the model need to be solved previously. Another important assumption usually made is the threshold of minimum simulated snow depth, generally set to 10 mm of snow depth, to respect the MODIS detection thresholds for snow cover. But is such a constant threshold appropriate for complex alpine terrain? How important is the impact of different snow depth thresholds on the spatial and temporal distribution of the pixel-based overall accuracy (OA)? To address this aspect, we compared the snow covered area (SCA) simulated by the GEOtop 2.0 snow model to the daily composite 250 m EURAC MODIS SCA in the upper Saldur basin (61 km2, Eastern Italian Alps) during the period October 2011 - October 2013. Initially, we calibrated the snow model against snow depths and snow water equivalents at point scale, taken from measurements at different meteorological stations. We applied different snow depth thresholds (0 mm, 10 mm, 50 mm, and 100 mm) to obtain the simulated snow cover and assessed the changes in OA both in time (during the entire evaluation period, accumulation and melting season) and space (entire catchment and specific areas of topographic characteristics such as elevation, slope, aspect, landcover, and roughness). Results show remarkable spatial and temporal differences in OA with respect to different snow depth thresholds. Inaccuracies of simulated and observed SCA during the accumulation season September to November 2012 were located in areas with north-west aspect, slopes of 30° or little elevation differences at sub-pixel scale (-0.25 to 0 m). We obtained best agreements with MODIS SCA for a snow depth threshold of 100 mm, leading to increased OA (> 0.8) in 13‰ of the catchment area. SCA agreement in January 2012 and 2013 was slightly limited by MODIS sensor detection due to shading effects and low illumination in areas exposed north-west to north. On the contrary, during the melting season in April 2013 and after the September 2013 snowfall event seemed to depend more on parameterisation than on snow depth thresholds. In contrast, inaccuracies during the melting season March to June 2013 could hardly be attributed to topographic characteristics and different snow depth thresholds but rather on model parameterisation. We identified specific conditions (p.e. specific snowfall events in autumn 2012 and spring 2013) when either MODIS data or the hydrological model was less accurate, thus justifying the need for improvements of precision in the snow cover detection algorithms or in the model's process description. In consequence, our study observations could support future snow cover evaluations in mountain areas, where spatially and temporally dynamic snow depth thresholds are transferred from the catchment scale to the regional scale. Keywords: snow cover, snow modelling, MODIS, snow depth sensitivity, alpine catchment

  12. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed through the seasons. A blended snow product, the Air Force Weather Agency and NASA (ANSA) snow algorithm and product has recently been developed. The ANSA algorithm blends the MODIS snow cover and AMSR-E SWE products into a single snow product that has been shown to improve the performance of snow cover mapping. In this study components of the ANSA snow algorithm are used along with additional MODIS data to monitor daily changes in snow cover over the period of 1 February to 30 June 2008.

  13. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine

    2016-08-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.

  14. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.

    PubMed

    Hatt, M; Lamare, F; Boussion, N; Turzo, A; Collet, C; Salzenstein, F; Roux, C; Jarritt, P; Carson, K; Cheze-Le Rest, C; Visvikis, D

    2007-06-21

    Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both simulated and acquired datasets led to similar results and conclusions as far as the performance of segmentation algorithms under evaluation is concerned.

  15. A new edge detection algorithm based on Canny idea

    NASA Astrophysics Data System (ADS)

    Feng, Yingke; Zhang, Jinmin; Wang, Siming

    2017-10-01

    The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.

  16. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    NASA Astrophysics Data System (ADS)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  17. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation.

    PubMed

    Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou

    2015-01-01

    Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.

  18. Digital Image Sensor-Based Assessment of the Status of Oat (Avena sativa L.) Crops after Frost Damage

    PubMed Central

    Macedo-Cruz, Antonia; Pajares, Gonzalo; Santos, Matilde; Villegas-Romero, Isidro

    2011-01-01

    The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu’s method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production. PMID:22163940

  19. Digital image sensor-based assessment of the status of oat (Avena sativa L.) crops after frost damage.

    PubMed

    Macedo-Cruz, Antonia; Pajares, Gonzalo; Santos, Matilde; Villegas-Romero, Isidro

    2011-01-01

    The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu's method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production.

  20. Detection and characterization of benthic filamentous algal stands (Cladophora sp.) on rocky substrata using a high-frequency echosounder

    USGS Publications Warehouse

    Depew, David C.; Stevens, Andrew W.; Smith, Ralph E.H.; Hecky, Robert E.

    2009-01-01

    A high-frequency echosounder was used to detect and characterize percent cover and stand height of the benthic filamentous green alga Cladophora sp. on rocky substratum of the Laurentian Great Lakes. Comparisons between in situ observations and estimates of the algal stand characteristics (percent cover, stand height) derived from the acoustic data show good agreement for algal stands that exceeded the height threshold for detection by acoustics (~7.5 cm). Backscatter intensity and volume scattering strength were unable to provide any predictive power for estimating algal biomass. A comparative analysis between the only current commercial software (EcoSAV™) and an alternate method using a graphical user interface (GUI) written in MATLAB® confirmed previous findings that EcoSAV functions poorly in conditions where the substrate is uneven and bottom depth changes rapidly. The GUI method uses a signal processing algorithm similar to that of EcoSAV but bases bottom depth classification and algal stand height classification on adjustable thresholds that can be visualized by a trained analyst. This study documents the successful characterization of nuisance quantities of filamentous algae on hard substrate using an acoustic system and demonstrates the potential to significantly increase the efficiency of collecting information on the distribution of nuisance macroalgae. This study also highlights the need for further development of more flexible classification algorithms that can be used in a variety of aquatic ecosystems.

  1. Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.

    PubMed

    Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong

    2011-09-01

    Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Improved Bat Algorithm Applied to Multilevel Image Thresholding

    PubMed Central

    2014-01-01

    Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733

  3. Stochastic Formal Correctness of Numerical Algorithms

    NASA Technical Reports Server (NTRS)

    Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick

    2009-01-01

    We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.

  4. The threshold algorithm: Description of the methodology and new developments

    NASA Astrophysics Data System (ADS)

    Neelamraju, Sridhar; Oligschleger, Christina; Schön, J. Christian

    2017-10-01

    Understanding the dynamics of complex systems requires the investigation of their energy landscape. In particular, the flow of probability on such landscapes is a central feature in visualizing the time evolution of complex systems. To obtain such flows, and the concomitant stable states of the systems and the generalized barriers among them, the threshold algorithm has been developed. Here, we describe the methodology of this approach starting from the fundamental concepts in complex energy landscapes and present recent new developments, the threshold-minimization algorithm and the molecular dynamics threshold algorithm. For applications of these new algorithms, we draw on landscape studies of three disaccharide molecules: lactose, maltose, and sucrose.

  5. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  6. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  7. A community detection algorithm based on structural similarity

    NASA Astrophysics Data System (ADS)

    Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu

    2017-09-01

    In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.

  8. Preliminary verification for application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2

    NASA Astrophysics Data System (ADS)

    Oishi, Yu; Ishida, Haruma; Nakajima, Takashi Y.; Nakamura, Ryosuke; Matsunaga, Tsuneo

    2018-05-01

    The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 and CH4 concentrations. GOSAT is equipped with two sensors: the Thermal And Near infrared Sensor for carbon Observations (TANSO)-Fourier transform spectrometer (FTS) and TANSO-Cloud and Aerosol Imager (CAI). The presence of clouds in the instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely, overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gas concentrations. This is a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support vector machine (CLAUDIA3) was developed and presented in another paper. Although the use of visual inspection of clouds as a standard for judging is not practical for screening a full satellite data set, it has the advantage of allowing for locally optimized thresholds, while CLAUDIA1 and -3 use common global thresholds. Thus, the accuracy of visual inspection is better than that of these algorithms in most regions, with the exception of snow- and ice-covered surfaces, where there is not enough spectral contrast to identify cloud. In other words, visual inspection results can be used as truth data for accuracy evaluation of CLAUDIA1 and -3. For this reason visual inspection can be used for the truth metric for the cloud discrimination verification exercise. In this study, we compared CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types, and evaluated the accuracy of CLAUDIA3-CAI by comparing both CLAUDIA1-CAI and CLAUDIA3-CAI with visual inspection (400 × 400 pixels) of the same CAI images in tropical rainforests. Comparative results between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that CLAUDIA3-CAI had a tendency to identify bright surface and optically thin clouds. However, CLAUDIA3-CAI had a tendency to misjudge the edges of clouds compared with CLAUDIA1-CAI. The accuracy of CLAUDIA3-CAI was approximately 89.5 % in tropical rainforests, which is greater than that of CLAUDIA1-CAI (85.9 %) for the test cases presented here.

  9. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2012-01-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  10. A Supplementary Clear-Sky Snow and Ice Recognition Technique for CERES Level 2 Products

    NASA Technical Reports Server (NTRS)

    Radkevich, Alexander; Khlopenkov, Konstantin; Rutan, David; Kato, Seiji

    2013-01-01

    Identification of clear-sky snow and ice is an important step in the production of cryosphere radiation budget products, which are used in the derivation of long-term data series for climate research. In this paper, a new method of clear-sky snow/ice identification for Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. The algorithm's goal is to enhance the identification of snow and ice within the Clouds and the Earth's Radiant Energy System (CERES) data after application of the standard CERES scene identification scheme. The input of the algorithm uses spectral radiances from five MODIS bands and surface skin temperature available in the CERES Single Scanner Footprint (SSF) product. The algorithm produces a cryosphere rating from an aggregated test: a higher rating corresponds to a more certain identification of the clear-sky snow/ice-covered scene. Empirical analysis of regions of interest representing distinctive targets such as snow, ice, ice and water clouds, open waters, and snow-free land selected from a number of MODIS images shows that the cryosphere rating of snow/ice targets falls into 95% confidence intervals lying above the same confidence intervals of all other targets. This enables recognition of clear-sky cryosphere by using a single threshold applied to the rating, which makes this technique different from traditional branching techniques based on multiple thresholds. Limited tests show that the established threshold clearly separates the cryosphere rating values computed for the cryosphere from those computed for noncryosphere scenes, whereas individual tests applied consequently cannot reliably identify the cryosphere for complex scenes.

  11. Application of image recognition algorithms for statistical description of nano- and microstructured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mărăscu, V.; Dinescu, G.; Faculty of Physics, University of Bucharest, 405 Atomistilor Street, Bucharest-Magurele

    In this paper we propose a statistical approach for describing the self-assembling of sub-micronic polystyrene beads on silicon surfaces, as well as the evolution of surface topography due to plasma treatments. Algorithms for image recognition are used in conjunction with Scanning Electron Microscopy (SEM) imaging of surfaces. In a first step, greyscale images of the surface covered by the polystyrene beads are obtained. Further, an adaptive thresholding method was applied for obtaining binary images. The next step consisted in automatic identification of polystyrene beads dimensions, by using Hough transform algorithm, according to beads radius. In order to analyze the uniformitymore » of the self–assembled polystyrene beads, the squared modulus of 2-dimensional Fast Fourier Transform (2- D FFT) was applied. By combining these algorithms we obtain a powerful and fast statistical tool for analysis of micro and nanomaterials with aspect features regularly distributed on surface upon SEM examination.« less

  12. Influence of aging on thermal and vibratory thresholds of quantitative sensory testing.

    PubMed

    Lin, Yea-Huey; Hsieh, Song-Chou; Chao, Chi-Chao; Chang, Yang-Chyuan; Hsieh, Sung-Tsang

    2005-09-01

    Quantitative sensory testing has become a common approach to evaluate thermal and vibratory thresholds in various types of neuropathies. To understand the effect of aging on sensory perception, we measured warm, cold, and vibratory thresholds by performing quantitative sensory testing on a population of 484 normal subjects (175 males and 309 females), aged 48.61 +/- 14.10 (range 20-86) years. Sensory thresholds of the hand and foot were measured with two algorithms: the method of limits (Limits) and the method of level (Level). Thresholds measured by Limits are reaction-time-dependent, while those measured by Level are independent of reaction time. In addition, we explored (1) the correlations of thresholds between these two algorithms, (2) the effect of age on differences in thresholds between algorithms, and (3) differences in sensory thresholds between the two test sites. Age was consistently and significantly correlated with sensory thresholds of all tested modalities measured by both algorithms on multivariate regression analysis compared with other factors, including gender, body height, body weight, and body mass index. When thresholds were plotted against age, slopes differed between sensory thresholds of the hand and those of the foot: for the foot, slopes were steeper compared with those for the hand for each sensory modality. Sensory thresholds of both test sites measured by Level were highly correlated with those measured by Limits, and thresholds measured by Limits were higher than those measured by Level. Differences in sensory thresholds between the two algorithms were also correlated with age: thresholds of the foot were higher than those of the hand for each sensory modality. This difference in thresholds (measured with both Level and Limits) between the hand and foot was also correlated with age. These findings suggest that age is the most significant factor in determining sensory thresholds compared with the other factors of gender and anthropometric parameters, and this provides a foundation for investigating the neurobiologic significance of aging on the processing of sensory stimuli.

  13. Investigation of a New Handover Approach in LTE and WiMAX

    PubMed Central

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin

    2014-01-01

    Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms. PMID:25379524

  14. Investigation of a new handover approach in LTE and WiMAX.

    PubMed

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin

    2014-01-01

    Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.

  15. Surgical motion characterization in simulated needle insertion procedures

    NASA Astrophysics Data System (ADS)

    Holden, Matthew S.; Ungi, Tamas; Sargent, Derek; McGraw, Robert C.; Fichtinger, Gabor

    2012-02-01

    PURPOSE: Evaluation of surgical performance in image-guided needle insertions is of emerging interest, to both promote patient safety and improve the efficiency and effectiveness of training. The purpose of this study was to determine if a Markov model-based algorithm can more accurately segment a needle-based surgical procedure into its five constituent tasks than a simple threshold-based algorithm. METHODS: Simulated needle trajectories were generated with known ground truth segmentation by a synthetic procedural data generator, with random noise added to each degree of freedom of motion. The respective learning algorithms were trained, and then tested on different procedures to determine task segmentation accuracy. In the threshold-based algorithm, a change in tasks was detected when the needle crossed a position/velocity threshold. In the Markov model-based algorithm, task segmentation was performed by identifying the sequence of Markov models most likely to have produced the series of observations. RESULTS: For amplitudes of translational noise greater than 0.01mm, the Markov model-based algorithm was significantly more accurate in task segmentation than the threshold-based algorithm (82.3% vs. 49.9%, p<0.001 for amplitude 10.0mm). For amplitudes less than 0.01mm, the two algorithms produced insignificantly different results. CONCLUSION: Task segmentation of simulated needle insertion procedures was improved by using a Markov model-based algorithm as opposed to a threshold-based algorithm for procedures involving translational noise.

  16. Dimer covering and percolation frustration.

    PubMed

    Haji-Akbari, Amir; Haji-Akbari, Nasim; Ziff, Robert M

    2015-09-01

    Covering a graph or a lattice with nonoverlapping dimers is a problem that has received considerable interest in areas, such as discrete mathematics, statistical physics, chemistry, and materials science. Yet, the problem of percolation on dimer-covered lattices has received little attention. In particular, percolation on lattices that are fully covered by nonoverlapping dimers has not evidently been considered. Here, we propose a procedure for generating random dimer coverings of a given lattice. We then compute the bond percolation threshold on random and ordered coverings of the square and the triangular lattices on the remaining bonds connecting the dimers. We obtain p_{c}=0.367713(2) and p_{c}=0.235340(1) for random coverings of the square and the triangular lattices, respectively. We observe that the percolation frustration induced as a result of dimer covering is larger in the low-coordination-number square lattice. There is also no relationship between the existence of long-range order in a covering of the square lattice and its percolation threshold. In particular, an ordered covering of the square lattice, denoted by shifted covering in this paper, has an unusually low percolation threshold and is topologically identical to the triangular lattice. This is in contrast to the other ordered dimer coverings considered in this paper, which have higher percolation thresholds than the random covering. In the case of the triangular lattice, the percolation thresholds of the ordered and random coverings are very close, suggesting the lack of sensitivity of the percolation threshold to microscopic details of the covering in highly coordinated networks.

  17. Detection of short-term changes in vegetation cover by use of LANDSAT imagery. [Arizona

    NASA Technical Reports Server (NTRS)

    Turner, R. M. (Principal Investigator); Wiseman, F. M.

    1975-01-01

    The author has identified the following significant results. By using a constant band 6 to band 5 radiance ratio of 1.25, the changing pattern of areas of relatively dense vegetation cover was detected for the semiarid region in the vicinity of Tucson, Arizona. Electronically produced binary thematic masks were used to map areas with dense vegetation. The foliar cover threshold represented by the ratio was not accurately determined but field measurements show that the threshold lies in the range of 10 to 25 percent foliage cover. Montana evergreen forests with constant dense cover were correctly shown to exceed the threshold on all dates. The summer active grassland exceeded the threshold in the summer unless rainfall was insufficient. Desert areas exceeded the threshold during the spring of 1973 following heavy rains; the same areas during the rainless spring of 1974 did not exceed threshold. Irrigated fields, parks, golf courses, and riparian communities were among the habitats most frequently surpassing the threshold.

  18. Threshold automatic selection hybrid phase unwrapping algorithm for digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Min, Junwei; Yao, Baoli; Yu, Xianghua; Lei, Ming; Yan, Shaohui; Yang, Yanlong; Dan, Dan

    2015-01-01

    Conventional quality-guided (QG) phase unwrapping algorithm is hard to be applied to digital holographic microscopy because of the long execution time. In this paper, we present a threshold automatic selection hybrid phase unwrapping algorithm that combines the existing QG algorithm and the flood-filled (FF) algorithm to solve this problem. The original wrapped phase map is divided into high- and low-quality sub-maps by selecting a threshold automatically, and then the FF and QG unwrapping algorithms are used in each level to unwrap the phase, respectively. The feasibility of the proposed method is proved by experimental results, and the execution speed is shown to be much faster than that of the original QG unwrapping algorithm.

  19. Wavelet tree structure based speckle noise removal for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  20. Flood Extent Delineation by Thresholding Sentinel-1 SAR Imagery Based on Ancillary Land Cover Information

    NASA Astrophysics Data System (ADS)

    Liang, J.; Liu, D.

    2017-12-01

    Emergency responses to floods require timely information on water extents that can be produced by satellite-based remote sensing. As SAR image can be acquired in adverse illumination and weather conditions, it is particularly suitable for delineating water extent during a flood event. Thresholding SAR imagery is one of the most widely used approaches to delineate water extent. However, most studies apply only one threshold to separate water and dry land without considering the complexity and variability of different dry land surface types in an image. This paper proposes a new thresholding method for SAR image to delineate water from other different land cover types. A probability distribution of SAR backscatter intensity is fitted for each land cover type including water before a flood event and the intersection between two distributions is regarded as a threshold to classify the two. To extract water, a set of thresholds are applied to several pairs of land cover types—water and urban or water and forest. The subsets are merged to form the water distribution for the SAR image during or after the flooding. Experiments show that this land cover based thresholding approach outperformed the traditional single thresholding by about 5% to 15%. This method has great application potential with the broadly acceptance of the thresholding based methods and availability of land cover data, especially for heterogeneous regions.

  1. Comparative advantages of novel algorithms using MSR threshold and MSR difference threshold for biclustering gene expression data.

    PubMed

    Das, Shyama; Idicula, Sumam Mary

    2011-01-01

    The goal of biclustering in gene expression data matrix is to find a submatrix such that the genes in the submatrix show highly correlated activities across all conditions in the submatrix. A measure called mean squared residue (MSR) is used to simultaneously evaluate the coherence of rows and columns within the submatrix. MSR difference is the incremental increase in MSR when a gene or condition is added to the bicluster. In this chapter, three biclustering algorithms using MSR threshold (MSRT) and MSR difference threshold (MSRDT) are experimented and compared. All these methods use seeds generated from K-Means clustering algorithm. Then these seeds are enlarged by adding more genes and conditions. The first algorithm makes use of MSRT alone. Both the second and third algorithms make use of MSRT and the newly introduced concept of MSRDT. Highly coherent biclusters are obtained using this concept. In the third algorithm, a different method is used to calculate the MSRDT. The results obtained on bench mark datasets prove that these algorithms are better than many of the metaheuristic algorithms.

  2. On Bipartite Graphs Trees and Their Partial Vertex Covers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caskurlu, Bugra; Mkrtchyan, Vahan; Parekh, Ojas D.

    2015-03-01

    Graphs can be used to model risk management in various systems. Particularly, Caskurlu et al. in [7] have considered a system, which has threats, vulnerabilities and assets, and which essentially represents a tripartite graph. The goal in this model is to reduce the risk in the system below a predefined risk threshold level. One can either restricting the permissions of the users, or encapsulating the system assets. The pointed out two strategies correspond to deleting minimum number of elements corresponding to vulnerabilities and assets, such that the flow between threats and assets is reduced below the predefined threshold level. Itmore » can be shown that the main goal in this risk management system can be formulated as a Partial Vertex Cover problem on bipartite graphs. It is well-known that the Vertex Cover problem is in P on bipartite graphs, however; the computational complexity of the Partial Vertex Cover problem on bipartite graphs has remained open. In this paper, we establish that the Partial Vertex Cover problem is NP-hard on bipartite graphs, which was also recently independently demonstrated [N. Apollonio and B. Simeone, Discrete Appl. Math., 165 (2014), pp. 37–48; G. Joret and A. Vetta, preprint, arXiv:1211.4853v1 [cs.DS], 2012]. We then identify interesting special cases of bipartite graphs, for which the Partial Vertex Cover problem, the closely related Budgeted Maximum Coverage problem, and their weighted extensions can be solved in polynomial time. We also present an 8/9-approximation algorithm for the Budgeted Maximum Coverage problem in the class of bipartite graphs. We show that this matches and resolves the integrality gap of the natural LP relaxation of the problem and improves upon a recent 4/5-approximation.« less

  3. Stable Extraction of Threshold Voltage Using Transconductance Change Method for CMOS Modeling, Simulation and Characterization

    NASA Astrophysics Data System (ADS)

    Choi, Woo Young; Woo, Dong-Soo; Choi, Byung Yong; Lee, Jong Duk; Park, Byung-Gook

    2004-04-01

    We proposed a stable extraction algorithm for threshold voltage using transconductance change method by optimizing node interval. With the algorithm, noise-free gm2 (=dgm/dVGS) profiles can be extracted within one-percent error, which leads to more physically-meaningful threshold voltage calculation by the transconductance change method. The extracted threshold voltage predicts the gate-to-source voltage at which the surface potential is within kT/q of φs=2φf+VSB. Our algorithm makes the transconductance change method more practical by overcoming noise problem. This threshold voltage extraction algorithm yields the threshold roll-off behavior of nanoscale metal oxide semiconductor field effect transistor (MOSFETs) accurately and makes it possible to calculate the surface potential φs at any other point on the drain-to-source current (IDS) versus gate-to-source voltage (VGS) curve. It will provide us with a useful analysis tool in the field of device modeling, simulation and characterization.

  4. Accuracy of cancellous bone volume fraction measured by micro-CT scanning.

    PubMed

    Ding, M; Odgaard, A; Hvid, I

    1999-03-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.

  5. 'Outbreak Gold Standard' selection to provide optimized threshold for infectious diseases early-alert based on China Infectious Disease Automated-alert and Response System.

    PubMed

    Wang, Rui-Ping; Jiang, Yong-Gen; Zhao, Gen-Ming; Guo, Xiao-Qin; Michael, Engelgau

    2017-12-01

    The China Infectious Disease Automated-alert and Response System (CIDARS) was successfully implemented and became operational nationwide in 2008. The CIDARS plays an important role in and has been integrated into the routine outbreak monitoring efforts of the Center for Disease Control (CDC) at all levels in China. In the CIDARS, thresholds are determined using the "Mean+2SD‟ in the early stage which have limitations. This study compared the performance of optimized thresholds defined using the "Mean +2SD‟ method to the performance of 5 novel algorithms to select optimal "Outbreak Gold Standard (OGS)‟ and corresponding thresholds for outbreak detection. Data for infectious disease were organized by calendar week and year. The "Mean+2SD‟, C1, C2, moving average (MA), seasonal model (SM), and cumulative sum (CUSUM) algorithms were applied. Outbreak signals for the predicted value (Px) were calculated using a percentile-based moving window. When the outbreak signals generated by an algorithm were in line with a Px generated outbreak signal for each week, this Px was then defined as the optimized threshold for that algorithm. In this study, six infectious diseases were selected and classified into TYPE A (chickenpox and mumps), TYPE B (influenza and rubella) and TYPE C [hand foot and mouth disease (HFMD) and scarlet fever]. Optimized thresholds for chickenpox (P 55 ), mumps (P 50 ), influenza (P 40 , P 55 , and P 75 ), rubella (P 45 and P 75 ), HFMD (P 65 and P 70 ), and scarlet fever (P 75 and P 80 ) were identified. The C1, C2, CUSUM, SM, and MA algorithms were appropriate for TYPE A. All 6 algorithms were appropriate for TYPE B. C1 and CUSUM algorithms were appropriate for TYPE C. It is critical to incorporate more flexible algorithms as OGS into the CIDRAS and to identify the proper OGS and corresponding recommended optimized threshold by different infectious disease types.

  6. Electrons and photons at High Level Trigger in CMS for Run II

    NASA Astrophysics Data System (ADS)

    Anuar, Afiq A.

    2015-12-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increase in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. New approaches have been studied to keep the HLT output rate manageable while maintaining thresholds low enough to cover physics analyses. The strategy mainly relies on porting online the ingredients that have been successfully applied in the offline reconstruction, thus allowing to move HLT selection closer to offline cuts. Improvements in HLT electron and photon definitions will be presented, focusing in particular on: updated clustering algorithm and the energy calibration procedure, new Particle-Flow-based isolation approach and pileup mitigation techniques, and the electron-dedicated track fitting algorithm based on Gaussian Sum Filter.

  7. Algorithmic detectability threshold of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro

    2018-03-01

    The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.

  8. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  9. A Novel Zero Velocity Interval Detection Algorithm for Self-Contained Pedestrian Navigation System with Inertial Sensors

    PubMed Central

    Tian, Xiaochun; Chen, Jiabin; Han, Yongqiang; Shang, Jianyu; Li, Nan

    2016-01-01

    Zero velocity update (ZUPT) plays an important role in pedestrian navigation algorithms with the premise that the zero velocity interval (ZVI) should be detected accurately and effectively. A novel adaptive ZVI detection algorithm based on a smoothed pseudo Wigner–Ville distribution to remove multiple frequencies intelligently (SPWVD-RMFI) is proposed in this paper. The novel algorithm adopts the SPWVD-RMFI method to extract the pedestrian gait frequency and to calculate the optimal ZVI detection threshold in real time by establishing the function relationships between the thresholds and the gait frequency; then, the adaptive adjustment of thresholds with gait frequency is realized and improves the ZVI detection precision. To put it into practice, a ZVI detection experiment is carried out; the result shows that compared with the traditional fixed threshold ZVI detection method, the adaptive ZVI detection algorithm can effectively reduce the false and missed detection rate of ZVI; this indicates that the novel algorithm has high detection precision and good robustness. Furthermore, pedestrian trajectory positioning experiments at different walking speeds are carried out to evaluate the influence of the novel algorithm on positioning precision. The results show that the ZVI detected by the adaptive ZVI detection algorithm for pedestrian trajectory calculation can achieve better performance. PMID:27669266

  10. On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales

    NASA Astrophysics Data System (ADS)

    Härer, Stefan; Bernhardt, Matthias; Siebers, Matthias; Schulz, Karsten

    2018-05-01

    Knowledge of current snow cover extent is essential for characterizing energy and moisture fluxes at the Earth's surface. The snow-covered area (SCA) is often estimated by using optical satellite information in combination with the normalized-difference snow index (NDSI). The NDSI thereby uses a threshold for the definition if a satellite pixel is assumed to be snow covered or snow free. The spatiotemporal representativeness of the standard threshold of 0.4 is however questionable at the local scale. Here, we use local snow cover maps derived from ground-based photography to continuously calibrate the NDSI threshold values (NDSIthr) of Landsat satellite images at two European mountain sites of the period from 2010 to 2015. The Research Catchment Zugspitzplatt (RCZ, Germany) and Vernagtferner area (VF, Austria) are both located within a single Landsat scene. Nevertheless, the long-term analysis of the NDSIthr demonstrated that the NDSIthr at these sites are not correlated (r = 0.17) and different than the standard threshold of 0.4. For further comparison, a dynamic and locally optimized NDSI threshold was used as well as another locally optimized literature threshold value (0.7). It was shown that large uncertainties in the prediction of the SCA of up to 24.1 % exist in satellite snow cover maps in cases where the standard threshold of 0.4 is used, but a newly developed calibrated quadratic polynomial model which accounts for seasonal threshold dynamics can reduce this error. The model minimizes the SCA uncertainties at the calibration site VF by 50 % in the evaluation period and was also able to improve the results at RCZ in a significant way. Additionally, a scaling experiment shows that the positive effect of a locally adapted threshold diminishes using a pixel size of 500 m or larger, underlining the general applicability of the standard threshold at larger scales.

  11. Adaptive spatial filtering improves speech reception in noise while preserving binaural cues.

    PubMed

    Bissmeyer, Susan R S; Goldsworthy, Raymond L

    2017-09-01

    Hearing loss greatly reduces an individual's ability to comprehend speech in the presence of background noise. Over the past decades, numerous signal-processing algorithms have been developed to improve speech reception in these situations for cochlear implant and hearing aid users. One challenge is to reduce background noise while not introducing interaural distortion that would degrade binaural hearing. The present study evaluates a noise reduction algorithm, referred to as binaural Fennec, that was designed to improve speech reception in background noise while preserving binaural cues. Speech reception thresholds were measured for normal-hearing listeners in a simulated environment with target speech generated in front of the listener and background noise originating 90° to the right of the listener. Lateralization thresholds were also measured in the presence of background noise. These measures were conducted in anechoic and reverberant environments. Results indicate that the algorithm improved speech reception thresholds, even in highly reverberant environments. Results indicate that the algorithm also improved lateralization thresholds for the anechoic environment while not affecting lateralization thresholds for the reverberant environments. These results provide clear evidence that this algorithm can improve speech reception in background noise while preserving binaural cues used to lateralize sound.

  12. Cool, warm, and heat-pain detection thresholds: testing methods and inferences about anatomic distribution of receptors.

    PubMed

    Dyck, P J; Zimmerman, I; Gillen, D A; Johnson, D; Karnes, J L; O'Brien, P C

    1993-08-01

    We recently found that vibratory detection threshold is greatly influenced by the algorithm of testing. Here, we study the influence of stimulus characteristics and algorithm of testing and estimating threshold on cool (CDT), warm (WDT), and heat-pain (HPDT) detection thresholds. We show that continuously decreasing (for CDT) or increasing (for WDT) thermode temperature to the point at which cooling or warming is perceived and signaled by depressing a response key ("appearance" threshold) overestimates threshold with rapid rates of thermal change. The mean of the appearance and disappearance thresholds also does not perform well for insensitive sites and patients. Pyramidal (or flat-topped pyramidal) stimuli ranging in magnitude, in 25 steps, from near skin temperature to 9 degrees C for 10 seconds (for CDT), from near skin temperature to 45 degrees C for 10 seconds (for WDT), and from near skin temperature to 49 degrees C for 10 seconds (for HPDT) provide ideal stimuli for use in several algorithms of testing and estimating threshold. Near threshold, only the initial direction of thermal change from skin temperature is perceived, and not its return to baseline. Use of steps of stimulus intensity allows the subject or patient to take the needed time to decide whether the stimulus was felt or not (in 4, 2, and 1 stepping algorithms), or whether it occurred in stimulus interval 1 or 2 (in two-alternative forced-choice testing). Thermal thresholds were generally significantly lower with a large (10 cm2) than with a small (2.7 cm2) thermode.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Using machine learning to examine medication adherence thresholds and risk of hospitalization.

    PubMed

    Lo-Ciganic, Wei-Hsuan; Donohue, Julie M; Thorpe, Joshua M; Perera, Subashan; Thorpe, Carolyn T; Marcum, Zachary A; Gellad, Walid F

    2015-08-01

    Quality improvement efforts are frequently tied to patients achieving ≥80% medication adherence. However, there is little empirical evidence that this threshold optimally predicts important health outcomes. To apply machine learning to examine how adherence to oral hypoglycemic medications is associated with avoidance of hospitalizations, and to identify adherence thresholds for optimal discrimination of hospitalization risk. A retrospective cohort study of 33,130 non-dual-eligible Medicaid enrollees with type 2 diabetes. We randomly selected 90% of the cohort (training sample) to develop the prediction algorithm and used the remaining (testing sample) for validation. We applied random survival forests to identify predictors for hospitalization and fit survival trees to empirically derive adherence thresholds that best discriminate hospitalization risk, using the proportion of days covered (PDC). Time to first all-cause and diabetes-related hospitalization. The training and testing samples had similar characteristics (mean age, 48 y; 67% female; mean PDC=0.65). We identified 8 important predictors of all-cause hospitalizations (rank in order): prior hospitalizations/emergency department visit, number of prescriptions, diabetes complications, insulin use, PDC, number of prescribers, Elixhauser index, and eligibility category. The adherence thresholds most discriminating for risk of all-cause hospitalization varied from 46% to 94% according to patient health and medication complexity. PDC was not predictive of hospitalizations in the healthiest or most complex patient subgroups. Adherence thresholds most discriminating of hospitalization risk were not uniformly 80%. Machine-learning approaches may be valuable to identify appropriate patient-specific adherence thresholds for measuring quality of care and targeting nonadherent patients for intervention.

  14. Threshold Assessment of Gear Diagnostic Tools on Flight and Test Rig Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Mosher, Marianne; Huff, Edward M.

    2003-01-01

    A method for defining thresholds for vibration-based algorithms that provides the minimum number of false alarms while maintaining sensitivity to gear damage was developed. This analysis focused on two vibration based gear damage detection algorithms, FM4 and MSA. This method was developed using vibration data collected during surface fatigue tests performed in a spur gearbox rig. The thresholds were defined based on damage progression during tests with damage. The thresholds false alarm rates were then evaluated on spur gear tests without damage. Next, the same thresholds were applied to flight data from an OH-58 helicopter transmission. Results showed that thresholds defined in test rigs can be used to define thresholds in flight to correctly classify the transmission operation as normal.

  15. Serious injury prediction algorithm based on large-scale data and under-triage control.

    PubMed

    Nishimoto, Tetsuya; Mukaigawa, Kosuke; Tominaga, Shigeru; Lubbe, Nils; Kiuchi, Toru; Motomura, Tomokazu; Matsumoto, Hisashi

    2017-01-01

    The present study was undertaken to construct an algorithm for an advanced automatic collision notification system based on national traffic accident data compiled by Japanese police. While US research into the development of a serious-injury prediction algorithm is based on a logistic regression algorithm using the National Automotive Sampling System/Crashworthiness Data System, the present injury prediction algorithm was based on comprehensive police data covering all accidents that occurred across Japan. The particular focus of this research is to improve the rescue of injured vehicle occupants in traffic accidents, and the present algorithm assumes the use of an onboard event data recorder data from which risk factors such as pseudo delta-V, vehicle impact location, seatbelt wearing or non-wearing, involvement in a single impact or multiple impact crash and the occupant's age can be derived. As a result, a simple and handy algorithm suited for onboard vehicle installation was constructed from a sample of half of the available police data. The other half of the police data was applied to the validation testing of this new algorithm using receiver operating characteristic analysis. An additional validation was conducted using in-depth investigation of accident injuries in collaboration with prospective host emergency care institutes. The validated algorithm, named the TOYOTA-Nihon University algorithm, proved to be as useful as the US URGENCY and other existing algorithms. Furthermore, an under-triage control analysis found that the present algorithm could achieve an under-triage rate of less than 10% by setting a threshold of 8.3%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bilevel thresholding of sliced image of sludge floc.

    PubMed

    Chu, C P; Lee, D J

    2004-02-15

    This work examined the feasibility of employing various thresholding algorithms to determining the optimal bilevel thresholding value for estimating the geometric parameters of sludge flocs from the microtome sliced images and from the confocal laser scanning microscope images. Morphological information extracted from images depends on the bilevel thresholding value. According to the evaluation on the luminescence-inverted images and fractal curves (quadric Koch curve and Sierpinski carpet), Otsu's method yields more stable performance than other histogram-based algorithms and is chosen to obtain the porosity. The maximum convex perimeter method, however, can probe the shapes and spatial distribution of the pores among the biomass granules in real sludge flocs. A combined algorithm is recommended for probing the sludge floc structure.

  17. Directional Histogram Ratio at Random Probes: A Local Thresholding Criterion for Capillary Images

    PubMed Central

    Lu, Na; Silva, Jharon; Gu, Yu; Gerber, Scott; Wu, Hulin; Gelbard, Harris; Dewhurst, Stephen; Miao, Hongyu

    2013-01-01

    With the development of micron-scale imaging techniques, capillaries can be conveniently visualized using methods such as two-photon and whole mount microscopy. However, the presence of background staining, leaky vessels and the diffusion of small fluorescent molecules can lead to significant complexity in image analysis and loss of information necessary to accurately quantify vascular metrics. One solution to this problem is the development of accurate thresholding algorithms that reliably distinguish blood vessels from surrounding tissue. Although various thresholding algorithms have been proposed, our results suggest that without appropriate pre- or post-processing, the existing approaches may fail to obtain satisfactory results for capillary images that include areas of contamination. In this study, we propose a novel local thresholding algorithm, called directional histogram ratio at random probes (DHR-RP). This method explicitly considers the geometric features of tube-like objects in conducting image binarization, and has a reliable performance in distinguishing small vessels from either clean or contaminated background. Experimental and simulation studies suggest that our DHR-RP algorithm is superior over existing thresholding methods. PMID:23525856

  18. Face verification with balanced thresholds.

    PubMed

    Yan, Shuicheng; Xu, Dong; Tang, Xiaoou

    2007-01-01

    The process of face verification is guided by a pre-learned global threshold, which, however, is often inconsistent with class-specific optimal thresholds. It is, hence, beneficial to pursue a balance of the class-specific thresholds in the model-learning stage. In this paper, we present a new dimensionality reduction algorithm tailored to the verification task that ensures threshold balance. This is achieved by the following aspects. First, feasibility is guaranteed by employing an affine transformation matrix, instead of the conventional projection matrix, for dimensionality reduction, and, hence, we call the proposed algorithm threshold balanced transformation (TBT). Then, the affine transformation matrix, constrained as the product of an orthogonal matrix and a diagonal matrix, is optimized to improve the threshold balance and classification capability in an iterative manner. Unlike most algorithms for face verification which are directly transplanted from face identification literature, TBT is specifically designed for face verification and clarifies the intrinsic distinction between these two tasks. Experiments on three benchmark face databases demonstrate that TBT significantly outperforms the state-of-the-art subspace techniques for face verification.

  19. New developments in supra-threshold perimetry.

    PubMed

    Henson, David B; Artes, Paul H

    2002-09-01

    To describe a series of recent enhancements to supra-threshold perimetry. Computer simulations were used to develop an improved algorithm (HEART) for the setting of the supra-threshold test intensity at the beginning of a field test, and to evaluate the relationship between various pass/fail criteria and the test's performance (sensitivity and specificity) and how they compare with modern threshold perimetry. Data were collected in optometric practices to evaluate HEART and to assess how the patient's response times can be analysed to detect false positive response errors in visual field test results. The HEART algorithm shows improved performance (reduced between-eye differences) over current algorithms. A pass/fail criterion of '3 stimuli seen of 3-5 presentations' at each test location reduces test/retest variability and combines high sensitivity and specificity. A large percentage of false positive responses can be detected by comparing their latencies to the average response time of a patient. Optimised supra-threshold visual field tests can perform as well as modern threshold techniques. Such tests may be easier to perform for novice patients, compared with the more demanding threshold tests.

  20. Robust Adaptive Thresholder For Document Scanning Applications

    NASA Astrophysics Data System (ADS)

    Hsing, To R.

    1982-12-01

    In document scanning applications, thresholding is used to obtain binary data from a scanner. However, due to: (1) a wide range of different color backgrounds; (2) density variations of printed text information; and (3) the shading effect caused by the optical systems, the use of adaptive thresholding to enhance the useful information is highly desired. This paper describes a new robust adaptive thresholder for obtaining valid binary images. It is basically a memory type algorithm which can dynamically update the black and white reference level to optimize a local adaptive threshold function. The results of high image quality from different types of simulate test patterns can be obtained by this algorithm. The software algorithm is described and experiment results are present to describe the procedures. Results also show that the techniques described here can be used for real-time signal processing in the varied applications.

  1. Formulating face verification with semidefinite programming.

    PubMed

    Yan, Shuicheng; Liu, Jianzhuang; Tang, Xiaoou; Huang, Thomas S

    2007-11-01

    This paper presents a unified solution to three unsolved problems existing in face verification with subspace learning techniques: selection of verification threshold, automatic determination of subspace dimension, and deducing feature fusing weights. In contrast to previous algorithms which search for the projection matrix directly, our new algorithm investigates a similarity metric matrix (SMM). With a certain verification threshold, this matrix is learned by a semidefinite programming approach, along with the constraints of the kindred pairs with similarity larger than the threshold, and inhomogeneous pairs with similarity smaller than the threshold. Then, the subspace dimension and the feature fusing weights are simultaneously inferred from the singular value decomposition of the derived SMM. In addition, the weighted and tensor extensions are proposed to further improve the algorithmic effectiveness and efficiency, respectively. Essentially, the verification is conducted within an affine subspace in this new algorithm and is, hence, called the affine subspace for verification (ASV). Extensive experiments show that the ASV can achieve encouraging face verification accuracy in comparison to other subspace algorithms, even without the need to explore any parameters.

  2. Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters

    NASA Astrophysics Data System (ADS)

    Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon

    2018-04-01

    In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.

  3. Comparison of algorithms of testing for use in automated evaluation of sensation.

    PubMed

    Dyck, P J; Karnes, J L; Gillen, D A; O'Brien, P C; Zimmerman, I R; Johnson, D M

    1990-10-01

    Estimates of vibratory detection threshold may be used to detect, characterize, and follow the course of sensory abnormality in neurologic disease. The approach is especially useful in epidemiologic and controlled clinical trials. We studied which algorithm of testing and finding threshold should be used in automatic systems by comparing among algorithms and stimulus conditions for the index finger of healthy subjects and for the great toe of patients with mild neuropathy. Appearance thresholds obtained by linear ramps increasing at a rate less than 4.15 microns/sec provided accurate and repeatable thresholds compared with thresholds obtained by forced-choice testing. These rates would be acceptable if only sensitive sites were studied, but they were too slow for use in automatic testing of insensitive parts. Appearance thresholds obtained by fast linear rates (4.15 or 16.6 microns/sec) overestimated threshold, especially for sensitive parts. Use of the mean of appearance and disappearance thresholds, with the stimulus increasing exponentially at rates of 0.5 or 1.0 just noticeable difference (JND) units per second, and interspersion of null stimuli, Békésy with null stimuli, provided accurate, repeatable, and fast estimates of threshold for sensitive parts. Despite the good performance of Békésy testing, we prefer forced choice for evaluation of the sensation of patients with neuropathy.

  4. Evaluation of Precipitation Detection over Various Surfaces from Passive Microwave Imagers and Sounders

    NASA Technical Reports Server (NTRS)

    Munchak, S. Joseph; Skofronick-Jackson, Gail

    2012-01-01

    During the middle part of this decade a wide variety of passive microwave imagers and sounders will be unified in the Global Precipitation Measurement (GPM) mission to provide a common basis for frequent (3 hr), global precipitation monitoring. The ability of these sensors to detect precipitation by discerning it from non-precipitating background depends upon the channels available and characteristics of the surface and atmosphere. This study quantifies the minimum detectable precipitation rate and fraction of precipitation detected for four representative instruments (TMI, GMI, AMSU-A, and AMSU-B) that will be part of the GPM constellation. Observations for these instruments were constructed from equivalent channels on the SSMIS instrument on DMSP satellites F16 and F17 and matched to precipitation data from NOAA's National Mosaic and QPE (NMQ) during 2009 over the continuous United States. A variational optimal estimation retrieval of non-precipitation surface and atmosphere parameters was used to determine the consistency between the observed brightness temperatures and these parameters, with high cost function values shown to be related to precipitation. The minimum detectable precipitation rate, defined as the lowest rate for which probability of detection exceeds 50%, and the detected fraction of precipitation, are reported for each sensor, surface type (ocean, coast, bare land, snow cover) and precipitation type (rain, mix, snow). The best sensors over ocean and bare land were GMI (0.22 mm/hr minimum threshold and 90% of precipitation detected) and AMSU (0.26 mm/hr minimum threshold and 81% of precipitation detected), respectively. Over coasts (0.74 mm/hr threshold and 12% detected) and snow-covered surfaces (0.44 mm/hr threshold and 23% detected), AMSU again performed best but with much lower detection skill, whereas TMI had no skill over these surfaces. The sounders (particularly over water) benefited from the use of re-analysis data (vs. climatology) to set the a-priori atmospheric state and all instruments benefit from the use of a conditional snow cover emissivity database over land. It is recommended that real-time sources of these data be used in the operational GPM precipitation algorithms.

  5. Negative Difference Resistance and Its Application to Construct Boolean Logic Circuits

    NASA Astrophysics Data System (ADS)

    Nikodem, Maciej; Bawiec, Marek A.; Surmacz, Tomasz R.

    Electronic circuits based on nanodevices and quantum effect are the future of logic circuits design. Today's technology allows constructing resonant tunneling diodes, quantum cellular automata and nanowires/nanoribbons that are the elementary components of threshold gates. However, synthesizing a threshold circuit for an arbitrary logic function is still a challenging task where no efficient algorithms exist. This paper focuses on Generalised Threshold Gates (GTG), giving the overview of threshold circuit synthesis methods and presenting an algorithm that considerably simplifies the task in case of GTG circuits.

  6. Hot Spot Detection System Using Landsat 8/OLI Data

    NASA Astrophysics Data System (ADS)

    Kato, S.; Nakamura, R.; Oda, A.; Iijima, A.; Kouyama, T.; Iwata, T.

    2015-12-01

    We developed a simple algorithm and a Web-based visualizing system to detect hot spots using Landsat 8 OLI multispectral data as one of the applications of the real-time processing of Landsat 8 data. An empirical equation and radiometric and reflective thresholds were derived to detect hot spots using the OLI data at band 5 (0.865 μm) and band 7 (2.200 μm) based on the increase in spectral radiance at shortwave infrared (SWIR) region due to the emission from objects with high surface temperature. We surveyed typical patterns of surface spectra using the ASTER spectral library to delineate a threshold to distinguish hot spots from background surfaces. To adjust the empirical coefficients of our detection algorithm, we visually inspected the detected hot spots using 6593 Landsat 8 scenes, which cover eastern part of East Asia, taken from January 1, 2014 to December 31, 2014, displayed on a dedicated Web GIS system. Eventually we determined threshold equations which can theoretically detect hot spots at temperatures above 230 °C over isothermal pixels and hot spots as small as 1 m2 at temperatures of 1000 °C as the lowest temperature and the smallest subpixel coverage, respectively, for daytime scenes. The algorithm detected hot spots including wildfires, volcanos, open burnings and factories. 30-m spatial resolution of Landsat 8 enabled to detect wild fires and open burnings accompanied by clearer shapes of fire front lines than MODIS and VIIRS fire products. Although the 16-day revisit cycle of Landsat 8 is too long to effectively find unexpected wildfire or outbreak of eruption, the revisit cycle is enough to monitor temporally stable heat sources, such as continually erupting volcanos and factories. False detection was found over building rooftops, which have relatively smooth surfaces at longer wavelengths, when specular reflection occurred at the satellite overpass.

  7. Analysis of image thresholding segmentation algorithms based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo

    2013-03-01

    Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.

  8. Optimizing Retransmission Threshold in Wireless Sensor Networks

    PubMed Central

    Bi, Ran; Li, Yingshu; Tan, Guozhen; Sun, Liang

    2016-01-01

    The retransmission threshold in wireless sensor networks is critical to the latency of data delivery in the networks. However, existing works on data transmission in sensor networks did not consider the optimization of the retransmission threshold, and they simply set the same retransmission threshold for all sensor nodes in advance. The method did not take link quality and delay requirement into account, which decreases the probability of a packet passing its delivery path within a given deadline. This paper investigates the problem of finding optimal retransmission thresholds for relay nodes along a delivery path in a sensor network. The object of optimizing retransmission thresholds is to maximize the summation of the probability of the packet being successfully delivered to the next relay node or destination node in time. A dynamic programming-based distributed algorithm for finding optimal retransmission thresholds for relay nodes along a delivery path in the sensor network is proposed. The time complexity is OnΔ·max1≤i≤n{ui}, where ui is the given upper bound of the retransmission threshold of sensor node i in a given delivery path, n is the length of the delivery path and Δ is the given upper bound of the transmission delay of the delivery path. If Δ is greater than the polynomial, to reduce the time complexity, a linear programming-based (1+pmin)-approximation algorithm is proposed. Furthermore, when the ranges of the upper and lower bounds of retransmission thresholds are big enough, a Lagrange multiplier-based distributed O(1)-approximation algorithm with time complexity O(1) is proposed. Experimental results show that the proposed algorithms have better performance. PMID:27171092

  9. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation

    NASA Astrophysics Data System (ADS)

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Objective. Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. Approach. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Main results. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Significance. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  10. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation.

    PubMed

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi

    2018-06-01

    Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.

  11. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

    PubMed Central

    Sun, Lijuan; Guo, Jian; Xu, Bin; Li, Shujing

    2017-01-01

    The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur's entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability. PMID:28127305

  12. Nonlinear threshold behavior during the loss of Arctic sea ice.

    PubMed

    Eisenman, I; Wettlaufer, J S

    2009-01-06

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.

  13. Nonlinear threshold behavior during the loss of Arctic sea ice

    PubMed Central

    Eisenman, I.; Wettlaufer, J. S.

    2009-01-01

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or “tipping point”) beyond which the ice–albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice–albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice–albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely. PMID:19109440

  14. The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.

    2012-04-01

    Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features in the MSG/SEVIRI images. The fractional snow cover area (H12) algorithm is based on a sub-pixel reflectance model applied on METOP-AVHRR data. Knowing the effects of topography on satellite-measured radiances for rough terrain, the sun zenith and azimuth angles, as well as direction of observation relative to these are taken into account in estimating the target reflectances from the satellite images. The values of SWE products (H13) were obtained using an assimilation process based on the Helsinki University of Technology model using Advanced Microwave Scanning Radiometer for EOS (AMSR-E) daily brightness-temperature values. The validation studies for three products have been performed for the water years 2010 and 2011. Average values of 70% of probability of detection for snow recognition product, 60% of overall accuracy for the fractional snow cover product and 45 mm RMSE for the snow water equivalent product have been obtained from the validation studies. Final versions of these three products will be presented and discussed. Key words: snow, satellite images, mountain, HSAF, snow cover, snow water equivalent

  15. EVALUATING MACROINVERTEBRATE COMMUNITY ...

    EPA Pesticide Factsheets

    Since 2010, new construction in California is required to include stormwater detention and infiltration that is designed to capture rainfall from the 85th percentile of storm events in the region, preferably through green infrastructure. This study used recent macroinvertebrate community monitoring data to determine the ecological threshold for percent impervious cover prior to large scale adoption of green infrastructure using Threshold Indicator Taxa Analysis (TITAN). TITAN uses an environmental gradient and biological community data to determine individual taxa change points with respect to changes in taxa abundance and frequency across that gradient. Individual taxa change points are then aggregated to calculate the ecological threshold. This study used impervious cover data from National Land Cover Datasets and macroinvertebrate community data from California Environmental Data Exchange Network and Southern California Coastal Water Research Project. Preliminary TITAN runs for California’s Chaparral region indicated that both increasing and decreasing taxa had ecological thresholds of <1% watershed impervious cover. Next, TITAN will be used to determine shifts in the ecological threshold after the implementation of green infrastructure on a large scale. This presentation for the Society for Freshwater Scientists will discuss initial evaluation of community and taxa-specific thresholds of impairment for macroinvertebrates in California streams along

  16. Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms

    PubMed Central

    Pacheco, Maria P.; Pfau, Thomas; Sauter, Thomas

    2016-01-01

    Recent progress in high-throughput data acquisition has shifted the focus from data generation to processing and understanding of how to integrate collected information. Context specific reconstruction based on generic genome scale models like ReconX or HMR has the potential to become a diagnostic and treatment tool tailored to the analysis of specific individuals. The respective computational algorithms require a high level of predictive power, robustness and sensitivity. Although multiple context specific reconstruction algorithms were published in the last 10 years, only a fraction of them is suitable for model building based on human high-throughput data. Beside other reasons, this might be due to problems arising from the limitation to only one metabolic target function or arbitrary thresholding. This review describes and analyses common validation methods used for testing model building algorithms. Two major methods can be distinguished: consistency testing and comparison based testing. The first is concerned with robustness against noise, e.g., missing data due to the impossibility to distinguish between the signal and the background of non-specific binding of probes in a microarray experiment, and whether distinct sets of input expressed genes corresponding to i.e., different tissues yield distinct models. The latter covers methods comparing sets of functionalities, comparison with existing networks or additional databases. We test those methods on several available algorithms and deduce properties of these algorithms that can be compared with future developments. The set of tests performed, can therefore serve as a benchmarking procedure for future algorithms. PMID:26834640

  17. AutoNR: an automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence.

    PubMed

    Botros, Andrew; van Dijk, Bas; Killian, Matthijs

    2007-05-01

    AutoNRT is an automated system that measures electrically evoked compound action potential (ECAP) thresholds from the auditory nerve with the Nucleus Freedom cochlear implant. ECAP thresholds along the electrode array are useful in objectively fitting cochlear implant systems for individual use. This paper provides the first detailed description of the AutoNRT algorithm and its expert systems, and reports the clinical success of AutoNRT to date. AutoNRT determines thresholds by visual detection, using two decision tree expert systems that automatically recognise ECAPs. The expert systems are guided by a dataset of 5393 neural response measurements. The algorithm approaches threshold from lower stimulus levels, ensuring recipient safety during postoperative measurements. Intraoperative measurements use the same algorithm but proceed faster by beginning at stimulus levels much closer to threshold. When searching for ECAPs, AutoNRT uses a highly specific expert system (specificity of 99% during training, 96% during testing; sensitivity of 91% during training, 89% during testing). Once ECAPs are established, AutoNRT uses an unbiased expert system to determine an accurate threshold. Throughout the execution of the algorithm, recording parameters (such as implant amplifier gain) are automatically optimised when needed. In a study that included 29 intraoperative and 29 postoperative subjects (a total of 418 electrodes), AutoNRT determined a threshold in 93% of cases where a human expert also determined a threshold. When compared to the median threshold of multiple human observers on 77 randomly selected electrodes, AutoNRT performed as accurately as the 'average' clinician. AutoNRT has demonstrated a high success rate and a level of performance that is comparable with human experts. It has been used in many clinics worldwide throughout the clinical trial and commercial launch of Nucleus Custom Sound Suite, significantly streamlining the clinical procedures associated with cochlear implant use.

  18. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  19. A novel gene network inference algorithm using predictive minimum description length approach.

    PubMed

    Chaitankar, Vijender; Ghosh, Preetam; Perkins, Edward J; Gong, Ping; Deng, Youping; Zhang, Chaoyang

    2010-05-28

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold which defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we proposed a new inference algorithm which incorporated mutual information (MI), conditional mutual information (CMI) and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm was evaluated using both synthetic time series data sets and a biological time series data set for the yeast Saccharomyces cerevisiae. The benchmark quantities precision and recall were used as performance measures. The results show that the proposed algorithm produced less false edges and significantly improved the precision, as compared to the existing algorithm. For further analysis the performance of the algorithms was observed over different sizes of data. We have proposed a new algorithm that implements the PMDL principle for inferring gene regulatory networks from time series DNA microarray data that eliminates the need of a fine tuning parameter. The evaluation results obtained from both synthetic and actual biological data sets show that the PMDL principle is effective in determining the MI threshold and the developed algorithm improves precision of gene regulatory network inference. Based on the sensitivity analysis of all tested cases, an optimal CMI threshold value has been identified. Finally it was observed that the performance of the algorithms saturates at a certain threshold of data size.

  20. Bounds on the number of hidden neurons in three-layer binary neural networks.

    PubMed

    Zhang, Zhaozhi; Ma, Xiaomin; Yang, Yixian

    2003-09-01

    This paper investigates an important problem concerning the complexity of three-layer binary neural networks (BNNs) with one hidden layer. The neuron in the studied BNNs employs a hard limiter activation function with only integer weights and an integer threshold. The studies are focused on implementations of arbitrary Boolean functions which map from [0, 1]n into [0, 1]. A deterministic algorithm called set covering algorithm (SCA) is proposed for the construction of a three-layer BNN to implement an arbitrary Boolean function. The SCA is based on a unit sphere covering (USC) of the Hamming space (HS) which is chosen in advance. It is proved that for the implementation of an arbitrary Boolean function of n-variables (n > or = 3) by using SCA, [3L/2] hidden neurons are necessary and sufficient, where L is the number of unit spheres contained in the chosen USC of the n-dimensional HS. It is shown that by using SCA, the number of hidden neurons required is much less than that by using a two-parallel hyperplane method. In order to indicate the potential ability of three-layer BNNs, a lower bound on the required number of hidden neurons which is derived by using the method of estimating the Vapnik-Chervonenkis (VC) dimension is also given.

  1. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.

    PubMed

    El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam

    2017-02-07

    Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

  2. Planification de trajectoires pour placement automatise de fibres sur surfaces de geometries complexes

    NASA Astrophysics Data System (ADS)

    Hely, Clement

    During the past 50 years, the use of composite materials drastically increase, mainly thanks to the interest of aeronautical industries for these strong and lightweight materials. To improve the productivity of composite materials manufacturing some of the largest aeronautics companies began to develop automated processes such as Automated Fibre Placement (AFP). The AFP workcells currently used by the industry were mainly developed for production of large, nearly flat, plates with low curvatures such as aircraft fuselages. However, the fields of aeronautics and sport goods production begin nowadays to show an interest for manufacturing of smaller and more complex parts. The aim of the project in which this research takes place is to design a new AFP workcell and to develop new techniques allowing production of parts with small size and complex geometry. The work presented in this thesis focuses on the path planning on multi-axial revolution surfaces, e.g. Y-shaped tubes of constant circular cross section. Several path planning algorithms will be presented aiming at the exhaustive coverage of a mandrel with pre-impregnated (prepreg) composite tape. The methodology used in two of these algorithms is to individually cover each branch of the Y-shaped part with paths deriving from a helix. In the first one, the helix will be cut at the boundary between a branch and the junction region (algorithm HD) while in the second (algorithm HA) the pseudo-helix path can be adjusted to follow this boundary. These two methods were shown to have some drawbacks compromising their practical use and possibly leading to parts with diminished mechanical properties. To avoid these drawbacks, two others algorithms were developed with a new methodology. With them, the aim is to cover two branches of the Y-shape with a continuous course (i.e. without cut). The first one uses a well known strategy which defines plies with a constant fibre orientation. Parallel paths are then computed to generate a full and uniform ply covering two branches. Once again this method suffers from a main drawback, namely that it can produce highly curved paths leading to manufacturing defects. To overcome this limitation, a last algorithm is proposed ensuring that the maximal curvature of a trajectory stays below a fixed threshold. However, fulfilling this constraint prevents to predict the complete shape of the path and to ensure a perfectly uniform coverage. It is thus proposed to generate an exhaustive set of trajectories having different shapes and covering all the part. Then, a selection algorithm is used to choose the ones which are best suited according to selection criteria. To help the definition of these criteria, a finite element analysis is conducted to give some insight concerning the best suited shapes for specific loading cases. Finally, simulations were carried out with a workcell constituted by a robotic manipulator associated with a rotary table to verify the feasibility of the paths generated by the different algorithms.

  3. A high speed implementation of the random decrement algorithm

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.

    1982-01-01

    The algorithm is useful for measuring net system damping levels in stochastic processes and for the development of equivalent linearized system response models. The algorithm works by summing together all subrecords which occur after predefined threshold level is crossed. The random decrement signature is normally developed by scanning stored data and adding subrecords together. The high speed implementation of the random decrement algorithm exploits the digital character of sampled data and uses fixed record lengths of 2(n) samples to greatly speed up the process. The contributions to the random decrement signature of each data point was calculated only once and in the same sequence as the data were taken. A hardware implementation of the algorithm using random logic is diagrammed and the process is shown to be limited only by the record size and the threshold crossing frequency of the sampled data. With a hardware cycle time of 200 ns and 1024 point signature, a threshold crossing frequency of 5000 Hertz can be processed and a stably averaged signature presented in real time.

  4. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  5. A snow cover climatology for the Pyrenees from MODIS snow products

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sanchez, R.

    2015-05-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (w.e.) and 150 mm, respectively, for both MOD10A1 and MYD10A1. κ coefficients are within 0.74 and 0.92 depending on the product and the variable for these thresholds. However, we also find a seasonal trend in the optimal SWE and SD thresholds, reflecting the hysteresis in the relationship between the depth of the snowpack (or SWE) and its extent within a MODIS pixel. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both data sets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decrease over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gap-filling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band and aspect classes. There is snow on the ground at least 50% of the time above 1600 m between December and April. We finally analyze the snow patterns for the atypical winter 2011-2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.

  6. Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Yaszemski, Michael J.; Robb, Richard A.

    2004-05-01

    Tissue engineering attempts to address the ever widening gap between the demand and supply of organ and tissue transplants using natural and biomimetic scaffolds. The regeneration of specific tissues aided by synthetic materials is dependent on the structural and morphometric properties of the scaffold. These properties can be derived non-destructively using quantitative analysis of high resolution microCT scans of scaffolds. Thresholding of the scanned images into polymeric and porous phase is central to the outcome of the subsequent structural and morphometric analysis. Visual thresholding of scaffolds produced using stochastic processes is inaccurate. Depending on the algorithmic assumptions made, automatic thresholding might also be inaccurate. Hence there is a need to analyze the performance of different techniques and propose alternate ones, if needed. This paper provides a quantitative comparison of different thresholding techniques for segmenting scaffold images. The thresholding algorithms examined include those that exploit spatial information, locally adaptive characteristics, histogram entropy information, histogram shape information, and clustering of gray-level information. The performance of different techniques was evaluated using established criteria, including misclassification error, edge mismatch, relative foreground error, and region non-uniformity. Algorithms that exploit local image characteristics seem to perform much better than those using global information.

  7. Improve threshold segmentation using features extraction to automatic lung delimitation.

    PubMed

    França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala

    2013-01-01

    With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.

  8. Automatic Boosted Flood Mapping from Satellite Data

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence

    2016-01-01

    Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-the-art algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions.

  9. Application of the artificial bee colony algorithm for solving the set covering problem.

    PubMed

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem.

  10. Application of the Artificial Bee Colony Algorithm for Solving the Set Covering Problem

    PubMed Central

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem. PMID:24883356

  11. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is observed by the satellite. Also, this condition constitutes layers of clouds that are not observed by each camera. The results of this study show that one instrument can be used to correct each other to provide better cloud cover values. These corrections is dependent on the height and thickness of the clouds. No correction is necessary when the sky is clear.

  12. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  13. Comparing the ISO-recommended and the cumulative data-reduction algorithms in S-on-1 laser damage test by a reverse approach method

    NASA Astrophysics Data System (ADS)

    Zorila, Alexandru; Stratan, Aurel; Nemes, George

    2018-01-01

    We compare the ISO-recommended (the standard) data-reduction algorithm used to determine the surface laser-induced damage threshold of optical materials by the S-on-1 test with two newly suggested algorithms, both named "cumulative" algorithms/methods, a regular one and a limit-case one, intended to perform in some respects better than the standard one. To avoid additional errors due to real experiments, a simulated test is performed, named the reverse approach. This approach simulates the real damage experiments, by generating artificial test-data of damaged and non-damaged sites, based on an assumed, known damage threshold fluence of the target and on a given probability distribution function to induce the damage. In this work, a database of 12 sets of test-data containing both damaged and non-damaged sites was generated by using four different reverse techniques and by assuming three specific damage probability distribution functions. The same value for the threshold fluence was assumed, and a Gaussian fluence distribution on each irradiated site was considered, as usual for the S-on-1 test. Each of the test-data was independently processed by the standard and by the two cumulative data-reduction algorithms, the resulting fitted probability distributions were compared with the initially assumed probability distribution functions, and the quantities used to compare these algorithms were determined. These quantities characterize the accuracy and the precision in determining the damage threshold and the goodness of fit of the damage probability curves. The results indicate that the accuracy in determining the absolute damage threshold is best for the ISO-recommended method, the precision is best for the limit-case of the cumulative method, and the goodness of fit estimator (adjusted R-squared) is almost the same for all three algorithms.

  14. A test of critical thresholds and their indicators in a desertification-prone ecosystem: more resilience than we thought

    USGS Publications Warehouse

    Bestelmeyer, Brandon T.; Duniway, Michael C.; James, Darren K.; Burkett, Laura M.; Havstad, Kris M.

    2013-01-01

    Theoretical models predict that drylands can cross critical thresholds, but experimental manipulations to evaluate them are non-existent. We used a long-term (13-year) pulse-perturbation experiment featuring heavy grazing and shrub removal to determine if critical thresholds and their determinants can be demonstrated in Chihuahuan Desert grasslands. We asked if cover values or patch-size metrics could predict vegetation recovery, supporting their use as early-warning indicators. We found that season of grazing, but not the presence of competing shrubs, mediated the severity of grazing impacts on dominant grasses. Recovery occurred at the same rate irrespective of grazing history, suggesting that critical thresholds were not crossed, even at low cover levels. Grass cover, but not patch size metrics, predicted variation in recovery rates. Some transition-prone ecosystems are surprisingly resilient; management of grazing impacts and simple cover measurements can be used to avert undesired transitions and initiate restoration.

  15. An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie; Frey, R.

    2008-01-01

    Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.

  16. Automated Sargassum Detection for Landsat Imagery

    NASA Astrophysics Data System (ADS)

    McCarthy, S.; Gallegos, S. C.; Armstrong, D.

    2016-02-01

    We implemented a system to automatically detect Sargassum, a floating seaweed, in 30-meter LANDSAT-8 Operational Land Imager (OLI) imagery. Our algorithm for Sargassum detection is an extended form of Hu's approach to derive a floating algae index (FAI) [1]. Hu's algorithm was developed for Moderate Resolution Imaging Spectroradiometer (MODIS) data, but we extended it for use with the OLI bands centered at 655, 865, and 1609 nm, which are comparable to the MODIS bands located at 645, 859, and 1640 nm. We also developed a high resolution true color product to mask cloud pixels in the OLI scene by applying a threshold to top of the atmosphere (TOA) radiances in the red (655 nm), green (561 nm), and blue (443 nm) wavelengths, as well as a method for removing false positive identifications of Sargassum in the imagery. Hu's algorithm derives a FAI for each Sargassum identified pixel. Our algorithm is currently set to only flag the presence of Sargassum in an OLI pixel by classifying any pixel with a FAI > 0.0 as Sargassum. Additionally, our system geo-locates the flagged Sargassum pixels identified in the OLI imagery into the U.S. Navy Global HYCOM model grid. One element of the model grid covers an area 0.125 degrees of latitude by 0.125 degrees of longitude. To resolve the differences in spatial coverage between Landsat and HYCOM, a scheme was developed to calculate the percentage of pixels flagged within the grid element and if above a threshold, it will be flagged as Sargassum. This work is a part of a larger system, sponsored by NASA/Applied Science and Technology Project at J.C. Stennis Space Center, to forecast when and where Sargassum will land on shore. The focus area of this work is currently the Texas coast. Plans call for extending our efforts into the Caribbean. References: [1] Hu, Chuanmin. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment 113 (2009) 2118-2129.

  17. An Automated Approach to Map the History of Forest Disturbance from Insect Mortality and Harvest with Landsat Time-Series Data

    NASA Technical Reports Server (NTRS)

    Rudasill-Neigh, Christopher S.; Bolton, Douglas K.; Diabate, Mouhamad; Williams, Jennifer J.; Carvalhais, Nuno

    2014-01-01

    Forests contain a majority of the aboveground carbon (C) found in ecosystems, and understanding biomass lost from disturbance is essential to improve our C-cycle knowledge. Our study region in the Wisconsin and Minnesota Laurentian Forest had a strong decline in Normalized Difference Vegetation Index (NDVI) from 1982 to 2007, observed with the National Ocean and Atmospheric Administration's (NOAA) series of Advanced Very High Resolution Radiometer (AVHRR). To understand the potential role of disturbances in the terrestrial C-cycle, we developed an algorithm to map forest disturbances from either harvest or insect outbreak for Landsat time-series stacks. We merged two image analysis approaches into one algorithm to monitor forest change that included: (1) multiple disturbance index thresholds to capture clear-cut harvest; and (2) a spectral trajectory-based image analysis with multiple confidence interval thresholds to map insect outbreak. We produced 20 maps and evaluated classification accuracy with air-photos and insect air-survey data to understand the performance of our algorithm. We achieved overall accuracies ranging from 65% to 75%, with an average accuracy of 72%. The producer's and user's accuracy ranged from a maximum of 32% to 70% for insect disturbance, 60% to 76% for insect mortality and 82% to 88% for harvested forest, which was the dominant disturbance agent. Forest disturbances accounted for 22% of total forested area (7349 km2). Our algorithm provides a basic approach to map disturbance history where large impacts to forest stands have occurred and highlights the limited spectral sensitivity of Landsat time-series to outbreaks of defoliating insects. We found that only harvest and insect mortality events can be mapped with adequate accuracy with a non-annual Landsat time-series. This limited our land cover understanding of NDVI decline drivers. We demonstrate that to capture more subtle disturbances with spectral trajectories, future observations must be temporally dense to distinguish between type and frequency in heterogeneous landscapes.

  18. Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.

    PubMed

    OConnor, William; Runquist, Elizabeth A

    2008-07-01

    Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.

  19. An algorithm for simulating fracture of cohesive-frictional materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nukala, Phani K; Sampath, Rahul S; Barai, Pallab

    Fracture of disordered frictional granular materials is dominated by interfacial failure response that is characterized by de-cohesion followed by frictional sliding response. To capture such an interfacial failure response, we introduce a cohesive-friction random fuse model (CFRFM), wherein the cohesive response of the interface is represented by a linear stress-strain response until a failure threshold, which is then followed by a constant response at a threshold lower than the initial failure threshold to represent the interfacial frictional sliding mechanism. This paper presents an efficient algorithm for simulating fracture of such disordered frictional granular materials using the CFRFM. We note that,more » when applied to perfectly plastic disordered materials, our algorithm is both theoretically and numerically equivalent to the traditional tangent algorithm (Roux and Hansen 1992 J. Physique II 2 1007) used for such simulations. However, the algorithm is general and is capable of modeling discontinuous interfacial response. Our numerical simulations using the algorithm indicate that the local and global roughness exponents ({zeta}{sub loc} and {zeta}, respectively) of the fracture surface are equal to each other, and the two-dimensional crack roughness exponent is estimated to be {zeta}{sub loc} = {zeta} = 0.69 {+-} 0.03.« less

  20. Variable threshold algorithm for division of labor analyzed as a dynamical system.

    PubMed

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro

    2014-12-01

    Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

  1. A Multiscale pipeline for the search of string-induced CMB anisotropies

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Movahed, S. M. S.; Farhang, M.; Ringeval, C.; Bouchet, F. R.

    2018-03-01

    We propose a multiscale edge-detection algorithm to search for the Gott-Kaiser-Stebbins imprints of a cosmic string (CS) network on the cosmic microwave background (CMB) anisotropies. Curvelet decomposition and extended Canny algorithm are used to enhance the string detectability. Various statistical tools are then applied to quantify the deviation of CMB maps having a CS contribution with respect to pure Gaussian anisotropies of inflationary origin. These statistical measures include the one-point probability density function, the weighted two-point correlation function (TPCF) of the anisotropies, the unweighted TPCF of the peaks and of the up-crossing map, as well as their cross-correlation. We use this algorithm on a hundred of simulated Nambu-Goto CMB flat sky maps, covering approximately 10 per cent of the sky, and for different string tensions Gμ. On noiseless sky maps with an angular resolution of 0.9 arcmin, we show that our pipeline detects CSs with Gμ as low as Gμ ≳ 4.3 × 10-10. At the same resolution, but with a noise level typical to a CMB-S4 phase II experiment, the detection threshold would be to Gμ ≳ 1.2 × 10-7.

  2. Target recognition in passive terahertz image of human body

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Zhao, Yuan-meng; Deng, Chao; Zhang, Cun-lin; Li, Yue

    2014-11-01

    THz radiation can penetrate through many nonpolar dielectric materials and can be used for nondestructive/noninvasive sensing and imaging of targets under nonpolar, nonmetallic covers or containers. Thus using THz systems to "see through" concealing barriers (i.e. packaging, corrugated cardboard, clothing) has been proposed as a new security screening method. Objects that can be detected by THz include concealed weapons, explosives, and chemical agents under clothing. Passive THz imaging system can detect THz wave from human body without transmit any electromagnetic wave, and the suspicious objects will become visible because the THz wave is blocked by this items. We can find out whether or not someone is carrying dangerous objects through this image. In this paper, the THz image enhancement, segmentation and contour extraction algorithms were studied to achieve effective target image detection. First, the terahertz images are enhanced and their grayscales are stretched. Then we apply global threshold segmentation to extract the target, and finally the targets are marked on the image. Experimental results showed that the algorithm proposed in this paper can extract and mark targets effectively, so that people can identify suspicious objects under clothing quickly. The algorithm can significantly improve the usefulness of the terahertz security apparatus.

  3. Updating Landsat-derived land-cover maps using change detection and masking techniques

    NASA Technical Reports Server (NTRS)

    Likens, W.; Maw, K.

    1982-01-01

    The California Integrated Remote Sensing System's San Bernardino County Project was devised to study the utilization of a data base at a number of jurisdictional levels. The present paper discusses the implementation of change-detection and masking techniques in the updating of Landsat-derived land-cover maps. A baseline landcover classification was first created from a 1976 image, then the adjusted 1976 image was compared with a 1979 scene by the techniques of (1) multidate image classification, (2) difference image-distribution tails thresholding, (3) difference image classification, and (4) multi-dimensional chi-square analysis of a difference image. The union of the results of methods 1, 3 and 4 was used to create a mask of possible change areas between 1976 and 1979, which served to limit analysis of the update image and reduce comparison errors in unchanged areas. The techniques of spatial smoothing of change-detection products, and of combining results of difference change-detection algorithms are also shown to improve Landsat change-detection accuracies.

  4. Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation

    PubMed Central

    Liu, Yang; Liu, Junfei

    2016-01-01

    This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826

  5. Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.

    PubMed

    Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo

    2016-01-01

    This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.

  6. Forest Cover Mapping in Iskandar Malaysia Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.

    2016-09-01

    Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  7. EEG Artifact Removal Using a Wavelet Neural Network

    NASA Technical Reports Server (NTRS)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  8. THRESHOLD LOGIC.

    DTIC Science & Technology

    synthesis procedures; a ’best’ method is definitely established. (2) ’Symmetry Types for Threshold Logic’ is a tutorial expositon including a careful...development of the Goto-Takahasi self-dual type ideas. (3) ’Best Threshold Gate Decisions’ reports a comparison, on the 2470 7-argument threshold ...interpretation is shown best. (4) ’ Threshold Gate Networks’ reviews the previously discussed 2-algorithm in geometric terms, describes our FORTRAN

  9. Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late Gadolinium enhancement MR images.

    PubMed

    Karim, Rashed; Bhagirath, Pranav; Claus, Piet; James Housden, R; Chen, Zhong; Karimaghaloo, Zahra; Sohn, Hyon-Mok; Lara Rodríguez, Laura; Vera, Sergio; Albà, Xènia; Hennemuth, Anja; Peitgen, Heinz-Otto; Arbel, Tal; Gonzàlez Ballester, Miguel A; Frangi, Alejandro F; Götte, Marco; Razavi, Reza; Schaeffter, Tobias; Rhode, Kawal

    2016-05-01

    Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the Full-Width-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Adaptive threshold shearlet transform for surface microseismic data denoising

    NASA Astrophysics Data System (ADS)

    Tang, Na; Zhao, Xian; Li, Yue; Zhu, Dan

    2018-06-01

    Random noise suppression plays an important role in microseismic data processing. The microseismic data is often corrupted by strong random noise, which would directly influence identification and location of microseismic events. Shearlet transform is a new multiscale transform, which can effectively process the low magnitude of microseismic data. In shearlet domain, due to different distributions of valid signals and random noise, shearlet coefficients can be shrunk by threshold. Therefore, threshold is vital in suppressing random noise. The conventional threshold denoising algorithms usually use the same threshold to process all coefficients, which causes noise suppression inefficiency or valid signals loss. In order to solve above problems, we propose the adaptive threshold shearlet transform (ATST) for surface microseismic data denoising. In the new algorithm, we calculate the fundamental threshold for each direction subband firstly. In each direction subband, the adjustment factor is obtained according to each subband coefficient and its neighboring coefficients, in order to adaptively regulate the fundamental threshold for different shearlet coefficients. Finally we apply the adaptive threshold to deal with different shearlet coefficients. The experimental denoising results of synthetic records and field data illustrate that the proposed method exhibits better performance in suppressing random noise and preserving valid signal than the conventional shearlet denoising method.

  11. Accuracy evaluation of a new real-time continuous glucose monitoring algorithm in hypoglycemia.

    PubMed

    Mahmoudi, Zeinab; Jensen, Morten Hasselstrøm; Dencker Johansen, Mette; Christensen, Toke Folke; Tarnow, Lise; Christiansen, Jens Sandahl; Hejlesen, Ole

    2014-10-01

    The purpose of this study was to evaluate the performance of a new continuous glucose monitoring (CGM) calibration algorithm and to compare it with the Guardian(®) REAL-Time (RT) (Medtronic Diabetes, Northridge, CA) calibration algorithm in hypoglycemia. CGM data were obtained from 10 type 1 diabetes patients undergoing insulin-induced hypoglycemia. Data were obtained in two separate sessions using the Guardian RT CGM device. Data from the same CGM sensor were calibrated by two different algorithms: the Guardian RT algorithm and a new calibration algorithm. The accuracy of the two algorithms was compared using four performance metrics. The median (mean) of absolute relative deviation in the whole range of plasma glucose was 20.2% (32.1%) for the Guardian RT calibration and 17.4% (25.9%) for the new calibration algorithm. The mean (SD) sample-based sensitivity for the hypoglycemic threshold of 70 mg/dL was 31% (33%) for the Guardian RT algorithm and 70% (33%) for the new algorithm. The mean (SD) sample-based specificity at the same hypoglycemic threshold was 95% (8%) for the Guardian RT algorithm and 90% (16%) for the new calibration algorithm. The sensitivity of the event-based hypoglycemia detection for the hypoglycemic threshold of 70 mg/dL was 61% for the Guardian RT calibration and 89% for the new calibration algorithm. Application of the new calibration caused one false-positive instance for the event-based hypoglycemia detection, whereas the Guardian RT caused no false-positive instances. The overestimation of plasma glucose by CGM was corrected from 33.2 mg/dL in the Guardian RT algorithm to 21.9 mg/dL in the new calibration algorithm. The results suggest that the new algorithm may reduce the inaccuracy of Guardian RT CGM system within the hypoglycemic range; however, data from a larger number of patients are required to compare the clinical reliability of the two algorithms.

  12. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    NASA Astrophysics Data System (ADS)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  13. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+

    NASA Astrophysics Data System (ADS)

    Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.

    2011-04-01

    The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.

  14. Threshold-based segmentation of fluorescent and chromogenic images of microglia, astrocytes and oligodendrocytes in FIJI.

    PubMed

    Healy, Sinead; McMahon, Jill; Owens, Peter; Dockery, Peter; FitzGerald, Una

    2018-02-01

    Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal. For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms. Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining. We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology. As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A wavelet and least square filter based spatial-spectral denoising approach of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Li, Ting; Chen, Xiao-Mei; Chen, Gang; Xue, Bo; Ni, Guo-Qiang

    2009-11-01

    Noise reduction is a crucial step in hyperspectral imagery pre-processing. Based on sensor characteristics, the noise of hyperspectral imagery represents in both spatial and spectral domain. However, most prevailing denosing techniques process the imagery in only one specific domain, which have not utilized multi-domain nature of hyperspectral imagery. In this paper, a new spatial-spectral noise reduction algorithm is proposed, which is based on wavelet analysis and least squares filtering techniques. First, in the spatial domain, a new stationary wavelet shrinking algorithm with improved threshold function is utilized to adjust the noise level band-by-band. This new algorithm uses BayesShrink for threshold estimation, and amends the traditional soft-threshold function by adding shape tuning parameters. Comparing with soft or hard threshold function, the improved one, which is first-order derivable and has a smooth transitional region between noise and signal, could save more details of image edge and weaken Pseudo-Gibbs. Then, in the spectral domain, cubic Savitzky-Golay filter based on least squares method is used to remove spectral noise and artificial noise that may have been introduced in during the spatial denoising. Appropriately selecting the filter window width according to prior knowledge, this algorithm has effective performance in smoothing the spectral curve. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in 2007. The result shows that the new spatial-spectral denoising algorithm provides more significant signal-to-noise-ratio improvement than traditional spatial or spectral method, while saves the local spectral absorption features better.

  16. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    PubMed

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  17. Automated tumour boundary delineation on 18F-FDG PET images using active contour coupled with shifted-optimal thresholding method

    NASA Astrophysics Data System (ADS)

    Khamwan, Kitiwat; Krisanachinda, Anchali; Pluempitiwiriyawej, Charnchai

    2012-10-01

    This study presents an automatic method to trace the boundary of the tumour in positron emission tomography (PET) images. It has been discovered that Otsu's threshold value is biased when the within-class variances between the object and the background are significantly different. To solve the problem, a double-stage threshold search that minimizes the energy between the first Otsu's threshold and the maximum intensity value is introduced. Such shifted-optimal thresholding is embedded into a region-based active contour so that both algorithms are performed consecutively. The efficiency of the method is validated using six sphere inserts (0.52-26.53 cc volume) of the IEC/2001 torso phantom. Both spheres and phantom were filled with 18F solution with four source-to-background ratio (SBR) measurements of PET images. The results illustrate that the tumour volumes segmented by combined algorithm are of higher accuracy than the traditional active contour. The method had been clinically implemented in ten oesophageal cancer patients. The results are evaluated and compared with the manual tracing by an experienced radiation oncologist. The advantage of the algorithm is the reduced erroneous delineation that improves the precision and accuracy of PET tumour contouring. Moreover, the combined method is robust, independent of the SBR threshold-volume curves, and it does not require prior lesion size measurement.

  18. a Threshold-Free Filtering Algorithm for Airborne LIDAR Point Clouds Based on Expectation-Maximization

    NASA Astrophysics Data System (ADS)

    Hui, Z.; Cheng, P.; Ziggah, Y. Y.; Nie, Y.

    2018-04-01

    Filtering is a key step for most applications of airborne LiDAR point clouds. Although lots of filtering algorithms have been put forward in recent years, most of them suffer from parameters setting or thresholds adjusting, which will be time-consuming and reduce the degree of automation of the algorithm. To overcome this problem, this paper proposed a threshold-free filtering algorithm based on expectation-maximization. The proposed algorithm is developed based on an assumption that point clouds are seen as a mixture of Gaussian models. The separation of ground points and non-ground points from point clouds can be replaced as a separation of a mixed Gaussian model. Expectation-maximization (EM) is applied for realizing the separation. EM is used to calculate maximum likelihood estimates of the mixture parameters. Using the estimated parameters, the likelihoods of each point belonging to ground or object can be computed. After several iterations, point clouds can be labelled as the component with a larger likelihood. Furthermore, intensity information was also utilized to optimize the filtering results acquired using the EM method. The proposed algorithm was tested using two different datasets used in practice. Experimental results showed that the proposed method can filter non-ground points effectively. To quantitatively evaluate the proposed method, this paper adopted the dataset provided by the ISPRS for the test. The proposed algorithm can obtain a 4.48 % total error which is much lower than most of the eight classical filtering algorithms reported by the ISPRS.

  19. Development of a thresholding algorithm for calcium classification at multiple CT energies

    NASA Astrophysics Data System (ADS)

    Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.

    2017-05-01

    The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.

  20. Petri nets SM-cover-based on heuristic coloring algorithm

    NASA Astrophysics Data System (ADS)

    Tkacz, Jacek; Doligalski, Michał

    2015-09-01

    In the paper, coloring heuristic algorithm of interpreted Petri nets is presented. Coloring is used to determine the State Machines (SM) subnets. The present algorithm reduces the Petri net in order to reduce the computational complexity and finds one of its possible State Machines cover. The proposed algorithm uses elements of interpretation of Petri nets. The obtained result may not be the best, but it is sufficient for use in rapid prototyping of logic controllers. Found SM-cover will be also used in the development of algorithms for decomposition, and modular synthesis and implementation of parallel logic controllers. Correctness developed heuristic algorithm was verified using Gentzen formal reasoning system.

  1. Sparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for Lp-Regularization Using the Multiple Sub-Dictionary Representation

    PubMed Central

    Zhang, Jie; Fan, Shangang; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki

    2017-01-01

    Both L1/2 and L2/3 are two typical non-convex regularizations of Lp (0

  2. Sparse Adaptive Iteratively-Weighted Thresholding Algorithm (SAITA) for Lp-Regularization Using the Multiple Sub-Dictionary Representation.

    PubMed

    Li, Yunyi; Zhang, Jie; Fan, Shangang; Yang, Jie; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki; Gui, Guan

    2017-12-15

    Both L 1/2 and L 2/3 are two typical non-convex regularizations of L p (0

  3. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  4. Influence of Injury Risk Thresholds on the Performance of an Algorithm to Predict Crashes with Serious Injuries

    PubMed Central

    Bahouth, George; Digges, Kennerly; Schulman, Carl

    2012-01-01

    This paper presents methods to estimate crash injury risk based on crash characteristics captured by some passenger vehicles equipped with Advanced Automatic Crash Notification technology. The resulting injury risk estimates could be used within an algorithm to optimize rescue care. Regression analysis was applied to the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) to determine how variations in a specific injury risk threshold would influence the accuracy of predicting crashes with serious injuries. The recommended thresholds for classifying crashes with severe injuries are 0.10 for frontal crashes and 0.05 for side crashes. The regression analysis of NASS/CDS indicates that these thresholds will provide sensitivity above 0.67 while maintaining a positive predictive value in the range of 0.20. PMID:23169132

  5. Thresher: an improved algorithm for peak height thresholding of microbial community profiles.

    PubMed

    Starke, Verena; Steele, Andrew

    2014-11-15

    This article presents Thresher, an improved technique for finding peak height thresholds for automated rRNA intergenic spacer analysis (ARISA) profiles. We argue that thresholds must be sample dependent, taking community richness into account. In most previous fragment analyses, a common threshold is applied to all samples simultaneously, ignoring richness variations among samples and thereby compromising cross-sample comparison. Our technique solves this problem, and at the same time provides a robust method for outlier rejection, selecting for removal any replicate pairs that are not valid replicates. Thresholds are calculated individually for each replicate in a pair, and separately for each sample. The thresholds are selected to be the ones that minimize the dissimilarity between the replicates after thresholding. If a choice of threshold results in the two replicates in a pair failing a quantitative test of similarity, either that threshold or that sample must be rejected. We compare thresholded ARISA results with sequencing results, and demonstrate that the Thresher algorithm outperforms conventional thresholding techniques. The software is implemented in R, and the code is available at http://verenastarke.wordpress.com or by contacting the author. vstarke@ciw.edu or http://verenastarke.wordpress.com Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    López-Coto, R.; Mazin, D.; Paoletti, R.; Blanch Bigas, O.; Cortina, J.

    2016-04-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light (the so-called Night Sky Background NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99% of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ~ 8%. The selection algorithm was tested on real MAGIC data taken with the current trigger configuration and no γ-like events were found to be lost.

  7. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  8. Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time

    NASA Astrophysics Data System (ADS)

    Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.

    2017-12-01

    Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage losses and disaster alleviation/rescue at global scale.

  9. Real time algorithms for sharp wave ripple detection.

    PubMed

    Sethi, Ankit; Kemere, Caleb

    2014-01-01

    Neural activity during sharp wave ripples (SWR), short bursts of co-ordinated oscillatory activity in the CA1 region of the rodent hippocampus, is implicated in a variety of memory functions from consolidation to recall. Detection of these events in an algorithmic framework, has thus far relied on simple thresholding techniques with heuristically derived parameters. This study is an investigation into testing and improving the current methods for detection of SWR events in neural recordings. We propose and profile methods to reduce latency in ripple detection. Proposed algorithms are tested on simulated ripple data. The findings show that simple realtime algorithms can improve upon existing power thresholding methods and can detect ripple activity with latencies in the range of 10-20 ms.

  10. SART-Type Half-Threshold Filtering Approach for CT Reconstruction

    PubMed Central

    YU, HENGYONG; WANG, GE

    2014-01-01

    The ℓ1 regularization problem has been widely used to solve the sparsity constrained problems. To enhance the sparsity constraint for better imaging performance, a promising direction is to use the ℓp norm (0 < p < 1) and solve the ℓp minimization problem. Very recently, Xu et al. developed an analytic solution for the ℓ1∕2 regularization via an iterative thresholding operation, which is also referred to as half-threshold filtering. In this paper, we design a simultaneous algebraic reconstruction technique (SART)-type half-threshold filtering framework to solve the computed tomography (CT) reconstruction problem. In the medical imaging filed, the discrete gradient transform (DGT) is widely used to define the sparsity. However, the DGT is noninvertible and it cannot be applied to half-threshold filtering for CT reconstruction. To demonstrate the utility of the proposed SART-type half-threshold filtering framework, an emphasis of this paper is to construct a pseudoinverse transforms for DGT. The proposed algorithms are evaluated with numerical and physical phantom data sets. Our results show that the SART-type half-threshold filtering algorithms have great potential to improve the reconstructed image quality from few and noisy projections. They are complementary to the counterparts of the state-of-the-art soft-threshold filtering and hard-threshold filtering. PMID:25530928

  11. SART-Type Half-Threshold Filtering Approach for CT Reconstruction.

    PubMed

    Yu, Hengyong; Wang, Ge

    2014-01-01

    The [Formula: see text] regularization problem has been widely used to solve the sparsity constrained problems. To enhance the sparsity constraint for better imaging performance, a promising direction is to use the [Formula: see text] norm (0 < p < 1) and solve the [Formula: see text] minimization problem. Very recently, Xu et al. developed an analytic solution for the [Formula: see text] regularization via an iterative thresholding operation, which is also referred to as half-threshold filtering. In this paper, we design a simultaneous algebraic reconstruction technique (SART)-type half-threshold filtering framework to solve the computed tomography (CT) reconstruction problem. In the medical imaging filed, the discrete gradient transform (DGT) is widely used to define the sparsity. However, the DGT is noninvertible and it cannot be applied to half-threshold filtering for CT reconstruction. To demonstrate the utility of the proposed SART-type half-threshold filtering framework, an emphasis of this paper is to construct a pseudoinverse transforms for DGT. The proposed algorithms are evaluated with numerical and physical phantom data sets. Our results show that the SART-type half-threshold filtering algorithms have great potential to improve the reconstructed image quality from few and noisy projections. They are complementary to the counterparts of the state-of-the-art soft-threshold filtering and hard-threshold filtering.

  12. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    PubMed

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Application of composite dictionary multi-atom matching in gear fault diagnosis.

    PubMed

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.

  14. An Algorithm to Automate Yeast Segmentation and Tracking

    PubMed Central

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  15. Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation

    PubMed Central

    Zhao, Tuo; Liu, Han

    2016-01-01

    We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430

  16. Self-Tuning Threshold Method for Real-Time Gait Phase Detection Based on Ground Contact Forces Using FSRs.

    PubMed

    Tang, Jing; Zheng, Jianbin; Wang, Yang; Yu, Lie; Zhan, Enqi; Song, Qiuzhi

    2018-02-06

    This paper presents a novel methodology for detecting the gait phase of human walking on level ground. The previous threshold method (TM) sets a threshold to divide the ground contact forces (GCFs) into on-ground and off-ground states. However, the previous methods for gait phase detection demonstrate no adaptability to different people and different walking speeds. Therefore, this paper presents a self-tuning triple threshold algorithm (STTTA) that calculates adjustable thresholds to adapt to human walking. Two force sensitive resistors (FSRs) were placed on the ball and heel to measure GCFs. Three thresholds (i.e., high-threshold, middle-threshold andlow-threshold) were used to search out the maximum and minimum GCFs for the self-adjustments of thresholds. The high-threshold was the main threshold used to divide the GCFs into on-ground and off-ground statuses. Then, the gait phases were obtained through the gait phase detection algorithm (GPDA), which provides the rules that determine calculations for STTTA. Finally, the STTTA reliability is determined by comparing the results between STTTA and Mariani method referenced as the timing analysis module (TAM) and Lopez-Meyer methods. Experimental results show that the proposed method can be used to detect gait phases in real time and obtain high reliability when compared with the previous methods in the literature. In addition, the proposed method exhibits strong adaptability to different wearers walking at different walking speeds.

  17. Algorithm for improving psychophysical threshold estimates by detecting sustained inattention in experiments using PEST.

    PubMed

    Rinderknecht, Mike D; Ranzani, Raffaele; Popp, Werner L; Lambercy, Olivier; Gassert, Roger

    2018-05-10

    Psychophysical procedures are applied in various fields to assess sensory thresholds. During experiments, sampled psychometric functions are usually assumed to be stationary. However, perception can be altered, for example by loss of attention to the presentation of stimuli, leading to biased data, which results in poor threshold estimates. The few existing approaches attempting to identify non-stationarities either detect only whether there was a change in perception, or are not suitable for experiments with a relatively small number of trials (e.g., [Formula: see text] 300). We present a method to detect inattention periods on a trial-by-trial basis with the aim of improving threshold estimates in psychophysical experiments using the adaptive sampling procedure Parameter Estimation by Sequential Testing (PEST). The performance of the algorithm was evaluated in computer simulations modeling inattention, and tested in a behavioral experiment on proprioceptive difference threshold assessment in 20 stroke patients, a population where attention deficits are likely to be present. Simulations showed that estimation errors could be reduced by up to 77% for inattentive subjects, even in sequences with less than 100 trials. In the behavioral data, inattention was detected in 14% of assessments, and applying the proposed algorithm resulted in reduced test-retest variability in 73% of these corrected assessments pairs. The novel algorithm complements existing approaches and, besides being applicable post hoc, could also be used online to prevent collection of biased data. This could have important implications in assessment practice by shortening experiments and improving estimates, especially for clinical settings.

  18. Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm

    NASA Technical Reports Server (NTRS)

    Riggs, George; Hall, Dorothy K.

    2012-01-01

    The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).

  19. Land cover and land use mapping of the iSimangaliso Wetland Park, South Africa: comparison of oblique and orthogonal random forest algorithms

    NASA Astrophysics Data System (ADS)

    Bassa, Zaakirah; Bob, Urmilla; Szantoi, Zoltan; Ismail, Riyad

    2016-01-01

    In recent years, the popularity of tree-based ensemble methods for land cover classification has increased significantly. Using WorldView-2 image data, we evaluate the potential of the oblique random forest algorithm (oRF) to classify a highly heterogeneous protected area. In contrast to the random forest (RF) algorithm, the oRF algorithm builds multivariate trees by learning the optimal split using a supervised model. The oRF binary algorithm is adapted to a multiclass land cover and land use application using both the "one-against-one" and "one-against-all" combination approaches. Results show that the oRF algorithms are capable of achieving high classification accuracies (>80%). However, there was no statistical difference in classification accuracies obtained by the oRF algorithms and the more popular RF algorithm. For all the algorithms, user accuracies (UAs) and producer accuracies (PAs) >80% were recorded for most of the classes. Both the RF and oRF algorithms poorly classified the indigenous forest class as indicated by the low UAs and PAs. Finally, the results from this study advocate and support the utility of the oRF algorithm for land cover and land use mapping of protected areas using WorldView-2 image data.

  20. Using Information From Prior Satellite Scans to Improve Cloud Detection Near the Day-Night Terminator

    NASA Technical Reports Server (NTRS)

    Yost, Christopher R.; Minnis, Patrick; Trepte, Qing Z.; Palikonda, Rabindra; Ayers, Jeffrey K.; Spangenberg, Doulas A.

    2012-01-01

    With geostationary satellite data it is possible to have a continuous record of diurnal cycles of cloud properties for a large portion of the globe. Daytime cloud property retrieval algorithms are typically superior to nighttime algorithms because daytime methods utilize measurements of reflected solar radiation. However, reflected solar radiation is difficult to accurately model for high solar zenith angles where the amount of incident radiation is small. Clear and cloudy scenes can exhibit very small differences in reflected radiation and threshold-based cloud detection methods have more difficulty setting the proper thresholds for accurate cloud detection. Because top-of-atmosphere radiances are typically more accurately modeled outside the terminator region, information from previous scans can help guide cloud detection near the terminator. This paper presents an algorithm that uses cloud fraction and clear and cloudy infrared brightness temperatures from previous satellite scan times to improve the performance of a threshold-based cloud mask near the terminator. Comparisons of daytime, nighttime, and terminator cloud fraction derived from Geostationary Operational Environmental Satellite (GOES) radiance measurements show that the algorithm greatly reduces the number of false cloud detections and smoothes the transition from the daytime to the nighttime clod detection algorithm. Comparisons with the Geoscience Laser Altimeter System (GLAS) data show that using this algorithm decreases the number of false detections by approximately 20 percentage points.

  1. A robustness test of the braided device foreshortening algorithm

    NASA Astrophysics Data System (ADS)

    Moyano, Raquel Kale; Fernandez, Hector; Macho, Juan M.; Blasco, Jordi; San Roman, Luis; Narata, Ana Paula; Larrabide, Ignacio

    2017-11-01

    Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF). METHODS: We used the 3DRA images of 10 aneurysmatic patients (cases). The cases were segmented by applying a marching cubes algorithm with a broad range of thresholds in order to generate 10 surface models each. We selected a braided device to apply the BDF algorithm to each surface model. The range of the computed flow diverter lengths for each case was obtained to calculate the variability of the method against the threshold segmentation values. RESULTS: An evaluation study over 10 clinical cases indicates that the final length of the deployed flow diverter in each vessel model is stable, shielding maximum difference of 11.19% in vessel diameter and maximum of 9.14% in the simulated stent length for the threshold values. The average coefficient of variation was found to be 4.08 %. CONCLUSION: A study evaluating how the threshold segmentation affects the simulated length of the deployed FD, was presented. The segmentation algorithm used to segment intracranial aneurysm 3D angiography images presents small variation in the resulting stent simulation.

  2. Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto

    2016-07-01

    The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.

  3. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  4. Clinical evaluation of pacemaker automatic capture management and atrioventricular interval extension algorithm.

    PubMed

    Chen, Ke-ping; Xu, Geng; Wu, Shulin; Tang, Baopeng; Wang, Li; Zhang, Shu

    2013-03-01

    The present study was to assess the accuracy of automatic atrial and ventricular capture management (ACM and VCM) in determining pacing threshold and the performance of a second-generation automatic atrioventricular (AV) interval extension algorithm for reducing unnecessary ventricular pacing. A total of 398 patients at 32 centres who received an EnPulse dual-chamber pacing/dual-chamber adaptive rate pacing pacemaker (Medtronic, Minneapolis, MN, USA) were enrolled. The last amplitude thresholds as measured by ACM and VCM prior to the 6-month follow-up were compared with manually measured thresholds. Device diagnostics were used to evaluate ACM and VCM and the percentage of ventricular pacing with and without the AV extension algorithm. Modelling was performed to assess longevity gains relating to the use of automaticity features. Atrial and ventricular capture management performed accurately and reliably provided complete capture management in 97% of studied patients. The AV interval extension algorithm reduced the median per cent of right ventricular pacing in patients with sinus node dysfunction from 99.7 to 1.5% at 6-month follow-up and in patients with intermittent AV block (excluding persistent 3° AV block) from 99.9 to 50.2%. On the basis of validated modelling, estimated device longevity could potentially be extended by 1.9 years through the use of the capture management and AV interval extension features. Both ACM and VCM features reliably measured thresholds in nearly all patients; the AV extension algorithm significantly reduced ventricular pacing; and the use of pacemaker automaticity features potentially extends device longevity.

  5. Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm

    NASA Astrophysics Data System (ADS)

    Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.

    2018-05-01

    A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.

  6. Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization

    NASA Astrophysics Data System (ADS)

    Li, Li

    2018-03-01

    In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.

  7. Studies of Antarctic Sea Ice Concentrations from Satellite Data and Their Applications

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Steffen, Konrad; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Large changes in the sea ice cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key ice concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea ice cover, assess errors in currently available ice concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the ice cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea ice. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate ice concentrations derived from standard ice algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the ice pack, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated ice in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the ice and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new ice regions, the derived ice concentration from passive microwave data is usually lower than the true percentage because the emissivity of new ice changes with age and thickness and is lower than that of thick ice. However, the product provides a more realistic characterization of the sea ice cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya activities. Also, heat and salinity fluxes are proportionately increased in these areas compared to those from the thicker ice areas. A slight positive trend in ice extent and area from 1978 through 2000 is observed consistent with slight continental cooling during the period. However, the confidence in this result is only moderate because the overlap period for key instruments is just one month and the sensitivity to changes in sensor characteristics, calibration and threshold for the ice edge is quite high.

  8. Regional Estimates of Drought-Induced Tree Canopy Loss across Texas

    NASA Astrophysics Data System (ADS)

    Schwantes, A.; Swenson, J. J.; González-Roglich, M.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.

    2015-12-01

    The severe drought of 2011 killed millions of trees across the state of Texas. Drought-induced tree-mortality can have significant impacts to carbon cycling, regional biophysics, and community composition. We quantified canopy cover loss across the state using remotely sensed imagery from before and after the drought at multiple scales. First, we classified ~200 orthophotos (1-m spatial resolution) from the National Agriculture Imagery Program, using a supervised maximum likelihood classification. Area of canopy cover loss in these classifications was highly correlated (R2 = 0.8) with ground estimates of canopy cover loss, measured in 74 plots across 15 different sites in Texas. These 1-m orthophoto classifications were then used to calibrate and validate coarser scale (30-m) Landsat imagery to create wall-to-wall tree canopy cover loss maps across the state of Texas. We quantified percent dead and live canopy within each pixel of Landsat to create continuous maps of dead and live tree cover, using two approaches: (1) a zero-inflated beta distribution model and (2) a random forest algorithm. Widespread canopy loss occurred across all the major natural systems of Texas, with the Edwards Plateau region most affected. In this region, on average, 10% of the forested area was lost due to the 2011 drought. We also identified climatic thresholds that controlled the spatial distribution of tree canopy loss across the state. However, surprisingly, there were many local hot spots of canopy loss, suggesting that not only climatic factors could explain the spatial patterns of canopy loss, but rather other factors related to soil, landscape, management, and stand density also likely played a role. As increases in extreme droughts are predicted to occur with climate change, it will become important to define methods that can detect associated drought-induced tree mortality across large regions. These maps could then be used (1) to quantify impacts to carbon cycling and regional biophysics, (2) to better understand the spatiotemporal dynamics of tree mortality, and (3) to calibrate and/or validate mortality algorithms in regional models.

  9. A Physical Model of Human Skin and Its Application for Search and Rescue

    DTIC Science & Technology

    2009-12-01

    allow iv for the development of skin detection algorithms with a high probability of detection (PD) and a low probability of false alarm ( PFA ). The...various skin colors were collected. The skin detection algorithm developed in this work had a PD as high as 0.95 with a PFA of 0.006. Skin...threshold 0 < γ < 1. . . . . . . . . . . . . 103 63. Top: Detection Image with NDSI threshold γ = 0.314 with PD = 0.95 and corresponding PFA = 0.0156

  10. Threshold secret sharing scheme based on phase-shifting interferometry.

    PubMed

    Deng, Xiaopeng; Shi, Zhengang; Wen, Wei

    2016-11-01

    We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.

  11. THRESHOLD ELEMENTS AND THE DESIGN OF SEQUENTIAL SWITCHING NETWORKS.

    DTIC Science & Technology

    The report covers research performed from March 1966 to March 1967. The major topics treated are: (1) methods for finding weight- threshold vectors...that realize a given switching function in multi- threshold linear logic; (2) synthesis of sequential machines by means of shift registers and simple

  12. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies.

    PubMed

    Artes, Paul H; Iwase, Aiko; Ohno, Yuko; Kitazawa, Yoshiaki; Chauhan, Balwantray C

    2002-08-01

    To investigate the distributions of threshold estimates with the Swedish Interactive Threshold Algorithms (SITA) Standard, SITA Fast, and the Full Threshold algorithm (Humphrey Field Analyzer; Zeiss-Humphrey Instruments, Dublin, CA) and to compare the pointwise test-retest variability of these strategies. One eye of 49 patients (mean age, 61.6 years; range, 22-81) with glaucoma (Mean Deviation mean, -7.13 dB; range, +1.8 to -23.9 dB) was examined four times with each of the three strategies. The mean and median SITA Standard and SITA Fast threshold estimates were compared with a "best available" estimate of sensitivity (mean results of three Full Threshold tests). Pointwise 90% retest limits (5th and 95th percentiles of retest thresholds) were derived to assess the reproducibility of individual threshold estimates. The differences between the threshold estimates of the SITA and Full Threshold strategies were largest ( approximately 3 dB) for midrange sensitivities ( approximately 15 dB). The threshold distributions of SITA were considerably different from those of the Full Threshold strategy. The differences remained of similar magnitude when the analysis was repeated on a subset of 20 locations that are examined early during the course of a Full Threshold examination. With sensitivities above 25 dB, both SITA strategies exhibited lower test-retest variability than the Full Threshold strategy. Below 25 dB, the retest intervals of SITA Standard were slightly smaller than those of the Full Threshold strategy, whereas those of SITA Fast were larger. SITA Standard may be superior to the Full Threshold strategy for monitoring patients with visual field loss. The greater test-retest variability of SITA Fast in areas of low sensitivity is likely to offset the benefit of even shorter test durations with this strategy. The sensitivity differences between the SITA and Full Threshold strategies may relate to factors other than reduced fatigue. They are, however, small in comparison to the test-retest variability.

  13. Tracks detection from high-orbit space objects

    NASA Astrophysics Data System (ADS)

    Shumilov, Yu. P.; Vygon, V. G.; Grishin, E. A.; Konoplev, A. O.; Semichev, O. P.; Shargorodskii, V. D.

    2017-05-01

    The paper presents studies results of a complex algorithm for the detection of highly orbital space objects. Before the implementation of the algorithm, a series of frames with weak tracks of space objects, which can be discrete, is recorded. The algorithm includes pre-processing, classical for astronomy, consistent filtering of each frame and its threshold processing, shear transformation, median filtering of the transformed series of frames, repeated threshold processing and detection decision making. Modeling of space objects weak tracks on of the night starry sky real frames obtained in the regime of a stationary telescope was carried out. It is shown that the permeability of an optoelectronic device has increased by almost 2m.

  14. ANOTHER LOOK AT THE FAST ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM (FISTA)*

    PubMed Central

    Kim, Donghwan; Fessler, Jeffrey A.

    2017-01-01

    This paper provides a new way of developing the “Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)” [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ1 regularizer. In particular, this paper shows that FISTA corresponds to an optimized approach to accelerating the proximal gradient method with respect to a worst-case bound of the cost function. This paper then proposes a new algorithm that is derived by instead optimizing the step coefficients of the proximal gradient method with respect to a worst-case bound of the composite gradient mapping. The proof is based on the worst-case analysis called Performance Estimation Problem in [11]. PMID:29805242

  15. Centrifugal unbalance detection system

    DOEpatents

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  16. A globally convergent MC algorithm with an adaptive learning rate.

    PubMed

    Peng, Dezhong; Yi, Zhang; Xiang, Yong; Zhang, Haixian

    2012-02-01

    This brief deals with the problem of minor component analysis (MCA). Artificial neural networks can be exploited to achieve the task of MCA. Recent research works show that convergence of neural networks based MCA algorithms can be guaranteed if the learning rates are less than certain thresholds. However, the computation of these thresholds needs information about the eigenvalues of the autocorrelation matrix of data set, which is unavailable in online extraction of minor component from input data stream. In this correspondence, we introduce an adaptive learning rate into the OJAn MCA algorithm, such that its convergence condition does not depend on any unobtainable information, and can be easily satisfied in practical applications.

  17. Step Detection Robust against the Dynamics of Smartphones

    PubMed Central

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  18. Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Reed, Seann M.

    2003-09-01

    The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.

  19. Forest Loss and the Biodiversity Threshold: An Evaluation Considering Species Habitat Requirements and the Use of Matrix Habitats

    PubMed Central

    Estavillo, Candelaria; Pardini, Renata; da Rocha, Pedro Luís Bernardo

    2013-01-01

    Habitat loss is the main driver of the current biodiversity crisis, a landscape-scale process that affects the survival of spatially-structured populations. Although it is well-established that species responses to habitat loss can be abrupt, the existence of a biodiversity threshold is still the cause of much controversy in the literature and would require that most species respond similarly to the loss of native vegetation. Here we test the existence of a biodiversity threshold, i.e. an abrupt decline in species richness, with habitat loss. We draw on a spatially-replicated dataset on Atlantic forest small mammals, consisting of 16 sampling sites divided between forests and matrix habitats in each of five 3600-ha landscapes (varying from 5% to 45% forest cover), and on an a priori classification of species into habitat requirement categories (forest specialists, habitat generalists and open-area specialists). Forest specialists declined abruptly below 30% of forest cover, and spillover to the matrix occurred only in more forested landscapes. Generalists responded positively to landscape heterogeneity, peaking at intermediary levels of forest cover. Open area specialists dominated the matrix and did not spillover to forests. As a result of these distinct responses, we observed a biodiversity threshold for the small mammal community below 30% forest cover, and a peak in species richness just above this threshold. Our results highlight that cross habitat spillover may be asymmetrical and contingent on landscape context, occurring mainly from forests to the matrix and only in more forested landscapes. Moreover, they indicate the potential for biodiversity thresholds in human-modified landscapes, and the importance of landscape heterogeneity to biodiversity. Since forest loss affected not only the conservation value of forest patches, but also the potential for biodiversity-mediated services in anthropogenic habitats, our work indicates the importance of proactive measures to avoid human-modified landscapes to cross this threshold. PMID:24324776

  20. A randomized trial of the effect of automated ventricular capture on device longevity and threshold measurement in pacemaker patients.

    PubMed

    Koplan, Bruce A; Gilligan, David M; Nguyen, Luc S; Lau, Theodore K; Thackeray, Lisa M; Berg, Kellie Chase

    2008-11-01

    An automatic capture (AC) algorithm adjusts ventricular pacing output to capture the ventricle while optimizing output to 0.5 V above threshold. AC maintains this output and confirms capture on a beat-to-beat basis in bipolar and unipolar pacing and sensing. To assess the AC algorithm and its impact on device longevity. Patients implanted with a pacemaker were randomized 1:1 to have the AC feature on or off for 12 months. Two threshold tests were conducted at each visit- automatic threshold and manual threshold. Average ventricular voltage output and projected device longevity were compared between AC on and off using nonparametric tests. Nine hundred ten patients were enrolled and underwent device implantation. Average ventricular voltage output was 1.6 V for the AC on arm (n = 444) and 3.1 V for the AC off arm (n = 446) (P < 0.001). Projected device longevity was 10.3 years for AC on and 8.9 years for AC off (P < 0.0001), or a 16% increase in longevity for AC on. The proportion of patients in whom there was a difference between automatic threshold and manual threshold of

  1. Effectiveness of a Predictive Algorithm in the Prevention of Exercise-Induced Hypoglycemia in Type 1 Diabetes.

    PubMed

    Abraham, Mary B; Davey, Raymond; O'Grady, Michael J; Ly, Trang T; Paramalingam, Nirubasini; Fournier, Paul A; Roy, Anirban; Grosman, Benyamin; Kurtz, Natalie; Fairchild, Janice M; King, Bruce R; Ambler, Geoffrey R; Cameron, Fergus; Jones, Timothy W; Davis, Elizabeth A

    2016-09-01

    Sensor-augmented pump therapy (SAPT) with a predictive algorithm to suspend insulin delivery has the potential to reduce hypoglycemia, a known obstacle in improving physical activity in patients with type 1 diabetes. The predictive low glucose management (PLGM) system employs a predictive algorithm that suspends basal insulin when hypoglycemia is predicted. The aim of this study was to determine the efficacy of this algorithm in the prevention of exercise-induced hypoglycemia under in-clinic conditions. This was a randomized, controlled cross-over study in which 25 participants performed 2 consecutive sessions of 30 min of moderate-intensity exercise while on basal continuous subcutaneous insulin infusion on 2 study days: a control day with SAPT alone and an intervention day with SAPT and PLGM. The predictive algorithm suspended basal insulin when sensor glucose was predicted to be below the preset hypoglycemic threshold in 30 min. We tested preset hypoglycemic thresholds of 70 and 80 mg/dL. The primary outcome was the requirement for hypoglycemia treatment (symptomatic hypoglycemia with plasma glucose <63 mg/dL or plasma glucose <50 mg/dL) and was compared in both control and intervention arms. Results were analyzed in 19 participants. In the intervention arm with both thresholds, only 6 participants (32%) required treatment for hypoglycemia compared with 17 participants (89%) in the control arm (P = 0.003). In participants with a 2-h pump suspension on intervention days, the plasma glucose was 84 ± 12 and 99 ± 24 mg/dL at thresholds of 70 and 80 mg/dL, respectively. SAPT with PLGM reduced the need for hypoglycemia treatment after moderate-intensity exercise in an in-clinic setting.

  2. Automated video-based detection of nocturnal convulsive seizures in a residential care setting.

    PubMed

    Geertsema, Evelien E; Thijs, Roland D; Gutter, Therese; Vledder, Ben; Arends, Johan B; Leijten, Frans S; Visser, Gerhard H; Kalitzin, Stiliyan N

    2018-06-01

    People with epilepsy need assistance and are at risk of sudden death when having convulsive seizures (CS). Automated real-time seizure detection systems can help alert caregivers, but wearable sensors are not always tolerated. We determined algorithm settings and investigated detection performance of a video algorithm to detect CS in a residential care setting. The algorithm calculates power in the 2-6 Hz range relative to 0.5-12.5 Hz range in group velocity signals derived from video-sequence optical flow. A detection threshold was found using a training set consisting of video-electroencephalogaphy (EEG) recordings of 72 CS. A test set consisting of 24 full nights of 12 new subjects in residential care and additional recordings of 50 CS selected randomly was used to estimate performance. All data were analyzed retrospectively. The start and end of CS (generalized clonic and tonic-clonic seizures) and other seizures considered desirable to detect (long generalized tonic, hyperkinetic, and other major seizures) were annotated. The detection threshold was set to the value that obtained 97% sensitivity in the training set. Sensitivity, latency, and false detection rate (FDR) per night were calculated in the test set. A seizure was detected when the algorithm output exceeded the threshold continuously for 2 seconds. With the detection threshold determined in the training set, all CS were detected in the test set (100% sensitivity). Latency was ≤10 seconds in 78% of detections. Three/five hyperkinetic and 6/9 other major seizures were detected. Median FDR was 0.78 per night and no false detections occurred in 9/24 nights. Our algorithm could improve safety unobtrusively by automated real-time detection of CS in video registrations, with an acceptable latency and FDR. The algorithm can also detect some other motor seizures requiring assistance. © 2018 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  3. Suppression of vegetation in LANDSAT ETM+ remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael

    2010-05-01

    Vegetation cover is an impediment to the interpretation of multispectral remote sensing images for geological applications, especially in densely vegetated terrains. In order to enhance the underlying geological information in such terrains, it is desirable to suppress the reflectance component of vegetation. One form of spectral unmixing that has been successfully used for vegetation reflectance suppression in multispectral images is called "forced invariance". It is based on segregating components of the reflectance spectrum that are invariant with respect to a specific spectral index such as the NDVI. The forced invariance method uses algorithms such as software defoliation. However, the outputs of software defoliation are single channel data, which are not amenable to geological interpretations. Crippen and Blom (2001) proposed a new forced invariance algorithm that utilizes band statistics, rather than band ratios. The authors demonstrated the effectiveness of their algorithms on a LANDSAT TM scene from Nevada, USA, especially in open canopy areas in mixed and semi-arid terrains. In this presentation, we report the results of our experimentation with this algorithm on a densely to sparsely vegetated Landsat ETM+ scene. We selected a scene (Path 119, Row 39) acquired on 18th July, 2004. Two study areas located around the city of Hangzhou, eastern China were tested. One of them covers uninhabited hilly terrain characterized by low rugged topography, parts of the hills are densely vegetated; another one covers both inhabited urban areas and uninhabited hilly terrain, which is densely vegetated. Crippen and Blom's algorithm is implemented in the following sequential steps: (1) dark pixel correction; (2) vegetation index calculation; (3) estimation of statistical relationship between vegetation index and digital number (DN) values for each band; (4) calculation of a smooth best-fit curve for the above relationships; and finally, (5) selection of a target average DN value and scaling all pixels at each vegetation index level by an amount that shifts the curve to the target digital number (DN). The main drawback of their algorithm is severe distortions of the DN values of non-vegetated areas, a suggested solution is masking outliers such as cloud, water, etc. We therefore extend this algorithm by masking non-vegetated areas. Our algorithm comprises the following three steps: (1) masking of barren or sparsely vegetated areas using a threshold based on a vegetation index that is calculated after atmosphere correction (dark pixel correction and ACTOR were compared) in order to conserve their original spectral information through the subsequent processing; (2) applying Crippen and Blom's forced invariance algorithm to suppress the spectral response of vegetation only in vegetated areas; and (3) combining the processed vegetated areas with the masked barren or sparsely vegetated areas followed by histogram equalization to eliminate the differences in color-scales between these two types of areas, and enhance the integrated image. The output images of both study areas showed significant improvement over the original images in terms of suppression of vegetation reflectance and enhancement of the underlying geological information. The processed images show clear banding, probably associated with lithological variations in the underlying rock formations. The colors of non-vegetated pixels are distorted in the unmasked results but in the same location the pixels in the masked results show regions of higher contrast. We conclude that the algorithm offers an effective way to enhance geological information in LANDSAT TM/ETM+ images of terrains with significant vegetation cover. It is also suitable to other multispectral satellite data have bands in similar wavelength regions. In addition, an application of this method to hyperspectral data may be possible as long as it can provide the vegetation band ratios.

  4. On the Critical Behaviour, Crossover Point and Complexity of the Exact Cover Problem

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Shumow, Daniel; Koga, Dennis (Technical Monitor)

    2003-01-01

    Research into quantum algorithms for NP-complete problems has rekindled interest in the detailed study a broad class of combinatorial problems. A recent paper applied the quantum adiabatic evolution algorithm to the Exact Cover problem for 3-sets (EC3), and provided an empirical evidence that the algorithm was polynomial. In this paper we provide a detailed study of the characteristics of the exact cover problem. We present the annealing approximation applied to EC3, which gives an over-estimate of the phase transition point. We also identify empirically the phase transition point. We also study the complexity of two classical algorithms on this problem: Davis-Putnam and Simulated Annealing. For these algorithms, EC3 is significantly easier than 3-SAT.

  5. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials.

    PubMed

    Aziz, Omar; Musngi, Magnus; Park, Edward J; Mori, Greg; Robinovitch, Stephen N

    2017-01-01

    Falls are the leading cause of injury-related morbidity and mortality among older adults. Over 90 % of hip and wrist fractures and 60 % of traumatic brain injuries in older adults are due to falls. Another serious consequence of falls among older adults is the 'long lie' experienced by individuals who are unable to get up and remain on the ground for an extended period of time after a fall. Considerable research has been conducted over the past decade on the design of wearable sensor systems that can automatically detect falls and send an alert to care providers to reduce the frequency and severity of long lies. While most systems described to date incorporate threshold-based algorithms, machine learning algorithms may offer increased accuracy in detecting falls. In the current study, we compared the accuracy of these two approaches in detecting falls by conducting a comprehensive set of falling experiments with 10 young participants. Participants wore waist-mounted tri-axial accelerometers and simulated the most common causes of falls observed in older adults, along with near-falls and activities of daily living. The overall performance of five machine learning algorithms was greater than the performance of five threshold-based algorithms described in the literature, with support vector machines providing the highest combination of sensitivity and specificity.

  6. Set covering algorithm, a subprogram of the scheduling algorithm for mission planning and logistic evaluation

    NASA Technical Reports Server (NTRS)

    Chang, H.

    1976-01-01

    A computer program using Lemke, Salkin and Spielberg's Set Covering Algorithm (SCA) to optimize a traffic model problem in the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) was documented. SCA forms a submodule of SAMPLE and provides for input and output, subroutines, and an interactive feature for performing the optimization and arranging the results in a readily understandable form for output.

  7. Peak reduction for commercial buildings using energy storage

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  8. Adaptive thresholding with inverted triangular area for real-time detection of the heart rate from photoplethysmogram traces on a smartphone.

    PubMed

    Jiang, Wen Jun; Wittek, Peter; Zhao, Li; Gao, Shi Chao

    2014-01-01

    Photoplethysmogram (PPG) signals acquired by smartphone cameras are weaker than those acquired by dedicated pulse oximeters. Furthermore, the signals have lower sampling rates, have notches in the waveform and are more severely affected by baseline drift, leading to specific morphological characteristics. This paper introduces a new feature, the inverted triangular area, to address these specific characteristics. The new feature enables real-time adaptive waveform detection using an algorithm of linear time complexity. It can also recognize notches in the waveform and it is inherently robust to baseline drift. An implementation of the algorithm on Android is available for free download. We collected data from 24 volunteers and compared our algorithm in peak detection with two competing algorithms designed for PPG signals, Incremental-Merge Segmentation (IMS) and Adaptive Thresholding (ADT). A sensitivity of 98.0% and a positive predictive value of 98.8% were obtained, which were 7.7% higher than the IMS algorithm in sensitivity, and 8.3% higher than the ADT algorithm in positive predictive value. The experimental results confirmed the applicability of the proposed method.

  9. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.

    2017-01-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16C year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms.These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.

  10. 3.5 GHz Environmental Sensing Capability Detection Thresholds and Deployment

    PubMed Central

    Nguyen, Thao T.; Souryal, Michael R.; Sahoo, Anirudha; Hall, Timothy A.

    2017-01-01

    Spectrum sharing in the 3.5 GHz band between commercial and government users along U.S. coastal areas depends on an environmental sensing capability (ESC)—that is, a network of radio frequency sensors and a decision system—to detect the presence of incumbent shipborne radar systems and trigger protective measures, as needed. It is well known that the sensitivity of these sensors depends on the aggregate interference generated by commercial systems to the incumbent radar receivers, but to date no comprehensive study has been made of the aggregate interference in realistic scenarios and its impact on the requirement for detection of the radar signal. This paper presents systematic methods for determining the placement of ESC sensors and their detection thresholds to adequately protect incumbent shipborne radar systems from harmful interference. Using terrain-based propagation models and a population-based deployment model, the analysis finds the offshore distances at which protection must be triggered and relates these to the detection levels of coastline sensors. We further show that sensor placement is a form of the well-known set cover problem, which has been shown to be NP-complete, and demonstrate practical solutions achieved with a greedy algorithm. Results show detection thresholds to be as much as 22 dB lower than required by current industry standards. The methodology and results presented in this paper can be used by ESC operators for planning and deployment of sensors and by regulators for testing sensor performance. PMID:29303162

  11. Deriving Snow-Cover Depletion Curves for Different Spatial Scales from Remote Sensing and Snow Telemetry Data

    NASA Technical Reports Server (NTRS)

    Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.

    2015-01-01

    During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.

  12. Algorithm for measuring the internal quantum efficiency of individual injection lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommers, H.S. Jr.

    1978-05-01

    A new algorithm permits determination of the internal quantum efficiency eta/sub i/ of individual lasers. Above threshold, the current is partitioned into a ''coherent'' component driving the lasing modes and the ''noncoherent'' remainder. Below threshold the current is known to grow as exp(qV/n/sub 0/KT); the algorithm proposes that extrapolation of this equation into the lasing region measures the noncoherent remainder, enabling deduction of the coherent component and of its current derivative eta/sub i/. Measurements on five (AlGa)As double-heterojunction lasers cut from one wafer demonstrate the power of the new method. Comparison with band calculations of Stern shows that n/sub 0/more » originates in carrier degeneracy.« less

  13. A novel decoding algorithm based on the hierarchical reliable strategy for SCG-LDPC codes in optical communications

    NASA Astrophysics Data System (ADS)

    Yuan, Jian-guo; Tong, Qing-zhen; Huang, Sheng; Wang, Yong

    2013-11-01

    An effective hierarchical reliable belief propagation (HRBP) decoding algorithm is proposed according to the structural characteristics of systematically constructed Gallager low-density parity-check (SCG-LDPC) codes. The novel decoding algorithm combines the layered iteration with the reliability judgment, and can greatly reduce the number of the variable nodes involved in the subsequent iteration process and accelerate the convergence rate. The result of simulation for SCG-LDPC(3969,3720) code shows that the novel HRBP decoding algorithm can greatly reduce the computing amount at the condition of ensuring the performance compared with the traditional belief propagation (BP) algorithm. The bit error rate (BER) of the HRBP algorithm is considerable at the threshold value of 15, but in the subsequent iteration process, the number of the variable nodes for the HRBP algorithm can be reduced by about 70% at the high signal-to-noise ratio (SNR) compared with the BP algorithm. When the threshold value is further increased, the HRBP algorithm will gradually degenerate into the layered-BP algorithm, but at the BER of 10-7 and the maximal iteration number of 30, the net coding gain (NCG) of the HRBP algorithm is 0.2 dB more than that of the BP algorithm, and the average iteration times can be reduced by about 40% at the high SNR. Therefore, the novel HRBP decoding algorithm is more suitable for optical communication systems.

  14. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  15. A Cross-Layer User Centric Vertical Handover Decision Approach Based on MIH Local Triggers

    NASA Astrophysics Data System (ADS)

    Rehan, Maaz; Yousaf, Muhammad; Qayyum, Amir; Malik, Shahzad

    Vertical handover decision algorithm that is based on user preferences and coupled with Media Independent Handover (MIH) local triggers have not been explored much in the literature. We have developed a comprehensive cross-layer solution, called Vertical Handover Decision (VHOD) approach, which consists of three parts viz. mechanism for collecting and storing user preferences, Vertical Handover Decision (VHOD) algorithm and the MIH Function (MIHF). MIHF triggers the VHOD algorithm which operates on user preferences to issue handover commands to mobility management protocol. VHOD algorithm is an MIH User and therefore needs to subscribe events and configure thresholds for receiving triggers from MIHF. In this regard, we have performed experiments in WLAN to suggest thresholds for Link Going Down trigger. We have also critically evaluated the handover decision process, proposed Just-in-time interface activation technique, compared our proposed approach with prominent user centric approaches and analyzed our approach from different aspects.

  16. Development and validation of a dual sensing scheme to improve accuracy of bradycardia and pause detection in an insertable cardiac monitor.

    PubMed

    Passman, Rod S; Rogers, John D; Sarkar, Shantanu; Reiland, Jerry; Reisfeld, Erin; Koehler, Jodi; Mittal, Suneet

    2017-07-01

    Undersensing of premature ventricular beats and low-amplitude R waves are primary causes for inappropriate bradycardia and pause detections in insertable cardiac monitors (ICMs). The purpose of this study was to develop and validate an enhanced algorithm to reduce inappropriately detected bradycardia and pause episodes. Independent data sets to develop and validate the enhanced algorithm were derived from a database of ICM-detected bradycardia and pause episodes in de-identified patients monitored for unexplained syncope. The original algorithm uses an auto-adjusting sensitivity threshold for R-wave sensing to detect tachycardia and avoid T-wave oversensing. In the enhanced algorithm, a second sensing threshold is used with a long blanking and fixed lower sensitivity threshold, looking for evidence of undersensed signals. Data reported includes percent change in appropriate and inappropriate bradycardia and pause detections as well as changes in episode detection sensitivity and positive predictive value with the enhanced algorithm. The validation data set, from 663 consecutive patients, consisted of 4904 (161 patients) bradycardia and 2582 (133 patients) pause episodes, of which 2976 (61%) and 996 (39%) were appropriately detected bradycardia and pause episodes. The enhanced algorithm reduced inappropriate bradycardia and pause episodes by 95% and 47%, respectively, with 1.7% and 0.6% reduction in appropriate episodes, respectively. The average episode positive predictive value improved by 62% (P < .001) for bradycardia detection and by 26% (P < .001) for pause detection, with an average relative sensitivity of 95% (P < .001) and 99% (P = .5), respectively. The enhanced dual sense algorithm for bradycardia and pause detection in ICMs substantially reduced inappropriate episode detection with a minimal reduction in true episode detection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Robust crop and weed segmentation under uncontrolled outdoor illumination

    USDA-ARS?s Scientific Manuscript database

    A new machine vision for weed detection was developed from RGB color model images. Processes included in the algorithm for the detection were excessive green conversion, threshold value computation by statistical analysis, adaptive image segmentation by adjusting the threshold value, median filter, ...

  18. Enhanced encrypted reversible data hiding algorithm with minimum distortion through homomorphic encryption

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rupali

    2018-03-01

    Reversible data hiding means embedding a secret message in a cover image in such a manner, to the point that in the midst of extraction of the secret message, the cover image and, furthermore, the secret message are recovered with no error. The goal of by far most of the reversible data hiding algorithms is to have improved the embedding rate and enhanced visual quality of stego image. An improved encrypted-domain-based reversible data hiding algorithm to embed two binary bits in each gray pixel of original cover image with minimum distortion of stego-pixels is employed in this paper. Highlights of the proposed algorithm are minimum distortion of pixel's value, elimination of underflow and overflow problem, and equivalence of stego image and cover image with a PSNR of ∞ (for Lena, Goldhill, and Barbara image). The experimental outcomes reveal that in terms of average PSNR and embedding rate, for natural images, the proposed algorithm performed better than other conventional ones.

  19. Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing.

    PubMed

    Jürgens, Tim; Clark, Nicholas R; Lecluyse, Wendy; Meddis, Ray

    2016-01-01

    To use a computer model of impaired hearing to explore the effects of a physiologically-inspired hearing-aid algorithm on a range of psychoacoustic measures. A computer model of a hypothetical impaired listener's hearing was constructed by adjusting parameters of a computer model of normal hearing. Absolute thresholds, estimates of compression, and frequency selectivity (summarized to a hearing profile) were assessed using this model with and without pre-processing the stimuli by a hearing-aid algorithm. The influence of different settings of the algorithm on the impaired profile was investigated. To validate the model predictions, the effect of the algorithm on hearing profiles of human impaired listeners was measured. A computer model simulating impaired hearing (total absence of basilar membrane compression) was used, and three hearing-impaired listeners participated. The hearing profiles of the model and the listeners showed substantial changes when the test stimuli were pre-processed by the hearing-aid algorithm. These changes consisted of lower absolute thresholds, steeper temporal masking curves, and sharper psychophysical tuning curves. The hearing-aid algorithm affected the impaired hearing profile of the model to approximate a normal hearing profile. Qualitatively similar results were found with the impaired listeners' hearing profiles.

  20. Modeling spatially-varying landscape change points in species occurrence thresholds

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.

    2014-01-01

    Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.

  1. A directed matched filtering algorithm (DMF) for discriminating hydrothermal alteration zones using the ASTER remote sensing data

    NASA Astrophysics Data System (ADS)

    Fereydooni, H.; Mojeddifar, S.

    2017-09-01

    This study introduced a different procedure to implement matched filtering algorithm (MF) on the ASTER images to obtain the distribution map of alteration minerals in the northwestern part of the Kerman Cenozoic Magmatic Arc (KCMA). This region contains many areas with porphyry copper mineralization such as Meiduk, Abdar, Kader, Godekolvari, Iju, Serenu, Chahfiroozeh and Parkam. Also argillization, sericitization and propylitization are the most common types of hydrothermal alteration in the area. Matched filtering results were provided for alteration minerals with a matched filtering score, called MF image. To identify the pixels which contain only one material (endmember), an appropriate threshold value should be used to the MF image. The chosen threshold classifies a MF image into background and target pixels. This article argues that the current thresholding process (the choice of a threshold) shows misclassification for MF image. To address the issue, this paper introduced the directed matched filtering (DMF) algorithm in which a spectral signature-based filter (SSF) was used instead of the thresholding process. SSF is a user-defined rule package which contains numeral descriptions about the spectral reflectance of alteration minerals. On the other hand, the spectral bands are defined by an upper and lower limit in SSF filter for each alteration minerals. SSF was developed for chlorite, kaolinite, alunite, and muscovite minerals to map alteration zones. The validation proved that, at first: selecting a contiguous range of MF values could not identify desirable results, second: unexpectedly, considerable frequency of pure pixels was observed in the MF scores less than threshold value. Also, the comparison between DMF results and field studies showed an accuracy of 88.51%.

  2. Ecological-site based assessments of wind and water erosion: informing management of accelerated soil erosion in rangelands

    NASA Astrophysics Data System (ADS)

    Webb, N.; Herrick, J.; Duniway, M.

    2013-12-01

    This work explores how soil erosion assessments can be structured in the context of ecological sites and site dynamics to inform systems for managing accelerated soil erosion. We evaluated wind and water erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Our results show that wind and water erosion can be highly variable within and among ecological sites. Plots in shrub-encroached and shrub-dominated states were consistently susceptible to both wind and water erosion. However, grassland plots and plots with a grass-succulent mix had a high indicated susceptibility to wind and water erosion respectively. Vegetation thresholds for controlling erosion are identified that transcend the ecological sites and their respective states. The thresholds define vegetation cover levels at which rapid (exponential) increases in erosion rates begin to occur, suggesting that erosion in the study ecosystem can be effectively controlled when bare ground cover is <20% of a site or total ground cover is >50%. Similarly, our results show that erosion can be controlled when the cover of canopy interspaces >50 cm in length reaches ~50%, the cover of canopy interspaces >100 cm in length reaches ~35% or the cover of canopy interspaces >150 cm in length reaches ~20%. This process-based understanding can be applied, along with knowledge of the differential sensitivity of vegetation states, to improve erosion management systems. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of sites to erosion. Land use impacts that are constrained within the natural variability of sites should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds and natural variability of ecological sites will enable improved identification of where and when accelerated soil erosion occurs and the development of practical management solutions.

  3. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  4. Postmortem validation of breast density using dual-energy mammography

    PubMed Central

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548

  5. Postmortem validation of breast density using dual-energy mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decompositionmore » was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.« less

  6. Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture.

    PubMed

    Russell, Richard A; Adams, Niall M; Stephens, David A; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S

    2009-04-22

    Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments.

  7. On the importance of FIB-SEM specific segmentation algorithms for porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salzer, Martin, E-mail: martin.salzer@uni-ulm.de; Thiele, Simon, E-mail: simon.thiele@imtek.uni-freiburg.de; Zengerle, Roland, E-mail: zengerle@imtek.uni-freiburg.de

    2014-09-15

    A new algorithmic approach to segmentation of highly porous three dimensional image data gained by focused ion beam tomography is described which extends the key-principle of local threshold backpropagation described in Salzer et al. (2012). The technique of focused ion beam tomography has shown to be capable of imaging the microstructure of functional materials. In order to perform a quantitative analysis on the corresponding microstructure a segmentation task needs to be performed. However, algorithmic segmentation of images obtained with focused ion beam tomography is a challenging problem for highly porous materials if filling the pore phase, e.g. with epoxy resin,more » is difficult. The gray intensities of individual voxels are not sufficient to determine the phase represented by them and usual thresholding methods are not applicable. We thus propose a new approach to segmentation that pays respect to the specifics of the imaging process of focused ion beam tomography. As an application of our approach, the segmentation of three dimensional images for a cathode material used in polymer electrolyte membrane fuel cells is discussed. We show that our approach preserves significantly more of the original nanostructure than a thresholding approach. - Highlights: • We describe a new approach to the segmentation of FIB-SEM images of porous media. • The first and last occurrences of structures are detected by analysing the z-profiles. • The algorithm is validated by comparing it to a manual segmentation. • The new approach shows significantly less artifacts than a thresholding approach. • A structural analysis also shows improved results for the obtained microstructure.« less

  8. Segmentation of Fluorescence Microscopy Images for Quantitative Analysis of Cell Nuclear Architecture

    PubMed Central

    Russell, Richard A.; Adams, Niall M.; Stephens, David A.; Batty, Elizabeth; Jensen, Kirsten; Freemont, Paul S.

    2009-01-01

    Abstract Considerable advances in microscopy, biophysics, and cell biology have provided a wealth of imaging data describing the functional organization of the cell nucleus. Until recently, cell nuclear architecture has largely been assessed by subjective visual inspection of fluorescently labeled components imaged by the optical microscope. This approach is inadequate to fully quantify spatial associations, especially when the patterns are indistinct, irregular, or highly punctate. Accurate image processing techniques as well as statistical and computational tools are thus necessary to interpret this data if meaningful spatial-function relationships are to be established. Here, we have developed a thresholding algorithm, stable count thresholding (SCT), to segment nuclear compartments in confocal laser scanning microscopy image stacks to facilitate objective and quantitative analysis of the three-dimensional organization of these objects using formal statistical methods. We validate the efficacy and performance of the SCT algorithm using real images of immunofluorescently stained nuclear compartments and fluorescent beads as well as simulated images. In all three cases, the SCT algorithm delivers a segmentation that is far better than standard thresholding methods, and more importantly, is comparable to manual thresholding results. By applying the SCT algorithm and statistical analysis, we quantify the spatial configuration of promyelocytic leukemia nuclear bodies with respect to irregular-shaped SC35 domains. We show that the compartments are closer than expected under a null model for their spatial point distribution, and furthermore that their spatial association varies according to cell state. The methods reported are general and can readily be applied to quantify the spatial interactions of other nuclear compartments. PMID:19383481

  9. Improving the Projections of Vegetation Biogeography by Integrating Climate Envelope Models and Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Case, M. J.; Kim, J. B.

    2015-12-01

    Assessing changes in vegetation is increasingly important for conservation planning in the face of climate change. Dynamic global vegetation models (DGVMs) are important tools for assessing such changes. DGVMs have been applied at regional scales to create projections of range expansions and contractions of plant functional types. Many DGVMs use a number of algorithms to determine the biogeography of plant functional types. One such DGVM, MC2, uses a series of decision trees based on bioclimatic thresholds while others, such as LPJ, use constraining emergent properties with a limited set of bioclimatic threshold-based rules. Although both approaches have been used widely, we demonstrate that these biogeography outputs perform poorly at continental scales when compared to existing potential vegetation maps. Specifically, we found that with MC2, the algorithm for determining leaf physiognomy is too simplistic to capture arid and semi-arid vegetation in much of the western U.S., as well as is the algorithm for determining the broadleaf and needleleaf mix in the Southeast. With LPJ, we found that the bioclimatic thresholds used to allow seedling establishment are too broad and fail to capture regional-scale biogeography of the plant functional types. In response, we demonstrate a new approach to determining the biogeography of plant functional types by integrating the climatic thresholds produced for individual tree species by a series of climate envelope models with the biogeography algorithms of MC2 and LPJ. Using this approach, we find that MC2 and LPJ perform considerably better when compared to potential vegetation maps.

  10. Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods.

    PubMed

    Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin

    2018-03-05

    The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.

  11. Estimating the extreme low-temperature event using nonparametric methods

    NASA Astrophysics Data System (ADS)

    D'Silva, Anisha

    This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.

  12. Gas ultrasonic flow rate measurement through genetic-ant colony optimization based on the ultrasonic pulse received signal model

    NASA Astrophysics Data System (ADS)

    Hou, Huirang; Zheng, Dandan; Nie, Laixiao

    2015-04-01

    For gas ultrasonic flowmeters, the signals received by ultrasonic sensors are susceptible to noise interference. If signals are mingled with noise, a large error in flow measurement can be caused by triggering mistakenly using the traditional double-threshold method. To solve this problem, genetic-ant colony optimization (GACO) based on the ultrasonic pulse received signal model is proposed. Furthermore, in consideration of the real-time performance of the flow measurement system, the improvement of processing only the first three cycles of the received signals rather than the whole signal is proposed. Simulation results show that the GACO algorithm has the best estimation accuracy and ant-noise ability compared with the genetic algorithm, ant colony optimization, double-threshold and enveloped zero-crossing. Local convergence doesn’t appear with the GACO algorithm until -10 dB. For the GACO algorithm, the converging accuracy and converging speed and the amount of computation are further improved when using the first three cycles (called GACO-3cycles). Experimental results involving actual received signals show that the accuracy of single-gas ultrasonic flow rate measurement can reach 0.5% with GACO-3 cycles, which is better than with the double-threshold method.

  13. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  14. An Auditory-Masking-Threshold-Based Noise Suppression Algorithm GMMSE-AMT[ERB] for Listeners with Sensorineural Hearing Loss

    NASA Astrophysics Data System (ADS)

    Natarajan, Ajay; Hansen, John H. L.; Arehart, Kathryn Hoberg; Rossi-Katz, Jessica

    2005-12-01

    This study describes a new noise suppression scheme for hearing aid applications based on the auditory masking threshold (AMT) in conjunction with a modified generalized minimum mean square error estimator (GMMSE) for individual subjects with hearing loss. The representation of cochlear frequency resolution is achieved in terms of auditory filter equivalent rectangular bandwidths (ERBs). Estimation of AMT and spreading functions for masking are implemented in two ways: with normal auditory thresholds and normal auditory filter bandwidths (GMMSE-AMT[ERB]-NH) and with elevated thresholds and broader auditory filters characteristic of cochlear hearing loss (GMMSE-AMT[ERB]-HI). Evaluation is performed using speech corpora with objective quality measures (segmental SNR, Itakura-Saito), along with formal listener evaluations of speech quality rating and intelligibility. While no measurable changes in intelligibility occurred, evaluations showed quality improvement with both algorithm implementations. However, the customized formulation based on individual hearing losses was similar in performance to the formulation based on the normal auditory system.

  15. The impact of different algorithms for ideal body weight on screening for hydroxychloroquine retinopathy in women.

    PubMed

    Browning, David J; Lee, Chong; Rotberg, David

    2014-01-01

    To determine how algorithms for ideal body weight (IBW) affect hydroxychloroquine dosing in women. This was a retrospective study of 520 patients screened for hydroxychloroquine retinopathy. Charts were reviewed for sex, height, weight, and daily dose. The outcome measures were ranges of IBW across algorithms; rates of potentially toxic dosing; height thresholds below which 400 mg/d dosing is potentially toxic; and rates for which actual body weight (ABW) was less than IBW. Women made up 474 (91%) of the patients. The IBWs for a height varied from 30-34 pounds (13.6-15.5 kg) across algorithms. The threshold heights below which toxic dosing occurred varied from 62-70 inches (157.5-177.8 cm). Different algorithms placed 16%-98% of women in the toxic dosing range. The proportion for whom dosing should have been based on ABW rather than IBW ranged from 5%-31% across algorithms. Although hydroxychloroquine dosing should be based on the lesser of ABW and IBW, there is no consensus about the definition of IBW. The Michaelides algorithm is associated with the most frequent need to adjust dosing; the Metropolitan Life Insurance, large frame, mean value table with the least frequent need. No evidence indicates that one algorithm is superior to others.

  16. NASA Tech Briefs, March 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Scheme for Entering Binary Data Into a Quantum Computer; Encryption for Remote Control via Internet or Intranet; Coupled Receiver/Decoders for Low-Rate Turbo Codes; Processing GPS Occultation Data To Characterize Atmosphere; Displacing Unpredictable Nulls in Antenna Radiation Patterns; Integrated Pointing and Signal Detector for Optical Receiver; Adaptive Thresholding and Parameter Estimation for PPM; Data-Driven Software Framework for Web-Based ISS Telescience; Software for Secondary-School Learning About Robotics; Fuzzy Logic Engine; Telephone-Directory Program; Simulating a Direction-Finder Search for an ELT; Formulating Precursors for Coating Metals and Ceramics; Making Macroscopic Assemblies of Aligned Carbon Nanotubes; Ball Bearings Equipped for In Situ Lubrication on Demand; Synthetic Bursae for Robots; Robot Forearm and Dexterous Hand; Making a Metal-Lined Composite-Overwrapped Pressure Vessel; Ex Vivo Growth of Bioengineered Ligaments and Other Tissues; Stroboscopic Goggles for Reduction of Motion Sickness; Articulating Support for Horizontal Resistive Exercise; Modified Penning-Malmberg Trap for Storing Antiprotons; Tumbleweed Rovers; Two-Photon Fluorescence Microscope for Microgravity Research; Biased Randomized Algorithm for Fast Model-Based Diagnosis; Fast Algorithms for Model-Based Diagnosis; Simulations of Evaporating Multicomponent Fuel Drops; Formation Flying of Tethered and Nontethered Spacecraft; and Two Methods for Efficient Solution of the Hitting- Set Problem.

  17. Influence of infectious disease seasonality on the performance of the outbreak detection algorithm in the China Infectious Disease Automated-alert and Response System

    PubMed Central

    Wang, Ruiping; Jiang, Yonggen; Guo, Xiaoqin; Wu, Yiling; Zhao, Genming

    2017-01-01

    Objective The Chinese Center for Disease Control and Prevention developed the China Infectious Disease Automated-alert and Response System (CIDARS) in 2008. The CIDARS can detect outbreak signals in a timely manner but generates many false-positive signals, especially for diseases with seasonality. We assessed the influence of seasonality on infectious disease outbreak detection performance. Methods Chickenpox surveillance data in Songjiang District, Shanghai were used. The optimized early alert thresholds for chickenpox were selected according to three algorithm evaluation indexes: sensitivity (Se), false alarm rate (FAR), and time to detection (TTD). Performance of selected proper thresholds was assessed by data external to the study period. Results The optimized early alert threshold for chickenpox during the epidemic season was the percentile P65, which demonstrated an Se of 93.33%, FAR of 0%, and TTD of 0 days. The optimized early alert threshold in the nonepidemic season was P50, demonstrating an Se of 100%, FAR of 18.94%, and TTD was 2.5 days. The performance evaluation demonstrated that the use of an optimized threshold adjusted for seasonality could reduce the FAR and shorten the TTD. Conclusions Selection of optimized early alert thresholds based on local infectious disease seasonality could improve the performance of the CIDARS. PMID:28728470

  18. Influence of infectious disease seasonality on the performance of the outbreak detection algorithm in the China Infectious Disease Automated-alert and Response System.

    PubMed

    Wang, Ruiping; Jiang, Yonggen; Guo, Xiaoqin; Wu, Yiling; Zhao, Genming

    2018-01-01

    Objective The Chinese Center for Disease Control and Prevention developed the China Infectious Disease Automated-alert and Response System (CIDARS) in 2008. The CIDARS can detect outbreak signals in a timely manner but generates many false-positive signals, especially for diseases with seasonality. We assessed the influence of seasonality on infectious disease outbreak detection performance. Methods Chickenpox surveillance data in Songjiang District, Shanghai were used. The optimized early alert thresholds for chickenpox were selected according to three algorithm evaluation indexes: sensitivity (Se), false alarm rate (FAR), and time to detection (TTD). Performance of selected proper thresholds was assessed by data external to the study period. Results The optimized early alert threshold for chickenpox during the epidemic season was the percentile P65, which demonstrated an Se of 93.33%, FAR of 0%, and TTD of 0 days. The optimized early alert threshold in the nonepidemic season was P50, demonstrating an Se of 100%, FAR of 18.94%, and TTD was 2.5 days. The performance evaluation demonstrated that the use of an optimized threshold adjusted for seasonality could reduce the FAR and shorten the TTD. Conclusions Selection of optimized early alert thresholds based on local infectious disease seasonality could improve the performance of the CIDARS.

  19. 78 FR 2675 - Revised Jurisdictional Thresholds of the Clayton Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... that no corporation is covered if the competitive sales of either corporation are less than $1,000,000... change in gross national product. The new thresholds, which take effect immediately, are $28,883,000 for...

  20. A Practical and Automated Approach to Large Area Forest Disturbance Mapping with Remote Sensing

    PubMed Central

    Ozdogan, Mutlu

    2014-01-01

    In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions. PMID:24717283

  1. A practical and automated approach to large area forest disturbance mapping with remote sensing.

    PubMed

    Ozdogan, Mutlu

    2014-01-01

    In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions.

  2. Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj

    2017-06-01

    The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is significantly larger in the derived LST products than the corresponding radiant temperature images.

  3. Multi-scale landscape factors influencing stream water quality in the state of Oregon.

    PubMed

    Nash, Maliha S; Heggem, Daniel T; Ebert, Donald; Wade, Timothy G; Hall, Robert K

    2009-09-01

    Enterococci bacteria are used to indicate the presence of human and/or animal fecal materials in surface water. In addition to human influences on the quality of surface water, a cattle grazing is a widespread and persistent ecological stressor in the Western United States. Cattle may affect surface water quality directly by depositing nutrients and bacteria, and indirectly by damaging stream banks or removing vegetation cover, which may lead to increased sediment loads. This study used the State of Oregon surface water data to determine the likelihood of animal pathogen presence using enterococci and analyzed the spatial distribution and relationship of biotic (enterococci) and abiotic (nitrogen and phosphorous) surface water constituents to landscape metrics and others (e.g. human use, percent riparian cover, natural covers, grazing, etc.). We used a grazing potential index (GPI) based on proximity to water, land ownership and forage availability. Mean and variability of GPI, forage availability, stream density and length, and landscape metrics were related to enterococci and many forms of nitrogen and phosphorous in standard and logistic regression models. The GPI did not have a significant role in the models, but forage related variables had significant contribution. Urban land use within stream reach was the main driving factor when exceeding the threshold (> or =35 cfu/100 ml), agriculture was the driving force in elevating enterococci in sites where enterococci concentration was <35 cfu/100 ml. Landscape metrics related to amount of agriculture, wetlands and urban all contributed to increasing nutrients in surface water but at different scales. The probability of having sites with concentrations of enterococci above the threshold was much lower in areas of natural land cover and much higher in areas with higher urban land use within 60 m of stream. A 1% increase in natural land cover was associated with a 12% decrease in the predicted odds of having a site exceeding the threshold. Opposite to natural land cover, a one unit change in each of manmade barren and urban land use led to an increase of the likelihood of exceeding the threshold by 73%, and 11%, respectively. Change in urban land use had a higher influence on the likelihood of a site exceeding the threshold than that of natural land cover.

  4. A lane line segmentation algorithm based on adaptive threshold and connected domain theory

    NASA Astrophysics Data System (ADS)

    Feng, Hui; Xu, Guo-sheng; Han, Yi; Liu, Yang

    2018-04-01

    Before detecting cracks and repairs on road lanes, it's necessary to eliminate the influence of lane lines on the recognition result in road lane images. Aiming at the problems caused by lane lines, an image segmentation algorithm based on adaptive threshold and connected domain is proposed. First, by analyzing features like grey level distribution and the illumination of the images, the algorithm uses Hough transform to divide the images into different sections and convert them into binary images separately. It then uses the connected domain theory to amend the outcome of segmentation, remove noises and fill the interior zone of lane lines. Experiments have proved that this method could eliminate the influence of illumination and lane line abrasion, removing noises thoroughly while maintaining high segmentation precision.

  5. Orion MPCV Touchdown Detection Threshold Development and Testing

    NASA Technical Reports Server (NTRS)

    Daum, Jared; Gay, Robert

    2013-01-01

    A robust method of detecting Orion Multi-Purpose Crew Vehicle (MPCV) splashdown is necessary to ensure crew and hardware safety during descent and after touchdown. The proposed method uses a triple redundant system to inhibit Reaction Control System (RCS) thruster firings, detach parachute risers from the vehicle, and transition to the post-landing segment of the Flight Software (FSW). An in-depth trade study was completed to determine optimal characteristics of the touchdown detection method resulting in an algorithm monitoring filtered, lever-arm corrected, 200 Hz Inertial Measurement Unit (IMU) vehicle acceleration magnitude data against a tunable threshold using persistence counter logic. Following the design of the algorithm, high fidelity environment and vehicle simulations, coupled with the actual vehicle FSW, were used to tune the acceleration threshold and persistence counter value to result in adequate performance in detecting touchdown and sufficient safety margin against early detection while descending under parachutes. An analytical approach including Kriging and adaptive sampling allowed for a sufficient number of finite element analysis (FEA) impact simulations to be completed using minimal computation time. The combination of a persistence counter of 10 and an acceleration threshold of approximately 57.3 ft/s2 resulted in an impact performance factor of safety (FOS) of 1.0 and a safety FOS of approximately 2.6 for touchdown declaration. An RCS termination acceleration threshold of approximately 53.1 ft/s(exp)2 with a persistence counter of 10 resulted in an increased impact performance FOS of 1.2 at the expense of a lowered under-parachutes safety factor of 2.2. The resulting tuned algorithm was then tested on data from eight Capsule Parachute Assembly System (CPAS) flight tests, showing an experimental minimum safety FOS of 6.1. The formulated touchdown detection algorithm will be flown on the Orion MPCV FSW during the Exploration Flight Test 1 (EFT-1) mission in the second half of 2014.

  6. Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the GOES-R Geostationary Lightning Mapper.

  7. Iterative cross section sequence graph for handwritten character segmentation.

    PubMed

    Dawoud, Amer

    2007-08-01

    The iterative cross section sequence graph (ICSSG) is an algorithm for handwritten character segmentation. It expands the cross section sequence graph concept by applying it iteratively at equally spaced thresholds. The iterative thresholding reduces the effect of information loss associated with image binarization. ICSSG preserves the characters' skeletal structure by preventing the interference of pixels that causes flooding of adjacent characters' segments. Improving the structural quality of the characters' skeleton facilitates better feature extraction and classification, which improves the overall performance of optical character recognition (OCR). Experimental results showed significant improvements in OCR recognition rates compared to other well-established segmentation algorithms.

  8. Mathematical Foundation for Plane Covering Using Hexagons

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    1999-01-01

    This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.

  9. Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records

    NASA Astrophysics Data System (ADS)

    Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.

    2017-10-01

    Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375 m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16+ year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms. These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.

  10. An Automated Energy Detection Algorithm Based on Consecutive Mean Excision

    DTIC Science & Technology

    2018-01-01

    present in the RF spectrum. 15. SUBJECT TERMS RF spectrum, detection threshold algorithm, consecutive mean excision, rank order filter , statistical...Median 4 3.1.9 Rank Order Filter (ROF) 4 3.1.10 Crest Factor (CF) 5 3.2 Statistical Summary 6 4. Algorithm 7 5. Conclusion 8 6. References 9...energy detection algorithm based on morphological filter processing with a semi- disk structure. Adelphi (MD): Army Research Laboratory (US); 2018 Jan

  11. Setting objective thresholds for rare event detection in flow cytometry

    PubMed Central

    Richards, Adam J.; Staats, Janet; Enzor, Jennifer; McKinnon, Katherine; Frelinger, Jacob; Denny, Thomas N.; Weinhold, Kent J.; Chan, Cliburn

    2014-01-01

    The accurate identification of rare antigen-specific cytokine positive cells from peripheral blood mononuclear cells (PBMC) after antigenic stimulation in an intracellular staining (ICS) flow cytometry assay is challenging, as cytokine positive events may be fairly diffusely distributed and lack an obvious separation from the negative population. Traditionally, the approach by flow operators has been to manually set a positivity threshold to partition events into cytokine-positive and cytokine-negative. This approach suffers from subjectivity and inconsistency across different flow operators. The use of statistical clustering methods does not remove the need to find an objective threshold between between positive and negative events since consistent identification of rare event subsets is highly challenging for automated algorithms, especially when there is distributional overlap between the positive and negative events (“smear”). We present a new approach, based on the Fβ measure, that is similar to manual thresholding in providing a hard cutoff, but has the advantage of being determined objectively. The performance of this algorithm is compared with results obtained by expert visual gating. Several ICS data sets from the External Quality Assurance Program Oversight Laboratory (EQAPOL) proficiency program were used to make the comparisons. We first show that visually determined thresholds are difficult to reproduce and pose a problem when comparing results across operators or laboratories, as well as problems that occur with the use of commonly employed clustering algorithms. In contrast, a single parameterization for the Fβ method performs consistently across different centers, samples, and instruments because it optimizes the precision/recall tradeoff by using both negative and positive controls. PMID:24727143

  12. Coverability graphs for a class of synchronously executed unbounded Petri net

    NASA Technical Reports Server (NTRS)

    Stotts, P. David; Pratt, Terrence W.

    1990-01-01

    After detailing a variant of the concurrent-execution rule for firing of maximal subsets, in which the simultaneous firing of conflicting transitions is prohibited, an algorithm is constructed for generating the coverability graph of a net executed under this synchronous firing rule. The omega insertion criteria in the algorithm are shown to be valid for any net on which the algorithm terminates. It is accordingly shown that the set of nets on which the algorithm terminates includes the 'conflict-free' class.

  13. Estimator banks: a new tool for direction-of-arrival estimation

    NASA Astrophysics Data System (ADS)

    Gershman, Alex B.; Boehme, Johann F.

    1997-10-01

    A new powerful tool for improving the threshold performance of direction-of-arrival (DOA) estimation is considered. The essence of our approach is to reduce the number of outliers in the threshold domain using the so-called estimator bank containing multiple 'parallel' underlying DOA estimators which are based on pseudorandom resampling of the MUSIC spatial spectrum for given data batch or sample covariance matrix. To improve the threshold performance relative to conventional MUSIC, evolutionary principles are used, i.e., only 'successful' underlying estimators (having no failure in the preliminary estimated source localization sectors) are exploited in the final estimate. An efficient beamspace root implementation of the estimator bank approach is developed, combined with the array interpolation technique which enables the application to arbitrary arrays. A higher-order extension of our approach is also presented, where the cumulant-based MUSIC estimator is exploited as a basic technique for spatial spectrum resampling. Simulations and experimental data processing show that our algorithm performs well below the MUSIC threshold, namely, has the threshold performance similar to that of the stochastic ML method. At the same time, the computational cost of our algorithm is much lower than that of stochastic ML because no multidimensional optimization is involved.

  14. The Patient Health Questionnaire-9 for detection of major depressive disorder in primary care: consequences of current thresholds in a crosssectional study.

    PubMed

    Zuithoff, Nicolaas P A; Vergouwe, Yvonne; King, Michael; Nazareth, Irwin; van Wezep, Manja J; Moons, Karel G M; Geerlings, Mirjam I

    2010-12-13

    There is a need for brief instruments to ascertain the diagnosis of major depressive disorder. In this study, we present the reliability, construct validity and accuracy of the PHQ-9 and PHQ-2 to detect major depressive disorder in primary care. Cross-sectional analyses within a large prospective cohort study (PREDICT-NL). Data was collected in seven large general practices in the centre of the Netherlands. 1338 subjects were recruited in the general practice waiting room, irrespective of their presenting complaint. The diagnostic accuracy (the area under the ROC curve and sensitivities and specificities for various thresholds) was calculated against a diagnosis of major depressive disorder determined with the Composite International Diagnostic Interview (CIDI). The PHQ-9 showed a high degree of internal consistency (ICC = 0.88) and test-retest reliability (correlation = 0.94). With respect to construct validity, it showed a clear association with functional status measurements, sick days and number of consultations. The discriminative ability was good for the PHQ-9 (area under the ROC curve = 0.87, 95% CI: 0.84-0.90) and the PHQ-2 (ROC area = 0.83, 95% CI 0.80-0.87). Sensitivities at the recommended thresholds were 0.49 for the PHQ-9 at a score of 10 and 0.28 for a categorical algorithm. Adjustment of the threshold and the algorithm improved sensitivities to 0.82 and 0.84 respectively but the specificity decreased from 0.95 to 0.82 (threshold) and from 0.98 to 0.81 (algorithm). Similar results were found for the PHQ-2: the recommended threshold of 3 had a sensitivity of 0.42 and lowering the threshold resulted in an improved sensitivity of 0.81. The PHQ-9 and the PHQ-2 are useful instruments to detect major depressive disorder in primary care, provided a high score is followed by an additional diagnostic work-up. However, often recommended thresholds for the PHQ-9 and the PHQ-2 resulted in many undetected major depressive disorders.

  15. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass

    USGS Publications Warehouse

    Glenn, Nancy F.; Neuenschwander, Amy; Vierling, Lee A.; Spaete, Lucas; Li, Aihua; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2016-01-01

    To estimate the potential synergies of OLI and ICESat-2 we used simulated ICESat-2 photon data to predict vegetation structure. In a shrubland environment with a vegetation mean height of 1 m and mean vegetation cover of 33%, vegetation photons are able to explain nearly 50% of the variance in vegetation height. These results, and those from a comparison site, suggest that a lower detection threshold of ICESat-2 may be in the range of 30% canopy cover and roughly 1 m height in comparable dryland environments and these detection thresholds could be used to combine future ICESat-2 photon data with OLI spectral data for improved vegetation structure. Overall, the synergistic use of Landsat 8 and ICESat-2 may improve estimates of above-ground biomass and carbon storage in drylands that meet these minimum thresholds, increasing our ability to monitor drylands for fuel loading and the potential to sequester carbon.

  16. Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions.

    PubMed

    Elgendi, Mohamed; Norton, Ian; Brearley, Matt; Abbott, Derek; Schuurmans, Dale

    2013-01-01

    Photoplethysmogram (PPG) monitoring is not only essential for critically ill patients in hospitals or at home, but also for those undergoing exercise testing. However, processing PPG signals measured after exercise is challenging, especially if the environment is hot and humid. In this paper, we propose a novel algorithm that can detect systolic peaks under challenging conditions, as in the case of emergency responders in tropical conditions. Accurate systolic-peak detection is an important first step for the analysis of heart rate variability. Algorithms based on local maxima-minima, first-derivative, and slope sum are evaluated, and a new algorithm is introduced to improve the detection rate. With 40 healthy subjects, the new algorithm demonstrates the highest overall detection accuracy (99.84% sensitivity, 99.89% positive predictivity). Existing algorithms, such as Billauer's, Li's and Zong's, have comparable although lower accuracy. However, the proposed algorithm presents an advantage for real-time applications by avoiding human intervention in threshold determination. For best performance, we show that a combination of two event-related moving averages with an offset threshold has an advantage in detecting systolic peaks, even in heat-stressed PPG signals.

  17. Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation

    NASA Astrophysics Data System (ADS)

    Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei

    2016-11-01

    Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.

  18. A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems.

    PubMed

    Gong, Pinghua; Zhang, Changshui; Lu, Zhaosong; Huang, Jianhua Z; Ye, Jieping

    2013-01-01

    Non-convex sparsity-inducing penalties have recently received considerable attentions in sparse learning. Recent theoretical investigations have demonstrated their superiority over the convex counterparts in several sparse learning settings. However, solving the non-convex optimization problems associated with non-convex penalties remains a big challenge. A commonly used approach is the Multi-Stage (MS) convex relaxation (or DC programming), which relaxes the original non-convex problem to a sequence of convex problems. This approach is usually not very practical for large-scale problems because its computational cost is a multiple of solving a single convex problem. In this paper, we propose a General Iterative Shrinkage and Thresholding (GIST) algorithm to solve the nonconvex optimization problem for a large class of non-convex penalties. The GIST algorithm iteratively solves a proximal operator problem, which in turn has a closed-form solution for many commonly used penalties. At each outer iteration of the algorithm, we use a line search initialized by the Barzilai-Borwein (BB) rule that allows finding an appropriate step size quickly. The paper also presents a detailed convergence analysis of the GIST algorithm. The efficiency of the proposed algorithm is demonstrated by extensive experiments on large-scale data sets.

  19. Change Detection Algorithms for Surveillance in Visual IoT: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Akram, Beenish Ayesha; Zafar, Amna; Akbar, Ali Hammad; Wajid, Bilal; Chaudhry, Shafique Ahmad

    2018-01-01

    The VIoT (Visual Internet of Things) connects virtual information world with real world objects using sensors and pervasive computing. For video surveillance in VIoT, ChD (Change Detection) is a critical component. ChD algorithms identify regions of change in multiple images of the same scene recorded at different time intervals for video surveillance. This paper presents performance comparison of histogram thresholding and classification ChD algorithms using quantitative measures for video surveillance in VIoT based on salient features of datasets. The thresholding algorithms Otsu, Kapur, Rosin and classification methods k-means, EM (Expectation Maximization) were simulated in MATLAB using diverse datasets. For performance evaluation, the quantitative measures used include OSR (Overall Success Rate), YC (Yule's Coefficient) and JC (Jaccard's Coefficient), execution time and memory consumption. Experimental results showed that Kapur's algorithm performed better for both indoor and outdoor environments with illumination changes, shadowing and medium to fast moving objects. However, it reflected degraded performance for small object size with minor changes. Otsu algorithm showed better results for indoor environments with slow to medium changes and nomadic object mobility. k-means showed good results in indoor environment with small object size producing slow change, no shadowing and scarce illumination changes.

  20. A clustering algorithm for determining community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Jin, Hong; Yu, Wei; Li, ShiJun

    2018-02-01

    Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.

  1. Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation

    PubMed Central

    Shen, Liang; Huang, Xiaotao; Fan, Chongyi

    2018-01-01

    Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used in both research and engineering fields. However, the original PSO generally suffers from premature convergence, especially in multimodal problems. In this paper, we propose a double-group PSO (DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution framework. The individuals are divided into two groups: an advantaged group and a disadvantaged group. The advantaged group works according to the original PSO, while two new strategies are developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing image segmentation. The results show that the proposed algorithm outperforms five other popular algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the proposed algorithm. PMID:29724013

  2. A Region Tracking-Based Vehicle Detection Algorithm in Nighttime Traffic Scenes

    PubMed Central

    Wang, Jianqiang; Sun, Xiaoyan; Guo, Junbin

    2013-01-01

    The preceding vehicles detection technique in nighttime traffic scenes is an important part of the advanced driver assistance system (ADAS). This paper proposes a region tracking-based vehicle detection algorithm via the image processing technique. First, the brightness of the taillights during nighttime is used as the typical feature, and we use the existing global detection algorithm to detect and pair the taillights. When the vehicle is detected, a time series analysis model is introduced to predict vehicle positions and the possible region (PR) of the vehicle in the next frame. Then, the vehicle is only detected in the PR. This could reduce the detection time and avoid the false pairing between the bright spots in the PR and the bright spots out of the PR. Additionally, we present a thresholds updating method to make the thresholds adaptive. Finally, experimental studies are provided to demonstrate the application and substantiate the superiority of the proposed algorithm. The results show that the proposed algorithm can simultaneously reduce both the false negative detection rate and the false positive detection rate.

  3. Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation.

    PubMed

    Shen, Liang; Huang, Xiaotao; Fan, Chongyi

    2018-05-01

    Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used in both research and engineering fields. However, the original PSO generally suffers from premature convergence, especially in multimodal problems. In this paper, we propose a double-group PSO (DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution framework. The individuals are divided into two groups: an advantaged group and a disadvantaged group. The advantaged group works according to the original PSO, while two new strategies are developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing image segmentation. The results show that the proposed algorithm outperforms five other popular algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the proposed algorithm.

  4. Retinal vessel segmentation on SLO image

    PubMed Central

    Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.

    2010-01-01

    A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149

  5. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.

    PubMed

    Na, Sung Dae; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam

    2018-01-01

    The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.

  6. A wavelet-based adaptive fusion algorithm of infrared polarization imaging

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang

    2011-08-01

    The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.

  7. What is missing? An operational inundation mapping framework by SAR data

    NASA Astrophysics Data System (ADS)

    Shen, X.; Anagnostou, E. N.; Zeng, Z.; Kettner, A.; Hong, Y.

    2017-12-01

    Compared to optical sensors, synthetic aperture radar (SAR) works all-day all-weather. In addition, its spatial resolution does not decrease with the height of the platform and is thus applicable to a range of important studies. However, existing studies did not address the operational demands of real-time inundation mapping. The direct proof is that no water body product exists for any SAR-based satellites. Then what is missing between science and products? Automation and quality. What makes it so difficult to develop an operational inundation mapping technique based on SAR data? Spectrum-wise, unlike optical water indices such as MNDWI, AWEI etc., where a relative constant threshold may apply across acquisition of images, regions and sensors, the threshold to separate water from non-water pixels in each SAR images has to be individually chosen. The optimization of the threshold is the first obstacle to the automation of the SAR data algorithm. Morphologically, the quality and reliability of the results have been compromised by over-detection caused by smooth surface and shadowing area, the noise-like speckle and under-detection caused by strong-scatter disturbance. In this study, we propose a three-step framework that addresses all aforementioned issues of operational inundation mapping by SAR data. The framework consists of 1) optimization of Wishart distribution parameters of single/dual/fully-polarized SAR data, 2) morphological removal of over-detection, and 3) machine-learning based removal of under-detection. The framework utilizes not only the SAR data, but also the synergy of digital elevation model (DEM), and optical sensor-based products of fine resolution, including the water probability map, land cover classification map (optional), and river width. The framework has been validated throughout multiple areas in different parts of the world using different satellite SAR data and globally available ancillary data products. Therefore, it has the potential to contribute as an operational inundation mapping algorithm to any SAR missions, such as SWOT, ALOS, Sentinel, etc. Selected results using ALOS/PALSAR-1 L-band dual polarized data around the Connecticut River is provided in the attached Figure.

  8. Research on Quantum Algorithms at the Institute for Quantum Information

    DTIC Science & Technology

    2009-10-17

    accuracy threshold theorem for the one-way quantum computer. Their proof is based on a novel scheme, in which a noisy cluster state in three spatial...detected. The proof applies to independent stochastic noise but (in contrast to proofs of the quantum accuracy threshold theorem based on concatenated...proved quantum threshold theorems for long-range correlated non-Markovian noise, for leakage faults, for the one-way quantum computer, for postselected

  9. Knowledge-based tracking algorithm

    NASA Astrophysics Data System (ADS)

    Corbeil, Allan F.; Hawkins, Linda J.; Gilgallon, Paul F.

    1990-10-01

    This paper describes the Knowledge-Based Tracking (KBT) algorithm for which a real-time flight test demonstration was recently conducted at Rome Air Development Center (RADC). In KBT processing, the radar signal in each resolution cell is thresholded at a lower than normal setting to detect low RCS targets. This lower threshold produces a larger than normal false alarm rate. Therefore, additional signal processing including spectral filtering, CFAR and knowledge-based acceptance testing are performed to eliminate some of the false alarms. TSC's knowledge-based Track-Before-Detect (TBD) algorithm is then applied to the data from each azimuth sector to detect target tracks. In this algorithm, tentative track templates are formed for each threshold crossing and knowledge-based association rules are applied to the range, Doppler, and azimuth measurements from successive scans. Lastly, an M-association out of N-scan rule is used to declare a detection. This scan-to-scan integration enhances the probability of target detection while maintaining an acceptably low output false alarm rate. For a real-time demonstration of the KBT algorithm, the L-band radar in the Surveillance Laboratory (SL) at RADC was used to illuminate a small Cessna 310 test aircraft. The received radar signal wa digitized and processed by a ST-100 Array Processor and VAX computer network in the lab. The ST-100 performed all of the radar signal processing functions, including Moving Target Indicator (MTI) pulse cancelling, FFT Doppler filtering, and CFAR detection. The VAX computers performed the remaining range-Doppler clustering, beamsplitting and TBD processing functions. The KBT algorithm provided a 9.5 dB improvement relative to single scan performance with a nominal real time delay of less than one second between illumination and display.

  10. Efficient algorithms for fast integration on large data sets from multiple sources.

    PubMed

    Mi, Tian; Rajasekaran, Sanguthevar; Aseltine, Robert

    2012-06-28

    Recent large scale deployments of health information technology have created opportunities for the integration of patient medical records with disparate public health, human service, and educational databases to provide comprehensive information related to health and development. Data integration techniques, which identify records belonging to the same individual that reside in multiple data sets, are essential to these efforts. Several algorithms have been proposed in the literatures that are adept in integrating records from two different datasets. Our algorithms are aimed at integrating multiple (in particular more than two) datasets efficiently. Hierarchical clustering based solutions are used to integrate multiple (in particular more than two) datasets. Edit distance is used as the basic distance calculation, while distance calculation of common input errors is also studied. Several techniques have been applied to improve the algorithms in terms of both time and space: 1) Partial Construction of the Dendrogram (PCD) that ignores the level above the threshold; 2) Ignoring the Dendrogram Structure (IDS); 3) Faster Computation of the Edit Distance (FCED) that predicts the distance with the threshold by upper bounds on edit distance; and 4) A pre-processing blocking phase that limits dynamic computation within each block. We have experimentally validated our algorithms on large simulated as well as real data. Accuracy and completeness are defined stringently to show the performance of our algorithms. In addition, we employ a four-category analysis. Comparison with FEBRL shows the robustness of our approach. In the experiments we conducted, the accuracy we observed exceeded 90% for the simulated data in most cases. 97.7% and 98.1% accuracy were achieved for the constant and proportional threshold, respectively, in a real dataset of 1,083,878 records.

  11. Thresholds of species loss in Amazonian deforestation frontier landscapes.

    PubMed

    Ochoa-Quintero, Jose Manuel; Gardner, Toby A; Rosa, Isabel; Ferraz, Silvio Frosini de Barros; Sutherland, William J

    2015-04-01

    In the Brazilian Amazon, private land accounts for the majority of remaining native vegetation. Understanding how land-use change affects the composition and distribution of biodiversity in farmlands is critical for improving conservation strategies in the face of rapid agricultural expansion. Working across an area exceeding 3 million ha in the southwestern state of Rondônia, we assessed how the extent and configuration of remnant forest in replicate 10,000-ha landscapes has affected the occurrence of a suite of Amazonian mammals and birds. In each of 31 landscapes, we used field sampling and semistructured interviews with landowners to determine the presence of 28 large and medium sized mammals and birds, as well as a further 7 understory birds. We then combined results of field surveys and interviews with a probabilistic model of deforestation. We found strong evidence for a threshold response of sampled biodiversity to landscape level forest cover; landscapes with <30-40% forest cover hosted markedly fewer species. Results from field surveys and interviews yielded similar thresholds. These results imply that in partially deforested landscapes many species are susceptible to extirpation following relatively small additional reductions in forest area. In the model of deforestation by 2030 the number of 10,000-ha landscapes under a conservative threshold of 43% forest cover almost doubled, such that only 22% of landscapes would likely to be able to sustain at least 75% of the 35 focal species we sampled. Brazilian law requires rural property owners in the Amazon to retain 80% forest cover, although this is rarely achieved. Prioritizing efforts to ensure that entire landscapes, rather than individual farms, retain at least 50% forest cover may help safeguard native biodiversity in private forest reserves in the Amazon. © 2015 Society for Conservation Biology.

  12. Comparison of Image Processing Techniques for Nonviable Tissue Quantification in Late Gadolinium Enhancement Cardiac Magnetic Resonance Images.

    PubMed

    Carminati, M Chiara; Boniotti, Cinzia; Fusini, Laura; Andreini, Daniele; Pontone, Gianluca; Pepi, Mauro; Caiani, Enrico G

    2016-05-01

    The aim of this study was to compare the performance of quantitative methods, either semiautomated or automated, for left ventricular (LV) nonviable tissue analysis from cardiac magnetic resonance late gadolinium enhancement (CMR-LGE) images. The investigated segmentation techniques were: (i) n-standard deviations thresholding; (ii) full width at half maximum thresholding; (iii) Gaussian mixture model classification; and (iv) fuzzy c-means clustering. These algorithms were applied either in each short axis slice (single-slice approach) or globally considering the entire short-axis stack covering the LV (global approach). CMR-LGE images from 20 patients with ischemic cardiomyopathy were retrospectively selected, and results from each technique were assessed against manual tracing. All methods provided comparable performance in terms of accuracy in scar detection, computation of local transmurality, and high correlation in scar mass compared with the manual technique. In general, no significant difference between single-slice and global approach was noted. The reproducibility of manual and investigated techniques was confirmed in all cases with slightly lower results for the nSD approach. Automated techniques resulted in accurate and reproducible evaluation of LV scars from CMR-LGE in ischemic patients with performance similar to the manual technique. Their application could minimize user interaction and computational time, even when compared with semiautomated approaches.

  13. 76 FR 4349 - Revised Jurisdictional Thresholds for Section 8 of the Clayton Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... that no corporation is covered if the competitive sales of either corporation are less than $1,000,000... change in gross national product. The new thresholds, which take effect immediately, are $26,867,000 for...

  14. 75 FR 3469 - Revised Jurisdictional Thresholds For Section 8 of the Clayton Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... that no corporation is covered if the competitive sales of either corporation are less than $1,000,000... change in gross national product. The new thresholds, which take effect immediately, are $25,841,000 for...

  15. Confronting Decision Cliffs: Diagnostic Assessment of Multi-Objective Evolutionary Algorithms' Performance for Addressing Uncertain Environmental Thresholds

    NASA Astrophysics Data System (ADS)

    Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.

    2014-12-01

    As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a useful and nontrivial benchmarking problem.

  16. DTFP-Growth: Dynamic Threshold-Based FP-Growth Rule Mining Algorithm Through Integrating Gene Expression, Methylation, and Protein-Protein Interaction Profiles.

    PubMed

    Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan; Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan; Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan

    2018-04-01

    Association rule mining is an important technique for identifying interesting relationships between gene pairs in a biological data set. Earlier methods basically work for a single biological data set, and, in maximum cases, a single minimum support cutoff can be applied globally, i.e., across all genesets/itemsets. To overcome this limitation, in this paper, we propose dynamic threshold-based FP-growth rule mining algorithm that integrates gene expression, methylation and protein-protein interaction profiles based on weighted shortest distance to find the novel associations among different pairs of genes in multi-view data sets. For this purpose, we introduce three new thresholds, namely, Distance-based Variable/Dynamic Supports (DVS), Distance-based Variable Confidences (DVC), and Distance-based Variable Lifts (DVL) for each rule by integrating co-expression, co-methylation, and protein-protein interactions existed in the multi-omics data set. We develop the proposed algorithm utilizing these three novel multiple threshold measures. In the proposed algorithm, the values of , , and are computed for each rule separately, and subsequently it is verified whether the support, confidence, and lift of each evolved rule are greater than or equal to the corresponding individual , , and values, respectively, or not. If all these three conditions for a rule are found to be true, the rule is treated as a resultant rule. One of the major advantages of the proposed method compared with other related state-of-the-art methods is that it considers both the quantitative and interactive significance among all pairwise genes belonging to each rule. Moreover, the proposed method generates fewer rules, takes less running time, and provides greater biological significance for the resultant top-ranking rules compared to previous methods.

  17. Mutual information-based LPI optimisation for radar network

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  18. VirSSPA- a virtual reality tool for surgical planning workflow.

    PubMed

    Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T

    2009-03-01

    A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.

  19. How Well Do Engineering Students Retain Core Mathematical Knowledge after a Series of High Threshold Online Mathematics Tests?

    ERIC Educational Resources Information Center

    Carr, Michael; Prendergast, Mark; Breen, Cormac; Faulkner, Fiona

    2017-01-01

    In the Dublin Institute of Technology, high threshold core skills assessments are run in mathematics for third-year engineering students. Such tests require students to reach a threshold of 90% on a multiple choice test based on a randomized question bank. The material covered by the test consists of the more important aspects of undergraduate…

  20. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kilgour, David P. A.; Hughes, Sam; Kilgour, Samantha L.; Mackay, C. Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K.; Clarke, David J.; Goodlett, David R.

    2017-02-01

    We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks.

  1. Autopiquer - a Robust and Reliable Peak Detection Algorithm for Mass Spectrometry.

    PubMed

    Kilgour, David P A; Hughes, Sam; Kilgour, Samantha L; Mackay, C Logan; Palmblad, Magnus; Tran, Bao Quoc; Goo, Young Ah; Ernst, Robert K; Clarke, David J; Goodlett, David R

    2017-02-01

    We present a simple algorithm for robust and unsupervised peak detection by determining a noise threshold in isotopically resolved mass spectrometry data. Solving this problem will greatly reduce the subjective and time-consuming manual picking of mass spectral peaks and so will prove beneficial in many research applications. The Autopiquer approach uses autocorrelation to test for the presence of (isotopic) structure in overlapping windows across the spectrum. Within each window, a noise threshold is optimized to remove the most unstructured data, whilst keeping as much of the (isotopic) structure as possible. This algorithm has been successfully demonstrated for both peak detection and spectral compression on data from many different classes of mass spectrometer and for different sample types, and this approach should also be extendible to other types of data that contain regularly spaced discrete peaks. Graphical Abstract ᅟ.

  2. Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networks.

    PubMed

    Zhang, Jing; Zhou, Qingjie; Ng, Derrick Wing Kwan; Jo, Minho

    2017-09-15

    In wireless powered communication networks (WPCNs), it is essential to research energy efficiency fairness in order to evaluate the balance of nodes for receiving information and harvesting energy. In this paper, we propose an efficient iterative algorithm for optimal energy efficiency proportional fairness in WPCN. The main idea is to use stochastic geometry to derive the mean proportionally fairness utility function with respect to user association probability and receive threshold. Subsequently, we prove that the relaxed proportionally fairness utility function is a concave function for user association probability and receive threshold, respectively. At the same time, a sub-optimal algorithm by exploiting alternating optimization approach is proposed. Through numerical simulations, we demonstrate that our sub-optimal algorithm can obtain a result close to optimal energy efficiency proportional fairness with significant reduction of computational complexity.

  3. Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networks

    PubMed Central

    Zhou, Qingjie; Ng, Derrick Wing Kwan; Jo, Minho

    2017-01-01

    In wireless powered communication networks (WPCNs), it is essential to research energy efficiency fairness in order to evaluate the balance of nodes for receiving information and harvesting energy. In this paper, we propose an efficient iterative algorithm for optimal energy efficiency proportional fairness in WPCN. The main idea is to use stochastic geometry to derive the mean proportionally fairness utility function with respect to user association probability and receive threshold. Subsequently, we prove that the relaxed proportionally fairness utility function is a concave function for user association probability and receive threshold, respectively. At the same time, a sub-optimal algorithm by exploiting alternating optimization approach is proposed. Through numerical simulations, we demonstrate that our sub-optimal algorithm can obtain a result close to optimal energy efficiency proportional fairness with significant reduction of computational complexity. PMID:28914818

  4. Blind One-Bit Compressive Sampling

    DTIC Science & Technology

    2013-01-17

    14] Q. Li, C. A. Micchelli, L. Shen, and Y. Xu, A proximity algorithm accelerated by Gauss - Seidel iterations for L1/TV denoising models, Inverse...methods for nonconvex optimization on the unit sphere and has a provable convergence guarantees. Binary iterative hard thresholding (BIHT) algorithms were... Convergence analysis of the algorithm is presented. Our approach is to obtain a sequence of optimization problems by successively approximating the ℓ0

  5. A novel evaluation of two related and two independent algorithms for eye movement classification during reading.

    PubMed

    Friedman, Lee; Rigas, Ioannis; Abdulin, Evgeny; Komogortsev, Oleg V

    2018-05-15

    Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.

  6. An optimized BP neural network based on genetic algorithm for static decoupling of a six-axis force/torque sensor

    NASA Astrophysics Data System (ADS)

    Fu, Liyue; Song, Aiguo

    2018-02-01

    In order to improve the measurement precision of 6-axis force/torque sensor for robot, BP decoupling algorithm optimized by GA (GA-BP algorithm) is proposed in this paper. The weights and thresholds of a BP neural network with 6-10-6 topology are optimized by GA to develop decouple a six-axis force/torque sensor. By comparison with other traditional decoupling algorithm, calculating the pseudo-inverse matrix of calibration and classical BP algorithm, the decoupling results validate the good decoupling performance of GA-BP algorithm and the coupling errors are reduced.

  7. An Automated Algorithm to Screen Massive Training Samples for a Global Impervious Surface Classification

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Brown de Colstoun, Eric; Wolfe, Robert E.; Tilton, James C.; Huang, Chengquan; Smith, Sarah E.

    2012-01-01

    An algorithm is developed to automatically screen the outliers from massive training samples for Global Land Survey - Imperviousness Mapping Project (GLS-IMP). GLS-IMP is to produce a global 30 m spatial resolution impervious cover data set for years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. This unprecedented high resolution impervious cover data set is not only significant to the urbanization studies but also desired by the global carbon, hydrology, and energy balance researches. A supervised classification method, regression tree, is applied in this project. A set of accurate training samples is the key to the supervised classifications. Here we developed the global scale training samples from 1 m or so resolution fine resolution satellite data (Quickbird and Worldview2), and then aggregate the fine resolution impervious cover map to 30 m resolution. In order to improve the classification accuracy, the training samples should be screened before used to train the regression tree. It is impossible to manually screen 30 m resolution training samples collected globally. For example, in Europe only, there are 174 training sites. The size of the sites ranges from 4.5 km by 4.5 km to 8.1 km by 3.6 km. The amount training samples are over six millions. Therefore, we develop this automated statistic based algorithm to screen the training samples in two levels: site and scene level. At the site level, all the training samples are divided to 10 groups according to the percentage of the impervious surface within a sample pixel. The samples following in each 10% forms one group. For each group, both univariate and multivariate outliers are detected and removed. Then the screen process escalates to the scene level. A similar screen process but with a looser threshold is applied on the scene level considering the possible variance due to the site difference. We do not perform the screen process across the scenes because the scenes might vary due to the phenology, solar-view geometry, and atmospheric condition etc. factors but not actual landcover difference. Finally, we will compare the classification results from screened and unscreened training samples to assess the improvement achieved by cleaning up the training samples. Keywords:

  8. A PML-FDTD ALGORITHM FOR SIMULATING PLASMA-COVERED CAVITY-BACKED SLOT ANTENNAS. (R825225)

    EPA Science Inventory

    A three-dimensional frequency-dependent finite-difference time-domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) and recursive convolution approaches is developed to model plasma-covered open-ended waveguide or cavity-backed slot antenn...

  9. Cloud cover estimation optical package: New facility, algorithms and techniques

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail

    2017-02-01

    Short- and long-wave radiation is an important component of surface heat budget over sea and land. For estimating them accurate observations of the cloud cover are needed. While massively observed visually, for building accurate parameterizations cloud cover needs also to be quantified using precise instrumental measurements. Major disadvantages of the most of existing cloud-cameras are associated with their complicated design and inaccuracy of post-processing algorithms which typically result in the uncertainties of 20% to 30% in the camera-based estimates of cloud cover. The accuracy of these types of algorithm in terms of true scoring compared to human-observed values is typically less than 10%. We developed new generation package for cloud cover estimating, which provides much more accurate results and also allows for measuring additional characteristics. New algorithm, namely SAIL GrIx, based on routine approach, also developed for this package. It uses the synthetic controlling index ("grayness rate index") which allows to suppress the background sunburn effect. This makes it possible to increase the reliability of the detection of the optically thin clouds. The accuracy of this algorithm in terms of true scoring became 30%. One more approach, namely SAIL GrIx ML, we have used to increase the cloud cover estimating accuracy is the algorithm that uses machine learning technique along with some other signal processing techniques. Sun disk condition appears to be a strong feature in this kind of models. Artificial Neural Networks type of model demonstrates the best quality. This model accuracy in terms of true scoring increases up to 95,5%. Application of a new algorithm lets us to modify the design of the optical sensing package and to avoid the use of the solar trackers. This made the design of the cloud camera much more compact. New cloud-camera has already been tested in several missions across Atlantic and Indian oceans on board of IORAS research vessels.

  10. Using pixel intensity as a self-regulating threshold for deterministic image sampling in Milano Retinex: the T-Rex algorithm

    NASA Astrophysics Data System (ADS)

    Lecca, Michela; Modena, Carla Maria; Rizzi, Alessandro

    2018-01-01

    Milano Retinexes are spatial color algorithms, part of the Retinex family, usually employed for image enhancement. They modify the color of each pixel taking into account the surrounding colors and their position, catching in this way the local spatial color distribution relevant to image enhancement. We present T-Rex (from the words threshold and Retinex), an implementation of Milano Retinex, whose main novelty is the use of the pixel intensity as a self-regulating threshold to deterministically sample local color information. The experiments, carried out on real-world pictures, show that T-Rex image enhancement performance are in line with those of the Milano Retinex family: T-Rex increases the brightness, the contrast, and the flatness of the channel distributions of the input image, making more intelligible the content of pictures acquired under difficult light conditions.

  11. Site-percolation threshold of carbon nanotube fibers-Fast inspection of percolation with Markov stochastic theory

    NASA Astrophysics Data System (ADS)

    Xu, Fangbo; Xu, Zhiping; Yakobson, Boris I.

    2014-08-01

    We present a site-percolation model based on a modified FCC lattice, as well as an efficient algorithm of inspecting percolation which takes advantage of the Markov stochastic theory, in order to study the percolation threshold of carbon nanotube (CNT) fibers. Our Markov-chain based algorithm carries out the inspection of percolation by performing repeated sparse matrix-vector multiplications, which allows parallelized computation to accelerate the inspection for a given configuration. With this approach, we determine that the site-percolation transition of CNT fibers occurs at pc=0.1533±0.0013, and analyze the dependence of the effective percolation threshold (corresponding to 0.5 percolation probability) on the length and the aspect ratio of a CNT fiber on a finite-size-scaling basis. We also discuss the aspect ratio dependence of percolation probability with various values of p (not restricted to pc).

  12. Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    NASA Astrophysics Data System (ADS)

    Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  13. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  14. Automatic threshold selection for multi-class open set recognition

    NASA Astrophysics Data System (ADS)

    Scherreik, Matthew; Rigling, Brian

    2017-05-01

    Multi-class open set recognition is the problem of supervised classification with additional unknown classes encountered after a model has been trained. An open set classifer often has two core components. The first component is a base classifier which estimates the most likely class of a given example. The second component consists of open set logic which estimates if the example is truly a member of the candidate class. Such a system is operated in a feed-forward fashion. That is, a candidate label is first estimated by the base classifier, and the true membership of the example to the candidate class is estimated afterward. Previous works have developed an iterative threshold selection algorithm for rejecting examples from classes which were not present at training time. In those studies, a Platt-calibrated SVM was used as the base classifier, and the thresholds were applied to class posterior probabilities for rejection. In this work, we investigate the effectiveness of other base classifiers when paired with the threshold selection algorithm and compare their performance with the original SVM solution.

  15. The influence of different signal-to-background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time-of-flight reconstruction.

    PubMed

    Rogasch, Julian Mm; Hofheinz, Frank; Lougovski, Alexandr; Furth, Christian; Ruf, Juri; Großer, Oliver S; Mohnike, Konrad; Hass, Peter; Walke, Mathias; Amthauer, Holger; Steffen, Ingo G

    2014-12-01

    F18-fluorodeoxyglucose positron-emission tomography (FDG-PET) reconstruction algorithms can have substantial influence on quantitative image data used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity concentration profiles of differently reconstructed FDG-PET images to determine the influence of varying signal-to-background ratios (SBRs) on the respective spatial resolution, activity concentration distribution, and quantification (standardized uptake value [SUV], metabolic tumor volume [MTV]). Measurements were performed on a Siemens Biograph mCT 64 using a cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis [FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF, point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the convolution of the object geometry with a Gaussian point spread function to radial activity concentration profiles. MTV delineation was performed using fixed thresholds and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany). The pairwise Wilcoxon test revealed significantly higher spatial resolutions for PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM + TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere; SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to substantial MTV underestimation in threshold-based segmentation. In contrast, both PSF algorithms provided the lowest deviation of SUVmean from reference SUV at SBR1 and SBR2. At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.

  16. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    PubMed

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-08

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual con-tours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (< 1 ms) with a satisfying accuracy (Dice = 0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system.

  17. Coloring geographical threshold graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyzemore » the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.« less

  18. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y; Olsen, J.; Parikh, P.

    2014-06-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE),more » along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information, different filtering methods and their influences on the segmentation results. Parag Parikh receives research grant from ViewRay. Sasa Mutic has consulting and research agreements with ViewRay. Yanle Hu receives travel reimbursement from ViewRay. Iwan Kawrakow and James Dempsey are ViewRay employees.« less

  19. Development of a predictive model to identify inpatients at risk of re-admission within 30 days of discharge (PARR-30)

    PubMed Central

    Billings, John; Blunt, Ian; Steventon, Adam; Georghiou, Theo; Lewis, Geraint; Bardsley, Martin

    2012-01-01

    Objectives To develop an algorithm for identifying inpatients at high risk of re-admission to a National Health Service (NHS) hospital in England within 30 days of discharge using information that can either be obtained from hospital information systems or from the patient and their notes. Design Multivariate statistical analysis of routinely collected hospital episode statistics (HES) data using logistic regression to build the predictive model. The model's performance was calculated using bootstrapping. Setting HES data covering all NHS hospital admissions in England. Participants The NHS patients were admitted to hospital between April 2008 and March 2009 (10% sample of all admissions, n=576 868). Main outcome measures Area under the receiver operating characteristic curve for the algorithm, together with its positive predictive value and sensitivity for a range of risk score thresholds. Results The algorithm produces a ‘risk score’ ranging (0–1) for each admitted patient, and the percentage of patients with a re-admission within 30 days and the mean re-admission costs of all patients are provided for 20 risk bands. At a risk score threshold of 0.5, the positive predictive value (ie, percentage of inpatients identified as high risk who were subsequently re-admitted within 30 days) was 59.2% (95% CI 58.0% to 60.5%); representing 5.4% (95% CI 5.2% to 5.6%) of all inpatients who would be re-admitted within 30 days (sensitivity). The area under the receiver operating characteristic curve was 0.70 (95% CI 0.69 to 0.70). Conclusions We have developed a method of identifying inpatients at high risk of unplanned re-admission to NHS hospitals within 30 days of discharge. Though the models had a low sensitivity, we show how to identify subgroups of patients that contain a high proportion of patients who will be re-admitted within 30 days. Additional work is necessary to validate the model in practice. PMID:22885591

  20. Design of a reliable and operational landslide early warning system at regional scale

    NASA Astrophysics Data System (ADS)

    Calvello, Michele; Piciullo, Luca; Gariano, Stefano Luigi; Melillo, Massimo; Brunetti, Maria Teresa; Peruccacci, Silvia; Guzzetti, Fausto

    2017-04-01

    Landslide early warning systems at regional scale are used to warn authorities, civil protection personnel and the population about the occurrence of rainfall-induced landslides over wide areas, typically through the prediction and measurement of meteorological variables. A warning model for these systems must include a regional correlation law and a decision algorithm. A regional correlation law can be defined as a functional relationship between rainfall and landslides; it is typically based on thresholds of rainfall indicators (e.g., cumulated rainfall, rainfall duration) related to different exceedance probabilities of landslide occurrence. A decision algorithm can be defined as a set of assumptions and procedures linking rainfall thresholds to warning levels. The design and the employment of an operational and reliable early warning system for rainfall-induced landslides at regional scale depend on the identification of a reliable correlation law as well as on the definition of a suitable decision algorithm. Herein, a five-step process chain addressing both issues and based on rainfall thresholds is proposed; the procedure is tested in a landslide-prone area of the Campania region in southern Italy. To this purpose, a database of 96 shallow landslides triggered by rainfall in the period 2003-2010 and rainfall data gathered from 58 rain gauges are used. First, a set of rainfall thresholds are defined applying a frequentist method to reconstructed rainfall conditions triggering landslides in the test area. In the second step, several thresholds at different exceedance probabilities are evaluated, and different percentile combinations are selected for the activation of three warning levels. Subsequently, within steps three and four, the issuing of warning levels is based on the comparison, over time and for each combination, between the measured rainfall and the pre-defined warning level thresholds. Finally, the optimal percentile combination to be employed in the regional early warning system is selected evaluating the model performance in terms of success and error indicators by means of the "event, duration matrix, performance" (EDuMaP) method.

  1. Quantum algorithm for support matrix machines

    NASA Astrophysics Data System (ADS)

    Duan, Bojia; Yuan, Jiabin; Liu, Ying; Li, Dan

    2017-09-01

    We propose a quantum algorithm for support matrix machines (SMMs) that efficiently addresses an image classification problem by introducing a least-squares reformulation. This algorithm consists of two core subroutines: a quantum matrix inversion (Harrow-Hassidim-Lloyd, HHL) algorithm and a quantum singular value thresholding (QSVT) algorithm. The two algorithms can be implemented on a universal quantum computer with complexity O[log(npq) ] and O[log(pq)], respectively, where n is the number of the training data and p q is the size of the feature space. By iterating the algorithms, we can find the parameters for the SMM classfication model. Our analysis shows that both HHL and QSVT algorithms achieve an exponential increase of speed over their classical counterparts.

  2. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  3. Large signal-to-noise ratio quantification in MLE for ARARMAX models

    NASA Astrophysics Data System (ADS)

    Zou, Yiqun; Tang, Xiafei

    2014-06-01

    It has been shown that closed-loop linear system identification by indirect method can be generally transferred to open-loop ARARMAX (AutoRegressive AutoRegressive Moving Average with eXogenous input) estimation. For such models, the gradient-related optimisation with large enough signal-to-noise ratio (SNR) can avoid the potential local convergence in maximum likelihood estimation. To ease the application of this condition, the threshold SNR needs to be quantified. In this paper, we build the amplitude coefficient which is an equivalence to the SNR and prove the finiteness of the threshold amplitude coefficient within the stability region. The quantification of threshold is achieved by the minimisation of an elaborately designed multi-variable cost function which unifies all the restrictions on the amplitude coefficient. The corresponding algorithm based on two sets of physically realisable system input-output data details the minimisation and also points out how to use the gradient-related method to estimate ARARMAX parameters when local minimum is present as the SNR is small. Then, the algorithm is tested on a theoretical AutoRegressive Moving Average with eXogenous input model for the derivation of the threshold and a gas turbine engine real system for model identification, respectively. Finally, the graphical validation of threshold on a two-dimensional plot is discussed.

  4. Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold

    NASA Astrophysics Data System (ADS)

    Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph

    2018-05-01

    In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.

  5. A novel association rule mining approach using TID intermediate itemset.

    PubMed

    Aqra, Iyad; Herawan, Tutut; Abdul Ghani, Norjihan; Akhunzada, Adnan; Ali, Akhtar; Bin Razali, Ramdan; Ilahi, Manzoor; Raymond Choo, Kim-Kwang

    2018-01-01

    Designing an efficient association rule mining (ARM) algorithm for multilevel knowledge-based transactional databases that is appropriate for real-world deployments is of paramount concern. However, dynamic decision making that needs to modify the threshold either to minimize or maximize the output knowledge certainly necessitates the extant state-of-the-art algorithms to rescan the entire database. Subsequently, the process incurs heavy computation cost and is not feasible for real-time applications. The paper addresses efficiently the problem of threshold dynamic updation for a given purpose. The paper contributes by presenting a novel ARM approach that creates an intermediate itemset and applies a threshold to extract categorical frequent itemsets with diverse threshold values. Thus, improving the overall efficiency as we no longer needs to scan the whole database. After the entire itemset is built, we are able to obtain real support without the need of rebuilding the itemset (e.g. Itemset list is intersected to obtain the actual support). Moreover, the algorithm supports to extract many frequent itemsets according to a pre-determined minimum support with an independent purpose. Additionally, the experimental results of our proposed approach demonstrate the capability to be deployed in any mining system in a fully parallel mode; consequently, increasing the efficiency of the real-time association rules discovery process. The proposed approach outperforms the extant state-of-the-art and shows promising results that reduce computation cost, increase accuracy, and produce all possible itemsets.

  6. Fast genomic predictions via Bayesian G-BLUP and multilocus models of threshold traits including censored Gaussian data.

    PubMed

    Kärkkäinen, Hanni P; Sillanpää, Mikko J

    2013-09-04

    Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed.

  7. Fast Genomic Predictions via Bayesian G-BLUP and Multilocus Models of Threshold Traits Including Censored Gaussian Data

    PubMed Central

    Kärkkäinen, Hanni P.; Sillanpää, Mikko J.

    2013-01-01

    Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed. PMID:23821618

  8. A novel association rule mining approach using TID intermediate itemset

    PubMed Central

    Ali, Akhtar; Bin Razali, Ramdan; Ilahi, Manzoor; Raymond Choo, Kim-Kwang

    2018-01-01

    Designing an efficient association rule mining (ARM) algorithm for multilevel knowledge-based transactional databases that is appropriate for real-world deployments is of paramount concern. However, dynamic decision making that needs to modify the threshold either to minimize or maximize the output knowledge certainly necessitates the extant state-of-the-art algorithms to rescan the entire database. Subsequently, the process incurs heavy computation cost and is not feasible for real-time applications. The paper addresses efficiently the problem of threshold dynamic updation for a given purpose. The paper contributes by presenting a novel ARM approach that creates an intermediate itemset and applies a threshold to extract categorical frequent itemsets with diverse threshold values. Thus, improving the overall efficiency as we no longer needs to scan the whole database. After the entire itemset is built, we are able to obtain real support without the need of rebuilding the itemset (e.g. Itemset list is intersected to obtain the actual support). Moreover, the algorithm supports to extract many frequent itemsets according to a pre-determined minimum support with an independent purpose. Additionally, the experimental results of our proposed approach demonstrate the capability to be deployed in any mining system in a fully parallel mode; consequently, increasing the efficiency of the real-time association rules discovery process. The proposed approach outperforms the extant state-of-the-art and shows promising results that reduce computation cost, increase accuracy, and produce all possible itemsets. PMID:29351287

  9. An improved algorithm for small and cool fire detection using MODIS data: A preliminary study in the southeastern United States

    Treesearch

    Wanting Wang; John J. Qu; Xianjun Hao; Yongqiang Liu; William T. Sommers

    2006-01-01

    Traditional fire detection algorithms mainly rely on hot spot detection using thermal infrared (TIR) channels with fixed or contextual thresholds. Three solar reflectance channels (0.65 μm, 0.86 μm, and 2.1 μm) were recently adopted into the MODIS version 4 contextual algorithm to improve the active fire detection. In the southeastern United...

  10. Landscape composition creates a threshold influencing Lesser Prairie-Chicken population resilience to extreme drought

    USGS Publications Warehouse

    Ross, Beth E.; Haukos, David A.; Hagen, Christian A.; Pitman, James C.

    2016-01-01

    Habitat loss and degradation compound the effects of climate change on wildlife, yet responses to climate and land cover change are often quantified independently. The interaction between climate and land cover change could be intensified in the Great Plains region where grasslands are being converted to row-crop agriculture concurrent with increased frequency of extreme drought events. We quantified the combined effects of land cover and climate change on a species of conservation concern in the Great Plains, the Lesser Prairie-Chicken (Tympanuchus pallidicinctus  ). We combined extreme drought events and land cover change with lek count surveys in a Bayesian hierarchical model to quantify changes in abundance of male Lesser Prairie-Chickens from 1978 to 2014 in Kansas, the core of their species range. Our estimates of abundance indicate a gradually decreasing population through 2010 corresponding to drought events and reduced grassland areas. Decreases in Lesser Prairie-Chicken abundance were greatest in areas with increasing row-crop to grassland land cover ratio during extreme drought events, and decreased grassland reduces the resilience of Lesser Prairie-Chicken populations to extreme drought events. A threshold exists for Lesser Prairie-Chickens in response to the gradient of cropland:grassland land cover. When moving across the gradient of grassland to cropland, abundance initially increased in response to more cropland on the landscape, but declined in response to more cropland after the threshold (δ=0.096, or 9.6% cropland). Preservation of intact grasslands and continued implementation of initiatives to revert cropland to grassland should increase Lesser Prairie-Chicken resilience to extreme drought events due to climate change.

  11. School-Based Screening for Suicide Risk: Balancing Costs and Benefits

    PubMed Central

    Wilcox, Holly; Huo, Yanling; Turner, J. Blake; Fisher, Prudence; Shaffer, David

    2010-01-01

    Objectives. We examined the effects of a scoring algorithm change on the burden and sensitivity of a screen for adolescent suicide risk. Methods. The Columbia Suicide Screen was used to screen 641 high school students for high suicide risk (recent ideation or lifetime attempt and depression, or anxiety, or substance use), determined by subsequent blind assessment with the Diagnostic Interview Schedule for Children. We compared the accuracy of different screen algorithms in identifying high-risk cases. Results. A screen algorithm comprising recent ideation or lifetime attempt or depression, anxiety, or substance-use problems set at moderate-severity level classed 35% of students as positive and identified 96% of high-risk students. Increasing the algorithm's threshold reduced the proportion identified to 24% and identified 92% of high-risk cases. Asking only about recent suicidal ideation or lifetime suicide attempt identified 17% of the students and 89% of high-risk cases. The proportion of nonsuicidal diagnosis–bearing students found with the 3 algorithms was 62%, 34%, and 12%, respectively. Conclusions. The Columbia Suicide Screen threshold can be altered to reduce the screen-positive population, saving costs and time while identifying almost all students at high risk for suicide. PMID:20634467

  12. Threshold-selecting strategy for best possible ground state detection with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Lässig, Jörg; Hoffmann, Karl Heinz

    2009-04-01

    Genetic algorithms are a standard heuristic to find states of low energy in complex state spaces as given by physical systems such as spin glasses but also in combinatorial optimization. The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover. Many schemes have been considered in literature as possible crossover selection strategies. We show for a large class of quality measures that the best possible probability distribution for selecting individuals in each generation of the algorithm execution is a rectangular distribution over the individuals sorted by their energy values. This means uniform probabilities have to be assigned to a group of the individuals with lowest energy in the population but probabilities equal to zero to individuals which are corresponding to energy values higher than a fixed cutoff, which is equal to a certain rank in the vector sorted by the energy of the states in the current population. The considered strategy is dubbed threshold selecting. The proof applies basic arguments of Markov chains and linear optimization and makes only a few assumptions on the underlying principles and hence applies to a large class of algorithms.

  13. An algorithm for the estimation of the signal-to-noise ratio in surface myoelectric signals generated during cyclic movements.

    PubMed

    Agostini, Valentina; Knaflitz, Marco

    2012-01-01

    In many applications requiring the study of the surface myoelectric signal (SMES) acquired in dynamic conditions, it is essential to have a quantitative evaluation of the quality of the collected signals. When the activation pattern of a muscle has to be obtained by means of single- or double-threshold statistical detectors, the background noise level e (noise) of the signal is a necessary input parameter. Moreover, the detection strategy of double-threshold detectors may be properly tuned when the SNR and the duty cycle (DC) of the signal are known. The aim of this paper is to present an algorithm for the estimation of e (noise), SNR, and DC of an SMES collected during cyclic movements. The algorithm is validated on synthetic signals with statistical properties similar to those of SMES, as well as on more than 100 real signals. © 2011 IEEE

  14. Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula.

    PubMed

    Mera, David; Cotos, José M; Varela-Pet, José; Garcia-Pineda, Oscar

    2012-10-01

    Satellite Synthetic Aperture Radar (SAR) has been established as a useful tool for detecting hydrocarbon spillage on the ocean's surface. Several surveillance applications have been developed based on this technology. Environmental variables such as wind speed should be taken into account for better SAR image segmentation. This paper presents an adaptive thresholding algorithm for detecting oil spills based on SAR data and a wind field estimation as well as its implementation as a part of a functional prototype. The algorithm was adapted to an important shipping route off the Galician coast (northwest Iberian Peninsula) and was developed on the basis of confirmed oil spills. Image testing revealed 99.93% pixel labelling accuracy. By taking advantage of multi-core processor architecture, the prototype was optimized to get a nearly 30% improvement in processing time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Iris Segmentation and Normalization Algorithm Based on Zigzag Collarette

    NASA Astrophysics Data System (ADS)

    Rizky Faundra, M.; Ratna Sulistyaningrum, Dwi

    2017-01-01

    In this paper, we proposed iris segmentation and normalization algorithm based on the zigzag collarette. First of all, iris images are processed by using Canny Edge Detection to detect pupil edge, then finding the center and the radius of the pupil with the Hough Transform Circle. Next, isolate important part in iris based zigzag collarette area. Finally, Daugman Rubber Sheet Model applied to get the fixed dimensions or normalization iris by transforming cartesian into polar format and thresholding technique to remove eyelid and eyelash. This experiment will be conducted with a grayscale eye image data taken from a database of iris-Chinese Academy of Sciences Institute of Automation (CASIA). Data iris taken is the data reliable and widely used to study the iris biometrics. The result show that specific threshold level is 0.3 have better accuracy than other, so the present algorithm can be used to segmentation and normalization zigzag collarette with accuracy is 98.88%

  16. The comparison and analysis of extracting video key frame

    NASA Astrophysics Data System (ADS)

    Ouyang, S. Z.; Zhong, L.; Luo, R. Q.

    2018-05-01

    Video key frame extraction is an important part of the large data processing. Based on the previous work in key frame extraction, we summarized four important key frame extraction algorithms, and these methods are largely developed by comparing the differences between each of two frames. If the difference exceeds a threshold value, take the corresponding frame as two different keyframes. After the research, the key frame extraction based on the amount of mutual trust is proposed, the introduction of information entropy, by selecting the appropriate threshold values into the initial class, and finally take a similar mean mutual information as a candidate key frame. On this paper, several algorithms is used to extract the key frame of tunnel traffic videos. Then, with the analysis to the experimental results and comparisons between the pros and cons of these algorithms, the basis of practical applications is well provided.

  17. Automated Vision Test Development and Validation

    DTIC Science & Technology

    2016-11-01

    Deputy Chief, Aerosp Med Consultation Div Chair, Aerospace Medicine Department This report is published in the interest of...produce software for desktop displays; and to evaluate features such as user interfaces, threshold algorithms, validity of results, and screening...cost of performing full threshold testing on over 30% of normal subjects, which is quite time consuming. This effort was accomplished using desktop

  18. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  19. Diversity in Detection Algorithms for Atmospheric Rivers: A Community Effort to Understand the Consequences

    NASA Astrophysics Data System (ADS)

    Shields, C. A.; Ullrich, P. A.; Rutz, J. J.; Wehner, M. F.; Ralph, M.; Ruby, L.

    2017-12-01

    Atmospheric rivers (ARs) are long, narrow filamentary structures that transport large amounts of moisture in the lower layers of the atmosphere, typically from subtropical regions to mid-latitudes. ARs play an important role in regional hydroclimate by supplying significant amounts of precipitation that can alleviate drought, or in extreme cases, produce dangerous floods. Accurately detecting, or tracking, ARs is important not only for weather forecasting, but is also necessary to understand how these events may change under global warming. Detection algorithms are used on both regional and global scales, and most accurately, using high resolution datasets, or model output. Different detection algorithms can produce different answers. Detection algorithms found in the current literature fall broadly into two categories: "time-stitching", where the AR is tracked with a Lagrangian approach through time and space; and "counting", where ARs are identified for a single point in time for a single location. Counting routines can be further subdivided into algorithms that use absolute thresholds with specific geometry, to algorithms that use relative thresholds, to algorithms based on statistics, to pattern recognition and machine learning techniques. With such a large diversity in detection code, differences in AR tracking and "counts" can vary widely from technique to technique. Uncertainty increases for future climate scenarios, where the difference between relative and absolute thresholding produce vastly different counts, simply due to the moister background state in a warmer world. In an effort to quantify the uncertainty associated with tracking algorithms, the AR detection community has come together to participate in ARTMIP, the Atmospheric River Tracking Method Intercomparison Project. Each participant will provide AR metrics to the greater group by applying their code to a common reanalysis dataset. MERRA2 data was chosen for both temporal and spatial resolution. After completion of this first phase, Tier 1, ARTMIP participants may choose to contribute to Tier 2, which will range from reanalysis uncertainty, to analysis of future climate scenarios from high resolution model output. ARTMIP's experimental design, techniques, and preliminary metrics will be presented.

  20. Novel image analysis approach for quantifying expression of nuclear proteins assessed by immunohistochemistry: application to measurement of oestrogen and progesterone receptor levels in breast cancer.

    PubMed

    Rexhepaj, Elton; Brennan, Donal J; Holloway, Peter; Kay, Elaine W; McCann, Amanda H; Landberg, Goran; Duffy, Michael J; Jirstrom, Karin; Gallagher, William M

    2008-01-01

    Manual interpretation of immunohistochemistry (IHC) is a subjective, time-consuming and variable process, with an inherent intra-observer and inter-observer variability. Automated image analysis approaches offer the possibility of developing rapid, uniform indicators of IHC staining. In the present article we describe the development of a novel approach for automatically quantifying oestrogen receptor (ER) and progesterone receptor (PR) protein expression assessed by IHC in primary breast cancer. Two cohorts of breast cancer patients (n = 743) were used in the study. Digital images of breast cancer tissue microarrays were captured using the Aperio ScanScope XT slide scanner (Aperio Technologies, Vista, CA, USA). Image analysis algorithms were developed using MatLab 7 (MathWorks, Apple Hill Drive, MA, USA). A fully automated nuclear algorithm was developed to discriminate tumour from normal tissue and to quantify ER and PR expression in both cohorts. Random forest clustering was employed to identify optimum thresholds for survival analysis. The accuracy of the nuclear algorithm was initially confirmed by a histopathologist, who validated the output in 18 representative images. In these 18 samples, an excellent correlation was evident between the results obtained by manual and automated analysis (Spearman's rho = 0.9, P < 0.001). Optimum thresholds for survival analysis were identified using random forest clustering. This revealed 7% positive tumour cells as the optimum threshold for the ER and 5% positive tumour cells for the PR. Moreover, a 7% cutoff level for the ER predicted a better response to tamoxifen than the currently used 10% threshold. Finally, linear regression was employed to demonstrate a more homogeneous pattern of expression for the ER (R = 0.860) than for the PR (R = 0.681). In summary, we present data on the automated quantification of the ER and the PR in 743 primary breast tumours using a novel unsupervised image analysis algorithm. This novel approach provides a useful tool for the quantification of biomarkers on tissue specimens, as well as for objective identification of appropriate cutoff thresholds for biomarker positivity. It also offers the potential to identify proteins with a homogeneous pattern of expression.

  1. Signal detection on spontaneous reports of adverse events following immunisation: a comparison of the performance of a disproportionality-based algorithm and a time-to-onset-based algorithm

    PubMed Central

    van Holle, Lionel; Bauchau, Vincent

    2014-01-01

    Purpose Disproportionality methods measure how unexpected the observed number of adverse events is. Time-to-onset (TTO) methods measure how unexpected the TTO distribution of a vaccine-event pair is compared with what is expected from other vaccines and events. Our purpose is to compare the performance associated with each method. Methods For the disproportionality algorithms, we defined 336 combinations of stratification factors (sex, age, region and year) and threshold values of the multi-item gamma Poisson shrinker (MGPS). For the TTO algorithms, we defined 18 combinations of significance level and time windows. We used spontaneous reports of adverse events recorded for eight vaccines. The vaccine product labels were used as proxies for true safety signals. Algorithms were ranked according to their positive predictive value (PPV) for each vaccine separately; amedian rank was attributed to each algorithm across vaccines. Results The algorithm with the highest median rank was based on TTO with a significance level of 0.01 and a time window of 60 days after immunisation. It had an overall PPV 2.5 times higher than for the highest-ranked MGPS algorithm, 16th rank overall, which was fully stratified and had a threshold value of 0.8. A TTO algorithm with roughly the same sensitivity as the highest-ranked MGPS had better specificity but longer time-to-detection. Conclusions Within the scope of this study, the majority of the TTO algorithms presented a higher PPV than for any MGPS algorithm. Considering the complementarity of TTO and disproportionality methods, a signal detection strategy combining them merits further investigation. PMID:24038719

  2. Quantifying widespread canopy cover decline through the course of a beetle kill epidemic in Colorado with remote sensing of snow

    NASA Astrophysics Data System (ADS)

    Baker, E. H.; Raleigh, M. S.; Molotch, N. P.

    2014-12-01

    Since the mid-1990s, outbreaks of aggressive bark beetle species have caused extensive forest morality across 600,000 km2 of North-American forests, killing over 17,800 km2 of forest in Colorado alone. This mortality has resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack. In the Western United States, where approximately 70-80% of total annual runoff originates as mountain snowmelt, it is important to monitor and quantify changes in forest canopy in snow-dominated catchments. To quantify annual values of forest canopy cover, this research develops a metric from time series of daily fractional snow covered area (FSCA) from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where soil and rock are completely snow-covered, a land pixel is composed only of forest canopy and snow. Following a snowfall event, FSCA initially rises rapidly, as snow is intercepted in the canopy, and then declines, as snow unloads from the canopy. The lower of these local minima form a threshold representative of snow-free canopy conditions, which serves as a spatially explicit metric of forest canopy. Investigation of a site in southern Colorado with over 40% spruce beetle mortality shows a statistically significant decrease of canopy cover, from 76 (±4)% pre-infestation to 55 (±8)% post-infestation (t=-5.1, p<0.01). Additionally, this yearly parameterization of forest canopy is well correlated (ρ=0.76, p<0.01) with an independent product of yearly crown mortality derived from U.S. Forest Service Aerial Detection Surveys. Future work will examine this relationship across varied ecologic settings and geographic locations, and incorporate field measurements of species-specific canopy change after beetle kill.

  3. An automated approach for mapping persistent ice and snow cover over high latitude regions

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly identify areas where substantial changes in glacier area have occurred since the most recent conventional glacier inventories, highlighting areas where updated inventories are most urgently needed. From a longer term perspective, the automated production of PISC maps represents an important step toward fully automated glacier extent monitoring using Landsat or similar sensors.

  4. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  5. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON

    NASA Astrophysics Data System (ADS)

    Dils, B.; Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Parker, R.; Guerlet, S.; Aben, I.; Blumenstock, T.; Burrows, J. P.; Butz, A.; Deutscher, N. M.; Frankenberg, C.; Hase, F.; Hasekamp, O. P.; Heymann, J.; De Mazière, M.; Notholt, J.; Sussmann, R.; Warneke, T.; Griffith, D.; Sherlock, V.; Wunch, D.

    2014-06-01

    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4-2.5 ppm). When looking at the seasonal relative accuracy (SRA, variability of the bias in space and time), none of the algorithms have reached the demanding < 0.5 ppm threshold. For XCH4, the precision for both SCIAMACHY products (50.2 ppb for IMAP and 76.4 ppb for WFMD) fails to meet the < 34 ppb threshold for inverse modelling, but note that this work focusses on the period after the 2005 SCIAMACHY detector degradation. The GOSAT XCH4 precision ranges between 18.1 and 14.0 ppb. Looking at the SRA, all GOSAT algorithm products reach the < 10 ppm threshold (values ranging between 5.4 and 6.2 ppb). For SCIAMACHY, IMAP and WFMD have a SRA of 17.2 and 10.5 ppb, respectively.

  6. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm.

    PubMed

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei; Wang, Hongxun; Dai, Wei

    2018-04-08

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry-Perot (F-P) filter and optical switch. To improve system resolution, the F-P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  7. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm

    PubMed Central

    Zhang, Weifang; Li, Yingwu; Jin, Bo; Ren, Feifei

    2018-01-01

    A Fiber Bragg Grating (FBG) interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA) and advanced RISC machine (ARM) platform, tunable Fabry–Perot (F–P) filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM) of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed. PMID:29642507

  8. Smart sensing to drive real-time loads scheduling algorithm in a domotic architecture

    NASA Astrophysics Data System (ADS)

    Santamaria, Amilcare Francesco; Raimondo, Pierfrancesco; De Rango, Floriano; Vaccaro, Andrea

    2014-05-01

    Nowadays the focus on power consumption represent a very important factor regarding the reduction of power consumption with correlated costs and the environmental sustainability problems. Automatic control load based on power consumption and use cycle represents the optimal solution to costs restraint. The purpose of these systems is to modulate the power request of electricity avoiding an unorganized work of the loads, using intelligent techniques to manage them based on real time scheduling algorithms. The goal is to coordinate a set of electrical loads to optimize energy costs and consumptions based on the stipulated contract terms. The proposed algorithm use two new main notions: priority driven loads and smart scheduling loads. The priority driven loads can be turned off (stand by) according to a priority policy established by the user if the consumption exceed a defined threshold, on the contrary smart scheduling loads are scheduled in a particular way to don't stop their Life Cycle (LC) safeguarding the devices functions or allowing the user to freely use the devices without the risk of exceeding the power threshold. The algorithm, using these two kind of notions and taking into account user requirements, manages loads activation and deactivation allowing the completion their operation cycle without exceeding the consumption threshold in an off-peak time range according to the electricity fare. This kind of logic is inspired by industrial lean manufacturing which focus is to minimize any kind of power waste optimizing the available resources.

  9. Bi-criteria travelling salesman subtour problem with time threshold

    NASA Astrophysics Data System (ADS)

    Kumar Thenepalle, Jayanth; Singamsetty, Purusotham

    2018-03-01

    This paper deals with the bi-criteria travelling salesman subtour problem with time threshold (BTSSP-T), which comes from the family of the travelling salesman problem (TSP) and is NP-hard in the strong sense. The problem arises in several application domains, mainly in routing and scheduling contexts. Here, the model focuses on two criteria: total travel distance and gains attained. The BTSSP-T aims to determine a subtour that starts and ends at the same city and visits a subset of cities at a minimum travel distance with maximum gains, such that the time spent on the tour does not exceed the predefined time threshold. A zero-one integer-programming problem is adopted to formulate this model with all practical constraints, and it includes a finite set of feasible solutions (one for each tour). Two algorithms, namely, the Lexi-Search Algorithm (LSA) and the Tabu Search (TS) algorithm have been developed to solve the BTSSP-T problem. The proposed LSA implicitly enumerates the feasible patterns and provides an efficient solution with backtracking, whereas the TS, which is metaheuristic, will give the better approximate solution. A numerical example is demonstrated in order to understand the search mechanism of the LSA. Numerical experiments are carried out in the MATLAB environment, on the different benchmark instances available in the TSPLIB domain as well as on randomly generated test instances. The experimental results show that the proposed LSA works better than the TS algorithm in terms of solution quality and, computationally, both LSA and TS are competitive.

  10. Ultrafast adiabatic quantum algorithm for the NP-complete exact cover problem

    PubMed Central

    Wang, Hefeng; Wu, Lian-Ao

    2016-01-01

    An adiabatic quantum algorithm may lose quantumness such as quantum coherence entirely in its long runtime, and consequently the expected quantum speedup of the algorithm does not show up. Here we present a general ultrafast adiabatic quantum algorithm. We show that by applying a sequence of fast random or regular signals during evolution, the runtime can be reduced substantially, whereas advantages of the adiabatic algorithm remain intact. We also propose a randomized Trotter formula and show that the driving Hamiltonian and the proposed sequence of fast signals can be implemented simultaneously. We illustrate the algorithm by solving the NP-complete 3-bit exact cover problem (EC3), where NP stands for nondeterministic polynomial time, and put forward an approach to implementing the problem with trapped ions. PMID:26923834

  11. The TSP-approach to approximate solving the m-Cycles Cover Problem

    NASA Astrophysics Data System (ADS)

    Gimadi, Edward Kh.; Rykov, Ivan; Tsidulko, Oxana

    2016-10-01

    In the m-Cycles Cover problem it is required to find a collection of m vertex-disjoint cycles that covers all vertices of the graph and the total weight of edges in the cover is minimum (or maximum). The problem is a generalization of the Traveling salesmen problem. It is strongly NP-hard. We discuss a TSP-approach that gives polynomial approximate solutions for this problem. It transforms an approximation TSP algorithm into an approximation m-CCP algorithm. In this paper we present a number of successful transformations with proven performance guarantees for the obtained solutions.

  12. C-band Joint Active/Passive Dual Polarization Sea Ice Detection

    NASA Astrophysics Data System (ADS)

    Keller, M. R.; Gifford, C. M.; Winstead, N. S.; Walton, W. C.; Dietz, J. E.

    2017-12-01

    A technique for synergistically-combining high-resolution SAR returns with like-frequency passive microwave emissions to detect thin (<30 cm) ice under the difficult conditions of late melt and freeze-up is presented. As the Arctic sea ice cover thins and shrinks, the algorithm offers an approach to adapting existing sensors monitoring thicker ice to provide continuing coverage. Lower resolution (10-26 km) ice detections with spaceborne radiometers and scatterometers are challenged by rapidly changing thin ice. Synthetic Aperture Radar (SAR) is high resolution (5-100m) but because of cross section ambiguities automated algorithms have had difficulty separating thin ice types from water. The radiometric emissivity of thin ice versus water at microwave frequencies is generally unambiguous in the early stages of ice growth. The method, developed using RADARSAT-2 and AMSR-E data, uses higher-ordered statistics. For the SAR, the COV (coefficient of variation, ratio of standard deviation to mean) has fewer ambiguities between ice and water than cross sections, but breaking waves still produce ice-like signatures for both polarizations. For the radiometer, the PRIC (polarization ratio ice concentration) identifies areas that are unambiguously water. Applying cumulative statistics to co-located COV levels adaptively determines an ice/water threshold. Outcomes from extensive testing with Sentinel and AMSR-2 data are shown in the results. The detection algorithm was applied to the freeze-up in the Beaufort, Chukchi, Barents, and East Siberian Seas in 2015 and 2016, spanning mid-September to early November of both years. At the end of the melt, 6 GHz PRIC values are 5-10% greater than those reported by radiometric algorithms at 19 and 37 GHz. During freeze-up, COV separates grease ice (<5 cm thick) from water. As the ice thickens, the COV is less reliable, but adding a mask based on either the PRIC or the cross-pol/co-pol SAR ratio corrects for COV deficiencies. In general, the dual-sensor detection algorithm reports 10-15% higher total ice concentrations than operational scatterometer or radiometer algorithms, mostly from ice edge and coastal areas. In conclusion, the algorithm presented combines high-resolution SAR returns with passive microwave emissions for automated ice detection at SAR resolutions.

  13. Automatic image analysis and spot classification for detection of fruit fly infestation in hyperspectral images of mangoes

    USDA-ARS?s Scientific Manuscript database

    An algorithm has been developed to identify spots generated in hyperspectral images of mangoes infested with fruit fly larvae. The algorithm incorporates background removal, application of a Gaussian blur, thresholding, and particle count analysis to identify locations of infestations. Each of the f...

  14. A detection method for X-ray images based on wavelet transforms: the case of the ROSAT PSPC.

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Maggio, A.; Micela, G.; Sciortino, S.

    1996-02-01

    The authors have developed a method based on wavelet transforms (WT) to detect efficiently sources in PSPC X-ray images. The multiscale approach typical of WT can be used to detect sources with a large range of sizes, and to estimate their size and count rate. Significance thresholds for candidate detections (found as local WT maxima) have been derived from a detailed study of the probability distribution of the WT of a locally uniform background. The use of the exposure map allows good detection efficiency to be retained even near PSPC ribs and edges. The algorithm may also be used to get upper limits to the count rate of undetected objects. Simulations of realistic PSPC images containing either pure background or background+sources were used to test the overall algorithm performances, and to assess the frequency of spurious detections (vs. detection threshold) and the algorithm sensitivity. Actual PSPC images of galaxies and star clusters show the algorithm to have good performance even in cases of extended sources and crowded fields.

  15. Modeling potential distribution of Oligoryzomys longicaudatus, the Andes virus (Genus: Hantavirus) reservoir, in Argentina.

    PubMed

    Andreo, Verónica; Glass, Gregory; Shields, Timothy; Provensal, Cecilia; Polop, Jaime

    2011-09-01

    We constructed a model to predict the potential distribution of Oligoryzomys longicaudatus, the reservoir of Andes virus (Genus: Hantavirus), in Argentina. We developed an extensive database of occurrence records from published studies and our own surveys and compared two methods to model the probability of O. longicaudatus presence; logistic regression and MaxEnt algorithm. The environmental variables used were tree, grass and bare soil cover from MODIS imagery and, altitude and 19 bioclimatic variables from WorldClim database. The models performances were evaluated and compared both by threshold dependent and independent measures. The best models included tree and grass cover, mean diurnal temperature range, and precipitation of the warmest and coldest seasons. The potential distribution maps for O. longicaudatus predicted the highest occurrence probabilities along the Andes range, from 32°S and narrowing southwards. They also predicted high probabilities for the south-central area of Argentina, reaching the Atlantic coast. The Hantavirus Pulmonary Syndrome cases coincided with mean occurrence probabilities of 95 and 77% for logistic and MaxEnt models, respectively. HPS transmission zones in Argentine Patagonia matched the areas with the highest probability of presence. Therefore, colilargos presence probability may provide an approximate risk of transmission and act as an early tool to guide control and prevention plans.

  16. Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the Detect Fluid Early from Intrathoracic Impedance Monitoring study).

    PubMed

    Heist, E Kevin; Herre, John M; Binkley, Philip F; Van Bakel, Adrian B; Porterfield, James G; Porterfield, Linda M; Qu, Fujian; Turkel, Melanie; Pavri, Behzad B

    2014-10-15

    Detect Fluid Early from Intrathoracic Impedance Monitoring (DEFEAT-PE) is a prospective, multicenter study of multiple intrathoracic impedance vectors to detect pulmonary congestion (PC) events. Changes in intrathoracic impedance between the right ventricular (RV) coil and device can (RVcoil→Can) of implantable cardioverter-defibrillators (ICDs) and cardiac resynchronization therapy ICDs (CRT-Ds) are used clinically for the detection of PC events, but other impedance vectors and algorithms have not been studied prospectively. An initial 75-patient study was used to derive optimal impedance vectors to detect PC events, with 2 vector combinations selected for prospective analysis in DEFEAT-PE (ICD vectors: RVring→Can + RVcoil→Can, detection threshold 13 days; CRT-D vectors: left ventricular ring→Can + RVcoil→Can, detection threshold 14 days). Impedance changes were considered true positive if detected <30 days before an adjudicated PC event. One hundred sixty-two patients were enrolled (80 with ICDs and 82 with CRT-Ds), all with ≥1 previous PC event. One hundred forty-four patients provided study data, with 214 patient-years of follow-up and 139 PC events. Sensitivity for PC events of the prespecified algorithms was as follows: ICD: sensitivity 32.3%, false-positive rate 1.28 per patient-year; CRT-D: sensitivity 32.4%, false-positive rate 1.66 per patient-year. An alternative algorithm, ultimately approved by the US Food and Drug Administration (RVring→Can + RVcoil→Can, detection threshold 14 days), resulted in (for all patients) sensitivity of 21.6% and a false-positive rate of 0.9 per patient-year. The CRT-D thoracic impedance vector algorithm selected in the derivation study was not superior to the ICD algorithm RVring→Can + RVcoil→Can when studied prospectively. In conclusion, to achieve an acceptably low false-positive rate, the intrathoracic impedance algorithms studied in DEFEAT-PE resulted in low sensitivity for the prediction of heart failure events. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Spatial and Temporal Varying Thresholds for Cloud Detection in Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Haines, Stephanie

    2007-01-01

    A new cloud detection technique has been developed and applied to both geostationary and polar orbiting satellite imagery having channels in the thermal infrared and short wave infrared spectral regions. The bispectral composite threshold (BCT) technique uses only the 11 micron and 3.9 micron channels, and composite imagery generated from these channels, in a four-step cloud detection procedure to produce a binary cloud mask at single pixel resolution. A unique aspect of this algorithm is the use of 20-day composites of the 11 micron and the 11 - 3.9 micron channel difference imagery to represent spatially and temporally varying clear-sky thresholds for the bispectral cloud tests. The BCT cloud detection algorithm has been applied to GOES and MODIS data over the continental United States over the last three years with good success. The resulting products have been validated against "truth" datasets (generated by the manual determination of the sky conditions from available satellite imagery) for various seasons from the 2003-2005 periods. The day and night algorithm has been shown to determine the correct sky conditions 80-90% of the time (on average) over land and ocean areas. Only a small variation in algorithm performance occurs between day-night, land-ocean, and between seasons. The algorithm performs least well. during he winter season with only 80% of the sky conditions determined correctly. The algorithm was found to under-determine clouds at night and during times of low sun angle (in geostationary satellite data) and tends to over-determine the presence of clouds during the day, particularly in the summertime. Since the spectral tests use only the short- and long-wave channels common to most multispectral scanners; the application of the BCT technique to a variety of satellite sensors including SEVERI should be straightforward and produce similar performance results.

  18. Replica Exchange Gaussian Accelerated Molecular Dynamics: Improved Enhanced Sampling and Free Energy Calculation.

    PubMed

    Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong

    2018-04-10

    Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.

  19. Segment and fit thresholding: a new method for image analysis applied to microarray and immunofluorescence data.

    PubMed

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B

    2015-10-06

    Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.

  20. Segment and Fit Thresholding: A New Method for Image Analysis Applied to Microarray and Immunofluorescence Data

    PubMed Central

    Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M.; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E.; Allen, Peter J.; Sempere, Lorenzo F.; Haab, Brian B.

    2016-01-01

    Certain experiments involve the high-throughput quantification of image data, thus requiring algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multi-color, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu’s method for selected images. SFT promises to advance the goal of full automation in image analysis. PMID:26339978

  1. Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach

    NASA Astrophysics Data System (ADS)

    Tunc, Sait; Donmez, Mehmet Ali; Kozat, Suleyman Serdar

    2013-06-01

    We study optimal investment in a financial market having a finite number of assets from a signal processing perspective. We investigate how an investor should distribute capital over these assets and when he should reallocate the distribution of the funds over these assets to maximize the cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using "threshold rebalanced portfolios", where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are pointed out in the paper. As predicted from our derivations, we significantly improve the achieved wealth over portfolio selection algorithms from the literature on historical data sets.

  2. INTERMITTENT AND PERENNIAL STREAM MACROINVERTEBRATE COMMUNITY RESPONSE TO IMPERVIOUS COVER: THRESHOLD INDICATOR TAXA ANALYSIS AND PERMUTATIONS

    EPA Science Inventory

    The urban stream syndrome and the impact of impervious cover on macroinvertebrate communities is well-documented, but many exclude intermittent streams despite their prevalence. This study investigated macroinvertebrate communities of intermittent and perennial streams separately...

  3. Satellite Snow-Cover Mapping: A Brief Review

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.

    1995-01-01

    Satellite snow mapping has been accomplished since 1966, initially using data from the reflective part of the electromagnetic spectrum, and now also employing data from the microwave part of the spectrum. Visible and near-infrared sensors can provide excellent spatial resolution from space enabling detailed snow mapping. When digital elevation models are also used, snow mapping can provide realistic measurements of snow extent even in mountainous areas. Passive-microwave satellite data permit global snow cover to be mapped on a near-daily basis and estimates of snow depth to be made, but with relatively poor spatial resolution (approximately 25 km). Dense forest cover limits both techniques and optical remote sensing is limited further by cloudcover conditions. Satellite remote sensing of snow cover with imaging radars is still in the early stages of research, but shows promise at least for mapping wet or melting snow using C-band (5.3 GHz) synthetic aperture radar (SAR) data. Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data beginning with the launch of the first EOS platform in 1998. Digital maps will be produced that will provide daily, and maximum weekly global snow, sea ice and lake ice cover at 1-km spatial resolution. Statistics will be generated on the extent and persistence of snow or ice cover in each pixel for each weekly map, cloudcover permitting. It will also be possible to generate snow- and ice-cover maps using MODIS data at 250- and 500-m resolution, and to study and map snow and ice characteristics such as albedo. been under development. Passive-microwave data offer the potential for determining not only snow cover, but snow water equivalent, depth and wetness under all sky conditions. A number of algorithms have been developed to utilize passive-microwave brightness temperatures to provide information on snow cover and water equivalent. The variability of vegetative Algorithms are being developed to map global snow and ice cover using Earth Algorithms to map global snow cover using passive-microwave data have also cover and of snow grain size, globally, limits the utility of a single algorithm to map global snow cover.

  4. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor.

    PubMed

    Yin, Xiaoming; Li, Xiang; Zhao, Liping; Fang, Zhongping

    2009-11-10

    A Shack-Hartmann wavefront sensor (SWHS) splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SWHS. Many methods have been presented to improve the accuracy of the wavefront centroid measurement. However, most of these methods are discussed from the point of view of optics, based on the assumption that the spot intensity of the SHWS has a Gaussian distribution, which is not applicable to the digital SHWS. In this paper, we present a centroid measurement algorithm based on the adaptive thresholding and dynamic windowing method by utilizing image processing techniques for practical application of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot precisely and robustly by eliminating the influence of various noises, such as diffraction of the digital SHWS, unevenness and instability of the light source, as well as deviation between the centroid of the focal spot and the center of the detection area. The experimental results demonstrate that the algorithm has better precision, repeatability, and stability compared with other commonly used centroid methods, such as the statistical averaging, thresholding, and windowing algorithms.

  5. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    NASA Technical Reports Server (NTRS)

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  6. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  7. Thresholds for soil cover and weathering in mountainous landscapes

    NASA Astrophysics Data System (ADS)

    Dixon, Jean; Benjaram, Sarah

    2017-04-01

    The patterns of soil formation, weathering, and erosion shape terrestrial landscapes, forming the foundation on which ecosystems and human civilizations are built. Several fundamental questions remain regarding how soils evolve, especially in mountainous landscapes where tectonics and climate exert complex forcings on erosion and weathering. In these systems, quantifying weathering is made difficult by the fact that soil cover is discontinuous and heterogeneous. Therefore, studies that attempt to measure soil weathering in such systems face a difficult bias in measurements towards more weathered portions of the landscape. Here, we explore current understanding of erosion-weathering feedbacks, and present new data from mountain systems in Western Montana. Using field mapping, analysis of LiDAR and remotely sensed land-cover data, and soil chemical analyses, we measure soil cover and surface weathering intensity across multiple spatial scales, from the individual soil profile to a landscape perspective. Our data suggest that local emergence of bedrock cover at the surface marks a landscape transition from supply to kinetic weathering regimes in these systems, and highlights the importance of characterizing complex critical zone architecture in mountain landscapes. This work provides new insight into how landscape morphology and erosion may drive important thresholds for soil cover and weathering.

  8. Thresholds for conservation and management: structured decision making as a conceptual framework

    USGS Publications Warehouse

    Nichols, James D.; Eaton, Mitchell J.; Martin, Julien; Edited by Guntenspergen, Glenn R.

    2014-01-01

    changes in system dynamics. They are frequently incorporated into ecological models used to project system responses to management actions. Utility thresholds are components of management objectives and are values of state or performance variables at which small changes yield substantial changes in the value of the management outcome. Decision thresholds are values of system state variables at which small changes prompt changes in management actions in order to reach specified management objectives. Decision thresholds are derived from the other components of the decision process.We advocate a structured decision making (SDM) approach within which the following components are identified: objectives (possibly including utility thresholds), potential actions, models (possibly including ecological thresholds), monitoring program, and a solution algorithm (which produces decision thresholds). Adaptive resource management (ARM) is described as a special case of SDM developed for recurrent decision problems that are characterized by uncertainty. We believe that SDM, in general, and ARM, in particular, provide good approaches to conservation and management. Use of SDM and ARM also clarifies the distinct roles of ecological thresholds, utility thresholds, and decision thresholds in informed decision processes.

  9. Viewpoint: Sustainability of piñon-juniper ecosystems - A unifying perspective of soil erosion thresholds

    USGS Publications Warehouse

    Davenport, David W.; Breshears, D.D.; Wilcox, B.P.; Allen, Craig D.

    1998-01-01

    Many pinon-juniper ecosystem in the western U.S. are subject to accelerated erosion while others are undergoing little or no erosion. Controversy has developed over whether invading or encroaching pinon and juniper species are inherently harmful to rangeland ecosystems. We developed a conceptual model of soil erosion in pinon-jumper ecosystems that is consistent with both sides of the controversy and suggests that the diverse perspectives on this issue arise from threshold effects operating under very different site conditions. Soil erosion rate can be viewed as a function of (1) site erosion potential (SEP), determined by climate, geomorphology and soil erodibility; and (2) ground cover. Site erosion potential and cove act synergistically to determine soil erosion rates, as evident even from simple USLE predictions of erosion. In pinon-juniper ecosystem with high SEP, the erosion rate is highly sensitive to ground cover and can cross a threshold so that erosion increases dramatically in response to a small decrease in cover. The sensitivity of erosion rate to SEP and cover can be visualized as a cusp catastrophe surface on which changes may occur rapidly and irreversibly. The mechanisms associated with a rapid shift from low to high erosion rate can be illustrated using percolation theory to incorporate spatial, temporal, and scale-dependent patterns of water storage capacity on a hillslope. Percolation theory demonstrates how hillslope runoff can undergo a threshold response to a minor change in storage capacity. Our conceptual model suggests that pinion and juniper contribute to accelerated erosion only under a limited range of site conditions which, however, may exist over large areas.

  10. On the performance of digital phase locked loops in the threshold region

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    Extended Kalman filter algorithms are used to obtain a digital phase lock loop structure for demodulation of angle modulated signals. It is shown that the error variance equations obtained directly from this structure enable one to predict threshold if one retains higher frequency terms. This is in sharp contrast to the similar analysis of the analog phase lock loop, where the higher frequency terms are filtered out because of the low pass filter in the loop. Results are compared to actual simulation results and threshold region results obtained previously.

  11. Assessing and Adapting LiDAR-Derived Pit-Free Canopy Height Model Algorithm for Sites with Varying Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Scholl, V.; Hulslander, D.; Goulden, T.; Wasser, L. A.

    2015-12-01

    Spatial and temporal monitoring of vegetation structure is important to the ecological community. Airborne Light Detection and Ranging (LiDAR) systems are used to efficiently survey large forested areas. From LiDAR data, three-dimensional models of forests called canopy height models (CHMs) are generated and used to estimate tree height. A common problem associated with CHMs is data pits, where LiDAR pulses penetrate the top of the canopy, leading to an underestimation of vegetation height. The National Ecological Observatory Network (NEON) currently implements an algorithm to reduce data pit frequency, which requires two height threshold parameters, increment size and range ceiling. CHMs are produced at a series of height increments up to a height range ceiling and combined to produce a CHM with reduced pits (referred to as a "pit-free" CHM). The current implementation uses static values for the height increment and ceiling (5 and 15 meters, respectively). To facilitate the generation of accurate pit-free CHMs across diverse NEON sites with varying vegetation structure, the impacts of adjusting the height threshold parameters were investigated through development of an algorithm which dynamically selects the height increment and ceiling. A series of pit-free CHMs were generated using three height range ceilings and four height increment values for three ecologically different sites. Height threshold parameters were found to change CHM-derived tree heights up to 36% compared to original CHMs. The extent of the parameters' influence on modelled tree heights was greater than expected, which will be considered during future CHM data product development at NEON. (A) Aerial image of Harvard National Forest, (B) standard CHM containing pits, appearing as black speckles, (C) a pit-free CHM created with the static algorithm implementation, and (D) a pit-free CHM created through varying the height threshold ceiling up to 82 m and the increment to 1 m.

  12. Novel image processing method study for a label-free optical biosensor

    NASA Astrophysics Data System (ADS)

    Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying

    2015-10-01

    Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.

  13. Rapid exclusion of the diagnosis of immune HIT by AcuStar HIT and heparin-induced multiple electrode aggregometry.

    PubMed

    Minet, V; Baudar, J; Bailly, N; Douxfils, J; Laloy, J; Lessire, S; Gourdin, M; Devalet, B; Chatelain, B; Dogné, J M; Mullier, F

    2014-06-01

    Accurate diagnosis of heparin-induced thrombocytopenia (HIT) is essential but remains challenging. We have previously demonstrated, in a retrospective study, the usefulness of the combination of the 4Ts score, AcuStar HIT and heparin-induced multiple electrode aggregometry (HIMEA) with optimized thresholds. We aimed at exploring prospectively the performances of our optimized diagnostic algorithm on suspected HIT patients. The secondary objective is to evaluate performances of AcuStar HIT-Ab (PF4-H) in comparison with the clinical outcome. 116 inpatients with clinically suspected immune HIT were included. Our optimized diagnostic algorithm was applied to each patient. Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV) of the overall diagnostic strategy as well as AcuStar HIT-Ab (at manufacturer's thresholds and at our thresholds) were calculated using clinical diagnosis as the reference. Among 116 patients, 2 patients had clinically-diagnosed HIT. These 2 patients were positive on AcuStar HIT-Ab, AcuStar HIT-IgG and HIMEA. Using our optimized algorithm, all patients were correctly diagnosed. AcuStar HIT-Ab at our cut-off (>9.41 U/mL) and at manufacturer's cut-off (>1.00 U/mL) showed both a sensitivity of 100.0% and a specificity of 99.1% and 90.4%, respectively. The combination of the 4Ts score, the HemosIL® AcuStar HIT and HIMEA with optimized thresholds may be useful for the rapid and accurate exclusion of the diagnosis of immune HIT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Enhanced object-based tracking algorithm for convective rain storms and cells

    NASA Astrophysics Data System (ADS)

    Muñoz, Carlos; Wang, Li-Pen; Willems, Patrick

    2018-03-01

    This paper proposes a new object-based storm tracking algorithm, based upon TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting). TITAN is a widely-used convective storm tracking algorithm but has limitations in handling small-scale yet high-intensity storm entities due to its single-threshold identification approach. It also has difficulties to effectively track fast-moving storms because of the employed matching approach that largely relies on the overlapping areas between successive storm entities. To address these deficiencies, a number of modifications are proposed and tested in this paper. These include a two-stage multi-threshold storm identification, a new formulation for characterizing storm's physical features, and an enhanced matching technique in synergy with an optical-flow storm field tracker, as well as, according to these modifications, a more complex merging and splitting scheme. High-resolution (5-min and 529-m) radar reflectivity data for 18 storm events over Belgium are used to calibrate and evaluate the algorithm. The performance of the proposed algorithm is compared with that of the original TITAN. The results suggest that the proposed algorithm can better isolate and match convective rainfall entities, as well as to provide more reliable and detailed motion estimates. Furthermore, the improvement is found to be more significant for higher rainfall intensities. The new algorithm has the potential to serve as a basis for further applications, such as storm nowcasting and long-term stochastic spatial and temporal rainfall generation.

  15. Signature Verification Using N-tuple Learning Machine.

    PubMed

    Maneechot, Thanin; Kitjaidure, Yuttana

    2005-01-01

    This research presents new algorithm for signature verification using N-tuple learning machine. The features are taken from handwritten signature on Digital Tablet (On-line). This research develops recognition algorithm using four features extraction, namely horizontal and vertical pen tip position(x-y position), pen tip pressure, and pen altitude angles. Verification uses N-tuple technique with Gaussian thresholding.

  16. Image restoration by minimizing zero norm of wavelet frame coefficients

    NASA Astrophysics Data System (ADS)

    Bao, Chenglong; Dong, Bin; Hou, Likun; Shen, Zuowei; Zhang, Xiaoqun; Zhang, Xue

    2016-11-01

    In this paper, we propose two algorithms, namely the extrapolated proximal iterative hard thresholding (EPIHT) algorithm and the EPIHT algorithm with line-search, for solving the {{\\ell }}0-norm regularized wavelet frame balanced approach for image restoration. Under the theoretical framework of Kurdyka-Łojasiewicz property, we show that the sequences generated by the two algorithms converge to a local minimizer with linear convergence rate. Moreover, extensive numerical experiments on sparse signal reconstruction and wavelet frame based image restoration problems including CT reconstruction, image deblur, demonstrate the improvement of {{\\ell }}0-norm based regularization models over some prevailing ones, as well as the computational efficiency of the proposed algorithms.

  17. An improved NAS-RIF algorithm for image restoration

    NASA Astrophysics Data System (ADS)

    Gao, Weizhe; Zou, Jianhua; Xu, Rong; Liu, Changhai; Li, Hengnian

    2016-10-01

    Space optical images are inevitably degraded by atmospheric turbulence, error of the optical system and motion. In order to get the true image, a novel nonnegativity and support constants recursive inverse filtering (NAS-RIF) algorithm is proposed to restore the degraded image. Firstly the image noise is weaken by Contourlet denoising algorithm. Secondly, the reliable object support region estimation is used to accelerate the algorithm convergence. We introduce the optimal threshold segmentation technology to improve the object support region. Finally, an object construction limit and the logarithm function are added to enhance algorithm stability. Experimental results demonstrate that, the proposed algorithm can increase the PSNR, and improve the quality of the restored images. The convergence speed of the proposed algorithm is faster than that of the original NAS-RIF algorithm.

  18. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    PubMed

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-01

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system. PACS number(s): 87.57.nm, 87.57.N-, 87.61.Tg. © 2016 The Authors.

  19. A comparative study of automatic image segmentation algorithms for target tracking in MR‐IGRT

    PubMed Central

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J.; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa

    2016-01-01

    On‐board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real‐time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image‐guided radiotherapy (MR‐IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k‐means (FKM), k‐harmonic means (KHM), and reaction‐diffusion level set evolution (RD‐LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR‐TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR‐TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD‐LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP‐TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high‐contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR‐TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on‐board MR‐IGRT system. PACS number(s): 87.57.nm, 87.57.N‐, 87.61.Tg

  20. Rainfall thresholds for possible landslide occurrence in Italy

    NASA Astrophysics Data System (ADS)

    Peruccacci, Silvia; Brunetti, Maria Teresa; Gariano, Stefano Luigi; Melillo, Massimo; Rossi, Mauro; Guzzetti, Fausto

    2017-08-01

    The large physiographic variability and the abundance of landslide and rainfall data make Italy an ideal site to investigate variations in the rainfall conditions that can result in rainfall-induced landslides. We used landslide information obtained from multiple sources and rainfall data captured by 2228 rain gauges to build a catalogue of 2309 rainfall events with - mostly shallow - landslides in Italy between January 1996 and February 2014. For each rainfall event with landslides, we reconstructed the rainfall history that presumably caused the slope failure, and we determined the corresponding rainfall duration D (in hours) and cumulated event rainfall E (in mm). Adopting a power law threshold model, we determined cumulated event rainfall-rainfall duration (ED) thresholds, at 5% exceedance probability, and their uncertainty. We defined a new national threshold for Italy, and 26 regional thresholds for environmental subdivisions based on topography, lithology, land-use, land cover, climate, and meteorology, and we used the thresholds to study the variations of the rainfall conditions that can result in landslides in different environments, in Italy. We found that the national and the environmental thresholds cover a small part of the possible DE domain. The finding supports the use of empirical rainfall thresholds for landslide forecasting in Italy, but poses an empirical limitation to the possibility of defining thresholds for small geographical areas. We observed differences between some of the thresholds. With increasing mean annual precipitation (MAP), the thresholds become higher and steeper, indicating that more rainfall is needed to trigger landslides where the MAP is high than where it is low. This suggests that the landscape adjusts to the regional meteorological conditions. We also observed that the thresholds are higher for stronger rocks, and that forested areas require more rainfall than agricultural areas to initiate landslides. Finally, we observed that a 20% exceedance probability national threshold was capable of predicting all the rainfall-induced landslides with casualties between 1996 and 2014, and we suggest that this threshold can be used to forecast fatal rainfall-induced landslides in Italy. We expect the method proposed in this work to define and compare the thresholds to have an impact on the definition of new rainfall thresholds for possible landslide occurrence in Italy, and elsewhere.

  1. Vegetation Patterns and Degradation Thresholds in the Mulga Landscapes of Australia

    NASA Astrophysics Data System (ADS)

    Azadi, Samira; Saco, Patricia; Moreno-de las Heras, Mariano; Willgoose, Garry

    2017-04-01

    Drylands are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches dense vegetation within bare soil. This 'patterned' or 'patchy' vegetation cover is sensitive to human pressures. Previous work suggests that within these landscapes there is a critical vegetation cover threshold below which the landscape functionality is lost. This threshold behaviour is tightly linked to the overland flow redistribution and an increase in hydrologic connectivity that induces loss of resources (i.e., leakiness). In fact, disturbances (such as wildfire, overgrazing or harvesting activities) can disrupt the spatial structure of vegetation, increase landscape hydrologic connectivity, trigger erosion and produce a substantial loss of water. All these effects affect ecosystem functionality. Here we present the results of exploring the impact of degradation processes induced by vegetation disturbances (mainly grazing) on ecosystem functionality and connectivity in semiarid landscapes with various types of vegetation patterns. The sites are carefully selected in Mulga landscapes bioregion (New South Wales, Queensland) and in sites of Northern Territory in Australia, which display similar vegetation characteristics but with different vegetation patterns and good quality rainfall information. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades). Using MODIS NDVI and local precipitation data, we compute rainfall use efficiency and precipitation marginal response in order to assess the ecosystem functionality. We use vegetation binary maps and digital elevation models to estimate mean Flowlength as an indicator of structural hydrologic connectivity. We compare the trends for several sites with varying vegetation patterns (i.e., banded versus spotted patterns). Our results show that disturbances increase hydrologic connectivity and suggest threshold behaviour that affects landscape functionality. Though this threshold behaviour is found in all sites, the plots in higher rainfall landscapes with banded vegetation patterns show evidence of higher resilience. We will also present some preliminary modelling results that complement this analysis and capture the coevolution of vegetation and landforms (erosion), leading to this type of threshold behaviour.

  2. Algorithm for automatic analysis of electro-oculographic data

    PubMed Central

    2013-01-01

    Background Large amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets. Methods The auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks. Results The algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate. Conclusion The developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics. PMID:24160372

  3. Algorithm for automatic analysis of electro-oculographic data.

    PubMed

    Pettersson, Kati; Jagadeesan, Sharman; Lukander, Kristian; Henelius, Andreas; Haeggström, Edward; Müller, Kiti

    2013-10-25

    Large amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets. The auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks. The algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate. The developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics.

  4. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  5. Triggering Interventions for Influenza: The ALERT Algorithm

    PubMed Central

    Reich, Nicholas G.; Cummings, Derek A. T.; Lauer, Stephen A.; Zorn, Martha; Robinson, Christine; Nyquist, Ann-Christine; Price, Connie S.; Simberkoff, Michael; Radonovich, Lewis J.; Perl, Trish M.

    2015-01-01

    Background. Early, accurate predictions of the onset of influenza season enable targeted implementation of control efforts. Our objective was to develop a tool to assist public health practitioners, researchers, and clinicians in defining the community-level onset of seasonal influenza epidemics. Methods. Using recent surveillance data on virologically confirmed infections of influenza, we developed the Above Local Elevated Respiratory Illness Threshold (ALERT) algorithm, a method to identify the period of highest seasonal influenza activity. We used data from 2 large hospitals that serve Baltimore, Maryland and Denver, Colorado, and the surrounding geographic areas. The data used by ALERT are routinely collected surveillance data: weekly case counts of laboratory-confirmed influenza A virus. The main outcome is the percentage of prospective seasonal influenza cases identified by the ALERT algorithm. Results. When ALERT thresholds designed to capture 90% of all cases were applied prospectively to the 2011–2012 and 2012–2013 influenza seasons in both hospitals, 71%–91% of all reported cases fell within the ALERT period. Conclusions. The ALERT algorithm provides a simple, robust, and accurate metric for determining the onset of elevated influenza activity at the community level. This new algorithm provides valuable information that can impact infection prevention recommendations, public health practice, and healthcare delivery. PMID:25414260

  6. Gender differences in match performance characteristics of soccer players competing in the UEFA Champions League.

    PubMed

    Bradley, Paul S; Dellal, Alexandre; Mohr, Magni; Castellano, Julen; Wilkie, Anna

    2014-02-01

    The aim of this study was to examine gender differences in match performance characteristics of elite soccer players. Fifty-four male and fifty-nine female soccer players were tracked during UEFA Champions League matches using a multi-camera system (Amisco, Nice, France). Male players covered more (P<.01) distance than female players in total during a match (Effect Size [ES]: 0.5) and at higher speed thresholds (>15, >18, 18-21, 21-23, 23-25 and >27kmh(-1); ES: 0.7-1.4). Decrements in the second versus first half (P<.01) were only evident in female players for the distance covered in total and at selected speed thresholds (12-15, >12 and >15kmh(-1); ES: 0.6). Male central midfielders covered more (P<.01) total distance during a match than female central midfielders and at selected speed thresholds (15-23kmh(-1); ES: 1.3-2.2). Male full-backs and wide midfielders covered a greater distance (P<.01) than female players in the same positions at higher speed thresholds (>15, 21-23, 23-25, 25-27 and >27kmh(-1); ES: 1.5-3.1). The distance covered during the most intense 5min period of the match (>15kmh(-1)) was higher (P<.01) in male compared to female players (ES: 1.0) but no distance deficit in the next versus the average 5min period was observed for either gender (ES: 0.1-0.2). No gender differences were found for technical events such as the number of ball touches, time in possession of the ball or total duels won during both halves and the entire match (ES: 0.1-0.3). However, female players lost the ball more often (P<.05) and displayed lower pass completion rates than male players during both halves and the entire match (ES: 0.5-0.9). The data demonstrate that large gender differences exist for match performance characteristics of players competing at the highest competitive standard of European soccer. Such detailed analyses could be useful for gender-specific training information for optimal preparation. However, more research is warranted to establish gender-specific speed thresholds for elite soccer players. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. High-spatial resolution multispectral and panchromatic satellite imagery for mapping perennial desert plants

    NASA Astrophysics Data System (ADS)

    Alsharrah, Saad A.; Bruce, David A.; Bouabid, Rachid; Somenahalli, Sekhar; Corcoran, Paul A.

    2015-10-01

    The use of remote sensing techniques to extract vegetation cover information for the assessment and monitoring of land degradation in arid environments has gained increased interest in recent years. However, such a task can be challenging, especially for medium-spatial resolution satellite sensors, due to soil background effects and the distribution and structure of perennial desert vegetation. In this study, we utilised Pleiades high-spatial resolution, multispectral (2m) and panchromatic (0.5m) imagery and focused on mapping small shrubs and low-lying trees using three classification techniques: 1) vegetation indices (VI) threshold analysis, 2) pre-built object-oriented image analysis (OBIA), and 3) a developed vegetation shadow model (VSM). We evaluated the success of each approach using a root of the sum of the squares (RSS) metric, which incorporated field data as control and three error metrics relating to commission, omission, and percent cover. Results showed that optimum VI performers returned good vegetation cover estimates at certain thresholds, but failed to accurately map the distribution of the desert plants. Using the pre-built IMAGINE Objective OBIA approach, we improved the vegetation distribution mapping accuracy, but this came at the cost of over classification, similar to results of lowering VI thresholds. We further introduced the VSM which takes into account shadow for further refining vegetation cover classification derived from VI. The results showed significant improvements in vegetation cover and distribution accuracy compared to the other techniques. We argue that the VSM approach using high-spatial resolution imagery provides a more accurate representation of desert landscape vegetation and should be considered in assessments of desertification.

  8. Phytoplankton global mapping from space with a support vector machine algorithm

    NASA Astrophysics Data System (ADS)

    de Boissieu, Florian; Menkes, Christophe; Dupouy, Cécile; Rodier, Martin; Bonnet, Sophie; Mangeas, Morgan; Frouin, Robert J.

    2014-11-01

    In recent years great progress has been made in global mapping of phytoplankton from space. Two main trends have emerged, the recognition of phytoplankton functional types (PFT) based on reflectance normalized to chlorophyll-a concentration, and the recognition of phytoplankton size class (PSC) based on the relationship between cell size and chlorophyll-a concentration. However, PFTs and PSCs are not decorrelated, and one approach can complement the other in a recognition task. In this paper, we explore the recognition of several dominant PFTs by combining reflectance anomalies, chlorophyll-a concentration and other environmental parameters, such as sea surface temperature and wind speed. Remote sensing pixels are labeled thanks to coincident in-situ pigment data from GeP&CO, NOMAD and MAREDAT datasets, covering various oceanographic environments. The recognition is made with a supervised Support Vector Machine classifier trained on the labeled pixels. This algorithm enables a non-linear separation of the classes in the input space and is especially adapted for small training datasets as available here. Moreover, it provides a class probability estimate, allowing one to enhance the robustness of the classification results through the choice of a minimum probability threshold. A greedy feature selection associated to a 10-fold cross-validation procedure is applied to select the most discriminative input features and evaluate the classification performance. The best classifiers are finally applied on daily remote sensing datasets (SeaWIFS, MODISA) and the resulting dominant PFT maps are compared with other studies. Several conclusions are drawn: (1) the feature selection highlights the weight of temperature, chlorophyll-a and wind speed variables in phytoplankton recognition; (2) the classifiers show good results and dominant PFT maps in agreement with phytoplankton distribution knowledge; (3) classification on MODISA data seems to perform better than on SeaWIFS data, (4) the probability threshold screens correctly the areas of smallest confidence such as the interclass regions.

  9. An in vitro Corneal Model with a Laser Damage Threshold at 2 Micrometers That is Similar to That in the Rabbit

    DTIC Science & Technology

    2007-11-01

    Proceedings 3. DATES COVERED (From - To) June 2007- November 2007 4. TITLE AND SUBTITLE An In Vitro Corneal Model with a Laser Damage Threshold at 2...2-µm wavelength output of a thulium fiber laser with 4 mm beam diameter for 0.25 seconds in a thermally controlled environment and then assayed for...data in the literature. 15. SUBJECT TERMS corneal organotypic culture, laser , threshold, thermography, Probit 16. SECURITY CLASSIFICATION OF

  10. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam

    2017-12-01

    This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.

  11. Surface Runoff Threshold Responses to Rainfall Intensity, Scale, and Land Use Type, Change and Disturbance

    NASA Astrophysics Data System (ADS)

    Bhaskar, A.; Kampf, S. K.; Green, T. R.; Wilson, C.; Wagenbrenner, J.; Erksine, R. H.

    2017-12-01

    The dominance of infiltration-excess (Hortonian) overland flow can be determined by how well a rainfall intensity threshold predicts streamflow response. Areas in which we would expect infiltration-excess overland flow to dominate include urban, bedrock, desert pavement, and lands disturbed by vegetation removal (e.g., after a fire burn or fallow agricultural lands). Using a transferable method of identifying the existence of thresholds, we compare the following sites to investigate their hydrologic responses to 60-minute rainfall intensities: desert pavement sites in Arizona (Walnut Gulch and Yuma Proving Ground), post-fire sites in a forested, mountainous burn area in north-central Colorado (High Park Fire), an area of northeastern Colorado Plains that has transitioned from dryland agriculture to conservation reserve (Drake Farm), and watersheds in suburban Baltimore, Maryland which range from less than 5% to over 50% impervious surface cover. We observed that at desert sites, the necessary threshold of rainfall intensity to produce flow increased with watershed size. In burned watersheds, watershed size did not have a clear effect on rainfall thresholds, but thresholds increased with time after burning, with streamflow no longer exhibiting clear threshold responses after the third year post-fire. At the agricultural site, the frequency of runoff events decreased during the transition from cultivated crops to mixed perennial native grasses. In an area where the natural land cover (forested) would be not dominated by infiltration-excess overland flow, urbanization greatly lowered the rainfall thresholds needed for hydrologic response. This work contributes to building a predictive framework for identifying what naturally-occurring landscapes are dominated by infiltration-excess overland flow, and how land use change could shift the dominance of infiltration-excess overland flow. Characterizing the driving mechanism for streamflow generation will allow better prediction of hydrologic response to rainfall events.

  12. Thorough statistical comparison of machine learning regression models and their ensembles for sub-pixel imperviousness and imperviousness change mapping

    NASA Astrophysics Data System (ADS)

    Drzewiecki, Wojciech

    2017-12-01

    We evaluated the performance of nine machine learning regression algorithms and their ensembles for sub-pixel estimation of impervious areas coverages from Landsat imagery. The accuracy of imperviousness mapping in individual time points was assessed based on RMSE, MAE and R2. These measures were also used for the assessment of imperviousness change intensity estimations. The applicability for detection of relevant changes in impervious areas coverages at sub-pixel level was evaluated using overall accuracy, F-measure and ROC Area Under Curve. The results proved that Cubist algorithm may be advised for Landsat-based mapping of imperviousness for single dates. Stochastic gradient boosting of regression trees (GBM) may be also considered for this purpose. However, Random Forest algorithm is endorsed for both imperviousness change detection and mapping of its intensity. In all applications the heterogeneous model ensembles performed at least as well as the best individual models or better. They may be recommended for improving the quality of sub-pixel imperviousness and imperviousness change mapping. The study revealed also limitations of the investigated methodology for detection of subtle changes of imperviousness inside the pixel. None of the tested approaches was able to reliably classify changed and non-changed pixels if the relevant change threshold was set as one or three percent. Also for fi ve percent change threshold most of algorithms did not ensure that the accuracy of change map is higher than the accuracy of random classifi er. For the threshold of relevant change set as ten percent all approaches performed satisfactory.

  13. A self-adaptive algorithm for traffic sign detection in motion image based on color and shape features

    NASA Astrophysics Data System (ADS)

    Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng

    2007-06-01

    As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.

  14. Thresholds in forest bird occurrence as a function of the amount of early-seral broadleaf forest at landscape scales

    USGS Publications Warehouse

    Betts, M.G.; Hagar, J.C.; Rivers, J.W.; Alexander, J.D.; McGarigal, K.; McComb, B.C.

    2010-01-01

    Recent declines in broadleaf-dominated, early-seral forest globally as a function of intensive forest management and/or fire suppression have raised concern about the viability of populations dependent on such forest types. However, quantitative information about the strength and direction of species associations with broadleaf cover at landscape scales are rare. Uncovering such habitat relationships is essential for understanding the demography of species and in developing sound conservation strategies. It is particularly important to detect points in habitat reduction where rates of population decline may accelerate or the likelihood of species occurrence drops rapidly (i.e., thresholds). Here, we use a large avian point-count data set (N = 4375) from southwestern and northwestern Oregon along with segmented logistic regression to test for thresholds in forest bird occurrence as a function of broadleaf forest and early-seral broadleaf forest at local (150-m radius) and landscape (500–2000-m radius) scales. All 12 bird species examined showed positive responses to either broadleaf forest in general, and/or early-seral broadleaf forest. However, regional variation in species response to these conditions was high. We found considerable evidence for landscape thresholds in bird species occurrence as a function of broadleaf cover; threshold models received substantially greater support than linear models for eight of 12 species. Landscape thresholds in broadleaf forest ranged broadly from 1.35% to 24.55% mean canopy cover. Early-seral broadleaf thresholds tended to be much lower (0.22–1.87%). We found a strong negative relationship between the strength of species association with early-seral broadleaf forest and 42-year bird population trends; species most associated with this forest type have declined at the greatest rates. Taken together, these results provide the first support for the hypothesis that reductions in broadleaf-dominated early-seral forest due to succession and intensive forest management have led to population declines of constituent species in the Pacific northwestern United States. Forest management treatments that maintain or restore even small amounts of broadleaf vegetation could mitigate further declines.

  15. Online Mapping and Perception Algorithms for Multi-robot Teams Operating in Urban Environments

    DTIC Science & Technology

    2015-01-01

    each method on a 2.53 GHz Intel i5 laptop. All our algorithms are hand-optimized, implemented in Java and single threaded. To determine which algorithm...approach would be to label all the pixels in the image with an x, y, z point. However, the angular resolution of the camera is finer than that of the...edge criterion. That is, each edge is either present or absent. In [42], edge existence is further screened by a fixed threshold for angular

  16. An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction

    PubMed Central

    Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo

    2018-01-01

    The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods. PMID:29342857

  17. An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction.

    PubMed

    Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo

    2018-01-13

    The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods.

  18. Matching algorithm of missile tail flame based on back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan

    2018-02-01

    This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.

  19. MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.

    2018-04-01

    In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.

  20. Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Gao, Simon S.; Liu, Li; Bailey, Steven T.; Flaxel, Christina J.; Huang, David; Li, Dengwang; Jia, Yali

    2016-07-01

    Quantification of choroidal neovascularization (CNV) as visualized by optical coherence tomography angiography (OCTA) may have importance clinically when diagnosing or tracking disease. Here, we present an automated algorithm to quantify the vessel skeleton of CNV as vessel length. Initial segmentation of the CNV on en face angiograms was achieved using saliency-based detection and thresholding. A level set method was then used to refine vessel edges. Finally, a skeleton algorithm was applied to identify vessel centerlines. The algorithm was tested on nine OCTA scans from participants with CNV and comparisons of the algorithm's output to manual delineation showed good agreement.

  1. Cross counter-based adaptive assembly scheme in optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-jun; Dong, Wen; Le, Zi-chun; Chen, Wan-jun; Sun, Xingshu

    2009-11-01

    A novel adaptive assembly algorithm called Cross-counter Balance Adaptive Assembly Period (CBAAP) is proposed in this paper. The major difference between CBAAP and other adaptive assembly algorithms is that the threshold of CBAAP can be dynamically adjusted according to the cross counter and step length value. In terms of assembly period and the burst loss probability, we compare the performance of CBAAP with those of three typical algorithms FAP (Fixed Assembly Period), FBL (Fixed Burst Length) and MBMAP (Min-Burst length-Max-Assembly-Period) in the simulation part. The simulation results demonstrate the effectiveness of our algorithm.

  2. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  3. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud cover.

  4. On-Board Cryospheric Change Detection By The Autonomous Sciencecraft Experiment

    NASA Astrophysics Data System (ADS)

    Doggett, T.; Greeley, R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Baker, V.; Dohm, J.; Ip, F.

    2004-12-01

    The Autonomous Sciencecraft Experiment (ASE) is operating on-board Earth Observing - 1 (EO-1) with the Hyperion hyper-spectral visible/near-IR spectrometer. ASE science activities include autonomous monitoring of cryopsheric changes, triggering the collection of additional data when change is detected and filtering of null data such as no change or cloud cover. This would have application to the study of cryospheres on Earth, Mars and the icy moons of the outer solar system. A cryosphere classification algorithm, in combination with a previously developed cloud algorithm [1] has been tested on-board ten times from March through August 2004. The cloud algorithm correctly screened out three scenes with total cloud cover, while the cryosphere algorithm detected alpine snow cover in the Rocky Mountains, lake thaw near Madison, Wisconsin, and the presence and subsequent break-up of sea ice in the Barrow Strait of the Canadian Arctic. Hyperion has 220 bands ranging from 400 to 2400 nm, with a spatial resolution of 30 m/pixel and a spectral resolution of 10 nm. Limited on-board memory and processing speed imposed the constraint that only partially processed Level 0.5 data with dark image subtraction and gain factors applied, but not full radiometric calibration. In addition, a maximum of 12 bands could be used for any stacked sequence of algorithms run for a scene on-board. The cryosphere algorithm was developed to classify snow, water, ice and land, using six Hyperion bands at 427, 559, 661, 864, 1245 and 1649 nm. Of these, only 427 nm does overlap with the cloud algorithm. The cloud algorithm was developed with Level 1 data, which introduces complications because of the incomplete calibration of SWIR in Level 0.5 data, including a high level of noise in the 1377 nm band used by the cloud algorithm. Development of a more robust cryosphere classifier, including cloud classification specifically adapted to Level 0.5, is in progress for deployment on EO-1 as part of continued ASE operations. [1] Griffin, M.K. et al., Cloud Cover Detection Algorithm For EO-1 Hyperion Imagery, SPIE 17, 2003.

  5. Soft-output decoding algorithms in iterative decoding of turbo codes

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.

    1996-01-01

    In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.

  6. Technical Report Series on Global Modeling and Data Assimilation. Volume 12; Comparison of Satellite Global Rainfall Algorithms

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Chang, Alfred T. C.; Chiu, Long S.

    1997-01-01

    Seventeen months of rainfall data (August 1987-December 1988) from nine satellite rainfall algorithms (Adler, Chang, Kummerow, Prabhakara, Huffman, Spencer, Susskind, and Wu) were analyzed to examine the uncertainty of satellite-derived rainfall estimates. The variability among algorithms, measured as the standard deviation computed from the ensemble of algorithms, shows regions of high algorithm variability tend to coincide with regions of high rain rates. Histograms of pattern correlation (PC) between algorithms suggest a bimodal distribution, with separation at a PC-value of about 0.85. Applying this threshold as a criteria for similarity, our analyses show that algorithms using the same sensor or satellite input tend to be similar, suggesting the dominance of sampling errors in these satellite estimates.

  7. Detection of wood failure by image processing method: influence of algorithm, adhesive and wood species

    Treesearch

    Lanying Lin; Sheng He; Feng Fu; Xiping Wang

    2015-01-01

    Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...

  8. Design of Restoration Method Based on Compressed Sensing and TwIST Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Piao, Yan

    2018-04-01

    In order to improve the subjective and objective quality of degraded images at low sampling rates effectively,save storage space and reduce computational complexity at the same time, this paper proposes a joint restoration algorithm of compressed sensing and two step iterative threshold shrinkage (TwIST). The algorithm applies the TwIST algorithm which used in image restoration to the compressed sensing theory. Then, a small amount of sparse high-frequency information is obtained in frequency domain. The TwIST algorithm based on compressed sensing theory is used to accurately reconstruct the high frequency image. The experimental results show that the proposed algorithm achieves better subjective visual effects and objective quality of degraded images while accurately restoring degraded images.

  9. Corner detection and sorting method based on improved Harris algorithm in camera calibration

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Wang, Yonghong; Dan, Xizuo; Huang, Anqi; Hu, Yue; Yang, Lianxiang

    2016-11-01

    In traditional Harris corner detection algorithm, the appropriate threshold which is used to eliminate false corners is selected manually. In order to detect corners automatically, an improved algorithm which combines Harris and circular boundary theory of corners is proposed in this paper. After detecting accurate corner coordinates by using Harris algorithm and Forstner algorithm, false corners within chessboard pattern of the calibration plate can be eliminated automatically by using circular boundary theory. Moreover, a corner sorting method based on an improved calibration plate is proposed to eliminate false background corners and sort remaining corners in order. Experiment results show that the proposed algorithms can eliminate all false corners and sort remaining corners correctly and automatically.

  10. Stochastic resonance investigation of object detection in images

    NASA Astrophysics Data System (ADS)

    Repperger, Daniel W.; Pinkus, Alan R.; Skipper, Julie A.; Schrider, Christina D.

    2007-02-01

    Object detection in images was conducted using a nonlinear means of improving signal to noise ratio termed "stochastic resonance" (SR). In a recent United States patent application, it was shown that arbitrarily large signal to noise ratio gains could be realized when a signal detection problem is cast within the context of a SR filter. Signal-to-noise ratio measures were investigated. For a binary object recognition task (friendly versus hostile), the method was implemented by perturbing the recognition algorithm and subsequently thresholding via a computer simulation. To fairly test the efficacy of the proposed algorithm, a unique database of images has been constructed by modifying two sample library objects by adjusting their brightness, contrast and relative size via commercial software to gradually compromise their saliency to identification. The key to the use of the SR method is to produce a small perturbation in the identification algorithm and then to threshold the results, thus improving the overall system's ability to discern objects. A background discussion of the SR method is presented. A standard test is proposed in which object identification algorithms could be fairly compared against each other with respect to their relative performance.

  11. Joint optimization of maintenance, buffers and machines in manufacturing lines

    NASA Astrophysics Data System (ADS)

    Nahas, Nabil; Nourelfath, Mustapha

    2018-01-01

    This article considers a series manufacturing line composed of several machines separated by intermediate buffers of finite capacity. The goal is to find the optimal number of preventive maintenance actions performed on each machine, the optimal selection of machines and the optimal buffer allocation plan that minimize the total system cost, while providing the desired system throughput level. The mean times between failures of all machines are assumed to increase when applying periodic preventive maintenance. To estimate the production line throughput, a decomposition method is used. The decision variables in the formulated optimal design problem are buffer levels, types of machines and times between preventive maintenance actions. Three heuristic approaches are developed to solve the formulated combinatorial optimization problem. The first heuristic consists of a genetic algorithm, the second is based on the nonlinear threshold accepting metaheuristic and the third is an ant colony system. The proposed heuristics are compared and their efficiency is shown through several numerical examples. It is found that the nonlinear threshold accepting algorithm outperforms the genetic algorithm and ant colony system, while the genetic algorithm provides better results than the ant colony system for longer manufacturing lines.

  12. Segmentation of the Clustered Cells with Optimized Boundary Detection in Negative Phase Contrast Images

    PubMed Central

    Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng

    2015-01-01

    Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells. PMID:26066315

  13. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo‐based dose distributions

    PubMed Central

    Kapanen, Mika K.; Hyödynmaa, Simo J.; Wigren, Tuija K.; Pitkänen, Maunu A.

    2014-01-01

    The accuracy of dose calculation is a key challenge in stereotactic body radiotherapy (SBRT) of the lung. We have benchmarked three photon beam dose calculation algorithms — pencil beam convolution (PBC), anisotropic analytical algorithm (AAA), and Acuros XB (AXB) — implemented in a commercial treatment planning system (TPS), Varian Eclipse. Dose distributions from full Monte Carlo (MC) simulations were regarded as a reference. In the first stage, for four patients with central lung tumors, treatment plans using 3D conformal radiotherapy (CRT) technique applying 6 MV photon beams were made using the AXB algorithm, with planning criteria according to the Nordic SBRT study group. The plans were recalculated (with same number of monitor units (MUs) and identical field settings) using BEAMnrc and DOSXYZnrc MC codes. The MC‐calculated dose distributions were compared to corresponding AXB‐calculated dose distributions to assess the accuracy of the AXB algorithm, to which then other TPS algorithms were compared. In the second stage, treatment plans were made for ten patients with 3D CRT technique using both the PBC algorithm and the AAA. The plans were recalculated (with same number of MUs and identical field settings) with the AXB algorithm, then compared to original plans. Throughout the study, the comparisons were made as a function of the size of the planning target volume (PTV), using various dose‐volume histogram (DVH) and other parameters to quantitatively assess the plan quality. In the first stage also, 3D gamma analyses with threshold criteria 3%/3 mm and 2%/2 mm were applied. The AXB‐calculated dose distributions showed relatively high level of agreement in the light of 3D gamma analysis and DVH comparison against the full MC simulation, especially with large PTVs, but, with smaller PTVs, larger discrepancies were found. Gamma agreement index (GAI) values between 95.5% and 99.6% for all the plans with the threshold criteria 3%/3 mm were achieved, but 2%/2 mm threshold criteria showed larger discrepancies. The TPS algorithm comparison results showed large dose discrepancies in the PTV mean dose (D50%), nearly 60%, for the PBC algorithm, and differences of nearly 20% for the AAA, occurring also in the small PTV size range. This work suggests the application of independent plan verification, when the AAA or the AXB algorithm are utilized in lung SBRT having PTVs smaller than 20‐25 cc. The calculated data from this study can be used in converting the SBRT protocols based on type ‘a’ and/or type ‘b’ algorithms for the most recent generation type ‘c’ algorithms, such as the AXB algorithm. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.K‐, 87.55.kd, 87.55.Qr PMID:24710454

  14. Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance

    NASA Astrophysics Data System (ADS)

    Ruan, Yue; Xue, Xiling; Liu, Heng; Tan, Jianing; Li, Xi

    2017-11-01

    K-nearest neighbors (KNN) algorithm is a common algorithm used for classification, and also a sub-routine in various complicated machine learning tasks. In this paper, we presented a quantum algorithm (QKNN) for implementing this algorithm based on the metric of Hamming distance. We put forward a quantum circuit for computing Hamming distance between testing sample and each feature vector in the training set. Taking advantage of this method, we realized a good analog for classical KNN algorithm by setting a distance threshold value t to select k - n e a r e s t neighbors. As a result, QKNN achieves O( n 3) performance which is only relevant to the dimension of feature vectors and high classification accuracy, outperforms Llyod's algorithm (Lloyd et al. 2013) and Wiebe's algorithm (Wiebe et al. 2014).

  15. Use of information technologies when designing multilayered plates and covers with filler of various types

    NASA Astrophysics Data System (ADS)

    Golova, T. A.; Magerramova, I. A.; Ivanov, S. A.

    2018-05-01

    Calculation of multilayered plates and covers does not consider anisotropic properties of a construction. Calculation comes down to uniform isotropic covers and definition of one of intense and deformation conditions of constructions. The existing techniques consider work of multilayered designs by means of various coefficients. The article describes the optimized algorithm of operations when designing multilayered plates and covers with filler of various types on the basis of the conducted researches. It is dealt with a development engineering algorithm of calculation of multi-layer constructions of walls. Software is created which allows one to carry out assessment of intense and deformation conditions of constructions of walls.

  16. Comparison of four morphometric definitions and a semiquantitative consensus reading for assessing prevalent vertebral fractures.

    PubMed

    Grados, F; Roux, C; de Vernejoul, M C; Utard, G; Sebert, J L; Fardellone, P

    2001-01-01

    The assessment of vertebral fracture in patients with osteoporosis by conventional radiography has been improved over the past 10 years using either the semiquantitative (SQ) method devised by Genant et al. or quantitative morphometry. However, there is still no internationally agreed definition for vertebral fracture and there have been few comparative studies between these different approaches. Our study assessed the reproducibility of the SQ method and of four commonly used morphometric algorithms (Melton's, Eastell's, Minne's and McCloskey's methods) for assessing prevalent vertebral fractures, and examined the agreement of each morphometric algorithm with a SQ consensus reading performed by three experts. With this consensus reading in place of a gold standard, we determined relative measures of sensitivity, specificity and optimal cutoff threshold for each morphometric algorithm. The study was conducted in 39 postmenopausal women who had at least one osteoporotic vertebral fracture. Normal values were derived from 84 healthy postmenopausal women with apparently normal vertebral bodies. Our results indicate that the concordance of SQ method was excellent (intraobserver agreement on serial radiographs = 96.4%, kappa = 0.91; agreement between individual readings and the consensus reading = 98%, kappa = 0.95). Three morphometric approaches demonstrated good intra- and interobserver concordance (Melton: intraobserver agreement on serial radiographs = 92.7%, kappa = 0.82, interobserver agreement = 91.1%, kappa = 0.79; Eastell: intraobserver agreement on serial radiographs = 87.6%, kappa = 0.66, interobserver agreement = 88.6%, kappa = 0.68; McCloskey: intraobserver agreement on serial radiographs = 91.5%, kappa = 0.72, interobserver agreement = 93.9%, kappa = 0.78). Except for McCloskey's method, the optimal cutoff thresholds defined in our study by highest kappa score or Youden index in comparison with the SQ consensus reading were near the cutoff thresholds that were arbitrarily fixed. The four morphometric algorithms provided a good agreement with the results of the SQ consensus reading, but the more complex algorithm did not provide better results and even if we adjusted the cutoff threshold, no morphometric algorithm agreed perfectly with the SQ consensus reading. We conclude that morphometric approaches currently used should not be employed alone to detect prevalent vertebral fractures in studies on osteoporosis, but should rather be used in combination with a visual assessment. The SQ approach that allows differential diagnosis of vertebral deformities and has demonstrated a better reproducibility can be employed alone when it is performed by experienced and well-trained readers.

  17. Enhancement of the Daytime MODIS Based Aircraft Icing Potential Algorithm Using Mesoscale Model Data

    DTIC Science & Technology

    2006-03-01

    January, 15, 2006 ...... 37 x Figure 25. ROC curves using 3 hour PIREPs and Alexander Tmap with symbols plotted at the 0.5 threshold values...42 Figure 26. ROC curves using 3 hour PIREPs and Alexander Tmap with symbols plotted at the 0.5 threshold values...Table 4. Results using T icing potential values from the Alexander Tmap , and 3 Hour PIREPs

  18. Improving the segmentation of therapy-induced leukoencephalopathy using apriori information and a gradient magnitude threshold

    NASA Astrophysics Data System (ADS)

    Glass, John O.; Reddick, Wilburn E.; Reeves, Cara; Pui, Ching-Hon

    2004-05-01

    Reliably quantifying therapy-induced leukoencephalopathy in children treated for cancer is a challenging task due to its varying MR properties and similarity to normal tissues and imaging artifacts. T1, T2, PD, and FLAIR images were analyzed for a subset of 15 children from an institutional protocol for the treatment of acute lymphoblastic leukemia. Three different analysis techniques were compared to examine improvements in the segmentation accuracy of leukoencephalopathy versus manual tracings by two expert observers. The first technique utilized no apriori information and a white matter mask based on the segmentation of the first serial examination of each patient. MR images were then segmented with a Kohonen Self-Organizing Map. The other two techniques combine apriori maps from the ICBM atlas spatially normalized to each patient and resliced using SPM99 software. The apriori maps were included as input and a gradient magnitude threshold calculated on the FLAIR images was also utilized. The second technique used a 2-dimensional threshold, while the third algorithm utilized a 3-dimensional threshold. Kappa values were compared for the three techniques to each observer, and improvements were seen with each addition to the original algorithm (Observer 1: 0.651, 0.653, 0.744; Observer 2: 0.603, 0.615, 0.699).

  19. Determination of the Potential Benefit of Time-Frequency Gain Manipulation

    PubMed Central

    Anzalone, Michael C.; Calandruccio, Lauren; Doherty, Karen A.; Carney, Laurel H.

    2008-01-01

    Objective The purpose of this study was to determine the maximum benefit provided by a time-frequency gain-manipulation algorithm for noise-reduction (NR) based on an ideal detector of speech energy. The amount of detected energy necessary to show benefit using this type of NR algorithm was examined, as well as the necessary speed and frequency resolution of the gain manipulation. Design NR was performed using time-frequency gain manipulation, wherein the gains of individual frequency bands depended on the absence or presence of speech energy within each band. Three different experiments were performed: (1) NR using ideal detectors, (2) NR with nonideal detectors, and (3) NR with ideal detectors and different processing speeds and frequency resolutions. All experiments were performed using the Hearing-in-Noise test (HINT). A total of 6 listeners with normal hearing and 14 listeners with hearing loss were tested. Results HINT thresholds improved for all listeners with NR based on the ideal detectors used in Experiment I. The nonideal detectors of Experiment II required detection of at least 90% of the speech energy before an improvement was seen in HINT thresholds. The results of Experiment III demonstrated that relatively high temporal resolution (<100 msec) was required by the NR algorithm to improve HINT thresholds. Conclusions The results indicated that a single-microphone NR system based on time-frequency gain manipulation improved the HINT thresholds of listeners. However, to obtain benefit in speech intelligibility, the detectors used in such a strategy were required to detect an unrealistically high percentage of the speech energy and to perform the gain manipulations on a fast temporal basis. PMID:16957499

  20. A classification model of Hyperion image base on SAM combined decision tree

    NASA Astrophysics Data System (ADS)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model heightens 9.9%.

  1. Detecting wood surface defects with fusion algorithm of visual saliency and local threshold segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng

    2018-04-01

    This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.

  2. Uncertainty evaluation of a regional real-time system for rain-induced landslides

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Stanley, Thomas; Yatheendradas, Soni

    2015-04-01

    A new prototype regional model and evaluation framework has been developed over Central America and the Caribbean region using satellite-based information including precipitation estimates, modeled soil moisture, topography, soils, as well as regionally available datasets such as road networks and distance to fault zones. The algorithm framework incorporates three static variables: a susceptibility map; a 24-hr rainfall triggering threshold; and an antecedent soil moisture variable threshold, which have been calibrated using historic landslide events. The thresholds are regionally heterogeneous and are based on the percentile distribution of the rainfall or antecedent moisture time series. A simple decision tree algorithm framework integrates all three variables with the rainfall and soil moisture time series and generates a landslide nowcast in real-time based on the previous 24 hours over this region. This system has been evaluated using several available landslide inventories over the Central America and Caribbean region. Spatiotemporal uncertainty and evaluation metrics of the model are presented here based on available landslides reports. This work also presents a probabilistic representation of potential landslide activity over the region which can be used to further refine and improve the real-time landslide hazard assessment system as well as better identify and characterize the uncertainties inherent in this type of regional approach. The landslide algorithm provides a flexible framework to improve hazard estimation and reduce uncertainty at any spatial and temporal scale.

  3. Comparison of 30-2 Standard and Fast programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for perimetry in patients with intracranial tumors.

    PubMed

    Singh, Manav Deep; Jain, Kanika

    2017-11-01

    To find out whether 30-2 Swedish Interactive Threshold Algorithm (SITA) Fast is comparable to 30-2 SITA Standard as a tool for perimetry among the patients with intracranial tumors. This was a prospective cross-sectional study involving 80 patients aged ≥18 years with imaging proven intracranial tumors and visual acuity better than 20/60. The patients underwent multiple visual field examinations using the two algorithms till consistent and repeatable results were obtained. A total of 140 eyes of 80 patients were analyzed. Almost 60% of patients undergoing perimetry with SITA Standard required two or more sessions to obtain consistent results, whereas the same could be obtained in 81.42% with SITA Fast in the first session itself. Of 140 eyes, 70 eyes had recordable field defects and the rest had no defects as detected by either of the two algorithms. Mean deviation (MD) (P = 0.56), pattern standard deviation (PSD) (P = 0.22), visual field index (P = 0.83) and number of depressed points at P < 5%, 2%, 1%, and 0.5% on MD and PSD probability plots showed no statistically significant difference between two algorithms. Bland-Altman test showed that considerable variability existed between two algorithms. Perimetry performed by SITA Standard and SITA Fast algorithm of Humphrey Field Analyzer gives comparable results among the patients of intracranial tumors. Being more time efficient and with a shorter learning curve, SITA Fast my be recommended as a standard test for the purpose of perimetry among these patients.

  4. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting.

    PubMed

    Pires, J C M; Gonçalves, B; Azevedo, F G; Carneiro, A P; Rego, N; Assembleia, A J B; Lima, J F B; Silva, P A; Alves, C; Martins, F G

    2012-09-01

    This study proposes three methodologies to define artificial neural network models through genetic algorithms (GAs) to predict the next-day hourly average surface ozone (O(3)) concentrations. GAs were applied to define the activation function in hidden layer and the number of hidden neurons. Two of the methodologies define threshold models, which assume that the behaviour of the dependent variable (O(3) concentrations) changes when it enters in a different regime (two and four regimes were considered in this study). The change from one regime to another depends on a specific value (threshold value) of an explanatory variable (threshold variable), which is also defined by GAs. The predictor variables were the hourly average concentrations of carbon monoxide (CO), nitrogen oxide, nitrogen dioxide (NO(2)), and O(3) (recorded in the previous day at an urban site with traffic influence) and also meteorological data (hourly averages of temperature, solar radiation, relative humidity and wind speed). The study was performed for the period from May to August 2004. Several models were achieved and only the best model of each methodology was analysed. In threshold models, the variables selected by GAs to define the O(3) regimes were temperature, CO and NO(2) concentrations, due to their importance in O(3) chemistry in an urban atmosphere. In the prediction of O(3) concentrations, the threshold model that considers two regimes was the one that fitted the data most efficiently.

  5. Cost-effectiveness of the non-laboratory based Framingham algorithm in primary prevention of cardiovascular disease: A simulated analysis of a cohort of African American adults.

    PubMed

    Kariuki, Jacob K; Gona, Philimon; Leveille, Suzanne G; Stuart-Shor, Eileen M; Hayman, Laura L; Cromwell, Jerry

    2018-06-01

    The non-lab Framingham algorithm, which substitute body mass index for lipids in the laboratory based (lab-based) Framingham algorithm, has been validated among African Americans (AAs). However, its cost-effectiveness and economic tradeoffs have not been evaluated. This study examines the incremental cost-effectiveness ratio (ICER) of two cardiovascular disease (CVD) prevention programs guided by the non-lab versus lab-based Framingham algorithm. We simulated the World Health Organization CVD prevention guidelines on a cohort of 2690 AA participants in the Atherosclerosis Risk in Communities (ARIC) cohort. Costs were estimated using Medicare fee schedules (diagnostic tests, drugs & visits), Bureau of Labor Statistics (RN wages), and estimates for managing incident CVD events. Outcomes were assumed to be true positive cases detected at a data driven treatment threshold. Both algorithms had the best balance of sensitivity/specificity at the moderate risk threshold (>10% risk). Over 12years, 82% and 77% of 401 incident CVD events were accurately predicted via the non-lab and lab-based Framingham algorithms, respectively. There were 20 fewer false negative cases in the non-lab approach translating into over $900,000 in savings over 12years. The ICER was -$57,153 for every extra CVD event prevented when using the non-lab algorithm. The approach guided by the non-lab Framingham strategy dominated the lab-based approach with respect to both costs and predictive ability. Consequently, the non-lab Framingham algorithm could potentially provide a highly effective screening tool at lower cost to address the high burden of CVD especially among AA and in resource-constrained settings where lab tests are unavailable. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. AdaBoost-based on-line signature verifier

    NASA Astrophysics Data System (ADS)

    Hongo, Yasunori; Muramatsu, Daigo; Matsumoto, Takashi

    2005-03-01

    Authentication of individuals is rapidly becoming an important issue. The authors previously proposed a Pen-input online signature verification algorithm. The algorithm considers a writer"s signature as a trajectory of pen position, pen pressure, pen azimuth, and pen altitude that evolve over time, so that it is dynamic and biometric. Many algorithms have been proposed and reported to achieve accuracy for on-line signature verification, but setting the threshold value for these algorithms is a problem. In this paper, we introduce a user-generic model generated by AdaBoost, which resolves this problem. When user- specific models (one model for each user) are used for signature verification problems, we need to generate the models using only genuine signatures. Forged signatures are not available because imposters do not give forged signatures for training in advance. However, we can make use of another's forged signature in addition to the genuine signatures for learning by introducing a user generic model. And Adaboost is a well-known classification algorithm, making final decisions depending on the sign of the output value. Therefore, it is not necessary to set the threshold value. A preliminary experiment is performed on a database consisting of data from 50 individuals. This set consists of western-alphabet-based signatures provide by a European research group. In this experiment, our algorithm gives an FRR of 1.88% and an FAR of 1.60%. Since no fine-tuning was done, this preliminary result looks very promising.

  7. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  8. Cloud cover and solar disk state estimation using all-sky images: deep neural networks approach compared to routine methods

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail; Sinitsyn, Alexey

    2017-04-01

    Shortwave radiation is an important component of surface heat budget over sea and land. To estimate them accurate observations of cloud conditions are needed including total cloud cover, spatial and temporal cloud structure. While massively observed visually, for building accurate SW radiation parameterizations cloud structure needs also to be quantified using precise instrumental measurements. While there already exist several state of the art land-based cloud-cameras that satisfy researchers needs, their major disadvantages are associated with inaccuracy of all-sky images processing algorithms which typically result in the uncertainties of 2-4 octa of cloud cover estimates with the resulting true-scoring cloud cover accuracy of about 7%. Moreover, none of these algorithms determine cloud types. We developed an approach for cloud cover and structure estimating, which provides much more accurate estimates and also allows for measuring additional characteristics. This method is based on the synthetic controlling index, namely the "grayness rate index", that we introduced in 2014. Since then this index has already demonstrated high efficiency being used along with the technique namely the "background sunburn effect suppression", to detect thin clouds. This made it possible to significantly increase the accuracy of total cloud cover estimation in various sky image states using this extension of routine algorithm type. Errors for the cloud cover estimates significantly decreased down resulting the mean squared error of about 1.5 octa. Resulting true-scoring accuracy is more than 38%. The main source of this approach uncertainties is the solar disk state determination errors. While the deep neural networks approach lets us to estimate solar disk state with 94% accuracy, the final result of total cloud estimation still isn`t satisfying. To solve this problem completely we applied the set of machine learning algorithms to the problem of total cloud cover estimation directly. The accuracy of this approach varies depending on algorithm choice. Deep neural networks demonstrated the best accuracy of more than 96%. We will demonstrate some approaches and the most influential statistical features of all-sky images that lets the algorithm reach that high accuracy. With the use of our new optical package a set of over 480`000 samples has been collected in several sea missions in 2014-2016 along with concurrent standard human observed and instrumentally recorded meteorological parameters. We will demonstrate the results of the field measurements and will discuss some still remaining problems and the potential of the further developments of machine learning approach.

  9. A Hierarchical Object-oriented Urban Land Cover Classification Using WorldView-2 Imagery and Airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Wu, M. F.; Sun, Z. C.; Yang, B.; Yu, S. S.

    2016-11-01

    In order to reduce the “salt and pepper” in pixel-based urban land cover classification and expand the application of fusion of multi-source data in the field of urban remote sensing, WorldView-2 imagery and airborne Light Detection and Ranging (LiDAR) data were used to improve the classification of urban land cover. An approach of object- oriented hierarchical classification was proposed in our study. The processing of proposed method consisted of two hierarchies. (1) In the first hierarchy, LiDAR Normalized Digital Surface Model (nDSM) image was segmented to objects. The NDVI, Costal Blue and nDSM thresholds were set for extracting building objects. (2) In the second hierarchy, after removing building objects, WorldView-2 fused imagery was obtained by Haze-ratio-based (HR) fusion, and was segmented. A SVM classifier was applied to generate road/parking lot, vegetation and bare soil objects. (3) Trees and grasslands were split based on an nDSM threshold (2.4 meter). The results showed that compared with pixel-based and non-hierarchical object-oriented approach, proposed method provided a better performance of urban land cover classification, the overall accuracy (OA) and overall kappa (OK) improved up to 92.75% and 0.90. Furthermore, proposed method reduced “salt and pepper” in pixel-based classification, improved the extraction accuracy of buildings based on LiDAR nDSM image segmentation, and reduced the confusion between trees and grasslands through setting nDSM threshold.

  10. Characterization of Polar Stratospheric Clouds With Spaceborne Lidar: CALIPSO and the 2006 Antarctic Season

    NASA Technical Reports Server (NTRS)

    Pitts, Michael C.; Thomason, L. W.; Poole, Lamont R.; Winker, David M.

    2007-01-01

    The role of polar stratospheric clouds in polar ozone loss has been well documented. The CALIPSO satellite mission offers a new opportunity to characterize PSCs on spatial and temporal scales previously unavailable. A PSC detection algorithm based on a single wavelength threshold approach has been developed for CALIPSO. The method appears to accurately detect PSCs of all opacities, including tenuous clouds, with a very low rate of false positives and few missed clouds. We applied the algorithm to CALIPSO data acquired during the 2006 Antarctic winter season from 13 June through 31 October. The spatial and temporal distribution of CALIPSO PSC observations is illustrated with weekly maps of PSC occurrence. The evolution of the 2006 PSC season is depicted by time series of daily PSC frequency as a function of altitude. Comparisons with virtual solar occultation data indicate that CALIPSO provides a different view of the PSC season than attained with previous solar occultation satellites. Measurement-based time series of PSC areal coverage and vertically-integrated PSC volume are computed from the CALIPSO data. The observed area covered with PSCs is significantly smaller than would be inferred from a temperature-based proxy such as TNAT but is similar in magnitude to that inferred from TSTS. The potential of CALIPSO measurements for investigating PSC microphysics is illustrated using combinations of lidar backscatter coefficient and volume depolarization to infer composition for two CALIPSO PSC scenes.

  11. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Mittempergher, Silvia; Vho, Alice; Bistacchi, Andrea

    2016-04-01

    A quantitative analysis of fault-rock distribution in outcrops of exhumed fault zones is of fundamental importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation. We present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM), developed on the Gole Larghe Fault Zone (GLFZ), a well exposed strike-slip fault in the Adamello batholith (Italian Southern Alps). The GLFZ has been exhumed from ca. 8-10 km depth, and consists of hundreds of individual seismogenic slip surfaces lined by green cataclasites (crushed wall rocks cemented by the hydrothermal epidote and K-feldspar) and black pseudotachylytes (solidified frictional melts, considered as a marker for seismic slip). A digital model of selected outcrop exposures was reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs processed with VisualSFM software. The resulting DOM has a resolution up to 0.2 mm/pixel. Most of the outcrop was imaged using images each one covering a 1 x 1 m2 area, while selected structural features, such as sidewall ripouts or stepovers, were covered with higher-resolution images covering 30 x 40 cm2 areas.Image processing algorithms were preliminarily tested using the ImageJ-Fiji package, then a workflow in Matlab was developed to process a large collection of images sequentially. Particularly in detailed 30 x 40 cm images, cataclasites and hydrothermal veins were successfully identified using spectral analysis in RGB and HSV color spaces. This allows mapping the network of cataclasites and veins which provided the pathway for hydrothermal fluid circulation, and also the volume of mineralization, since we are able to measure the thickness of cataclasites and veins on the outcrop surface. The spectral signature of pseudotachylyte veins is indistinguishable from that of biotite grains in the wall rock (tonalite), so we tested morphological analysis tools to discriminate them with respect to biotite. In higher resolution images this could be performed using circularity and size thresholds, however this could not be easily implemented in an automated procedure since the thresholds must be varied by the interpreter almost for each image. In 1 x 1 m images the resolution is generally too low to distinguish cataclasite and pseudotachylyte, so most of the time fault rocks were treated together. For this analysis we developed a fully automated workflow that, after applying noise correction, classification and skeletonization algorithms, returns labeled edge images of fault segments together with vector polylines associated to edge properties. Vector and edge properties represent a useful format to perform further quantitative analysis, for instance for classifying fault segments based on structural criteria, detect continuous fault traces, and detect the kind of termination of faults/fractures. This approach allows to collect statistically relevant datasets useful for further quantitative structural analysis.

  12. Extremal Optimization for estimation of the error threshold in topological subsystem codes at T = 0

    NASA Astrophysics Data System (ADS)

    Millán-Otoya, Jorge E.; Boettcher, Stefan

    2014-03-01

    Quantum decoherence is a problem that arises in implementations of quantum computing proposals. Topological subsystem codes (TSC) have been suggested as a way to overcome decoherence. These offer a higher optimal error tolerance when compared to typical error-correcting algorithms. A TSC has been translated into a planar Ising spin-glass with constrained bimodal three-spin couplings. This spin-glass has been considered at finite temperature to determine the phase boundary between the unstable phase and the stable phase, where error recovery is possible.[1] We approach the study of the error threshold problem by exploring ground states of this spin-glass with the Extremal Optimization algorithm (EO).[2] EO has proven to be a effective heuristic to explore ground state configurations of glassy spin-systems.[3

  13. A method of camera calibration with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Yan, Shu-hua; Wang, Guo-chao; Zhou, Chun-lei

    2009-07-01

    In order to calculate the parameters of the camera correctly, we must figure out the accurate coordinates of the certain points in the image plane. Corners are the important features in the 2D images. Generally speaking, they are the points that have high curvature and lie in the junction of different brightness regions of images. So corners detection has already widely used in many fields. In this paper we use the pinhole camera model and SUSAN corner detection algorithm to calibrate the camera. When using the SUSAN corner detection algorithm, we propose an approach to retrieve the gray difference threshold, adaptively. That makes it possible to pick up the right chessboard inner comers in all kinds of gray contrast. The experiment result based on this method was proved to be feasible.

  14. Automatic atrial capture device control in real-life practice: A multicenter experience.

    PubMed

    Giammaria, Massimo; Quirino, Gianluca; Alberio, Mariangela; Parravicini, Umberto; Cipolla, Eliana; Rossetti, Guido; Ruocco, Antonio; Senatore, Gaetano; Rametta, Francesco; Pistelli, Paolo

    2017-04-01

    Device-based fully automatic pacing capture detection is useful in clinical practice and important in the era of remote care management. The main objective of this study was to verify the effectiveness of the new ACAP Confirm® algorithm in managing atrial capture in the medium term in comparison with early post-implantation testing. Data were collected from 318 patients (66% male; mean age, 73±10 years); 237 of these patients underwent device implantation and 81 box changes in 31 Italian hospitals. Atrial threshold measurements were taken manually and automatically at different pulse widths before discharge and during follow-up (7±2 months) examination. The algorithm worked as expected in 73% of cases, considering all performed tests. The success rate was 65% and 88% pre-discharge and during follow-up examination ( p <0.001), respectively, in patients who had undergone implantation. We did not detect any difference in the performance of the algorithm as a result of the type of atrial lead used. The success rate was 70% during pre-discharge testing in patients undergoing device replacement. Considering all examination types, manual and automatic measurements yielded threshold values of 1.07±0.47 V and 1.03±0.47 V at 0.2-ms pulse duration ( p =0.37); 0.66±0.37 V and 0.67±0.36 V at 0.4 ms ( p =0.42); and 0.5±0.28 V and 0.5±0.29 V at 1 ms ( p =0.32). The results show that the algorithm works before discharge, and its reliability increases over the medium term. The algorithm also proved accurate in detecting the atrial threshold automatically. The possibility of activating it does not seem to be influenced by the lead type used, but by the time from implantation.

  15. Application of modified Martinez-Silva algorithm in determination of net cover

    NASA Astrophysics Data System (ADS)

    Stefanowicz, Łukasz; Grobelna, Iwona

    2016-12-01

    In the article we present the idea of modifications of Martinez-Silva algorithm, which allows for determination of place invariants (p-invariants) of Petri net. Their generation time is important in the parallel decomposition of discrete systems described by Petri nets. Decomposition process is essential from the point of view of discrete system design, as it allows for separation of smaller sequential parts. The proposed modifications of Martinez-Silva method concern the net cover by p-invariants and are focused on two important issues: cyclic reduction of invariant matrix and cyclic checking of net cover.

  16. Exploring three faint source detections methods for aperture synthesis radio images

    NASA Astrophysics Data System (ADS)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  17. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  18. Classification of simple vegetation types using POLSAR image data

    NASA Technical Reports Server (NTRS)

    Freeman, A.

    1993-01-01

    Mapping basic vegetation or land cover types is a fairly common problem in remote sensing. Knowledge of the land cover type is a key input to algorithms which estimate geophysical parameters, such as soil moisture, surface roughness, leaf area index or biomass from remotely sensed data. In an earlier paper, an algorithm for fitting a simple three-component scattering model to POLSAR data was presented. The algorithm yielded estimates for surface scatter, double-bounce scatter and volume scatter for each pixel in a POLSAR image data set. In this paper, we show how the relative levels of each of the three components can be used as inputs to simple classifier for vegetation type. Vegetation classes include no vegetation cover (e.g. bare soil or desert), low vegetation cover (e.g. grassland), moderate vegetation cover (e.g. fully developed crops), forest and urban areas. Implementation of the approach requires estimates for the three components from all three frequencies available using the NASA/JPL AIRSAR, i.e. C-, L- and P-bands. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.

  19. Combining Acceleration Techniques for Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction.

    PubMed

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2017-01-01

    Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.

  20. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.

    PubMed

    Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J

    2016-12-01

    This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.

  1. Autoreject: Automated artifact rejection for MEG and EEG data.

    PubMed

    Jas, Mainak; Engemann, Denis A; Bekhti, Yousra; Raimondo, Federico; Gramfort, Alexandre

    2017-10-01

    We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography (MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with a robust evaluation metric to estimate the optimal peak-to-peak threshold - a quantity commonly used for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which estimates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of bad sensors, the trial is then repaired by interpolation or by excluding it from subsequent analysis. All steps of the algorithm are fully automated thus lending itself to the name Autoreject. In order to assess the practical significance of the algorithm, we conducted extensive validation and comparisons with state-of-the-art methods on four public datasets containing MEG and EEG recordings from more than 200 subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the preprocessing of MEG data from the Human Connectome Project (HCP) going up to the computation of the evoked responses. The automated nature of our method minimizes the burden of human inspection, hence supporting scalability and reliability demanded by data analysis in modern neuroscience. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Segmentation Approach Towards Phase-Contrast Microscopic Images of Activated Sludge to Monitor the Wastewater Treatment.

    PubMed

    Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Lai, Koon Chun

    2017-12-01

    Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.

  3. The effect of different exercise protocols and regression-based algorithms on the assessment of the anaerobic threshold.

    PubMed

    Zuniga, Jorge M; Housh, Terry J; Camic, Clayton L; Bergstrom, Haley C; Schmidt, Richard J; Johnson, Glen O

    2014-09-01

    The purpose of this study was to examine the effect of ramp and step incremental cycle ergometer tests on the assessment of the anaerobic threshold (AT) using 3 different computerized regression-based algorithms. Thirteen healthy adults (mean age and body mass [SD] = 23.4 [3.3] years and body mass = 71.7 [11.1] kg) visited the laboratory on separate occasions. Two-way repeated measures analyses of variance with appropriate follow-up procedures were used to analyze the data. The step protocol resulted in greater mean values across algorithms than the ramp protocol for the V[Combining Dot Above]O2 (step = 1.7 [0.6] L·min and ramp = 1.5 [0.4] L·min) and heart rate (HR) (step = 133 [21] b·min and ramp = 124 [15] b·min) at the AT. There were no significant mean differences, however, in power outputs at the AT between the step (115.2 [44.3] W) and the ramp (112.2 [31.2] W) protocols. Furthermore, there were no significant mean differences for V[Combining Dot Above]O2, HR, or power output across protocols among the 3 computerized regression-based algorithms used to estimate the AT. The current findings suggested that the protocol selection, but not the regression-based algorithms can affect the assessment of the V[Combining Dot Above]O2 and HR at the AT.

  4. Obstacle Detection in Indoor Environment for Visually Impaired Using Mobile Camera

    NASA Astrophysics Data System (ADS)

    Rahman, Samiur; Ullah, Sana; Ullah, Sehat

    2018-01-01

    Obstacle detection can improve the mobility as well as the safety of visually impaired people. In this paper, we present a system using mobile camera for visually impaired people. The proposed algorithm works in indoor environment and it uses a very simple technique of using few pre-stored floor images. In indoor environment all unique floor types are considered and a single image is stored for each unique floor type. These floor images are considered as reference images. The algorithm acquires an input image frame and then a region of interest is selected and is scanned for obstacle using pre-stored floor images. The algorithm compares the present frame and the next frame and compute mean square error of the two frames. If mean square error is less than a threshold value α then it means that there is no obstacle in the next frame. If mean square error is greater than α then there are two possibilities; either there is an obstacle or the floor type is changed. In order to check if the floor is changed, the algorithm computes mean square error of next frame and all stored floor types. If minimum of mean square error is less than a threshold value α then flour is changed otherwise there exist an obstacle. The proposed algorithm works in real-time and 96% accuracy has been achieved.

  5. Predictive minimum description length principle approach to inferring gene regulatory networks.

    PubMed

    Chaitankar, Vijender; Zhang, Chaoyang; Ghosh, Preetam; Gong, Ping; Perkins, Edward J; Deng, Youping

    2011-01-01

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold that defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we propose a new inference algorithm that incorporates mutual information (MI), conditional mutual information (CMI), and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm is evaluated using both synthetic time series data sets and a biological time series data set (Saccharomyces cerevisiae). The results show that the proposed algorithm produced fewer false edges and significantly improved the precision when compared to existing MDL algorithm.

  6. Operational EEW Networks in Turkey

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Pinar, Ali

    2016-04-01

    There are several EEW networks and algorithms under operation in Turkey. The first EEW system was deployed in Istanbul in 2002 after the 1999 Mw7.4 Kocaeli and Mw7.1 Duzce earthquake events. The system consisted of 10 strong motion stations located as close as possible to the main Marmara Fault line. The system was upgraded by 5 OBS (Ocean Bottom Seismometer) in 2012 located in Marmara Sea. The system works in threshold based algorithm. The alert is given according to exceedance of certain threshold levels of amplitude of ground motion acceleration in certain time interval at least in 3 stations. Currently, there are two end-users of EEW system in Istanbul. The critical facilities of Istanbul Gas Distribution Company (IGDAS) and Marmaray Tube tunnel receives the EEW information in order to activate their automatic shut-off mechanisms. The IGDAS has their own strong motion network located at their district regulators. After receiving the EEW signal if the threshold values of ground motion parameters are exceeded the gas-flow is cut automatically at the district regulators. The IGDAS has 750 district regulators distributed in Istanbul. At the moment, the 110 of them are instrumented with strong motion accelerometers. As a 2nd stage of the on-going project, the IGDAS company proposes to install strong motion accelerometers to all remaining district regulators. The Marmaray railway tube tunnel is the world's deepest immersed tube tunnel with 60m undersea depth. The tunnel has 1.4km length with 13 segments. The tunnel is monitored with 2 strong motion accelerometers in each segment, 26 in total. Once the EEW signal is received, the monitoring system is activated and the recording ground motion parameters are calculated in real-time. Depending on the exceedance of threshold levels, further actions are taken such as reducing the train speed, stopping the train before entering the tunnel etc. In Istanbul, there are also on-site EEW system applied in several high-rise buildings. As similar to threshold based algorithm, once the threshold level is exceeded in several strong motion accelerometers installed in the high-rise building, the automated shut-off mechanism is activated in order to prevent secondary damage effects of the earthquakes. In addition to the threshold based EEW system, the regional EEW algorithms Virtual Seismologist (VS) as implemented in SeisComP3 VS(SC3) and PRESTo have been also implemented in Marmara region of Turkey. These applications use the regional seismic networks. The purpose of the regional EEW systems is to determine the magnitude and location of the event from the P-wave information of the closest 3-4 stations and forward this information to interested sites. The regional EEW systems are also important for Istanbul in order to detect far distance earthquake events and provide alert especially for the high-rise buildings for their long duration shaking.

  7. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements

    PubMed Central

    Coltharp, Carla; Kessler, Rene P.; Xiao, Jie

    2012-01-01

    Localization-based superresolution microscopy techniques such as Photoactivated Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) have allowed investigations of cellular structures with unprecedented optical resolutions. One major obstacle to interpreting superresolution images, however, is the overcounting of molecule numbers caused by fluorophore photoblinking. Using both experimental and simulated images, we determined the effects of photoblinking on the accurate reconstruction of superresolution images and on quantitative measurements of structural dimension and molecule density made from those images. We found that structural dimension and relative density measurements can be made reliably from images that contain photoblinking-related overcounting, but accurate absolute density measurements, and consequently faithful representations of molecule counts and positions in cellular structures, require the application of a clustering algorithm to group localizations that originate from the same molecule. We analyzed how applying a simple algorithm with different clustering thresholds (tThresh and dThresh) affects the accuracy of reconstructed images, and developed an easy method to select optimal thresholds. We also identified an empirical criterion to evaluate whether an imaging condition is appropriate for accurate superresolution image reconstruction with the clustering algorithm. Both the threshold selection method and imaging condition criterion are easy to implement within existing PALM clustering algorithms and experimental conditions. The main advantage of our method is that it generates a superresolution image and molecule position list that faithfully represents molecule counts and positions within a cellular structure, rather than only summarizing structural properties into ensemble parameters. This feature makes it particularly useful for cellular structures of heterogeneous densities and irregular geometries, and allows a variety of quantitative measurements tailored to specific needs of different biological systems. PMID:23251611

  8. Icing detection from geostationary satellite data using machine learning approaches

    NASA Astrophysics Data System (ADS)

    Lee, J.; Ha, S.; Sim, S.; Im, J.

    2015-12-01

    Icing can cause a significant structural damage to aircraft during flight, resulting in various aviation accidents. Icing studies have been typically performed using two approaches: one is a numerical model-based approach and the other is a remote sensing-based approach. The model based approach diagnoses aircraft icing using numerical atmospheric parameters such as temperature, relative humidity, and vertical thermodynamic structure. This approach tends to over-estimate icing according to the literature. The remote sensing-based approach typically uses meteorological satellite/ground sensor data such as Geostationary Operational Environmental Satellite (GOES) and Dual-Polarization radar data. This approach detects icing areas by applying thresholds to parameters such as liquid water path and cloud optical thickness derived from remote sensing data. In this study, we propose an aircraft icing detection approach which optimizes thresholds for L1B bands and/or Cloud Optical Thickness (COT) from Communication, Ocean and Meteorological Satellite-Meteorological Imager (COMS MI) and newly launched Himawari-8 Advanced Himawari Imager (AHI) over East Asia. The proposed approach uses machine learning algorithms including decision trees (DT) and random forest (RF) for optimizing thresholds of L1B data and/or COT. Pilot Reports (PIREPs) from South Korea and Japan were used as icing reference data. Results show that RF produced a lower false alarm rate (1.5%) and a higher overall accuracy (98.8%) than DT (8.5% and 75.3%), respectively. The RF-based approach was also compared with the existing COMS MI and GOES-R icing mask algorithms. The agreements of the proposed approach with the existing two algorithms were 89.2% and 45.5%, respectively. The lower agreement with the GOES-R algorithm was possibly due to the high uncertainty of the cloud phase product from COMS MI.

  9. Spectral unmixing of urban land cover using a generic library approach

    NASA Astrophysics Data System (ADS)

    Degerickx, Jeroen; Lordache, Marian-Daniel; Okujeni, Akpona; Hermy, Martin; van der Linden, Sebastian; Somers, Ben

    2016-10-01

    Remote sensing based land cover classification in urban areas generally requires the use of subpixel classification algorithms to take into account the high spatial heterogeneity. These spectral unmixing techniques often rely on spectral libraries, i.e. collections of pure material spectra (endmembers, EM), which ideally cover the large EM variability typically present in urban scenes. Despite the advent of several (semi-) automated EM detection algorithms, the collection of such image-specific libraries remains a tedious and time-consuming task. As an alternative, we suggest the use of a generic urban EM library, containing material spectra under varying conditions, acquired from different locations and sensors. This approach requires an efficient EM selection technique, capable of only selecting those spectra relevant for a specific image. In this paper, we evaluate and compare the potential of different existing library pruning algorithms (Iterative Endmember Selection and MUSIC) using simulated hyperspectral (APEX) data of the Brussels metropolitan area. In addition, we develop a new hybrid EM selection method which is shown to be highly efficient in dealing with both imagespecific and generic libraries, subsequently yielding more robust land cover classification results compared to existing methods. Future research will include further optimization of the proposed algorithm and additional tests on both simulated and real hyperspectral data.

  10. Introducing hydrological information in rainfall intensity-duration thresholds

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Bogaard, Thom

    2016-04-01

    Regional landslide hazard assessment is mainly based on empirically derived precipitation-intensity-duration (PID) thresholds. Generally, two features of rainfall events are plotted to discriminate between observed occurrence and absence of occurrence of mass movements. Hereafter, a separation line is drawn in logarithmic space. Although successfully applied in many case studies, such PID thresholds suffer from many false positives as well as limited physical process insight. One of the main limitations is indeed that they do not include any information about the hydrological processes occurring along the slopes, so that the triggering is only related to rainfall characteristics. In order to introduce such an hydrological information in the definition of rainfall thresholds for shallow landslide triggering assessment, in this study the introduction of non-dimensional rainfall characteristics is proposed. In particular, rain storm depth, intensity and duration are divided by a characteristic infiltration depth, a characteristic infiltration rate and a characteristic duration, respectively. These latter variables depend on the hydraulic properties and on the moisture state of the soil cover at the beginning of the precipitation. The proposed variables are applied to the case of a slope covered with shallow pyroclastic deposits in Cervinara (southern Italy), for which experimental data of hourly rainfall and soil suction were available. Rainfall thresholds defined with the proposed non-dimensional variables perform significantly better than those defined with dimensional variables, either in the intensity-duration plane or in the depth-duration plane.

  11. An Automated Algorithm for Producing Land Cover Information from Landsat Surface Reflectance Data Acquired Between 1984 and Present

    NASA Astrophysics Data System (ADS)

    Rover, J.; Goldhaber, M. B.; Holen, C.; Dittmeier, R.; Wika, S.; Steinwand, D.; Dahal, D.; Tolk, B.; Quenzer, R.; Nelson, K.; Wylie, B. K.; Coan, M.

    2015-12-01

    Multi-year land cover mapping from remotely sensed data poses challenges. Producing land cover products at spatial and temporal scales required for assessing longer-term trends in land cover change are typically a resource-limited process. A recently developed approach utilizes open source software libraries to automatically generate datasets, decision tree classifications, and data products while requiring minimal user interaction. Users are only required to supply coordinates for an area of interest, land cover from an existing source such as National Land Cover Database and percent slope from a digital terrain model for the same area of interest, two target acquisition year-day windows, and the years of interest between 1984 and present. The algorithm queries the Landsat archive for Landsat data intersecting the area and dates of interest. Cloud-free pixels meeting the user's criteria are mosaicked to create composite images for training the classifiers and applying the classifiers. Stratification of training data is determined by the user and redefined during an iterative process of reviewing classifiers and resulting predictions. The algorithm outputs include yearly land cover raster format data, graphics, and supporting databases for further analysis. Additional analytical tools are also incorporated into the automated land cover system and enable statistical analysis after data are generated. Applications tested include the impact of land cover change and water permanence. For example, land cover conversions in areas where shrubland and grassland were replaced by shale oil pads during hydrofracking of the Bakken Formation were quantified. Analytical analysis of spatial and temporal changes in surface water included identifying wetlands in the Prairie Pothole Region of North Dakota with potential connectivity to ground water, indicating subsurface permeability and geochemistry.

  12. Active control of impulsive noise with symmetric α-stable distribution based on an improved step-size normalized adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yali; Zhang, Qizhi; Yin, Yixin

    2015-05-01

    In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.

  13. A service relation model for web-based land cover change detection

    NASA Astrophysics Data System (ADS)

    Xing, Huaqiao; Chen, Jun; Wu, Hao; Zhang, Jun; Li, Songnian; Liu, Boyu

    2017-10-01

    Change detection with remotely sensed imagery is a critical step in land cover monitoring and updating. Although a variety of algorithms or models have been developed, none of them can be universal for all cases. The selection of appropriate algorithms and construction of processing workflows depend largely on the expertise of experts about the "algorithm-data" relations among change detection algorithms and the imagery data used. This paper presents a service relation model for land cover change detection by integrating the experts' knowledge about the "algorithm-data" relations into the web-based geo-processing. The "algorithm-data" relations are mapped into a set of web service relations with the analysis of functional and non-functional service semantics. These service relations are further classified into three different levels, i.e., interface, behavior and execution levels. A service relation model is then established using the Object and Relation Diagram (ORD) approach to represent the multi-granularity services and their relations for change detection. A set of semantic matching rules are built and used for deriving on-demand change detection service chains from the service relation model. A web-based prototype system is developed in .NET development environment, which encapsulates nine change detection and pre-processing algorithms and represents their service relations as an ORD. Three test areas from Shandong and Hebei provinces, China with different imagery conditions are selected for online change detection experiments, and the results indicate that on-demand service chains can be generated according to different users' demands.

  14. ACOSS Eleven (Active Control of Space Structures)

    DTIC Science & Technology

    1984-09-01

    spatial integration with thresh- old level and system track threshold level reduction factor. 2.2.3 Track Acquisition In the HRAP/LRTP simulation, input ...in both row and column, however, then the track direction is determined to be diagonal. Also, as with the first * tier, multiple hits are processed...for any system track before thresholding, clustering, and centroiding can produce the next frame to be input to the two tier algorithm. As Figure 2-10

  15. Mapping forested wetlands in the Great Zhan River Basin through integrating optical, radar, and topographical data classification techniques.

    PubMed

    Na, X D; Zang, S Y; Wu, C S; Li, W L

    2015-11-01

    Knowledge of the spatial extent of forested wetlands is essential to many studies including wetland functioning assessment, greenhouse gas flux estimation, and wildlife suitable habitat identification. For discriminating forested wetlands from their adjacent land cover types, researchers have resorted to image analysis techniques applied to numerous remotely sensed data. While with some success, there is still no consensus on the optimal approaches for mapping forested wetlands. To address this problem, we examined two machine learning approaches, random forest (RF) and K-nearest neighbor (KNN) algorithms, and applied these two approaches to the framework of pixel-based and object-based classifications. The RF and KNN algorithms were constructed using predictors derived from Landsat 8 imagery, Radarsat-2 advanced synthetic aperture radar (SAR), and topographical indices. The results show that the objected-based classifications performed better than per-pixel classifications using the same algorithm (RF) in terms of overall accuracy and the difference of their kappa coefficients are statistically significant (p<0.01). There were noticeably omissions for forested and herbaceous wetlands based on the per-pixel classifications using the RF algorithm. As for the object-based image analysis, there were also statistically significant differences (p<0.01) of Kappa coefficient between results performed based on RF and KNN algorithms. The object-based classification using RF provided a more visually adequate distribution of interested land cover types, while the object classifications based on the KNN algorithm showed noticeably commissions for forested wetlands and omissions for agriculture land. This research proves that the object-based classification with RF using optical, radar, and topographical data improved the mapping accuracy of land covers and provided a feasible approach to discriminate the forested wetlands from the other land cover types in forestry area.

  16. Improvement and implementation for Canny edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Qiu, Yue-hong

    2015-07-01

    Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.

  17. Algorithm for optimizing bipolar interconnection weights with applications in associative memories and multitarget classification.

    PubMed

    Chang, S; Wong, K W; Zhang, W; Zhang, Y

    1999-08-10

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  18. Algorithm for Optimizing Bipolar Interconnection Weights with Applications in Associative Memories and Multitarget Classification

    NASA Astrophysics Data System (ADS)

    Chang, Shengjiang; Wong, Kwok-Wo; Zhang, Wenwei; Zhang, Yanxin

    1999-08-01

    An algorithm for optimizing a bipolar interconnection weight matrix with the Hopfield network is proposed. The effectiveness of this algorithm is demonstrated by computer simulation and optical implementation. In the optical implementation of the neural network the interconnection weights are biased to yield a nonnegative weight matrix. Moreover, a threshold subchannel is added so that the system can realize, in real time, the bipolar weighted summation in a single channel. Preliminary experimental results obtained from the applications in associative memories and multitarget classification with rotation invariance are shown.

  19. The Teaching and Learning of Algorithms in School Mathematics. 1998 Yearbook.

    ERIC Educational Resources Information Center

    Morrow, Lorna J., Ed.; Kenney, Margaret J., Ed.

    This 1998 yearbook aims to stimulate and answer questions that all educators of mathematics need to consider to adapt school mathematics for the 21st century. The papers included in this book cover a wide variety of topics, including student-invented algorithms, the assessment of such algorithms, algorithms from history and other cultures, ways…

  20. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    PubMed

    Rueda, Marta; Moreno Saiz, Juan Carlos; Morales-Castilla, Ignacio; Albuquerque, Fabio S; Ferrero, Mila; Rodríguez, Miguel Á

    2015-01-01

    Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species' sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist) varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although forest amount is of primary importance for the persistence of understory plants, to neglect the impact of fragmentation for some species can lead them to local extinction.

  1. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  2. Sensitivity of MODIS evapotranspiration algorithm (MOD16) to the acuracy of meteorological data and land use and land cover parameterization

    NASA Astrophysics Data System (ADS)

    Ruhoff, Anderson; Santini Adamatti, Daniela

    2017-04-01

    MODIS evapotranspiration (MOD16) is currently available with 1 km of spatial resolution over 109.03 Million km2 of vegetated land surface areas and this information is widely used to evaluate the linkages between hydrological, energy and carbon cycles. The algorithm is driven by meteorological reanalysis data and MODIS remotely-sensed data, which include land use and land cover classification (MCD12Q1), leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) (MOD15A2) and albedo (MOD43b3). For calibration and parameterization, the algorithm uses a Biome Property Look-up Table (BPLUT) based on MCD12Q1 land cover classification. Several studies evaluated MOD16 accuracy using evapotranspiration measurements and water balance analysis, showing that this product can reproduce global evapotranspiration effectively under a variety climate condition, from local to wide-basin scale, with uncertainties up to 25%. In this study, we evaluated the sensitivity of MOD16 algorithm to land use and land cover parameterization and to meteorological data. Considering that MCD12Q1 has an accuracy between 70 and 85% at continental scale, we changed land cover parametererization to understand the influence of land use and land cover classification on MOD16 evapotranspiration estimations. Knowing that meteorological reanalysis data also have uncertainties (mostly related to the coarse spatial resolution), we compared MOD16 evapotranspiration driven by observed meteorological data to those driven by the reanalysis data. Our analysis were carried in South America, with evapotranspiration and meteorological measurements from the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) at 8 different sites, including tropical rainforest, tropical dry forest, selective logged forest, seasonal flooded forest and pasture/agriculture. Our results indicate that land use and land cover classification has a strong influence on MOD16 algorithm. The use of incorrect parametererization due to land use and land cover misclassification can introduce large erros in estimates of evapotranspiration. We also found that the biases in meteorological reanalysis data can introduce considerable errors into the estimations. Overall, there is a significant potential for mapping and monitoring global evapotranspiration using MODIS remotely-sensed images combined to meteorological reanalysis data.

  3. General form of a cooperative gradual maximal covering location problem

    NASA Astrophysics Data System (ADS)

    Bagherinejad, Jafar; Bashiri, Mahdi; Nikzad, Hamideh

    2018-07-01

    Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location-allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering location problem, which is called a general CGMCLP. By setting the model parameters, the proposed general model can easily be transformed into other existing models, facilitating general comparisons. The proposed models are developed without allocation for physical signals and with allocation for non-physical signals in discrete location space. Comparison of the previously introduced gradual maximal covering location problem (GMCLP) and cooperative maximal covering location problem (CMCLP) models with our proposed CGMCLP model in similar data sets shows that the proposed model can cover more demands and acts more efficiently. Sensitivity analyses are performed to show the effect of related parameters and the model's validity. Simulated annealing (SA) and a tabu search (TS) are proposed as solution algorithms for the developed models for large-sized instances. The results show that the proposed algorithms are efficient solution approaches, considering solution quality and running time.

  4. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    DOE PAGES

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; ...

    2017-02-15

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less

  5. Image denoising in mixed Poisson-Gaussian noise.

    PubMed

    Luisier, Florian; Blu, Thierry; Unser, Michael

    2011-03-01

    We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy.

  6. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    PubMed Central

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; Rudinger, Kenneth; Mizrahi, Jonathan; Fortier, Kevin; Maunz, Peter

    2017-01-01

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10−4). PMID:28198466

  7. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less

  8. Image based book cover recognition and retrieval

    NASA Astrophysics Data System (ADS)

    Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine

    2017-11-01

    In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.

  9. Wavelet methodology to improve single unit isolation in primary motor cortex cells

    PubMed Central

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A.

    2016-01-01

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein’s unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. PMID:25794461

  10. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.

    PubMed

    Boucher, Jonah; Weathers, Kathleen C; Norouzi, Hamid; Steele, Bethel

    2018-06-01

    Predicting algal blooms has become a priority for scientists, municipalities, businesses, and citizens. Remote sensing offers solutions to the spatial and temporal challenges facing existing lake research and monitoring programs that rely primarily on high-investment, in situ measurements. Techniques to remotely measure chlorophyll a (chl a) as a proxy for algal biomass have been limited to specific large water bodies in particular seasons and narrow chl a ranges. Thus, a first step toward prediction of algal blooms is generating regionally robust algorithms using in situ and remote sensing data. This study explores the relationship between in-lake measured chl a data from Maine and New Hampshire, USA lakes and remotely sensed chl a retrieval algorithm outputs. Landsat 8 images were obtained and then processed after required atmospheric and radiometric corrections. Six previously developed algorithms were tested on a regional scale on 11 scenes from 2013 to 2015 covering 192 lakes. The best performing algorithm across data from both states had a 0.16 correlation coefficient (R 2 ) and P ≤ 0.05 when Landsat 8 images within 5 d, and improved to R 2 of 0.25 when data from Maine only were used. The strength of the correlation varied with the specificity of the time window in relation to the in-situ sampling date, explaining up to 27% of the variation in the data across several scenes. Two previously published algorithms using Landsat 8's Bands 1-4 were best correlated with chl a, and for particular late-summer scenes, they accounted for up to 69% of the variation in in-situ measurements. A sensitivity analysis revealed that a longer time difference between in situ measurements and the satellite image increased uncertainty in the models, and an effect of the time of year on several indices was demonstrated. A regional model based on the best performing remote sensing algorithm was developed and was validated using independent in situ measurements and satellite images. These results suggest that, despite challenges including seasonal effects and low chl a thresholds, remote sensing could be an effective and accessible regional-scale tool for chl a monitoring programs in lakes. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  11. A snow cover climatology for the Pyrenees from MODIS snow products

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.-F.; Szczypta, C.; Marti, R.; Sánchez, R.

    2014-11-01

    The seasonal snow in the Pyrenees is critical for hydropower production, crop irrigation and tourism in France, Spain and Andorra. Complementary to in situ observations, satellite remote sensing is useful to monitor the effect of climate on the snow dynamics. The MODIS daily snow products (Terra/MOD10A1 and Aqua/MYD10A1) are widely used to generate snow cover climatologies, yet it is preferable to assess their accuracies prior to their use. Here, we use both in situ snow observations and remote sensing data to evaluate the MODIS snow products in the Pyrenees. First, we compare the MODIS products to in situ snow depth (SD) and snow water equivalent (SWE) measurements. We estimate the values of the SWE and SD best detection thresholds to 40 mm water equivalent (we) and 105 mm respectively, for both MOD10A1 and MYD10A1. Kappa coefficients are within 0.74 and 0.92 depending on the product and the variable. Then, a set of Landsat images is used to validate MOD10A1 and MYD10A1 for 157 dates between 2002 and 2010. The resulting accuracies are 97% (κ = 0.85) for MOD10A1 and 96% (κ = 0.81) for MYD10A1, which indicates a good agreement between both datasets. The effect of vegetation on the results is analyzed by filtering the forested areas using a land cover map. As expected, the accuracies decreases over the forests but the agreement remains acceptable (MOD10A1: 96%, κ = 0.77; MYD10A1: 95%, κ = 0.67). We conclude that MODIS snow products have a sufficient accuracy for hydroclimate studies at the scale of the Pyrenees range. Using a gapfilling algorithm we generate a consistent snow cover climatology, which allows us to compute the mean monthly snow cover duration per elevation band. We finally analyze the snow patterns for the atypical winter 2011-2012. Snow cover duration anomalies reveal a deficient snowpack on the Spanish side of the Pyrenees, which seems to have caused a drop in the national hydropower production.

  12. Towards better understanding of high-mountain cryosphere changes using GPM data: A Joint Snowfall and Snow-cover Passive Microwave Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Ebtehaj, A.; Foufoula-Georgiou, E.

    2016-12-01

    Scientific evidence suggests that the duration and frequency of snowfall and the extent of snow cover are rapidly declining under global warming. Both precipitation and snow cover scatter the upwelling surface microwave emission and decrease the observed high-frequency brightness temperatures. The mixture of these two scattering signals is amongst the largest sources of ambiguities and errors in passive microwave retrievals of both precipitation and snow-cover. The dual frequency radar and the high-frequency radiometer on board the GPM satellite provide a unique opportunity to improve passive retrievals of precipitation and snow-cover physical properties and fill the gaps in our understating of their variability in view of climate change. Recently, a new Bayesian rainfall retrieval algorithm (called ShARP) was developed using modern approximation methods and shown to yield improvements against other algorithms in retrieval of rainfall over radiometrically complex land surfaces. However, ShARP uses a large database of input rainfall and output brightness temperatures, which might be undersampled. Furthermore, it is not capable to discriminate between solid and liquid phase of precipitation and specifically discriminate the background snow-cover emission and its contamination effects on the retrievals. We address these problems by extending it to a new Bayesian land-atmosphere retrieval framework (ShARP-L) that allows joint retrievals of atmospheric constituents and land surface physical properties. Using modern sparse approximation techniques, the database is reduced to atomic microwave signatures in a family of compact class consistent dictionaries. These dictionaries can efficiently represent the entire database and allow us to discriminate between different land-atmosphere states. First the algorithm makes use of the dictionaries to detect the phase of the precipitation and type of the land-cover and then it estimates the physical properties of precipitation and snow cover using an extended version of the Dantzig Selector, which is robust to non-Gaussian and correlated geophysical noise. Promising results are presented in retrievals of snowfall and snow-cover over coastal orographic features of North America's Coast Range and South America's Andes.

  13. Pattern Discovery and Change Detection of Online Music Query Streams

    NASA Astrophysics Data System (ADS)

    Li, Hua-Fu

    In this paper, an efficient stream mining algorithm, called FTP-stream (Frequent Temporal Pattern mining of streams), is proposed to find the frequent temporal patterns over melody sequence streams. In the framework of our proposed algorithm, an effective bit-sequence representation is used to reduce the time and memory needed to slide the windows. The FTP-stream algorithm can calculate the support threshold in only a single pass based on the concept of bit-sequence representation. It takes the advantage of "left" and "and" operations of the representation. Experiments show that the proposed algorithm only scans the music query stream once, and runs significant faster and consumes less memory than existing algorithms, such as SWFI-stream and Moment.

  14. Constructing financial network based on PMFG and threshold method

    NASA Astrophysics Data System (ADS)

    Nie, Chun-Xiao; Song, Fu-Tie

    2018-04-01

    Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.

  15. Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments

    DTIC Science & Technology

    2008-01-01

    DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments 5a...rover mobility [23, 78]. Remote slip prediction will enable safe traversals on large slopes covered with sand, drift material or loose crater ejecta...aqueous processes, e.g., mineral-rich out- crops which imply exposure to water [92] or putative lake formations or shorelines, layered deposits, etc

  16. Integration of Genetic Algorithms and Fuzzy Logic for Urban Growth Modeling

    NASA Astrophysics Data System (ADS)

    Foroutan, E.; Delavar, M. R.; Araabi, B. N.

    2012-07-01

    Urban growth phenomenon as a spatio-temporal continuous process is subject to spatial uncertainty. This inherent uncertainty cannot be fully addressed by the conventional methods based on the Boolean algebra. Fuzzy logic can be employed to overcome this limitation. Fuzzy logic preserves the continuity of dynamic urban growth spatially by choosing fuzzy membership functions, fuzzy rules and the fuzzification-defuzzification process. Fuzzy membership functions and fuzzy rule sets as the heart of fuzzy logic are rather subjective and dependent on the expert. However, due to lack of a definite method for determining the membership function parameters, certain optimization is needed to tune the parameters and improve the performance of the model. This paper integrates genetic algorithms and fuzzy logic as a genetic fuzzy system (GFS) for modeling dynamic urban growth. The proposed approach is applied for modeling urban growth in Tehran Metropolitan Area in Iran. Historical land use/cover data of Tehran Metropolitan Area extracted from the 1988 and 1999 Landsat ETM+ images are employed in order to simulate the urban growth. The extracted land use classes of the year 1988 include urban areas, street, vegetation areas, slope and elevation used as urban growth physical driving forces. Relative Operating Characteristic (ROC) curve as an fitness function has been used to evaluate the performance of the GFS algorithm. The optimum membership function parameter is applied for generating a suitability map for the urban growth. Comparing the suitability map and real land use map of 1999 gives the threshold value for the best suitability map which can simulate the land use map of 1999. The simulation outcomes in terms of kappa of 89.13% and overall map accuracy of 95.58% demonstrated the efficiency and reliability of the proposed model.

  17. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    PubMed

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  18. Assessing agricultural drought in summer over Oklahoma Mesonet sites using the water-related vegetation index from MODIS.

    PubMed

    Bajgain, Rajen; Xiao, Xiangming; Basara, Jeffrey; Wagle, Pradeep; Zhou, Yuting; Zhang, Yao; Mahan, Hayden

    2017-02-01

    Agricultural drought, a common phenomenon in most parts of the world, is one of the most challenging natural hazards to monitor effectively. Land surface water index (LSWI), calculated as a normalized ratio between near infrared (NIR) and short-wave infrared (SWIR), is sensitive to vegetation and soil water content. This study examined the potential of a LSWI-based, drought-monitoring algorithm to assess summer drought over 113 Oklahoma Mesonet stations comprising various land cover and soil types in Oklahoma. Drought duration in a year was determined by the number of days with LSWI <0 (DNLSWI) during summer months (June-August). Summer rainfall anomalies and LSWI anomalies followed a similar seasonal dynamics and showed strong correlations (r 2  = 0.62-0.73) during drought years (2001, 2006, 2011, and 2012). The DNLSWI tracked the east-west gradient of summer rainfall in Oklahoma. Drought intensity increased with increasing duration of DNLSWI, and the intensity increased rapidly when DNLSWI was more than 48 days. The comparison between LSWI and the US Drought Monitor (USDM) showed a strong linear negative relationship; i.e., higher drought intensity tends to have lower LSWI values and vice versa. However, the agreement between LSWI-based algorithm and USDM indicators varied substantially from 32 % (D 2 class, moderate drought) to 77 % (0 and D 0 class, no drought) for different drought intensity classes and varied from ∼30 % (western Oklahoma) to >80 % (eastern Oklahoma) across regions. Our results illustrated that drought intensity thresholds can be established by counting DNLSWI (in days) and used as a simple complementary tool in several drought applications for semi-arid and semi-humid regions of Oklahoma. However, larger discrepancies between USDM and the LSWI-based algorithm in arid regions of western Oklahoma suggest the requirement of further adjustment in the algorithm for its application in arid regions.

  19. Least square regularized regression in sum space.

    PubMed

    Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu

    2013-04-01

    This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.

  20. Improving the MODIS Global Snow-Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Klein, Andrew G.; Hall, Dorothy K.; Riggs, George A.

    1997-01-01

    An algorithm (Snowmap) is under development to produce global snow maps at 500 meter resolution on a daily basis using data from the NASA MODIS instrument. MODIS, the Moderate Resolution Imaging Spectroradiometer, will be launched as part of the first Earth Observing System (EOS) platform in 1998. Snowmap is a fully automated, computationally frugal algorithm that will be ready to implement at launch. Forests represent a major limitation to the global mapping of snow cover as a forest canopy both obscures and shadows the snow underneath. Landsat Thematic Mapper (TM) and MODIS Airborne Simulator (MAS) data are used to investigate the changes in reflectance that occur as a forest stand becomes snow covered and to propose changes to the Snowmap algorithm that will improve snow classification accuracy forested areas.

  1. An algorithm for encryption of secret images into meaningful images

    NASA Astrophysics Data System (ADS)

    Kanso, A.; Ghebleh, M.

    2017-03-01

    Image encryption algorithms typically transform a plain image into a noise-like cipher image, whose appearance is an indication of encrypted content. Bao and Zhou [Image encryption: Generating visually meaningful encrypted images, Information Sciences 324, 2015] propose encrypting the plain image into a visually meaningful cover image. This improves security by masking existence of encrypted content. Following their approach, we propose a lossless visually meaningful image encryption scheme which improves Bao and Zhou's algorithm by making the encrypted content, i.e. distortions to the cover image, more difficult to detect. Empirical results are presented to show high quality of the resulting images and high security of the proposed algorithm. Competence of the proposed scheme is further demonstrated by means of comparison with Bao and Zhou's scheme.

  2. Performance comparison of two resolution modeling PET reconstruction algorithms in terms of physical figures of merit used in quantitative imaging.

    PubMed

    Matheoud, R; Ferrando, O; Valzano, S; Lizio, D; Sacchetti, G; Ciarmiello, A; Foppiano, F; Brambilla, M

    2015-07-01

    Resolution modeling (RM) of PET systems has been introduced in iterative reconstruction algorithms for oncologic PET. The RM recovers the loss of resolution and reduces the associated partial volume effect. While these methods improved the observer performance, particularly in the detection of small and faint lesions, their impact on quantification accuracy still requires thorough investigation. The aim of this study was to characterize the performances of the RM algorithms under controlled conditions simulating a typical (18)F-FDG oncologic study, using an anthropomorphic phantom and selected physical figures of merit, used for image quantification. Measurements were performed on Biograph HiREZ (B_HiREZ) and Discovery 710 (D_710) PET/CT scanners and reconstructions were performed using the standard iterative reconstructions and the RM algorithms associated to each scanner: TrueX and SharpIR, respectively. RM determined a significant improvement in contrast recovery for small targets (≤17 mm diameter) only for the D_710 scanner. The maximum standardized uptake value (SUVmax) increased when RM was applied using both scanners. The SUVmax of small targets was on average lower with the B_HiREZ than with the D_710. Sharp IR improved the accuracy of SUVmax determination, whilst TrueX showed an overestimation of SUVmax for sphere dimensions greater than 22 mm. The goodness of fit of adaptive threshold algorithms worsened significantly when RM algorithms were employed for both scanners. Differences in general quantitative performance were observed for the PET scanners analyzed. Segmentation of PET images using adaptive threshold algorithms should not be undertaken in conjunction with RM reconstructions. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Predicting Vasovagal Syncope from Heart Rate and Blood Pressure: A Prospective Study in 140 Subjects.

    PubMed

    Virag, Nathalie; Erickson, Mark; Taraborrelli, Patricia; Vetter, Rolf; Lim, Phang Boon; Sutton, Richard

    2018-04-28

    We developed a vasovagal syncope (VVS) prediction algorithm for use during head-up tilt with simultaneous analysis of heart rate (HR) and systolic blood pressure (SBP). We previously tested this algorithm retrospectively in 1155 subjects, showing sensitivity 95%, specificity 93% and median prediction time of 59s. This study was prospective, single center, on 140 subjects to evaluate this VVS prediction algorithm and assess if retrospective results were reproduced and clinically relevant. Primary endpoint was VVS prediction: sensitivity and specificity >80%. In subjects, referred for 60° head-up tilt (Italian protocol), non-invasive HR and SBP were supplied to the VVS prediction algorithm: simultaneous analysis of RR intervals, SBP trends and their variability represented by low-frequency power generated cumulative risk which was compared with a predetermined VVS risk threshold. When cumulative risk exceeded threshold, an alert was generated. Prediction time was duration between first alert and syncope. Of 140 subjects enrolled, data was usable for 134. Of 83 tilt+ve (61.9%), 81 VVS events were correctly predicted and of 51 tilt-ve subjects (38.1%), 45 were correctly identified as negative by the algorithm. Resulting algorithm performance was sensitivity 97.6%, specificity 88.2%, meeting primary endpoint. Mean VVS prediction time was 2min 26s±3min16s with median 1min 25s. Using only HR and HR variability (without SBP) the mean prediction time reduced to 1min34s±1min45s with median 1min13s. The VVS prediction algorithm, is clinically-relevant tool and could offer applications including providing a patient alarm, shortening tilt-test time, or triggering pacing intervention in implantable devices. Copyright © 2018. Published by Elsevier Inc.

  4. Advances in Landslide Nowcasting: Evaluation of a Global and Regional Modeling Approach

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia Bach; Peters-Lidard, Christa; Adler, Robert; Hong, Yang; Kumar, Sujay; Lerner-Lam, Arthur

    2011-01-01

    The increasing availability of remotely sensed data offers a new opportunity to address landslide hazard assessment at larger spatial scales. A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that may experience landslide activity. This system combines a calculation of static landslide susceptibility with satellite-derived rainfall estimates and uses a threshold approach to generate a set of nowcasts that classify potentially hazardous areas. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale near real-time landslide hazard assessment efforts, it requires several modifications before it can be fully realized as an operational tool. This study draws upon a prior work s recommendations to develop a new approach for considering landslide susceptibility and hazard at the regional scale. This case study calculates a regional susceptibility map using remotely sensed and in situ information and a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America. The susceptibility map is evaluated with a regional rainfall intensity duration triggering threshold and results are compared with the global algorithm framework for the same event. Evaluation of this regional system suggests that this empirically based approach provides one plausible way to approach some of the data and resolution issues identified in the global assessment. The presented methodology is straightforward to implement, improves upon the global approach, and allows for results to be transferable between regions. The results also highlight several remaining challenges, including the empirical nature of the algorithm framework and adequate information for algorithm validation. Conclusions suggest that integrating additional triggering factors such as soil moisture may help to improve algorithm performance accuracy. The regional algorithm scenario represents an important step forward in advancing regional and global-scale landslide hazard assessment.

  5. The classification of the Arctic Sea ice types and the determination of surface temperature using advanced very high resolution radiometer data

    NASA Technical Reports Server (NTRS)

    Massom, Robert; Comiso, Josefino C.

    1994-01-01

    The accurate quantification of new ice and open water areas and surface temperatures within the sea ice packs is a key to the realistic parameterization of heat, moisture, and turbulence fluxes between ocean and atmosphere in the polar regions. Multispectral NOAA advanced very high resolution radiometer/2 (AVHRR/2) satellite images are analyzed to evaluate how effectively the data can be used to characterize sea ice in the Bering and Greenland seas, both in terms of surface type and physical temperature. The basis of the classification algorithm, which is developed using a late wintertime Bering Sea ice cover data, is that frequency distributions of 10.8- micrometers radiances provide four distinct peaks, represeting open water, new ice, young ice, and thick ice with a snow cover. The results are found to be spatially and temporally consistent. Possible sources of ambiguity, especially associated with wider temporal and spatial application of the technique, are discussed. An ice surface temperature algorithm is developed for the same study area by regressing thermal infrared data from 10.8- and 12.0- micrometers channels against station air temperatures, which are assumed to approximate the skin temperatures of adjacent snow and ice. The standard deviations of the results when compared with in situ data are about 0.5 K over leads and polynyas to about 0.5-1.5 K over thick ice. This study is based upon a set of in situ data limited in scope and coverage. Cloud masks are applied using a thresholding technique that utilizes 3.74- and 10.8- micrometers channel data. The temperature maps produced show coherence with surface features like new ice and leads, and consistency with corresponding surface type maps. Further studies are needed to better understand the effects of both the spatial and temporal variability in emissivity, aerosol and precipitable atmospheric ice particle distribution, and atmospheric temperature inversions.

  6. Optimizing interconnections to maximize the spectral radius of interdependent networks

    NASA Astrophysics Data System (ADS)

    Chen, Huashan; Zhao, Xiuyan; Liu, Feng; Xu, Shouhuai; Lu, Wenlian

    2017-03-01

    The spectral radius (i.e., the largest eigenvalue) of the adjacency matrices of complex networks is an important quantity that governs the behavior of many dynamic processes on the networks, such as synchronization and epidemics. Studies in the literature focused on bounding this quantity. In this paper, we investigate how to maximize the spectral radius of interdependent networks by optimally linking k internetwork connections (or interconnections for short). We derive formulas for the estimation of the spectral radius of interdependent networks and employ these results to develop a suite of algorithms that are applicable to different parameter regimes. In particular, a simple algorithm is to link the k nodes with the largest k eigenvector centralities in one network to the node in the other network with a certain property related to both networks. We demonstrate the applicability of our algorithms via extensive simulations. We discuss the physical implications of the results, including how the optimal interconnections can more effectively decrease the threshold of epidemic spreading in the susceptible-infected-susceptible model and the threshold of synchronization of coupled Kuramoto oscillators.

  7. Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model.

    PubMed

    Shin, Sung-Hwan; Kim, SangRyul; Seo, Yun-Ho

    2018-06-02

    Regular inspection for the maintenance of the wind turbines is difficult because of their remote locations. For this reason, condition monitoring systems (CMSs) are typically installed to monitor their health condition. The purpose of this study is to propose a fault detection algorithm for the mechanical parts of the wind turbine. To this end, long-term vibration data were collected over two years by a CMS installed on a 3 MW wind turbine. The vibration distribution at a specific rotating speed of main shaft is approximated by the Weibull distribution and its cumulative distribution function is utilized for determining the threshold levels that indicate impending failure of mechanical parts. A Hidden Markov model (HMM) is employed to propose the statistical fault detection algorithm in the time domain and the method whereby the input sequence for HMM is extracted is also introduced by considering the threshold levels and the correlation between the signals. Finally, it was demonstrated that the proposed HMM algorithm achieved a greater than 95% detection success rate by using the long-term signals.

  8. Easy-interactive and quick psoriasis lesion segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Guoli; He, Bei; Yang, Wenming; Shu, Chang

    2013-12-01

    This paper proposes an interactive psoriasis lesion segmentation algorithm based on Gaussian Mixture Model (GMM). Psoriasis is an incurable skin disease and affects large population in the world. PASI (Psoriasis Area and Severity Index) is the gold standard utilized by dermatologists to monitor the severity of psoriasis. Computer aid methods of calculating PASI are more objective and accurate than human visual assessment. Psoriasis lesion segmentation is the basis of the whole calculating. This segmentation is different from the common foreground/background segmentation problems. Our algorithm is inspired by GrabCut and consists of three main stages. First, skin area is extracted from the background scene by transforming the RGB values into the YCbCr color space. Second, a rough segmentation of normal skin and psoriasis lesion is given. This is an initial segmentation given by thresholding a single gaussian model and the thresholds are adjustable, which enables user interaction. Third, two GMMs, one for the initial normal skin and one for psoriasis lesion, are built to refine the segmentation. Experimental results demonstrate the effectiveness of the proposed algorithm.

  9. Data compression using adaptive transform coding. Appendix 1: Item 1. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rost, Martin Christopher

    1988-01-01

    Adaptive low-rate source coders are described in this dissertation. These coders adapt by adjusting the complexity of the coder to match the local coding difficulty of the image. This is accomplished by using a threshold driven maximum distortion criterion to select the specific coder used. The different coders are built using variable blocksized transform techniques, and the threshold criterion selects small transform blocks to code the more difficult regions and larger blocks to code the less complex regions. A theoretical framework is constructed from which the study of these coders can be explored. An algorithm for selecting the optimal bit allocation for the quantization of transform coefficients is developed. The bit allocation algorithm is more fully developed, and can be used to achieve more accurate bit assignments than the algorithms currently used in the literature. Some upper and lower bounds for the bit-allocation distortion-rate function are developed. An obtainable distortion-rate function is developed for a particular scalar quantizer mixing method that can be used to code transform coefficients at any rate.

  10. Toward development of mobile application for hand arthritis screening.

    PubMed

    Akhbardeh, Farhad; Vasefi, Fartash; Tavakolian, Kouhyar; Bradley, David; Fazel-Rezai, Reza

    2015-01-01

    Arthritis is one of the most common health problems affecting people throughout the world. The goal of the work presented in this paper is to provide individuals, who may be developing or have developed arthritis, with a mobile application to assess and monitor the progress of their disease using their smartphone. The image processing algorithm includes finger border detection algorithm to monitor joint thickness and angular deviation abnormalities, which are common symptoms of arthritis. In this work, we have analyzed and compared gradient, thresholding and Canny algorithms for border detection. The effect of image spatial resolution (down-sampling) is also investigated. The results calculated based on 36 joint measurements show that the mean errors for gradient, thresholding, and Canny methods are 0.20, 2.13, and 2.03 mm, respectively. In addition, the average error for different image resolutions is analyzed and the minimum required resolution is determined for each method. The results confirm that recent smartphone imaging capabilities can provide enough accuracy for hand border detection and finger joint analysis based on gradient method.

  11. Image segmentation and 3D visualization for MRI mammography

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.

    2002-05-01

    MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.

  12. Deriving Continuous Fields of Tree Cover at 1-m over the Continental United States From the National Agriculture Imagery Program (NAIP) Imagery to Reduce Uncertainties in Forest Carbon Stock Estimation

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.

    2013-12-01

    An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.

  13. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    NASA Astrophysics Data System (ADS)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  14. Multi-color space threshold segmentation and self-learning k-NN algorithm for surge test EUT status identification

    NASA Astrophysics Data System (ADS)

    Huang, Jian; Liu, Gui-xiong

    2016-09-01

    The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm ( k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample S r was classified by the k-NN algorithm with training set T z according to the feature vector, which was formed from number of pixels, eccentricity ratio, compactness ratio, and Euler's numbers. Last, while the classification confidence coefficient equaled k, made S r as one sample of pre-training set T z '. The training set T z increased to T z+1 by T z ' if T z ' was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65%identification accuracy, also selected five groups of samples to enlarge the training set from T 0 to T 5 by itself.

  15. Automatic burst detection for the EEG of the preterm infant.

    PubMed

    Jennekens, Ward; Ruijs, Loes S; Lommen, Charlotte M L; Niemarkt, Hendrik J; Pasman, Jaco W; van Kranen-Mastenbroek, Vivianne H J M; Wijn, Pieter F F; van Pul, Carola; Andriessen, Peter

    2011-10-01

    To aid with prognosis and stratification of clinical treatment for preterm infants, a method for automated detection of bursts, interburst-intervals (IBIs) and continuous patterns in the electroencephalogram (EEG) is developed. Results are evaluated for preterm infants with normal neurological follow-up at 2 years. The detection algorithm (MATLAB®) for burst, IBI and continuous pattern is based on selection by amplitude, time span, number of channels and numbers of active electrodes. Annotations of two neurophysiologists were used to determine threshold values. The training set consisted of EEG recordings of four preterm infants with postmenstrual age (PMA, gestational age + postnatal age) of 29-34 weeks. Optimal threshold values were based on overall highest sensitivity. For evaluation, both observers verified detections in an independent dataset of four EEG recordings with comparable PMA. Algorithm performance was assessed by calculation of sensitivity and positive predictive value. The results of algorithm evaluation are as follows: sensitivity values of 90% ± 6%, 80% ± 9% and 97% ± 5% for burst, IBI and continuous patterns, respectively. Corresponding positive predictive values were 88% ± 8%, 96% ± 3% and 85% ± 15%, respectively. In conclusion, the algorithm showed high sensitivity and positive predictive values for bursts, IBIs and continuous patterns in preterm EEG. Computer-assisted analysis of EEG may allow objective and reproducible analysis for clinical treatment.

  16. Object tracking algorithm based on the color histogram probability distribution

    NASA Astrophysics Data System (ADS)

    Li, Ning; Lu, Tongwei; Zhang, Yanduo

    2018-04-01

    In order to resolve tracking failure resulted from target's being occlusion and follower jamming caused by objects similar to target in the background, reduce the influence of light intensity. This paper change HSV and YCbCr color channel correction the update center of the target, continuously updated image threshold self-adaptive target detection effect, Clustering the initial obstacles is roughly range, shorten the threshold range, maximum to detect the target. In order to improve the accuracy of detector, this paper increased the Kalman filter to estimate the target state area. The direction predictor based on the Markov model is added to realize the target state estimation under the condition of background color interference and enhance the ability of the detector to identify similar objects. The experimental results show that the improved algorithm more accurate and faster speed of processing.

  17. Switching portfolios.

    PubMed

    Singer, Y

    1997-08-01

    A constant rebalanced portfolio is an asset allocation algorithm which keeps the same distribution of wealth among a set of assets along a period of time. Recently, there has been work on on-line portfolio selection algorithms which are competitive with the best constant rebalanced portfolio determined in hindsight (Cover, 1991; Helmbold et al., 1996; Cover and Ordentlich, 1996). By their nature, these algorithms employ the assumption that high returns can be achieved using a fixed asset allocation strategy. However, stock markets are far from being stationary and in many cases the wealth achieved by a constant rebalanced portfolio is much smaller than the wealth achieved by an ad hoc investment strategy that adapts to changes in the market. In this paper we present an efficient portfolio selection algorithm that is able to track a changing market. We also describe a simple extension of the algorithm for the case of a general transaction cost, including the transactions cost models recently investigated in (Blum and Kalai, 1997). We provide a simple analysis of the competitiveness of the algorithm and check its performance on real stock data from the New York Stock Exchange accumulated during a 22-year period. On this data, our algorithm outperforms all the algorithms referenced above, with and without transaction costs.

  18. A comparative study of DIGNET, average, complete, single hierarchical and k-means clustering algorithms in 2D face image recognition

    NASA Astrophysics Data System (ADS)

    Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.

    2014-06-01

    The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test Γ coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.

  19. Single image super resolution algorithm based on edge interpolation in NSCT domain

    NASA Astrophysics Data System (ADS)

    Zhang, Mengqun; Zhang, Wei; He, Xinyu

    2017-11-01

    In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.

  20. Controlled wavelet domain sparsity for x-ray tomography

    NASA Astrophysics Data System (ADS)

    Purisha, Zenith; Rimpeläinen, Juho; Bubba, Tatiana; Siltanen, Samuli

    2018-01-01

    Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter \

  1. Ecohydrology and tipping points in semiarid australian rangelands

    NASA Astrophysics Data System (ADS)

    Saco, P. M.; Azadi, S.; Moreno de las Heras, M.; Willgoose, G. R.

    2017-12-01

    Semiarid landscapes are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches with dense vegetation within bare soil. This patchy vegetation cover, which is linked to the healthy function of these ecosystems, is sensitive to human disturbances that can lead to degradation. Previous work suggests that vegetation loss below a critical value can lead to a sudden decrease in landscape functionality following threshold behaviour. The decrease in vegetation cover is linked to erosion and substantial water losses by increasing landscape hydrological connectivity. We study these interactions and the possible existence of tipping points in the Mulga land bioregion, by combining remote sensing observations and results from an eco-geomorphologic model to investigate changes in ecosystem connectivity and the existence of threshold behaviour. More than 30 sites were selected along a precipitation gradient spanning a range from approximately 250 to 500 mm annual rainfall. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades) and MODIS NDVI, which combined with local precipitation data is used to compute rainfall use efficiency to assess the ecosystem function. A critical tipping point associated to loss of vegetation cover appears in the sites with lower annual precipitation. We found that this tipping point behaviour decreases for sites with higher rainfall. We use the model to investigate the relation between structural and functional connectivity and the emergence of threshold behaviour for selected plots along this precipitation gradient. Both observations and modelling results suggest that sites with higher rainfall are more resilient to changes in surface connectivity. The implications for ecosystem resilience and land management are discussed

  2. Complexity confers stability: Climate variability, vegetation response and sand transport on longitudinal sand dunes in Australia's deserts

    NASA Astrophysics Data System (ADS)

    Hesse, Paul P.; Telfer, Matt W.; Farebrother, Will

    2017-04-01

    The relationship between antecedent precipitation, vegetation cover and sand movement on sand dunes in the Simpson and Strzelecki Deserts was investigated by repeated (up to four) surveys of dune crest plots (≈25 × 25 m) over a drought cycle (2002-2012) in both winter (low wind) and spring (high wind). Vegetation varied dramatically between surveys on vegetated and active dune crests. Indices of sand movement had significant correlations with vegetation cover: the depth of loose sand has a strong inverse relationship with crust (cyanobacterial and/or physical) while the area covered by ripples has a strong inverse relationship with the areal cover of vascular plants. However, the relationship between antecedent rainfall and vegetation cover was found to be complex. We tentatively identify two thresholds; (1) >10 mm of rainfall in the preceding 90 days leads to rapid and near total cover of crust and/or small plants <50 cm tall, and (2) >400 mm of rainfall in the preceding three years leads to higher cover of persistent and longer-lived plants >50 cm tall. These thresholds were used to predict days of low vegetation cover on dune crests. The combination of seasonality of predicted bare-crest days, potential sand drift and resultant sand drift direction explains observed patterns of sand drift on these dunes. The complex vegetation and highly variable rainfall regime confer meta-stability on the dunes through the range of responses to different intervals of antecedent rainfall and non-linear growth responses. This suggests that the geomorphic response of dunes to climate variation is complex and non-linear.

  3. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2005-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. HSB failed in February 2005, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC in April 2005 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  4. MO-DE-207A-12: Toward Patient-Specific 4DCT Reconstruction Using Adaptive Velocity Binning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, E.D.; Glide-Hurst, C.; Wayne State University, Detroit, MI

    2016-06-15

    Purpose: While 4DCT provides organ/tumor motion information, it often samples data over 10–20 breathing cycles. For patients presenting with compromised pulmonary function, breathing patterns can change over the acquisition time, potentially leading to tumor delineation discrepancies. This work introduces a novel adaptive velocity-modulated binning (AVB) 4DCT algorithm that modulates the reconstruction based on the respiratory waveform, yielding a patient-specific 4DCT solution. Methods: AVB was implemented in a research reconstruction configuration. After filtering the respiratory waveform, the algorithm examines neighboring data to a phase reconstruction point and the temporal gate is widened until the difference between the reconstruction point and waveformmore » exceeds a threshold value—defined as percent difference between maximum/minimum waveform amplitude. The algorithm only impacts reconstruction if the gate width exceeds a set minimum temporal width required for accurate reconstruction. A sensitivity experiment of threshold values (0.5, 1, 5, 10, and 12%) was conducted to examine the interplay between threshold, signal to noise ratio (SNR), and image sharpness for phantom and several patient 4DCT cases using ten-phase reconstructions. Individual phase reconstructions were examined. Subtraction images and regions of interest were compared to quantify changes in SNR. Results: AVB increased signal in reconstructed 4DCT slices for respiratory waveforms that met the prescribed criteria. For the end-exhale phases, where the respiratory velocity is low, patient data revealed a threshold of 0.5% demonstrated increased SNR in the AVB reconstructions. For intermediate breathing phases, threshold values were required to be >10% to notice appreciable changes in CT intensity with AVB. AVB reconstructions exhibited appreciably higher SNR and reduced noise in regions of interest that were photon deprived such as the liver. Conclusion: We demonstrated that patient-specific velocity-based 4DCT reconstruction is feasible. Image noise was reduced with AVB, suggesting potential applications for low-dose acquisitions and to improve 4DCT reconstruction for irregular breathing patients. The submitting institution holds research agreements with Philips Healthcare.« less

  5. A Simulation Tool for Distributed Databases.

    DTIC Science & Technology

    1981-09-01

    11-8 . Reed’s multiversion system [RE1T8] may also be viewed aa updating only copies until the commit is made. The decision to make the changes...distributed voting, and Ellis’ ring algorithm. Other, significantly different algorithms not covered in his work include Reed’s multiversion algorithm, the

  6. Cover song identification by sequence alignment algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Li; Zhong, Qian; Wang, Szu-Ying; Roychowdhury, Vwani

    2011-10-01

    Content-based music analysis has drawn much attention due to the rapidly growing digital music market. This paper describes a method that can be used to effectively identify cover songs. A cover song is a song that preserves only the crucial melody of its reference song but different in some other acoustic properties. Hence, the beat/chroma-synchronous chromagram, which is insensitive to the variation of the timber or rhythm of songs but sensitive to the melody, is chosen. The key transposition is achieved by cyclically shifting the chromatic domain of the chromagram. By using the Hidden Markov Model (HMM) to obtain the time sequences of songs, the system is made even more robust. Similar structure or length between the cover songs and its reference are not necessary by the Smith-Waterman Alignment Algorithm.

  7. Optical Algorithm for Cloud Shadow Detection Over Water

    DTIC Science & Technology

    2013-02-01

    REPORT DATE (DD-MM-YYYY) 05-02-2013 2. REPORT TYPE Journal Article 3. DATES COVERED (From ■ To) 4. TITLE AND SUBTITLE Optical Algorithm for Cloud...particularly over humid tropical regions. Throughout the year, about two-thirds of the Earth’s surface is always covered by clouds [1]. The problem...V. Khlopenkov and A. P. Trishchenko, "SPARC: New cloud, snow , cloud shadow detection scheme for historical I-km AVHHR data over Canada," / Atmos

  8. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    NASA Astrophysics Data System (ADS)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  9. Thematic mapper protoflight model preshipment review data package. Volume 4: Appendix. Part A: Multiplexer data book 2

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final performance test data for the thematic mapper flight model multiplexer are presented in tables. Aspects covered include A/D thresholds for bands 5, 6, and 7; cross talk; the thermistor; bilevel commands signal parameters; A/D threshold ambient, voltage margin low bus; serial data and bit clock parameters; and the wire check. Tests were conducted at ambient temperature.

  10. Perspiration Thresholds and Secure Suspension for Lower Limb Amputees in Demanding Environments

    DTIC Science & Technology

    2016-10-01

    first five participants (49±12 yo , 93±14 kg, 1.82±0.06 m, 19±15 years post-amputation, n= 4 trauma, n=1 secondary to infection). All were fit a...TYPE Annual 3. DATES COVERED 30Sep2015 – 29Sep2016 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Perspiration Thresholds and Secure Suspension for Lower...1 4 . IMPACT

  11. Simple algorithms for digital pulse-shape discrimination with liquid scintillation detectors

    NASA Astrophysics Data System (ADS)

    Alharbi, T.

    2015-01-01

    The development of compact, battery-powered digital liquid scintillation neutron detection systems for field applications requires digital pulse processing (DPP) algorithms with minimum computational overhead. To meet this demand, two DPP algorithms for the discrimination of neutron and γ-rays with liquid scintillation detectors were developed and examined by using a NE213 liquid scintillation detector in a mixed radiation field. The first algorithm is based on the relation between the amplitude of a current pulse at the output of a photomultiplier tube and the amount of charge contained in the pulse. A figure-of-merit (FOM) value of 0.98 with 450 keVee (electron equivalent energy) energy threshold was achieved with this method when pulses were sampled at 250 MSample/s and with 8-bit resolution. Compared to the similar method of charge-comparison this method requires only a single integration window, thereby reducing the amount of computations by approximately 40%. The second approach is a digital version of the trailing-edge constant-fraction discrimination method. A FOM value of 0.84 with an energy threshold of 450 keVee was achieved with this method. In comparison with the similar method of rise-time discrimination this method requires a single time pick-off, thereby reducing the amount of computations by approximately 50%. The algorithms described in this work are useful for developing portable detection systems for applications such as homeland security, radiation dosimetry and environmental monitoring.

  12. Differentially Private Frequent Sequence Mining via Sampling-based Candidate Pruning

    PubMed Central

    Xu, Shengzhi; Cheng, Xiang; Li, Zhengyi; Xiong, Li

    2016-01-01

    In this paper, we study the problem of mining frequent sequences under the rigorous differential privacy model. We explore the possibility of designing a differentially private frequent sequence mining (FSM) algorithm which can achieve both high data utility and a high degree of privacy. We found, in differentially private FSM, the amount of required noise is proportionate to the number of candidate sequences. If we could effectively reduce the number of unpromising candidate sequences, the utility and privacy tradeoff can be significantly improved. To this end, by leveraging a sampling-based candidate pruning technique, we propose a novel differentially private FSM algorithm, which is referred to as PFS2. The core of our algorithm is to utilize sample databases to further prune the candidate sequences generated based on the downward closure property. In particular, we use the noisy local support of candidate sequences in the sample databases to estimate which sequences are potentially frequent. To improve the accuracy of such private estimations, a sequence shrinking method is proposed to enforce the length constraint on the sample databases. Moreover, to decrease the probability of misestimating frequent sequences as infrequent, a threshold relaxation method is proposed to relax the user-specified threshold for the sample databases. Through formal privacy analysis, we show that our PFS2 algorithm is ε-differentially private. Extensive experiments on real datasets illustrate that our PFS2 algorithm can privately find frequent sequences with high accuracy. PMID:26973430

  13. Cost-effectiveness thresholds: methods for setting and examples from around the world.

    PubMed

    Santos, André Soares; Guerra-Junior, Augusto Afonso; Godman, Brian; Morton, Alec; Ruas, Cristina Mariano

    2018-06-01

    Cost-effectiveness thresholds (CETs) are used to judge if an intervention represents sufficient value for money to merit adoption in healthcare systems. The study was motivated by the Brazilian context of HTA, where meetings are being conducted to decide on the definition of a threshold. Areas covered: An electronic search was conducted on Medline (via PubMed), Lilacs (via BVS) and ScienceDirect followed by a complementary search of references of included studies, Google Scholar and conference abstracts. Cost-effectiveness thresholds are usually calculated through three different approaches: the willingness-to-pay, representative of welfare economics; the precedent method, based on the value of an already funded technology; and the opportunity cost method, which links the threshold to the volume of health displaced. An explicit threshold has never been formally adopted in most places. Some countries have defined thresholds, with some flexibility to consider other factors. An implicit threshold could be determined by research of funded cases. Expert commentary: CETs have had an important role as a 'bridging concept' between the world of academic research and the 'real world' of healthcare prioritization. The definition of a cost-effectiveness threshold is paramount for the construction of a transparent and efficient Health Technology Assessment system.

  14. Object-Based Classification as an Alternative Approach to the Traditional Pixel-Based Classification to Identify Potential Habitat of the Grasshopper Sparrow

    NASA Astrophysics Data System (ADS)

    Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles

    2008-01-01

    The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.

  15. Image segmentation algorithm based on improved PCNN

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui

    2017-11-01

    A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.

  16. The Maximum Likelihood Estimation of Signature Transformation /MLEST/ algorithm. [for affine transformation of crop inventory data

    NASA Technical Reports Server (NTRS)

    Thadani, S. G.

    1977-01-01

    The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.

  17. Simulation optimization of PSA-threshold based prostate cancer screening policies

    PubMed Central

    Zhang, Jingyu; Denton, Brian T.; Shah, Nilay D.; Inman, Brant A.

    2013-01-01

    We describe a simulation optimization method to design PSA screening policies based on expected quality adjusted life years (QALYs). Our method integrates a simulation model in a genetic algorithm which uses a probabilistic method for selection of the best policy. We present computational results about the efficiency of our algorithm. The best policy generated by our algorithm is compared to previously recommended screening policies. Using the policies determined by our model, we present evidence that patients should be screened more aggressively but for a shorter length of time than previously published guidelines recommend. PMID:22302420

  18. A Novel Binarization Algorithm for Ballistics Firearm Identification

    NASA Astrophysics Data System (ADS)

    Li, Dongguang

    The identification of ballistics specimens from imaging systems is of paramount importance in criminal investigation. Binarization plays a key role in preprocess of recognizing cartridges in the ballistic imaging systems. Unfortunately, it is very difficult to get the satisfactory binary image using existing binary algorithms. In this paper, we utilize the global and local thresholds to enhance the image binarization. Importantly, we present a novel criterion for effectively detecting edges in the images. Comprehensive experiments have been conducted over sample ballistic images. The empirical results demonstrate the proposed method can provide a better solution than existing binary algorithms.

  19. Clinical evaluation of the vector algorithm for neonatal hearing screening using automated auditory brainstem response.

    PubMed

    Keohane, Bernie M; Mason, Steve M; Baguley, David M

    2004-02-01

    A novel auditory brainstem response (ABR) detection and scoring algorithm, entitled the Vector algorithm is described. An independent clinical evaluation of the algorithm using 464 tests (120 non-stimulated and 344 stimulated tests) on 60 infants, with a mean age of approximately 6.5 weeks, estimated test sensitivity greater than 0.99 and test specificity at 0.87 for one test. Specificity was estimated to be greater than 0.95 for a two stage screen. Test times were of the order of 1.5 minutes per ear for detection of an ABR and 4.5 minutes per ear in the absence of a clear response. The Vector algorithm is commercially available for both automated screening and threshold estimation in hearing screening devices.

  20. Recognition of fiducial marks applied to robotic systems. Thesis

    NASA Technical Reports Server (NTRS)

    Georges, Wayne D.

    1991-01-01

    The objective was to devise a method to determine the position and orientation of the links of a PUMA 560 using fiducial marks. As a result, it is necessary to design fiducial marks and a corresponding feature extraction algorithm. The marks used are composites of three basic shapes, a circle, an equilateral triangle and a square. Once a mark is imaged, it is thresholded and the borders of each shape are extracted. These borders are subsequently used in a feature extraction algorithm. Two feature extraction algorithms are used to determine which one produces the most reliable results. The first algorithm is based on moment invariants and the second is based on the discrete version of the psi-s curve of the boundary. The latter algorithm is clearly superior for this application.

  1. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  2. Speckle Noise Reduction in Optical Coherence Tomography Using Two-dimensional Curvelet-based Dictionary Learning.

    PubMed

    Esmaeili, Mahdad; Dehnavi, Alireza Mehri; Rabbani, Hossein; Hajizadeh, Fedra

    2017-01-01

    The process of interpretation of high-speed optical coherence tomography (OCT) images is restricted due to the large speckle noise. To address this problem, this paper proposes a new method using two-dimensional (2D) curvelet-based K-SVD algorithm for speckle noise reduction and contrast enhancement of intra-retinal layers of 2D spectral-domain OCT images. For this purpose, we take curvelet transform of the noisy image. In the next step, noisy sub-bands of different scales and rotations are separately thresholded with an adaptive data-driven thresholding method, then, each thresholded sub-band is denoised based on K-SVD dictionary learning with a variable size initial dictionary dependent on the size of curvelet coefficients' matrix in each sub-band. We also modify each coefficient matrix to enhance intra-retinal layers, with noise suppression at the same time. We demonstrate the ability of the proposed algorithm in speckle noise reduction of 100 publically available OCT B-scans with and without non-neovascular age-related macular degeneration (AMD), and improvement of contrast-to-noise ratio from 1.27 to 5.12 and mean-to-standard deviation ratio from 3.20 to 14.41 are obtained.

  3. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  4. A threshold-based fixed predictor for JPEG-LS image compression

    NASA Astrophysics Data System (ADS)

    Deng, Lihua; Huang, Zhenghua; Yao, Shoukui

    2018-03-01

    In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.

  5. Comparison of Snow Mass Estimates from a Prototype Passive Microwave Snow Algorithm, a Revised Algorithm and a Snow Depth Climatology

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Chang, A. T. C.; Hall, D. K.

    1997-01-01

    While it is recognized that no single snow algorithm is capable of producing accurate global estimates of snow depth, for research purposes it is useful to test an algorithm's performance in different climatic areas in order to see how it responds to a variety of snow conditions. This study is one of the first to develop separate passive microwave snow algorithms for North America and Eurasia by including parameters that consider the effects of variations in forest cover and crystal size on microwave brightness temperature. A new algorithm (GSFC 1996) is compared to a prototype algorithm (Chang et al., 1987) and to a snow depth climatology (SDC), which for this study is considered to be a standard reference or baseline. It is shown that the GSFC 1996 algorithm compares much more favorably to the SDC than does the Chang et al. (1987) algorithm. For example, in North America in February there is a 15% difference between the GSFC 198-96 Algorithm and the SDC, but with the Chang et al. (1987) algorithm the difference is greater than 50%. In Eurasia, also in February, there is only a 1.3% difference between the GSFC 1996 algorithm and the SDC, whereas with the Chang et al. (1987) algorithm the difference is about 20%. As expected, differences tend to be less when the snow cover extent is greater, particularly for Eurasia. The GSFC 1996 algorithm performs better in North America in each month than dose the Chang et al. (1987) algorithm. This is also the case in Eurasia, except in April and May when the Chang et al.(1987) algorithms is in closer accord to the SDC than is GSFC 1996 algorithm.

  6. Reconstruction of Sensory Stimuli Encoded with Integrate-and-Fire Neurons with Random Thresholds

    PubMed Central

    Lazar, Aurel A.; Pnevmatikakis, Eftychios A.

    2013-01-01

    We present a general approach to the reconstruction of sensory stimuli encoded with leaky integrate-and-fire neurons with random thresholds. The stimuli are modeled as elements of a Reproducing Kernel Hilbert Space. The reconstruction is based on finding a stimulus that minimizes a regularized quadratic optimality criterion. We discuss in detail the reconstruction of sensory stimuli modeled as absolutely continuous functions as well as stimuli with absolutely continuous first-order derivatives. Reconstruction results are presented for stimuli encoded with single as well as a population of neurons. Examples are given that demonstrate the performance of the reconstruction algorithms as a function of threshold variability. PMID:24077610

  7. Algorithmic Puzzles: History, Taxonomies, and Applications in Human Problem Solving

    ERIC Educational Resources Information Center

    Levitin, Anany

    2017-01-01

    The paper concerns an important but underappreciated genre of algorithmic puzzles, explaining what these puzzles are, reviewing milestones in their long history, and giving two different ways to classify them. Also covered are major applications of algorithmic puzzles in cognitive science research, with an emphasis on insight problem solving, and…

  8. A Hybrid Cellular Genetic Algorithm for Multi-objective Crew Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Jolai, Fariborz; Assadipour, Ghazal

    Crew scheduling is one of the important problems of the airline industry. This problem aims to cover a number of flights by crew members, such that all the flights are covered. In a robust scheduling the assignment should be so that the total cost, delays, and unbalanced utilization are minimized. As the problem is NP-hard and the objectives are in conflict with each other, a multi-objective meta-heuristic called CellDE, which is a hybrid cellular genetic algorithm, is implemented as the optimization method. The proposed algorithm provides the decision maker with a set of non-dominated or Pareto-optimal solutions, and enables them to choose the best one according to their preferences. A set of problems of different sizes is generated and solved using the proposed algorithm. Evaluating the performance of the proposed algorithm, three metrics are suggested, and the diversity and the convergence of the achieved Pareto front are appraised. Finally a comparison is made between CellDE and PAES, another meta-heuristic algorithm. The results show the superiority of CellDE.

  9. [A research in speech endpoint detection based on boxes-coupling generalization dimension].

    PubMed

    Wang, Zimei; Yang, Cuirong; Wu, Wei; Fan, Yingle

    2008-06-01

    In this paper, a new calculating method of generalized dimension, based on boxes-coupling principle, is proposed to overcome the edge effects and to improve the capability of the speech endpoint detection which is based on the original calculating method of generalized dimension. This new method has been applied to speech endpoint detection. Firstly, the length of overlapping border was determined, and through calculating the generalized dimension by covering the speech signal with overlapped boxes, three-dimension feature vectors including the box dimension, the information dimension and the correlation dimension were obtained. Secondly, in the light of the relation between feature distance and similarity degree, feature extraction was conducted by use of common distance. Lastly, bi-threshold method was used to classify the speech signals. The results of experiment indicated that, by comparison with the original generalized dimension (OGD) and the spectral entropy (SE) algorithm, the proposed method is more robust and effective for detecting the speech signals which contain different kinds of noise in different signal noise ratio (SNR), especially in low SNR.

  10. Clustering PPI data by combining FA and SHC method.

    PubMed

    Lei, Xiujuan; Ying, Chao; Wu, Fang-Xiang; Xu, Jin

    2015-01-01

    Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value.

  11. Clustering PPI data by combining FA and SHC method

    PubMed Central

    2015-01-01

    Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value. PMID:25707632

  12. On Connected Target k-Coverage in Heterogeneous Wireless Sensor Networks.

    PubMed

    Yu, Jiguo; Chen, Ying; Ma, Liran; Huang, Baogui; Cheng, Xiuzhen

    2016-01-15

    Coverage and connectivity are two important performance evaluation indices for wireless sensor networks (WSNs). In this paper, we focus on the connected target k-coverage (CTC k) problem in heterogeneous wireless sensor networks (HWSNs). A centralized connected target k-coverage algorithm (CCTC k) and a distributed connected target k-coverage algorithm (DCTC k) are proposed so as to generate connected cover sets for energy-efficient connectivity and coverage maintenance. To be specific, our proposed algorithms aim at achieving minimum connected target k-coverage, where each target in the monitored region is covered by at least k active sensor nodes. In addition, these two algorithms strive to minimize the total number of active sensor nodes and guarantee that each sensor node is connected to a sink, such that the sensed data can be forwarded to the sink. Our theoretical analysis and simulation results show that our proposed algorithms outperform a state-of-art connected k-coverage protocol for HWSNs.

  13. Modeling Hubble Space Telescope flight data by Q-Markov cover identification

    NASA Technical Reports Server (NTRS)

    Liu, K.; Skelton, R. E.; Sharkey, J. P.

    1992-01-01

    A state space model for the Hubble Space Telescope under the influence of unknown disturbances in orbit is presented. This model was obtained from flight data by applying the Q-Markov covariance equivalent realization identification algorithm. This state space model guarantees the match of the first Q-Markov parameters and covariance parameters of the Hubble system. The flight data were partitioned into high- and low-frequency components for more efficient Q-Markov cover modeling, to reduce some computational difficulties of the Q-Markov cover algorithm. This identification revealed more than 20 lightly damped modes within the bandwidth of the attitude control system. Comparisons with the analytical (TREETOPS) model are also included.

  14. An Improved Cryosat-2 Sea Ice Freeboard Retrieval Algorithm Through the Use of Waveform Fitting

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Galin, N.; Studinger, M.

    2014-01-01

    We develop an empirical model capable of simulating the mean echo power cross product of CryoSat-2 SAR and SAR In mode waveforms over sea ice covered regions. The model simulations are used to show the importance of variations in the radar backscatter coefficient with incidence angle and surface roughness for the retrieval of surfaceelevation of both sea ice floes and leads. The numerical model is used to fit CryoSat-2 waveforms to enable retrieval of surface elevation through the use of look-up tables and a bounded trust region Newton least squares fitting approach. The use of a model to fit returns from sea ice regions offers advantages over currently used threshold retrackingmethods which are here shown to be sensitive to the combined effect of bandwidth limited range resolution and surface roughness variations. Laxon et al. (2013) have compared ice thickness results from CryoSat-2 and IceBridge, and found good agreement, however consistent assumptions about the snow depth and density of sea ice werenot used in the comparisons. To address this issue, we directly compare ice freeboard and thickness retrievals from the waveform fitting and threshold tracker methods of CryoSat-2 to Operation IceBridge data using a consistent set of parameterizations. For three IceBridge campaign periods from March 20112013, mean differences (CryoSat-2 IceBridge) of 0.144m and 1.351m are respectively found between the freeboard and thickness retrievals using a 50 sea ice floe threshold retracker, while mean differences of 0.019m and 0.182m are found when using the waveform fitting method. This suggests the waveform fitting technique is capable of better reconciling the seaice thickness data record from laser and radar altimetry data sets through the usage of consistent physical assumptions.

  15. Lane identification and path planning for autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    McKeon, Robert T.; Paulik, Mark; Krishnan, Mohan

    2006-10-01

    This work has been performed in conjunction with the University of Detroit Mercy's (UDM) ECE Department autonomous vehicle entry in the 2006 Intelligent Ground Vehicle Competition (www.igvc.org). The IGVC challenges engineering students to design autonomous vehicles and compete in a variety of unmanned mobility competitions. The course to be traversed in the competition consists of a lane demarcated by painted lines on grass with the possibility of one of the two lines being deliberately left out over segments of the course. The course also consists of other challenging artifacts such as sandpits, ramps, potholes, and colored tarps that alter the color composition of scenes, and obstacles set up using orange and white construction barrels. This paper describes a composite lane edge detection approach that uses three algorithms to implement noise filters enabling increased removal of noise prior to the application of image thresholding. The first algorithm uses a row-adaptive statistical filter to establish an intensity floor followed by a global threshold based on a reverse cumulative intensity histogram and a priori knowledge about lane thickness and separation. The second method first improves the contrast of the image by implementing an arithmetic combination of the blue plane (RGB format) and a modified saturation plane (HSI format). A global threshold is then applied based on the mean of the intensity image and a user-defined offset. The third method applies the horizontal component of the Sobel mask to a modified gray scale of the image, followed by a thresholding method similar to the one used in the second method. The Hough transform is applied to each of the resulting binary images to select the most probable line candidates. Finally, a heuristics-based confidence interval is determined, and the results sent on to a separate fuzzy polar-based navigation algorithm, which fuses the image data with that produced by a laser scanner (for obstacle detection).

  16. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia

    NASA Astrophysics Data System (ADS)

    Kimura, Reiji; Shinoda, Masato

    2010-01-01

    Asian windblown dust events cause human and animal health effects and agricultural damage in dust source areas such as China and Mongolia and cause "yellow sand" events in Japan and Korea. It is desirable to develop an early warning system to help prevent such damage. We used our observations at a Mongolian station together with data from previous studies to model the spatial distribution of threshold wind speeds for dust events in northeast Asia (35°-45°N and 100°-115°E). Using a map of Normalized Difference Vegetation Index (NDVI), we estimated spatial distributions of vegetation cover, roughness length, threshold friction velocity, and threshold wind speed. We also recognized a relationship between NDVI in the dust season and maximum NDVI in the previous year. Thus, it may be possible to predict the threshold wind speed in the next dust season using the maximum NDVI in the previous year.

  17. Genetic algorithm for nuclear data evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Jennifer Ann

    These are slides on genetic algorithm for nuclear data evaluation. The following is covered: initial population, fitness (outer loop), calculate fitness, selection (first part of inner loop), reproduction (second part of inner loop), solution, and examples.

  18. A quantitative comparison of soil moisture inversion algorithms

    NASA Technical Reports Server (NTRS)

    Zyl, J. J. van; Kim, Y.

    2001-01-01

    This paper compares the performance of four bare surface radar soil moisture inversion algorithms in the presence of measurement errors. The particular errors considered include calibration errors, system thermal noise, local topography and vegetation cover.

  19. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    PubMed

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was higher in cotton fields previously planted in crimson clover compared with control cotton fields for all combined sampling dates in 2001. Intercropping cotton in live strips of cover crop was probably responsible for the relay of G. punctipes onto cotton in these crimson clover fields. Density of O. insidiosus was not significantly different between cover crop and control cotton fields. Lady beetles seemed to relay from cover crops into cotton. Conservation of the habitat of fire ants during planting probably was responsible for the higher density of red imported fire ants observed in all conservation tillage cotton fields relative to control cotton fields. Reduction in the number of times in which economic thresholds for heliothines were exceeded in crimson clover and rye compared with control fields indicated that the buildup of predaceous fire ants and G. punctipes in these cover crops subsequently resulted in reduction in the level of heliothines in conservation tillage cotton with these cover crops compared with conventional tillage cotton without cover crops.

  20. Edge enhancement and noise suppression for infrared image based on feature analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Meng

    2018-06-01

    Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.

  1. Low-resolution expression recognition based on central oblique average CS-LBP with adaptive threshold

    NASA Astrophysics Data System (ADS)

    Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong

    2017-11-01

    In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.

  2. Visual perception system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Chelian, Suhas E. (Inventor); Linn, Douglas Martin (Inventor); Wampler, II, Charles W. (Inventor); Bridgwater, Lyndon (Inventor); Wells, James W. (Inventor); Mc Kay, Neil David (Inventor)

    2012-01-01

    A robotic system includes a humanoid robot with robotic joints each moveable using an actuator(s), and a distributed controller for controlling the movement of each of the robotic joints. The controller includes a visual perception module (VPM) for visually identifying and tracking an object in the field of view of the robot under threshold lighting conditions. The VPM includes optical devices for collecting an image of the object, a positional extraction device, and a host machine having an algorithm for processing the image and positional information. The algorithm visually identifies and tracks the object, and automatically adapts an exposure time of the optical devices to prevent feature data loss of the image under the threshold lighting conditions. A method of identifying and tracking the object includes collecting the image, extracting positional information of the object, and automatically adapting the exposure time to thereby prevent feature data loss of the image.

  3. Wavelet methodology to improve single unit isolation in primary motor cortex cells.

    PubMed

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A

    2015-05-15

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein's unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. Copyright © 2015. Published by Elsevier B.V.

  4. Percolation of disordered jammed sphere packings

    NASA Astrophysics Data System (ADS)

    Ziff, Robert M.; Torquato, Salvatore

    2017-02-01

    We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato-Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.

  5. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    NASA Astrophysics Data System (ADS)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  6. A comparative analysis of signal processing methods for motion-based rate responsive pacing.

    PubMed

    Greenhut, S E; Shreve, E A; Lau, C P

    1996-08-01

    Pacemakers that augment heart rate (HR) by sensing body motion have been the most frequently prescribed rate responsive pacemakers. Many comparisons between motion-based rate responsive pacemaker models have been published. However, conclusions regarding specific signal processing methods used for rate response (e.g., filters and algorithms) can be affected by device-specific features. To objectively compare commonly used motion sensing filters and algorithms, acceleration and ECG signals were recorded from 16 normal subjects performing exercise and daily living activities. Acceleration signals were filtered (1-4 or 15-Hz band-pass), then processed using threshold crossing (TC) or integration (IN) algorithms creating four filter/algorithm combinations. Data were converted to an acceleration indicated rate and compared to intrinsic HR using root mean square difference (RMSd) and signed RMSd. Overall, the filters and algorithms performed similarly for most activities. The only differences between filters were for walking at an increasing grade (1-4 Hz superior to 15-Hz) and for rocking in a chair (15-Hz superior to 1-4 Hz). The only differences between algorithms were for bicycling (TC superior to IN), walking at an increasing grade (IN superior to TC), and holding a drill (IN superior to TC). Performance of the four filter/algorithm combinations was also similar over most activities. The 1-4/IN (filter [Hz]/algorithm) combination performed best for walking at a grade, while the 15/TC combination was best for bicycling. However, the 15/TC combination tended to be most sensitive to higher frequency artifact, such as automobile driving, downstairs walking, and hand drilling. Chair rocking artifact was highest for 1-4/IN. The RMSd for bicycling and upstairs walking were large for all combinations, reflecting the nonphysiological nature of the sensor. The 1-4/TC combination demonstrated the least intersubject variability, was the only filter/algorithm combination insensitive to changes in footwear, and gave similar RMSd over a large range of amplitude thresholds for most activities. In conclusion, based on overall error performance, the preferred filter/algorithm combination depended upon the type of activity.

  7. A robust firearm identification algorithm of forensic ballistics specimens

    NASA Astrophysics Data System (ADS)

    Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.

    2017-09-01

    There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.

  8. An improved dehazing algorithm of aerial high-definition image

    NASA Astrophysics Data System (ADS)

    Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying

    2016-01-01

    For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.

  9. Toward an Objective Enhanced-V Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Brunner,Jason C.; Feltz, Wayne F.; Ackerman, Steven A.; Moses, John F.; Rabin, Robert M.

    2007-01-01

    The area of coldest cloud tops above thunderstorms sometimes has a distinct V or U shape. This pattern, often referred to as an "enhanced-V signature, has been observed to occur during and preceding severe weather. This study describes an algorithmic approach to objectively detect overshooting tops, temperature couplets, and enhanced-V features with observations from the Geostationary Operational Environmental Satellite and Low Earth Orbit data. The methodology consists of temperature, temperature difference, and distance thresholds for the overshooting top and temperature couplet detection parts of the algorithm and consists of cross correlation statistics of pixels for the enhanced-V detection part of the algorithm. The effectiveness of the overshooting top and temperature couplet detection components of the algorithm is examined using GOES and MODIS image data for case studies in the 2003-2006 seasons. The main goal is for the algorithm to be useful for operations with future sensors, such as GOES-R.

  10. On marker-based parentage verification via non-linear optimization.

    PubMed

    Boerner, Vinzent

    2017-06-15

    Parentage verification by molecular markers is mainly based on short tandem repeat markers. Single nucleotide polymorphisms (SNPs) as bi-allelic markers have become the markers of choice for genotyping projects. Thus, the subsequent step is to use SNP genotypes for parentage verification as well. Recent developments of algorithms such as evaluating opposing homozygous SNP genotypes have drawbacks, for example the inability of rejecting all animals of a sample of potential parents. This paper describes an algorithm for parentage verification by constrained regression which overcomes the latter limitation and proves to be very fast and accurate even when the number of SNPs is as low as 50. The algorithm was tested on a sample of 14,816 animals with 50, 100 and 500 SNP genotypes randomly selected from 40k genotypes. The samples of putative parents of these animals contained either five random animals, or four random animals and the true sire. Parentage assignment was performed by ranking of regression coefficients, or by setting a minimum threshold for regression coefficients. The assignment quality was evaluated by the power of assignment (P[Formula: see text]) and the power of exclusion (P[Formula: see text]). If the sample of putative parents contained the true sire and parentage was assigned by coefficient ranking, P[Formula: see text] and P[Formula: see text] were both higher than 0.99 for the 500 and 100 SNP genotypes, and higher than 0.98 for the 50 SNP genotypes. When parentage was assigned by a coefficient threshold, P[Formula: see text] was higher than 0.99 regardless of the number of SNPs, but P[Formula: see text] decreased from 0.99 (500 SNPs) to 0.97 (100 SNPs) and 0.92 (50 SNPs). If the sample of putative parents did not contain the true sire and parentage was rejected using a coefficient threshold, the algorithm achieved a P[Formula: see text] of 1 (500 SNPs), 0.99 (100 SNPs) and 0.97 (50 SNPs). The algorithm described here is easy to implement, fast and accurate, and is able to assign parentage using genomic marker data with a size as low as 50 SNPs.

  11. Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error.

    PubMed

    Yin, X X; Ng, B W-H; Ramamohanarao, K; Baghai-Wadji, A; Abbott, D

    2012-09-01

    It has been shown that, magnetic resonance images (MRIs) with sparsity representation in a transformed domain, e.g. spatial finite-differences (FD), or discrete cosine transform (DCT), can be restored from undersampled k-space via applying current compressive sampling theory. The paper presents a model-based method for the restoration of MRIs. The reduced-order model, in which a full-system-response is projected onto a subspace of lower dimensionality, has been used to accelerate image reconstruction by reducing the size of the involved linear system. In this paper, the singular value threshold (SVT) technique is applied as a denoising scheme to reduce and select the model order of the inverse Fourier transform image, and to restore multi-slice breast MRIs that have been compressively sampled in k-space. The restored MRIs with SVT for denoising show reduced sampling errors compared to the direct MRI restoration methods via spatial FD, or DCT. Compressive sampling is a technique for finding sparse solutions to underdetermined linear systems. The sparsity that is implicit in MRIs is to explore the solution to MRI reconstruction after transformation from significantly undersampled k-space. The challenge, however, is that, since some incoherent artifacts result from the random undersampling, noise-like interference is added to the image with sparse representation. These recovery algorithms in the literature are not capable of fully removing the artifacts. It is necessary to introduce a denoising procedure to improve the quality of image recovery. This paper applies a singular value threshold algorithm to reduce the model order of image basis functions, which allows further improvement of the quality of image reconstruction with removal of noise artifacts. The principle of the denoising scheme is to reconstruct the sparse MRI matrices optimally with a lower rank via selecting smaller number of dominant singular values. The singular value threshold algorithm is performed by minimizing the nuclear norm of difference between the sampled image and the recovered image. It has been illustrated that this algorithm improves the ability of previous image reconstruction algorithms to remove noise artifacts while significantly improving the quality of MRI recovery.

  12. Speeding up Coarse Point Cloud Registration by Threshold-Independent Baysac Match Selection

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Lindenbergh, R.; Pu, S.

    2016-06-01

    This paper presents an algorithm for the automatic registration of terrestrial point clouds by match selection using an efficiently conditional sampling method -- threshold-independent BaySAC (BAYes SAmpling Consensus) and employs the error metric of average point-to-surface residual to reduce the random measurement error and then approach the real registration error. BaySAC and other basic sampling algorithms usually need to artificially determine a threshold by which inlier points are identified, which leads to a threshold-dependent verification process. Therefore, we applied the LMedS method to construct the cost function that is used to determine the optimum model to reduce the influence of human factors and improve the robustness of the model estimate. Point-to-point and point-to-surface error metrics are most commonly used. However, point-to-point error in general consists of at least two components, random measurement error and systematic error as a result of a remaining error in the found rigid body transformation. Thus we employ the measure of the average point-to-surface residual to evaluate the registration accuracy. The proposed approaches, together with a traditional RANSAC approach, are tested on four data sets acquired by three different scanners in terms of their computational efficiency and quality of the final registration. The registration results show the st.dev of the average point-to-surface residuals is reduced from 1.4 cm (plain RANSAC) to 0.5 cm (threshold-independent BaySAC). The results also show that, compared to the performance of RANSAC, our BaySAC strategies lead to less iterations and cheaper computational cost when the hypothesis set is contaminated with more outliers.

  13. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model.

    PubMed

    Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai

    2017-02-08

    Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences.

  14. Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model

    PubMed Central

    Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai

    2017-01-01

    Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences. PMID:28208694

  15. Coevolutionary Free Lunches

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Macready, William G.

    2005-01-01

    Recent work on the mathematical foundations of optimization has begun to uncover its rich structure. In particular, the "No Free Lunch" (NFL) theorems state that any two algorithms are equivalent when their performance is averaged across all possible problems. This highlights the need for exploiting problem-specific knowledge to achieve better than random performance. In this paper we present a general framework covering more search scenarios. In addition to the optimization scenarios addressed in the NFL results, this framework covers multi-armed bandit problems and evolution of multiple co-evolving players. As a particular instance of the latter, it covers "self-play" problems. In these problems the set of players work together to produce a champion, who then engages one or more antagonists in a subsequent multi-player game. In contrast to the traditional optimization case where the NFL results hold, we show that in self-play there are free lunches: in coevolution some algorithms have better performance than other algorithms, averaged across all possible problems. We consider the implications of these results to biology where there is no champion.

  16. Optimum threshold selection method of centroid computation for Gaussian spot

    NASA Astrophysics Data System (ADS)

    Li, Xuxu; Li, Xinyang; Wang, Caixia

    2015-10-01

    Centroid computation of Gaussian spot is often conducted to get the exact position of a target or to measure wave-front slopes in the fields of target tracking and wave-front sensing. Center of Gravity (CoG) is the most traditional method of centroid computation, known as its low algorithmic complexity. However both electronic noise from the detector and photonic noise from the environment reduces its accuracy. In order to improve the accuracy, thresholding is unavoidable before centroid computation, and optimum threshold need to be selected. In this paper, the model of Gaussian spot is established to analyze the performance of optimum threshold under different Signal-to-Noise Ratio (SNR) conditions. Besides, two optimum threshold selection methods are introduced: TmCoG (using m % of the maximum intensity of spot as threshold), and TkCoG ( usingμn +κσ n as the threshold), μn and σn are the mean value and deviation of back noise. Firstly, their impact on the detection error under various SNR conditions is simulated respectively to find the way to decide the value of k or m. Then, a comparison between them is made. According to the simulation result, TmCoG is superior over TkCoG for the accuracy of selected threshold, and detection error is also lower.

  17. Change detection with heterogeneous data using ecoregional stratification, statistical summaries and a land allocation algorithm

    Treesearch

    Kathleen M. Bergen; Daniel G. Brown; James F. Rutherford; Eric J. Gustafson

    2005-01-01

    A ca. 1980 national-scale land-cover classification based on aerial photo interpretation was combined with 2000 AVHRR satellite imagery to derive land cover and land-cover change information for forest, urban, and agriculture categories over a seven-state region in the U.S. To derive useful land-cover change data using a heterogeneous dataset and to validate our...

  18. Document image cleanup and binarization

    NASA Astrophysics Data System (ADS)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  19. Probing the Cosmic Gamma-Ray Burst Rate with Trigger Simulations of the Swift Burst Alert Telescope

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Sakamoto, Takanori; Gehrels, Neil; Palmer, David M.; Barthelmy, Scott D.; Graziani, Carlo; Cannizzo, John K.

    2013-01-01

    The gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While hundreds of GRBs are observed by Swift, it remains difficult to determine the intrinsic GRB rate due to the complex trigger algorithm of Swift. Current studies of the GRB rate usually approximate the Swift trigger algorithm by a single detection threshold. However, unlike the previously own GRB instruments, Swift has over 500 trigger criteria based on photon count rate and additional image threshold for localization. To investigate possible systematic biases and explore the intrinsic GRB properties, we develop a program that is capable of simulating all the rate trigger criteria and mimicking the image threshold. Our simulations show that adopting the complex trigger algorithm of Swift increases the detection rate of dim bursts. As a result, our simulations suggest bursts need to be dimmer than previously expected to avoid over-producing the number of detections and to match with Swift observations. Moreover, our results indicate that these dim bursts are more likely to be high redshift events than low-luminosity GRBs. This would imply an even higher cosmic GRB rate at large redshifts than previous expectations based on star-formation rate measurements, unless other factors, such as the luminosity evolution, are taken into account. The GRB rate from our best result gives a total number of 4568 +825 -1429 GRBs per year that are beamed toward us in the whole universe.

  20. Segmentation and classification of brain images using firefly and hybrid kernel-based support vector machine

    NASA Astrophysics Data System (ADS)

    Selva Bhuvaneswari, K.; Geetha, P.

    2017-05-01

    Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.

Top