Homotopy method for optimization of variable-specific-impulse low-thrust trajectories
NASA Astrophysics Data System (ADS)
Chi, Zhemin; Yang, Hongwei; Chen, Shiyu; Li, Junfeng
2017-11-01
The homotopy method has been used as a useful tool in solving fuel-optimal trajectories with constant-specific-impulse low thrust. However, the specific impulse is often variable for many practical solar electric power-limited thrusters. This paper investigates the application of the homotopy method for optimization of variable-specific-impulse low-thrust trajectories. Difficulties arise when the two commonly-used homotopy functions are employed for trajectory optimization. The optimal power throttle level and the optimal specific impulse are coupled with the commonly-used quadratic and logarithmic homotopy functions. To overcome these difficulties, a modified logarithmic homotopy function is proposed to serve as a gateway for trajectory optimization, leading to decoupled expressions of both the optimal power throttle level and the optimal specific impulse. The homotopy method based on this homotopy function is proposed. Numerical simulations validate the feasibility and high efficiency of the proposed method.
Characterization of advanced electric propulsion systems
NASA Technical Reports Server (NTRS)
Ray, P. K.
1982-01-01
Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.
Experimental and simulation study of a Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber
NASA Astrophysics Data System (ADS)
Yu, Nanjia; Zhao, Bo; Li, Gongnan; Wang, Jue
2016-01-01
In this paper, RNG k-ε turbulence model and PDF non-premixed combustion model are used to simulate the influence of the diameter of the ring of hydrogen injectors and oxidizer-to-fuel ratio on the specific impulse of the vortex cooling thrust chamber. The simulation results and the experimental tests of a 2000 N Gaseous oxygen/Gaseous hydrogen vortex cooling thrust chamber reveal that the efficiency of the specific impulse improves significantly with increasing of the diameter of the ring of hydrogen injectors. Moreover, the optimum efficiency of the specific impulse is obtained when the oxidizer-to-fuel ratio is near the stoichiometric ratio.
NASA Technical Reports Server (NTRS)
Powell, W. B.
1973-01-01
Thrust chamber performance is evaluated in terms of an analytical model incorporating all the loss processes that occur in a real rocket motor. The important loss processes in the real thrust chamber were identified, and a methodology and recommended procedure for predicting real thrust chamber vacuum specific impulse were developed. Simplified equations for the calculation of vacuum specific impulse are developed to relate the delivered performance (both vacuum specific impulse and characteristic velocity) to the ideal performance as degraded by the losses corresponding to a specified list of loss processes. These simplified equations enable the various performance loss components, and the corresponding efficiencies, to be quantified separately (except that interaction effects are arbitrarily assigned in the process). The loss and efficiency expressions presented can be used to evaluate experimentally measured thrust chamber performance, to direct development effort into the areas most likely to yield improvements in performance, and as a basis to predict performance of related thrust chamber configurations.
Electrostatic Plasma Accelerator (EPA)
NASA Technical Reports Server (NTRS)
Brophy, John R.; Aston, Graeme
1995-01-01
The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.
NASA Technical Reports Server (NTRS)
Henneberry, Hugh M.; Snyder, Christopher A.
1993-01-01
An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.
Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1992-01-01
Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.
Upper stages utilizing electric propulsion
NASA Technical Reports Server (NTRS)
Byers, D. C.
1980-01-01
The payload characteristics of geocentric missions which utilize electron bombardment ion thruster systems are discussed. A baseline LEO to GEO orbit transfer mission was selected to describe the payload capabilities. The impacts on payloads of both mission parameters and electric propulsion technology options were evaluated. The characteristics of the electric propulsion thrust system and the power requirements were specified in order to predict payload mass. This was completed by utilizing a previously developed methodology which provides a detailed thrust system description after the final mass on orbit, the thrusting time, and the specific impulse are specified. The impact on payloads of total mass in LEO, thrusting time, propellant type, specific impulse, and power source characteristics was evaluated.
A study of variable thrust, variable specific impulse trajectories for solar system exploration
NASA Astrophysics Data System (ADS)
Sakai, Tadashi
A study has been performed to determine the advantages and disadvantages of variable thrust and variable Isp (specific impulse) trajectories for solar system exploration. There have been several numerical research efforts for variable thrust, variable Isp, power-limited trajectory optimization problems. All of these results conclude that variable thrust, variable Isp (variable specific impulse, or VSI) engines are superior to constant thrust, constant Isp (constant specific impulse; or CSI) engines. However, most of these research efforts assume a mission from Earth to Mars, and some of them further assume that these planets are circular and coplanar. Hence they still lack the generality. This research has been conducted to answer the following questions: (1) Is a VSI engine always better than a CSI engine or a high thrust engine for any mission to any planet with any time of flight considering lower propellant mass as the sole criterion? (2) If a planetary swing-by is used for a VSI trajectory, is the fuel savings of a VSI swing-by trajectory better than that of a CSI swing-by or high thrust swing-by trajectory? To support this research, an unique, new computer-based interplanetary trajectory calculation program has been created. This program utilizes a calculus of variations algorithm to perform overall optimization of thrust, Isp, and thrust vector direction along a trajectory that minimizes fuel consumption for interplanetary travel. It is assumed that the propulsion system is power-limited, and thus the compromise between thrust and Isp is a variable to be optimized along the flight path. This program is capable of optimizing not only variable thrust trajectories but also constant thrust trajectories in 3-D space using a planetary ephemeris database. It is also capable of conducting planetary swing-bys. Using this program, various Earth-originating trajectories have been investigated and the optimized results have been compared to traditional CSI and high thrust trajectory solutions. Results show that VSI rocket engines reduce fuel requirements for any mission compared to CSI rocket engines. Fuel can be saved by applying swing-by maneuvers for VSI engines; but the effects of swing-bys due to VSI engines are smaller than that of CSI or high thrust engines.
NASA Astrophysics Data System (ADS)
Kudrin, O. I.
1993-10-01
Relationships are presented which describe changes in the thrust and specific impulse of a solar thermal rocket engine due to a change in the flow rate of the working fluid (hydrogen). Expressions are also presented which describe the variation of the STRE thrust and specific impulse with the distance between the flight vehicle and the sun. Results of calculations are presented for an STRE with afterburning of the working fluid (hydrogen + oxygen) using hydrogen heating by solar energy to a temperature of 2360 K.
A new generation of high performance engines for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Rosenberg, Sanders D.; Schoenman, Leonard
1991-01-01
Experimental data validating advanced engine designs at three thrust levels (5, 15, and 100 lbF) is presented. All of the three engine designs considered employ a Moog bipropellant torque motor valve, platelet injector design, and iridium-lined rhenium combustion chamber. Attention is focused on the performance, robustness, duration, and flexibility characteristics of the engines. It is noted that the 5- and 15-lbF thrust engines can deliver a steady state specific impulse in excess of 310 lbF-sec/lbm at an area ratio of 150:1, while the 150-lbF thrust engines deliver a steady state specific impulse of 320 lbF-sec/lbm at an area ratio of 250:1. The hot-fire test results reveal specific impulse improvements of 15 to 25 sec over conventional fuel film cooled columbium chamber designs while operating at maximum chamber temperatures.
NASA Technical Reports Server (NTRS)
Rom, Frank E.
1968-01-01
The three basic types of nuclear power-plants (solid, liquid, and gas core) are compared on the bases of performance potential and the status of current technology. The solid-core systems are expected to have impulses in the range of 850 seconds, any thrust level (as long as it is greater than 10,000 pounds (44,480 newtons)), and thrust-to-engine-weight ratios of 2 to 20 pounds per pound (19.7 to 197 newtons per kilogram). There is negligible or no fuel loss from the solid-core system. The solid-core system, of course, has had the most work done on it. Large-scale tests have been performed on a breadboard engine that has produced specific impulses greater than 700 seconds at thrust levels of about 50,000 pounds (222,000 newtons). The liquid-core reactor would be interesting in the specific impulse range of 1200 to 1500 seconds. Again, any thrust level can be obtained depending on how big or small the reactor is made. The thrust-to-engine weight ratio for these systems would be in the range of 1 to 10. The discouraging feature of the liquid-core system is the high fuel-loss ratio anticipated. Values of 0.01 to 0.1 pound (0.00454 to 0.0454 kilograms) or uranium loss per pound (0.454 kilograms) of hydrogen are expected, if impulses in the range of 1200 to 1500 seconds are desired. The gas-core reactor shows specific impulses in the range of 1500 to 2500 seconds. The thrust levels should be at least as high as the weight so that the thrust-to-weight ratio does not go below 1. Because the engine weight is not expected to be under 100,000 pounds (444,800 newtons), thrust levels higher than 100,000 pounds (448,000 newtons) are of interest. The thrust-to-engine weights, in that case, would run from 1 to 20 pounds per pound (9.8 to 19.7 kilograms). Gas-core reactors tend to be very large, and can have high thrust-to-weight ratios. As in the case of the liquid-core system, the fuel loss that will be attendant with gas cores as envisioned today will be rather high. The loss rates will be 0.01 to 0.1 pound of uranium (0.00454 to 0.0454 kilograms) for each pound (0.454 kilograms) of hydrogen.
Low-thrust Isp sensitivity study
NASA Technical Reports Server (NTRS)
Schoenman, L.
1982-01-01
A comparison of the cooling requirements and attainable specific impulse performance of engines in the 445 to 4448N thrust class utilizing LOX/RP-1, LOX/Hydrogen and LOX/Methane propellants is presented. The unique design requirements for the regenerative cooling of low-thrust engines operating at high pressures (up to 6894 kPa) were explored analytically by comparing single cooling with the fuel and the oxidizer, and dual cooling with both the fuel and the oxidizer. The effects of coolant channel geometry, chamber length, and contraction ratio on the ability to provide proper cooling were evaluated, as was the resulting specific impulse. The results show that larger contraction ratios and smaller channels are highly desirable for certain propellant combinations.
2011-03-01
for controlled thruster operation at varying conditions. An inverted pendulum was used to take thrust measurements. Thrust to power ratio, anode...for comparison will include thrust, T. Thrust 21 can be measured by a sensitive inverted pendulum thrust stand. Specific impulse would be...to this pressure. III.4 Diagnostic Equipment The instrument used to take thrust measurements was the Busek T8 inverted pendulum thrust stand [13
Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1991-01-01
The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0 and 10 Hz frequencies for liquid filled level in the range between 30 to 80 percent, it shows that the selection of 1.0 Hz frequency impulsive thrust over the other frequency ranges of impulsive thrust is most proper based on the present study.
Cryogenic liquid resettlement activated by impulsive thrust in space-based propulsion system
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1991-01-01
The purpose of present study is to investigate the most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment. Comparison among impulsive reverse gravity thrust with 0.1, 1.0, and 10 Hz frequencies for liquid-filled level in the range between 30 to 80 percent shows that the selection of a medium frequency of 1.0 Hz impulsive thrust over the other frequency ranges of impulsive thrust is the most proper.
Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method
NASA Astrophysics Data System (ADS)
Li, Jing
2016-07-01
This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.
Specific Impulse and Mass Flow Rate Error
NASA Technical Reports Server (NTRS)
Gregory, Don A.
2005-01-01
Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.
Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints
NASA Technical Reports Server (NTRS)
Englander, Jacob Aldo; Vavrina, Matthew; Hinckley, David
2016-01-01
Low-thrust electric propulsion provides many advantages for mission to difficult targets-Comets and asteroids-Mercury-Outer planets (with sufficient power supply)Low-thrust electric propulsion is characterized by high power requirements but also very high specific impulse (Isp), leading to very good mass fractions. Low-thrust trajectory design is a very different process from chemical trajectory.
A Flight Demonstration of Plasma Rocket Propulsion
NASA Technical Reports Server (NTRS)
Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph
2000-01-01
The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.
Multiply charged ion generation according to magnetic field configurations in Hall thruster plasmas
NASA Astrophysics Data System (ADS)
Kim, Holak; Lee, Seunghun; Kim, Junbum; Lim, Youbong; Choe, Wonho; KIMS Collaboration
2016-09-01
Plasma propulsion is the most promising techniques to operate satellites for low earth orbit as well as deep space exploration. A typical plasma propulsion system is Hall thruster (HT) that uses crossed electromagnetic fields to ionize a propellant gas and to accelerate the ionized gas. In HT the tailoring of magnetic fields is significant due to that the electron confinement in the electromagnetic fields affects thruster performances such as thrust force, specific impulse, power efficiency, and life time. We designed an anode layer HT (TAL) with the magnetic field tailoring. The TAL is possible to keep discharge in 1 2 kilovolts, which voltage is useful to obtain high specific impulse The magnetic field tailoring is adapted to minimize undesirable heat dissipations and secondary electron emissions at a wall surrounding plasma In presentation, we will report TAL performances including thrust force, specific impulse, and anode efficiency measured by a pendulum thrust stand. This mechanical measurement will be compared to the plasma diagnostics conducted by angular Faraday probe, retarding potential analyzer, and ExB probe Grant No. 2014M1A3A3A02034510.
Investigation of a pulsed electrothermal thruster system
NASA Technical Reports Server (NTRS)
Burton, R. L.; Goldstein, S. A.; Hilko, B. K.; Tidman, D. A.; Winsor, N. K.
1984-01-01
The performance of an ablative wall Pulsed Electrothermal (PET) thruster is accurately characterized on a calibrated thrust stand, using polyethylene propellant. The thruster is tested for four configurations of capillary length and pulse length. The exhaust velocity is determined with twin time-of-flight photodiode stagnation probes, and the ablated mass is measured from the loss over ten shots. Based on the measured thrust impulse and the ablated mass, the specific impulse varies from 1000 to 1750 seconds. The thrust to power varies from .05 N/kW (quasi-steady mode) to .10 N/kW (unsteady mode). The thruster efficiency varies from .56 at 1000 seconds to .42 at 1750 seconds. A conceptual design is presented for a 40 kW PET propulsion system. The point design system performance is .62 system efficiency at 1000 seconds specific impulse. The system's reliability is enhanced by incorporating 20, 20 kW thruster modules which are fired in pairs. The thruster design is non-ablative, and uses water propellant, from a central storage tank, injected through the cathode.
Project NEO Specific Impulse Testing Solutions
NASA Technical Reports Server (NTRS)
Baffa, Bill
2018-01-01
The Neo test stand is currently configured to fire a horizontally mounted rocket motor with up to 6500 lbf thrust. Currently, the Neo test stand can measure flow of liquid propellant and oxidizer, pressures residing in the closed system up to the combustion chamber. The current configuration does not have the ability to provide all data needed to compute specific impulse. This presents three methods to outfit the NEO test fixture with instrumentation allowing for calculation of specific impulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi
2007-06-15
A microplasma thruster has been developed, consisting of a cylindrical microplasma source 10 mm long and 1.5 mm in inner diameter and a conical micronozzle 1.0-1.4 mm long with a throat of 0.12-0.2 mm in diameter. The feed or propellant gas employed is Ar at pressures of 10-100 kPa, and the surface-wave-excited plasma is established by 4.0 GHz microwaves at powers of <10 W. The thrust has been measured by a combination of target and pendulum methods, exhibiting the performance improved by discharging the plasma. The thrust obtained is 1.4 mN at an Ar gas flow rate of 60 SCCMmore » (1.8 mg/s) and a microwave power of 6 W, giving a specific impulse of 79 s and a thrust efficiency of 8.7%. The thrust and specific impulse are 0.9 mN and 51 s, respectively, in cold-gas operation. A comparison with numerical analysis indicates that the pressure thrust contributes significantly to the total thrust at low gas flow rates, and that the micronozzle tends to have an isothermal wall rather than an adiabatic.« less
Development of advanced inert-gas ion thrusters
NASA Technical Reports Server (NTRS)
Poeschel, R. L.
1983-01-01
Inert gas ion thruster technology offers the greatest potential for providing high specific impulse, low thrust, electric propulsion on large, Earth orbital spacecraft. The development of a thruster module that can be operated on xenon or argon propellant to produce 0.2 N of thrust at a specific impulse of 3000 sec with xenon propellant and at 6000 sec with argon propellant is described. The 30 cm diameter, laboratory model thruster is considered to be scalable to produce 0.5 N thrust. A high efficiency ring cusp discharge chamber was used to achieve an overall thruster efficiency of 77% with xenon propellant and 66% with argon propellant. Measurements were performed to identify ion production and loss processes and to define critical design criteria (at least on a preliminary basis).
The effect of spinal manipulation impulse duration on spine neuromechanical responses
Pagé, Isabelle; Nougarou, François; Dugas, Claude; Descarreaux, Martin
2014-01-01
Introduction: Spinal manipulation therapy (SMT) is characterized by specific kinetic and kinematic parameters that can be modulated. The purpose of this study is to investigate fundamental aspects of SMT dose-physiological response relation in humans by varying SMT impulse duration. Methods: Twenty healthy adults were subjected to four different SMT force-time profiles delivered by a servo-controlled linear actuator motor and differing in their impulse duration. EMG responses of the left and right thoracic paraspinal muscles (T6 and T8 levels) and vertebral displacements of T7 and T8 were evaluated for all SMT phases. Results: Significant differences in paraspinal EMG were observed during the “Thrust phase” and immediately after (“Post-SMT1”) (all T8 ps < 0.01 and T6 during the thrust ps < 0.05). Sagittal vertebral displacements were similar across all conditions (p > 0.05). Conclusion: Decreasing SMT impulse duration leads to a linear increase in EMG response of thoracic paraspinal during and following the SMT thrust. PMID:24932018
Testing and evaluation of the LES-6 pulsed plasma thruster by means of a torsion pendulum system
NASA Technical Reports Server (NTRS)
Hamidian, J. P.; Dahlgren, J. B.
1973-01-01
Performance characteristics of the LES-6 pulsed plasma thruster over a range of input conditions were investigated by means of a torsion pendulum system. Parameters of particular interest included the impulse bit and time average thrust (and their repeatability), specific impulse, mass ablated per discharge, specific thrust, energy per unit area, efficiency, and variation of performance with ignition command rate. Intermittency of the thruster as affected by input energy and igniter resistance were also investigated. Comparative experimental data correlation with the data presented. The results of these tests indicate that the LES-6 thruster, with some identifiable design improvements, represents an attractive reaction control thruster for attitude contol applications on long-life spacecraft requiring small metered impulse bits for precise pointing control of science instruments.
Hypersonic ignition and thrust production in a scramjet
NASA Technical Reports Server (NTRS)
Paull, A.
1993-01-01
Experimental results are given for the specific impulse produced by a two-dimensional scramjet at flight speeds ranging between 2.5 and 5.5 km/s with a combustion chamber Mach number of 4.5. Both hydrogen and ethane fuels were used. Results show that provided sufficiently high pressures and sufficiently long combustion chambers are used specific impulses in excess of 1500 s can be obtained with hydrogen. Ethane produced specific impulses less than 600 s with the same conditions and model configuration.
Fuel-optimal, low-thrust transfers between libration point orbits
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey R.
Mission design requires the efficient management of spacecraft fuel to reduce mission cost, increase payload mass, and extend mission life. High efficiency, low-thrust propulsion devices potentially offer significant propellant reductions. Periodic orbits that exist in a multi-body regime and low-thrust transfers between these orbits can be applied in many potential mission scenarios, including scientific observation and communications missions as well as cargo transport. In light of the recent discovery of water ice in lunar craters, libration point orbits that support human missions within the Earth-Moon region are of particular interest. This investigation considers orbit transfer trajectories generated by a variable specific impulse, low-thrust engine with a primer-vector-based, fuel-optimizing transfer strategy. A multiple shooting procedure with analytical gradients yields rapid solutions and serves as the basis for an investigation into the trade space between flight time and consumption of fuel mass. Path and performance constraints can be included at node points along any thrust arc. Integration of invariant manifolds into the design strategy may also yield improved performance and greater fuel savings. The resultant transfers offer insight into the performance of the variable specific impulse engine and suggest novel implementations of conventional impulsive thrusters. Transfers incorporating invariant manifolds demonstrate the fuel savings and expand the mission design capabilities that are gained by exploiting system symmetry. A number of design applications are generated.
Theoretical Performance of Hydrogen-Oxygen Rocket Thrust Chambers
NASA Technical Reports Server (NTRS)
Sievers, Gilbert K.; Tomazic, William A.; Kinney, George R.
1961-01-01
Data are presented for liquid-hydrogen-liquid-oxygen thrust chambers at chamber pressures from 15 to 1200 pounds per square inch absolute, area ratios to approximately 300, and percent fuel from about 8 to 34 for both equilibrium and frozen composition during expansion. Specific impulse in vacuum, specific impulse, combustion-chamber temperature, nozzle-exit temperature, characteristic velocity, and the ratio of chamber-to-nozzle-exit pressure are included. The data are presented in convenient graphical forms to allow quick calculation of theoretical nozzle performance with over- or underexpansion, flow separation, and introduction of the propellants at various initial conditions or heat loss from the combustion chamber.
NASA Technical Reports Server (NTRS)
Rudolph, L. K.; Jahn, R. G.; Clark, K. E.; Von Jaskowsky, W. F.
1976-01-01
The onset of voltage fluctuations in a multi-megawatt quasi-steady MPD accelerator, indicative of increased cathode ablation and a consequent degradation of performance, is found to be a function of cathode size. With longer cathodes, this onset shifts to substantially higher powers per unit mass flow and the plasma exhaust velocity can be increased to values previously thought inaccessible to accelerators of this class. Centerline velocities up to 30 km/sec have been measured in argon, which for the observed exhaust profiles translate into specific impulses up to 2400 sec and corresponding thrust efficiencies above 30%.
Measurement of Impulsive Thrust from a Closed Radio Frequency Cavity in Vacuum
NASA Technical Reports Server (NTRS)
White, Harold; March, Paul; Lawrence, James; Vera, Jerry; Sylvester, Andre; Brady, David; Bailey, Paul
2016-01-01
A vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) has been completed. The test campaign consisted of a forward thrust phase and reverse thrust phase at less than 8 x 10(exp -6) Torr vacuum with power scans at 40 watts, 60 watts, and 80 watts. The test campaign included a null thrust test effort to identify any mundane sources of impulsive thrust, however none were identified. Thrust data from forward, reverse, and null suggests that the system is consistently performing with a thrust to power ratio of 1.2 +/- 0.1 mN/kW.
In-water gas combustion for thrust production
NASA Astrophysics Data System (ADS)
Teslenko, V. S.; Drozhzhin, A. P.; Medvedev, R. N.
2017-07-01
The paper presents the results of experimental study for hydrodynamic processes occurring during combustion of a stoichiometric mixture propane-oxygen in combustion chambers with different configurations and submerged into water. The pulses of force acting upon a thrust wall were measured for different geometries: cylindrical, conic, hemispherical, including the case of gas combustion near a flat thrust wall. After a single charge of stoichiometric mixture propane-oxygen is burnt near the thrust wall, the process of cyclic generation of force pulses develops. The first pulse is generated due to pressure growth during gas combustion, and the following pulses are the result of hydrodynamic pulsations of the gaseous cavity. Experiments demonstrated that efficient generation of thrust occurs if all bubble pulsations are used during combustion of a single gas combustion. In the series of experiments, the specific impulse on the thrust wall was in the range 104-105 s (105-106 m/s) with account for positive and negative components of impulse.
Optimal high- and low-thrust geocentric transfer
NASA Technical Reports Server (NTRS)
Sackett, L. L.; Edelbaum, T. N.
1974-01-01
A computer code which rapidly calculates time optimal combined high- and low-thrust transfers between two geocentric orbits in the presence of a strong gravitational field has been developed as a mission analysis tool. The low-thrust portion of the transfer can be between any two arbitrary ellipses. There is an option for including the effect of two initial high-thrust impulses which would raise the spacecraft from a low, initially circular orbit to the initial orbit for the low-thrust portion of the transfer. In addition, the effect of a single final impulse after the low-thrust portion of the transfer may be included. The total Delta V for the initial two impulses must be specified as well as the Delta V for the final impulse. Either solar electric or nuclear electric propulsion can be assumed for the low-thrust phase of the transfer.
Two Temperature Modeling and Experimental Measurements of Laser Sustained Hydrogen Plasmas
1993-05-01
4 1.3 Theoretical Background .................................................................. 7 1.4...typically produce low specific impulses with an upper limit of approximately 450 seconds. The theoretical chamber temperature in such a system can be as...systems are theoretically capable of producing moderate thrusts (> 1 kN) with specific impulses in excess of 1000 seconds for 10 MW input power. This
Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System
NASA Technical Reports Server (NTRS)
Anderson, William E.
2005-01-01
The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.
NASA Astrophysics Data System (ADS)
Kim, Jung-Min; Han, Hyung-Seok; Choi, Jeong-Yeol
2018-04-01
This study examines a multi-tube pulse detonation engine (PDE) which has a type of constant volume combustion. We designed and made the multi-tube PDE and then conducted an experiment in various operating frequencies and equivalence ratios. First, experiments with operating frequencies of 40, 80, 120, 160, and 200 Hz resulted in an average thrust and specific impulse 23.14 N and 42.34 s. The next experiment resulted in the equivalence ratio varying from 0.81 to 1.38, which resulted in an average thrust and specific impulse 22.36 N and 40.11 s. The average detonation velocity was 8% lower than that calculated according to C-J theory. The incidence ratios of the detonation wave were stable with the exception of the operating frequency of 200 Hz. However, at 200 Hz, the incidence ratio was less than 50%. We assumed that a low fill fraction occurred for this problem. The thrust of the PDE increased with the operating frequency. However, the thrust increase was at a lower rate than in previous studies, because of a lost thrust output result from the slow response time of the load cell amplifier.
Direct measurement of the impulse in a magnetic thrust chamber system for laser fusion rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeno, Akihiro; Yamamoto, Naoji; Nakashima, Hideki
2011-08-15
An experiment is conducted to measure an impulse for demonstrating a magnetic thrust chamber system for laser fusion rocket. The impulse is produced by the interaction between plasma and magnetic field. In the experiment, the system consists of plasma and neodymium permanent magnets. The plasma is created by a single-beam laser aiming at a polystyrene spherical target. The impulse is 1.5 to 2.2 {mu}Ns by means of a pendulum thrust stand, when the laser energy is 0.7 J. Without magnetic field, the measured impulse is found to be zero. These results indicate that the system for generating impulse is working.
A Microwave Thruster for Spacecraft Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiravalle, Vincent P
This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster aremore » discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.« less
Micropropulsion devices based on molecular acceleration by pulsed optical lattices
NASA Astrophysics Data System (ADS)
Shneider, Mikhail N.; Gimelshein, Sergey F.; Barker, Peter F.
2006-03-01
The ability of a traveling periodic optical potential to increase the thrust and specific impulse of microthrusters is investigated. Two flow regimes, high density and low density, are considered. The thrust from a micronozzle, with a stagnation pressure of 1 atm and temperature of 300 K, can be increased by more than an order of magnitude. These conditions can be achieved for a constant velocity lattice, produced by two near counterpropagating optical fields that are focused into the nozzle throat. A propulsion system that operates in low-density regime and is driven by molecules trapped by an accelerating optical lattice is proposed. It is shown that such a system has a potential to achieve a specific impulse of thousands of seconds.
A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen E.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.;
2013-01-01
Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test).1 Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Binary and ternary carbide fuels may have the potential for providing even higher specific impulses.
Specific Impulse Definition for Ablative Laser Propulsion
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
2004-01-01
The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.
A Performance Comparison of Xenon and Krypton Propellant on an SPT-100 Hall Thruster (Preprint)
2011-08-10
plume data from electrostatic probes. This paper presents the results of performance measurements made using an inverted pendulum thrust stand. Krypton...inverted pendulum thrust stand. Krypton operating conditions were tested over a large range of operating powers from 800 W to 3.9 kW. Analysis of how...advantages for missions where high thrust at reduced specific impulse is advantageous, primarily for orbit raising missions. Bismuth’s main drawback is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Samuel A.; Pajer, Gary A.; Paluszek, Michael A.
A system and method for producing and controlling high thrust and desirable specific impulse from a continuous fusion reaction is disclosed. The resultant relatively small rocket engine will have lower cost to develop, test, and operate that the prior art, allowing spacecraft missions throughout the planetary system and beyond. The rocket engine method and system includes a reactor chamber and a heating system for heating a stable plasma to produce fusion reactions in the stable plasma. Magnets produce a magnetic field that confines the stable plasma. A fuel injection system and a propellant injection system are included. The propellant injectionmore » system injects cold propellant into a gas box at one end of the reactor chamber, where the propellant is ionized into a plasma. The propellant and fusion products are directed out of the reactor chamber through a magnetic nozzle and are detached from the magnetic field lines producing thrust.« less
Status of Pulsed Inductive Thruster Research
NASA Technical Reports Server (NTRS)
Hrbud, Ivana; LaPointe, Michael; Vondra, Robert; Lovberg, Ralph; Dailey, C. Lee; Schafer, Charles (Technical Monitor)
2002-01-01
The TRW Pulsed Inductive Thruster (PIT) is an electromagnetic propulsion system that can provide high thrust efficiency over a wide range of specific impulse values. In its basic form, the PIT consists of a flat spiral coil covered by a thin dielectric plate. A pulsed gas injection nozzle distributes a thin layer of gas propellant across the plate surface at the same time that a pulsed high current discharge is sent through the coil. The rising current creates a time varying magnetic field, which in turn induces a strong azimuthal electric field above the coil. The electric field ionizes the gas propellant and generates an azimuthal current flow in the resulting plasma. The current in the plasma and the current in the coil flow in opposite directions, providing a mutual repulsion that rapidly blows the ionized propellant away from the plate to provide thrust. The thrust and specific impulse can be tailored by adjusting the discharge power, pulse repetition rate, and propellant mass flow, and there is minimal if any erosion due to the electrodeless nature of the discharge. Prior single-shot experiment,; performed with a Diameter diameter version of the PIT at TRW demonstrated specific impulse values between 2,000 seconds and 8,000 seconds, with thruster efficiencies of about 52% for ammonia. This paper outlines current and planned activities to transition the single shot device into a multiple repetition rate thruster capable of supporting NASA strategic enterprise missions.
NASA Astrophysics Data System (ADS)
Toshimitsu, Kazuhiko; Hara, Kosei; Mikajiri, Shuuto; Takiguchi, Naoki
2016-12-01
A rotating detonation engine (RDE) is one of candidates of aerospace engines for supersonic cruse, which is better for propulsion system than a pulse detonation engine (PDE) from the view of continuous thrust and simple structure. The propulsion performance of a proto-type RDE and a PDE by single pulse explosion with methane-oxygen is investigated. Furthermore, the performance of the RDE with acetylene-oxygen gas mixtures is investigated. Its impulse is estimated through ballistic pendulum method with maximum displacement and damping ratio. The comparison of specific impulses of the mixture gases at atmospheric pressure is shown. The specific impulses of the RDE and the PDE are almost same with methane-oxygen gas. Furthermore, the fuel-base specific impulse of the RDE with acetylene-oxygen gas is about over twice as large as one of methane-oxygen, and its maximum specific impulse is 1100 seconds.
A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.
2013-01-01
Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Long, Y. T.
1995-01-01
Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.
Preliminary tests of the electrostatic plasma accelerator
NASA Technical Reports Server (NTRS)
Aston, G.; Acker, T.
1990-01-01
This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.
A Performance and Plume Comparison of Xenon and Krypton Propellant on the SPT-100
2012-07-02
HET (1.35 kW), performance measurements were made using an inverted pendulum thrust stand. The plume was also characterized by a Faraday probe and RPA...performance reduction for the case of the flight model SPT-100 HET (1.35 kW), per- formance measurements were made using an inverted pendulum thrust stand...where high thrust at reduced specific impulse is advantageous, such as orbit raising missions. Bismuth’s main drawback is that the metal must be
Performance of a 100 kW class applied field MPD thruster
NASA Technical Reports Server (NTRS)
Mantenieks, Maris A.; Sovey, James S.; Myers, Roger M.; Haag, Thomas W.; Raitano, Paul; Parkes, James E.
1989-01-01
Performance of a 100 kW, applied field magnetoplasmadynamic (MPD) thruster was evaluated and sensitivities of discharge characteristics to arc current, mass flow rate, and applied magnetic field were investigated. Thermal efficiencies as high as 60 percent, thrust efficiencies up to 21 percent, and specific impulses of up to 1150 s were attained with argon propellant. Thrust levels up to 2.5 N were directly measured with an inverted pendulum thrust stand at discharge input powers up to 57 kW. It was observed that thrust increased monotonically with the product of arc current and magnet current.
Coaxial plasma thrusters for high specific impulse propulsion
NASA Technical Reports Server (NTRS)
Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen
1991-01-01
A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.
Experimental and numerical investigations on PDE performance augmentation by means of an ejector
NASA Astrophysics Data System (ADS)
Canteins, G.; Franzetti, F.; Zocłońska, E.; Khasainov, B. A.; Zitoun, R.; Desbordes, D.
2006-06-01
To improve the performance of pulse detonation engines, a 48 cm long cylindrical combustion chamber of 5cm internal diameter (i.d.) is fitted with an ejector of constant section. The role of the ejector is (i) to provide partial confinement of the detonation products escaping from the chamber and (ii) to suck in fresh air and then to increase the mass ejected compared to the ejection of burned gases alone. The combustion chamber is fully filled with a stoichiometric ethylene/oxygen mixture at ambient conditions. Three parameters of the ejector are varied: the i.d. D, the length L, and the position d relative to the thrust wall of the combustion chamber. For various configurations, the specific impulse ( I sp) is determined in single shot experiments. The maximum operating frequency ( f max) and the maximum thrust are then deduced. I sp is measured by means of the ballistic pendulum method, and f max is derived from the pressure signal recorded on the combustion chamber thrust wall. The addition of an ejector increases the specific impulse up to 60% in the best configuration tested, from 164s without ejector to 260s with ejector. The specific impulse can be represented by a single curve using suitable dimensionless parameters. The thrust results for the main ejector studied ( D = 80mm) indicate an optimal ( L, d) configuration that provides a 28% thrust gain. For the same ejector, f max remains constant and equal to the frequency obtained without ejector in a large range of ( L, d) values, before decreasing. Two-dimensional unsteady numerical computations agree reasonably with the experiments, slightly overestimating the experimental values. The results indicate that 80% of the I sp gain comes from the action of the expanding detonation products on the annular end surface of the combustion chamber, governed by the tube wall thickness.
Test stand for precise measurement of impulse and thrust vector of small attitude control jets
NASA Technical Reports Server (NTRS)
Woodruff, J. R.; Chisel, D. M.
1973-01-01
A test stand which accurately measures the impulse bit and thrust vector of reaction jet thrusters used in the attitude control system of space vehicles has been developed. It can be used to measure, in a vacuum or ambient environment, both impulse and thrust vector of reaction jet thrusters using hydrazine or inert gas propellants. The ballistic pendulum configuration was selected because of its accuracy, simplicity, and versatility. The pendulum is mounted on flexure pivots rotating about a vertical axis at the center of its mass. The test stand has the following measurement capabilities: impulse of 0.00004 to 4.4 N-sec (0.00001 to 1.0 lb-sec) with a pulse duration of 0.5 msec to 1 sec; static thrust of 0.22 to 22 N (0.05 to 5 lb) with a 5 percent resolution; and thrust angle alinement of 0.22 to 22 N (0.05 to 5 lb) thrusters with 0.01 deg accuracy.
Theta-Pinch Thruster for Piloted Deep Space Exploration
NASA Technical Reports Server (NTRS)
LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)
2000-01-01
A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.
Concept and performance study of turbocharged solid propellant ramjet
NASA Astrophysics Data System (ADS)
Li, Jiang; Liu, Kai; Liu, Yang; Liu, Shichang
2018-06-01
This study proposes a turbocharged solid propellant ramjet (TSPR) propulsion system that integrates a turbocharged system consisting of a solid propellant (SP) air turbo rocket (ATR) and the fuel-rich gas generator of a solid propellant ramjet (SPR). First, a suitable propellant scheme was determined for the TSPR. A solid hydrocarbon propellant is used to generate gas for driving the turbine, and a boron-based fuel-rich propellant is used to provide fuel-rich gas to the afterburner. An appropriate TSPR structure was also determined. The TSPR's thermodynamic cycle was analysed to prove its theoretical feasibility. The results showed that the TSPR's specific cycle power was larger than those of SP-ATR and SPR and thermal efficiency was slightly less than that of SP-ATR. Overall, TSPR showed optimal performance in a wide flight envelope. The specific impulses and specific thrusts of TSPR, SP-ATR, and SPR in the flight envelope were calculated and compared. TSPR's flight envelope roughly overlapped that of SP-ATR, its specific impulse was larger than that of SP-ATR, and its specific thrust was larger than those of SP-ATR and SPR. Attempts to improve the TSPR off-design performance prompted our proposal of a control plan for off-design codes in which both the turbocharger corrected speed and combustor excess gas coefficient are kept constant. An off-design performance model was established by analysing the TSPR working process. We concluded that TSPR with a constant corrected speed had wider flight envelope, higher thrust, and higher specific impulse than TSPR with a constant physical speed determined by calculating the performance of off-design TSPR codes under different control plans. The results of this study can provide a reference for further studies on TSPRs.
Detailed Design of a Pulsed Plasma Thrust Stand
NASA Astrophysics Data System (ADS)
Verbin, Andrew J.
This thesis gives a detailed design process for a pulsed type thruster. The thrust stand designed in this paper is for a Pulsed Plasma Thruster built by Sun Devil Satellite Laboratory, a student organization at Arizona State University. The thrust stand uses a torsional beam rotating to record displacement. This information, along with impulse-momentum theorem is applied to find the impulse bit of the thruster, which varies largely from other designs which focus on using the natural dynamics their fixtures. The target impulse to record on this fixture was estimated to be 275 muN-s of impulse. Through calibration and experimentation, the fixture is capable of recording an impulse of 332 muN-s +/- 14.81 muN-s, close to the target impulse. The error due to noise was characterized and evaluated to be under 5% which is deemed to be acceptable.
An Experiment on Repetitive Pulse Operation of Microwave Rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya
2008-04-28
Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.
Thrust Evaluation of an Arcjet Thruster Using Dimethyl Ether as a Propellant
NASA Astrophysics Data System (ADS)
Kakami, Akira; Beppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi
This paper describes the performance of an arcjet thruster using dimethyl ether (DME) as a propellant. DME, an ether compound, has adequate characteristics for space propulsion systems; DME is storable in a liquid state without a high pressure or cryogenic device and requires no sophisticated temperature management. DME is gasified and liquefied simply by adjusting temperature, whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of the designed kW-class DME arcjet thruster is measured with a torsional thrust stand. Thrust measurements show that thrust is increased with propellant mass flow rate, and that thrust using DME propellant is higher than when using nitrogen. The prototype DME arcjet thruster yields a specific impulse of 330 s, a thruster efficiency of 0.14, and a thrust of 0.19 N at 60-mg/s DME mass flow rate at 25-A discharge current. The corresponding discharge power and specific power are 2.3 kW and 39 MJ/kg.
Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle
NASA Astrophysics Data System (ADS)
Fariz, A.; Sasongko, R. A.; Poetro, R. E.
2018-04-01
The effect of solid rocket motor specifications, i.e. specific impulse and mass flow rate, and coast time on the thrust profile of three stages small launch vehicle is studied. Solid rocket motor specifications are collected from various small launch vehicle that had ever been in operation phase, and also from previous study. Comparison of orbital parameters shows that the radius of apocenter targeted can be approached using one combination of solid rocket motor specifications and appropriate coast time. However, the launch vehicle designed is failed to achieve the targeted orbit nor injecting the satellite to any orbit.
Expendable Launch Vehicles Briefing and Basic Rocketry Physics
NASA Technical Reports Server (NTRS)
Delgado, Luis G.
2010-01-01
This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.
Pulsed Electric Propulsion Thrust Stand Calibration Method
NASA Technical Reports Server (NTRS)
Wong, Andrea R.; Polzin, Kurt A.; Pearson, J. Boise
2011-01-01
The evaluation of the performance of any propulsion device requires the accurate measurement of thrust. While chemical rocket thrust is typically measured using a load cell, the low thrust levels associated with electric propulsion (EP) systems necessitate the use of much more sensitive measurement techniques. The design and development of electric propulsion thrust stands that employ a conventional hanging pendulum arm connected to a balance mechanism consisting of a secondary arm and variable linkage have been reported in recent publications by Polzin et al. These works focused on performing steady-state thrust measurements and employed a static analysis of the thrust stand response. In the present work, we present a calibration method and data that will permit pulsed thrust measurements using the Variable Amplitude Hanging Pendulum with Extended Range (VAHPER) thrust stand. Pulsed thrust measurements are challenging in general because the pulsed thrust (impulse bit) occurs over a short timescale (typically 1 micros to 1 millisecond) and cannot be resolved directly. Consequently, the imparted impulse bit must be inferred through observation of the change in thrust stand motion effected by the pulse. Pulsed thrust measurements have typically only consisted of single-shot operation. In the present work, we discuss repetition-rate pulsed thruster operation and describe a method to perform these measurements. The thrust stand response can be modeled as a spring-mass-damper system with a repetitive delta forcing function to represent the impulsive action of the thruster.
NASA Technical Reports Server (NTRS)
Rothenberg, Edward A; Ordin, Paul M
1954-01-01
The performance of jet fuel with an oxidant mixture containing 70 percent liquid fluorine and 30 percent liquid oxygen by weight was investigated in a 500-pound-thrust engine operating at a chamber pressure of 300 pounds per square inch absolute. A one-oxidant-on-one-fuel skewed-hole impinging-jet injector was evaluated in a chamber of characteristic length equal to 50 inches. A maximum experimental specific impulse of 268 pound-seconds per pound was obtained at 25 percent fuel, which corresponds to 96 percent of the maximum theoretical specific impulse based on frozen composition expansion. The maximum characteristic velocity obtained was 6050 feet per second at 23 percent fuel, or 94 percent of the theoretical maximum. The average thrust coefficient was 1.38 for the 500-pound thrust combustion-chamber nozzle used, which was 99 percent of the theoretical (frozen) maximum. Mixtures of fluorine and oxygen were found to be self-igniting with jet fuel with fluorine concentrations as low as 4 percent, when low starting propellant flow rated were used.
Pulsed thrust measurements using electromagnetic calibration techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Haibin; Shi Chenbo; Zhang Xin'ai
2011-03-15
A thrust stand for accurately measuring impulse bits, which ranged from 10-1000 {mu}N s using a noncontact electromagnetic calibration technique is described. In particular, a permanent magnet structure was designed to produce a uniform magnetic field, and a multiturn coil was made to produce a calibration force less than 10 mN. The electromagnetic calibration force for pulsed thrust measurements was linear to the coil current and changed less than 2.5% when the distance between the coil and magnet changed 6 mm. A pulsed plasma thruster was first tested on the thrust stand, and afterward five single impulse bits were measuredmore » to give a 310 {mu}N s average impulse bit. Uncertainty of the measured impulse bit was analyzed to evaluate the quality of the measurement and was found to be 10 {mu}N s with 95% credibility.« less
Applied-field MPD thruster geometry effects
NASA Technical Reports Server (NTRS)
Myers, Roger M.
1991-01-01
Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.
Nuclear Thermal Propulsion: Past, Present, and a Look Ahead
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
2014-01-01
NTR: High thrust high specific impulse (2 x LOXLH2 chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2 propellant which is then exhausted to produce thrust. Conventional chemical engine LH2 tanks, turbo pumps, regenerative nozzles and radiation-cooled shirt extensions used -- NTR is next evolutionary step in high performance liquid rocket engines.
Noncatalytic hydrazine thruster development - 0.050 to 5.0 pounds thrust
NASA Technical Reports Server (NTRS)
Murch, C. K.; Sackheim, R. L.; Kuenzly, J. D.; Callens, R. A.
1976-01-01
Noncatalytic (thermal-decompositon) hydrazine thrusters can operate in both the pulsing and steady-state modes to meet the propulsive requirements of long-life spacecraft. The thermal decomposition mode yields higher specific impulse than is characteristic of catalytic thrusters at similar thrust levels. This performance gain is the result of higher temperature operation and a lower fraction of ammonia dissociation. Some life limiting factors of catalytic thrusters are eliminated.
High-Power Hall Thruster Technology Evaluated for Primary Propulsion Applications
NASA Technical Reports Server (NTRS)
Manzella, David H.; Jankovsky, Robert S.; Hofer, Richard R.
2003-01-01
High-power electric propulsion systems have been shown to be enabling for a number of NASA concepts, including piloted missions to Mars and Earth-orbiting solar electric power generation for terrestrial use (refs. 1 and 2). These types of missions require moderate transfer times and sizable thrust levels, resulting in an optimized propulsion system with greater specific impulse than conventional chemical systems and greater thrust than ion thruster systems. Hall thruster technology will offer a favorable combination of performance, reliability, and lifetime for such applications if input power can be scaled by more than an order of magnitude from the kilowatt level of the current state-of-the-art systems. As a result, the NASA Glenn Research Center conducted strategic technology research and development into high-power Hall thruster technology. During program year 2002, an in-house fabricated thruster, designated the NASA-457M, was experimentally evaluated at input powers up to 72 kW. These tests demonstrated the efficacy of scaling Hall thrusters to high power suitable for a range of future missions. Thrust up to nearly 3 N was measured. Discharge specific impulses ranged from 1750 to 3250 sec, with discharge efficiencies between 46 and 65 percent. This thruster is the highest power, highest thrust Hall thruster ever tested.
Combined high and low-thrust geostationary orbit insertion with radiation constraint
NASA Astrophysics Data System (ADS)
Macdonald, Malcolm; Owens, Steven Robert
2018-01-01
The sequential use of an electric propulsion system is considered in combination with a high-thrust propulsion system for application to the propellant-optimal Geostationary Orbit insertion problem, whilst considering both temporal and radiation flux constraints. Such usage is found to offer a combined propellant mass saving when compared with an equivalent high-thrust only transfer. This propellant mass saving is seen to increase as the allowable transfer duration is increased, and as the thrust from the low-thrust system is increased, assuming constant specific impulse. It was found that the required plane change maneuver is most propellant-efficiently performed by the high-thrust system. The propellant optimal trajectory incurs a significantly increased electron flux when compared to an equivalent high-thrust only transfer. However, the electron flux can be reduced to a similar order of magnitude by increasing the high-thrust propellant consumption, whilst still delivering an improved mass fraction.
Lower power dc arcjet operations with hydrogen hydrogen/nitrogen propellant mixtures
NASA Technical Reports Server (NTRS)
Curran, F. M.; Nakanishi, S.
1986-01-01
The arcjet assembly from a flight model system was modified with a new thoriated tungsten nozzle insert and has been tested with hydrogen-nitrogen mixtures simulating the decomposition products of ammonia and hydrazine. Arcjet power consumption ranged from 0.7 to 1.15 kW depending on low rate, input current, and mixture composition. At a nominal 1 kW power level the ammonia mixtures thrust efficiency was about 0.31 at specific impulse values ranging between 460 and 500 sec. Hydrazine mixtures gave similar thrust efficiencies at the same power level with specific impulse values between 395 and 430 sec. Large, spontaneous voltage mode changes were not observed once the thruster had passed a period of instability immediately following start up. This period of instability, and the startup at low pressure, were seen as major causes of constrictor damage during the tests.
Scramjet sidewall burning: Preliminary shock tunnel results
NASA Technical Reports Server (NTRS)
Morgan, R. G.; Paull, A.; Morris, N.; Stalker, R. J.
1985-01-01
Experiments performed with a two dimensional model scramjet with particular emphasis on the effect of fuel injection from a wall are reported. Air low with a nominal Mach number of 3.5 and varied enthalpies was produced. It was found that neither hydrogen injection angle nor combustor divergence angle had any appreciable effect on thrust values while increased combustor length appeared to increase thrust levels. Specific impulse was observed to peak when hydrogen was injected at an equivalence ratio of about 2. Lowering the Mach number of the injected hydrogen at low equivalence ratios, less than 4, appeared to benefit specific impulse while hydrogen Mach number had little effect at higher equivalence ratios. When a 1:1 mixture by volume of nitrogen and oxygen is used instead of air as a test gas, it is found that hydrogen combustion is enhanced but only at high enthalpies.
A torsion balance for impulse and thrust measurements of micro-Newton thrusters
NASA Astrophysics Data System (ADS)
Yang, Yuan-Xia; Tu, Liang-Cheng; Yang, Shan-Qing; Luo, Jun
2012-01-01
This paper reports the performance of a torsion-type thrust stand suitable for studies of micro-Newton thrusters, which is developed for ground testing the micro-Newton thruster in Chinese Test of the Equivalence Principle with Optical readout space mission. By virtue of specially suspending design and precise assembly of torsion balance configuration, the thrust stand with load capacity up to several kilograms is able to measure the impulse bit up to 1350 μNs with a resolution of 0.47 μNs, and the average thrust up to 264 μN with a resolution of 0.09 μN in both open and close loop operation. A pulsed plasma thruster, the preliminary prototype developed for Chinese TEPO space mission, is tested by the thrust stand, and the results reveal that the average impulse bit per pulse is measured to be 58.4 μNs with a repeatability of about 5%.
Tailoff thrust and impulse imbalance between pairs of Space Shuttle solid rocket motors
NASA Technical Reports Server (NTRS)
Jacobs, E. P.; Yeager, J. M.
1975-01-01
The tailoff thrust and impulse imbalance between pairs of solid rocket motors is of particular interest for the Space Shuttle Vehicle because of the potential control problems that exist with this asymmetric configuration. Although a similar arrangement of solid rocket motors was utilized for the Titan Program, they produced less than one-half the thrust level of the Space Shuttle at web action time, and the overall vehicle was symmetric. Since the Titan Program does provide the most applicable actual test data, 23 flight pairs were analyzed to determine the actual tailoff thrust and impulse imbalance experienced. The results were scaled up using the predicted web action time thrust and tailoff time to arrive at values for the Space Shuttle. These values were then statistically treated to obtain a prediction of the maximum imbalance one could expect to experience during the Shuttle Program.
Laboratory Model 50 kW Hall Thruster
NASA Technical Reports Server (NTRS)
Manzella, David; Jankovsky, Robert; Hofer, Richard
2002-01-01
A 0.46 meter diameter Hall thruster was fabricated and performance tested at powers up to 72 kilowatts. Thrusts up to 2.9 Newtons were measured. Discharge specific impulses ranged from 1750 to 3250 seconds with discharge efficiencies between 46 and 65 percent. Overall specific impulses ranged from 1550 to 3050 seconds with overall efficiencies between 40 and 57 percent. Performance data indicated significant fraction of multiple-charged ions during operation at elevated power levels. Cathode mass flow rate was shown to be a significant parameter with regard to thruster efficiency.
NASA Technical Reports Server (NTRS)
Williams, Craig Hamilton
1995-01-01
A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.
Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2002-01-01
This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.
Status of 30 cm mercury ion thruster development
NASA Technical Reports Server (NTRS)
Sovey, J. S.; King, H. J.
1974-01-01
Two engineering model 30-cm ion thrusters were assembled, calibrated, and qualification tested. This paper discusses the thruster design, performance, and power system. Test results include documentation of thrust losses due to doubly charged mercury ions and beam divergence by both direct thrust measurements and beam probes. Diagnostic vibration tests have led to improved designs of the thruster backplate structure, feed system, and harness. Thruster durability is being demonstrated over a thrust range of 97 to 113 mN at a specific impulse of about 2900 seconds. As of August 15, 1974, the thruster has successfully operated for over 4000 hours.
Variable thrust/specific-impulse of multiplexed electrospray microthrusters
NASA Astrophysics Data System (ADS)
Lenguito, G.; Fernandez de la Mora, J.; Gomez, A.
We report on the development of a single-propellant ElectroSpray (ES) microthruster able to: (a) cover a wide range of specific impulse (Isp) and thrust at high propulsion efficiency, and (b) provide macroscopic thrust via micro-fabricated emitter arrays. The electrospray is a mature technology for the emission of fast nanodroplets at a propulsive efficiency larger than 50% over the full Isp range. The size of the droplets depends on the propellant flow rate and the physical properties of the electrolyte, especially the electric conductivity. To achieve a useful thrust one needs to multiplex the ES by operating many in parallel, which we achieve via silicon microfabrication of arrays of multiple and identical nozzles. The Multiplexed Electrospray (MES) micro-thruster is composed mainly of two electrodes: a nozzle-array and an extractor electrode, between which the electric field needed to form the ES is established. We tested nozzle arrays with up to 37 capillaries, that are spaced 1mm apart, with ID/OD = 10/30μ m. The capillaries are filled with 2.01μ m silicon dioxide beads to increase the hydraulic impedance and ensure uniform flow rate through the different emitters. A third electrode (accelerator) is mounted downstream the extractor to accelerate the droplets, thereby increasing the microthruster performance. The system is packaged in an alumina casing for electrical insulation and propellant feed. Tests run in a vacuum chamber at a pressure ≤ 10-5 mbar demonstrated reliable operation for several hours with a relatively high beam energy of 7.56kV. The 37-nozzle MES device was tested with the ionic liquid ethylammonium nitrate (EAN), at estimated total flow rates between 1.2 and 14 μ L/h, emitted currents between 14.2 and 23.0 μ A, specific impulse ranging between 710 and 1930s, and thrust ranging between 7.5 and 33 μ N. EAN is well suited to cover a relatively broad range of charge/mass- at an average propulsion efficiency of 66%. With further scale-up to a 600-MES system, the device would be suitable for micro-satellites missions such as attitude control and station keeping.
A Note on Rocket Performance Comparison Through Impulse and Thrust Coefficients
NASA Astrophysics Data System (ADS)
Taylor, N. V.
Comparison of rocket motor systems is important when generating data to be used in making design decisions. In order to present meaningful comparisons, non-dimensional numbers related to performance are beneficial, as they remove effects of scale. Traditionally thrust coefficients and C* have been used to quantify the aerodynamic and chemical performance of a system respectively. However, it is argued here that in fact the thrust coefficient does not fully account for aerodynamic performance, as the impact of non-uniform flow at the throat is not accounted for. This discharge coefficient is usually allocated to the chemical efficiency through a correction to C*. However, this causes a coupling between chemical and aerodynamic efficiencies which may lead to poor design decisions. Through the use of a specific impulse coefficient, this risk is avoided, and furthermore comparison of unconventional nozzles becomes more straightforward. It is admitted, however, that this has no actual impact on real motor performance, being more in the way of a tidier `accounting' system.
Nuclear propulsion - A vital technology for the exploration of Mars and the planets beyond
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1989-01-01
The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the only other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class spaceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.
Nuclear propulsion: A vital technology for the exploration of Mars and the planets beyond
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.
1988-01-01
The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the olny other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-Earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulse of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class speceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.
High Power Electric Propulsion Using The VASIMR VX-200: A Flight Technology Prototype
NASA Astrophysics Data System (ADS)
Bering, Edgar, III; Longmier, Benjamin; Glover, Tim; Chang-Diaz, Franklin; Squire, Jared; Brukardt, Michael
2008-11-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power magnetoplasma rocket, capable of Isp/thrust modulation at constant power. The plasma is produced by a helicon discharge. The bulk of the energy is added by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by adiabatic expansion of the plasma in a magnetic nozzle. Thrust/specific impulse ratio control in the VASIMR is primarily achieved by the partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. Ion dynamics in the exhaust were studied using probes, gridded energy analyzers (RPA's), microwave interferometry and optical techniques. Results are summarize from high power ICRH experiments performed on the VX-100 using argon plasma during 2007, and on the VX-200 using argon plasma during 2008. The VX-100 has demonstrated ICRH antenna efficiency >90% and a total coupling efficiency of ˜75%. The rocket performance parameters inferred by integrating the moments of the ion energy distribution corresponds to a thrust of 2 N at an exhaust velocity of 20 km/s with the VX-100 device. The new VX-200 machine is described.
Momentum and Heat Flux Measurements in the Exhaust of VASIMR using Helium Propellant
NASA Technical Reports Server (NTRS)
Chavers, D. Gregory; Chang-Diaz, Franklin R.; Irvine, Claude; Squire, Jared P.
2003-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and ejects plasma to provide variable thrust and Isp, designed to optimally meet the mission requirements. The fraction of the total energy invested in creating the plasma, as compared to the plasma's total kinetic energy, is an important factor in determining the overall system efficiency. In VASIMR, this 'frozen flow loss' is appreciable when at high thrust, but negligible at high Isp. The loss applies to other electric thrusters as well. If some of this energy could be recovered through recombination processes, and reinjected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma by studying the flow characteristics of the charged and neutral particles in the exhaust of the thruster. This paper will cover the measurements of momentum flux and heat flux in the exhaust of the VASIMR test facility using helium as the propellant where the heat flux is comprised of both kinetic and plasma recombination energy. The flux measurements also assist in diagnosing and verifying the plasma conditions in the existing experiment.
H2 arcjet performance mapping program
NASA Astrophysics Data System (ADS)
1992-01-01
Work performed during the period of Mar. 1991 to Jan. 1992 is reviewed. High power H2 arcjets are being considered for electric powered orbit transfer vehicles (EOTV). Mission analyses indicate that the overall arcjet thrust efficiency is very important since increasing the efficiency increases the thrust, and thereby reduces the total trip time for the same power. For example, increasing the thrust efficiency at the same specific impulse from 30 to 40 percent will reduce the trip time by 25 percent. For a 200 day mission, this equates to 50 days, which results in lower ground costs and less time during which the payload is dormant. Arcjet performance levels of 1200 seconds specific impulse (lsp) at 35 to 40 percent efficiency with lifetimes over 1000 hours are needed to support EOTV missions. Because of the potential very high efficiency levels, the objective of this program was to evaluate the ability of a scaled Giannini-style thruster to achieve the performance levels while operating at a reduced nominal power of 10 kW. To meet this objective, a review of past literature was conducted; scaling relationships were developed and applied to establish critical dimensions; a development thruster was designed with the aid of the plasma analysis model KARNAC and finite element thermal modeling; test hardware was fabricated; and a series of performance tests were conducted in RRC's Cell 11 vacuum chamber with its null-balance thrust stand.
NASA Astrophysics Data System (ADS)
Sandrik, Suzannah
Optimal solutions to the impulsive circular phasing problem, a special class of orbital maneuver in which impulsive thrusts shift a vehicle's orbital position by a specified angle, are found using primer vector theory. The complexities of optimal circular phasing are identified and illustrated using specifically designed Matlab software tools. Information from these new visualizations is applied to explain discrepancies in locally optimal solutions found by previous researchers. Two non-phasing circle-to-circle impulsive rendezvous problems are also examined to show the applicability of the tools developed here to a broader class of problems and to show how optimizing these rendezvous problems differs from the circular phasing case.
Performance Evaluation of the T6 Ion Engine
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Goebel, Dan M.; Hofer, Richard R.; Polk, James E.; Wallace, Neil C.; Simpson, Huw
2010-01-01
The T6 ion engine is a 22-cm diameter, 4.5-kW Kaufman-type ion thruster produced by QinetiQ, Ltd., and is baselined for the European Space Agency BepiColombo mission to Mercury and is being qualified under ESA sponsorship for the extended range AlphaBus communications satellite platform. The heritage of the T6 includes the T5 ion thruster now successfully operating on the ESA GOCE spacecraft. As a part of the T6 development program, an engineering model thruster was subjected to a suite of performance tests and plume diagnostics at the Jet Propulsion Laboratory. The engine was mounted on a thrust stand and operated over its nominal throttle range of 2.5 to 4.5 kW. In addition to the typical electrical and flow measurements, an E x B mass analyzer, scanning Faraday probe, thrust vector probe, and several near-field probes were utilized. Thrust, beam divergence, double ion content, and thrust vector movement were all measured at four separate throttle points. The engine performance agreed well with published data on this thruster. At full power the T6 produced 143 mN of thrust at a specific impulse of 4120 seconds and an efficiency of 64%; optimization of the neutralizer for lower flow rates increased the specific impulse to 4300 seconds and the efficiency to nearly 66%. Measured beam divergence was less than, and double ion content was greater than, the ring-cusp-design NSTAR thruster that has flown on NASA missions. The measured thrust vector offset depended slightly on throttle level and was found to increase with time as the thruster approached thermal equilibrium.
Status of Low Thrust Work at JSC
NASA Technical Reports Server (NTRS)
Condon, Gerald L.
2004-01-01
High performance low thrust (solar electric, nuclear electric, variable specific impulse magnetoplasma rocket) propulsion offers a significant benefit to NASA missions beyond low Earth orbit. As NASA (e.g., Prometheus Project) endeavors to develop these propulsion systems and associated power supplies, it becomes necessary to develop a refined trajectory design capability that will allow engineers to develop future robotic and human mission designs that take advantage of this new technology. This ongoing work addresses development of a trajectory design and optimization tool for assessing low thrust (and other types) trajectories. This work targets to advance the state of the art, enable future NASA missions, enable science drivers, and enhance education. This presentation provides a summary of the low thrust-related JSC activities under the ISP program and specifically, provides a look at a new release of a multi-gravity, multispacecraft trajectory optimization tool (Copernicus) along with analysis performed using this tool over the past year.
Evaluation of the oblique detonation wave ramjet
NASA Technical Reports Server (NTRS)
Morrison, R. B.
1978-01-01
The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.
NASA Technical Reports Server (NTRS)
Perche, G. E.
1984-01-01
The mercury bombardment electrostatic ion thruster is the most successful electric thruster available today. A 5 cm diameter ion thruster with 3,000 specific impulse and 5mN thrust is described. The advantages of electric propulsion and the tests that will be performed are also presented.
Apollo 14 mission report. Supplement 5: Descent propulsion system final flight evaluation
NASA Technical Reports Server (NTRS)
Avvenire, A. T.; Wood, S. C.
1972-01-01
The performance of the LM-8 descent propulsion system during the Apollo 14 mission was evaluated and found to be satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted l sigma uncertainty. The engine performance corrected to standard inlet conditions for the FTP portion of the burn at 43 seconds after ignition was as follows: thrust, 9802, lbf; specific impulse, 304.1 sec; and propellant mixture ratio, 1603. These values are + or - 0.8, -0.06, and + or - 0.3 percent different respectively, from the values reported from engine acceptance tests and were within specification limits.
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Kastner, Michael E
1958-01-01
Theoretical rocket performance for frozen composition during expansion was calculated for liquid methane with several fluorine-oxygen mixtures for a range of pressure ratios and oxidant-fuel ratios. The parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. The maximum calculated value of specific impulse for a chamber pressure of 600 pounds per square inch absolute (40.827atm) and an exit pressure of 1 atmosphere is 315.3 for 79.67 percent fluorine in the oxidant.
Design and Optimization of Low-thrust Orbit Transfers Using Q-law and Evolutionary Algorithms
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul; Fink, Wolfgang; Petropoulos, Anastassios; Terrile, Richard
2005-01-01
Future space missions will depend more on low-thrust propulsion (such as ion engines) thanks to its high specific impulse. Yet, the design of low-thrust trajectories is complex and challenging. Third-body perturbations often dominate the thrust, and a significant change to the orbit requires a long duration of thrust. In order to guide the early design phases, we have developed an efficient and efficacious method to obtain approximate propellant and flight-time requirements (i.e., the Pareto front) for orbit transfers. A search for the Pareto-optimal trajectories is done in two levels: optimal thrust angles and locations are determined by Q-law, while the Q-law is optimized with two evolutionary algorithms: a genetic algorithm and a simulated-annealing-related algorithm. The examples considered are several types of orbit transfers around the Earth and the asteroid Vesta.
Study of monopropellants for electrothermal thrusters
NASA Technical Reports Server (NTRS)
Kuenzly, J. D.
1974-01-01
A 333 mN electrothermal thruster designed to use MIL-grade hydrazine was demonstrated to be suitable for operation with low freezing point monopropellants containing hydrazine azide, monomethylhydrazine, unsymmetrical-dimethylhydrazine and ammonia. The steady-state specific impulse was greater than 200 sec for all propellants. The pulsed-mode specific impulse for an azide blend exceeded 175 sec for pulse widths greater than 50 msec; propellants containing carbonaceous species delivered 175 sec pulsed-mode specific impulses for pulse widths greater than 100 msec. Longer thrust chamber residence times were required for the carbonaceous propellants; the original thruster design was modified by increasing the characteristic chamber length and screen packing density. Specific recommendations were made for the work required to design and develop flight worthy thrusters, including methods to increase propellant dispersal at injection, thruster geometry changes to reduce holding power levels and methods to initiate the rapid decomposition of the carbonaceous propellants.
Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study, volume 2
NASA Technical Reports Server (NTRS)
1981-01-01
The engine requirements are emphasized and include: high specific impulse within a restricted installed length constraint, long life, multiple starts, different thrust levels, and man-rated reliability. The engine operating characteristics and the major component analytical design are summarized.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.; Day, M. L.; Haag, T. W.
1990-01-01
The end-Hall thruster can provide electric propulsion with fixed masses, specific impulses, and power-to-thrust ratios intermediate of an arcjet and a gridded (electrostatic) ion thruster. With these characteristics, this thruster is a candidate for missions of intermediate difficulty, such as the north-south stationkeeping of geostationary satellites.
Recommended Practices in Thrust Measurements
NASA Technical Reports Server (NTRS)
Polk, James E.; Pancotti, Anthony; Haag, Thomas; King, Scott; Walker, Mitchell; Blakely, Joseph; Ziemer, John
2013-01-01
Accurate, direct measurement of thrust or impulse is one of the most critical elements of electric thruster characterization, and one of the most difficult measurements to make. The American Institute of Aeronautics and Astronautics has started an initiative to develop standards for many important measurement processes in electric propulsion, including thrust measurements. This paper summarizes recommended practices for the design, calibration, and operation of pendulum thrust stands, which are widely recognized as the best approach for measuring micro N- to mN-level thrust and micro Ns-level impulse bits. The fundamentals of pendulum thrust stand operation are reviewed, along with its implementation in hanging pendulum, inverted pendulum, and torsional balance configurations. Methods of calibration and recommendations for calibration processes are presented. Sources of error are identified and methods for data processing and uncertainty analysis are discussed. This review is intended to be the first step toward a recommended practices document to help the community produce high quality thrust measurements.
Simulation of Trajectories for High Specific Impulse Deep Space Exploration
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Adams, Robert B.; Brady, Hugh J. (Technical Monitor)
2002-01-01
Difficulties in approximating flight times and deliverable masses for continuous thrust propulsion systems have complicated comparison and evaluation of proposed propulsion concepts. These continuous thrust propulsion systems are of interest to many groups, not the least of which are the electric propulsion and fusion communities. Several charts plotting the results of well-known trajectory simulation codes were developed and are contained in this paper. These charts illustrate the dependence of time of flight and payload ratio on jet power, initial mass, specific impulse and specific power. These charts are intended to be a tool by which people in the propulsion community can explore the possibilities of their propulsion system concepts. Trajectories were simulated using the tools VARITOP and IPOST. VARITOP is a well known trajectory optimization code that involves numerical integration based on calculus of variations. IPOST has several methods of trajectory simulation; the one used in this paper is Cowell's method for full integration of the equations of motion. The analytical method derived in the companion paper was also used to simulate the trajectory. The accuracy of this method is discussed in the paper.
Aerospace Laser Ignition/Ablation Variable High Precision Thruster
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)
2015-01-01
A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.
Lateral trunk lean and medializing the knee as gait strategies for knee osteoarthritis.
Gerbrands, T A; Pisters, M F; Theeven, P J R; Verschueren, S; Vanwanseele, B
2017-01-01
To determine (1) if Medial Thrust or Trunk Lean reduces the knee adduction moment (EKAM) the most during gait in patients with medial knee osteoarthritis, (2) if the best overall strategy is the most effective for each patient and (3) if these strategies affect ankle and hip kinetics. Thirty patients with symptomatic medial knee osteoarthritis underwent 3-dimensional gait analysis. Participants received verbal instructions on two gait strategies (Trunk Lean and Medial Thrust) in randomized order after comfortable walking was recorded. The peaks and impulse of the EKAM and strategy-specific kinematic and kinetic variables were calculated for all conditions. Early stance EKAM peak was significantly reduced during Medial Thrust (-29%). During Trunk Lean, early and late stance EKAM peak and EKAM impulse reduced significantly (38%, 21% and -25%, respectively). In 79% of the subjects, the Trunk Lean condition was significantly more effective in reducing EKAM peak than Medial Thrust. Peak ankle dorsi and plantar flexion, knee flexion and hip extension and adduction moments were not significantly increased. Medial Thrust and Trunk Lean reduced the EKAM during gait in patients with knee osteoarthritis. Individual selection of the most effective gait modification strategy seems vital to optimally reduce dynamic knee loading during gait. No detrimental effects on external ankle and hip moments or knee flexion moments were found for these conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Arrington, Lynn A.; Haag, Thomas W.
1999-01-01
Pulsed plasma thrusters are low thrust propulsive devices which have a high specific impulse at low power. A pulsed plasma thruster is currently scheduled to fly as an experiment on NASA's Earth Observing-1 satellite mission. The pulsed plasma thruster will be used to replace one of the reaction wheels. As part of the qualification testing of the thruster it is necessary to determine the nominal thrust as a function of charge energy. These data will be used to determine control algorithms. Testing was first completed on a breadboard pulsed plasma thruster to determine nominal or primary axis thrust and associated propellant mass consumption as a function of energy and then later to determine if any significant off-axis thrust component existed. On conclusion that there was a significant off-axis thrust component with the bread-board in the direction of the anode electrode, the test matrix was expanded on the flight hardware to include thrust measurements along all three orthogonal axes. Similar off-axis components were found with the flight unit.
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2002-01-01
Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.
Thrust augmentation nozzle (TAN) concept for rocket engine booster applications
NASA Astrophysics Data System (ADS)
Forde, Scott; Bulman, Mel; Neill, Todd
2006-07-01
Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.
Development of a multiplexed electrospray micro-thruster with post-acceleration and beam containment
NASA Astrophysics Data System (ADS)
Lenguito, G.; Gomez, A.
2013-10-01
We report the development of a compact thruster based on Multiplexed ElectroSprays (MES). It relied on a microfabricated Si array of emitters coupled with an extractor electrode and an accelerator electrode. The accelerator stage was introduced for two purposes: containing beam opening and avoiding electrode erosion due to droplet impingement, as well as boosting specific impulse and thrust. Multiplexing is generally necessary as a thrust multiplier to reach eventually the level required (O(102) μN) by small satellites. To facilitate system optimization and debugging, we focused on a 7-nozzle MES device and compared its performance to that of a single emitter. To ensure uniformity of operation of all nozzles their hydraulic impedance was augmented by packing them with micrometer-size beads. Two propellants were tested: a solution of 21.5% methyl ammonium formate in formamide and the better performing pure ionic liquid ethyl ammonium nitrate (EAN). The 7-MES device spraying EAN at ΔV = 5.93 kV covered a specific impulse range from 620 s to 1900 s and a thrust range from 0.6 μN to 5.4 μN, at 62% efficiency. Remarkably, less than 1% of the beam was demonstrated to impact on the accelerator electrode, which bodes well for long-term applications in space.
A History of Welding on the Space Shuttle Main Engine (1975 to 2010)
NASA Technical Reports Server (NTRS)
Zimmerman, Frank R.; Russell, Carolyn K.
2010-01-01
The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.
A Pulsed Plasma Thruster Using Dimethyl Ether as Propellant
NASA Astrophysics Data System (ADS)
Masui, Souichi; Okada, Terumasa; Kitatomi, Makoto; Kakami, Akira; Tachibana, Takeshi
The pulsed plasma thruster (PPT), has attracted attention again as a micro-thruster because of its compactness, light weight, and comparatively low power consumption. On the other hand, the propellant utilization efficiency of a conventinal Teflon PPT is relatively low among electric propulsion devices because a propellant that originates from late-time ablation produces negligible thrust. The liquid propellant PPT (LP-PPT), in which water or ethanol is fed with an injector, was proposed to overcome these difficulties. Thrust measurements show that a LP-PPT provides higher specific impulses than a conventional PPT. However, water requires temperature management for propellant storage due to its relatively high freezing point. Moreover, even if ethanol, which has a sufficiently low freezing point, is used as propellant, a pressurant is necessary, as well as water, because the vapor pressures are insufficient for self-pressurization. In this study, we propose to use dimethyl ether (DME) as the propellant. DME, which has a freezing point of 131 K at 1 atm and a vapor pressure of 6 atm at 298 K, can be stored in tanks as a liquid, and requires no feeding pressurant. We designed a DME pulsed plasma thruster to evaluate performance. Thrust measurement yielded a specific impulse of 430 s for a coaxial type at a capacitor-stored energy of 13 J.
Investigation of Recombination Processes In A Magnetized Plasma
NASA Technical Reports Server (NTRS)
Chavers, Greg; Chang-Diaz, Franklin; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and exhausts plasma to provide variable thrust and Isp, optimally meeting the mission requirements. A large fraction of the energy to create the plasma is frozen in the exhaust in the form of ionization energy. This loss mechanism is common to all electromagnetic plasma thrusters and has an impact on their efficiency. When the device operates at high Isp, where the exhaust kinetic energy is high compared to the ionization energy, the frozen flow component is of little consequence; however, at low Isp, the effect of the frozen flow may be important. If some of this energy could be recovered through recombination processes, and re-injected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. In this operating regime, the ionization energy is a large portion of the total plasma energy. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma. This presentation will cover the progress and status of the experiment involving surface recombination of the plasma.
Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion
NASA Technical Reports Server (NTRS)
deGroot, Wim A.
1999-01-01
An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.
Strategies for the sustained human exploration of Mars
NASA Astrophysics Data System (ADS)
Landau, Damon Frederick
A variety of mission scenarios are compared in this thesis to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. Direct, semi-direct, stop-over, semi-cycler, and cycler architectures are examined, and electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems are included in the technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. The primary figure of merit for a mission scenario is the injected mass to low-Earth orbit (IMLEO), though technology readiness levels (TRL) are also included. Several elements in the architecture dimension are explored in more detail. The Earth-Mars semi-cycler architecture is introduced and five families of Earth-Mars semi-cycler trajectories are presented along with optimized itineraries. Optimized cycler trajectories are also presented. In addition to Earth-Mars semi-cycler and cycler trajectories, conjunction-class, free-return, Mars-Earth semi-cycler, and low-thrust trajectories are calculated. Design parameters for optimal DeltaV trajectories are provided over a range of flight times (from 120 to 270 days) and launch years (between 2009 and 2022). Unlike impulsive transfers, the mass-optimal low-thrust trajectory depends strongly on the thrust and specific impulse of the propulsion system. A low-thrust version of the rocket equation is provided where the initial mass or thrust may be minimized by varying the initial acceleration and specific impulse. Planet-centered operations are also examined. A method to rotate a parking orbit about the line of apsides to achieve the proper orientation at departure is discussed, thus coupling the effects of parking-orbit orientation with the interplanetary trajectories. Also, a guidance algorithm for rendezvous during flybys in semi-cycler and cycler missions is presented with a control law for final approach. A forty-year plan to establish a permanent base on Mars is detailed and methods to expand the base are discussed. Once a large base is established, one-, two-, or three-vehicle systems may sustain the colonization of Mars.
Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Huff, Vearl N
1953-01-01
Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Zeleznik, Frank J.; Huff, Vearl N.
1959-01-01
A general computer program for chemical equilibrium and rocket performance calculations was written for the IBM 650 computer with 2000 words of drum storage, 60 words of high-speed core storage, indexing registers, and floating point attachments. The program is capable of carrying out combustion and isentropic expansion calculations on a chemical system that may include as many as 10 different chemical elements, 30 reaction products, and 25 pressure ratios. In addition to the equilibrium composition, temperature, and pressure, the program calculates specific impulse, specific impulse in vacuum, characteristic velocity, thrust coefficient, area ratio, molecular weight, Mach number, specific heat, isentropic exponent, enthalpy, entropy, and several thermodynamic first derivatives.
Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Huff, Vearl N
1953-01-01
Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.
Experimental investigation of a unique airbreathing pulsed laser propulsion concept
NASA Technical Reports Server (NTRS)
Myrabo, L. N.; Nagamatsu, H. T.; Manka, C.; Lyons, P. W.; Jones, R. A.
1991-01-01
Investigations were conducted into unique methods of converting pulsed laser energy into propulsive thrust across a flat impulse surface under atmospheric conditions. The propulsion experiments were performed with a 1-micron neodymium-glass laser at the Space Plasma Branch of the Naval Research Laboratory. Laser-induced impulse was measured dynamically by ballistic pendulums and statically using piezoelectric pressure transducers on a stationary impulse surface. The principal goal was to explore methods for increasing the impulse coupling performance of airbreathing laser-propulsion engines. A magnetohydrodynamic thrust augmentation effect was discovered when a tesla-level magnetic field was applied perpendicular to the impulse surface. The impulse coupling coefficient performance doubled and continued to improve with increasing laser-pulse energies. The resultant performance of 180 to 200 N-s/MJ was found to be comparable to that of the earliest afterburning turbojets.
Airbreathing Pulse Detonation Engine Performance
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2002-01-01
This paper presents performance results for pulse detonation engines taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.
A Method of Efficient Inclination Changes for Low-thrust Spacecraft
NASA Technical Reports Server (NTRS)
Falck, Robert; Gefert, Leon
2002-01-01
The evolution of low-thrust propulsion technologies has reached a point where such systems have become an economical option for many space missions. The development of efficient, low trip time control laws has received an increasing amount of attention in recent years, though few studies have examined the subject of inclination changing maneuvers in detail. A method for performing economical inclination changes through the use of an efficiency factor is derived front Lagrange's planetary equations. The efficiency factor can be used to regulate propellant expenditure at the expense of trip time. Such a method can be used for discontinuous-thrust transfers that offer reduced propellant masses and trip-times in comparison to continuous thrust transfers, while utilizing thrusters that operate at a lower specific impulse. Performance comparisons of transfers utilizing this approach with continuous-thrust transfers are generated through trajectory simulation and are presented in this paper.
Monopropellant hydrazine resistojet: Flight application design
NASA Technical Reports Server (NTRS)
Kurch, C. K.
1973-01-01
The design, development, and testing of an engineering model nominal 20-millipound thrust monopropellant hydrazine resistojet program is directed toward the advanced development of an electrothermal hydrazine thruster (EHT). The EHT decomposes hydrazine thermally and expands the decomposition products through a nozzle to provide the impulse necessary to fulfill spacecraft propulsive requirements. The thruster is capable of operation at pulse widths from 0.050 second to steady state and delivers specific impulse values up to about 230 seconds depending on the duty cycle. The program is comprised of six tasks including analyses, the generation of specifications and other documentation, design, fabrication and test, data correlation, and recommendations for the design of flight units.
50 KW Class Krypton Hall Thruster Performance
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Manzella, David H.
2003-01-01
The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.
Mariner Venus/Mercury 1973 rocket engine assembly
NASA Technical Reports Server (NTRS)
Snoke, D. R.; Williams, R. S.
1972-01-01
The fabrication and test of rocket engine assemblies (REA) for Mariner Venus/Mercury 1973 are reported. The fabrication, assembly and flight acceptance test of seven REA's including the type approval test of one engine and fabrication of one additional kit consisting of detail parts for an engine ready for catalyst loading are presented. The MV/M '73 REA which is a nominal 51 lbs thrust monopropellant engine is described. Under steady state operation the specific impulse is not less than 228 lb-sec at 55 lb and 218.5 lb-sec at 10 lb thrust varying linearly between these limits. The characteristic velocity is not less than 4100 ft/sec at any thrust level.
Simple control laws for low-thrust orbit transfers
NASA Technical Reports Server (NTRS)
Petropoulos, Anastassios E.
2003-01-01
Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.
NASA Technical Reports Server (NTRS)
Sackett, L. L.; Edelbaum, T. N.; Malchow, H. L.
1974-01-01
This manual is a guide for using a computer program which calculates time optimal trajectories for high-and low-thrust geocentric transfers. Either SEP or NEP may be assumed and a one or two impulse, fixed total delta V, initial high thrust phase may be included. Also a single impulse of specified delta V may be included after the low thrust state. The low thrust phase utilizes equinoctial orbital elements to avoid the classical singularities and Kryloff-Boguliuboff averaging to help insure more rapid computation time. The program is written in FORTRAN 4 in double precision for use on an IBM 360 computer. The manual includes a description of the problem treated, input/output information, examples of runs, and source code listings.
NASA Astrophysics Data System (ADS)
Eskandari, M. A.; Mazraeshahi, H. K.; Ramesh, D.; Montazer, E.; Salami, E.; Romli, F. I.
2017-12-01
In this paper, a new method for the determination of optimum parameters of open-cycle liquid-propellant engine of launch vehicles is introduced. The parameters affecting the objective function, which is the ratio of specific impulse to gross mass of the launch vehicle, are chosen to achieve maximum specific impulse as well as minimum mass for the structure of engine, tanks, etc. The proposed algorithm uses constant integration of thrust with respect to time for launch vehicle with specific diameter and length to calculate the optimum working condition. The results by this novel algorithm are compared to those obtained from using Genetic Algorithm method and they are also validated against the results of existing launch vehicle.
Theoretical Performance of Liquid Hydrogen with Liquid Oxygen as a Rocket Propellant
NASA Technical Reports Server (NTRS)
Gordon, Sanford; McBride, Bonnie J.
1959-01-01
Theoretical rocket performance for both equilibrium and frozen composition during expansion was calculated for the propellant combination liquid hydrogen and liquid oxygen at four chamber pressures (60, 150, 300, and 600 lb/sq in. abs) and a wide range of pressure ratios (1 to 4000) and oxidant-fuel ratios (1.190 to 39.683). Data are given to estimate performance parameters at chamber pressures other than those for which data are tabulated. The parameters included are specific impulse, specific impulse in vacuum, combustion-chamber temperature, nozzle-exit temperature, molecular weight, molecular-weight derivatives, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, thermal conductivity, Mach number, and equilibrium gas compositions.
Airbreathing Pulse Detonation Engine Performance
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2002-01-01
This paper presents performance results for pulse detonation engines (PDE) taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.
Analysis and design of ion thruster for large space systems
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Kami, S.
1980-01-01
Design analyses showed that an ion thruster of approximately 50 cm in diameter will be required to produce a thrust of 0.5 N using xenon or argon as propellants, and operating the thruster at a specific impulse of 3530 sec or 6076 sec respectively. A multipole magnetic confinement discharge chamber was specified.
Plasmoid Thruster for High Specific-Impulse Propulsion
NASA Technical Reports Server (NTRS)
Fimognari, Peter; Eskridge, Richard; Martin, Adam; Lee, Michael
2007-01-01
A report discusses a new multi-turn, multi-lead design for the first generation PT-1 (Plasmoid Thruster) that produces thrust by expelling plasmas with embedded magnetic fields (plasmoids) at high velocities. This thruster is completely electrodeless, capable of using in-situ resources, and offers efficiencies as high as 70 percent at a specific impulse, I(sub sp), of up to 8,000 s. This unit consists of drive and bias coils wound around a ceramic form, and the capacitor bank and switches are an integral part of the assembly. Multiple thrusters may be gauged to inductively recapture unused energy to boost efficiency and to increase the repetition rate, which, in turn increases the average thrust of the system. The thruster assembly can use storable propellants such as H2O, ammonia, and NO, among others. Any available propellant gases can be used to produce an I(sub sp) in the range of 2,000 to 8,000 s with a single-stage thruster. These capabilities will allow the transport of greater payloads to outer planets, especially in the case of an I(sub sp) greater than 6,000 s.
Effect of applied magnetic nozzle on an MPD Thruster
NASA Astrophysics Data System (ADS)
Ando, Akira; Izawa, Yuki; Okawa, Kohei; Hashima, Yoko; Watanabe, Hiroshi; Tanaka, Nozomi
2012-10-01
Electric propulsion systems are suitable for long-term mission in space due to its higher specific impulse. An Magneto-Plasma-Dynamic Thruster (MPDT) is one of the promising thrusters of high power electric propulsion systems. It has been reported that the thrust performance of an MPDT can be improved by applying an axial magnetic field on it. In order to investigate the effect of applied field on an MPDT, we have investigated plume plasma parameters and thrust performance in an applied field MPDT. Different types of divergent magnetic nozzle were applied to an MPDT, and thrust was measured using a pendulum type thrust target. Experiments were performed with hydrogen, helium, and argon as propellant gas. Thrust increased with a discharge current up to 6kA and applied magnetic field up to 0.4T. Maximum thrust of 7N was obtained when the peak position of the applied magnetic field was set upstream of the muzzle of the MPDT. The highest thrust performance was obtained with hydrogen gas with divergent magnetic nozzle applied to the MPDT.
The Air Force Phillips Laboratory multimegawatt quasi-steady MPD thruster facility
NASA Astrophysics Data System (ADS)
Castillo, Salvador; Tilley, Dennis L.
1992-07-01
The operational multimegawatt quasi-steady MPD thruster facility is described in terms of its general design emphasizing the impulse thrust stand and diagnostics capabilities. The vacuum, propellant, and electrical systems are discussed with schematic diagrams of the respective component configurations and explanations of the needs of MPD thruster testing. The impulse thrust stand comprises an accelerometer/pendulum-impulse stand which can be used to correlate thruster impulse with accelerometer readings and thereby reduce measurement uncertainties. The diagnostics of the terminal characteristics of the thruster operation are complemented by diagnostics platforms that study plasma properties in the plume and the thruster. Preliminary tests indicate that the MPD thruster facility is prepared for detailed investigations of MPD thruster performance and plume diagnostics.
The design and operating characteristics of an advanced 30-kW ammonia arcjet engine
NASA Technical Reports Server (NTRS)
Deininger, William D.; Pivirotto, Thomas J.; Brophy, John R.
1987-01-01
Experimental investigations were conducted to evaluate the effects of a contoured nozzle and modified cathode shape on ammonia arcjet engine performance. The contoured nozzle performance data were compared to the performance data of an arcjet which had a 38-deg included-angle, conical nozzle. Thrust improvements of up to 10 percent were demonstrated which corresponded to 3 percent improvements in specific impulse and 10 percent improvements in thrust efficiency. Performance characterizations for the modified cathode tip were conducted with the contoured nozzle arcjet. A uniform 15 percent decrease in arc voltage was demonstrated over a mass flow range of 0.175 to 0.350 g/s. A 4 percent improvement in thrust efficiency was noted at 22.0 kW.
Estimating Thruster Impulses From IMU and Doppler Data
NASA Technical Reports Server (NTRS)
Lisano, Michael E.; Kruizinga, Gerhard L.
2009-01-01
A computer program implements a thrust impulse measurement (TIM) filter, which processes data on changes in velocity and attitude of a spacecraft to estimate the small impulsive forces and torques exerted by the thrusters of the spacecraft reaction control system (RCS). The velocity-change data are obtained from line-of-sight-velocity data from Doppler measurements made from the Earth. The attitude-change data are the telemetered from an inertial measurement unit (IMU) aboard the spacecraft. The TIM filter estimates the threeaxis thrust vector for each RCS thruster, thereby enabling reduction of cumulative navigation error attributable to inaccurate prediction of thrust vectors. The filter has been augmented with a simple mathematical model to compensate for large temperature fluctuations in the spacecraft thruster catalyst bed in order to estimate thrust more accurately at deadbanding cold-firing levels. Also, rigorous consider-covariance estimation is applied in the TIM to account for the expected uncertainty in the moment of inertia and the location of the center of gravity of the spacecraft. The TIM filter was built with, and depends upon, a sigma-point consider-filter algorithm implemented in a Python-language computer program.
A north-south stationkeeping ion thruster system for ATS-F.
NASA Technical Reports Server (NTRS)
Worlock, R.; James, E.; Ramsey, W.; Trump, G.; Gant, G.; Jan, L.; Bartlett, R.
1972-01-01
An ion thruster system is being developed for the ATS-F satellite to demonstrate the application of ion thruster technology to the synchronous satellite north-south stationkeeping mission. The cesium bombardment ion thruster develops one millipound thrust at 2600 seconds specific impulse and provides thrust vectoring by accelerator electrode displacement. The propellant system is sized for two years operation at 25 percent duty cycle. Power conditioning circuitry is based on transistor inverters switching at 10 kHz. Thirteen command channels allow flexibility in operation; 12 telemetry channels provide information on system performance. Input power is less than 150 watts.
Experimental performance of a high-area-ratio rocket nozzle at high combustion chamber pressure
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Kazaroff, John M.; Pavli, Albert J.
1996-01-01
An experimental investigation was conducted to determine the thrust coefficient of a high-area-ratio rocket nozzle at combustion chamber pressures of 12.4 to 16.5 MPa (1800 to 2400 psia). A nozzle with a modified Rao contour and an expansion area ratio of 1025:1 was tested with hydrogen and oxygen at altitude conditions. The same nozzle, truncated to an area ratio of 440:1, was also tested. Values of thrust coefficient are presented along with characteristic exhaust velocity efficiencies, nozzle wall temperatures, and overall thruster specific impulse.
Numerical analysis of real gas MHD flow on two-dimensional self-field MPD thrusters
NASA Astrophysics Data System (ADS)
Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.
2015-07-01
A self-field magnetoplasmadynamic (MPD) thruster is a low-thrust electric propulsion space-system that enables the usage of magnetohydrodynamic (MHD) principles for accelerating a plasma flow towards high speed exhaust velocities. It can produce an high specific impulse, making it suitable for long duration interplanetary space missions. In this paper numerical results obtained with a new code, which is being developed at C-MAST (Centre for Mechanical and Aerospace Technologies), for a two-dimensional self-field MPD thruster are presented. The numerical model is based on the macroscopic MHD equations for compressible and electrically resistive flow and is able to predict the two most important thrust mechanisms that are associated with this kind of propulsion system, namely the thermal thrust and the electromagnetic thrust. Moreover, due to the range of very high temperatures that could occur during the operation of the MPD, it also includes a real gas model for argon.
Electrostatic Plasma Accelerator (EPA)
NASA Technical Reports Server (NTRS)
Brophy, John R.; Aston, Graeme
1989-01-01
The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass. The goal of the present program is to demonstrate feasibility of the EPA thruster concept through experimental and theoretical investigations of the EPA acceleration mechanism and discharge chamber performance. Experimental investigations will include operating the test bed ion (TBI) engine as an EPA thruster and parametrically varying the thruster geometry and operating conditions to quantify the electrostatic plasma acceleration effect. The theoretical investigations will include the development of a discharge chamber model which describes the relationships between the engine size, plasma properties, and overall performance. For the EPA thruster to be a viable propulsion concept, overall thruster efficiencies approaching 30% with specific impulses approaching 1000 s must be achieved.
Upper Stage Flight Experiment 10K Engine Design and Test Results
NASA Technical Reports Server (NTRS)
Ross, R.; Morgan, D.; Crockett, D.; Martinez, L.; Anderson, W.; McNeal, C.
2000-01-01
A 10,000 lbf thrust chamber was developed for the Upper Stage Flight Experiment (USFE). This thrust chamber uses hydrogen peroxide/JP-8 oxidizer/fuel combination. The thrust chamber comprises an oxidizer dome and manifold, catalyst bed assembly, fuel injector, and chamber/nozzle assembly. Testing of the engine was done at NASA's Stennis Space Center (SSC) to verify its performance and life for future upper stage or Reusable Launch Vehicle applications. Various combinations of silver screen catalyst beds, fuel injectors, and combustion chambers were tested. Results of the tests showed high C* efficiencies (97% - 100%) and vacuum specific impulses of 275 - 298 seconds. With fuel film cooling, heating rates were low enough that the silica/quartz phenolic throat experienced minimal erosion. Mission derived requirements were met, along with a perfect safety record.
SSME thrust chamber simulation using Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.
1984-01-01
The capability of the PHOENICS fluid dynamics code in predicting two-dimensional, compressible, and reacting flow in the combustion chamber and nozzle of the space shuttle main engine (SSME) was evaluated. A non-orthogonal body fitted coordinate system was used to represent the nozzle geometry. The Navier-Stokes equations were solved for the entire nozzle with a turbulence model. The wall boundary conditions were calculated based on the wall functions which account for pressure gradients. Results of the demonstration test case reveal all expected features of the transonic nozzle flows. Of particular interest are the locations of normal and barrel shocks, and regions of highest temperature gradients. Calculated performance (global) parameters such as thrust chamber flow rate, thrust, and specific impulse are also in good agreement with available data.
Recent Progress on the VASIMR Engine
NASA Technical Reports Server (NTRS)
Chang-Diaz, F. R.
2004-01-01
The development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was initiated in the late 1970s to address a critical requirement for fast, high-power interplanetary space transportation. Its high-power and electrodeless design arises from the use of radio frequency (RF) waves to create and accelerate plasma in a magnetic nozzle. While not being a fusion rocket, it borrows heavily from that technology and takes advantage of the natural topology of open-ended magnetic systems. In addition the system lends itself well for Constant Power Throttling (CPT,) an important ability to vary thrust and specific impulse, over a wide operational range, while maintaining maximum power. This allows in-flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led, research team, involving industry, academia and government facilities is pursuing the development of this concept in the United States. The technology can be validated, in the near term, in venues such as the International Space Station, where it can also serve as both a drag compensation device and a plasma contactor for the orbital facility. Recent advances in the development of this technology involve the demonstration of efficient propellant utilization in a flowing helicon plasma discharge as well as the experimental verification of single-pass ion acceleration, as predicted by theory I, by coupling RF power to the plasma through ion cyclotron resonance. This paper outlines these and other progress in our understanding of VASIMR physics and presents the concepts for its potential application in NASA's new vision of space exploration.
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.
2011-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Nuclear propulsion: a vital technology for the exploration of Mars and the planets beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.
1988-01-01
The physics and technology issues and performance potential of various direct thrust fission and fusion propulsion concepts are examined. Next to chemical propulsion the solid core fission thermal rocket (SCR) is the olny other concept to be experimentally tested at the power (approx 1.5 to 5.0 GW) and thrust levels (approx 0.33 to 1.11 MN) required for manned Mars missions. With a specific impulse of approx 850 s, the SCR can perform various near-Earth, cislunar and interplanetary missions with lower mass and cost requirements than its chemical counterpart. The gas core fission thermal rocket, with a specific power and impulsemore » of approx 50 kW/kg and 5000 s offers the potential for quick courier trips to Mars (of about 80 days) or longer duration exploration cargo missions (lasting about 280 days) with starting masses of about 1000 m tons. Convenient transportation to the outer Solar System will require the development of magnetic and inertial fusion rockets (IFRs). Possessing specific powers and impulses of approx 100 kW/kg and 200-300 kilosecs, IFRs will usher in the era of the true Solar System class speceship. Even Pluto will be accessible with roundtrip times of less than 2 years and starting masses of about 1500 m tons.« less
Performance Capability of Single-Cavity Vortex Gaseous Nuclear Rockets
NASA Technical Reports Server (NTRS)
Ragsdale, Robert G.
1963-01-01
An analysis was made to determine the maximum powerplant thrust-to-weight ratio possible with a single-cavity vortex gaseous reactor in which all the hydrogen propellant must diffuse through a fuel-rich region. An assumed radial temperature profile was used to represent conduction, convection, and radiation heat-transfer effects. The effect of hydrogen property changes due to dissociation and ionization was taken into account in a hydrodynamic computer program. It is shown that, even for extremely optimistic assumptions of reactor criticality and operating conditions, such a system is limited to reactor thrust-to-weight ratios of about 1.2 x 10(exp -3) for laminar flow. For turbulent flow, the maximum thrust-to-weight ratio is less than 10(exp -3). These low thrusts result from the fact that the hydrogen flow rate is limited by the diffusion process. The performance of a gas-core system with a specific impulse of 3000 seconds and a powerplant thrust-to-weight ratio of 10(exp -2) is shown to be equivalent to that of a 1000-second advanced solid-core system. It is therefore concluded that a single-cavity vortex gaseous reactor in which all the hydrogen must diffuse through the nuclear fuel is a low-thrust device and offers no improvement over a solid-core nuclear-rocket engine. To achieve higher thrust, additional hydrogen flow must be introduced in such a manner that it will by-pass the nuclear fuel. Obviously, such flow must be heated by thermal radiation. An illustrative model of a single-cavity vortex system employing supplementary flow of hydrogen through the core region is briefly examined. Such a system appears capable of thrust-to-weight ratios of approximately 1 to 10. For a high-impulse engine, this capability would be a considerable improvement over solid-core performance. Limits imposed by thermal radiation heat transfer to cavity walls are acknowledged but not evaluated. Alternate vortex concepts that employ many parallel vortices to achieve higher hydrogen flow rates offer the possibility of sufficiently high thrust-to-weight ratios, if they are not limited by short thermal-radiation path lengths.
NASA Astrophysics Data System (ADS)
Dandavino, S.; Ataman, C.; Ryan, C. N.; Chakraborty, S.; Courtney, D.; Stark, J. P. W.; Shea, H.
2014-07-01
Microfabricated electrospray thrusters could revolutionize the spacecraft industry by providing efficient propulsion capabilities to micro and nano satellites (1-100 kg). We present the modeling, design, fabrication and characterization of a new generation of devices, for the first time integrating in the fabrication process individual accelerator electrodes capable of focusing and accelerating the emitted sprays. Integrating these electrodes is a key milestone in the development of this technology; in addition to increasing the critical performance metrics of thrust, specific impulse and propulsive efficiency, the accelerators enable a number of new system features such as power tuning and thrust vectoring and balancing. Through microfabrication, we produced high density arrays (213 emitters cm-2) of capillary emitters, assembling them at wafer-level with an extractor/accelerator electrode pair separated by micro-sandblasted glass. Through IV measurements, we could confirm that acceleration could be decoupled from the extraction of the spray—an important element towards the flexibility of this technology. We present the largest reported internally fed microfabricated arrays operation, with 127 emitters spraying in parallel, for a total beam of 10-30 µA composed by 95% of ions. Effective beam focusing was also demonstrated, with plume half-angles being reduced from approximately 30° to 15° with 2000 V acceleration. Based on these results, we predict, with 3000 V acceleration, thrust per emitter of 38.4 nN, specific impulse of 1103 s and a propulsive efficiency of 22% with <1 mW/emitter power consumption.
Magnetic Field Tailored Annular Hall Thruster with Anode Layer
NASA Astrophysics Data System (ADS)
Lee, Seunghun; Kim, Holak; Kim, Junbum; Lim, Youbong; Choe, Wonho; Korea Institute of Materials Science Collaboration
2016-09-01
Plasma propulsion system is one of the key components for advanced missions of satellites as well as deep space exploration. A typical plasma propulsion system is Hall effect thruster that uses crossed electric and magnetic fields to ionize a propellant gas and to accelerate the ionized gas to generate momentum. In Hall thruster plasmas, magnetic field configuration is important due to the fact that electron confinement in the electromagnetic fields affects both plasma and ion beam characteristics as well as thruster performance parameters including thrust, specific impulse, power efficiency, and life time. In this work, development of an anode layer Hall thruster (TAL) with magnetic field tailoring has been attempted. The TAL is possible to keep discharge in 1 to 2 kilovolts of anode voltage, which is useful to obtain high specific impulse. The magnetic field tailoring is used to minimize undesirable heat dissipation and secondary electron emission from the wall surrounding the plasma. We will report 3 W and 200 W thrusters performances measured by a pendulum thrust stand according to the magnetic field configuration. Also, the measured result will be compared with the plasma diagnostics conducted by an angular Faraday probe, a retarding potential analyzer, and a ExB probe.
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2013-01-01
A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.
The ENABLER - Based on proven NERVA technology
NASA Astrophysics Data System (ADS)
Livingston, Julie M.; Pierce, Bill L.
The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.
Hydrogen-oxygen auxiliary propulsion for the space shuttle. Volume 2: Low pressure thrusters
NASA Technical Reports Server (NTRS)
1973-01-01
An abbreviated program was conducted to investigate igniter, injector, and thrust chamber technology for a 10.3 N/cm2 (15 psia) chamber pressure, 6660 N (1500 lbf) gaseous H2/O2 APS thruster for the Space Shuttle Vehicle. Successful catalytic igniter tests were conducted with ambient and cold propellants. Injector testing with a heat sink chamber (MR = 2.5, area ratio = 5.0) gave a measured specific impulse of 386 sec with 11% of the fuel used as film coolant. This coolant flow rate was demonstrated to be more than adequate to cool a spun adiabatic wall, flightweight thrust chamber.
Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Vassallo, Corinne; Tadge, Megan
2015-01-01
The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac
1987-01-01
A preliminary uncertainty analysis was performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis is presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac
1987-01-01
A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.
NASA Technical Reports Server (NTRS)
Haag, Thomas W.
1995-01-01
A torsional-type thrust stand has been designed and built to test Pulsed Plasma Thrusters (PPT's) in both single shot and repetitive operating modes. Using this stand, momentum per pulse was determined strictly as a function of thrust stand deflection, spring constant, and natural frequency. No empirical corrections were required. The accuracy of the method was verified using a swinging impact pendulum. Momentum transfer data between the thrust stand and the pendulum were consistent to within 1%. Following initial calibrations, the stand was used to test a Lincoln Experimental Satellite (LES-8/9) thruster. The LES-8/9 system had a mass of approximately 7.5 kg, with a nominal thrust to weight ratio of 1.3 x 10(exp -5). A total of 34 single shot thruster pulses were individually measured. The average impulse bit per pulse was 266 microN-s, which was slightly less than the value of 300 microN-s published in previous reports on this device. Repetitive pulse measurements were performed similar to ordinary steady-state thrust measurements. The thruster was operated for 30 minutes at a repetition rate of 132 pulses per minute and yielded an average thrust of 573 microN. Using average thrust, the average impulse bit per pulse was estimated to be 260 microN-s, which was in agreement with the single shot data. Zero drift during the repetitive pulse test was found to be approximately 1% of the measured thrust.
Pressure and Thrust Measurements of a High-Frequency Pulsed-Detonation Actuator
NASA Technical Reports Server (NTRS)
Nguyen, Namtran C.; Cutler, Andrew D.
2008-01-01
This paper describes the development of a small-scale, high-frequency pulsed detonation actuator. The device utilized a fuel mixture of H2 and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at approx.600 Hz, for the lambda/4 mode. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to specific impulse of 2611 s. This value is comparable to other H2-fueled pulsed detonation engines (PDEs) experiments. The injection and detonation frequency for this new experimental case was approx.600 Hz, and was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the model and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 lb/cu in, and compares favorably with other experiments, which typically have thrust-per-unit-volume values of approximately 0.01 lb/cu in.
Evaluation of a pulsed quasi-steady MPD thruster and associated subsystems
NASA Technical Reports Server (NTRS)
Lien, H.; Garrison, R. L.; Libby, D. R.
1972-01-01
The performance of quasi-steady magnetoplasmadynamic (MPD) thrusters at high power levels is discussed. An axisymmetric configuration is used for the MPD thruster, with various cathode and anode sizes, over a wide range of experimental conditions. Thrust is determined from impulse measurements with current waveforms, while instantaneous measurements are made for all other variables. It is demonstrated that the thrust produced has a predominately self-magnetic origin and is directly proportional to the square of the current. The complete set of impulse measurement data is presented.
Role of Air-Breathing Pulse Detonation Engines in High Speed Propulsion
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Lee, Jin-Ho; Anderberg, Michael O.
2001-01-01
In this paper, the effect of flight Mach number on the relative performance of pulse detonation engines and gas turbine engines is investigated. The effect of ram and mechanical compression on combustion inlet temperature and the subsequent sensible heat release is determined. Comparison of specific thrust, fuel consumption and impulse for the two engines show the relative benefits over the Mach number range.
Development of a Specific Impulse Balance for a Pulsed Capillary Discharge (Preprint)
2008-06-13
thrust stand [rad/s] I. Introduction A capillary discharge based coaxial , electrothermal pulsed plasma thruster (PPT) is currently under...20-23 July 2008. 14. ABSTRACT A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research...Edwards AFB, CA 93524 A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research Laboratory. A
Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Cataldo, R. L.
2001-01-01
The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Hyland, R. E.
1971-01-01
The mini-cavity reactor is a rocket engine concept which combines the high specific impulse from a central gaseous fueled cavity (0.6 m diam) and NERVA type fuel elements in a driver region that is external to a moderator-reflector zone to produce a compact light weight reactor. The overall dimension including a pressure vessel that is located outside of the spherical reactor is approximately 1.21 m in diameter. Specific impulses up to 2000 sec are obtainable for 220 to 890 N of thrust with pressures less than 1000 atm. Powerplant weights including a radiator for disposing of the power in the driver region are between 4600 and 32,000 kg - less than payloads of the shuttle. This reactor could also be used as a test reactor for gas-core, MHD, breeding and materials research.
Performance Characteristics of a DME Propellant Arcjet Thruster
NASA Astrophysics Data System (ADS)
Kakami, Akira; Beeppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi
This paper describes the influence of cathode configuration on performance of an arcjet thruster using dimethyl ether (DME) propellant. DME, an ether compound, has suitable characteristics for a space propulsion system; DME is storable in a liquid state without being kept under a high pressure, and requires no sophisticated temperature management such as a cryogenic device. DME can be gasified and liquefied simply by adjusting temperature whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of a 1-kW class DME arcjet thruster is measured at a discharge current of 13 A, DME mass flow rates ranging 15 to 60 mg/s under three cathode configurations: flat-tip rods of 2 and 4 mm in diam. and 4-mm-diam. rod having a cavity of 2 mm in diameter. Thrust measurements show that thrust is increased with propellant mass flow rate. Among the tested cathodes, the flat-tip rod of 4 mm in diam. with 55 mg/s DME flow rate yielded the highest performance: specific impulse of 330 s, thrust of 0.18 N, discharge power of 1400 W and specific power of 25 MJ/kg.
NASA Technical Reports Server (NTRS)
Meserole, J. S.; Keefer, Dennis; Ruyten, Wilhelmus; Peng, Xiaohang
1995-01-01
An ion engine is a plasma thruster which produces thrust by extracting ions from the plasma and accelerating them to high velocity with an electrostatic field. The ions are then neutralized and leave the engine as high velocity neutral particles. The advantages of ion engines are high specific impulse and efficiency and their ability to operate over a wide range of input powers. In comparison with other electric thrusters, the ion engine has higher efficiency and specific impulse than thermal electric devices such as the arcjet, microwave, radiofrequency and laser heated thrusters and can operate at much lower current levels than the MPD thruster. However, the thrust level for an ion engine may be lower than a thermal electric thruster of the same operating power, consistent with its higher specific impulse, and therefore ion engines are best suited for missions which can tolerate longer duration propulsive phases. The critical issue for the ion engine is lifetime, since the prospective missions may require operation for several thousands of hours. The critical components of the ion engine, with respect to engine lifetime, are the screen and accelerating grid structures. Typically, these are large metal screens that must support a large voltage difference and maintain a small gap between them. Metallic whisker growth, distortion and vibration can lead to arcing, and over a long period of time ion sputtering will erode the grid structures and change their geometry. In order to study the effects of long time operation of the grid structure, we are developing computer codes based on the Particle-In-Cell (PIC) technique and Laser Induced Fluorescence (LIF) diagnostic techniques to study the physical processes which control the performance and lifetime of the grid structures.
Studies of Fission Fragment Rocket Engine Propelled Spacecraft
NASA Technical Reports Server (NTRS)
Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.
2014-01-01
The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the vehicles are very large, they are primarily made up of a habitat payload on one end, the engine on the opposite end and a connecting spine containing radiator acreage needed to reject the heat of this powerful, but inefficient engine. These studies concluded that the engine and spacecraft are within today's technology, could be built, tested, launched on several SLS launchers, integrated, checked out, maintained at an in-space LEO base, and operated for decades just as Caribbean cruise ships operate today. The nuclear issues were found to be far less daunting that [than for] current nuclear engines. The FFRE produces very small amounts of radioactive efflux compared to their impulse, easily contained in an evacuated "bore-hole" test site. The engine poses no launch risk since it is simply a structure containing no fissionable material. The nuclear fuel is carried to orbit in containers highly crash-proofed for launch accidents from which it, in a liquid medium, is injected into the FFRE. The radioactive exhaust, with a velocity above 300 kilometers per second rapidly leaves the solar system.
Asteroid retrieval missions enabled by invariant manifold dynamics
NASA Astrophysics Data System (ADS)
Sánchez, Joan Pau; García Yárnoz, Daniel
2016-10-01
Near Earth Asteroids are attractive targets for new space missions; firstly, because of their scientific importance, but also because of their impact threat and prospective resources. The asteroid retrieval mission concept has thus arisen as a synergistic approach to tackle these three facets of interest in one single mission. This paper reviews the methodology used by the authors (2013) in a previous search for objects that could be transported from accessible heliocentric orbits into the Earth's neighbourhood at affordable costs (or Easily Retrievable Objects, a.k.a. EROs). This methodology consisted of a heuristic pruning and an impulsive manoeuvre trajectory optimisation. Low thrust propulsion on the other hand clearly enables the transportation of much larger objects due to its higher specific impulse. Hence, in this paper, low thrust retrieval transfers are sought using impulsive trajectories as first guesses to solve the optimal control problem. GPOPS-II is used to transcribe the continuous-time optimal control problem to a nonlinear programming problem (NLP). The latter is solved by IPOPT, an open source software package for large-scale NLPs. Finally, a natural continuation procedure that increases the asteroid mass allows to find out the largest objects that could be retrieved from a given asteroid orbit. If this retrievable mass is larger than the actual mass of the asteroid, the asteroid retrieval mission for this particular object is said to be feasible. The paper concludes with an updated list of 17 EROs, as of April 2016, with their maximum retrievable masses by means of low thrust propulsion. This ranges from 2000 tons for the easiest object to be retrieved to 300 tons for the least accessible of them.
Spacecraft formation control using analytical finite-duration approaches
NASA Astrophysics Data System (ADS)
Ben Larbi, Mohamed Khalil; Stoll, Enrico
2018-03-01
This paper derives a control concept for formation flight (FF) applications assuming circular reference orbits. The paper focuses on a general impulsive control concept for FF which is then extended to the more realistic case of non-impulsive thrust maneuvers. The control concept uses a description of the FF in relative orbital elements (ROE) instead of the classical Cartesian description since the ROE provide a direct insight into key aspects of the relative motion and are particularly suitable for relative orbit control purposes and collision avoidance analysis. Although Gauss' variational equations have been first derived to offer a mathematical tool for processing orbit perturbations, they are suitable for several different applications. If the perturbation acceleration is due to a control thrust, Gauss' variational equations show the effect of such a control thrust on the Keplerian orbital elements. Integrating the Gauss' variational equations offers a direct relation between velocity increments in the local vertical local horizontal frame and the subsequent change of Keplerian orbital elements. For proximity operations, these equations can be generalized from describing the motion of single spacecraft to the description of the relative motion of two spacecraft. This will be shown for impulsive and finite-duration maneuvers. Based on that, an analytical tool to estimate the error induced through impulsive maneuver planning is presented. The resulting control schemes are simple and effective and thus also suitable for on-board implementation. Simulations show that the proposed concept improves the timing of the thrust maneuver executions and thus reduces the residual error of the formation control.
NASA Technical Reports Server (NTRS)
Brown, Thomas; Klem, Mark; McRight, Patrick
2016-01-01
Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.
The ENABLER—based on proven NERVA technology
NASA Astrophysics Data System (ADS)
Livingston, Julie M.; Pierce, Bill L.
1991-01-01
The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.
Internal performance predictions for Langley scramjet engine module
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1978-01-01
A one dimensional theoretical method for the prediction of the internal performance of a scramjet engine is presented. The effects of changes in vehicle forebody flow parameters and characteristics on predicted thrust for the scramjet engine were evaluated using this method, and results are presented. A theoretical evaluation of the effects of changes in the scramjet engine's internal parameters is also presented. Theoretical internal performance predictions, in terms thrust coefficient and specific impulse, are provided for the scramjet engine for free stream Mach numbers of 5, 6, and 7 free stream dynamic pressure of 23,940 N/sq m forebody surface angles of 4.6 deg to 14.6 deg, and fuel equivalence ratio of 1.0.
Status of the NEXT Ion Engine Wear Test
NASA Technical Reports Server (NTRS)
Soulas, George C.; Domonkos, Matthew T.; Kamhawi, Hani; Patterson, Michael J.; Gardner, Michael M.
2003-01-01
The status of the NEXT 2000 hour wear test is presented. This test is being conducted with a 40 cm engineering model ion engine, designated EM1, at a beam current higher than listed on the NEXT throttle table. Pretest performance assessments demonstrated that EM1 satisfies all thruster performance requirements. As of 7/3/03, the ion engine has accumulated 406 hours of operation at a thruster input power of 6.9 kW. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with no indications of performance degradation. Images of the downstream discharge cathode, neutralizer, and accelerator aperture surfaces have exhibited no significant erosion to date.
Efficient solid rocket propulsion for access to space
NASA Astrophysics Data System (ADS)
Maggi, Filippo; Bandera, Alessio; Galfetti, Luciano; De Luca, Luigi T.; Jackson, Thomas L.
2010-06-01
Space launch activity is expected to grow in the next few years in order to follow the current trend of space exploitation for business purpose. Granting high specific thrust and volumetric specific impulse, and counting on decades of intense development, solid rocket propulsion is a good candidate for commercial access to space, even with common propellant formulations. Yet, some drawbacks such as low theoretical specific impulse, losses as well as safety issues, suggest more efficient propulsion systems, digging into the enhancement of consolidated techniques. Focusing the attention on delivered specific impulse, a consistent fraction of losses can be ascribed to the multiphase medium inside the nozzle which, in turn, is related to agglomeration; a reduction of agglomerate size is likely. The present paper proposes a model based on heterogeneity characterization capable of describing the agglomeration trend for a standard aluminized solid propellant formulation. Material microstructure is characterized through the use of two statistical descriptors (pair correlation function and near-contact particles) looking at the mean metal pocket size inside the bulk. Given the real formulation and density of a propellant, a packing code generates the material representative which is then statistically analyzed. Agglomerate predictions are successfully contrasted to experimental data at 5 bar for four different formulations.
NASA Technical Reports Server (NTRS)
Kosmann, W. J.; Dionne, E. R.; Klemetson, R. W.
1978-01-01
Nonaxial thrusts produced by solid rocket motors during three-axis stabilized attitude control have been determined from ascent experience on twenty three Burner II, Burner IIA and Block 5D-1 upper stage vehicles. A data base representing four different rocket motor designs (three spherical and one extended spherical) totaling twenty five three-axis stabilized firings is generated. Solid rocket motor time-varying resultant and lateral side force vector magnitudes, directions and total impulses, and roll torque couple magnitudes, directions, and total impulses are tabulated in the appendix. Population means and three sigma deviations are plotted. Existing applicable ground test side force and roll torque magnitudes and total impulses are evaluated and compared to the above experience data base. Within the spherical motor population, the selected AEDC ground test data consistently underestimated experienced motor side forces, roll torques and total impulses. Within the extended spherical motor population, the selected AEDC test data predicted experienced motor side forces, roll torques, and total impulses, with surprising accuracy considering the very small size of the test and experience populations.
The Benefits of Nuclear Thermal Propulsion (NTP) in an Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Mccurdy, David R.
2014-01-01
NTR: High thrust high specific impulse (2 x LOXLH2chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2propellant which is then exhausted to produce thrust. Conventional chemical engine LH2tanks, turbopumps, regenerative nozzles and radiation-cooled shirt extensions used --NTR is next evolutionary step in high performance liquid rocket engines During the Rover program, a common fuel element tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968) NASA and DOE are using this same approach: design, build, ground then flight test a small engine using a common fuel element that is scalable to a larger 25 klbf thrust engine needed for human missions
Extended operating range of the 30-cm ion thruster with simplified power processor requirements
NASA Technical Reports Server (NTRS)
Rawlin, V. K.
1981-01-01
A two grid 30 cm diameter mercury ion thruster was operated with only six power supplies over the baseline J series thruster power throttle range with negligible impact on thruster performance. An analysis of the functional model power processor showed that the component mass and parts count could be reduced considerably and the electrical efficiency increased slightly by only replacing power supplies with relays. The input power, output thrust, and specific impulse of the thruster were then extended, still using six supplies, from 2660 watts, 0.13 newtons, and 2980 seconds to 9130 watts, 0.37 newtons, and 3820 seconds, respectively. Increases in thrust and power density enable reductions in the number of thrusters and power processors required for most missions. Preliminary assessments of the impact of thruster operation at increased thrust and power density on the discharge characteristics, performance, and lifetime of the thruster were also made.
Simulation and Application of GPOPS for a Trajectory Optimization and Mission Planning Tool
2010-03-01
12,000lbf) vaccum Specific Impulse 269 s 455 s 316 s Burn Time 124 s 480 s 1250s Fuel Solid LOX/ LH2 MMH/N2O4 Height 184 ft Diameter 28.5 ft...285,000 lb Engine 2 J-2S Linear Aerospikes Thrust 410,000 lbf Fuel LOX/ LH2 20 Figure 9: Minuteman Launch [29] Currently the main missile
Variable Specific Impulse Magnetoplasma Rocket Engine
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R. (Inventor)
2002-01-01
An engine is disclosed, including a controllable output plasma generator, a controllable heater for selectably raising a temperature of the plasma connected to an outlet of the plasma generator, and a nozzle connected to an outlet of the heater, through which heated plasma is discharged to provide thrust. In one embodiment, the source of plasma is a helicon generator. In one embodiment, the heater is an ion cyclotron resonator. In one embodiment, the nozzle is a radially diverging magnetic field disposed on a discharge side of the heater so that helically travelling particles in the beater exit the heater at high axial velocity. A particular embodiment includes control circuits for selectably directing a portion of radio frequency power from an RF generator to the helicon generator and to the cyclotron resonator so that the thrust output and the specific impulse of the engine can be selectively controlled. A method of propelling a vehicle is also disclosed. The method includes generating a plasma, heating said plasma, and discharging the heated plasma through a nozzle. In one embodiment, the nozzle is a diverging magnetic field. In this embodiment, the heating is performed by applying a radio frequency electro magnetic field to the plasma at the ion cyclotron frequency in an axially polarized DC magnetic field.
Implementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design
NASA Technical Reports Server (NTRS)
Sims, Jon A.; Finlayson, Paul A.; Rinderle, Edward A.; Vavrina, Matthew A.; Kowalkowski, Theresa D.
2006-01-01
A tool developed for the preliminary design of low-thrust trajectories is described. The trajectory is discretized into segments and a nonlinear programming method is used for optimization. The tool is easy to use, has robust convergence, and can handle many intermediate encounters. In addition, the tool has a wide variety of features, including several options for objective function and different low-thrust propulsion models (e.g., solar electric propulsion, nuclear electric propulsion, and solar sail). High-thrust, impulsive trajectories can also be optimized.
MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition
NASA Technical Reports Server (NTRS)
Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)
2001-01-01
Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.
Optimal Trajectories For Orbital Transfers Using Low And Medium Thrust Propulsion Systems
NASA Technical Reports Server (NTRS)
Cobb, Shannon S.
1992-01-01
For many problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well-known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs which will require more revolutions, thus making the low thrust transfer computational intensive. Here, we consider optimal low and medium thrust orbital transfers.
Radiation energy receiver for laser and solar propulsion systems
NASA Technical Reports Server (NTRS)
Rault, D. F. G.; Hertzberg, A.
1983-01-01
The concept of remotely heating a rocket propellant with a high intensity radiant energy flux is especially attractive due to its high specific impulse and large payload mass capabilities. In this paper, a radiation receiver-thruster which is especially suited to the particular thermodynamic and spectral characteristics of highly concentrated solar energy is proposed. In this receiver, radiant energy is volumetrically absorbed within a hydrogen gas seeded with alkali metal vapors. The alkali atoms and molecules absorb the radiant flux and, subsequently, transfer their internal excitation to hydrogen molecules through collisional quenching. It is shown that such a radiation receiver would outperform a blackbody cavity type receiver in both efficiency and maximum operating temperatures. A solar rocket equipped with such a receiver-thruster would deliver thrusts of several hundred newtons at a specific impulse of 1000 seconds.
Pilot Wave Model for Impulsive Thrust from RF Test Device Measured in Vacuum
NASA Technical Reports Server (NTRS)
White, Harold; Lawrence, James; Sylvester, Andre; Vera, Jerry; Chap, Andrew; George, Jeff
2017-01-01
A physics model is developed in detail and its place in the taxonomy of ideas about the nature of the quantum vacuum is discussed. The experimental results from the recently completed vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) are summarized. The empirical data from this campaign is compared to the predictions from the physics model tools. A discussion is provided to further elaborate on the possible implications of the proposed model if it is physically valid. Based on the correlation of analysis prediction with experimental data collected, it is proposed that the observed anomalous thrust forces are real, not due to experimental error, and are due to a new type of interaction with quantum vacuum fluctuations.
Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, A. K.; Martin, A. K.; Polzin, K. A.; Kimberlin, A. C.; Eskridge, R. H.
2013-01-01
Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20deg, 38deg, and 60deg, were quantified for 500J/pulse operation by direct measurement using a hanging-pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38deg model producing the highest impulse bits at roughly 1 mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively-pulsed thruster operation, permitted testing of the 38deg thruster at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The average thrust measured during multiple-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate.
Performance characterization of a permanent-magnet helicon plasma thruster
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Charles, Christine; Boswell, Rod
2012-10-01
Helicon plasma thrusters operated at a few kWs of rf power is an active area of an international research. Recent experiments have clarified part of the thrust-generation mechanisms. Thrust components which have been identified include an electron pressure inside the source region and a Lorentz force due to an electron diamagnetic drift current and a radial component of the applied magnetic field. The use of permanent magnets (PMs) instead of solenoids is one of the solutions for improving the thruster efficiency because it does not require electricity for the magnetic nozzle formation. Here the thrust imparted from a permanent-magnet helicon plasma thruster is directly measured using a pendulum thrust balance. The source consists of permanent magnet (PM) arrays, a double turn rf loop antenna powered by a 13.56 MHz rf generator and a glass source tube. The PM arrays provide a magnetic nozzle near the open exit of the source and two configurations, which have maximum field strengths of about 100 and 270 G, are tested. A thrust of 15 mN, specific impulse of 2000 sec and a thrust efficiency of 8 percent are presently obtained for 2 kW of input power, 24 sccm flow rate of argon and the stronger magnetic field configuration.
Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2007-01-01
The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.
Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira
2015-02-01
Momentum, i.e., force, exerted from a small helicon plasma thruster to a target plate is measured simultaneously with a direct thrust measurement using a thrust balance. The calibration coefficient relating a target displacement to a steady-state force is obtained by supplying a dc to a calibration coil mounted on the target, where a force acting to a small permanent magnet located near the coil is directly measured by using a load cell. As the force exerted by the plasma flow to the target plate is in good agreement with the directly measured thrust, the validity of the target technique is demonstrated under the present operating conditions, where the thruster is operated in steady-state. Furthermore, a calibration coefficient relating a swing amplitude of the target to an impulse bit is also obtained by pulsing the calibration coil current. The force exerted by the pulsed plasma, which is estimated from the measured impulse bit and the pulse width, is also in good agreement with that obtained for the steady-state operation; hence, the thrust assessment of the helicon plasma thruster by the target is validated for both the steady-state and pulsed operations.
Development of the Engineering Test Satellite-3 (ETS-3) ion engine system
NASA Technical Reports Server (NTRS)
Kitamura, S.
1984-01-01
The ion engine system onboard the ETS-3 is discussed. The system consists of two electron bombardment type mercury ion engines with 2 mN thrust and 2,000 sec specific impulse and a power conditioner with automatic control functions. The research and development of the system, development of its EM, PM and FM, the system test and the technical achievements leading up to final launch are discussed.
Comparison of Numerical and Experimental Time-Resolved Near-Field Hall Thruster Plasma Properties
2014-03-06
Near-Field Hall Thruster Plasma Properties 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Resolved Near-Field Hall Thruster Plasma Properties Ashley E. Gonzales, Justin W. Koo, and William A. Hargus, Jr. Abstract— Breathing mode oscillations... thruster , HPHall, plume emission. I. INTRODUCTION HALL thrusters are a plasma propulsion technologywidely used due to their low thrust, high specific impulse
Flowing DPF Design for Propulsion Experiments
1993-08-01
plasma acceleration but not a pinch i.e., added fusion energy , as envisioned in a DPF. The outer electrode at the UI DPF is constructed of 24 rods which...many respects to a coaxial plasma accelerator or a magnetic plasmoid accelerator, the added fusion energy supplied by the pinch step greatly enhances...modified DPF in space propulsion. Using a scaled-up model. From this model, the contribution of fusion energy to thrust and specific impulse is estimated
MHD Energy Bypass Scramjet Performance with Real Gas Effects
NASA Technical Reports Server (NTRS)
Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.
2000-01-01
The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.
Trajectory Optimization of an Interstellar Mission Using Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Kluever, Craig A.
1996-01-01
This paper presents several mission designs for heliospheric boundary exploration using spacecraft with low-thrust ion engines as the primary mode of propulsion The mission design goal is to transfer a 200-kg spacecraft to the heliospheric boundary in minimum time. The mission design is a combined trajectory and propulsion system optimization problem. Trajectory design variables include launch date, launch energy, burn and coast arc switch times, thrust steering direction, and planetary flyby conditions. Propulsion system design parameters include input power and specific impulse. Both SEP and NEP spacecraft arc considered and a wide range of launch vehicle options are investigated. Numerical results are presented and comparisons with the all chemical heliospheric missions from Ref 9 are made.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert; Elliott, Fred
2000-01-01
It is the goal of this activity to develop 50 kW class Hall thruster technology in support of cost and time critical mission applications such as orbit insertion. NASA Marshall Space Flight Center is tasked to develop technologies that enable cost and travel time reduction of interorbital transportation. Therefore, a key challenge is development of moderate specific impulse (2000-3000 s), high thrust-to-power electric propulsion. NASA Glenn Research Center is responsible for development of a Hall propulsion system to meet these needs. First-phase, sub-scale Hall engine development completed. A 10 kW engine designed, fabricated, and tested. Performance demonstrated >2400 s, >500 mN thrust over 1000 hours of operation documented.
Experimental and numerical modeling of rarefied gas flows through orifices and short tubes
NASA Astrophysics Data System (ADS)
Gimelshein, S. F.; Markelov, G. N.; Lilly, T. C.; Selden, N. P.; Ketsdever, A. D.
2005-05-01
Flow through circular orifices with thickness-to-diameter ratios varying from 0.015 to 1.2 is studied experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to over 700. Good agreement between experimental and numerical results is observed for mass flow and thrust corrected for the experimental facility background pressure. For thick-to-thin orifice ratios of mass flow and thrust vs pressure, a minimum is established. The thick orifice propulsion efficiency is much higher than that of a thin orifice. The effects of edge roundness and surface specularity on a thick orifice specific impulse were found to be relatively small.
Conceptual Design of a Z-Pinch Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew;
2010-01-01
This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,
The cislunar low-thrust trajectories via the libration point
NASA Astrophysics Data System (ADS)
Qu, Qingyu; Xu, Ming; Peng, Kun
2017-05-01
The low-thrust propulsion will be one of the most important propulsion in the future due to its large specific impulse. Different from traditional low-thrust trajectories (LTTs) yielded by some optimization algorithms, the gradient-based design methodology is investigated for LTTs in this paper with the help of invariant manifolds of LL1 point and Halo orbit near the LL1 point. Their deformations under solar gravitational perturbation are also presented to design LTTs in the restricted four-body model. The perturbed manifolds of LL1 point and its Halo orbit serve as the free-flight phase to reduce the fuel consumptions as much as possible. An open-loop control law is proposed, which is used to guide the spacecraft escaping from Earth or captured by Moon. By using a two-dimensional search strategy, the ON/OFF time of the low-thrust engine in the Earth-escaping and Moon-captured phases can be obtained. The numerical implementations show that the LTTs achieved in this paper are consistent with the one adopted by the SMART-1 mission.
Nuclear Thermal Rocket Simulation in NPSS
NASA Technical Reports Server (NTRS)
Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas M.
2013-01-01
Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic-metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.
Nuclear Thermal Rocket Simulation in NPSS
NASA Technical Reports Server (NTRS)
Belair, Michael L.; Sarmiento, Charles J.; Lavelle, Thomas L.
2013-01-01
Four nuclear thermal rocket (NTR) models have been created in the Numerical Propulsion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf ). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf ). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design.
NASA Technical Reports Server (NTRS)
Melcher, John C., IV; Allred, Jennifer K.
2009-01-01
Tests were conducted with the RS18 rocket engine using liquid oxygen (LO2) and liquid methane (LCH4) propellants under simulated altitude conditions at NASA Johnson Space Center White Sands Test Facility (WSTF). This project is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. "Green" propellants, such as LO2/LCH4, offer savings in both performance and safety over equivalently sized hypergolic propellant systems in spacecraft applications such as ascent engines or service module engines. Altitude simulation was achieved using the WSTF Large Altitude Simulation System, which provided altitude conditions equivalent up to approx.120,000 ft (approx.37 km). For specific impulse calculations, engine thrust and propellant mass flow rates were measured. Propellant flow rate was measured using a coriolis-style mass-flow meter and compared with a serial turbine-style flow meter. Results showed a significant performance measurement difference during ignition startup. LO2 flow ranged from 5.9-9.5 lbm/sec (2.7-4.3 kg/sec), and LCH4 flow varied from 3.0-4.4 lbm/sec (1.4-2.0 kg/sec) during the RS-18 hot-fire test series. Thrust was measured using three load cells in parallel. Ignition was demonstrated using a gaseous oxygen/methane spark torch igniter. Data was obtained at multiple chamber pressures, and calculations were performed for specific impulse, C* combustion efficiency, and thrust vector alignment. Test objectives for the RS-18 project are 1) conduct a shakedown of the test stand for LO2/methane lunar ascent engines, 2) obtain vacuum ignition data for the torch and pyrotechnic igniters, and 3) obtain nozzle kinetics data to anchor two-dimensional kinetics codes.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
Thrust measurements of a complete axisymmetric scramjet in an impulse facility
NASA Technical Reports Server (NTRS)
Paull, A.; Stalker, R. J.; Mee, D.
1995-01-01
This paper describes tests which were conducted in the hypersonic impulse facility T4 on a fully integrated axisymmetric scramjet configuration. In these tests the net force on the scramjet vehicle was measured using a deconvolution force balance. This measurement technique and its application to a complex model such as the scramjet are discussed. Results are presented for the scramjet's aerodynamic drag and the net force on the scramjet when fuel is injected into the combustion chambers. It is shown that a scramjet using a hydrogen-silane fuel produces greater thrust than its aerodynamic drag at flight speeds equivalent to 260 m/s.
NASA Technical Reports Server (NTRS)
Ferrera, J. D.
1972-01-01
The purpose of this report is to define and program the transient pneumatic flow equations necessary to determine, for a given set of conditions (geometry, pressures, temperatures, valve on time, etc.), the total nitrogen impulse and mass flow per pulse for the single pulsing of a Mariner type reaction control assembly valve. The rates of opening and closing of the valves are modeled, and electrical pulse durations from 20 to 100 ms are investigated. In developing the transient flow analysis, maximum use was made of the steady-state analysis. The impulse results are also compared to an equivalent square-wave impulse for both the Mariner Mars 1971 (MM'71) and Mariner Mars 1964 (MM'64) systems. It is demonstrated that, whereas in the MM'64 system, the actual impulse was as much as 56 percent higher than an assumed impulse (which is the product of the steady-state thrust and value on time i.e., the square wave), in the MM'71 system, these two values were in error in the same direction by only approximately 4 percent because of the larger nozzle areas and shorter valve stroke used.
Design and Performance Estimates of an Ablative Gallium Electromagnetic Thruster
NASA Technical Reports Server (NTRS)
Thomas, Robert E.
2012-01-01
The present study details the high-power condensable propellant research being conducted at NASA Glenn Research Center. The gallium electromagnetic thruster is an ablative coaxial accelerator designed to operate at arc discharge currents in the range of 10-25 kA. The thruster is driven by a four-parallel line pulse forming network capable of producing a 250 microsec pulse with a 60 kA amplitude. A torsional-type thrust stand is used to measure the impulse of a coaxial GEM thruster. Tests are conducted in a vacuum chamber 1.5 m in diameter and 4.5 m long with a background pressure of 2 microtorr. Electromagnetic scaling calculations predict a thruster efficiency of 50% at a specific impulse of 2800 seconds.
Experimental and analytical comparison of flowfields in a 110 N (25 lbf) H2/O2 rocket
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Penko, Paul F.; Schneider, Steven J.; Kim, Suk C.
1991-01-01
A gaseous hydrogen/gaseous oxygen 110 N (25 lbf) rocket was examined through the RPLUS code using the full Navier-Stokes equations with finite rate chemistry. Performance tests were conducted on the rocket in an altitude test facility. Preliminary parametric analyses were performed for a range of mixture ratios and fuel film cooling pcts. It is shown that the computed values of specific impulse and characteristic exhaust velocity follow the trend of the experimental data. Specific impulse computed by the code is lower than the comparable test values by about two to three percent. The computed characteristic exhaust velocity values are lower than the comparable test values by three to four pct. Thrust coefficients computed by the code are found to be within two pct. of the measured values. It is concluded that the discrepancy between computed and experimental performance values could not be attributed to experimental uncertainty.
Experimental investigation of the pulsed electrothermal (PET) thruster
NASA Technical Reports Server (NTRS)
Burton, R. L.; Goldstein, S. A.; Hiko, B. K.; Tidman, D. A.; Winsor, N. K.
1984-01-01
Burton et al. (1982) have discussed the theory of the Pulsed Electrothermal (PET) thruster, a device which in principle can operate with 70 percent efficiency at a specific impulse of 1000 seconds and higher. It is pointed out that this level of performance would be particularly attractive for orbit raising of large satellites and other near-earth missions, which cannot be easily accomplished by chemical propulsion. The present investigation is concerned with two PET thruster operating modes. A PET thruster was built and tested on a thrust stand. Exhaust velocities for polyethylene propellant vary from 20 to 27 km/sec. Single pulse specific impulse and efficiency measurements based on ablated mass show a thruster efficiency of 37-56 percent in the time range from 1000 to 1750 seconds. It is believed that an improved design with a thruster efficiency in the range from 70 to 80 percent might be possible.
A Plasma Diagnostic Set for the Study of a Variable Specific Impulse Magnetoplasma Rocket
NASA Astrophysics Data System (ADS)
Squire, J. P.; Chang-Diaz, F. R.; Bengtson Bussell, R., Jr.; Jacobson, V. T.; Wootton, A. J.; Bering, E. A.; Jack, T.; Rabeau, A.
1997-11-01
The Advanced Space Propulsion Laboratory (ASPL) is developing a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) using an RF heated magnetic mirror operated asymmetrically. We will describe the initial set of plasma diagnostics and data acquisition system being developed and installed on the VASIMR experiment. A U.T. Austin team is installing two fast reciprocating probes: a quadruple Langmuir and a Mach probe. These measure electron density and temperature profiles, electrostatic plasma fluctuations, and plasma flow profiles. The University of Houston is developing an array of 20 highly directional Retarding Potential Analyzers (RPA) for measuring ion energy distribution function profiles in the rocket plume, giving a measurement of total thrust. We have also developed a CAMAC based data acquisition system using LabView running on a Power Macintosh communicating through a 2 MB/s serial highway. We will present data from initial plasma operations and discuss future diagnostic development.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1991-01-01
The requirement to settle or to position liquid fluid over the outlet end of spacecraft propellant tank prior to main engine restart poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undesirable fluid motion for the space fluid management under microgravity environment. The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment.
Electric propulsion technology
NASA Technical Reports Server (NTRS)
Finke, R. C.
1980-01-01
The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, electrothermal and electromagnetic propulsion technologies are being developed to attempt to fill the gap between the conventional ion thruster and chemical rocket systems. Most of these new concepts are exagenous and are represented by rail accelerators, ablative Teflon thrusters, MPD arcs, Free Radicals, etc. Endogenous systems such as metallic hydrogen offer great promise and are also being pursued.
Human Mars Ascent Vehicle Performance Sensitivities
NASA Technical Reports Server (NTRS)
Polsgrove, Tara P.; Thomas, Herbert D.
2016-01-01
Human Mars mission architecture studies have shown that the ascent vehicle mass drives performance requirements for the descent and in-space transportation elements. Understanding the sensitivity of Mars ascent vehicle (MAV) mass to various mission and vehicle design choices enables overall transportation system optimization. This paper presents the results of a variety of sensitivity trades affecting MAV performance including: landing site latitude, target orbit, initial thrust to weight ratio, staging options, specific impulse, propellant type and engine design.
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.
Nuclear design of a vapor core reactor for space nuclear propulsion
NASA Astrophysics Data System (ADS)
Dugan, Edward T.; Watanabe, Yoichi; Kuras, Stephen A.; Maya, Isaac; Diaz, Nils J.
1993-01-01
Neutronic analysis methodology and results are presented for the nuclear design of a vapor core reactor for space nuclear propulsion. The Nuclear Vapor Thermal Reactor (NVTR) Rocket Engine uses modified NERVA geometry and systems which the solid fuel replaced by uranium tetrafluoride vapor. The NVTR is an intermediate term gas core thermal rocket engine with specific impulse in the range of 1000-1200 seconds; a thrust of 75,000 lbs for a hydrogen flow rate of 30 kg/s; average core exit temperatures of 3100 K to 3400 K; and reactor thermal powers of 1400 to 1800 MW. Initial calculations were performed on epithermal NVTRs using ZrC fuel elements. Studies are now directed at thermal NVTRs that use fuel elements made of C-C composite. The large ZrC-moderated reactors resulted in thrust-to-weight ratios of only 1 to 2; the compact C-C composite systems yield thrust-to-weight ratios of 3 to 5.
Pickar, Joel G; Sung, Paul S; Kang, Yu-Ming; Ge, Weiqing
2007-01-01
Spinal manipulation (SM) is a form of manual therapy used clinically to treat patients with low back and neck pain. The most common form of this maneuver is characterized as a high-velocity (duration <150 ms), low-amplitude (segmental translation <2 mm, rotation <4 degrees , and applied force 220-889 N) impulse thrust (high-velocity, low-amplitude spinal manipulation [HVLA-SM]). Clinical skill in applying an HVLA-SM lies in the practitioner's ability to control the duration and magnitude of the load (ie, the rate of loading), the direction in which the load is applied, and the contact point at which the load is applied. Control over its mechanical delivery is presumably related to its clinical effects. Biomechanical changes evoked by an HVLA-SM are thought to have physiological consequences caused, at least in part, by changes in sensory signaling from paraspinal tissues. If activation of afferent pathways does contribute to the effects of an HVLA-SM, it seems reasonable to anticipate that neural discharge might increase or decrease in a nonlinear fashion as the thrust duration approaches a threshold value. We hypothesized that the relationship between the duration of an impulsive thrust to a vertebra and paraspinal muscle spindle discharge would be nonlinear with an inflection near the duration of an HVLA-SM delivered clinically (<150 ms). In addition, we anticipated that muscle spindle discharge would be more sensitive to larger amplitude thrusts. A neurophysiological study of spinal manipulation using the lumbar spine of a feline model. Impulse thrusts (duration: 12.5, 25, 50, 100, 200, and 400 ms; amplitude 1 or 2 mm posterior to anterior) were applied to the spinous process of the L6 vertebra of deeply anesthetized cats while recording single unit activity from dorsal root filaments of muscle spindle afferents innervating the lumbar paraspinal muscles. A feedback motor was used in displacement control mode to deliver the impulse thrusts. The motor's drive arm was securely attached to the L6 spinous process via a forceps. As thrust duration became shorter, the discharge of the lumbar paraspinal muscle spindles increased in a curvilinear fashion. A concave-up inflection occurred near the 100-ms duration eliciting both a higher frequency discharge compared with the longer durations and a substantially faster rate of change as thrust duration was shortened. This pattern was evident in paraspinal afferents with receptive fields both close and far from the midline. Paradoxically, spindle afferents were almost twice as sensitive to the 1-mm compared with the 2-mm amplitude thrust (6.2 vs. 3.3 spikes/s/mm/s). This latter finding may be related to the small versus large signal range properties of muscle spindles. The results indicate that the duration and amplitude of a spinal manipulation elicit a pattern of discharge from paraspinal muscle spindles different from slower mechanical inputs. Clinically, these parameters may be important determinants of an HVLA-SM's therapeutic benefit.
NASA Technical Reports Server (NTRS)
1969-01-01
The impulsive, high thrust missions portion of a study on guidance and navigation requirements for unmanned flyby and swingby missions to the outer planet is presented. The proper balance between groundbased navigational capability, using the deep space network (DSN) alone, and an onboard navigational capability with and without supplemental use of DSN tracking, for unmanned missions to the outer planets of the solar system is defined. A general guidance and navigation requirements program is used to survey parametrically the characteristics associated with three types of navigation systems: (1) totally onboard, (2) totally Earth-based, and (3) a combination of these two.
Single-stage-to-orbit performance enhancement from take-off thrust augmentation
NASA Astrophysics Data System (ADS)
Galati, Terence; Elkins, Travis
1997-01-01
Thrust augmentation offers the Single Stage to Orbit (SSTO) space launch vehicle improved payload capability while reducing vehicle weight and cost. Optimization of vehicle configuration and flight profile are studied. Using a 612,000 kg Gross Lift Off Weight (GLOW) SSTO with three Castor® strap-on motors, payloads in excess of 18,000 kg to Low Earth Orbit (LEO) are achievable. Emphasis is placed on finding vehicle optimums in the 9,000 kg payload range to capture over 80% of commercial payloads. Strap-on boosters allow a small SSTO vehicle to fly with a mass fraction of only 0.88 and LOX/H2 engines operating at 445 sec vacuum specific impulse. Payload sensitivity due to variations of mass fraction, Isp and pitch rate are quantified.
NEXT Ion Engine 2000 Hour Wear Test Results
NASA Technical Reports Server (NTRS)
Soulas, George C.; Kamhawi, Hani; Patterson, Michael J.; Britton, Melissa A.; Frandina, Michael M.
2004-01-01
The results of the NEXT 2000 h wear test are presented. This test was conducted with a 40 cm engineering model ion engine, designated EM1, at a 3.52 A beam current and 1800 V beam power supply voltage. Performance tests, which were conducted over a throttling range of 1.1 to 6.9 kW throughout the wear test, demonstrated that EM1 satisfied all thruster performance requirements. The ion engine accumulated 2038 h of operation at a thruster input power of 6.9 kW, processing 43 kg of xenon. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The ion engine was also inspected following the test. This paper presents these findings.
Status of the NEXT Ion Thruster Long Duration Test
NASA Technical Reports Server (NTRS)
Frandina, Michael M.; Arrington, Lynn A.; Soulas, George C.; Hickman, Tyler A.; Patterson, Michael J.
2005-01-01
The status of NASA's Evolutionary Xenon Thruster (NEXT) Long Duration Test (LDT) is presented. The test will be conducted with a 36 cm diameter engineering model ion thruster, designated EM3, to validate and qualify the NEXT thruster propellant throughput capability of 450 kg xenon. The ion thruster will be operated at various input powers from the NEXT throttle table. Pretest performance assessments demonstrated that EM3 satisfies all thruster performance requirements. As of June 26, 2005, the ion thruster has accumulated 493 hours of operation and processed 10.2 kg of xenon at a thruster input power of 6.9 kW. Overall ion thruster performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with very little variation in performance parameters.
Effect of vortex inlet mode on low-power cylindrical Hall thruster
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Jia, Boyang; Xu, Yu; Wei, Liqiu; Su, Hongbo; Li, Peng; Sun, Hezhi; Peng, Wuji; Cao, Yong; Yu, Daren
2017-08-01
This paper examines a new propellant inlet mode for a low-power cylindrical Hall thruster called the vortex inlet mode. This new mode makes propellant gas diffuse in the form of a circumferential vortex in the discharge channel of the thruster. Simulation and experimental results show that the neutral gas density in the discharge channel increases upon the application of the vortex inlet mode, effectively extending the dwell time of the propellant gas in the channel. According to the experimental results, the vortex inlet increases the propellant utilization of the thruster by 3.12%-8.81%, thrust by 1.1%-53.5%, specific impulse by 1.1%-53.5%, thrust-to-power ratio by 10%-63%, and anode efficiency by 1.6%-7.3%, greatly improving the thruster performance.
Heliocentric interplanetary low thrust trajectory optimization program, supplement 1, part 2
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1978-01-01
The improvements made to the HILTOP electric propulsion trajectory computer program are described. A more realistic propulsion system model was implemented in which various thrust subsystem efficiencies and specific impulse are modeled as variable functions of power available to the propulsion system. The number of operating thrusters are staged, and the beam voltage is selected from a set of five (or less) constant voltages, based upon the application of variational calculus. The constant beam voltages may be optimized individually or collectively. The propulsion system logic is activated by a single program input key in such a manner as to preserve the HILTOP logic. An analysis describing these features, a complete description of program input quantities, and sample cases of computer output illustrating the program capabilities are presented.
Experimental investigation of combustor effects on rocket thrust chamber performance
NASA Technical Reports Server (NTRS)
1972-01-01
A design and experimental program to develop special instrumentation systems, design engine hardware, and conduct tests using LOX/GH2 propellants in which the propellant flow stratification was controlled is described. The mixture ratio was varied from 4.6 to 6 overall. The mixture ratios in the core and outer zone were varied from 3.5 to 6 and 5 to 8, respectively. The range in boundary layer coolant was from 0 to 10 percent of the fuel. The nominal chamber pressure and thrust were 225 psia and 7000 pounds, respectively. Pressure and heat flux profiles as well as gas sampling of the exhaust products were obtained. Specific impulse efficiencies of approximately 94 percent and characteristic velocity efficiencies of approximately 97 percent were obtained during the experiments.
Low thrust optimal orbital transfers
NASA Technical Reports Server (NTRS)
Cobb, Shannon S.
1994-01-01
For many optimal transfer problems it is reasonable to expect that the minimum time solution is also the minimum fuel solution. However, if one allows the propulsion system to be turned off and back on, it is clear that these two solutions may differ. In general, high thrust transfers resemble the well known impulsive transfers where the burn arcs are of very short duration. The low and medium thrust transfers differ in that their thrust acceleration levels yield longer burn arcs and thus will require more revolutions. In this research, we considered two approaches for solving this problem: a powered flight guidance algorithm previously developed for higher thrust transfers was modified and an 'averaging technique' was investigated.
RSRM-3 (360L003) Ballistics/Mass Properties Report
NASA Technical Reports Server (NTRS)
Laubacher, B. A.; Richards, M. C.
1989-01-01
The propulsion performance and reconstructed mass properties data from Morton Thiokol's RSRM-3 motors which were assigned to the STS-29 launch are presented. The composite type solid propellant burn rates were close to predicted. The performance of the pair of motors were compared to some CEI Specifications. The performance from each motor as well as matched pair performance values were well within the CEI specification requirements. The nominal thrust time curve and impulse gate information is included. Post flight reconstructed Redesigned Solid Rocket Motor (RSRM) mass properties are within expected values for the lightweight configuration.
Q-Thruster Breadboard Campaign Project
NASA Technical Reports Server (NTRS)
White, Harold
2014-01-01
Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.
Electric propulsion options for 10 kW class earth space missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.
An ablative pulsed plasma thruster with a segmented anode
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Ren, Junxue; Tang, Haibin; Ling, William Yeong Liang; York, Thomas M.
2018-01-01
An ablative pulsed plasma thruster (APPT) design with a ‘segmented anode’ is proposed in this paper. We aim to examine the effect that this asymmetric electrode configuration (a normal cathode and a segmented anode) has on the performance of an APPT. The magnetic field of the discharge arc, plasma density in the exit plume, impulse bit, and thrust efficiency were studied using a magnetic probe, Langmuir probe, thrust stand, and mass bit measurements, respectively. When compared with conventional symmetric parallel electrodes, the segmented anode APPT shows an improvement in the impulse bit of up to 28%. The thrust efficiency is also improved by 49% (from 5.3% to 7.9% for conventional and segmented designs, respectively). Long-exposure broadband emission images of the discharge morphology show that compared with a normal anode, a segmented anode results in clear differences in the luminous discharge morphology and better collimation of the plasma. The magnetic probe data indicate that the segmented anode APPT exhibits a higher current density in the discharge arc. Furthermore, Langmuir probe data collected from the central exit plane show that the peak electron density is 75% higher than with conventional parallel electrodes. These results are believed to be fundamental to the physical mechanisms behind the increased impulse bit of an APPT with a segmented electrode.
NASA Technical Reports Server (NTRS)
Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.
1973-01-01
A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.
1951-01-01
by lowered cost, complexity, and flxed weight of the engine . An evaluation of the effect of throttling on specific impulse, as well as the way in... combustion chamber development. The throttling arrangement and the method of pump control are both closely with the design of the entire engine . As...the use of the rocket engine . For a complete coverage of these subjects, it is recommended that all volumes of this series be consulted
Spin Stabilized Impulsively Controlled Missile (SSICM)
NASA Astrophysics Data System (ADS)
Crawford, J. I.; Howell, W. M.
1985-12-01
This patent is for the Spin Stabilized Impulsively Controlled Missile (SSICM). SSICM is a missile configuration which employs spin stabilization, nutational motion, and impulsive thrusting, and a body mounted passive or semiactive sensor to achieve very small miss distances against a high speed moving target. SSICM does not contain an autopilot, control surfaces, a control actuation system, nor sensor stabilization gimbals. SSICM spins at a rate sufficient to provide frequency separation between body motions and inertial target motion. Its impulsive thrusters provide near instantaneous changes in lateral velocity, whereas conventional missiles require a significant time delay to achieve lateral acceleration.
Off-Axis and Angular Impulse Measurements on a Lightcraft Engine
NASA Astrophysics Data System (ADS)
Libeau, Michael; Myrabo, Leik
2005-04-01
A laser pulse into a Lightcraft engine applies three linear impulses and three angular impulses to the vehicle that depend on the engine's position and orientation with respect to the laser beam. The magnitudes on this impulsive reaction determine the vehicle's autonomous beam-riding characteristics. The impulsive reaction applied to the laser Lightcraft is examined and a device capable of measuring the reaction is designed and tested. Previous work has examined only the linear impulse acting in the thrust direction but the new apparatus, termed the Angular Impulse Measuring Device (AIMD), experimentally measures the dominant side impulse and dominant pitching angular impulse generated by the engine after a laser-strike. Recent tests of an 11/10 scale Model 200 Lightcraft were conducted using a 10KW Army laser at White Sands Missile Range. The resulting measurements are presented as a function of laser beam position.
Investigation of Blade Impulsive Noise on a Scaled Fully Articulated Rotor System
NASA Technical Reports Server (NTRS)
Scheiman, James; Hoad, Danny R.
1977-01-01
Helicopter impulsive noise tests were conducted in the Langley V/STOL tunnel with an articulated rotor system. The tests demonstrated that impulsive noise could be simulated for low-speed forward flight with low descent rates and also in the high-speed level flight. For the low forward speed condition, the noise level was highly sensitive to small changes in descent rate. For the high-speed condition, the noise level was increased with an increase in rotor thrust.
Trajectories for High Specific Impulse High Specific Power Deep Space Exploration
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Adams, Robert B.; Brady, Hugh J. (Technical Monitor)
2002-01-01
Flight times and deliverable masses for electric and fusion propulsion systems are difficult to approximate. Numerical integration is required for these continuous thrust systems. Many scientists are not equipped with the tools and expertise to conduct interplanetary and interstellar trajectory analysis for their concepts. Several charts plotting the results of well-known trajectory simulation codes were developed and are contained in this paper. These charts illustrate the dependence of time of flight and payload ratio on jet power, initial mass, specific impulse and specific power. These charts are intended to be a tool by which people in the propulsion community can explore the possibilities of their propulsion system concepts. Trajectories were simulated using the tools VARITOP and IPOST. VARITOP is a well known trajectory optimization code that involves numerical integration based on calculus of variations. IPOST has several methods of trajectory simulation; the one used in this paper is Cowell's method for full integration of the equations of motion. An analytical method derived in the companion paper was also evaluated. The accuracy of this method is discussed in the paper.
Sunmaster: An SEP cargo vehicle for Mars missions
NASA Technical Reports Server (NTRS)
Chiles, Aleasa; Fraser, Jennifer; Halsey, Andy; Honeycutt, David; Madden, Michael; Mcgough, Brian; Paulsen, David; Spear, Becky; Tarkenton, Lynne; Westley, Kevin
1991-01-01
Options are examined for an unmanned solar powered electric propulsion cargo vehicle for Mars missions. The 6 prime areas of study include: trajectory, propulsion system, power system, supporting structure, control system, and launch consideration. Optimization of the low thrust trajectory resulted in a total round trip mission time just under 4 years. The argon propelled electrostatic ion thruster system consists of seventeen 5 N engines and uses a specific impulse of 10,300 secs. At Earth, the system uses 13 engines to produce 60 N of thrust; at Mars, five engines are used, producing 25 N thrust. The thrust of the craft is varied between 60 N at Earth and 24 N at Mars due to reduced solar power available. Solar power is collected by a Fresnel lens concentrator system using a multistacked cell. This system provides 3.5 MW to the propulsion system after losses. Control and positioning to the craft are provided by a system of three double gimballed control moment gyros. Four shuttle 'C' launches will be used to transport the unassembled vehicle in modular units to low Earth orbit where it will be assembled using the Mobile Transporter of the Space Station Freedom.
CVD Rhenium Engines for Solar-Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.
1999-01-01
Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.
Low thrust chemical rocket technology
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1992-01-01
An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher performance propellants were evaluated: Space storable propellants, including liquid oxygen (LOX) as the oxidizer with nitrogen hydrides or hydrocarbon as fuels. Specifically, a LOX/hydrazine engine was designed, fabricated, and shown to have a 95 pct theoretical c-star which translates into a projected vacuum specific impulse of 345 seconds at an area ratio of 204:1. Further performance improvment can be obtained by the use of LOX/hydrogen propellants, especially for manned spacecraft applications, and specific designs must be developed and advanced through flight qualification.
High-Energy Space Propulsion Based on Magnetized Target Fusion
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Freeze, B.; Kirkpatrick, R. C.; Landrum, B.; Gerrish, H.; Schmidt, G. R.
1999-01-01
A conceptual study is made to explore the feasibility of applying magnetized target fusion (MTF) to space propulsion for omniplanetary travel. Plasma-jet driven MTF not only is highly amenable to space propulsion, but also has a number of very attractive features for this application: 1) The pulsed fusion scheme provides in situ a very dense hydrogenous liner capable of moderating the neutrons, converting more than 97% of the neutron energy into charged particle energy of the fusion plasma available for propulsion. 2) The fusion yield per pulse can be maintained at an attractively low level (< 1 GJ) despite a respectable gain in excess of 70. A compact, low-weight engine is the result. An engine with a jet power of 25 GW, a thrust of 66 kN, and a specific impulse of 77,000 s, can be achieved with an overall engine mass of about 41 metric tons, with a specific power density of 605 kW/kg, and a specific thrust density of 1.6 N/kg. The engine is rep-rated at 40 Hz to provide this power and thrust level. At a practical rep-rate limit of 200 Hz, the engine can deliver 128 GW jet power and 340 kN of thrust, at specific power and thrust density of 1,141 kW/kg and 3 N/kg respectively. 3) It is possible to operate the magnetic nozzle as a magnetic flux compression generator in this scheme, while attaining a high nozzle efficiency of 80% in converting the spherically radial momentum of the fusion plasma to an axial impulse. 4) A small fraction of the electrical energy generated from the flux compression is used directly to recharge the capacitor bank and other energy storage equipment, without the use of a highvoltage DC power supply. A separate electrical generator is not necessary. 5) Due to the simplicity of the electrical circuit and the components, involving mainly inductors, capacitors, and plasma guns, which are connected directly to each other without any intermediate equipment, a high rep-rate (with a maximum of 200 Hz) appears practicable. 6) All fusion related components are within the current state of the art for pulsed power technology. Experimental facilities with the required pulsed power capabilities already exist. 7) The scheme does not require prefabricated fuel target and liner hardware in any esoteric form or state. All necessary fuel and liner material are introduced into the engine in the form of ordinary matter in gaseous state at room temperature, greatly simplifying their handling on board. They are delivered into the fusion reaction chamber in a completely standoff manner.
Microgravity liquid propellant management
NASA Technical Reports Server (NTRS)
Hung, R. J.
1990-01-01
The requirement to settle or to position liquid fluid over the outlet end of a spacecraft propellant tank prior to main engine restart, poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undersirable fluid motion for the space fluid management under microgravity environment. The most efficient technique is studied for propellant resettling through the minimization of propellant usage and weight penalties. Both full scale and subscale liquid propellant tank of Space Transfer Vehicle were used to simulate flow profiles for liquid hydrogen reorientation over the tank outlet. In subscale simulation, both constant and impulsive resettling acceleration were used to simulate the liquid flow reorientation. Comparisons between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust.
High Power Electric Propulsion System for NEP: Propulsion and Trajectory Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koppel, Christophe R.; Duchemin, Olivier; Valentian, Dominique
Recent US initiatives in Nuclear Propulsion lend themselves naturally to raising the question of the assessment of various options and particularly to propose the High Power Electric Propulsion Subsystem (HPEPS) for the Nuclear Electric Propulsion (NEP). The purpose of this paper is to present the guidelines for the HPEPS with respect to the mission to Mars, for automatic probes as well as for manned missions. Among the various options, the technological options and the trajectory options are pointed out. The consequences of the increase of the electrical power of a thruster are first an increase of the thrust itself, butmore » also, as a general rule, an increase of the thruster performance due to its higher efficiency, particularly its specific impulse increase. The drawback is as a first parameter, the increase of the thruster's size, hence the so-called 'thrust density' shall be high enough or shall be drastically increased for ions thrusters. Due to the large mass of gas needed to perform the foreseen missions, the classical xenon rare gas is no more in competition, the total world production being limited to 20 -40 tons per year. Thus, the right selection of the propellant feeding the thruster is of prime importance. When choosing a propellant with lower molecular mass, the consequences at thruster level are an increase once more of the specific impulse, but at system level the dead mass may increase too, mainly because the increase of the mass of the propellant system tanks. Other alternatives, in rupture with respect to the current technologies, are presented in order to make the whole system more attractive. The paper presents a discussion on the thruster specific impulse increase that is sometime considered an increase of the main system performances parameter, but that induces for all electric propulsion systems drawbacks in the system power and mass design that are proportional to the thruster specific power increase (kW/N). The electric thruster specific impulse shall be optimized w.r.t. the mission. The trajectories taken into account in the paper are constrained by the allowable duration of the travel and the launcher size. The multi-arcs trajectories to Mars (using an optimized combination of chemical and Electric propulsion) are presented in detail. The compatibility with NEP systems that implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes fitting in with Ariane 5 or the Space Shuttle bay, is assessed.« less
The Development of NASA's Low Thrust Trajectory Tool Set
NASA Technical Reports Server (NTRS)
Sims, Jon; Artis, Gwen; Kos, Larry
2006-01-01
Highly efficient electric propulsion systems can enable interesting classes of missions; unfortunately, they provide only a limited amount of thrust. Low-thrust (LT) trajectories are much more difficult to design than impulsive-type (chemical propulsion) trajectories. Previous low-thrust (LT) trajectory optimization software was often difficult to use, often had difficulties converging, and was somewhat limited in the types of missions it could support. A new state-of-the-art suite (toolbox) of low-thrust (LT) tools along with improved algorithms and methods was developed by NASA's MSFC, JPL, JSC, and GRC to address the needs of our customers to help foster technology development in the areas of advanced LT propulsion systems, and to facilitate generation of similar results by different analysts.
SMART- Small Motor AerRospace Technology
NASA Astrophysics Data System (ADS)
Balucani, M.; Crescenzi, R.; Ferrari, A.; Guarrea, G.; Pontetti, G.; Orsini, F.; Quattrino, L.; Viola, F.
2004-11-01
This paper presents the "SMART" (Small Motor AerRospace Tecnology) propulsion system, constituted of microthrusters array realised by semiconductor technology on silicon wafers. SMART system is obtained gluing three main modules: combustion chambers, igniters and nozzles. The module was then filled with propellant and closed by gluing a piece of silicon wafer in the back side of the combustion chambers. The complete assembled module composed of 25 micro- thrusters with a 3 x 5 nozzle is presented. The measurement showed a thrust of 129 mN and impulse of 56,8 mNs burning about 70mg of propellant for the micro-thruster with nozzle and a thrust of 21 mN and impulse of 8,4 mNs for the micro-thruster without nozzle.
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Cliff, E. M.; Lutze, F. H.
1981-01-01
Maneuvers available to a spacecraft having sufficient propellant to escape an antisatellite satellite (ASAT) attack are examined. The ASAT and the evading spacecraft are regarded as being in circular orbits, and equations of motion are developed for the ASAT to commence a two-impulse maneuver sequence. The ASAT employs thrust impulses which yield a minimum-time-to-rendezvous, considering available fuel. Optimal evasion is shown to involve only in-plane maneuvers, and begins as soon as the ASAT launch information is gathered and thrust activation can be initiated. A closest approach, along with a maximum evasion by the target spacecraft, is calculated to be 14,400 ft. Further research to account for ASATs in parking orbit and for generalization of a continuous control-modeled differential game is indicated.
Rarefied gas electro jet (RGEJ) micro-thruster for space propulsion
NASA Astrophysics Data System (ADS)
Blanco, Ariel; Roy, Subrata
2017-11-01
This article numerically investigates a micro-thruster for small satellites which utilizes plasma actuators to heat and accelerate the flow in a micro-channel with rarefied gas in the slip flow regime. The inlet plenum condition is considered at 1 Torr with flow discharging to near vacuum conditions (<0.05 Torr). The Knudsen numbers at the inlet and exit planes are ~0.01 and ~0.1, respectively. Although several studies have been performed in micro-hallow cathode discharges at constant pressure, to our knowledge, an integrated study of the glow discharge physics and resulting fluid flow of a plasma thruster under these low pressure and low Knudsen number conditions is yet to be reported. Numerical simulations of the charge distribution due to gas ionization processes and the resulting rarefied gas flow are performed using an in-house code. The mass flow rate, thrust, specific impulse, power consumption and the thrust effectiveness of the thruster are predicted based on these results. The ionized gas is modelled using local mean energy approximation. An electrically induced body force and a thermal heating source are calculated based on the space separated charge distribution and the ion Joule heating, respectively. The rarefied gas flow with these electric force and heating source is modelled using density-based compressible flow equations with slip flow boundary conditions. The results show that a significant improvement of specific impulse can be achieved over highly optimized cold gas thrusters using the same propellant.
The NASA GSFC MEMS Colloidal Thruster
NASA Technical Reports Server (NTRS)
Cardiff, Eric H.; Jamieson, Brian G.; Norgaard, Peter C.; Chepko, Ariane B.
2004-01-01
A number of upcoming missions require different thrust levels on the same spacecraft. A highly scaleable and efficient propulsion system would allow substantial mass savings. One type of thruster that can throttle from high to low thrust while maintaining a high specific impulse is a Micro-Electro-Mechanical System (MEMS) colloidal thruster. The NASA GSFC MEMS colloidal thruster has solved the problem of electrical breakdown to permit the integration of the electrode on top of the emitter by a novel MEMS fabrication technique. Devices have been successfully fabricated and the insulation properties have been tested to show they can support the required electric field. A computational finite element model was created and used to verify the voltage required to successfully operate the thruster. An experimental setup has been prepared to test the devices with both optical and Time-Of-Flight diagnostics.
Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2003-01-01
To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.
NASA Technical Reports Server (NTRS)
1971-01-01
The guidance and navigation requirements for a set of impulsive thrust missions involving one or more outer planets or comets. Specific missions considered include two Jupiter entry missions of 800 and 1200 day duration, two multiple swingby missions with the sequences Jupiter-Uranus-Neptune and Jupiter-Saturn-Pluto, and two comets rendezvous missions involving the short period comets P/Tempel 2 and P/Tuttle-Giacobini-Kresak. Results show the relative utility of onboard and Earth-based DSN navigation. The effects of parametric variations in navigation accuracy, measurement rate, and miscellaneous constraints are determined. The utility of a TV type onboard navigation sensor - sighting on planetary satellites and comets - is examined. Velocity corrections required for the nominal and parametrically varied cases are tabulated.
Pulsed plasmoid electric propulsion
NASA Technical Reports Server (NTRS)
Bourque, Robert F.; Parks, Paul B.; Tamano, Teruo
1990-01-01
A method of electric propulsion is explored where plasmoids such as spheromaks and field reversed configurations (FRC) are formed and then allowed to expand down a diverging conducting shell. The plasmoids contain a toroidal electric current that provides both heating and a confining magnetic field. They are free to translate because there are no externally supplied magnetic fields that would restrict motion. Image currents in the diverging conducting shell keep the plasmoids from contacting the wall. Because these currents translate relative to the wall, losses due to magnetic flux diffusion into the wall are minimized. During the expansion of the plasma in the diverging cone, both the inductive and thermal plasma energy are converted to directed kinetic energy producing thrust. Specific impulses can be in the 4000 to 20000 sec range with thrusts from 0.1 to 1000 Newtons, depending on available power.
Optimization of a Fully-Pulsed Jet in a Fluid of Similar Density
NASA Astrophysics Data System (ADS)
Krueger, Paul S.; Gharib, Morteza
1998-11-01
In a previous work, Gharib et al.(Morteza Gharib, Edmond Rambod, Karim Shariff, "A Universal Time Scale for Vortex Ring Formation," JFM, vol. 360, pp. 121-140, 1998) have studied vortex rings generated through impulsively started jets using a piston/cylinder arrangement. This work showed that the vortex ring that formed at the leading edge of the jet reached a maximum strength for a piston stroke to diameter ratio (L/D) of approximately 4 for a wide range of piston motions and jet exit boundaries. This result suggests interesting consequences for a fully-pulsed jet, which is simply a series of impulsively started jets strung together. Specifically, the thrust of the present investigation is to study how the physical behavior of a fully-pulsed jet varies as both L/D and the pulsing frequency of the jet (rate at which pulses are ejected) are varied. To this end, a piston/cylinder arrangement with a stepper motor is used to generate a fully-pulsed jet with different L/D and pulsing frequency (f) combinations. The thrust produced by these various jets is measured directly and used as a gauge of the effectiveness of the pulsed jet. Combinations of L/D and f leading to optimization of the pulsed jet will be presented.
NASA Astrophysics Data System (ADS)
Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang
2017-08-01
We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many-revolution orbital transfers.
NASA Technical Reports Server (NTRS)
Dean, David L.
1995-01-01
McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.
Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.
2010-01-01
Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.
Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions
NASA Technical Reports Server (NTRS)
Gilland, James H.
1991-01-01
The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.
The kinematic determinants of anuran swimming performance: an inverse and forward dynamics approach.
Richards, Christopher T
2008-10-01
The aims of this study were to explore the hydrodynamic mechanism of Xenopus laevis swimming and to describe how hind limb kinematics shift to control swimming performance. Kinematics of the joints, feet and body were obtained from high speed video of X. laevis frogs (N=4) during swimming over a range of speeds. A blade element approach was used to estimate thrust produced by both translational and rotational components of foot velocity. Peak thrust from the feet ranged from 0.09 to 0.69 N across speeds ranging from 0.28 to 1.2 m s(-1). Among 23 swimming strokes, net thrust impulse from rotational foot motion was significantly higher than net translational thrust impulse, ranging from 6.1 to 29.3 N ms, compared with a range of -7.0 to 4.1 N ms from foot translation. Additionally, X. laevis kinematics were used as a basis for a forward dynamic anuran swimming model. Input joint kinematics were modulated to independently vary the magnitudes of foot translational and rotational velocity. Simulations predicted that maximum swimming velocity (among all of the kinematics patterns tested) requires that maximal translational and maximal rotational foot velocity act in phase. However, consistent with experimental kinematics, translational and rotational motion contributed unequally to total thrust. The simulation powered purely by foot translation reached a lower peak stroke velocity than the pure rotational case (0.38 vs 0.54 m s(-1)). In all simulations, thrust from the foot was positive for the first half of the power stroke, but negative for the second half. Pure translational foot motion caused greater negative thrust (70% of peak positive thrust) compared with pure rotational simulation (35% peak positive thrust) suggesting that translational motion is propulsive only in the early stages of joint extension. Later in the power stroke, thrust produced by foot rotation overcomes negative thrust (due to translation). Hydrodynamic analysis from X. laevis as well as forward dynamics give insight into the differential roles of translational and rotational foot motion in the aquatic propulsion of anurans, providing a mechanistic link between joint kinematics and swimming performance.
Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube
NASA Technical Reports Server (NTRS)
Nguyen, N.; Cutler, A. D.
2008-01-01
This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.
Electric Propulsion Options for 10 kW Class Earth-Space Missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.
Research on the transfers to Halo orbits from the view of invariant manifolds
NASA Astrophysics Data System (ADS)
Xu, Ming; Tan, Tian; Xu, ShiJie
2012-04-01
This paper discusses the evolutions of invariant manifolds of Halo orbits by low-thrust and lunar gravity. The possibility of applying all these manifolds in designing low-thrust transfer, and the presence of single-impulse trajectories under lunar gravity are also explained. The relationship between invariant manifolds and the altitude of the perigee is investigated using a Poincaré map. Six types of single-impulse transfer trajectories are then attained from the geometry of the invariant manifolds. The evolutions of controlled manifolds are surveyed by the gradient law of Jacobi energy, and the following conclusions are drawn. First, the low thrust (acceleration or deceleration) near the libration point is very inefficient that the spacecraft free-flies along the invariant manifolds. The purpose is to increase its velocity and avoid stagnation near the libration point. Second, all controlled manifolds are captured because they lie inside the boundary of Earth's gravity trap in the configuration space. The evolutions of invariant manifolds under lunar gravity are indicated from the relationship between the lunar phasic angle and the altitude of the perigee. Third and last, most of the manifolds have preserved their topologies in the circular restricted three-body problem. However, the altitudes of the perigee of few manifolds are quite non-continuous, which can be used to generate single- impulse flyby trajectories.
Proposed system design for a 20 kW pulsed electrothermal thruster
NASA Technical Reports Server (NTRS)
Burton, R. L.; Goldstein, S. A.; Hilko, B. K.; Tidman, D. A.; Winsor, N. K.
1984-01-01
A conceptual design is presented for a Pulsed Electrothermal (PET) propulsion system for the Air Force Space Based Radar satellite, which has a mass of 7000 kg. The proposed system boosts the SBR satellite from 150 n.m. to 600 n.m. with a 4 deg plane change, for a total mission Delta v of 1 km/sec. Satellite power available is 50 kW, and 45 kW are used to drive two water-injected 20 kW PET thrusters, delivering 5.6 N thrust to the SBR at 1000 seconds specific impulse. The predicted mission trip time is 15 days. The proposed system consumes 850 kg of water propellant, stored in a central tank and injected with pressurized helium. Component mass estimates based on space-qualified hardware are presented for the propellant handling, power conditioning and thruster subsystems. The estimated total mass is 400 kg and the propulsion system specific mass is alpha = 10 kg/kW. The proposed system efficiency of 0.62 at 1000 seconds specific impulse is supported by experimental performance measurements.
Analysis of the Laser Propelled Lightcraft Vehicle
NASA Technical Reports Server (NTRS)
Feikema, Douglas
2000-01-01
Advanced propulsion research and technology require launch and space flight technologies, which can drastically reduce mission costs. Laser propulsion is a concept in which energy of a thrust producing reaction mass is supplied via beamed energy from an off-board power source. A variety of laser/beamed energy concepts were theoretically and experimentally investigated since the early 1970's. During the 1980's the Strategic Defense Initiative (SDI) research lead to the invention of the Laser Lightcraft concept. Based upon the Laser Lightcraft concept, the U.S. Air Force and NASA have jointly set out to develop technologies required for launching small payloads into Low Earth Orbit (LEO) for a cost of $1.0M or $1000/lb to $ 100/lb. The near term objectives are to demonstrate technologies and capabilities essential for a future earth to orbit launch capability. Laser propulsion offers the advantages of both high thrust and good specific impulse, I(sub sp), in excess of 1000 s. Other advantages are the simplicity and reliability of the engine because of few moving parts, simpler propellant feed system, and high specific impulse. Major limitations of this approach are the laser power available, absorption and distortion of the pulsed laser beam through the atmosphere, and coupling laser power into thrust throughout the flight envelope, The objective of this paper is to assist efforts towards optimizing the performance of the laser engine. In order to accomplish this goal (1) defocusing of the primary optic was investigated using optical ray tracing and (2), time dependent calculations were conducted of the optically induced blast wave to predict pressure and temperature in the vicinity of the cowl. Defocusing of the primary parabolic reflector causes blurring and reduction in the intensity of the laser ignition site on the cowl. However, because of the caustic effect of ray-tracing optics the laser radiation still forms a well-defined ignition line on the cowl. The blast wave calculations show reasonable agreement with previously published calculations and recent detailed CFD computations.
Performance Test Results of the NASA-457M v2 Hall Thruster
NASA Technical Reports Server (NTRS)
Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit
2012-01-01
Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.
Design of a cusped field thruster for drag-free flight
NASA Astrophysics Data System (ADS)
Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.
2016-09-01
Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.
NASA Astrophysics Data System (ADS)
Ho, Teck Seng; Charles, Christine; Boswell, Roderick W.
2016-12-01
This paper presents computational fluid dynamics simulations of the cold gas operation of Pocket Rocket and Mini Pocket Rocket radiofrequency electrothermal microthrusters, replicating experiments performed in both sub-Torr and vacuum environments. This work takes advantage of flow velocity choking to circumvent the invalidity of modelling vacuum regions within a CFD simulation, while still preserving the accuracy of the desired results in the internal regions of the microthrusters. Simulated results of the plenum stagnation pressure is in precise agreement with experimental measurements when slip boundary conditions with the correct tangential momentum accommodation coefficients for each gas are used. Thrust and specific impulse is calculated by integrating the flow profiles at the exit of the microthrusters, and are in good agreement with experimental pendulum thrust balance measurements and theoretical expectations. For low thrust conditions where experimental instruments are not sufficiently sensitive, these cold gas simulations provide additional data points against which experimental results can be verified and extrapolated. The cold gas simulations presented in this paper will be used as a benchmark to compare with future plasma simulations of the Pocket Rocket microthruster.
NASA Technical Reports Server (NTRS)
Guman, W. J. (Editor)
1972-01-01
Two flight prototype solid propellant pulsed plasma microthruster propulsion systems for the SMS satellite were fabricated, assembled and tested. The propulsion system is a completely self contained system requiring only three electrical inputs to operate: a 29.4 volt power source, a 28 volt enable signal and a 50 millsec long command fire signal that can be applied at any rate from 50 ppm to 110 ppm. The thrust level can be varied over a range 2.2 to 1 at constant impulse bit amplitude. By controlling the duration of the 28 volt enable either steady state thrust or a series of discrete impulse bits can be generated. A new technique of capacitor charging was implemented to reduce high voltage stress on energy storage capacitors.
Design, fabrication, and operation of dished accelerator grids on a 30-cm ion thruster
NASA Technical Reports Server (NTRS)
Rawlin, V. K.; Banks, B. A.; Byers, D. C.
1972-01-01
Several closely-space dished accelerator grid systems were fabricated and tested on a 30-cm diameter mercury bombardment thruster and they appear to be a solution to the stringent requirements imposed by the near-term, high-thrust, low specific impulse electric propulsion missions. The grids were simultaneously hydroformed and then simultaneously stress relieved. The ion extraction capability and discharge chamber performance were studied as the total accelerating voltage, the ratio of net-to-total voltage, grid spacing, and dish direction were varied.
Test Results of a 200 W Class Hall Thruster
NASA Technical Reports Server (NTRS)
Jacobson, David; Jankovsky, Robert S.
1999-01-01
The performance of a 200 W class Hall thruster was evaluated. Performance measurements were taken at power levels between 90 W and 250 W. At the nominal 200 W design point, the measured thrust was 11.3 mN. and the specific impulse was 1170 s excluding cathode flow in the calculation. A laboratory model 3 mm diameter hollow cathode was used for all testing. The engine was operated on laboratory power supplies in addition to a breadboard power processing unit fabricated from commercially available DC to DC converters.
NASA Technical Reports Server (NTRS)
Bartlett, Walter, A , jr; Hagginbotham, William K , Jr
1955-01-01
Data obtained from the first flight test of a ram jet utilizing a magnesium slurry fuel are presented. The ram jet accelerated from a Mach number of 1.75 to a Mach number of 3.48 in 15.5 seconds. During this period a maximum values of air specific impulse and gross thrust coefficient were calculated to be 151 seconds and 0.658, respectively. The rocket gas generator used as a fuel-pumping system operated successfully.
NASA Technical Reports Server (NTRS)
Gerrish, Harold P., Jr.
2003-01-01
This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.
The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight
NASA Technical Reports Server (NTRS)
Bussard, Robert W.; Jameson, Lorin W.
1993-01-01
A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.
Modeling and Thrust Optimization of a Bio-Inspired Pulsatile Jet Thruster
NASA Astrophysics Data System (ADS)
Krieg, Michael W.
A new type of thruster technology offers promising low speed maneuvering capabilities for underwater vehicles. Similar to the natural locomotion of squid and jellyfish the thruster successively forces fluid jets in and out of a small internal cavity. We investigate several properties of squid and jellyfish locomotion to drive the thruster design including actuation of nozzle geometry and vortex ring thrust augmentation. The thrusters are compact with no extruding components to negatively impact the vehicle's drag. These devices have thrust rise-times orders of magnitude faster than those reported for typical propeller thrusters, making them an attractive option for high accuracy underwater vehicle maneuvering. The dynamics of starting jet circulation, impulse, and kinetic energy are derived in terms of kinematics at the entrance boundary of a semi-infinite domain, specifically identifying the effect of a non-parallel incoming flow. A model for pressure at the nozzle is derived without the typical reliance on a predetermined potential function, making it a powerful tool for modeling any jet flow. Jets are created from multiple nozzle configurations to validate these models, and velocity and vorticity fields are determined using DPIV techniques. A converging starting jet resulted in circulation 90--100%, impulse 70--75%, and energy 105--135% larger than a parallel starting jet with identical volume flux and piston velocity, depending on the stroke ratio. The new model is a much better predictor of the jet properties than the standard 1D slug model. A simplified thrust model, was derived to describe the high frequency thruster characteristics. This model accurately predicts the average thrust, measured directly, for stroke ratios up to a critical value where the leading vortex ring separates from the remainder of the shear flow. A new model predicting the vortex ring pinch-off process is developed based on characteristic centerline velocities. The vortex ring pinch-off is coincides with this velocity criterion, for all cases tested. Piston velocity program and nozzle radius are optimized with respect to average thrust, and a quantity similar to propulsive efficiency. The average thrust is maximized by a critical nozzle radius. An approximate linear time-invariant (LTI) model of the thruster vehicle system was derived which categorizes maneuvers into different characteristic regimes. Initial thruster testing showed that open and closed loop frequency response were sufficiently approximated by the LTI model, and that the thruster is ideally suited for small scale high accuracy maneuvers.
NASA Astrophysics Data System (ADS)
Tarditi, Alfonso G.; Shebalin, John V.
2002-11-01
A simulation study with the NIMROD code [1] is being carried on to investigate the efficiency of the thrust generation process and the properties of the plasma detachment in a magnetic nozzle. In the simulation, hot plasma is injected in the magnetic nozzle, modeled as a 2D, axi-symmetric domain. NIMROD has two-fluid, 3D capabilities but the present runs are being conducted within the MHD, 2D approximation. As the plasma travels through the magnetic field, part of its thermal energy is converted into longitudinal kinetic energy, along the axis of the nozzle. The plasma eventually detaches from the magnetic field at a certain distance from the nozzle throat where the kinetic energy becomes larger than the magnetic energy. Preliminary NIMROD 2D runs have been benchmarked with a particle trajectory code showing satisfactory results [2]. Further testing is here reported with the emphasis on the analysis of the diffusion rate across the field lines and of the overall nozzle efficiency. These simulation runs are specifically designed for obtaining comparisons with laboratory measurements of the VASIMR experiment, by looking at the evolution of the radial plasma density and temperature profiles in the nozzle. VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [3]) is an advanced space propulsion concept currently under experimental development at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. A plasma (typically ionized Hydrogen or Helium) is generated by a RF (Helicon) discharge and heated by an Ion Cyclotron Resonance Heating antenna. The heated plasma is then guided into a magnetic nozzle to convert the thermal plasma energy into effective thrust. The VASIMR system has no electrodes and a solenoidal magnetic field produced by an asymmetric mirror configuration ensures magnetic insulation of the plasma from the material surfaces. By powering the plasma source and the heating antenna at different levels it is possible to vary smoothly of the thrust-to-specific impulse ratio while maintaining maximum power utilization. [1] http://www.nimrodteam.org [2] A. V. Ilin et al., Proc. 40th AIAA Aerospace Sciences Meeting, Reno, NV, Jan. 2002 [3] F. R. Chang-Diaz, Scientific American, p. 90, Nov. 2000
Trajectory design for a rendezvous mission to Earth's Trojan asteroid 2010 TK7
NASA Astrophysics Data System (ADS)
Lei, Hanlun; Xu, Bo; Zhang, Lei
2017-12-01
In this paper a rendezvous mission to the Earth's Trojan asteroid 2010 TK7 is proposed, and preliminary transfer trajectories are designed. Due to the high inclination (∼ 20.9°) of the target asteroid relative to the ecliptic plane, direct transfers usually require large amounts of fuel consumption, which is beyond the capacity of current technology. As gravity assist technique could effectively change the inclination of spacecraft's trajectory, it is adopted to reduce the launch energy and rendezvous velocity maneuver. In practical computation, impulsive and low-thrust, gravity-assisted trajectories are considered. Among all the trajectories computed, the low-thrust gravity-assisted trajectory with Venus-Earth-Venus (V-E-V) swingby sequence performs the best in terms of propellant mass. For a spacecraft with initial mass of 800 kg , propellant mass of the best trajectory is 36.74 kg . Numerical results indicate that both the impulsive and low-thrust, gravity-assisted trajectories corresponding to V-E-V sequence could satisfy mission constraints, and can be applied to practical rendezvous mission.
Performance Evaluation of a 50kW Hall Thruster
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Jankovsky, Robert S.
1999-01-01
An experimental investigation was conducted on a laboratory model Hall thruster designed to operate at power levels up to 50 kW. During this investigation the engine's performance was characterized over a range of discharge currents from 10 to 36 A and a range of discharge voltages from 200 to 800 V Operating on the Russian cathode a maximum thrust of 966 mN was measured at 35.6 A and 713.0 V. This corresponded to a specific impulse of 3325 s and an efficiency of 62%. The maximum power the engine was operated at was 25 kW. Additional testing was conducted using a NASA cathode designed for higher current operation. During this testing, thrust over 1 N was measured at 40.2 A and 548.9 V. Several issues related to operation of Hall thrusters at these high powers were encountered.
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.
2010-01-01
The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.
NASA Astrophysics Data System (ADS)
Charles, Christine; Boswell, Roderick; Bish, Andrew; Khayms, Vadim; Scholz, Edwin
2016-05-01
Gas flow heating using radio frequency plasmas offers the possibility of depositing power in the centre of the flow rather than on the outside, as is the case with electro-thermal systems where thermal wall losses lower efficiency. Improved systems for space propulsion are one possible application and we have tested a prototype micro-thruster on a thrust balance in vacuum. For these initial tests, a fixed component radio frequency matching network weighing 90 grams was closely attached to the thruster in vacuum with the frequency agile radio frequency generator power being delivered via a 50 Ohm cable. Without accounting for system losses (estimated at around 50%), for a few 10s of Watts from the radio frequency generator the specific impulse was tripled to ˜48 seconds and the thrust tripled from 0.8 to 2.4 milli-Newtons.
Experimental test of 200 W Hall thruster with titanium wall
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren
2017-05-01
We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.
Annular Ion Engine Concept and Development Status
NASA Technical Reports Server (NTRS)
Patterson, Michael J.
2016-01-01
The Annular Ion Engine (AIE) concept represents an evolutionary development in gridded ion thruster technology with the potential for delivering revolutionary capabilities. It has this potential because the AIE concept: (a) enables scaling of ion thruster technology to high power at specific impulse (Isp) values of interest for near-term mission applications, 5000 sec; and (b) it enables an increase in both thrust density and thrust-to-power (FP) ratio exceeding conventional ion thrusters and other electric propulsion (EP) technology options, thereby yielding the highest performance over a broad range in Isp. The AIE concept represents a natural progression of gridded ion thruster technology beyond the capabilities embodied by NASAs Evolutionary Xenon Thruster (NEXT) [1]. The AIE would be appropriate for: (a) applications which require power levels exceeding NEXTs capabilities (up to about 14 kW [2]), with scalability potentially to 100s of kW; and/or (b) applications which require FP conditions exceeding NEXTs capabilities.
Effects of Fuel Distribution on Detonation Tube Performance
NASA Technical Reports Server (NTRS)
Perkins, H. Douglas; Sung, Chih-Jen
2003-01-01
A pulse detonation engine uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Uniform mixing is commonly assumed when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform Hz/air mixtures were analyzed using a two-dimensional Navier-Stokes computational fluid dynamics code with detailed chemistry. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios were studied; one stoichiometric, one fuel lean, and one fuel rich. All mixtures were detonable throughout the detonation tube. Various mixtures representing the same average test section equivalence ratio were shown to have specific impulses within 1% of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance under conditions investigated.
Small low mass advanced PBR's for propulsion
NASA Astrophysics Data System (ADS)
Powell, J. R.; Todosow, M.; Ludewig, H.
1993-10-01
The advanced Particle Bed Reactor (PBR) to be described in this paper is characterized by relatively low power, and low cost, while still maintaining competition values for thrust/weight, specific impulse and operating times. In order to retain competitive values for the thrust/weight ratio while reducing the reactor size, it is necessary to change the basic reactor layout, by incorporating new concepts. The new reactor design concept is termed SIRIUS (Small Lightweight Reactor Integral Propulsion System). The following modifications are proposed for the reactor design to be discussed in this paper: Pre-heater (U-235 included in Moderator); Hy-C (Hydride/De-hydride for Reactor Control); Afterburner (U-235 impregnated into Hot Frit); and Hy-S (Hydride Spike Inside Hot Frit). Each of the modifications will be briefly discussed below, with benefits, technical issues, design approach, and risk levels addressed. The paper discusses conceptual assumptions, feasibility analysis, mass estimates, and information needs.
NASA Technical Reports Server (NTRS)
Jones, W. S.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.
Engineering model 8-cm thruster subsystem
NASA Technical Reports Server (NTRS)
Herron, B. G.; Hyman, J.; Hopper, D. J.; Williamson, W. S.; Dulgeroff, C. R.; Collett, C. R.
1978-01-01
An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package.
Minimum dV for Targeted Spacecraft Disposal
NASA Technical Reports Server (NTRS)
Bacon, John B.
2017-01-01
The study analyzes the minimum capability required to dispose safely of a space object. The study considers 3- sigma environmental uncertainties, as well as spacecraft-specific constraints such as the available thrust, total impulse, the achievable increase or decrease in commandable frontal area under stable attitude (or stable tumble), and the final controllable altitude at which any such dV may be imparted. The study addresses the definition of the length and location of a 'safe' disposal area, which is a statistical manifestation of uncertainty in this process. Some general legal concerns are raised that are unique to this prospect of low dV disposals. Future work is summarized. The goal of such research is to improve public safety by creating optimally safe disposal strategies (and potentially, applicable regulations) for low-dV and/or low-thrust spacecraft that under more traditional strategies would need to be abandoned to fully-random decay with its inherent higher risk of human casualty.
Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet
NASA Technical Reports Server (NTRS)
1997-01-01
Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.
NASA Technical Reports Server (NTRS)
Smith, Tamara A.; Pavli, Albert J.; Kacynski, Kenneth J.
1987-01-01
The joint Army. Navy, NASA. Air Force (JANNAF) rocket engine peformnace prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure incorporated into the December l984 version of the TDK program for the high-area-ratio rocket engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis Research Center. A detailed description of the experimental test conditions and TDK input parameters is given. The results show that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values. An experimental value for inviscid thrust was obtained for the nozzle extension between area ratios of 427.5 and 1030 by using an integration of the measured wall static pressures. Subtracting the measured thrust gain produced by the nozzle between area ratios of 427.5 and 1030 from the inviscid thrust gain yielded experimental drag decrements of 10.85 and 27.00 N (2.44 and 6.07 lb) for mixture ratios of 3.04 and 4.29, respectively. These values correspond to 0.45 and 1.11 percent of the total vacuum thrust. At a mixture ratio of 4.29, the TDK predicted drag decrement was 16.59 N (3.73 lb), or 0.71 percent of the predicted total vacuum thrust.
NASA Technical Reports Server (NTRS)
Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.
2014-01-01
A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.
NASA Astrophysics Data System (ADS)
Friz, Paul Daniel
This thesis details the work done on two unrelated projects, plasma actuators, an aerodynamic flow control device, and Plasmonic Force Propulsion (PFP) thrusters, a space propulsion system for small satellites. The first half of the thesis is a paper published in the International Journal of Flow Control on plasma actuators. In this paper the thrust and power consumption of plasma actuators with varying geometries was studied at varying pressure. It was found that actuators with longer buried electrodes produce the most thrust over all and that they substantially improved thrust at low pressure. In particular actuators with 75 mm buried electrodes produced 26% more thrust overall and 34% more thrust at low pressure than the standard 15 mm design. The second half details work done modeling small satellite attitude and reaction control systems in order to compare the use of Plasmonic Force Propulsion thrusters with other state of the art reaction control systems. The model uses bang bang control algorithms and assumes the worst case scenario solar radiation pressure is the only disturbing force. It was found that the estimated 50-500 nN of thrust produced by PFP thrusters would allow the spacecraft which use them extremely high pointing and positioning accuracies (<10-9 degrees and 3 pm). PFP thrusters still face many developmental challenges such as increasing specific impulse which require more research, however, they have great potential to be an enabling technology for future NASA missions such as the Laser Interferometer Space Antenna, and The Stellar Imager.
Low-thrust chemical propulsion system pump technology
NASA Technical Reports Server (NTRS)
Meadville, J. W.
1980-01-01
A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.
Hall Effect Thruster Ground Testing Challenges
2009-08-18
the specic impulse, g is Earth’s gravitational constant, η is the thrust efficiency, ṁ is the propellant...lines form a composite spring with an effective spring constant of K . The thruster displaces the inverted pendulum a distance x, and the thrust stand...destabilizing force as shown in Eqn. 5. x = T K − Mgh (5) The effective spring constant is adjusted such that the unstable condition of K = Mg/h is avoided,
NASA Astrophysics Data System (ADS)
Musa, Omer; Weixuan, Li; Xiong, Chen; Lunkun, Gong; Wenhe, Liao
2018-07-01
Solid-fuel ramjet converts thermal energy of combustion products to a forward thrust without using any moving parts. Normally, it uses air intake system to compress the incoming air without swirler. A new design of swirler has been proposed and used in the current work. In this paper, a series of firing tests have been carried out to investigate the impact of using swirl flow on regression rate, combustion characteristics, and performance of solid-fuel ramjet engines. The influences of swirl intensity, solid fuel port diameter, and combustor length were studied and varied independently. A new technique for determining the time and space averaged regression rate of high-density polyethylene solid fuel surface after experiments has been proposed based on the laser scan technique. A code has been developed to reconstruct the data from the scanner and then used to obtain the three-dimensional distribution of the regression rate. It is shown that increasing swirl number increases regression rate, thrust, and characteristic velocity, and, decreases air-fuel ratio, corner recirculation zone length, and specific impulse. Using swirl flow enhances the flame stability meanwhile negatively affected on ignition process and specific impulse. Although a significant reduction of combustion chamber length can be achieved when swirl flow is used. Power fitting correlation for average regression rate was developed taking into account the influence of swirl number. Furthermore, varying port diameter and combustor length were found to have influences on regression rate, combustion characteristics and performance of solid-fuel ramjet.
Mars Sample Return Using Solar Sail Propulsion
NASA Technical Reports Server (NTRS)
Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom
2012-01-01
Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2
Performance Increase Verification for a Bipropellant Rocket Engine
NASA Technical Reports Server (NTRS)
Alexander, Leslie; Chapman, Jack; Wilson, Reed; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott; England, Chris
2008-01-01
Component performance assessment testing for a, pressure-fed earth storable bipropellant rocket engine was successfully completed at Aerojet's Redmond test facility. The primary goal of the this development project is to increase the specific impulse of an apogee class bi-propellant engine to greater than 330 seconds with nitrogen tetroxide and monomethylhydrazine propellants and greater than 335 seconds with nitrogen tetroxide and hydrazine. The secondary goal of the project is to take greater advantage of the high temperature capabilities of iridium/rhenium chambers. In order to achieve these goals, the propellant feed pressures were increased to 400 psia, nominal, which in turn increased the chamber pressure and temperature, allowing for higher c*. The tests article used a 24-on-24 unlike doublet injector design coupled with a copper heat sink chamber to simulate a flight configuration combustion chamber. The injector is designed to produce a nominal 200 lbf of thrust with a specific impulse of 335 seconds (using hydrazine fuel). Effect of Chamber length on engine C* performance was evaluated with the use of modular, bolt-together test hardware and removable chamber inserts. Multiple short duration firings were performed to characterize injector performance across a range of thrust levels, 180 to 220 lbf, and mixture ratios, from 1.1 to 1.3. During firing, ignition transient, chamber pressure, and various temperatures were measured in order to evaluate the performance of the engine and characterize the thermal conditions. The tests successfully demonstrated the stable operation and performance potential of a full scale engine with a measured c* of XXXX ft/sec (XXXX m/s) under nominal operational conditions.
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Raitses, Y.; Merino, E.; Fisch, N. J.
2008-01-01
The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic configurations. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying a higher thrust efficiency. Preliminary thruster performance measurements on this configuration were obtained over a power range of 100-250 W. The thrust levels over this power range were 3.5-6.5 mN, with anode efficiencies and specific impulses spanning 14-19% and 875- 1425 s, respectively. The magnetic field in the thruster was lower for the thrust measurements than the plasma probe measurements due to heating and weakening of the permanent magnets, reducing the maximum field strength from 2 kG to roughly 750-800 G. The discharge current levels observed during thrust stand testing were anomalously high compared to those levels measured in previous experiments with this thruster.
Physics and potentials of fissioning plasmas for space power and propulsion
NASA Technical Reports Server (NTRS)
Thom, K.; Schwenk, F. C.; Schneider, R. T.
1976-01-01
Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.
Lawlor, Shawn P.; Roberts, II, William Byron
2016-03-08
A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.
Lift, drag and thrust measurement in a hypersonic impulse facility
NASA Technical Reports Server (NTRS)
Tuttle, S. L.; Mee, D. J.; Simmons, J. M.
1995-01-01
This paper reports the extension of the stress wave force balance to the measurement of forces on models which are non-axisymmetric or which have non-axisymmetric load distributions. Recent results are presented which demonstrate the performance of the stress wave force balance for drag measurement, for three-component force measurement and preliminary results for thrust measurement on a two-dimensional scramjet nozzle. In all cases, the balances respond within a few hundred microseconds.
Space Storable Rocket Technology (SSRT) basic program
NASA Technical Reports Server (NTRS)
Chazen, M. L.; Mueller, T.; Casillas, A. R.; Huang, D.
1992-01-01
The Space Storable Rocket Technology Program (SSRT) was conducted to establish a technology for a new class of high performance and long life bipropellant engines using space storable propellants. The results are described. Task 1 evaluated several characteristics for a number of fuels to determine the best space storable fuel for use with LO2. The results indicated that LO2-N2H4 is the best propellant combination and provides the maximum mission/system capability maximum payload into GEO of satellites. Task 2 developed two models, performance and thermal. The performance model indicated the performance goal of specific impulse greater than or = 340 seconds (sigma = 204) could be achieved. The thermal model was developed and anchored to hot fire test data. Task 3 consisted of design, fabrication, and testing of a 200 lbf thrust test engine operating at a chamber pressure of 200 psia using LO2-N2H4. A total of 76 hot fire tests were conducted demonstrating performance greater than 340 (sigma = 204) which is a 25 second specific impulse improvement over the existing highest performance flight apogee type engines.
Low-Mass, Low-Power Hall Thruster System
NASA Technical Reports Server (NTRS)
Pote, Bruce
2015-01-01
NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.
High temperature oxidation-resistant thruster research
NASA Technical Reports Server (NTRS)
Wooten, John R.; Lansaw, P. Tina
1990-01-01
A program was conducted for NASA-LeRC by Aerojet Propulsion Division to establish the technology base for a new class of long-life, high-performance, radiation-cooled bipropellant thrusters capable of operation at temperatures over 2200 C (4000 F). The results of a systematic, multi-year program are described starting with the preliminary screening tests which lead to the final material selection. Life greater than 15 hours was demonstrated on a workhorse iridium-lined rhenium chamber at chamber temperatures between 2000 and 2300 C (3700 and 4200 F). The chamber was fabricated by the Chemical Vapor Deposition at Ultramet. The program culminated in the design, fabrication, and hot-fire test of an NTO/MMH 22-N (5-lbF) class thruster containing a thin wall iridium-lined rhenium thrust chamber with a 150:1 area ratio nozzle. A specific impulse of 310 seconds was measured and front-end thermal management was achieved for steady state and several pulsing duty cycles. The resulting design represents a 20 second specific impulse improvement over conventional designs in which the use of disilicide coated columbium chambers limit operation to 1300 C (2400 F).
NASA Technical Reports Server (NTRS)
Perel, J.
1971-01-01
A program is described for attaining control, reproducibility, and predictability of operation for the annular colloid emitter. A thruster of an improved design was used for a 1000 hour test. The thruster was operated with a neutralizer for 1023 hours at 15 kV with an average thrust of 25 micropound and specific impulse of 1160 sec. The performance was stable, and the beam was vectored periodically. The clean condition of the emitter edge at the end of the test coupled with no degradation in performance during the test indicated that the lifetime could be extrapolated by at least an order of magnitude over the test time.
Fusion Propulsion and Power for Future Flight
NASA Technical Reports Server (NTRS)
Froning, H. D., Jr.
1996-01-01
There are innovative magnetic and electric confinement fusion power and propulsion system designs with potential for: vacuum specific impulses of 1500-2000 seconds with rocket engine thrust/mass ratios of 5-10 g's; environmentally favorable exhaust emissions if aneutronic fusion propellants can be used; a 2 to 3-fold reduction in the mass of hypersonic airliners and SSTO aerospace planes; a 10 to 20 fold reduction in Mars expedition mass and cost (if propellant from planetary atmospheres is used); and feasibility or in-feasibility of these systems could be confirmed with a modest applied research and exploratory development cost.
High Pressure Earth Storable Rocket Technology Program-Hipes Options 1/2 Report
NASA Technical Reports Server (NTRS)
Chazen, M. L.; Sicher, D.; Calvignac, J.; Ono, D.
1999-01-01
Under the High Pressure Earth Storable Rocket Technology (HIPES) Program, TRW successfully completed testing of two 100 lbf thrust class rhenium chambers using N204-MMH. The first chamber was successfully fired for 4789 seconds of operating time with a maximum duration of 700 seconds. This chamber had been previously fired for 5230 seconds with N2O4-N2H4. The second chamber was successfully fired for 8085 seconds with a maximum firing duration of 1200 seconds. The Isp (specific impulse) for both chambers ranged from 323 lbf-sec/lbm to 330 lbf-sec/lbm.
NASA Astrophysics Data System (ADS)
Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo
2017-03-01
Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.
NASA Technical Reports Server (NTRS)
Manzella, David; Jacobson, David; Jankovsky, Robert
2001-01-01
A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.
The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.;
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.
The X3: A 200 kW Class Nested Channel Hall Thruster
NASA Astrophysics Data System (ADS)
Sheehan, J. P.
2016-10-01
Electric propulsion has seen rapid adoption in recent years for commercial, scientific, and exploratory space missions. The X3 is a three channel nested channel Hall thruster, designed to push the boundaries of high power electric propulsion for cargo transfer to Mars and large military assets. It has been operated at thermal steady state up to 30 kW of power. Thrust measurements were made on an inverted pendulum thrust stand, indicating over 2000 s specific impulse and 65 mN/kW thrust to power ratio. Detailed plume measurements were made with Faraday and Langmuir probes. The multiple concentric channels provide better performance than the sum of the individual channel operations due to superior propellant utilization from its compact design. Using a high speed camera, the breathing and spoke mode instabilities were captured in all three channels. Spoke and breathing instabilities couple between the channels, indicating that complex plasma and neutral interactions are at play. Electron transport, both cross field and in the cathode plume, are well suited to be explored in a thruster of this size. Supported under NASA contract No. NNH16CP17C.
Primary propulsion/large space system interaction study
NASA Technical Reports Server (NTRS)
Coyner, J. V.; Dergance, R. H.; Robertson, R. I.; Wiggins, J. V.
1981-01-01
An interaction study was conducted between propulsion systems and large space structures to determine the effect of low thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS). The LSS which were considered would be deployed from the space shuttle orbiter bay in low Earth orbit, then transferred to geosynchronous equatorial orbit by their own propulsion systems. The types of structures studied were the expandable box truss, hoop and column, and wrap radial rib each with various surface mesh densities. The impact of the acceleration forces on system sizing was determined and the effects of single point, multipoint, and transient thrust applications were examined. Orbit transfer strategies were analyzed to determine the required velocity increment, burn time, trip time, and payload capability over a range of final acceleration levels. Variables considered were number of perigee burns, delivered specific impulse, and constant thrust and constant acceleration modes of propulsion. Propulsion stages were sized for four propellant combinations; oxygen/hydrogen, oxygen/methane, oxygen/kerosene, and nitrogen tetroxide/monomethylhydrazine, for pump fed and pressure fed engine systems. Two types of tankage configurations were evaluated, minimum length to maximize available payload volume and maximum performance to maximize available payload mass.
Multiple-cycle Simulation of a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Yungster, S.; Perkins, H. D.
2002-01-01
This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.
MEMS-Based Solid Propellant Rocket Array Thruster
NASA Astrophysics Data System (ADS)
Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi
The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.
Solid Propellant Microthruster Design, Fabrication, and Testing for Nanosatellites
NASA Astrophysics Data System (ADS)
Sathiyanathan, Kartheephan
This thesis describes the design, fabrication, and testing of a solid propellant microthruster (SPM), which is a two-dimensional matrix of millimeter-sized rockets each capable of delivering millinewtons of thrust and millinewton-seconds of impulse to perform fine orbit and attitude corrections. The SPM is a potential payload for nanosatellites to increase spacecraft maneuverability and is constrained by strict mass, volume, and power requirements. The dimensions of the SPM in the millimeter-scale result in a number of scaling issues that need consideration such as a low Reynolds number, high heat loss, thermal and radical quenching, and incomplete combustion. The design of the SPM, engineered to address these issues, is outlined. The SPM fabrication using low-cost commercial off-the-shelf materials and standard micromachining is presented. The selection of a suitable propellant and its customization are described. Experimental results of SPM firing to demonstrate successful ignition and sustained combustion are presented for three configurations: nozzleless, sonic nozzle, and supersonic nozzle. The SPM is tested using a ballistic pendulum thrust stand. Impulse and thrust values are calculated and presented. The performance values of the SPM are found to be consistent with existing designs.
NASA Astrophysics Data System (ADS)
Peterson, Zachary W.
Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.
Real Gas Effects on the Performance of Hydrocarbon-fueled Pulse Detonation Engines
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.; Yungster, Shaye
2003-01-01
This paper presents results for a single-pulse detonation tube wherein the effects of high temperature dissociation and the subsequent recombination influence the sensible heat release available for providing propulsive thrust. The study involved the use of ethylene and air at equivalence ratios of 0.7 and 1.0. The real gas effects on the sensible heat release were found to be significantly large so as to have an impact on the thrust, impulse and fuel consumption of a PDE.
2011-03-23
prac- tical max impulse to 1mNs. The newly developed Piezo - electric Impact Hammer (PIH) calibration system over- comes geometric limits of ESC...the fins to behave as part of an LRC circuit which results in voltage oscillations. By adding a resistor in series between the pulse generator and...series resistor as well as the effects of no loading on the pulse generator. III. PIEZOELECTRIC IMPACT HAMMER SYSTEM The second calibration method tested
Development priorities for in-space propulsion technologies
NASA Astrophysics Data System (ADS)
Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2013-02-01
During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
NASA Technical Reports Server (NTRS)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
The role of invariant manifolds in lowthrust trajectory design (part III)
NASA Technical Reports Server (NTRS)
Lo, Martin W.; Anderson, Rodney L.; Lam, Try; Whiffen, Greg
2006-01-01
This paper is the third in a series to explore the role of invariant manifolds in the design of low thrust trajectories. In previous papers, we analyzed an impulsive thrust resonant gravity assist flyby trajectory to capture into Europa orbit using the invariant manifolds of unstable resonant periodic orbits and libration orbits. The energy savings provided by the gravity assist may be interpreted dynamically as the result of a finite number of intersecting invariant manifolds. In this paper we demonstrate that the same dynamics is at work for low thrust trajectories with resonant flybys and low energy capture. However, in this case, the flybys and capture are effected by continuous families of intersecting invariant manifolds.
Impulse generation by detonation tubes
NASA Astrophysics Data System (ADS)
Cooper, Marcia Ann
Impulse generation with gaseous detonation requires conversion of chemical energy into mechanical energy. This conversion process is well understood in rocket engines where the high pressure combustion products expand through a nozzle generating high velocity exhaust gases. The propulsion community is now focusing on advanced concepts that utilize non-traditional forms of combustion like detonation. Such a device is called a pulse detonation engine in which laboratory tests have proven that thrust can be achieved through continuous cyclic operation. Because of poor performance of straight detonation tubes compared to conventional propulsion systems and the success of using nozzles on rocket engines, the effect of nozzles on detonation tubes is being investigated. Although previous studies of detonation tube nozzles have suggested substantial benefits, up to now there has been no systematic investigations over a range of operating conditions and nozzle configurations. As a result, no models predicting the impulse when nozzles are used exist. This lack of data has severely limited the development and evaluation of models and simulations of nozzles on pulse detonation engines. The first experimental investigation measuring impulse by gaseous detonation in plain tubes and tubes with nozzles operating in varying environment pressures is presented. Converging, diverging, and converging-diverging nozzles were tested to determine the effect of divergence angle, nozzle length, and volumetric fill fraction on impulse. The largest increases in specific impulse, 72% at an environment pressure of 100 kPa and 43% at an environment pressure of 1.4 kPa, were measured with the largest diverging nozzle tested that had a 12° half angle and was 0.6 m long. Two regimes of nozzle operation that depend on the environment pressure are responsible for these increases and were first observed from these data. To augment this experimental investigation, all data in the literature regarding partially filled detonation tubes was compiled and analyzed with models investigating concepts of energy conservation and unsteady gas dynamics. A model to predict the specific impulse was developed for partially filled tubes. The role of finite chemical kinetics in detonation products was examined through numerical simulations of the flow in nonsteady expansion waves.
Space station auxiliary thrust chamber technology
NASA Technical Reports Server (NTRS)
Senneff, J. M.
1986-01-01
A program to design, fabricate and test a 50 lb sub f (222 N) thruster was undertaken (Contract NAS 3-24656) to demonstrate the applicability of the reverse flow concept as an item of auxiliary propulsion for the space station. The thruster was to operate at a mixture ratio (O/F) of 4, be capable of operating for 2 million lb sub f- seconds (8.896 million N-seconds) impulse with a chamber pressure of 75 psia (52 N/square cm) and a nozzle area ratio of 40. Superimposed was also the objective of operating with a strainless steel spherical combustion chamber, which limited the wall temperature to 1700 F (1200 K), an objective specific impulse of 400 lb sub f sec/lbm (3923 N-seconds/Kg), and a demonstration of 500,000 lb sub f-seconds (2,224,000 N-seconds) of impulse. The demonstration of these objectives required a number of design iterations which eventually culminated in a very successful 1000 second demonstration, almost immediately followed by a changed program objective imposed to redesign and demonstrate at a mixture ratio (O/F) of 8. This change was made and more then 250,000 lb sub f seconds (1,112,000 N-seconds) of impulse was successfully demonstrated at a mixture ratio of 8. This document contains a description of the effort conducted during the program to design and demonstrate the thrusters involved.
NASA Technical Reports Server (NTRS)
Smith, Tamara A.; Pavli, Albert J.; Kacynski, Kenneth J.
1987-01-01
The Joint Army, Navy, NASA, Air Force (JANNAF) rocket-engine performance-prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure that has been incorporated into the December 1984 version of the TDK program for the high-area-ratio rocket-engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis. A detailed description of the test conditions and TDK input parameters is given. The reuslts indicate that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values.
Advanced space engine preliminary design
NASA Technical Reports Server (NTRS)
Cuffe, J. P. B.; Bradie, R. E.
1973-01-01
A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.
Effects of Fuel Distribution on Detonation Tube Performance
NASA Technical Reports Server (NTRS)
Perkins, Hugh Douglas
2002-01-01
A pulse detonation engine (PDE) uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Lack of mixture uniformity is commonly ignored when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform H2/air mixtures were analyzed using the SPARK two-dimensional Navier-Stokes CFD code with 7-step H2/air reaction mechanism. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios (phi), stoichiometric (phi = 1.00), fuel lean (phi = 0.90), and fuel rich (phi = 1.10), were studied. All mixtures were detonable throughout the detonation tube. It was found that various mixtures representing the same test section equivalence ratio had specific impulses within 1 percent of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance.
Comparison of two procedures for predicting rocket engine nozzle performance
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1987-01-01
Two nozzle performance prediction procedures which are based on the standardized JANNAF methodology are presented and compared for four rocket engine nozzles. The first procedure required operator intercedence to transfer data between the individual performance programs. The second procedure is more automated in that all necessary programs are collected into a single computer code, thereby eliminating the need for data reformatting. Results from both procedures show similar trends but quantitative differences. Agreement was best in the predictions of specific impulse and local skin friction coefficient. Other compared quantities include characteristic velocity, thrust coefficient, thrust decrement, boundary layer displacement thickness, momentum thickness, and heat loss rate to the wall. Effects of wall temperature profile used as an input to the programs was investigated by running three wall temperature profiles. It was found that this change greatly affected the boundary layer displacement thickness and heat loss to the wall. The other quantities, however, were not drastically affected by the wall temperature profile change.
Solar rocket system concept analysis
NASA Technical Reports Server (NTRS)
Boddy, J. A.
1980-01-01
The use of solar energy to heat propellant for application to Earth orbital/planetary propulsion systems is of interest because of its performance capabilities. The achievable specific impulse values are approximately double those delivered by a chemical rocket system, and the thrust is at least an order of magnitude greater than that produced by a mercury bombardment ion propulsion thruster. The primary advantage the solar heater thruster has over a mercury ion bombardment system is that its significantly higher thrust permits a marked reduction in mission trip time. The development of the space transportation system, offers the opportunity to utilize the full performance potential of the solar rocket. The requirements for transfer from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) was examined as the return trip, GEO to LEO, both with and without payload. Payload weights considered ranged from 2000 to 100,000 pounds. The performance of the solar rocket was compared with that provided by LO2-LH2, N2O4-MMH, and mercury ion bombardment systems.
Improved Rhenium Thrust Chambers
NASA Technical Reports Server (NTRS)
O'Dell, John Scott
2015-01-01
Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.
Capture of near-Earth objects with low-thrust propulsion and invariant manifolds
NASA Astrophysics Data System (ADS)
Tang, Gao; Jiang, Fanghua
2016-01-01
In this paper, a mission incorporating low-thrust propulsion and invariant manifolds to capture near-Earth objects (NEOs) is investigated. The initial condition has the spacecraft rendezvousing with the NEO. The mission terminates once it is inserted into a libration point orbit (LPO). The spacecraft takes advantage of stable invariant manifolds for low-energy ballistic capture. Low-thrust propulsion is employed to retrieve the joint spacecraft-asteroid system. Global optimization methods are proposed for the preliminary design. Local direct and indirect methods are applied to optimize the two-impulse transfers. Indirect methods are implemented to optimize the low-thrust trajectory and estimate the largest retrievable mass. To overcome the difficulty that arises from bang-bang control, a homotopic approach is applied to find an approximate solution. By detecting the switching moments of the bang-bang control the efficiency and accuracy of numerical integration are guaranteed. By using the homotopic approach as the initial guess the shooting function is easy to solve. The relationship between the maximum thrust and the retrieval mass is investigated. We find that both numerically and theoretically a larger thrust is preferred.
100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.
2008-01-01
The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.
100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.
2008-01-01
The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.
Servicing and Deployment of National Resources in Sun-Earth Libration Point Orbits
NASA Technical Reports Server (NTRS)
Folta, David C.; Beckman, Mark; Mar, Greg C.; Mesarch, Michael; Cooley, Steven; Leete, Steven J.
2002-01-01
Spacecraft travel between the Sun-Earth system, the Earth-Moon system, and beyond has received extensive attention recently. The existence of a connection between unstable regions enables mission designers to envision scenarios of multiple spacecraft traveling cheaply from system to system, rendezvousing, servicing, and refueling along the way. This paper presents examples of transfers between the Sun-Earth and Earth-Moon systems using a true ephemeris and perturbation model. It shows the (Delta)V costs associated with these transfers, including the costs to reach the staging region from the Earth. It explores both impulsive and low thrust transfer trajectories. Additionally, analysis that looks specifically at the use of nuclear power in libration point orbits and the issues associated with them such as inadvertent Earth return is addressed. Statistical analysis of Earth returns and the design of biased orbits to prevent any possible return are discussed. Lastly, the idea of rendezvous between spacecraft in libration point orbits using impulsive maneuvers is addressed.
Integration and Test Flight Validation Plans for the Pulsed Plasma Thruster Experiment on EO- 1
NASA Technical Reports Server (NTRS)
Zakrzwski, Charles; Benson, Scott; Sanneman, Paul; Hoskins, Andy; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. The PPT is a small, self-contained pulsed electromagnetic propulsion system capable of delivering high specific impulse (900-1200 s), very small impulse bits (10-1000 uN-s) at low average power (less than 1 to 100 W). Teflon fuel is ablated and slightly ionized by means of a capacitative discharge. The discharge also generates electromagnetic fields that accelerate the plasma by means of the Lorentz Force. EO-1 has a single PPT that can produce thrust in either the positive or negative pitch direction. The flight validation has been designed to demonstrate of the ability of the PPT to provide precision pointing accuracy, response and stability, and confirmation of benign plume and EMI effects. This paper will document the success of the flight validation.
Propulsion requirements for reusable single-stage-to-orbit rocket vehicles
NASA Astrophysics Data System (ADS)
Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger
1994-05-01
The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.
Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.
Boeing Low-Thrust Geosynchronous Transfer Mission Experience
NASA Technical Reports Server (NTRS)
Poole, Mark; Ho, Monte
2007-01-01
Since 2000, Boeing 702 satellites have used electric propulsion for transfer to geostationary orbits. The use of the 25cm Xenon Ion Propulsion System (25cm XIPS) results in more than a tenfold increase in specific impulse with the corresponding decrease in propellant mass needed to complete the mission when compared to chemical propulsion[1]. In addition to more favorable mass properties, with the use of XIPS, the 702 has been able to achieve orbit insertions with higher accuracy than it would have been possible with the use of chemical thrusters. This paper describes the experience attained by using the 702 XIPS ascent strategy to transfer satellite to geosynchronous orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr
2014-10-06
Plasma plume and thruster performance characteristics associated with multiply charged ions in a cylindrical type Hall thruster (CHT) and an annular type Hall thruster are compared under identical conditions such as channel diameter, channel depth, propellant mass flow rate. A high propellant utilization in a CHT is caused by a high ionization rate, which brings about large multiply charged ions. Ion currents and utilizations are much different due to the presence of multiply charged ions. A high multiply charged ion fraction and a high ionization rate in the CHT result in a higher specific impulse, thrust, and discharge current.
Hypersonic trajectory control of aerospace plane with integrated SCRAMJET engine
NASA Astrophysics Data System (ADS)
Yonemoto, Koichi
The aerospace plane is an airbreathing 'propulsion configured' vehicle having proper forebody contour for inflow pre-compression to the inlet and afterbody that operates as an external expansion nozzle. Since the whole lower side of the body acts as important compression and expansion elements for the airbreathing engine, the flight attitude influences its performance such as specific impulse and thrust coefficient considerably. The stability of ascent trajectory controlling dynamic pressure or heat-input rate is analyzed considering the performance change due to attitude fluctuation. The performance of scramjet engine, a typical hypersonic airbreathing engine, is estimated by a rapid prediction methodology of the combustor proposed by Ikawa.
Round-Trip Solar Electric Propulsion Missions for Mars Sample Return
NASA Technical Reports Server (NTRS)
Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.
2014-01-01
Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.
Performance of 10-kW class xenon ion thrusters
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Rawlin, Vincent K.
1988-01-01
Presented are performance data for laboratory and engineering model 30 cm-diameter ion thrusters operated with xenon propellant over a range of input power levels from approximately 2 to 20 kW. Also presented are preliminary performance results obtained from laboratory model 50 cm-diameter cusp- and divergent-field ion thrusters operating with both 30 cm- amd 50 cm-diameter ion optics up to a 20 kW input power. These data include values of discharge chamber propellant and power efficiencies, as well as values of specific impulse, thruster efficiency, thrust and power. The operation of the 30 cm- and 50 cm-diameter ion optics are also discussed.
Affordable Development of a Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. The foundation provided by development and utilization of a NCPS could enable development of extremely high performance systems. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.;
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).
Performance capabilities of the 8-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1981-01-01
A preliminary characterization of the performance capabilities of the 8-cm thruster in order to initiate an evaluation of its application to LSS propulsion requirements is presented. With minor thruster modifications, the thrust was increased by about a factor of four while the discharge voltage was reduced from 39 to 22 volts. The thruster was operated over a range of specific impulse of 1950 to 3040 seconds and a maximum total efficiency of about 54 percent was attained. Preliminary analysis of component lifetimes, as determined by temperature and spectroscopic line intensity measurements, indicated acceptable thruster lifetimes are anticipated at the high power level operation.
NASA Technical Reports Server (NTRS)
Sjauw, Waldy K.; McGuire, Melissa L.; Freeh, Joshua E.
2016-01-01
Recent NASA interest in human missions to Mars has led to an Evolvable Mars Campaign by the agency's Human Architecture Team. Delivering the crew return propulsion stages and Mars surface landers, SEP based systems are employed because of their high specific impulse characteristics enabling missions requiring less propellant although with longer transfer times. The Earth departure trajectories start from an SLS launch vehicle delivery orbit and are spiral shaped because of the low SEP thrust. Previous studies have led to interest in assessing the divide in trip time between the Earth departure and interplanetary legs of the mission for a representative SEP cargo vehicle.
NASA Astrophysics Data System (ADS)
Winterberg, F.
The combination of metallic shells imploded with chemical explosives and the recently proposed magnetic booster target inertial fusion concept, could make possible the fissionless ignition of small thermonuclear explosions. In the magnetic booster concept a very dense but magnetically confined thermonuclear plasma of low yield serves as the trigger for an inertially confined thermonuclear plasma of high yield. For the most easily ignitable fusion reaction, the DT reaction, this could lead to a fissionless bomb propulsion system, with the advantage to have a much smaller yield of the pure fusion bombs as compared to either fission- or fission-induced fusion bombs, previously proposed for propulsion. Typically, the proposed propulsion concept should give a specific impulse of ˜ 3000 secs, corresponding to an exhaust velocity of ˜ 30 km/sec. If the energy released in each pure fusion bomb is of the order of 10 18 erg or the order of 100 tons of TNT, and if one fusion explosion per second takes place, the average thrust is of the order 10 3 tons. The propulsion system appears ideally suited for the fast economical transport of large spacecraft within the solar system.
ESCORT: A Pratt & Whitney nuclear thermal propulsion and power system for manned mars missions
NASA Astrophysics Data System (ADS)
Feller, Gerald J.; Joyner, Russell
1999-01-01
The purpose of this paper is to describe the conceptual design of an upgrade to the Pratt & Whitney ESCORT nuclear thermal rocket engine. The ESCORT is a bimodal engine capable of supporting a wide range of vehicle propulsive and electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In propulsive mode, the reactor is used to heat hot hydrogen to approximately 2700 K which is expanded through a converging/diverging nozzle to generate thrust. Heat pickup in the nozzle and the radial beryllium reflectors is used to drive the turbomachinery in the ESCORT expander cycle. In electrical mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. This closed loop system has the additional function of a decay heat removal system after the propulsive mode operation is discontinued. The original ESCORT design was capable of delivering 4448.2 N (1000 lbf) of thrust at a vacuum impulse level of approximately 900 s. Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential manned Mars missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. This is met assuming three engines capable of each delivering 66723 N (15000 lbf) of vacuum thrust and 25 kWe of electrical power. The individual engine requirements were developed assuming three out of three engine reliability for propulsion and two out of three engine reliability for spacecraft electrical power. The approximate target vacuum impulse is 925 s. The Pratt & Whitney ESCORT concept was upgraded to meet these requirements. The hexagonal prismatic fuel elements were modified to address the uprated power requirements while maintaining the peak fuel temperature below the 2880 K limit for W-UO2 CERMET fuels. A system integrated performance methodology was developed to assess the sensitivity to weight, thrust and impulse to the DRM requirements. Propellant tanks, shielding, and Brayton cycle power conversion unit requirements were included in this evaluation.
High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Manzella, David H.
2004-01-01
The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.
Low-thrust chemical orbit to orbit propulsion system propellant management study
NASA Technical Reports Server (NTRS)
Dergance, R. H.
1980-01-01
Propellant requirements, tankage configurations, preferred propellant management techniques, propulsion systems weights, and technology deficiencies for low thrust expendable propulsion systems are examined. A computer program was utilized which provided a complete propellant inventory (including boil-off for cryogenic cases), pressurant and propellant tank dimensions for a given ullage, pressurant requirements, insulation requirements, and miscellaneous masses. The output also includes the masses of all tanks; the mass of the insulation, engines and other components; total wet system and burnout mass; system mass fraction; total impulse and burn time.
Flight Test of the Aerojet 7KS-6000 T-27 Jato Rocket Motor
NASA Technical Reports Server (NTRS)
Bond, Aleck C.; Thibodaux, Joseph G., Jr.
1949-01-01
A flight test of the Aero jet Engineering Corporation's 7KS-6000 T-27 Jato rocket motor was conducted at the Langley Pilotless Aircraft Research Station at Wallops Island, Va, to determine the flight performance characteristics of the motor. The flight test imposed an absolute longitudinal acceleration of 9.8 g upon the rocket motor at 2.8 seconds after launching. The total impulse developed by the motor was 43,400 pound-seconds, and the thrusting time was 7.58 seconds. The maximum thrust was 7200 pounds and occurred at 4.8 seconds after launching. No thrust irregularities attributable to effects of the flight longitudinal acceleration were observed. Certain small thrust irregularities occurred in the flight test which appear to correspond to irregularities observed in static tests conducted elsewhere. A hypothesis regarding the origin of these small irregularities is presented.
NASA Astrophysics Data System (ADS)
Fukunari, Masafumi; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi
2018-04-01
Experiments using a 1 MW-class gyrotron were conducted to examine a beamed energy propulsion rocket, a microwave rocket with a beam concentrator for long-distance wireless power feeding. The incident beam is transmitted from a beam transmission mirror system. The beam transmission mirror system expands the incident beam diameter to 240 mm to extend the Rayleigh length. The beam concentrator receives the beam and guides it into a 56-mm-diameter cylindrical thruster tube. Plasma ignition and ionization front propagation in the thruster were observed through an acrylic window using a fast-framing camera. Atmospheric air was used as a propellant. Thrust generation was achieved with the beam concentrator. The maximum thrust impulse was estimated as 71 mN s/pulse from a pressure history at the thrust wall at the input energy of 638 J/pulse. The corresponding momentum coupling coefficient, Cm was inferred as 204 N/MW.
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.
2011-01-01
Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Compact Fuel Element Environment Test
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.
2012-01-01
Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.
Airbreathing engine selection criteria for SSTO propulsion system
NASA Astrophysics Data System (ADS)
Ohkami, Yoshiaki; Maita, Masataka
1995-02-01
This paper presents airbreathing engine selection criteria to be applied to the propulsion system of a Single Stage To Orbit (SSTO). To establish the criteria, a relation among three major parameters, i.e., delta-V capability, weight penalty, and effective specific impulse of the engine subsystem, is derived as compared to these parameters of the LH2/LOX rocket engine. The effective specific impulse is a function of the engine I(sub sp) and vehicle thrust-to-drag ratio which is approximated by a function of the vehicle velocity. The weight penalty includes the engine dry weight, cooling subsystem weight. The delta-V capability is defined by the velocity region starting from the minimum operating velocity up to the maximum velocity. The vehicle feasibility is investigated in terms of the structural and propellant weights, which requires an iteration process adjusting the system parameters. The system parameters are computed by iteration based on the Newton-Raphson method. It has been concluded that performance in the higher velocity region is extremely important so that the airbreathing engines are required to operate beyond the velocity equivalent to the rocket engine exhaust velocity (approximately 4500 m/s).
The Evolution of the VASIMR Engine
NASA Technical Reports Server (NTRS)
Chang-Diaz, F. R.; Squire, Jared P.; Petro, Andrew; Nguyen, Tri X.
2001-01-01
Our future deep space explorers face many daunting challenges but three of these loom high above the rest: Physiological debilitation, radiation sickness and psychological stress. Many countermeasures are presently being considered to ameliorate these difficulties however, in the long run, two important new developments are required: abundant space power and advanced propulsion. The development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) addresses these important areas of need. The VASIMR is a high power, radio frequency-driven magneto plasma rocket, capable of very high exhaust velocities. In addition, its unique architecture allows in-flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led, research team, involving industry, academia and government facilities is pursuing the development of this concept in the United States. The technology can be validated, in the near term, in venues such as the International Space Station, where it can also serve as both a drag compensation device and a plasma contactor for the orbital facility. Other near-Earth applications in the commercial and scientific satellite sectors are also envisioned. This presentation covers the present status of the technology, plans for its near term deployment and a vision for its future evolution.
Chip based MEMS Ion Thruster to significantly enhance Cold Gas Thruster Lifetime for LISA
NASA Astrophysics Data System (ADS)
Tajmar, M.; Laufer, P.; Bock, D.
2017-05-01
Micropropulsion is a key component for ultraprecise attitude and orbit control required by the eLISA mission. LISA pathfinder uses cold gas micro thrusters that are accurate but require large tanks due to their very low specific impulse, which in turn limits the possible mission duration of the follow up eLISA mission. Recently, we developed a compact MEMS ion thruster on the chip with a size of only 1cm2 that can be simply attached to a gas feeding line like the one used for cold gas thrusters. It provides a specific impulse greater than 1000 s and only requires a single DC voltage. Since the operating principle is based on field emission, very low thrust noises similar to FEEP thrusters are expected but with gas propellants. The MEMS ion thruster chip could be mounted in parallel to the existing gold gas system providing high Isp and therefore long mission durations while leaving the cold gas system in place. To enable a possible mission extension, the MEMS ion thruster could take over from the cold gas system as a backup while maintaining the existing micropropulsion thruster system with its heritage therefore minimum risk.
The Vasimr Engine: Project Status and Recent Accomplishments
NASA Technical Reports Server (NTRS)
ChangDiaz, Franklin R.; Squire, Jared P.; Bering, Edgar A., III; Baitty, F. Wally; Goulding, Richard H.; Bengtson, Roger D.
2004-01-01
The development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was initiated in the late 1970s to address a critical requirement for fast, high-power interplanetary space transportation. While not being a fusion rocket, it nevertheless borrows heavily from that technology and takes advantage of the natural topology of open-ended magnetic systems. In addition to its high power density and high exhaust velocity, VASIMR is capable of "constant power throttling" a feature, which allows in-flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led, research team, involving industry, academia and government facilities is pursuing the development of this concept in the United States. The technology can be validated, in the near term, in venues such as the International Space Station, where it can also serve as both a drag compensation device and a plasma contactor for the orbital facility. Other near-Earth applications in the commercial and scientific satellite sectors are also envisioned. This presentation covers the evolution of the VASIMR concept to its present status, as well as recent accomplishments in our understanding of the physics. Approaches and collaborative programs addressing the major technical challenges will also be presented.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex
2012-01-01
NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.
Fortran 4 program for two-impulse rendezvous analysis
NASA Technical Reports Server (NTRS)
Barling, W. H., Jr.; Brothers, W. J.; Darling, W. H., Jr.
1967-01-01
Program determines if rendezvous in near space is possible, and performs an analysis to determine the approximate required values of the magnitude and direction of two thrust applications of the upper stage of a rocket firing. The analysis is performed by using ordinary Keplerian mechanics.
Asymmetric Shock Wave Generation in a Microwave Rocket Using a Magnetic Field
NASA Astrophysics Data System (ADS)
Takahashi, Masayuki
2017-10-01
A plasma pattern is reproduced by coupling simulations between a particle-in- cell with Monte Carlo collisions model and a finite-difference time-domain simulation for an electromagnetic wave propagation when an external magnetic field is applied to the breakdown volume inside a microwave-rocket nozzle. The propagation speed and energy-absorption rate of the plasma are estimated based on the breakdown simulation, and these are utilized to reproduce shock wave propagation, which provides impulsive thrust for the microwave rocket. The shock wave propagation is numerically reproduced by solving the compressible Euler equation with an energy source of the microwave heating. The shock wave is asymmetrically generated inside the nozzle when the electron cyclotron resonance region has a lateral offset, which generates lateral and angular impulses for postural control of the vehicle. It is possible to develop an integrated device to maintain beaming ight of the microwave rocket, achieving both axial thrust improvement and postural control, by controlling the spatial distribution of the external magnetic field.
Non-contact thrust stand calibration method for repetitively pulsed electric thrusters.
Wong, Andrea R; Toftul, Alexandra; Polzin, Kurt A; Pearson, J Boise
2012-02-01
A thrust stand calibration technique for use in testing repetitively pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoid to produce a pulsed magnetic field that acts against a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasi-steady average deflection of the thrust stand arm away from the unforced or "zero" position can be related to the average applied force through a simple linear Hooke's law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other. The overall error on the linear regression fit used to determine the calibration coefficient was roughly 1%.
Space Shuttle SRM development. [Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Brinton, B. C.; Kilminster, J. C.
1979-01-01
The successful static test of the fourth Development Space Shuttle Solid Rocket Motor (SRM) in February 1979 concluded the development testing phase of the SRM Project. Qualification and flight motors are currently being fabricated, with the first qualification motor to be static tested. Delivered thrust-time traces on all development motors were very close to predicted values, and both specific and total impulse exceeded specification requirements. 'All-up' static tests conducted with a solid rocket booster equipment on development motors achieved all test objectives. Transportation and support equipment concepts have been proven, baselining is complete, and component reusability has been demonstrated. Evolution of the SRM transportation support equipment, and special test equipment designs are reviewed, and development activities discussed. Handling and processing aspects of large, heavy components are described.
A Plasma Rocket Demonstration on the International Space Station
NASA Astrophysics Data System (ADS)
Petro, A.
2002-01-01
in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One feature of this concept is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. For this reason the system is called the Variable Specific Impulse Magneto-plasma Rocket or VASIMR. This ability to vary specific impulse and thrust will allow for optimum low thrust interplanetary trajectories and results in shorter trip times than is possible with fixed specific impulse systems while preserving adequate payload margins. demonstrations are envisioned. A ground-based experiment of a low-power VASIMR prototype rocket is currently underway at the Advanced Space Propulsion Laboratory. The next step is a proposal to build and fly a 25-kilowatt VASIMR rocket as an external payload on the International Space Station. This experiment will provide an opportunity to demonstrate the performance of the rocket in space and measure the induced environment. The experiment will also utilize the space station for its intended purpose as a laboratory with vacuum conditions that cannot be matched by any laboratory on Earth. propulsion on the space station. An electric propulsion system like VASIMR, if provided with sufficient electrical power, could provide continuous drag force compensation for the space station. Drag compensation would eliminate the need for reboosting the station, an operation that will consume about 60 metric tons of propellant in a ten-year period. In contrast, an electric propulsion system would require very little propellant. In fact, a system like VASIMR can use waste hydrogen from the station's life support system as its propellant. This waste hydrogen is otherwise dumped overboard. Continuous drag compensation would also improve the microgravity conditions on the station. So electric propulsion can reduce propellant delivery requirements and thereby increase available payload capacity and at the same time improve the conditions for scientific research. and the space environment. This is a beneficial effect that prevents a charge buildup on the station. The station already operates two dedicated non-propulsive plasma contactor devices for this purpose. A VASIMR rocket would function as an additional plasma contactor. would be delivered to orbit in the Space Shuttle payload bay. It would be mounted on a standard payload attachment structure. After removal from the payload bay by the shuttle robotic arm, it would be handed to the space station robotic arm which would place it at an external payload attach site on the station truss. A mating device for power and data connections exists at the payload site. The experiment would receive one to three kilowatts of power from the station. About 600 watts would be used for cryogenic cooling and control devices. Additional power would be stored in a set of batteries. The VASIMR experiment would be operated for short periods when the batteries can provide power to the amplifiers that feed radio-frequency power to the thruster assembly. The thruster assembly is composed of an inner tube in which the neutral propellant is injected and ionized and a larger tube, which supports the radio frequency antennas, which ionize the gas and heat the plasma. Electromagnet coils that provide the magnetic field to constrain the flow of the plasma and form the magnetic exit nozzle surround these tubes. to this supply are planned for the experiment. The experiment will carry two dedicated propellant tanks which each have the capacity to store all the propellant needed for an experimental program lasting several months. With two propellant tanks, the opportunity exists to perform experiments with more than one type of propellant. Hydrogen is the primary choice for propellant but deuterium and helium are also of interest and might also be included. All the propellant is stored and used in gaseous form at ambient temperature. rocket. There is a superconducting electromagnet that will need to be maintained at cryogenic temperatures in order to operate properly. The magnet is in close proximity to the plasma so a combination of compact insulation and passive and active heat transport techniques will be employed. activity requirements. However, provisions will be included to capitalize on the presence of humans in case repairs or servicing is required. The batteries, propellant tanks, and electronic components will be designed for on-orbit removal and replacement, if necessary. could be located on the station to provide useful thrust for drag compensation. In order to provide power for continuous thrusting, it may be necessary to augment the power generation system for the station. Another attractive possibility is to develop an electric propulsion testbed for the space station. This testbed could be used for testing and certifying a variety of propulsion systems at various stages of maturity while providing thrust for the space station. This station facility would be a valuable asset for commercial and government space transportation programs. more powerful and capable propulsion systems that will be demonstrated on free-flying spacecraft in near-Earth space and eventually on missions to the planets.
Development Status of High-Thrust Density Electrostatic Engines
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Haag, Thomas W.; Foster, John E.; Young, Jason A.; Crofton, Mark W.
2017-01-01
Ion thruster technology offers the highest performance and efficiency of any mature electric propulsion thruster. It has by far the highest demonstrated total impulse of any technology option, demonstrated at input power levels appropriate for primary propulsion. It has also been successfully implemented for primary propulsion in both geocentric and heliocentric environments, with excellent ground/in-space correlation of both its performance and life. Based on these attributes there is compelling reasoning to continue the development of this technology: it is a leading candidate for high power applications; and it provides risk reduction for as-yet unproven alternatives. As such it is important that the operational limitations of ion thruster technology be critically examined and in particular for its application to primary propulsion its capabilities relative to thrust the density and thrust-to-power ratio be understood. This publication briefly addresses some of the considerations relative to achieving high thrust density and maximizing thrust-to-power ratio with ion thruster technology, and discusses the status of development work in this area being executed under a collaborative effort among NASA Glenn Research Center, the Aerospace Corporation, and the University of Michigan.
Trajectory Optimization of a Bimodal Nuclear Powered Spacecraft to Mars
1990-05-29
velocity M = initial mass of spacecraft o m= ion fuel expulsion rate (constant) 0 = thrust direction angle = gravitational constant of Sun AVto t...total velocity change possible for the impulsive engines AV1 = velocity change for Earth escape AV2 = velocity change for Mars capture AVto t = AV + AV
Ion optics for high power 50-cm-diam ion thrusters
NASA Technical Reports Server (NTRS)
Rawlin, Vincent K.; Millis, Marc G.
1989-01-01
The process used at the NASA-Lewis to fabricate 30 and 50-cm-diameter ion optics is described. The ion extraction capabilities of the 30 and 50-cm diameter ion optics were evaluated on divergent field and ring-cusp discharge chambers and compared. Perveance was found to be sensitive to the effects of the type and power of the discharge chamber and to the accelerator electrode hole diameter. Levels of up to 0.64 N and 20 kW for thrust and input power, respectively, were demonstrated with the divergent-field discharge chamber. Thruster efficiencies and specific impulse values up to 79 percent and 5000 sec., respectively, were achieved with the ring-cusp discharge chamber.
Performance potential of air turbo-ramjet employing supersonic through-flow fan
NASA Technical Reports Server (NTRS)
Kepler, C. E.; Champagne, G. A.
1989-01-01
A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.
Characterization of the space shuttle reaction control system engine
NASA Technical Reports Server (NTRS)
Wilson, M. S.; Stechman, R. C.; Edelman, R. B.; Fortune, O. F.; Economos, C.
1972-01-01
A computer program was developed and written in FORTRAN 5 which predicts the transient and steady state performance and heat transfer characteristics of a pulsing GO2/GH2 rocket engine. This program predicts the dynamic flow and ignition characteristics which, when combined in a quasi-steady state manner with the combustion and mixing analysis program, will provide the thrust and specific impulse of the engine as a function of time. The program also predicts the transient and steady state heat transfer characteristics of the engine using various cooling concepts. The computer program, test case, and documentation are presented. The program is applicable to any system capable of utilizing the FORTRAN 4 or FORTRAN 5 language.
Safe, Affordable, Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Nuclear Cryogenic Propulsion Stage for Mars Exploration
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Nuclear Thermal Propulsion for Advanced Space Exploration
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Gaseous fuel nuclear reactor research
NASA Technical Reports Server (NTRS)
Schwenk, F. C.; Thom, K.
1975-01-01
Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.
Development of a liquid-fed water resistojet
NASA Technical Reports Server (NTRS)
Morren, W. Earl; Stone, James R.
1988-01-01
A concept for a forced-flow once-through water vaporizer for application to resistojet thrusters was evaluated as an element of a laboratory model thruster and tested to investigate its operating characteristics. The vaporizer design concept employs flow swirling to attach the liquid flow to the boiler chamber wall, providing for separation of the two liquid phases. This vaporizer was modified with a nozzle and a centrally-located heater to facilitate vaporization, superheating, and expansion of the propellant, allowing it to function as a resistojet. Performance was measured at thrust levels ranging from 170 to 360 mN and at power levels ranging from 443 to 192 W. Maximum measured specific impulse was 192 sec.
Ascent performance feasibility for next-generation spacecraft
NASA Astrophysics Data System (ADS)
Mancuso, Salvatore Massimo
This thesis deals with the optimization of the ascent trajectories for single-stage suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem has been solved using the sequential gradient-restoration algorithm. For the TSTO case, some modifications to the original version of the algorithm have been necessary in order to deal with discontinuities due to staging and the fact that the functional being minimized depends on interface conditions. The optimization problem is studied for different values of the initial thrust-to-weight ratio in the range 1.3 to 1.6, engine specific impulse in the range 400 to 500 sec, and spacecraft structural factor in the range 0.08 to 0.12. For the TSTO configuration, two subproblems are studied: uniform structural factor between stages and nonuniform structural factor between stages. Due to the regular behavior of the results obtained, engineering approximations have been developed which connect the maximum payload weight to the engine specific impulse and spacecraft structural factor; in turn, this leads to useful design considerations. Also, performance sensitivity to the scale of the aerodynamic drag is studied, and it is shown that its effect on payload weight is relatively small, even for drag changes approaching ± 50%. The main conclusions are that: the design of a SSSO configuration appears to be feasible; the design of a SSTO configuration might be comfortably feasible, marginally feasible, or unfeasible, depending on the parameter values assumed; the design of a TSTO configuration is not only feasible, but its payload appears to be considerably larger than that of a SSTO configuration. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, it appears that aerodynamic improvements do not yield significant improvements in payload weight.
NASA Astrophysics Data System (ADS)
Sedwick, Raymond John
1998-12-01
A novel method for containing gaseous uranium vapor in an open cycle nuclear space propulsion system is developed. In an attempt to increase the operating temperature of the nuclear reactor beyond the melting point of solid fuel rods (thus increasing specific impulse), the fuel is instead suspended as a vapor in the propellant using the pressure forces developed in a confined vortex flow. The introduction of the fuel as uranium hexafluoride is found to be effective in maintaining its vapor phase in the feed passages from the tank, but not in the main vortex. A mechanism by which the resulting condensation of the uranium may be tolerated is identified, and the electro- optical properties of the resulting mixture are investigated. Containment is modeled using a 1D- axisymmetric geometry, and radiative heat transfer is found to restrict the maximum specific impulse of the system to 1500 seconds using pumping pressures of 500 atm. The specific impulse is related to this pressure as pm1/4, allowing only marginal increases in Isp at increased pressure levels. Additional 2D- axisymmetric issues, such as non-uniform current distribution and bypass flows through the boundary layers, are investigated, with possible methods of solution cited. A two-group, two-region reactor analysis is performed, estimating the mass of the reactor to be about 10 metric tonnes, and establishing the thrust to weight ratio achievable by the system at about 50. To reduce the mass of the power system, a scheme for using cross-flow heat exchange with the propellant flow to minimize (and possibly eliminate) the need for radiators to reject waste heat is presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Lifetime Assessment of the NEXT Ion Thruster
NASA Technical Reports Server (NTRS)
VanNoord, Jonathan L.
2010-01-01
Ion thrusters are low thrust, high specific impulse devices with required operational lifetimes on the order of 10,000 to 100,000 hr. The NEXT ion thruster is the latest generation of ion thrusters under development. The NEXT ion thruster currently has a qualification level propellant throughput requirement of 450 kg of xenon, which corresponds to roughly 22,000 hr of operation at the highest throttling point. Currently, a NEXT engineering model ion thruster with prototype model ion optics is undergoing a long duration test to determine wear characteristics and establish propellant throughput capability. The NEXT thruster includes many improvements over previous generations of ion thrusters, but two of its component improvements have a larger effect on thruster lifetime. These include the ion optics with tighter tolerances, a masked region and better gap control, and the discharge cathode keeper material change to graphite. Data from the NEXT 2000 hr wear test, the NEXT long duration test, and further analysis is used to determine the expected lifetime of the NEXT ion thruster. This paper will review the predictions for all of the anticipated failure mechanisms. The mechanisms will include wear of the ion optics and cathode s orifice plate and keeper from the plasma, depletion of low work function material in each cathode s insert, and spalling of material in the discharge chamber leading to arcing. Based on the analysis of the NEXT ion thruster, the first failure mode for operation above a specific impulse of 2000 sec is expected to be the structural failure of the ion optics at 750 kg of propellant throughput, 1.7 times the qualification requirement. An assessment based on mission analyses for operation below a specific impulse of 2000 sec indicates that the NEXT thruster is capable of double the propellant throughput required by these missions.
High-Performance Bipropellant Engine
NASA Technical Reports Server (NTRS)
Biaglow, James A.; Schneider, Steven J.
1999-01-01
TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance (15 to 20 sec). To determine the merits of a powder rhenium thrust chamber, Lewis On-Board Propulsion Branch directed TRW (under the Space Storable Rocket Technology Program and the High Pressure Earth Storable Rocket Technology Program) to design, fabricate, and test an engineering model to serve as a technology demonstrator.
Design and Testing of a Hall Effect Thruster with 3D Printed Channel and Propellant Distributor
NASA Technical Reports Server (NTRS)
Hopping, Ethan P.; Xu, Kunning G.
2017-01-01
The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville with channel walls and a propellant distributor manufactured using 3D printing. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. An overview of the thruster design and transient performance measurements are presented here. Measured thrust ranged from 17.2 millinewtons to 30.4 millinewtons over a discharge power of 280 watts to 520 watts with an anode I (sub SP)(Specific Impulse) range of 870 seconds to 1450 seconds. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state.
Computational study of single-expansion-ramp nozzles with external burning
NASA Astrophysics Data System (ADS)
Yungster, Shaye; Trefny, Charles J.
1992-04-01
A computational investigation of the effects of external burning on the performance of single expansion ramp nozzles (SERN) operating at transonic speeds is presented. The study focuses on the effects of external heat addition and introduces a simplified injection and mixing model based on a control volume analysis. This simplified model permits parametric and scaling studies that would have been impossible to conduct with a detailed CFD analysis. The CFD model is validated by comparing the computed pressure distribution and thrust forces, for several nozzle configurations, with experimental data. Specific impulse calculations are also presented which indicate that external burning performance can be superior to other methods of thrust augmentation at transonic speeds. The effects of injection fuel pressure and nozzle pressure ratio on the performance of SERN nozzles with external burning are described. The results show trends similar to those reported in the experimental study, and provide additional information that complements the experimental data, improving our understanding of external burning flowfields. A study of the effect of scale is also presented. The results indicate that combustion kinetics do not make the flowfield sensitive to scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grondein, P.; Lafleur, T.; Chabert, P.
Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identicalmore » conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.« less
Electrodeless plasma thrusters for spacecraft: A review
NASA Astrophysics Data System (ADS)
Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.
2017-08-01
The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.
High Power MPD Thruster Performance Measurements
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Strzempkowski, Eugene; Pencil, Eric
2004-01-01
High power magnetoplasmadynamic (MPD) thrusters are being developed as cost effective propulsion systems for cargo transport to lunar and Mars bases, crewed missions to Mars and the outer planets, and robotic deep space exploration missions. Electromagnetic MPD thrusters have demonstrated, at the laboratory level, the ability to process megawatts of electrical power while providing significantly higher thrust densities than electrostatic electric propulsion systems. The ability to generate higher thrust densities permits a reduction in the number of thrusters required to perform a given mission, and alleviates the system complexity associated with multiple thruster arrays. The specific impulse of an MPD thruster can be optimized to meet given mission requirements, from a few thousand seconds with heavier gas propellants up to 10,000 seconds with hydrogen propellant. In support of programs envisioned by the NASA Office of Exploration Systems, Glenn Research Center is developing and testing quasi-steady MW-class MPD thrusters as a prelude to steady state high power thruster tests. This paper provides an overview of the GRC high power pulsed thruster test facility, and presents preliminary performance data for a quasi-steady baseline MPD thruster geometry.
Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles
NASA Technical Reports Server (NTRS)
Gradl, Paul; Brandsmeier, Will
2016-01-01
Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.
Performance capabilities of the 12-centimeter Xenon ion thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M.; Schatz, M.
1984-01-01
The 8- and 12-cm mercury ion thruster systems were developed primarily to provide N-S station keeping of satellites with masses up to about 1800 to 3600 kg respectively. The on-orbit propulsion requirements of recently proposed Large Space Systems (LSS) are beyond the thrust capabilities of the baseline 8- and 12-cm thruster systems. This paper presents a characterization of the performance capabilities of the 12-cm Xenon ion thruster to enable an evaluation of its application to LSS auxiliary propulsion requirements. With minor thruster modifications and simplifications the thrust was increased to 64 mN, a factor of six over the baseline 12-cm mercury thruster performance. The thruster was operated over a range of specific impulse of about 2000 to 4000 seconds and at total efficiencies up to 68.0 percent. The operating levels reached in this study were found to be close to the operating limits of the thruster design in terms of perveance, grid breakdown voltage and thruster component temperatures such as those of the magnets and cathode baffle.
Computational study of single-expansion-ramp nozzles with external burning
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Trefny, Charles J.
1992-01-01
A computational investigation of the effects of external burning on the performance of single expansion ramp nozzles (SERN) operating at transonic speeds is presented. The study focuses on the effects of external heat addition and introduces a simplified injection and mixing model based on a control volume analysis. This simplified model permits parametric and scaling studies that would have been impossible to conduct with a detailed CFD analysis. The CFD model is validated by comparing the computed pressure distribution and thrust forces, for several nozzle configurations, with experimental data. Specific impulse calculations are also presented which indicate that external burning performance can be superior to other methods of thrust augmentation at transonic speeds. The effects of injection fuel pressure and nozzle pressure ratio on the performance of SERN nozzles with external burning are described. The results show trends similar to those reported in the experimental study, and provide additional information that complements the experimental data, improving our understanding of external burning flowfields. A study of the effect of scale is also presented. The results indicate that combustion kinetics do not make the flowfield sensitive to scale.
NASA Technical Reports Server (NTRS)
Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2013-01-01
A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each reactor to generate 100's of kWe of electrical power to a very high Isp (3000 s) EP thruster system for sustained vehicle acceleration and deceleration in heliocentric space.
Liquid oxygen/liquid hydrogen auxiliary power system thruster investigation
NASA Technical Reports Server (NTRS)
Eberle, E. E.; Kusak, L.
1979-01-01
The design, fabrication, and demonstration of a 111 newton (25 lb) thrust, integrated auxiliary propulsion system (IAPS) thruster for use with LH2/LO2 propellants is described. Hydrogen was supplied at a temperature range of 22 to 33 K (40 to 60 R), and oxygen from 89 to 122 K (160 to 220 R). The thruster was designed to operate in both pulse mode and steady-state modes for vehicle attitude control, space maneuvering, and as an abort backup in the event of failure of the main propulsion system. A dual-sleeve, tri-axial injection system was designed that utilizes a primary injector/combustor where 100 percent of the oxygen and 8 percent of the hydrogen is introduced; a secondary injector/combustor where 45 percent of the hydrogen is introduced to mix with the primary combustor gases; and a boundary layer injector that uses the remaining 45 percent of the hydrogen to cool the thrust throat/nozzle design. Hot-fire evaluation of this thruster with a BLC injection distance of 2.79 cm (1.10 in.) indicated that a specific impulse value of 390 sec can be attained using a coated molybdenum thrust chamber. Pulse mode tests indicated that a chamber pressure buildup to 90 percent thrust can be achieved in a time on the order of 48 msec. Some problems were encountered in achieving ignition of each pulse during pulse trains. This was interpreted to indicate that a higher delivered spark energy level ( 100 mJ) would be required to maintain ignition reliability of the plasma torch ignition system under the extra 'cold' conditions resulting during pulsing.
Deimos Methane-Oxygen Rocket Engine Test Results
NASA Astrophysics Data System (ADS)
Engelen, S.; Souverein, L. J.; Twigt, D. J.
This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.
Non-Contact Thrust Stand Calibration Method for Repetitively-Pulsed Electric Thrusters
NASA Technical Reports Server (NTRS)
Wong, Andrea R.; Toftul, Alexandra; Polzin, Kurt A.; Pearson, J. Boise
2011-01-01
A thrust stand calibration technique for use in testing repetitively-pulsed electric thrusters for in-space propulsion has been developed and tested using a modified hanging pendulum thrust stand. In the implementation of this technique, current pulses are applied to a solenoidal coil to produce a pulsed magnetic field that acts against the magnetic field produced by a permanent magnet mounted to the thrust stand pendulum arm. The force on the magnet is applied in this non-contact manner, with the entire pulsed force transferred to the pendulum arm through a piezoelectric force transducer to provide a time-accurate force measurement. Modeling of the pendulum arm dynamics reveals that after an initial transient in thrust stand motion the quasisteady average deflection of the thrust stand arm away from the unforced or zero position can be related to the average applied force through a simple linear Hooke s law relationship. Modeling demonstrates that this technique is universally applicable except when the pulsing period is increased to the point where it approaches the period of natural thrust stand motion. Calibration data were obtained using a modified hanging pendulum thrust stand previously used for steady-state thrust measurements. Data were obtained for varying impulse bit at constant pulse frequency and for varying pulse frequency. The two data sets exhibit excellent quantitative agreement with each other as the constant relating average deflection and average thrust match within the errors on the linear regression curve fit of the data. Quantitatively, the error on the calibration coefficient is roughly 1% of the coefficient value.
An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights
NASA Technical Reports Server (NTRS)
David, D.
1983-01-01
Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.
Design of human missions to Mars and robotic missions to Jupiter
NASA Astrophysics Data System (ADS)
Okutsu, Masataka
We consider human missions to Mars and robotic missions to Jupiter for launch dates in the near- and far-future. For the near-future, we design trajectories for currently proposed space missions that have well-defined spacecraft and mission requirements. For example, for early human missions to Mars we assume that the constraints used in NASA's design reference missions are indicative of current and near-future technologies, which of course limit our capabilities to explore Mars--and these limits make the problem challenging. Similarly, in the case of robotic exploration of Jupiter, we consider that the technology levels assumed for the proposed Europa Orbiter mission represent reasonable limits. For the far-future (two to three decades from now), we take the best estimates from current literature about the capabilities that may be available in nuclear-powered electric propulsion. We consider hardware capabilities (in terms of specific mass, specific impulse, thrust, power, etc.) for low-thrust trajectories, which range froth near-term to far-future technologies. In designing such missions, several techniques are found useful. For example, the Tisserand Graph, which tracks the changes in orbital shapes and energies, provides insight in designing Jovian tours for the Europa Orbiter mission. The graph is also useful in analyzing abort trajectories for human missions to Mars. Furthermore, a patched-conic propagator, which can generate thousands of potential trajectories, plays a vital role in three of four chapters of this thesis. For launches in the next three decades, we discovered a class of Earth- Mars-Venus-Earth free returns (which appear only four times in the 100-year period), Jovian tours involving ten to twenty flybys of the Galilean satellites, and low-thrust trajectories to Jupiter via gravity assists from Venus, Earth, and Mars. In addition, our continuation method, in which a solution for a conic trajectory is gradually converted into that for a low- thrust trajectory, is found effective in design of some families of low-thrust trajectories. The method is applied, for example, in the design of a "one- vehicle cycler," an architecture requiring only one interplanetary vehicle for sustained human missions to Mars.
The use of dual mode thermionic reactors in supporting Earth orbital and space exploration missions
NASA Astrophysics Data System (ADS)
Zubrin, Robert M.; Sulmeisters, Tal K.
1993-01-01
Missions requiring large amounts of electric power to support their payload functions can be enabled through the employment of nuclear electric power reactors, which in some cases can also assist the mission by making possible the employment of high specific impulse electric propulsion. However it is found that the practicality and versality of using a power reactor to provide advanced propulsion is enormously enhanced if the reactor is configured in such a way to allow it to generate a certain amount of direct thrust as well. The use of such a system allows the creation of a common bus upper stage that can provide both high power and high impulse (with short orbit transfer times). It is shown that such a system, termed an Integral Power and Propulsion Stage (IPAPS), is optimal for supporting many Earth, Lunar, planetary and asteroidal observation, exploration, and communication support missions, and it is therefore recommended that the nuclear power reactor ultimately selected by the government for development and production be one that can be configured for such a function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Xinghua; Cai Jian; Li Long
Micro laser propulsion used for some space tasks of micro-satellites are preferred to providing small thrust and high specific impulse while keeping power consumption low. Most previous work on micro laser propulsion are about transmission mode (T-mode) using a CW laser. In this article, a pulsed fiber laser is used to study the micro laser propulsion performance under reflection mode. Multi pulse (ranged from 100 to 2000) tests are conducted on a double base propellant with the vacuum less than 10 Pa. The laser frequency is 20 kHz and two kinds of instantaneous power density 4.77x10{sup 6} W/cm{sup 2} andmore » 2.39x10{sup 7} W/cm{sup 2} are used. It is found that the momentum coupling coefficient C{sub m} and the mean thrust F increases with the increasing pulse numbers, which is different to the previous work. By adjusting the irradiation time T, it is easy to get a large mean thrust, up to mN. When the energy density is the same, C{sub m}, I{sub sp}, F and {eta} increase with the increasing power density. Also I{sub sp} and {eta} are very low, laser ablation is insufficiently under the current condition. 3D Morphology of the ablation hole is obtained by confocal microscope for the first time.« less
Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.
2009-01-01
The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.
Impact of an Exhaust Throat on Semi-Idealized Rotating Detonation Engine Performance
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2016-01-01
A computational fluid dynamic (CFD) model of a rotating detonation engine (RDE) is used to examine the impact of an exhaust throat (i.e. a constriction) on performance. The model simulates an RDE which is premixed, adiabatic, inviscid, and which contains an inlet valve that prevents backflow from the high pressure region directly behind the rotating detonation. Performance is assessed in terms of ideal net specific impulse which is computed on the assumption of lossless expansion of the working fluid to the ambient pressure through a notional diverging nozzle section downstream of the throat. Such a semi-idealized analysis, while not real-world, allows the effect of the throat to be examined in isolation from, rather than coupled to (as it actually is) various loss mechanisms. For the single Mach 1.4 flight condition considered, it is found that the addition of a throat can yield a 9.4 percent increase in specific impulse. However, it is also found that when the exit throat restriction gets too small, an unstable type of operation ensues which eventually leads to the detonation failing. This behavior is found to be somewhat mitigated by the addition of an RDE inlet restriction across which there is an aerodynamic loss. Remarkably, this loss is overcome by the benefits of the further exhaust restrictions allowed. The end result is a configuration with a 10.3 percent improvement in ideal net specific thrust.
Impact of an Exhaust Throat on Semi-Idealized Rotating Detonation Engine Performance
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2016-01-01
A computational fluid dynamic (CFD) model of a rotating detonation engine (RDE) is used to examine the impact of an exhaust throat (i.e., a constriction) on performance. The model simulates an RDE which is premixed, adiabatic, inviscid, and which contains an inlet valve that prevents backflow from the high pressure region directly behind the rotating detonation. Performance is assessed in terms of ideal net specific impulse which is computed on the assumption of lossless expansion of the working fluid to the ambient pressure through a notional diverging nozzle section downstream of the throat. Such a semi-idealized analysis, while not real-world, allows the effect of the throat to be examined in isolation from, rather than coupled to (as it actually is) various loss mechanisms. For the single Mach 1.4 flight condition considered, it is found that the addition of a throat can yield a 9.4 percent increase in specific impulse. However, it is also found that when the exit throat restriction gets too small, an unstable type of operation ensues which eventually leads to the detonation failing. This behavior is found to be somewhat mitigated by the addition of an RDE inlet restriction across which there is an aerodynamic loss. Remarkably, this loss is overcome by the benefits of the further exhaust restrictions allowed. The end result is a configuration with a 10.3 percent improvement in ideal net specific thrust.
High Thrust-to-Power Annular Engine Technology
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.
2015-01-01
Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.
High Thrust-to-Power Annular Engine Technology
NASA Technical Reports Server (NTRS)
Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.
2015-01-01
Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.
Experiments on a repetitively pulsed electrothermal thruster
NASA Technical Reports Server (NTRS)
Burton, R. L.; Fleischer, D.; Goldstein, S. A.; Tidman, D. A.
1987-01-01
This paper presents experimental results from an investigation of a pulsed electrothermal (PET) thruster using water propellant. The PET thruster is operated on a calibrated thrust stand, and produces a thrust to power ratio of T/P = 0.07 + or - 0.01 N/kW. The discharge conditions are inferred from a numerical model which predicts pressure and temperature levels of 300-500 atm and 20,000 K, respectively. These values in turn correctly predict the measured values of impulse bit and discharge resistance. The inferred ideal exhaust velocity from these conditions is 17 km/sec, but the injection of water propellant produces a test tank background pressure of 10-20 Torr, which reduces the exhaust velocity to 14 km/sec. This value corresponds to a thrust efficiency of 54 + or - 7 percent when all experimental errors are taken into account.
Optimal trajectories based on linear equations
NASA Technical Reports Server (NTRS)
Carter, Thomas E.
1990-01-01
The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.
Shock tunnel studies of scramjet phenomena, supplement 5
NASA Technical Reports Server (NTRS)
Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.
1990-01-01
A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.
Development of a Transient Thrust Stand with Sub-Millisecond Resolution
NASA Astrophysics Data System (ADS)
Spells, Corbin Fraser
The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.
NASA Technical Reports Server (NTRS)
Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory
2012-01-01
Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.
Technology for low cost solid rocket boosters.
NASA Technical Reports Server (NTRS)
Ciepluch, C.
1971-01-01
A review of low cost large solid rocket motors developed at the Lewis Research Center is given. An estimate is made of the total cost reduction obtainable by incorporating this new technology package into the rocket motor design. The propellant, case material, insulation, nozzle ablatives, and thrust vector control are discussed. The effect of the new technology on motor cost is calculated for a typical expandable 260-in. booster application. Included in the cost analysis is the influence of motor performance variations due to specific impulse and weight changes. It is found for this application that motor costs may be reduced by up to 30% and that the economic attractiveness of future large solid rocket motors will be improved when the new technology is implemented.
Near-Term Laser Launch Capability: The Heat Exchanger Thruster
NASA Astrophysics Data System (ADS)
Kare, Jordin T.
2003-05-01
The heat exchanger (HX) thruster concept uses a lightweight (up to 1 MW/kg) flat-plate heat exchanger to couple laser energy into flowing hydrogen. Hot gas is exhausted via a conventional nozzle to generate thrust. The HX thruster has several advantages over ablative thrusters, including high efficiency, design flexibility, and operation with any type of laser. Operating the heat exchanger at a modest exhaust temperature, nominally 1000 C, allows it to be fabricated cheaply, while providing sufficient specific impulse (~600 seconds) for a single-stage vehicle to reach orbit with a useful payload; a nominal vehicle design is described. The HX thruster is also comparatively easy to develop and test, and offers an extremely promising route to near-term demonstration of laser launch.
Plug nozzles: The ultimate customer driven propulsion system
NASA Technical Reports Server (NTRS)
Aukerman, Carl A.
1991-01-01
This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in this study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.
A Flight Demonstration of Plasma Rocket Propulsion
NASA Technical Reports Server (NTRS)
Petro, Andrew
1999-01-01
The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.
NASA Technical Reports Server (NTRS)
Aukerman, Carl A.
1991-01-01
This paper presents the results of a study applying the plug cluster nozzle concept to the propulsion system for a typical lunar excursion vehicle. Primary attention for the design criteria is given to user defined factors such as reliability, low volume, and ease of propulsion system development. Total thrust and specific impulse are held constant in the study while other parameters are explored to minimize the design chamber pressure. A brief history of the plug nozzle concept is included to point out the advanced level of technology of the concept and the feasibility of exploiting the variables considered in the study. The plug cluster concept looks very promising as a candidate for consideration for the ultimate customer driven propulsion system.
Emerging hypersonic propulsion technology
NASA Technical Reports Server (NTRS)
Curran, E. T.; Beach, H. L., Jr.
1988-01-01
Currently there is a renewal of interest in the utilization of air breathing engines for hypersonic flight. The use of such engines in accelerative missions is discussed, and the nature of the trade-off between engine thrust-to-weight ratio and specific impulse is highlighted. It is also pointed out that the use of a cryogenic fuel such as liquid hydrogen offers the opportunity to develop both precooled derivatives of turboaccelerator engines and new cryogenic engine cycles, where the heat exchange process plays a significant role in the engine concept. The continuing challenges of developing high speed supersonic combustion ramjet engines are discussed. The paper concludes with a brief review of the difficult discipline of vehicle integration, and the challenges of both ground and flight testing.
Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets
NASA Astrophysics Data System (ADS)
Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.
2017-10-01
The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.
Multi-Fluid Simulations of Field Reversed Configuration Formation
NASA Astrophysics Data System (ADS)
Sousa, Eder; Martin, Robert
2017-10-01
The use of field reversed configuration (FRC) have been studied extensively for fusion application but here we investigate them for propulsion purposes. FRCs have the potential to produce highly variable thrust and specific impulse using different gases as propellant. Aspects of the FRC formation physics, using a rotating magnetic field (RMF) at low power, are simulated using a multi-fluid plasma model. Results are compared with experimental observations with emphasis in the development of instabilities and robustness of the field reversal. The use of collisional radiative models are used to help compare experiment versus simulation results. Distribution A: Approved for public release; distribution unlimited; Clearance No. 17445. This work is supported by the Air Force Office of Scientific Research Grant Number 17RQCOR465.
NASA's Hall Thruster Program 2002
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Jacobson, David T.; Pinero, Luis R.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.
2002-01-01
The NASA Hall thruster program currently supports a number of tasks related to high power thruster development for a number of customers including the Energetics Program (formerly called the Space-based Program), the Space Solar Power Program, and the In-space Propulsion Program. In program year 2002, two tasks were central to the NASA Hall thruster program: 1) the development of a laboratory Hall thruster capable of providing high thrust at high power-, and 2) investigations into operation of Hall thrusters at high specific impulse. In addition to these two primary thruster development activities, there are a number of other on-going activities supported by the NASA Hall thruster program. These additional activities are related to issues such as high-power power processor architecture, thruster lifetime, and spacecraft integration.
Pulse Detonation Rocket Engine Research at NASA Marshall
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2003-01-01
This viewgraph representation provides an overview of research being conducted on Pulse Detonation Rocket Engines (PDRE) by the Propulsion Research Center (PRC) at the Marshall Space Flight Center. PDREs have a theoretical thermodynamic advantage over Steady-State Rocket Engines (SSREs) although unsteady blowdown processes complicate effective use of this advantage in practice; PRE is engaged in a fundamental study of PDRE gas dynamics to improve understanding of performance issues. Topics covered include: simplified PDRE cycle, comparison of PDRE and SSRE performance, numerical modeling of quasi 1-D rocket flows, time-accurate thrust calculations, finite-rate chemistry effects in nozzles, effect of F-R chemistry on specific impulse, effect of F-R chemistry on exit species mole fractions and PDRE performance optimization studies.
Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.
Carbon monoxide and oxygen combustion experiments: A demonstration of Mars in situ propellants
NASA Technical Reports Server (NTRS)
Linne, Diane L.
1991-01-01
The feasibility of using carbon monoxide and oxygen as rocket propellants was examined both experimentally and theoretically. The steady-state combustion of carbon monoxide and oxygen was demonstrated for the first time in a subscale rocket engine. Measurements of experimental characteristic velocity, vacuum specific impulse, and thrust coefficient efficiency were obtained over a mixture ratio range of 0.30 to 2.0 and a chamber pressures of 1070 and 530 kPa. The theoretical performance of the propellant combination was studied parametrically over the same mixture ratio range. In addition to one dimensional ideal performance predictions, various performance reduction mechanisms were also modeled, including finite-rate kinetic reactions, two-dimensional divergence effects and viscous boundary layer effects.
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.
2015-01-01
Preliminary design of high-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys and the bodies at which those flybys are performed. For some missions, such as surveys of small bodies, the mission designer also contributes to target selection. In addition, real-valued decision variables, such as launch epoch, flight times, maneuver and flyby epochs, and flyby altitudes must be chosen. There are often many thousands of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the impulsive mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on several real-world problems. Two assumptions are frequently made to simplify the modeling of an interplanetary high-thrust trajectory during the preliminary design phase. The first assumption is that because the available thrust is high, any maneuvers performed by the spacecraft can be modeled as discrete changes in velocity. This assumption removes the need to integrate the equations of motion governing the motion of a spacecraft under thrust and allows the change in velocity to be modeled as an impulse and the expenditure of propellant to be modeled using the time-independent solution to Tsiolkovsky's rocket equation [1]. The second assumption is that the spacecraft moves primarily under the influence of the central body, i.e. the sun, and all other perturbing forces may be neglected in preliminary design. The path of the spacecraft may then be modeled as a series of conic sections. When a spacecraft performs a close approach to a planet, the central body switches from the sun to that planet and the trajectory is modeled as a hyperbola with respect to the planet. This is known as the method of patched conics. The impulsive and patched-conic assumptions significantly simplify the preliminary design problem.
Automated Design of Multiphase Space Missions Using Hybrid Optimal Control
ERIC Educational Resources Information Center
Chilan, Christian Miguel
2009-01-01
A modern space mission is assembled from multiple phases or events such as impulsive maneuvers, coast arcs, thrust arcs and planetary flybys. Traditionally, a mission planner would resort to intuition and experience to develop a sequence of events for the multiphase mission and to find the space trajectory that minimizes propellant use by solving…
Magnetic Field Effects on Plasma Plumes
NASA Technical Reports Server (NTRS)
Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.
2012-01-01
Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results
A review of MEMS micropropulsion technologies for CubeSats and PocketQubes
NASA Astrophysics Data System (ADS)
Silva, Marsil A. C.; Guerrieri, Daduí C.; Cervone, Angelo; Gill, Eberhard
2018-02-01
CubeSats have been extensively used in the past decade as scientific tools, technology demonstrators and for education. Recently, PocketQubes have emerged as an interesting and even smaller alternative to CubeSats. However, both satellite types often lack some key capabilities, such as micropropulsion, in order to further extend the range of applications of these small satellites. This paper reviews the current development status of micropropulsion systems fabricated with MEMS (micro electro-mechanical systems) and silicon technology intended to be used in CubeSat or PocketQube missions and compares different technologies with respect to performance parameters such as thrust, specific impulse, and power as well as in terms of operational complexity. More than 30 different devices are analyzed and divided into 7 main categories according to the working principle. A specific outcome of the research is the identification of the current status of MEMS technologies for micropropulsion including key opportunities and challenges.
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
IEC fusion: The future power and propulsion system for space
NASA Astrophysics Data System (ADS)
Hammond, Walter E.; Coventry, Matt; Hanson, John; Hrbud, Ivana; Miley, George H.; Nadler, Jon
2000-01-01
Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production. .
NASA Astrophysics Data System (ADS)
Miele, A.; Wang, T.; Williams, P. N.
2005-12-01
The success of the solar-electric ion engine powering the DS1 spacecraft has paved the way toward the use of low-thrust electrical engines in future planetary/interplanetary missions. Vis-à-vis a chemical engine, an electrical engine has a higher specific impulse, implying a possible decrease in propellant mass; however, the low-thrust aspect discourages the use of an electrical engine in the near-planet phases of a trip, since this might result in an increase in flight time. Therefore, a fundamental design problem is to find the best combination of chemical propulsion and electrical propulsion for a given mission, for example, a mission from Earth to Mars. With this in mind, this paper is the third of a series dealing with the optimization of Earth Mars missions via the use of hybrid engines, namely the combination of high-thrust chemical engines for planetary flight and low-thrust electrical engines for interplanetary flight. We look at the deep-space interplanetary portion of the trajectory under rather idealized conditions. The two major performance indexes, the propellant mass and the flight time, are in conflict with one another for the following reason: any attempt at reducing the former causes an increase in the latter and vice versa. Therefore, it is natural to consider a compromise performance index involving the scaled values of the propellant mass and flight time weighted respectively by the compromise factor C and its complement 1-C. We use the compromise factor as the parameter of the one-parameter family of compromise trajectories. Analyses carried out with the sequential gradient-restoration algorithm for optimal control problems lead to results which can be highlighted as follows. Thrust profile. Generally speaking, the thrust profile of the compromise trajectory includes three subarcs: the first subarc is characterized by maximum thrust in conjunction with positive (upward) thrust direction; the second subarc is characterized by zero thrust (coasting flight); the third subarc is characterized by maximum thrust in conjunction with negative (downward) thrust direction. Effect of the compromise factor. As the compromise factor increases, the propellant mass decreases and the flight time increases; correspondingly, the following changes in the thrust profile take place: (a) the time lengths of the first and third subarcs (powered phases) decrease slightly, meaning that thrust application occurs for shorter duration; also, the average value of the thrust direction in the first and third subarcs decreases, implying higher efficiency of thrust application wrt the spacecraft energy level; as a result, the total propellant mass decreases; (b) the time length of the second subarc (coasting) increases considerably, resulting in total time increase. Minimum time trajectory. If C=0, the resulting minimum time trajectory has the following characteristics: (a) the time length of the coasting subarc reduces to zero and the three-subarc trajectory degenerates into a two-subarc trajectory; (b) maximum thrust is applied at all times and the thrust direction switches from upward to downward at midcourse. Minimum propellant mass trajectory. If C=1, the resulting minimum propellant mass trajectory has the following characteristics: (a) the thrust magnitude has a bang-zero-bang profile; (b) for the powered subarcs, the thrust direction is tangent to the flight path at all times.
Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars
NASA Astrophysics Data System (ADS)
Rabotin, C. B.
Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. Additionally, such spacecraft should be able to perform orbital insertions at destination in order to deliver the cargo directly in a desired orbit. An example application is designing round-trip missions to Mars to support exploration and eventually colonization. This research investigates the feasibility of return journeys to Mars based on the performance of existing or in-development continuous thrust propulsion systems. In order to determine the business viability of such missions, an emphasis is made on the time of flight during different parts of the mission, the relative velocity with respect to the destination planet, and the fuel requirements. The study looks at the applicability for interplanetary mission design of simple control laws for efficient correction of orbital elements, and of thrusting purely in velocity or anti-velocity direction. The simulations explore different configurations of continuous thrusting technologies using a patched-conics approach. In addition, all simulation scenarios facilitate escape from planetary gravity wells as the initial spacecraft orbit is highly elliptical, both around the Earth and around Mars. This work does not include any optimal trajectory design. For this research, a highly configurable orbit propagation software with SPICE ephemerides was developed from scratch in Go, a modern compiled computer language. The outcome of this research is that simple orbital element control laws do not lead to more efficient or faster interplanetary transfers. In addition, spiraling out of Earth's gravity wells requires a substantial amount of time despite starting from a highly elliptical orbit, and even with clustered high thrust engines like the VASIMR VX-200. Further investigation should look into hybrid solutions with a chemical engine for departing Earth; outbound spirals from Mars take a more reasonable amount of time.
Solar Electric Propulsion Triple-Satellite-Aided Capture With Mars Flyby
NASA Astrophysics Data System (ADS)
Patrick, Sean
Triple-Satellite-aided-capture sequences use gravity-assists at three of Jupiter's four massive Galilean moons to reduce the DeltaV required to enter into Jupiter orbit. A triple-satellite-aided capture at Callisto, Ganymede, and Io is proposed to capture a SEP spacecraft into Jupiter orbit from an interplanetary Earth-Jupiter trajectory that employs low-thrust maneuvers. The principal advantage of this method is that it combines the ISP efficiency of ion propulsion with nearly impulsive but propellant-free gravity assists. For this thesis, two main chapters are devoted to the exploration of low-thrust triple-flyby capture trajectories. Specifically, the design and optimization of these trajectories are explored heavily. The first chapter explores the design of two solar electric propulsion (SEP), low-thrust trajectories developed using the JPL's MALTO software. The two trajectories combined represent a full Earth to Jupiter capture split into a heliocentric Earth to Jupiter Sphere of Influence (SOI) trajectory and a Joviocentric capture trajectory. The Joviocentric trajectory makes use of gravity assist flybys of Callisto, Ganymede, and Io to capture into Jupiter orbit with a period of 106.3 days. Following this, in chapter two, three more SEP low-thrust trajectories were developed based upon those in chapter one. These trajectories, devised using the high-fidelity Mystic software, also developed by JPL, improve upon the original trajectories developed in chapter one. Here, the developed trajectories are each three separate, full Earth to Jupiter capture orbits. As in chapter one, a Mars gravity assist is used to augment the heliocentric trajectories. Gravity-assist flybys of Callisto, Ganymede, and Io or Europa are used to capture into Jupiter Orbit. With between 89.8 and 137.2-day periods, the orbits developed in chapters one and two are shorter than most Jupiter capture orbits achieved using low-thrust propulsion techniques. Finally, chapter 3 presents an original trajectory design for a Very-Long-Baseline Interferometry (VLBI) satellite constellation. The design was created for the 8th Global Trajectory Optimization Competition (GTOC8) in which participants are tasked with creating and optimizing low-thrust trajectories to place a series of three space craft into formation to map given radio sources.
Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Martin, Adam; Polzin, Kurt; Kimberlin, Adam; Eskridge, Richard
2013-01-01
Fabricated and tested CTP IPPTs at cone angles of 20deg, 38deg, and 60deg, and performed direct single-pulse impulse bit measurements with continuous gas flow. Single pulse performance highest for 38deg angle with impulse bit of approx.1 mN-s for both argon and xenon. Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP. Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation. IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster. Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate.
NASA Technical Reports Server (NTRS)
Forcey, W.; Minnie, C. R.; Defazio, R. L.
1995-01-01
The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.
Proven, long-life hydrogen/oxygen thrust chambers for space station propulsion
NASA Technical Reports Server (NTRS)
Richter, G. P.; Price, H. G.
1986-01-01
The development of the manned space station has necessitated the development of technology related to an onboard auxiliary propulsion system (APS) required to provide for various space station attitude control, orbit positioning, and docking maneuvers. A key component of this onboard APS is the thrust chamber design. To develop the required thrust chamber technology to support the Space Station Program, the NASA Lewis Research Center has sponsored development programs under contracts with Aerojet TechSystems Company and with Bell Aerospace Textron Division of Textron, Inc. During the NASA Lewis sponsored program with Aerojet TechSystems, a 25 lb sub f hydrogen/oxygen thruster has been developed and proven as a viable candidate to meet the needs of the Space Station Program. Likewise, during the development program with Bell Aerospace, a 50 lb sub f hydrogen/oxygen Thrust Chamber has been developed and has demonstrated reliable, long-life expectancy at anticipated space station operating conditions. Both these thrust chambers were based on design criteria developed in previous thruster programs and successfully verified in experimental test programs. Extensive thermal analyses and models were used to design the thrusters to achieve total impulse goals of 2 x 10 to the 6th power lb sub f-sec. Test data for each thruster will be compared to the analytical predictions for the performance and heat transfer characteristics. Also, the results of thrust chamber life verification tests will be presented.
Interplanetary missions with the GDM propulsion system
NASA Astrophysics Data System (ADS)
Kammash, T.; Emrich, W.
1998-01-01
The Gasdynamic Mirror (GDM) fusion propulsion system utilizes a magnetic mirror machine in which a hot dense plasma is confined long enough to produce fusion energy while allowing a fraction of its charged particle population to escape from one end to generate thrust. The particles escaping through the opposite end have their energy converted to electric power which can be used to sustain the system in a steady state operation. With the aid of a power flow diagram the minimum demands on energy production can be established and the propulsive capability of the system can be determined by solving an appropriate set of governing equations. We apply these results to several missions within the solar system and compute the trip time by invoking a continuous burn, acceleration/deceleration type of trajectory with constant thrust and specific impulse. Ignoring gravitational effects of the planets or the sun, and neglecting the change in the Earth's position during the flight we compute the round trip time for missions from Earth to Mars, Jupiter, and Pluto using linear distances and certain payload fractions. We find that a round trip to Mars with the GDM rocket takes about 170 days while those to Jupiter and Pluto take 494 and 1566 days respectively.
A type of cylindrical Hall thruster with a magnetically insulated anode
NASA Astrophysics Data System (ADS)
Yongjie, Ding; Yu, Xu; Wuji, Peng; Liqiu, Wei; Hongbo, Su; Hezhi, Sun; Peng, Li; Hong, Li; Daren, Yu
2017-04-01
In this paper, a type of magnetically insulated anode structure is proposed for the design of a low-power cylindrical Hall thruster. The magnetic field distribution in the channel is guided by the magnetically insulated anode, altering the intersection status of the magnetic field line passing through the anode and wall. Experimental and simulation results show that a high potential is formed near the wall by the magnetically insulated anode. As the ionization moves towards the outlet, the energy and flux of the ions bombarding the channel wall can be reduced effectively. Due to the reduction in the bombardment of the wall from high-energy ions, the thrust and specific impulse greatly increase compared with those of the non-magnetically insulated anode. For anode mass flow rates of 0.3 and 0.35 mg s-1 and discharge voltages in the 100-200 V range, the thrust can be increased by more than 33% and the anode efficiency can be improved by more than 7%. Meanwhile, the length of the sputtering area is clearly reduced. The starting position of the sputtering area is in front of the magnetic pole, which can effectively prolong the service life of the thruster.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alvarez, Erika; Forbes, John C.; Thornton, Randall J.
2010-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design
NASA Technical Reports Server (NTRS)
Alarez, Erika; Thornton, Randall J.; Forbes, John C.
2008-01-01
The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform minor mid-course corrections, a Lunar Orbit Insertion (LOI) burn, a de-orbit burn, and the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.
A performance comparison of ultrasonically aided electric propulsion extractor configurations
NASA Astrophysics Data System (ADS)
Dong, L.; Song, W.; Kang, X. M.; Zhao, W. S.
2012-08-01
As a novel propulsion technology, ultrasonically aided electric propulsion (UAEP) offers a high specific impulse and a high thrust density. In this paper, the effects of extractor grid configuration on performance of a UAEP thruster have been investigated by both experimental studies and numerical simulation. Relationships between spray current and operation parameters, including applied voltage, propellant flow rate, and vibration power and frequency, are explored for different extractor mesh sizes and shapes. Numerical simulation is also carried out for a better understanding of the formation of capillary standing waves as well as the electric field distribution in the acceleration zone. Experimental results show that compared with a circular shaped extractor, a reticular shaped extractor is able to produce a higher spray current. The current density increases with a denser mesh, which agrees well with the numerical simulation results. This phenomenon indicates that optimizing extractors with appropriate shapes and sizes can be an effective way to improve the performance of a UAEP system. A performance evaluation based on hydrodynamic and electrostatic calculations indicates that the present UAEP system can produce a thrust competitive to that of the colloid thruster with an emitter array.
Analytical study of nozzle performance for nuclear thermal rockets
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.; Kacynski, Kenneth J.
1991-01-01
Nuclear propulsion has been identified as one of the key technologies needed for human exploration of the Moon and Mars. The Nuclear Thermal Rocket (NTR) uses a nuclear reactor to heat hydrogen to a high temperature followed by expansion through a conventional convergent-divergent nozzle. A parametric study of NTR nozzles was performed using the Rocket Engine Design Expert System (REDES) at the NASA Lewis Research Center. The REDES used the JANNAF standard rigorous methodology to determine nozzle performance over a range of chamber temperatures, chamber pressures, thrust levels, and different nozzle configurations. A design condition was set by fixing the propulsion system exit radius at five meters and throat radius was varied to achieve a target thrust level. An adiabatic wall was assumed for the nozzle, and its length was assumed to be 80 percent of a 15 degree cone. The results conclude that although the performance of the NTR, based on infinite reaction rates, looks promising at low chamber pressures, finite rate chemical reactions will cause the actual performance to be considerably lower. Parameters which have a major influence on the delivered specific impulse value include the chamber temperature and the chamber pressures in the high thrust domain. Other parameters, such as 2-D and boundary layer effects, kinetic rates, and number of nozzles, affect the deliverable performance of an NTR nozzle to a lesser degree. For a single nozzle, maximum performance of 930 seconds and 1030 seconds occur at chamber temperatures of 2700 and 3100 K, respectively.
Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design
NASA Astrophysics Data System (ADS)
Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric
2001-02-01
Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented. .
Ion Beam Deflection (AKA Push-Me/Pull-You)
NASA Technical Reports Server (NTRS)
Brophy, John
2013-01-01
The Ion Beam Deflection provides the following potential advantages over other asteroid deflection systems. Like the gravity tractor, it doesn't require despinning of the asteroid. Unlike the gravity tractor, it provides a significantly higher coupling force that is independent of the asteroid size. The concept could be tested as part of the baseline Asteroid Redirect Robotic Mission. The thrust and total impulse are entirely within the design of the SEP vehicle. The total impulse is potentially competitive with kinetic impactors and eliminates the need for a second rendezvous spacecraft.?Gridded ion thrusters provide beam divergence angles of a few degrees enabling long stand-off distances from the asteroid. Mitigating control issues. Minimizing back-sputter contamination risks
Fast round-trip Mars trajectories
NASA Technical Reports Server (NTRS)
Wilson, Sam
1990-01-01
This paper is concerned with the effect of limiting the overall duration or else the one-way flight time of a round trip to Mars, as reflected in the sum of impulsive velocity increments required of the spacecraft propulsion system. Ignition-to-burnout mass ratios for a hypothetical single stage spacecraft, obtained from the rocket equation by combining these delta-V sums with appropriate values of specific impulse, are used to evaluate the relative effectiveness of four high-thrust propulsion alternatives. If the flight crew goes to the surface of Mars and stays there for the duration of their stopover, it is much cheaper (in terms of delta-V) to minimize their zero-g exposure by limiting the interplanetary transit time of a conjunction-class mission (round trip time = 800-1000 days, Mars stopover = 450-700 days) than to impose the same limit on an opposition-class mission (round trip time less than 600 days, stopover = 40 days). Using solid-core nuclear thermal propulsion to fly a conjunction-class mission, for a moderate mass penalty the interplanetary transit time (each way) probably could be limited to something in the range of 4 to 6 months, depending on the launch year.
Parametric Evaluation of Interstellar Exploration Mission Concepts
NASA Technical Reports Server (NTRS)
Adams, Robert B.
2017-01-01
One persistent difficulty in evaluating the myriad advanced propulsion concepts proposed over the last 60 years is a true apples to apples comparison of the expected gain in performance. This analysis is complicated by numerous factors including, multiple missions of interest to the advanced propulsion community, the lack of a credible closed form solution to 'medium thrust' trajectories, and lack of detailed design data for most proposed concepts that lend credibility to engine performance estimates. This paper describes a process on how to make fair comparisons of different propulsion concepts for multiple missions over a wide range of performance values. The figure below illustrates this process. This paper describes in detail the process and outlines the status so far in compiling the required data. Parametric data for several missions are calculated and plotted against specific power-specific impulse scatter plots of expected propulsion system performance. The overlay between required performance as defined by the trajectory parametrics and expected performance as defined in the literature for major categories of propulsion systems clearly defines which propulsion systems are the most apt for a given mission. The application of the Buckingham Pi theorem to general parameters for interstellar exploration ( mission time, mass, specific impulse, specific power, distance, propulsion source energy/mass, etc.) yields a number of dimensionless variables. The relationships of these variables can then be explored before application to a particular mission. Like in the fields of fluid mechanics and heat transfer, the use of the Buckingham Pi theorem results in new variables to make apples to apples comparisons.
Effect of oblique channel on discharge characteristics of 200-W Hall thruster
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Peng, Wuji; Sun, Hezhi; Xu, Yu; Wei, Liqiu; Li, Hong; Zeng, Ming; Wang, Fufeng; Yu, Daren
2017-02-01
In an experiment involving a 200-W Hall thruster, partial ionization occurs in the plume area because of the extrapolation of the magnetic field. To improve the thruster performance, the concept of an oblique channel is proposed for improving the ionization degree in the plume area. Calculations performed using a Particle-in-cell (PIC) simulator and the experimental results both show that an oblique channel structure can reduce the wall loss. Compared with a straight channel under similar conditions of the discharge voltage and current, the ionization degree in the plume area, thrust, specific impulse, propellant utilization, and anode efficiency are improved by ˜20%. The oblique channel is an important design consideration for improving the partial ionization of the plume area in the thruster.
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren
2018-02-01
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.
Numerical Investigation of Physical Processes in High-Temperature MEMS-based Nozzle Flows
NASA Astrophysics Data System (ADS)
Alexeenko, A. A.; Levin, D. A.; Gimelshein, S. F.; Reed, B. D.
2003-05-01
Three-dimensional high-temperature flows in a MEMS-based micronozzle has been modeled using the DSMC method for Reynolds number at the throat from 30 to 440 and two different propellants. For these conditions, the gas flow and thrust performance are strongly influenced by surface effects, including friction and heat transfer losses. The calculated specific impulse is about 170 sec for Re=440 and about 120 sec for Re=43. In addition, the gas-surface interaction is the main mechanism for the change in vibrational energy of molecules in such flows. The calculated infrared spectra for the LAX112 propellant suggest that the infrared signal from such plumes can be detected and used to determine the influence of the cold wall boundary layer on the flow parameters at the nozzle exit.
NASA Astrophysics Data System (ADS)
Yao, Songbai; Tang, Xinmeng; Wang, Jianping
2017-04-01
The aim of the present paper is to investigate the propulsive performance of the hollow rotating detonation engine (RDE) with a Laval nozzle. Three-dimensional simulations are carried out with a one-step Arrhenius chemistry model. The Laval nozzle is found to improve the propulsive performance of hollow RDE in all respects. The thrust and fuel-based specific impulse are increased up to 12.60 kN and 7484.40 s, respectively, from 6.46 kN and 6720.48 s. Meanwhile, the total mass flow rate increases from 3.63 kg/s to 6.68 kg/s. Overall, the Laval nozzle significantly improves the propulsive performance of the hollow RDE and makes it a promising model among detonation engines.
Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R.
1998-01-01
High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.
Magnetic Flux Compression Concept for Aerospace Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Robertson, Tony; Hawk, Clark W.; Turner, Matt; Koelfgen, Syri
2000-01-01
The objective of this research is to investigate system level performance and design issues associated with magnetic flux compression devices for aerospace power generation and propulsion. The proposed concept incorporates the principles of magnetic flux compression for direct conversion of nuclear/chemical detonation energy into electrical power. Specifically a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stator structure formed from a high temperature superconductor (HTSC). The expanding plasma cloud is entirely confined by the compressed magnetic field at the expense of internal kinetic energy. Electrical power is inductively extracted, and the detonation products are collimated and expelled through a magnetic nozzle. The long-term development of this highly integrated generator/propulsion system opens up revolutionary NASA Mission scenarios for future interplanetary and interstellar spacecraft. The unique features of this concept with respect to future space travel opportunities are as follows: ability to implement high energy density chemical detonations or ICF microfusion bursts as the impulsive diamagnetic plasma source; high power density system characteristics constrain the size, weight, and cost of the vehicle architecture; provides inductive storage pulse power with a very short pulse rise time; multimegajoule energy bursts/terawatt power bursts; compact pulse power driver for low-impedance dense plasma devices; utilization of low cost HTSC material and casting technology to increase magnetic flux conservation and inductive energy storage; improvement in chemical/nuclear-to-electric energy conversion efficiency and the ability to generate significant levels of thrust with very high specific impulse; potential for developing a small, lightweight, low cost, self-excited integrated propulsion and power system suitable for space stations, planetary bases, and interplanetary and interstellar space travel; potential for attaining specific impulses approaching 10 (exp 6) seconds, which would enable missions to the outer planets within ten years and missions at interstellar distances within fifty years.
Metallized Gelled Propellants: Oxygen/RP-1/aluminum Rocket Combustion Experiments
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan; Zakany, James S.
1995-01-01
A series of combustion experiments were conducted to measure the specific impulse, Cstar-, and specific-impulse efficiencies of a rocket engine using metallized gelled liquid propellants. These experiments used a small 20- to 40-1bf (89- to 178-N) thrust, modular engine consisting of an injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt% loadings of aluminum and gaseous oxygen was the oxidizer. Ten different injectors were used during the testing: 6 for the baseline 02/RP-1 tests and 4 for the gelled fuel tests which covered a wide range of mixture ratios. At the peak of the Isp versus oxidizer-to-fuel ratio (O/F) data, a range of 93 to 99% Cstar efficiency was reached with ungelled 02/RP-1. A Cstar efficiency range of 75 to 99% was obtained with gelled RP-l (0-wt% RP-1/Al) while the metallized 5-wt% RP-1/Al delivered a Cstar efficiency of 94 to 99% at the peak Isp in the O/F range tested. An 88 to 99% Cstar efficiency was obtained at the peak Isp of the gelled RP1/Al with 55-wt% Al. Specific impulse efficiencies for the 55-wt% RP-1/Al of 67%-83% were obtained at a 2.4:1 expansion ratio. Injector erosion was evident with the 55-wt% testing, while there was little or no erosion seen with the gelled RP-1 with 0- and 5-wt% Al. A protective layer of gelled fuel formed in the firings that minimized the damage to the rocket injector face. This effect may provide a useful technique for engine cooling. These experiments represent a first step in characterizing the performance of and operational issues with gelled RP-1 fuels.
JPRS Report, Science & Technology, China
1991-10-22
ZHONGGUO KEXUE BAO, 30 Aug 91] .......................................... 22 Shanghai Scientist Develops State-of-the-Art Liquid-Crystal Light Valve...the angle of attack will gradu- direction of the final velocity vector of the satellite are ally decrease under the action of aerodynamic moments...impulse and the direction of the thrust vector of the The recovery system, is located inside the sealed reentry retro-rocket engine, errors in the
Continuous Control Artificial Potential Function Methods and Optimal Control
2014-03-27
21 CW Clohessy - Wiltshire . . . . . . . . . . . . . . . . . . . . . . 26 CV Chase Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . 26 TV Target... Clohessy - Wiltshire equa- tions2) until the time rate of change of potential became nonnegative. At that time, a thrust impulse was applied to make the...3.2. 2The Clohessy - Wiltshire equations are introduced in Section 3.5. 7 to eliminate oscillation around the goal point [8, 9]. Such a method is
Lunar Cube Transfer Trajectory Options
NASA Technical Reports Server (NTRS)
Folta, David C.; Dichman, Don; Clark, Pamela; Haapala, Amanda; Howell, Kathleen
2014-01-01
Contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these designs can be restricted by the selection of the Cubesat subsystem design such as propulsion or communication. Nonetheless, many trajectory options can be designed with have a wide range of transfer durations, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several design options including deployment into low Earth orbit (LEO), geostationary transfer orbits (GTO), and higher energy direct lunar transfer orbits. In addition to direct transfer options from these initial orbits, we also investigate the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory. In this article we examine several design options that meet the above limited deployment and subsystem drivers. We study ways that both impulsive and low-thrust Solar Electric Propulsion (SEP) engines can be used to place the Cubesat first into a highly eccentric Earth orbit, enter the Moon's Sphere of Influence, and finally achieve a highly eccentric lunar orbit. We show that such low-thrust transfers are feasible with a realistic micro-thruster model, assuming that the Cubesat can generate sufficient power for the SEP. Two examples are shown here: (1) A Cubestat injected by Exploration Mission 1 (EM-1) then employing low thrust; and (2) a CubSat deployed in a GTO, then employing impulsive maneuvers. For the EM-1 injected initial design, we increase the EM-1 targeted lunar flyby distance to reduce the energy of the lunar flyby to match that of a typical lMoon system heteroclinic manifold. Figure 1 presents an option that encompasses the similar dynamics as that of the ARTEMIS mission design. Low-thrust maneuvers are used along the manifold trajectory to raise perigee to that of a lunar orbit, adjust the timing with respect to the Moon, rotate the line of apsides, and target a ballistic lunar encounter. In this design a second flyby decreases the orbital energy with respect to the Moon, so that C3 -0.1 km2s2. Another design, shown in Figure 2 emanates from a GTO then uses impulsive maneuvers to phase onto a local Earth-Moon manifold, which then transfers the CubeSat to a lunar encounter.
Monopropellant engine investigation for space shuttle reaction control system, volume 1
NASA Technical Reports Server (NTRS)
1975-01-01
The results are presented of an investigation to determine the capability of a monopropellant hydrazine thruster to meet the requirements specified for the space shuttle reaction control system (RCS). Of those requirements, the major concern was whether the 100,000 seconds life could be achieved at thrust levels within the specified range. Although burn times in excess of 200,000 seconds have been demonstrated at low thrust levels, the corresponding total impulse values have been substantially lower than that required for the space shuttle RCS. Two other areas of concern, involving the catalyst, were: (1) the effects of the relatively high vehicle vibration levels on catalyst attrition and (2) the effect of exposure of the catalyst to air during atmospheric reentry of the vehicle.
a Permanent Magnet Hall Thruster for Satellite Orbit Maneuvering with Low Power
NASA Astrophysics Data System (ADS)
Ferreira, Jose Leonardo
Plasma thrusters are known to have some advantages like high specific impulse. Electric propulsion is already recognized as a successful technology for long duration space missions. It has been used as primary propulsion system on earth-moon orbit trnsfer missions, comets and asteroids exploration and on commercially geosyncronous satellite attitude control systems. Closed Drift Plasma Thrusters, also called Hall Thrusters or SPT (Stationary Plasma Thruster) was conceived inthe USSR and, since then, they have been developed in several countries such as France, USA, Japan and Brazil. In this work, introductory remarks are made with focus on the most significant contributions of the electric propulsion to the progress of space missions and its future role on the brazillian space program. The main features of an inedit Permanent Magnet Hall Thruster (PMHT) developed at the Plasma Laboratory of the University of Brasilia is presented. The idea of using an array of permanent magnets, instead of an eletromagnet, to produce a radial magnetic field inside the cylindrical plasma drift channel of the thruster is a very important improvement, because it allows the possibility of developing a Hall Thruster with electric power consumption low enough to be used in small and medium size satellites. The new Halĺplasma source characterization is presented with plasma density, temperature and potential space profiles. Ion temperature mesurements based on Doppler broadening of spectral lines and ion energy measurements of the ejected plasma plume are also shown. Based on the mesured parameters of the accelerated plasma we constructed a merit figure for the PMHT. We also perform numerical simulations of satellite orbit raising from an altitude of 700 km to 36000 km using a PMHT operating in the 100 mN to 500 mN thrust range. In order to perform these caculations, integration techniques of spacecraft trajectory were used. The main simulation parameters were: orbit raising time, propellant mass, total satellite mass, thrust, specific impulse and exaust velocity. We conclude comparing our results with results obtained in Hall Thrusters whose magnetic fields are produced by eletromagnets.
Supersonic combustion ramjet propulsion experiments in a shock tunnel
NASA Technical Reports Server (NTRS)
Paull, A.; Stalker, R. J.; Mee, D. J.
1995-01-01
Measurements have been made of the propulsive effect of supersonic combustion ramjets incorporated into a simple axisymmetric model in a free piston shock tunnel. The nominal Mach number was 6, and the stagnation enthalpy varied from 2.8 MJ kg(exp -1) to 8.5 MJ kg(exp -1). A mixture of 13 percent silane and 87 percent hydrogen was used as fuel, and experiments were conducted at equivalence ratios up to approximately 0.8. The measurements involved the axial force on the model, and were made using a stress wave force balance, which is a recently developed technique for measuring forces in shock tunnels. A net thrust was experienced up to a stagnation enthalpy of 3.7 MJ kg(exp -1), but as the stagnation enthalpy increased, an increasing net drag was recorded. pitot and static pressure measurements showed that the combustion was supersonic. The results were found to compare satisfactorily with predictions based on established theoretical models, used with some simplifying approximations. The rapid reduction of net thrust with increasing stagnation enthalpy was seen to arise from increasing precombustion temperature, showing the need to control this variable if thrust performance was to be maintained over a range of stagnation enthalpies. Both the inviscid and viscous drag were seen to be relatively insensitive to stagnation enthalpy, with the combustion chambers making a particularly significant contribution to drag. The maximum fuel specific impulse achieved in the experiments was only 175 sec., but the theory indicates that there is considerable scope for improvement on this through aerodynamic design.
NASA Technical Reports Server (NTRS)
Splettstoesser, W. R.; Schultz, K. J.; Boxwell, D. A.; Schmitz, F. H.
1984-01-01
Acoustic data taken in the anechoic Deutsch-Niederlaendischer Windkanal (DNW) have documented the blade vortex interaction (BVI) impulsive noise radiated from a 1/7-scale model main rotor of the AH-1 series helicopter. Averaged model scale data were compared with averaged full scale, inflight acoustic data under similar nondimensional test conditions. At low advance ratios (mu = 0.164 to 0.194), the data scale remarkable well in level and waveform shape, and also duplicate the directivity pattern of BVI impulsive noise. At moderate advance ratios (mu = 0.224 to 0.270), the scaling deteriorates, suggesting that the model scale rotor is not adequately simulating the full scale BVI noise; presently, no proved explanation of this discrepancy exists. Carefully performed parametric variations over a complete matrix of testing conditions have shown that all of the four governing nondimensional parameters - tip Mach number at hover, advance ratio, local inflow ratio, and thrust coefficient - are highly sensitive to BVI noise radiation.
NASA Technical Reports Server (NTRS)
Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.
2017-01-01
The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Keplers equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Keplers equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.
NASA Technical Reports Server (NTRS)
Ellison, Donald H.; Englander, Jacob A.; Conway, Bruce A.
2017-01-01
The multiple gravity assist low-thrust (MGALT) trajectory model combines the medium-fidelity Sims-Flanagan bounded-impulse transcription with a patched-conics flyby model and is an important tool for preliminary trajectory design. While this model features fast state propagation via Kepler's equation and provides a pleasingly accurate estimation of the total mass budget for the eventual flight-suitable integrated trajectory it does suffer from one major drawback, namely its temporal spacing of the control nodes. We introduce a variant of the MGALT transcription that utilizes the generalized anomaly from the universal formulation of Kepler's equation as a decision variable in addition to the trajectory phase propagation time. This results in two improvements over the traditional model. The first is that the maneuver locations are equally spaced in generalized anomaly about the orbit rather than time. The second is that the Kepler propagator now has the generalized anomaly as its independent variable instead of time and thus becomes an iteration-free propagation method. The new algorithm is outlined, including the impact that this has on the computation of Jacobian entries for numerical optimization, and a motivating application problem is presented that illustrates the improvements that this model has over the traditional MGALT transcription.
A unique nuclear thermal rocket engine using a particle bed reactor
NASA Astrophysics Data System (ADS)
Culver, Donald W.; Dahl, Wayne B.; McIlwain, Melvin C.
1992-01-01
Aerojet Propulsion Division (APD) studied 75-klb thrust Nuclear Thermal Rocket Engines (NTRE) with particle bed reactors (PBR) for application to NASA's manned Mars mission and prepared a conceptual design description of a unique engine that best satisfied mission-defined propulsion requirements and customer criteria. This paper describes the selection of a sprint-type Mars transfer mission and its impact on propulsion system design and operation. It shows how our NTRE concept was developed from this information. The resulting, unusual engine design is short, lightweight, and capable of high specific impulse operation, all factors that decrease Earth to orbit launch costs. Many unusual features of the NTRE are discussed, including nozzle area ratio variation and nozzle closure for closed loop after cooling. Mission performance calculations reveal that other well known engine options do not support this mission.
Helicon plasma thruster discharge model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr
2014-04-15
By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density andmore » hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.« less
Rotary wave-ejector enhanced pulse detonation engine
NASA Astrophysics Data System (ADS)
Nalim, M. R.; Izzy, Z. A.; Akbari, P.
2012-01-01
The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.
Performance and optimization of a derated ion thruster for auxiliary propulsion
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Foster, John E.
1991-01-01
The characteristics and implications of use of a derated ion thruster for north-south stationkeeping (NSSK) propulsion are discussed. A derated thruster is a 30 cm diameter primary propulsion ion thruster operated at highly throttled conditions appropriate to NSSK functions. The performance characteristics of a 30 cm ion thruster are presented, emphasizing throttled operation at low specific impulse and high thrust-to-power ratio. Performance data and component erosion are compared to other NSSK ion thrusters. Operations benefits derived from the performance advantages of the derated approach are examined assuming an INTELSAt 7-type spacecraft. Minimum ground test facility pumping capabilities required to maintain facility enhanced accelerator grid erosion at acceptable levels in a lifetest are quantified as a function of thruster operating condition. Approaches to reducing the derated thruster mass and volume are also discussed.
Experimental analysis of SiC-based refractory concrete in hybrid rocket nozzles
NASA Astrophysics Data System (ADS)
D'Elia, Raffaele; Bernhart, Gérard; Hijlkema, Jouke; Cutard, Thierry
2016-09-01
Hybrid propulsion represents a good alternative to the more widely used liquid and solid systems. This technology combines some important specifications of the latters, as the possibility of re-ignition, thrust modulation, a higher specific impulse than solid systems, a greater simplicity and a lower cost than liquid systems. Nevertheless the highly oxidizing environment represents a major problem as regards the thermo-oxidation and ablative behavior of nozzle materials. The main goal of this research is to characterize a silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidizing polyethylene/nitrous oxide hybrid environment, under temperatures up to 2900 K. Three tests were performed on concrete-based nozzles in HERA Hybrid Rocket Motor (HRM) test bench at ONERA. Pressure chamber evolution and observations before and after tests are used to investigate the ablated surface at nozzle throat. Ablation behavior and crack generation are discussed and some improvements are proposed.
NASA Astrophysics Data System (ADS)
Mishra, Arpit; Ghosh, Parthasarathi
2015-12-01
For low cost, high thrust, space missions with high specific impulse and high reliability, inert weight needs to be minimized and thereby increasing the delivered payload. Turbopump feed system for a liquid propellant rocket engine (LPRE) has the highest power to weight ratio. Turbopumps are primarily equipped with an axial flow inducer to achieve the high angular velocity and low suction pressure in combination with increased system reliability. Performance of the turbopump strongly depends on the performance of the inducer. Thus, for designing a LPRE turbopump, demands optimization of the inducer geometry based on the performance of different off-design operating regimes. In this paper, steady-state CFD analysis of the inducer of a liquid oxygen (LOX) axial pump used as a booster pump for an oxygen rich staged combustion cycle rocket engine has been presented using ANSYS® CFX. Attempts have been made to obtain the performance characteristic curves for the LOX pump inducer. The formalism has been used to predict the performance of the inducer for the throttling range varying from 80% to 113% of nominal thrust and for the different rotational velocities from 4500 to 7500 rpm. The results have been analysed to determine the region of cavitation inception for different inlet pressure.
External pulsed plasma propulsion and its potential for the near future
NASA Astrophysics Data System (ADS)
Bonometti, J. A.; Morton, P. J.; Schmidt, G. R.
2000-01-01
This paper examines External Pulsed Plasma Propulsion (EPPP), a propulsion concept that derives its thrust from plasma waves generated from a series of small, supercritical fission/fusion pulses behind an object in space. For spacecraft applications, a momentum transfer mechanism translates the intense plasma wave energy into a vehicle acceleration that is tolerable to the rest of the spacecraft and its crew. This propulsion concept offers extremely high performance in terms of both specific impulse (Isp) and thrust-to-weight ratio, something that other concepts based on available technology cannot do. The political concerns that suspended work on this type of system (i.e., termination of Project ORION) may now not be as insurmountable as they were in 1965. The appeal of EPPP stems from its relatively low cost and reusability, fast interplanetary transit times, safety and reliability, and independence from major technological breakthroughs. In fact, a first generation EPPP system based on modern-day technology (i.e., GABRIEL-an evolutionary framework of EPPP concepts) may very well be the only form of propulsion that could realistically be developed to perform ambitious human exploration beyond Mars in the 21st century. It could also provide the most effective approach for deterrence against collision between earth and small planetary objects-a growing concern over recent years. .
Tutorial: Physics and modeling of Hall thrusters
NASA Astrophysics Data System (ADS)
Boeuf, Jean-Pierre
2017-01-01
Hall thrusters are very efficient and competitive electric propulsion devices for satellites and are currently in use in a number of telecommunications and government spacecraft. Their power spans from 100 W to 20 kW, with thrust between a few mN and 1 N and specific impulse values between 1000 and 3000 s. The basic idea of Hall thrusters consists in generating a large local electric field in a plasma by using a transverse magnetic field to reduce the electron conductivity. This electric field can extract positive ions from the plasma and accelerate them to high velocity without extracting grids, providing the thrust. These principles are simple in appearance but the physics of Hall thrusters is very intricate and non-linear because of the complex electron transport across the magnetic field and its coupling with the electric field and the neutral atom density. This paper describes the basic physics of Hall thrusters and gives a (non-exhaustive) summary of the research efforts that have been devoted to the modelling and understanding of these devices in the last 20 years. Although the predictive capabilities of the models are still not sufficient for a full computer aided design of Hall thrusters, significant progress has been made in the qualitative and quantitative understanding of these devices.
External Pulsed Plasma Propulsion and Its Potential for the Near Future
NASA Technical Reports Server (NTRS)
Bonometti, J. A.; Morton, P. J.; Schmidt, G. R.
1999-01-01
This paper examines External Pulsed Plasma Propulsion (EPPP), a propulsion concept that derives its thrust from plasma waves generated from a series of small, supercritical fission/fusion pulses behind an object in space. For spacecraft applications, a momentum transfer mechanism translates the intense plasma wave energy into a vehicle acceleration that is tolerable to the rest of the spacecraft and its crew. This propulsion concept offers extremely high performance in terms of both specific impulse (Isp) and thrust-to-weight ratio, something that other concepts based on available technology cannot do, The political concerns that suspended work on this type of system (i.e. termination of Project ORION) may now not be as insurmountable as they were in 1965. The appeal of EPPP stems from its relatively low cost and reusability, fast interplanetary transit times, safety and reliability, and independence from major technological breakthroughs. In fact, a first generation EPPP system based on modern-day technology (i.e., GABRIEL - an evolutionary framework- of EPPP concepts) may very well be the only form of propulsion that could realistically be developed to perform ambitious human exploration beyond Mars in the 21st century. It could also provide the most effective approach for deterrence against collision between earth and small planetary objects - a growing concern over recent years.
Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion
NASA Technical Reports Server (NTRS)
Witzberger, Kevin E.; Manzella, David
2006-01-01
Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.
Performance Optimization of the Gasdynamic Mirror Propulsion System
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Kammash, Terry
1999-01-01
Nuclear fusion appears to be a most promising concept for producing extremely high specific impulse rocket engines. Engines such as these would effectively open up the solar system to human exploration and would virtually eliminate launch window restrictions. A preliminary vehicle sizing and mission study was performed based on the conceptual design of a Gasdynamic Mirror (GDM) fusion propulsion system. This study indicated that the potential specific impulse for this engine is approximately 142,000 sec. with about 22,100 N of thrust using a deuterium-tritium fuel cycle. The engine weight inclusive of the power conversion system was optimized around an allowable engine mass of 1500 Mg assuming advanced superconducting magnets and a Field Reversed Configuration (FRC) end plug at the mirrors. The vehicle habitat, lander, and structural weights are based on a NASA Mars mission study which assumes the use of nuclear thermal propulsion' Several manned missions to various planets were analyzed to determine fuel requirements and launch windows. For all fusion propulsion cases studied, the fuel weight remained a minor component of the total system weight regardless of when the missions commenced. In other words, the use of fusion propulsion virtually eliminates all mission window constraints and effectively allows unlimited manned exploration of the entire solar system. It also mitigates the need to have a large space infrastructure which would be required to support the transfer of massive amounts of fuel and supplies to lower a performing spacecraft.
Modeling and Testing of Non-Nuclear, Highpower Simulated Nuclear Thermal Rocket Reactor Elements
NASA Technical Reports Server (NTRS)
Kirk, Daniel R.
2005-01-01
When the President offered his new vision for space exploration in January of 2004, he said, "Our third goal is to return to the moon by 2020, as the launching point for missions beyond," and, "With the experience and knowledge gained on the moon, we will then be ready to take the next steps of space exploration: human missions to Mars and to worlds beyond." A human mission to Mars implies the need to move large payloads as rapidly as possible, in an efficient and cost-effective manner. Furthermore, with the scientific advancements possible with Project Prometheus and its Jupiter Icy Moons Orbiter (JIMO), (these use electric propulsion), there is a renewed interest in deep space exploration propulsion systems. According to many mission analyses, nuclear thermal propulsion (NTP), with its relatively high thrust and high specific impulse, is a serious candidate for such missions. Nuclear rockets utilize fission energy to heat a reactor core to very high temperatures. Hydrogen gas flowing through the core then becomes superheated and exits the engine at very high exhaust velocities. The combination of temperature and low molecular weight results in an engine with specific impulses above 900 seconds. This is almost twice the performance of the LOX/LH2 space shuttle engines, and the impact of this performance would be to reduce the trip time of a manned Mars mission from the 2.5 years, possible with chemical engines, to about 12-14 months.
Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance
NASA Technical Reports Server (NTRS)
Flandro, G. A.; Roach, R. L.; Buschek, H.
1992-01-01
Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature distributions throughout the system, and (4) performance parameters such as thrust coefficient, specific impulse, mass flow rates, and equivalence ratio. Preliminary results are in good agreement with available performance data for systems resembling the NASP vehicle configuration.
Free radical propulsion concept
NASA Technical Reports Server (NTRS)
Hawkins, C. E.; Nakanishi, S.
1981-01-01
A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.
Effect of spin-polarized D-3He fuel on dense plasma focus for space propulsion
NASA Astrophysics Data System (ADS)
Mei-Yu Wang, Choi, Chan K.; Mead, Franklin B.
1992-01-01
Spin-polarized D-3He fusion fuel is analyzed to study its effect on the dense plasma focus (DPF) device for space propulsion. The Mather-type plasma focus device is adopted because of the ``axial'' acceleration of the current carrying plasma sheath, like a coaxial plasma gun. The D-3He fuel is chosen based on the neutron-lean fusion reactions with high charged-particle fusion products. Impulsive mode of operation is used with multi-thrusters in order to make higher thrust (F)-to-weight (W) ratio with relatively high value of specific impulse (Isp). Both current (I) scalings with I2 and I8/3 are considered for plasma pinch temperature and capacitor mass. For a 30-day Mars mission, with four thrusters, for example, the typical F/W values ranging from 0.5-0.6 to 0.1-0.2 for I2 and I8/3 scalings, respectively, and the Isp values of above 1600 s are obtained. Parametric studies indicate that the spin-polarized D-3He provides increased values of F/W and Isp over conventional D-3He fuel which was due to the increased fusion power and decreased radiation losses for the spin-polarized case.
Spinal manipulation force and duration affect vertebral movement and neuromuscular responses.
Colloca, Christopher J; Keller, Tony S; Harrison, Deed E; Moore, Robert J; Gunzburg, Robert; Harrison, Donald D
2006-03-01
Previous study in human subjects has documented biomechanical and neurophysiological responses to impulsive spinal manipulative thrusts, but very little is known about the neuromechanical effects of varying thrust force-time profiles. Ten adolescent Merino sheep were anesthetized and posteroanterior mechanical thrusts were applied to the L3 spinous process using a computer-controlled, mechanical testing apparatus. Three variable pulse durations (10, 100, 200 ms, force = 80 N) and three variable force amplitudes (20, 40, 60 N, pulse duration = 100 ms) were examined for their effect on lumbar motion response (L3 displacement, L1, L2 acceleration) and normalized multifidus electromyographic response (L3, L4) using a repeated measures analysis of variance. Increasing L3 posteroanterior force amplitude resulted in a fourfold linear increase in L3 posteroanterior vertebral displacement (p < 0.001) and adjacent segment (L1, L2) posteroanterior acceleration response (p < 0.001). L3 displacement was linearly correlated (p < 0.001) to the acceleration response over the 20-80 N force range (100 ms). At constant force, 10 ms thrusts resulted in nearly fivefold lower L3 displacements and significantly increased segmental (L2) acceleration responses compared to the 100 ms (19%, p = 0.005) and 200 ms (16%, p = 0.023) thrusts. Normalized electromyographic responses increased linearly with increasing force amplitude at higher amplitudes and were appreciably affected by mechanical excitation pulse duration. Changes in the biomechanical and neuromuscular response of the ovine lumbar spine were observed in response to changes in the force-time characteristics of the spinal manipulative thrusts and may be an underlying mechanism in related clinical outcomes.
Exploiting orbital effects for short-range extravehicular transfers
NASA Astrophysics Data System (ADS)
Williams, Trevor; Baughman, David
The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.
Exploiting orbital effects for short-range extravehicular transfers
NASA Technical Reports Server (NTRS)
Williams, Trevor; Baughman, David
1993-01-01
The problem studied in this paper is that of using Simplified Aid for Extravehicular Activity (EVA) Rescue (SAFER) to carry out efficient short-range transfers from the payload bay of the Space Shuttle Orbiter to the vicinity of the underside of the vehicle, for instance for inspection and repair of thermal tiles or umbilical doors. Trajectories are shown to exist, for the shuttle flying noise forward and belly down, that take the astronaut to the vicinity of the underside with no thrusting after the initial push-off. However, these trajectories are too slow to be of practical interest, as they take roughly an hour to execute. Additionally, they are quite sensitive to errors in the initial push-off rates. To overcome both of these difficulties, trajectories are then studied which include a single in-flight impulse of small magnitude ( in the range 0.1 - 0.4 fps). For operational simplicity, this impulse is applied towards the Orbiter at the moment when the line-of -sight of the EVA crewmember is tangential to the underside of the vehicle. These trajectories are considerably faster than the non-impulsive ones: transit times of less than 10 minutes are achievable. Furthermore, the man-in-the-loop feedback scheme used for impulse timing greatly reduces the sensitivity to initial velocity errors. Finally, similar one-impulse trajectories are also shown to exist for the Orbiter in a gravity-gradient attitiude.
NASA Astrophysics Data System (ADS)
Bering, E. A.; Olsen, C.; Longmier, B.; Ballenger, M.; Giambusso, M.; Carter, M.; Cassady, L.; Chang Diaz, F.; Glover, T.; McCaskill, G.; Squire, J.
2011-12-01
This paper will describe the laboratory application of the lessons learned from the study of wave particle interactions in the auroral upward current region to the industrial development problem of electric spacecraft propulsion. The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR°) has been developed by using the results of space plasma experiments in laboratory plasma studies that will ultimately enable further space exploration. VASIMR° is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power. The VASIMR° uses a helicon discharge to generate plasma. The plasma is leaked though a strong magnetic mirror to the second stage. In this stage, this plasma is energized by an RF booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 0.5-0.7 MHz waves with up to 170 kW of power. The single pass ion cyclotron heating (ICH) produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR°. Results from high power Helicon only and Helicon with ICH experiments are presented from the VX-200 using argon propellant. A two-axis translation stage has been used to survey the spatial structure of plasma parameters, momentum flux and magnetic perturbations in the VX-200 exhaust plume. These recent measurements were made within a new 150 cubic meter cryo-pumped vacuum chamber and are presented in the context of plasma detachment. For the first time, the thruster efficiency and thrust of a high-power VASIMR° prototype have been measured with the thruster installed inside a vacuum chamber with sufficient volume and pumping to simulate the vacuum conditions of space. Using an ion flux probe array and a plasma momentum flux sensor (PMFS), the exhaust of the VX-200 engine was characterized as a function of the coupled RF power and as a function of the radial and axial position within the exhaust plume. The ionization cost of argon propellant was determined to be 87 eV for optimized values of RF power and propellant flow rate. Recent results at 200 kW coupled RF power have shown a thruster efficiency of 72% at a specific impulse of 5000 s and a thrust of 5.7 N.
Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft
NASA Technical Reports Server (NTRS)
Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom
2012-01-01
The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for manned travel to Jupiter's moon, Callisto, and assessed that round trip journey. This engine, although unoptimized, produced 10 pounds force of thrust at a delivered specific impulse of 527,000 seconds for the entire 15-year mission while providing enormous amounts of electrical power to the spacecraft. A payload of 60 metric tons, included in the 300 metric ton vehicle, was carried to Callisto and back; the propellant tanks holding the 4 metric tons of fuel were not jettisoned in the process. The study concluded that the engine and spacecraft are within today's technology, could be built, tested, launched on several SLS (Space Launch System) (or similar) launchers, integrated, checked out, moved to an in-space base such as at a Lagrange point and operated for decades.
Advanced Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Borowski, Stanley K.
2010-01-01
Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust-to-weight ratio. This presentation will discuss potential space fission propulsion options ranging from first generation systems to highly advanced systems. Ongoing research that shows promise for enabling second generation NTP systems with Isp greater than 1000 s will be discussed, as will the potential for liquid, gas, or plasma core systems. Space fission propulsion systems could also be used in conjunction with simple (water-based) propellant depots to enable routine, affordable missions to various destinations (e.g. moon, Mars, asteroids) once in-space infrastructure is sufficiently developed. As fuel and material technologies advance, very high performance Nuclear Electric Propulsion (NEP) systems may also become viable. These systems could enable sophisticated science missions, highly efficient cargo delivery, and human missions to numerous destinations. Commonalities between NTP, fission power systems, and NEP will be discussed.
Mission Analysis for Multiple Rendezvous of Near-Earth Asteroids Using Earth Gravity Assist
2010-03-01
devices. Finding solutions with this approach leads to a quicker timeline for possible missions since one does not have to wait for the propulsion...in this research. The discussion focuses on their approach to the problem and the applicability to this research. The headings are the titles of... approach the problem utilizing conventional impulsive thrust propulsion systems and utilize data presented from the JPL website for locating the
Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu
The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhaustsmore » at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.« less
Evaluation of various thrust calculation techniques on an F404 engine
NASA Technical Reports Server (NTRS)
Ray, Ronald J.
1990-01-01
In support of performance testing of the X-29A aircraft at the NASA-Ames, various thrust calculation techniques were developed and evaluated for use on the F404-GE-400 engine. The engine was thrust calibrated at NASA-Lewis. Results from these tests were used to correct the manufacturer's in-flight thrust program to more accurately calculate thrust for the specific test engine. Data from these tests were also used to develop an independent, simplified thrust calculation technique for real-time thrust calculation. Comparisons were also made to thrust values predicted by the engine specification model. Results indicate uninstalled gross thrust accuracies on the order of 1 to 4 percent for the various in-flight thrust methods. The various thrust calculations are described and their usage, uncertainty, and measured accuracies are explained. In addition, the advantages of a real-time thrust algorithm for flight test use and the importance of an accurate thrust calculation to the aircraft performance analysis are described. Finally, actual data obtained from flight test are presented.
Human Exploration and Settlement of the Moon Using LUNOX-Augmented NTR Propulsion
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.
1995-01-01
An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOX) augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an 'afterburner' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat--'scramjet propulsion in reverse.' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by approximately 440%--from 3 to 13--while the Isp decreases by only approximately 45%--from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that 'big engine' performance can be obtained using smaller more affordable, easier to test NTR engines. 'Reoxidizing' the bipropellant LANTR system in low lunar orbit (LLO) with high density 'lunar-derived' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable 'all LH2' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid 'commuter' shuttle capable of 36 to 24 hour 'one way' trips to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Brohpy, John R.; Merrill, Raymond G.
2013-01-01
The Asteroid Retrieval Mission (ARM) is a robotic mission concept with the goal of returning a small (7 m diameter) near-Earth asteroid (NEA), or part of a large NEA, to a safe, stable orbit in cislunar space using a 50 kW-class solar electric propulsion (SEP) robotic spacecraft (40 kW available to the electric propulsion system) and currently available technologies. The mass of the asteroidal material returned from this mission is anticipated to be up to 1,000 metric tons, depending on the orbit of the target NEA and the thrust-to-weight and control authority of the SEP spacecraft. Even larger masses could be returned in the future as technological capability and operational experience improve. The use of high-power solar electric propulsion is the key enabling technology for this mission concept, and is beneficial or enabling for a variety of space missions and architectures where high-efficiency, low-thrust transfers are applicable. Many of the ARM operations and technologies could also be applicable to, or help inform, planetary defense efforts. These include the operational approaches and systems associated with the NEA approach, rendezvous, and station-keeping mission phases utilizing a low-thrust, high-power SEP spacecraft, along with interacting with, capturing, maneuvering, and processing the massive amounts of material associated with this mission. Additionally, the processed materials themselves (e.g., high-specific impulse chemical propellants) could potentially be used for planetary defense efforts. Finally, a ubiquitous asteroid retrieval and resource extraction infrastructure could provide the foundation of an on call planetary defense system, where a SEP fleet capable of propelling large masses could deliver payloads to deflect or disrupt a confirmed impactor in an efficient and timely manner.
Human exploration and settlement of the Moon using LUNOX-augmented NTR propulsion
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.
1995-10-01
An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOX) augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an 'afterburner' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat--'scramjet propulsion in reverse.' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by approximately 440%--from 3 to 13--while the Isp decreases by only approximately 45%--from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that 'big engine' performance can be obtained using smaller more affordable, easier to test NTR engines. 'Reoxidizing' the bipropellant LANTR system in low lunar orbit (LLO) with high density 'lunar-derived' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable 'all LH2' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid 'commuter' shuttle capable of 36 to 24 hour 'one way' trips to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.
Human exploration and settlement of the moon using lunox-augmented NTR propulsion
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.
1995-01-01
An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOS)-augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an ``afterburner'' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat—``scramjet propulsion in reverse.'' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by ˜440%—from 3 to 13—while the Isp decreases by only ˜45%—from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that ``big engine'' performance can be obtained using smaller, more affordable, easier to test NTR engines. ``Reoxidizing'' the bipropellant LANTR system in low lunar orbit (LLO) with high density ``lunar-derived'' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable ``all LH2'' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid ``commuter'' shuttle capable of 36 to 24 hour ``one way'' trip to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.
A Collimated Retarding Potential Analyzer for the Study of Magnetoplasma Rocket Plumes
NASA Technical Reports Server (NTRS)
Glover, T. W.; Chan, A. A.; Chang-Diaz, F. R.; Kittrell, C.
2003-01-01
A gridded retarding potential analyzer (RPA) has been developed to characterize the magnetized plasma exhaust of the 10 kW Variable Specific Impulse Magnetoplasma Rocket (VX-10) experiment at NASA's Advanced Space Propulsion Laboratory. In this system, plasma is energized through coupling of radio frequency waves at the ion cyclotron resonance (ICR). The particles are subsequently accelerated in a magnetic nozzle to provide thrust. Downstream of the nozzle, the RPA's mounting assembly enables the detector to make complete axial and radial scans of the plasma. A multichannel collimator can be inserted into the RPA to remove ions with pitch angles greater than approximately 1 deg. A calculation of the general collimator transmission as a function over velocity space is presented, which shows the instrument's sensitivity in detecting changes in both the parallel and perpendicular components of the ion energy. Data from initial VX-10 ICRH experiments show evidence of ion heating.
Preliminary Evaluation of a 10 kW Hall Thruster
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; McLean, Chris; McVey, John
1999-01-01
A 10 kW Hall thruster was characterized over a range of discharge voltages from 300-500 V and a range of discharge currents from 15-23 A. This corresponds to power levels from a low of 4.6 kW to a high of 10.7 kW. Over this range of discharge powers, thrust varied from 278 mN to 524 mN, specific impulse ranged from 1644 to 2392 seconds, and efficiency peaked at approximately 59%. A continuous 40 hour test was also undertaken in an attempt to gain insight with regard to long term operation of the engine. For this portion of the testing the thruster was operated at a discharge voltage of 500 V and a discharge current of 20 A. Steady-state temperatures were achieved after 3-5 hrs and very little variation in performance was detected.
Plasma simulation in a hybrid ion electric propulsion system
NASA Astrophysics Data System (ADS)
Jugroot, Manish; Christou, Alex
2015-04-01
An exciting possibility for the next generation of satellite technology is the microsatellite. These satellites, ranging from 10-500 kg, can offer advantages in cost, reduced risk, and increased functionality for a variety of missions. For station keeping and control of these satellites, a suitable compact and high efficiency thruster is required. Electrostatic propulsion provides a promising solution for microsatellite thrust due to their high specific impulse. The rare gas propellant is ionized into plasma and generates a beam of high speed ions by electrostatic processes. A concept explored in this work is a hybrid combination of dc ion engines and hall thrusters to overcome space-charge and lifetime limitations of current ion thruster technologies. A multiphysics space and time-dependent formulation was used to investigate and understand the underlying physical phenomena. Several regions and time scales of the plasma have been observed and will be discussed.
Megawatt level electric propulsion perspectives
NASA Technical Reports Server (NTRS)
Jahn, Robert G.; Kelly, Arnold J.
1987-01-01
For long range space missions, deliverable payload fraction is an inverse exponential function of the propellant exhaust velocity or specific impulse of the propulsion system. The exhaust velocity of chemical systems are limited by their combustion chemistry and heat transfer to a few km/s. Nuclear rockets may achieve double this range, but are still heat transfer limited and ponderous to develop. Various electric propulsion systems can achieve exhaust velocities in the 10 km/s range, at considerably lower thrust densities, but require an external electrical power source. A general overview is provided of the currently available electric propulsion systems from the perspective of their characteristics as a terminal load for space nuclear systems. A summary of the available electric propulsion options is shown and generally characterized in the power vs. exhaust velocity plot. There are 3 general classes of electric thruster devices: neutral gas heaters, plasma devices, and space charge limited electrostatic or ion thrusters.
Development of a Miniature Low Power Cylindrical Hall Thruster for Microsatellites
NASA Astrophysics Data System (ADS)
Pigeon, Carl
To enable more advanced commercial microsatellite missions, a low power electric propulsion system was designed by the University of Toronto Space Flight Laboratory. A prototype cylindrical Hall thruster was first developed using electromagnets. The thruster's performance was evaluated over a range of 20-300 W. At the nominal 200 W operation, 6.2 mN of thrust with a specific impulse of 1139 s was measured with xenon propellant. Significant erosion of the thruster's discharge chamber wall was observed which limited its lifetime to 100 hours. Subsequently, a flight representative version of the thruster was developed. Permanent magnets were used to reduce the size, mass, and power consumption. Changes to the design were implemented to improve lifetime. Performance characterization and literature suggest that a reduction in performance is expected with the use of permanent magnets. Lastly, thermal vacuum and vibration tests were performed to bring the thruster to Technology Readiness Level 6.
Constrained sheath optics for high thrust density, low specific impulse ion thrusters
NASA Technical Reports Server (NTRS)
Wilbur, Paul J.; Han, Jian-Zhang
1987-01-01
The results of an experimental study showing that a contoured, fine wire mesh attached to the screen grid can be used to control the divergence characteristics of ion beamlets produced at low net-to-total accelerating voltage ratios are presented. The influence of free and constrained-sheath optics systems on beamlet divergence characteristics are found to be similar in the operating regime investigated, but it was found that constrained-sheath optics systems can be operated at higher perveance levels than free-sheath ones. The concept of a fine wire interference probe that can be used to study ion beamlet focusing behavior is introduced. This probe is used to demonstrate beamlet focusing to a diameter about one hundreth of the screen grid extraction aperture diameter. Additional testing is suggested to define an optimally contoured mesh that could yield well focused beamlets at net-to-total accelerating voltage ratios below about 0.1.
Performance trade studies of a solar electric orbit transfer mission
NASA Astrophysics Data System (ADS)
Sutton, D. M.; McLain, M. G.; Kechichian, J. A.
An analysis of several electric orbit transfer trade studies investigating the performance of a solar-powered electric orbit transfer vehicle (EOTV) is presented. One trade illustrates how the greatest payload capability for time-of-flight constrained transfers can be obtained by optimizing specific impulse. Various methods of reducing the accumulated fluence of charged particles during transit are evaluated in a second trade study. The reduction in fluence obtained by shaping the trajectory to avoid high radiation flux density regions is compared with reductions obtained by using a hybrid chemical/electric vehicle, by additional radiation-protective coverslide material added to the solar array, and by increasing the power of the vehicle. It is shown that a trajectory shaped to minimize fluence may be an advantage to the complete EOTV design. A final trade study shows how park orbit altitude influences the initial thrust-to-drag ratio of an EOTV.
Investigation of applications for high-power, self-critical fissioning uranium plasma reactors
NASA Technical Reports Server (NTRS)
Rodgers, R. J.; Latham, T. S.; Krascella, N. L.
1976-01-01
Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.
NASA electrothermal auxiliary propulsion technology
NASA Technical Reports Server (NTRS)
Stone, J. R.
1986-01-01
Electrothermal auxiliary propulsion systems provide high performance options which can have major mission benefits. There are several electrothermal concepts which offer a range of characteristics and benefits. Resistojets are the highest thrust to power option and are currently operational at mission average values of specific impulse, I sub sp approximately 295 sec. Long life, multipropellant resistojets are being developed for the space station, and resistojet technology advancements are being pursued to improve the I sub sp by more than 20 percent for resistojets used in satellite applications. Direct current arcjets have the potential of I sub sp over 400 sec with storable propellants and should provide over 1000 sec with hydrogen. Advanced concepts are being investigated to provide high power density options and possible growth to primary propulsion applications. Broad based experimental and analytical research and technology programs of NASA are summarized and recent significant advances are reviewed.
Acoustic characteristics of 1/20-scale model helicopter rotors
NASA Technical Reports Server (NTRS)
Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.
1986-01-01
A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.
Space shuttle rendezous, radiation and reentry analysis code
NASA Technical Reports Server (NTRS)
Mcglathery, D. M.
1973-01-01
A preliminary space shuttle mission design and analysis tool is reported emphasizing versatility, flexibility, and user interaction through the use of a relatively small computer (IBM-7044). The Space Shuttle Rendezvous, Radiation and Reentry Analysis Code is used to perform mission and space radiation environmental analyses for four typical space shuttle missions. Included also is a version of the proposed Apollo/Soyuz rendezvous and docking test mission. Tangential steering circle to circle low-thrust tug orbit raising and the effects of the trapped radiation environment on trajectory shaping due to solar electric power losses are also features of this mission analysis code. The computational results include a parametric study on single impulse versus double impulse deorbiting for relatively low space shuttle orbits as well as some definitive data on the magnetically trapped protons and electrons encountered on a particular mission.
Performance Evaluation of the Prototype Model NEXT Ion Thruster
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.
2008-01-01
The performance testing results of the first prototype model NEXT ion engine, PM1, are presented. The NEXT program has developed the next generation ion propulsion system to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. The PM1 thruster exhibits operational behavior consistent with its predecessors, the engineering model thrusters, with substantial mass savings, enhanced thermal margins, and design improvements for environmental testing compliance. The dry mass of PM1 is 12.7 kg. Modifications made in the thruster design have resulted in improved performance and operating margins, as anticipated. PM1 beginning-of-life performance satisfies all of the electric propulsion thruster mission-derived technical requirements. It demonstrates a wide range of throttleability by processing input power levels from 0.5 to 6.9 kW. At 6.9 kW, the PM1 thruster demonstrates specific impulse of 4190 s, 237 mN of thrust, and a thrust efficiency of 0.71. The flat beam profile, flatness parameters vary from 0.66 at low-power to 0.88 at full-power, and advanced ion optics reduce localized accelerator grid erosion and increases margins for electron backstreaming, impingement-limited voltage, and screen grid ion transparency. The thruster throughput capability is predicted to exceed 750 kg of xenon, an equivalent of 36,500 hr of continuous operation at the full-power operating condition.
Magnetic Nozzle Simulation Studies for Electric Propulsion
NASA Astrophysics Data System (ADS)
Tarditi, Alfonso
2010-11-01
Electric Propulsion has recently re-gained interest as one of the key technologies to enable NASA's long-range space missions. Options are being considered also in the field of aneutronic fusion propulsion for high-power electric thrusters. To support these goals the study of the exhaust jet in a plasma thruster acquires a critical importance because the need of high-efficiency generation of thrust. A model of the plasma exhaust has been developed with the 3D magneto-fluid NIMROD code [1] to study the physics of the plasma detachment in correlation with experimentally relevant configurations. The simulations show the role of the plasma diamagnetism and of the magnetic reconnection process in the formation of a detached plasma. Furthermore, in direct fusion-propulsion concepts high-energy (MeV range) fusion products have to be efficiently converted into a slower and denser plasma jet (with specific impulse down to few 1000's seconds, for realistic missions in the Solar System). For this purpose, a two-stage conversion process is being modeled where high-energy ions are non-adiabatically injected and confined into a magnetic duct leading to the magnetic nozzle, transferring most of their energy into their gyro-motion and drifting at slower speed along with the plasma propellant. The propellant acquires then thermal energy that gets converted into the direction of thrust by the magnetic nozzle. [1] C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004).
Design, fabrication and test of the RL10 derivative II chamber/primary nozzle
NASA Technical Reports Server (NTRS)
Marable, R. W.
1989-01-01
The design, fabrication and test of the RL10-II chamber/primary nozzle was accomplished as part of the RL10 Product Improvement Program (PIP). The overall goal of the RL10 PIP was to gain the knowledge and experience necessary to develop new cryogenic upper stage engines to fulfill future NASA requirements. The goal would be reached by producing an RL10 engine designed to be reusable, operate at several thrust levels, and have increased performance. The goals for the chamber/primary nozzle task were: (1) to design a reusable assembly capable of operation at increased mixture ratio and low thrust; (2) to fabricate three assemblies using new or updated techniques where possible; and (3) to test one assembly to verify the design and construction. The design and fabrication phases produced an assembly having improved features such as single piece reinforcing band segments (i.e., Mae West segments) and relocated tube exit braze joints (i.e., hooked tube exit). In addition, a computer program was developed to design the chamber tubes to meet both performance and heat transfer requirements. The test phase showed the specific impulse of the test bed engine system to be as predicted. These results, along with the heat transfer data obtained, sufficiently proved the overall design of the RL10-II recontoured and shortened chamber/primary nozzle assembly.
Laboratory simulation of the rocket motor thrust as a follower force
NASA Technical Reports Server (NTRS)
1990-01-01
Ground tests of solid propellant rocket motors have shown that metal-containing propellants produce various amounts of slag (primarily aluminum oxide), which is trapped in the motor case causing a loss of specific impulse. Although not yet definitely established, the presence of a liquid pool of slag also may contribute to nutational instabilities that have been observed with certain spin-stabilized, upper-stage vehicles. Because of the rocket's axial acceleration - absent in the ground tests - estimates of in-flight slag mass have been very uncertain. Yet such estimates are needed to determine the magnitude of the control authority of the systems required for eliminating the instability. A test rig with an eccentrically mounted hemispherical bowl was designed and built that incorporates a follower force that properly aligns the thrust vector along the axis of spin. A program that computes the motion of a point mass in the spinning and precessing bowl was written. Using various rpm, friction factors, and initial starting conditions, plots were generated showing the trace of the point mass around the inside of the fuel tank. The apparatus will be used extensively during the 1990 to 1991 academic year and incorporate future design features such as a variable nutation angle and a film height measuring instrument. Data obtained on the nutational instability characteristics will be used to determine order-of-magnitude estimates of control authority needed to minimize the sloshing effect.
Laboratory Simulation of the Effect of Rocket Thrust on a Precessing Space Vehicle
NASA Technical Reports Server (NTRS)
Alvarez, Oscar; Bausley, Henry; Cohen, Sam; Falcon-Martin, Miguel; Furumoto, Gary (Editor); Horio, Asikin; Levitt, David; Walsh, Amy
1990-01-01
Ground tests of solid propellant rocket motors have shown that metal-containing propellants produce various amounts of slag (primarily aluminum oxide) which is trapped in the motor case, causing a loss of specific impulse. Although not yet definitely established, the presence of a liquid pool of slag also may contribute to nutational instabilities that have been observed with certain spin-stabilized, upper-stage vehicles. Because of the rocket's axial acceleration, absent in the ground tests, estimates of in-flight slag mass have been very uncertain. Yet such estimates are needed to determine the magnitude of the control authority of the systems required for eliminating the instability. A test rig with an eccentrically mounted hemispherical bowl was designed and built which incorporates a follower force that properly aligns the thrust vector along the axis of spin. A program that computes the motion of a point mass in the spinning and precessing bowl was written. Using various RPMs, friction factors, and initial starting conditions, plots were generated showing the trace of the point mass around the inside of the fuel tank. The apparatus will incorporate future design features such as a variable nutation angle and a film height measuring instrument. Data obtained on the nutational instability characteristics will be used to determine order of magnitude estimates of control authority needed to minimize the sloshing effect.
NASA Astrophysics Data System (ADS)
Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo
2016-07-01
The Plasma Physics Laboratory of UnB has been developing a Permanent Magnet Hall Thruster (PHALL) for the UNIESPAÇO program, part of the Space Activities Program conducted by AEB- The Brazillian Space Agency since 2004. Electric propulsion is now a very successful method for primary and secondary propulsion systems. It is essential for several existing geostationary satellite station keeping systems and for deep space long duration solar system missions, where the thrusting system can be designed to be used on orbit transfer maneuvering and/or for satellite attitude control in long term space missions. Applications of compact versions of Permanent Magnet Hall Thrusters on future brazillian space missions are needed and foreseen for the coming years beginning with the use of small divergent cusp field (DCFH) Hall Thrusters type on CUBESATS ( 5-10 kg , 1W-5 W power consumption) and on Micro satellites ( 50- 100 kg, 10W-100W). Brazillian (AEB) and German (DLR) space agencies and research institutions are developing a new rocket dedicated to small satellite launching. The VLM- Microsatellite Launch Vehicle. The development of PHALL compact versions can also be important for the recently proposed SBG system, a future brazillian geostationary satellite system that is already been developed by an international consortium of brazillian and foreign space industries. The exploration of small bodies in the Solar System with spacecraft has been done by several countries with increasing frequency in these past twenty five years. Since their historical beginning on the sixties, most of the Solar System missions were based on gravity assisted trajectories very much depended on planet orbit positioning relative to the Sun and the Earth. The consequence was always the narrowing of the mission launch window. Today, the need for Solar System icy bodies in situ exploration requires less dependence on gravity assisted maneuvering and new high precision low thrust navigation methods. The main difficulty to reach these minor bodies is related to their specific orbits with high eccentricity and inclination. A good example is the case for sample return missions to NEOs-Near Earth Objects. They are small bodies consisting of primitive left over building blocks of the Solar System formation processes. These missions can be accomplished by using low thrust trajectories with spacecrafts propelled by plasma thrusters with total thrust below 0.5 N, and a specific impulse around2500 s. In this work, we will show the brazilian contribution to the development of a compact electrical propulsion engine named PHALL III, designed with DCFH and foreseen to be used in future cubesats microsatellites but with possible applications in geostationary attitude control systems and on low thrust trajectory missions to the Near Earth Asteroids region. We will show a particular new permanent magnet field designed for PHALL III . Computer based simulation codes such as VSIM are also used on the design of this new proposed cuped magnet field Hall Thruster. Based on the first results wee believed PHALL III will also allow a good spacecraft performance of long duration space missions for small size spacecrafts with limited low electric source power consumption. The PHALL III plasma source characterization is presented together with the ejected plasma plume ion current intensity, ion energy and plasma flow velocity parameters measured by an integrated Plasma Diagnostic Bench (BID). Based on plasma source and plume ejected parameters a merit figure of PHALL III is constructed and compared to computer calculated low thrust transfer requirements. From these results it is goig to be possible to analyse the potential use of PHALL III on future brazillian space missions , its working parameters are compared with parameters of existing space tested plasma thrusters already used on moon , deep space missions and also on satellite geostationary positioning using low thrust orbit maneuvering. A joint brazillian space mission on the solar system has also been consider for the coming years. ASTER project is a mission to a near earth asteroid that is planned to be carried on using Hall thrusters. The PHALL project consists on plasma source design, construction and characterization of plasma propulsion engines based on Hall current generated inside a cylindrical channel with an axial electric field produced by a ring anode and a radial magnetic field produced by permanent magnets. One of the main advantage of PHALL thruster is the production of a steady state magnetic field by permanent magnets providing electron trapping and Hall current generation within a significant decrease on the electric energy supply. This advantage turns PHALL thruster into a specially good option when it comes to space usage for longer and deep space missions, where solar panels and electric energy storage on batteries is a limiting factor. This work also describes the Hall Plasma Source construction and characteristics and the plasma diagnostics system used on BID, an Integrated Plasma Diagnostic System. This system contains Langmuir probes that are used for plasma density and temperature measurements. Faraday Cup, Ion probes and Spectrograph (Andor SR-750-B2, within 435nm to 700nm) line broadening measurements are used to measure ion temperature and transport from Hall current channel to the ejected plasma plume. In order to control argon fuel purity a mass spectrometer is also planned to be used. Thrust and Specific Impulse measurements will also be shown. Important to notice relevant plasma physics phenomena investigation that may significantly interfere on PHALL performance. It is the occurrence of instabilities that can happen inside and outside of the Hall current channel. In order to better understand the turbulence and plasma oscillations that occur during the thruster operation, we propose and test a wide frequency range instability detection system based on a RF detection probe connected to a Spectrum Analyzer (Agilent CSA 100 khz-6 Ghz). Instabilities on PHALL discharge current is monitoring using a real time data acquisition system, based on a PCI-DAS 1602/12 board containing 16 analogic inputs, 24 digital channels operating within a 330 khz sampling rate. Near future developments will include PHALL lifetime test system assembly in a vacuum system with bigger volume and pumping speed capability. A direct thrust and specific impulse measurement instrumentation it has also been considered. Ferreira J. L.; Martins A. A.; Cerda R. M. ; Schellin A. B.; Alves L.S.; Costa E.G.; Coelho H.O.; Serra A.C.B.and Nathan F. in Permanent magnet Hall thruster development for future Brazillian space missions . Computer Apllied Math. Springer SBMAC ,December 2015.
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)
2001-01-01
A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.
Beaton, Derek; Abdi, Hervé; Filbey, Francesca M
2014-11-01
Abstract Background: Impulsivity is a complex trait often studied in substance abuse and overeating disorders, but the exact nature of impulsivity traits and their contribution to these disorders are still debated. Thus, understanding how to measure impulsivity is essential for comprehending addictive behaviors. Identify unique impulsivity traits specific to substance use and overeating. Impulsive Sensation Seeking (ImpSS) and Barratt's Impulsivity scales (BIS) Scales were analyzed with a non-parametric factor analytic technique (discriminant correspondence analysis) to identify group-specific traits on 297 individuals from five groups: Marijuana (n = 88), Nicotine (n = 82), Overeaters (n = 27), Marijuauna + Nicotine (n = 63), and CONTROLs (n = 37). A significant overall factor structure revealed three components of impulsivity that explained respectively 50.19% (pperm < 0.0005), 24.18% (pperm < 0.0005), and 15.98% (pperm < 0.0005) of the variance. All groups were significantly different from one another. When analyzed together, the BIS and ImpSS produce a multi-factorial structure that identified the impulsivity traits specific to these groups. The group specific traits are (1) CONTROL: low impulse, avoids thrill-seeking behaviors; (2) Marijuana: seeks mild sensation, is focused and attentive; (3) Marijuana + Nicotine: pursues thrill-seeking, lacks focus and attention; (4) Nicotine: lacks focus and planning; (5) Overeating: lacks focus, but plans (short and long term). Our results reveal impulsivity traits specific to each group. This may provide better criteria to define spectrums and trajectories - instead of categories - of symptoms for substance use and eating disorders. Defining symptomatic spectrums could be an important step forward in diagnostic strategies.
Beaton, Derek; Abdi, Hervé; Filbey, Francesca M.
2015-01-01
Background Impulsivity is a complex trait often studied in substance abuse and overeating disorders, but the exact nature of impulsivity traits and their contribution to these disorders are still debated. Thus, understanding how to measure impulsivity is essential for comprehending addictive behaviors. Objectives Identify unique impulsivity traits specific to substance use and overeating. Methods Impulsive Sensation Seeking (ImpSS) and Barratt’s Impulsivity scales (BIS) Scales were analyzed with a non-parametric factor analytic technique (discriminant correspondence analysis) to identify group-specific traits on 297 individuals from five groups: Marijuana (n = 88), Nicotine (n = 82), Overeaters (n = 27), Marijuauna + Nicotine (n = 63), and Controls (n = 37). Results A significant overall factor structure revealed three components of impulsivity that explained respectively 50.19% (pperm<0.0005), 24.18% (pperm<0.0005), and 15.98% (pperm<0.0005) of the variance. All groups were significantly different from one another. When analyzed together, the BIS and ImpSS produce a multi-factorial structure that identified the impulsivity traits specific to these groups. The group specific traits are (1) Control: low impulse, avoids thrill-seeking behaviors; (2) Marijuana: seeks mild sensation, is focused and attentive; (3) Marijuana + Nicotine: pursues thrill-seeking, lacks focus and attention; (4) Nicotine: lacks focus and planning; (5) Overeating: lacks focus, but plans (short and long term). Conclusions Our results reveal impulsivity traits specific to each group. This may provide better criteria to define spectrums and trajectories – instead of categories – of symptoms for substance use and eating disorders. Defining symptomatic spectrums could be an important step forward in diagnostic strategies. PMID:25115831
Planetary mission applications for space storable propulsion
NASA Technical Reports Server (NTRS)
Chase, R. L.; Cork, M. J.; Young, D. L.
1974-01-01
This paper presents the results of a study to compare space-storable with earth-storable spacecraft propulsion systems, space-storable with solid kick stages, and several space-storable development options on the basis of benefits received for cost expenditures required. The results show that, for a launch vehicle with performance less than that of Shuttle/Centaur, space-storable spacecraft propulsion offers an incremental benefit/cost ratio between 1.0 and 5.5 when compared to earth-storable systems for three of the four missions considered. In the case of VOIR 83, positive benefits were apparent only for a specific launch vehicle-spacecraft propulsion combination. A space-storable propulsion system operating at thrust of 600 lbf, 355 units of specific impulse, and with blowdown pressurization, represents the best choice for the JO 81 mission on a Titan/Centaur if only spacecraft propulsion modifications are considered. For still higher performance, a new solid-propellant kick stage with space-storable spacecraft propulsion is preferred over a system which uses space-storable propellants for both the kick stage and the spacecraft system.
Technology development and demonstration of a low thrust resistojet thruster
NASA Technical Reports Server (NTRS)
Pfeifer, G. R.
1972-01-01
Three thrusters were fabricated to definitized thruster drawings using new rhenium vapor deposition technology. Two of the thrusters were operated using ammonia as propellant and one was operated using hydrogen propellant for performance determination. All demonstrated consistent operational specific impulse performance while demonstrating thermal performance better than the development units from which they evolved. Two of the thrusters were subjected to environmental structural testing including vibration, acceleration and shock loading to specifications. Both of the thrusters subjected to the environmental tests passed all required tests. The third, spare, thruster was introduced into the life test portion of the program. Two thrusters were then subjected to a life cycling test program under typical spacecraft operating power levels. During the life test sequence, the hydrogen thruster accrued 720 operating life test cycles, more than 370 on-off cycles and 365 hours of powered up time. The ammonia accrued approximately 380 on-off cycles and 392.2 on time hours of operation during the 720 cycling hour test. Both thrusters completed the scheduled operational life test in reasonably good condition, structurally integral and capable of indefinite further operation.
Fusion-Enabled Pluto Orbiter and Lander
NASA Technical Reports Server (NTRS)
Thomas, Stephanie
2017-01-01
The Pluto orbiter mission proposed here is credible and exciting. The benefits to this and all outer-planet and interstellar-probe missions are difficult to overstate. The enabling technology, Direct Fusion Drive, is a unique fusion engine concept based on the Princeton Field-Reversed Configuration (PFRC) fusion reactor under development at the Princeton Plasma Physics Laboratory. The truly game-changing levels of thrust and power in a modestly sized package could integrate with our current launch infrastructure while radically expanding the science capability of these missions. During this Phase I effort, we made great strides in modeling the engine efficiency, thrust, and specific impulse and analyzing feasible trajectories. Based on 2D fluid modeling of the fusion reactors outer stratum, its scrape-off-layer (SOL), we estimate achieving 2.5 to 5 N of thrust for each megawatt of fusion power, reaching a specific impulse, Isp, of about 10,000 s. Supporting this model are particle-in-cell calculations of energy transfer from the fusion products to the SOL electrons. Subsequently, this energy is transferred to the ions as they expand through the magnetic nozzle and beyond. Our point solution for the Pluto mission now delivers 1000 kg of payload to Pluto orbit in 3.75 years using 7.5 N constant thrust. This could potentially be achieved with a single 1 MW engine. The departure spiral from Earth orbit and insertion spiral to Pluto orbit require only a small portion of the total delta-V. Departing from low Earth orbit reduces mission cost while increasing available mission mass. The payload includes a lander, which utilizes a standard green propellant engine for the landing sequence. The lander has about 4 square meters of solar panels mounted on a gimbal that allows it to track the orbiter, which beams 30 to 50 kW of power using a 1080 nm laser. Optical communication provides dramatically high data rates back to Earth. Our mass modeling investigations revealed that if current high-temperature superconductors are utilized at liquid nitrogen temperatures, they drive the mass of the engine, partly because of the shielding required to maintain their critical temperature. Second generation materials are thinner but the superconductor is a very thin layer deposited on a substrate with additional layers of metallic classing. Tremendous research is being performed on a variety of these superconducting materials, and new irradiation data is now available. This raises the possibility of operating nearfuture high-temperature superconductors at a moderately low temperature to dramatically reduce the amount of shielding required. At the same time, a first generation space engine may require low-temperature superconductors, which are higher TRL and have been designed for space coils before (AMS-02 experiment for the ISS). We performed detailed analysis of the startup system and thermal conversion system components. The ideal working fluid was determined to be a blend of Helium and Xenon. No significant problems were identified with these subsystems. For the RF system, we conceived of a new, more efficient design using state-of-the-art switch amplifiers, which have the potential for 100% efficiency. This report presents details of our engine and trajectory analyses, mass modeling efforts, and updated vehicle designs.
Flight motor set 360L001 (STS-26R). Volume 1: System overview, revision A
NASA Technical Reports Server (NTRS)
Garecht, Diane M.
1990-01-01
The NASA space shuttle flight STS-26R, launched at 11:37.00.009 am, EDT on 29 Sep. 1988, used the redesigned solid rocket motors (RSRM) 360L001A and 360L001B. Evaluation of the ground environment instrumentation (GEI) data recorded prior to flight showed no launch commit criteria violations; that the field joint heater and aft skirt thermal conditioning systems performed adequately; and that the GEI data showed good agreement with thermal model predictions. Evaluation of the developmental flight instrumentation (DFI) revealed excellent agreement with both the predicted and required ballistic specifications. All parameters were well within the GEI specification requirements including propellant burn rates, specific impulse values, and thrust imbalance. Recorded strain values also indicated satisfactory radial growth and stress levels, as well as verification of adequate safety factors. Postflight inspection of the insulation, seals, case, and nozzles showed overall excellent performance. Some thermal DFI protective cork was missing, and inoperative field joint vent valves on the thermal protection cork allowed water entry into the field joints upon splashdown. Evaluation of these anomalies, as well as complete evaluation of all Redesigned Solid Rocket Motor components, is contained.
Flight motor set 360L001 (STS-26R), volume 1
NASA Technical Reports Server (NTRS)
Ricks, Glen A.
1988-01-01
The NASA space shuttle flight STS-26R, launched at 11:37.00.009 a.m. EDT on 29 Sep. 1988, used the redesigned solid rocket motors (RSRM) 360LOO1A and 360LOO1B. Evaluation of the ground environment instrumentation (GEI) data recorded prior to flight showed: (1) no launch commit criteria violations, (2) that the field joint heater and aft skirt thermal conditioning systems performed adequately, and (3) that the GEI data showed good agreement with thermal model predictions. Evaluation of the developmental flight instrumentation (DFI) revealed excellent agreement with both the predicted and required ballistic specifications. All parameters were well within the CEI specification requirements including propellant burn rates, specific impulse values, and thrust imbalance. Recorded strain values also indicated satisfactory radial growth and stress levels, as well as verification of adequate safety factors. Postflight inspection of the insulation, seals, case, and nozzles showed overall excellent performance. Some thermal DFI protective cork was missing, and inoperative field joint vent valves on the thermal protection cork allowed water entry into the field joints upon splashdown. Evaluation of these anomalies, as well as complete evaluation of all RSRM components, is presented.
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Jacobson, David T.; Rawlin, Vincent K.; Mason, Lee S.; Mantenieks, Maris A.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.
2001-01-01
NASA's Hall thruster program has base research and focused development efforts in support of the Advanced Space Transportation Program, Space-Based Program, and various other programs. The objective of the base research is to gain an improved understanding of the physical processes and engineering constraints of Hall thrusters to enable development of advanced Hall thruster designs. Specific technical questions that are current priorities of the base effort are: (1) How does thruster life vary with operating point? (2) How can thruster lifetime and wear rate be most efficiently evaluated? (3) What are the practical limitations for discharge voltage as it pertains to high specific impulse operation (high discharge voltage) and high thrust operation (low discharge voltage)? (4) What are the practical limits for extending Hall thrusters to very high input powers? and (5) What can be done during thruster design to reduce cost and integration concerns? The objective of the focused development effort is to develop a 50 kW-class Hall propulsion system, with a milestone of a 50 kW engineering model thruster/system by the end of program year 2006. Specific program wear 2001 efforts, along with the corporate and academic participation, are described.
The 260: The Largest Solid Rocket Motor Ever Tested
NASA Technical Reports Server (NTRS)
Crimmins, P.; Cousineau, M.; Rogers, C.; Shell, V.
1999-01-01
Aerojet in the mid 1960s, under contract to NASA, built and static hot fire tested the largest solid rocket motor (SRM) in history for the purpose of demonstrating the feasibility of utilizing large SRMs for space exploration. This program successfully fabricated two high strength steel chambers, loaded each with approximately 1,68 million pounds of propellant, and static test fired these giants with their nozzles up from an underground silo located adjacent to the Florida everglades. Maximum thrust and total impulse in excess of 5,000,000 lbf and 3,470,000,000 lbf-sec were achieved. Flames from the second firing, conducted at night, were seen over eighty miles away. For comparative purposes: the thrust developed was nearly 100 times that of a Minuteman III second stage and the 260 in.-dia cross-section was over 3 times that of the Space Shuttle SRM.
Experimental investigation of solid rocket motors for small sounding rockets
NASA Astrophysics Data System (ADS)
Suksila, Thada
2018-01-01
Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.
An Overview of the CNES Propulsion Program for Spacecraft
NASA Astrophysics Data System (ADS)
Cadiou, A.; Darnon, F.; Gibek, I.; Jolivet, L.; Pillet, N.
2004-10-01
This paper presents an overview of the CNES spacecraft propulsion activities. The main existing and future projects corresponding to low earth orbit and geostationary platforms are described. These projects cover various types of propulsion subsystems: monopropellant, bipropellant and electric. Monopropellant is mainly used for low earth orbit applications such as earth observation (SPOT/Helios, PLEIADES) or scientific applications (minisatellite PROTEUS line and micro satellites MYRIADE line). Bipropellant is used for geostationary telecommunications satellites (@BUS). The field of application of electric propulsion is the station keeping of geostationary telecommunication satellites (@BUS), main propulsion for specific probes (SMART 1) and fine attitude control for dedicated micro satellites (MICROSCOPE). The preparation of the future and the associated Research and Technology program are also described in the paper. The future developments are mainly dedicated to the performance improvements of electric propulsion which leads to the development of thrusters with higher thrust and higher specific impulse than those existing today, the evaluation of the different low thrust technologies for formation flying applications, the development of new systems to pressurize the propellants (volatile liquid, micro pump), the research on green propellants and different actions concerning components such as over wrapped pressure vessels, valves, micro propulsion. A constant effort is also put on plume effect in chemical and electrical propulsion area (improvement of tools and test activities) in the continuity of the previous work. These different R &T activities are described in detail after a presentation of the different projects and of their propulsion subsystems. The scientific activity supporting the development of Hall thrusters is going on in the frame of the GDR (Groupement de Recherche) CNRS / Universities / CNES / SNECMA on Plasma Propulsion.
NASA Technical Reports Server (NTRS)
Castro, J. H.
1989-01-01
Pratt & Whitney (P and W) is currently under contract to NASA-LeRC for a multi-year program to evaluate the feasibility of the RL10-IIB/IIC engine models and the various improvements which broaden the engine capabilities and range of applications. The features being evaluated include the operation of the RL10 engine at low thrust levels and/or high mixture ratio levels and the addition of a high area ratio (250:1) translating nozzle to the engine to increase its specific impulse while shortening the installed engine length. The translating nozzle for the RL10-IIB/IIC engine is approximately 55 inches long with an exit plane diameter of 71 inches and an inlet plane diameter of 40 inches. This report documents the design and analysis work done investigating a small subscale Columbium nozzle which could be built and tested to provide findings which then could be incorporated into the high area ratio nozzle final design for the RL10-IIB/IIC engine. This report documents the design and analysis work done investigating a small subscale Columbium nozzle which could be built and tested to provide findings which then could be incorporated into the high area ratio nozzle final design for the RL10-IIB/IIC engine. The length of the subscale nozzle is 20 in.; its exit diameter is 46 in. With the nozzle in the stowed position, an RL10A-3-3A engine system is 70 inches long (Area Ratio = 61:1); with the nozzle deployed the engine length and area ratio are increased to 90 inches and 83:1 respectively. The increase in area ratio provides a calculated increase of 7 + or - 1 second of specific impulse.
Computing Satellite Maneuvers For A Repeating Ground Track
NASA Technical Reports Server (NTRS)
Shapiro, Bruce
1994-01-01
TOPEX/POSEIDON Ground Track Maintenance Maneuver Targeting Program (GTARG) assists in designing maneuvers to maintain orbit of TOPEX/POSEIDON satellite. Targeting strategies used either maximize time between maneuvers or force control band exit to occur at specified intervals. Runout mode allows for ground-track propagation without targeting. GTARG incorporates analytic mean-element propagation algorithm accounting for all perturbations known to cause significant variations in ground track. Perturbations include oblateness of Earth, luni-solar gravitation, drag, thrusts associated with impulsive maneuvers, and unspecified fixed forces acting on satellite in direction along trajectory. Written in VAX-FORTRAN.
Jet-Like Flow and Thrust From a Flexible Flapping Foil in Stationary Fluid
2009-12-29
considered as a movable hinge point which travels over the flap region resulting in differential flap portions, pulling and pushing the fluid about this 15...Fliegenflugel und Hypothesen uber zugeordnete instationare Stromungseffekte,” J. Comp. Physiol., vol. 133, pp. 351–355, 1979. [24] Rayner, J. M. V., “A vortex...ring by giving an impulse to a circular disk and then dissolving it away,” J. App. Phys., vol. 24, no. 1, pp. 104, 1953. 17 [28] Wagner H., “ Uber die
Study on electromagnetic plasma propulsion using rotating magnetic field acceleration scheme
NASA Astrophysics Data System (ADS)
Furukawa, T.; Takizawa, K.; Kuwahara, D.; Shinohara, S.
2017-04-01
As one of the electromagnetic plasma acceleration systems, we have proposed a rotating magnetic field (RMF) acceleration scheme to overcome the present problem of direct plasma-electrode interactions, leading to a short lifetime with a poor plasma performance due to contamination. In this scheme, we generate a plasma by a helicon wave excited by a radio frequency (rf) antenna which has no direct-contact with a plasma. Then, the produced plasma is accelerated by the axial Lorentz force fz = jθ × Br (jθ is an azimuthal current induced by RMF, and Br is an external radial magnetic field). Erosion of electrodes and contamination are not expected in this total system since RMF coils and an rf antenna do not have contact with the plasma directly. Here, we have measured the plasma parameters (electron density ne and axial ion velocity vi) to demonstrate this RMF acceleration scheme by the use of AC currents in two sets of opposing coils to generate a RMF. The maximum increasing rate Δvi /vi was ˜28% (maximum vi of ˜3 km/s), while the density increasing rate of Δne/ne is ˜ 70% in the case of a RMF current frequency fRMF of 3 MHz, which showed a better plasma performance than that with fRMF = 5 MHz. Moreover, thrust characteristics such as a specific impulse and a thrust efficiency were discussed, although a target plasma was not optimized.
NASA Technical Reports Server (NTRS)
Szabo, James
2015-01-01
Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).
Design Considerations for Space Transfer Vehicles Using Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Emrich, William J.
1995-01-01
The economical deployment of satellites to high energy earth orbits is crucial to the ultimate success of this nations commerical space ventures and is highly desirable for deep space planetary missions requiring earth escape trajectories. Upper stage space transfer vehicles needed to accomplish this task should ideally be simple, robust, and highly efficient. In this regard, solar thermal propulsion is particularly well suited to those missions where high thrust is not a requirement. The Marshall Space Flight Center is , therefore, currently engaged in defining a transfer vehicle employing solar thermal propulsion capable of transferring a 1000 lb. payload from low Earth orbit (LEO) to a geostationary Earth orbit (GEO) using a Lockheed launch vehicle (LLV3) with three Castors and a large shroud. The current design uses liquid hydrogen as the propellant and employs two inflatable 16 x 24 feet eliptical off-axis parabolic solar collectors to focus sunlight onto a tungsten/rhenium windowless black body type absorber. The concentration factor on this design is projected to be approximately 1800:1 for the primary collector and 2.42:1 for the secondary collector for an overall concentration factor of nearly 4400:1. The engine, which is about twice as efficient as the best currently available chemical engines, produces two pounds of thrust with a specific impulse (Isp) of 860 sec. Transfer times to GEO are projected to be on the order of one month. The launch and deployed configurations of the solar thermal upper stage (STUS) are depicted.
An extended life and performance test of a low-power arcjet
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Haag, Thomas W.
1988-01-01
An automated, cyclic life test was performed to demonstrate the reliability and endurance of a low power dc cycle arcjet thruster. Over 1000 hr and 500 on-off cycles were accumulated which would represent the requirements for about 15 years of on-orbit lifetime. A hydrogen/nitrogen propellant mixture was used to simulate decomposed hydrazine propellant and the power level was nominally 1.2 kW after the burn-in period. The arcjet operated in a very repeatable fashion from cycle to cycle. The steady state voltage increased by approximately 6 V over the first 300 hr, and then by only 3 V through the remainder of the test. Thrust measurements taken before, during, and after the test verified that the thruster performed in a consistent fashion throughout the tests at a specific impulse of 450 to 460 sec. Post-test component evaluation revealed limited erosion on both the anode and cathode. Other thruster components, including graphite seals, appeared undamaged.
Performance Evaluation of the NEXT Ion Engine
NASA Technical Reports Server (NTRS)
Soulas, George C.; Domonkos, Matthew T.; Patterson, Michael J.
2003-01-01
The performance test results of three NEXT ion engines are presented. These ion engines exhibited peak specific impulse and thrust efficiency ranges of 4060 4090 s and 0.68 0.69, respectively, at the full power point of the NEXT throttle table. The performance of the ion engines satisfied all project requirements. Beam flatness parameters were significantly improved over the NSTAR ion engine, which is expected to improve accelerator grid service life. The results of engine inlet pressure and temperature measurements are also presented. Maximum main plenum, cathode, and neutralizer pressures were 12,000 Pa, 3110 Pa, and 8540 Pa, respectively, at the full power point of the NEXT throttle table. Main plenum and cathode inlet pressures required about 6 hours to increase to steady-state, while the neutralizer required only about 0.5 hour. Steady-state engine operating temperature ranges throughout the power throttling range examined were 179 303 C for the discharge chamber magnet rings and 132 213 C for the ion optics mounting ring.
NASA Technical Reports Server (NTRS)
Rawlin, V. K.; Majcher, G. A.
1991-01-01
A model was developed and exercised to allow wet mass comparisons of three-axis stabilized communications satellites delivered to geosynchronous transfer orbit. The mass benefits of using advanced chemical propulsion for apogee injection and north-south stationkeeping (NSSK) functions or electric propulsion (hydrazine arcjets and xenon ion thrusters) for NSSK functions are documented. A large derated ion thruster is proposed which minimizes thruster lifetime concerns and qualification test times when compared to those of smaller ion thrusters planned for NSSK applications. The mass benefits, which depend on the spacecraft mass and mission duration, increase dramatically with arcjet specific impulse in the 500-600 s range, but are nearly constant for the derated ion thruster operated in the 2300-3000 s range. For a given mission, the mass benefits with an ion system are typically double those of the arcjet system; however, the total thrusting time with arcjets is less than one-third that with ion thrusters for the same thruster power.