A Current Source Method For t(sub q) Measurement of Fast Switching Thyristors
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
2006-01-01
A current source driven circuit has been constructed to measure the turn-off time (t(sub q)) of fast-switching SiC thyristors. This circuit operates from a single power supply and a dual channel pulse generator to provide adjustment of forward current, magnitude and duration of reverse applied voltage, and rate of rise of reapplied forward voltage. Values of t(sub q) down to 100 ns can be resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanan, S.S.Y.; Ananthakrishnan, P.; Hangari, V.U.
1995-12-31
A brushless alternator with damper windings in the main alternator and with combined ac and thyristor fed dc loads has been handled ab initio as a total modeling and simulation problem for which a complete steady state performance prediction algorithm has been developed through proper application of Park`s equivalent circuit approach individually to the main and exciter alternator units of the brushless alternator. Details of the problems faced during implementation of this algorithm through PSPICE for the case of a specific 125 kVA brushless alternator as well as methods adopted for successfully overcoming the same have then been presented. Finallymore » a comparison of the predicted performance with those obtained experimentally for this 125 kVA unit has also been provided for the cases of both thyristor fed dc load alone as well as combined ac and thyristor fed dc loads. To enable proper calculation of derating factors to be used in the design of such brushless alternators, the simulation results then include harmonic analysis of the alternator output voltage and current waveforms at the point of common connection of the ac and thyristor fed dc load, damper winding currents, main alternator field winding current, exciter alternator armature voltage and the alternator developed torque and torque angle pulsations.« less
A hybrid electromechanical solid state switch for ac power control
NASA Technical Reports Server (NTRS)
1972-01-01
Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.
Downhower, Jr., Francis H.; Finlayson, Paul T.
1984-04-10
A snubber circuit coupled across each thyristor to be gated in a chain of thyristors determines the critical output of a NOR LATCH whenever one snubber circuit could not be charged and discharged under normal gating conditions because of a short failure.
Design and Testing of a Small Inductive Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Martin, Adam K.; Dominguez, Alexandra; Eskridge, Richard H.; Polzin, Kurt A.; Riley, Daniel P.; Perdue, Kevin A.
2015-01-01
The design and testing of a small inductive pulsed plasma thruster (IPPT) is described. The device was built as a test-bed for the pulsed gas-valves and solid-state switches required for a thruster of this kind, and was designed to be modular to facilitate modification. The thruster in its present configuration consists of a multi-turn, spiral-wound acceleration coil (270 millimeters outer diameter, 100 millimeters inner diameter) driven by a 10 microfarad capacitor and switched with a high-voltage thyristor, a propellant delivery system including a fast pulsed gas-valve, and a glow-discharge pre-ionizer circuit. The acceleration coil circuit may be operated at voltages up to 4 kilovolts (the thyristor limit is 4.5 kilovolts) and the thruster operated at cyclic-rates up to 30 Herz. Initial testing of the thruster, both bench-top and in-vacuum, has been performed. Cyclic operation of the complete device was demonstrated (at 2 Herz), and a number of valuable insights pertaining to the design of these devices have been gained.
Fault current limiter and alternating current circuit breaker
Boenig, Heinrich J.
1998-01-01
A solid-state circuit breaker and current limiter for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time.
Fault current limiter and alternating current circuit breaker
Boenig, H.J.
1998-03-10
A solid-state circuit breaker and current limiter are disclosed for a load served by an alternating current source having a source impedance, the solid-state circuit breaker and current limiter comprising a thyristor bridge interposed between the alternating current source and the load, the thyristor bridge having four thyristor legs and four nodes, with a first node connected to the alternating current source, and a second node connected to the load. A coil is connected from a third node to a fourth node, the coil having an impedance of a value calculated to limit the current flowing therethrough to a predetermined value. Control means are connected to the thyristor legs for limiting the alternating current flow to the load under fault conditions to a predetermined level, and for gating the thyristor bridge under fault conditions to quickly reduce alternating current flowing therethrough to zero and thereafter to maintain the thyristor bridge in an electrically open condition preventing the alternating current from flowing therethrough for a predetermined period of time. 9 figs.
NASA Technical Reports Server (NTRS)
Lock, K.; Patalong, H.; Platzoeder, K.
1979-01-01
Using neutron irradiated silicon with considerably lower spread in resistivity as compared to conventionally doped silicon it was possible to produce power thyristors with breakdown voltages between 3.5 kV and 5.5 kV. The thyristor pellets have a diameter of 50 mm. Maximum average on-state currents of 600 to 800 A can be reached with these elements. The dynamic properties of the thryistors could be improved to allow standard applications up to maximum repetitive voltages of 4.5 kV.
Solid-state circuit breaker with current-limiting characteristic using a superconducting coil
Boenig, H.J.
1982-08-16
A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two eyeles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.
Solid-state circuit breaker with current limiting characteristic using a superconducting coil
Boenig, Heinrich J.
1984-01-01
A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two cycles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.
Development of a 1000V, 200A, low-loss, fast-switching, gate-assisted turn-off thyristor
NASA Technical Reports Server (NTRS)
Schlegel, E. S.; Lowry, L. R.
1975-01-01
Feasibility was demonstrated for a thyristor that blocks 1000V forward and reverse, conducts 200A, and turns on in little more than 2 microsec with only 2A of gate drive. Its features include a turn-off time of 3 microsec achieved with 2A of gate assist current of a few microseconds duration and an energy dissipation of only 12 mJ per pulse for a 20 microsec half sine wave, 200A pulse. Extensive theoretical and experimental study of the electrical behavior of thyristors having a fast turn-off time have significantly improved the understanding of the physics of turning thyristor off. Thyristors of two new designs were fabricated and evaluated. The high speed and low power were achieved by a combination of gate amplification, cathode shunting, and gate-assisted turn-off. Two techniques for making this combination practical are described.
Three-phase power factor controller with induced EMF sensing
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A power factor controller for an ac induction motor is provided which is of the type comprising thyristor switches connected in series with the motor, phase detectors for sensing the motor current and voltage and providing an output proportional to the phase difference between the motor voltage and current, and a control circuit, responsive to the output of the phase detector and to a power factor command signal, for controlling switching of the thyristor. The invention involves sensing the induced emf produced by the motor during the time interval when the thyristor is off and for producing a corresponding feedback signal for controlling switching of the thyristor. The sensed emf is also used to enhance soft starting of the motor.
de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo
2014-09-05
This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors.
de Morais Sousa, Kleiton; Probst, Werner; Bortolotti, Fernando; Martelli, Cicero; da Silva, Jean Carlos Cardozo
2014-01-01
This work reports the thermal modeling and characterization of a thyristor. The thyristor is used in a 6.5-MW generator excitation bridge. Temperature measurements are performed using fiber Bragg grating (FBG) sensors. These sensors have the benefits of being totally passive and immune to electromagnetic interference and also multiplexed in a single fiber. The thyristor thermal model consists of a second order equivalent electric circuit, and its power losses lead to an increase in temperature, while the losses are calculated on the basis of the excitation current in the generator. Six multiplexed FBGs are used to measure temperature and are embedded to avoid the effect of the strain sensitivity. The presented results show a relationship between field current and temperature oscillation and prove that this current can be used to determine the thermal model of a thyristor. The thermal model simulation presents an error of 1.5 °C, while the FBG used allows for the determination of the thermal behavior and the field current dependence. Since the temperature is a function of the field current, the corresponding simulation can be used to estimate the temperature in the thyristors. PMID:25198007
2008-05-02
conduction capacity of the discharge switch; the discharge switch was a TRIAC (Littlefuse – Q6015L5) rated to block 600Vand conduct 15A. (For this circuit ...part of the test circuit to verify was the capacitor dump circuit . The capacitor bank was charged up to 200V and the TRIAC (S2 in Figure 17) was...be turned off by a GTO thyristor. During the course of the project, a series of GTO thyristors were used in an inductive pulse forming circuit to
46 CFR 56.50-55 - Bilge pumps.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Each self-propelled vessel must be provided with a power-driven pump or pumps connected to the bilge... power-driven pump is required. (See Part 171 of this chapter for determination of criterion numeral.) 5... available, or where a suitable water supply is available from a power-driven pump of adequate pressure and...
Input Power Characteristics of the Thyristor Variable Voltage Power Conditioner
DOT National Transportation Integrated Search
1973-11-01
A laboratory study was made of transformer and thyristor voltage control for speed control of a rotary induction motor. The test program consisted of two parts; the first dealing with measurements of the induction motor characteristics and the second...
Laser pumping of thyristors for fast high current rise-times
Glidden, Steven C.; Sanders, Howard D.
2013-06-11
An optically triggered semiconductor switch includes an anode metallization layer; a cathode metallization layer; a semiconductor between the anode metallization layer and the cathode metallization layer and a photon source. The semiconductor includes at least four layers of alternating doping in the form P-N-P-N, in which an outer layer adjacent to the anode metallization layer forms an anode and an outer layer adjacent the cathode metallization layer forms a cathode and in which the anode metallization layer has a window pattern of optically transparent material exposing the anode layer to light. The photon source emits light having a wavelength, with the light from the photon source being configured to match the window pattern of the anode metallization layer.
Development of a 1000V, 200A, low-loss, fast-switching, gate-assisted turn-off thyristor
NASA Technical Reports Server (NTRS)
Schlegel, E. S.; Lowry, L. R.; Moore, D. L.
1977-01-01
The results of a program to develop a fast high power thyristor that can operate in switching circuits at frequencies of 10 to 20 kHz with very low power loss are given. Feasibility was demonstrated for a thyristor that blocks 1000V forward and reverse, conducts 200A, turns on in little more than 2 more microseconds with only 2A of gate drive, turns off in 3 microseconds with 2A of gate assist current and has an energy dissipation of only 12 mJ per pulse for a 20 microsecond half sine wave 200A pulse. Data were generated that clearly showed the tradeoffs that can be made between the turn off time and forward drop. The understanding of this relationship is necessary in the selection of deliverable thyristors with turn off times up to 7 microseconds to give improved efficiency in a series resonant dc to dc inverter application.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with one self-priming power-driven fire pump capable of delivering a single stream of water from the..., the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power independent of the engine. (e...
Code of Federal Regulations, 2012 CFR
2012-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
Code of Federal Regulations, 2014 CFR
2014-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
Code of Federal Regulations, 2013 CFR
2013-10-01
... vessel must be equipped with one self-priming power-driven fire pump capable of delivering a single... propulsion engines are installed, the pump required by paragraph (a) of this section may be driven by one of the engines. If only one propulsion engine is installed, the pump must be driven by a source of power...
A new inverter topology using GTO commutation. [Gate Turn Off thyristor
NASA Technical Reports Server (NTRS)
Rippel, W. E.
1983-01-01
A new N-phase, forced commutated bridge inverter topology has been developed wherein a single Gate Turn Off Thyristor (GTO) is used to commutate each of 2N main Thyristors (SCRs). Since, for most applications, the primary loss mechanism is the SCR forward drop, very high efficiencies are possible. Compared with conventional pure SCR and pure GTO inverters, cost per kW is lower - in the former case due to the large cost differential between GTOs and SCRs. Other advantages of the new inverter include high power density, low switching losses and stresses, modulation flexibility and amenability to high voltage and high frequency operation.
2009-06-09
ER D C/ CE R L TR -0 9 -1 0 Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations Performance and Reliability Summary...L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-09-10 June 2009 Natural Gas Engine-Driven Heat Pump ...CERL TR-09-10 ii Abstract: Results of field testing natural gas engine-driven heat pumps (GHP) at six southwestern U.S. Department of Defense (DoD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matinyan, A. M., E-mail: al-drm@mail.ru; Peshkov, M. V.; Karpov, V. N.
2016-09-15
The design and current spectrum of a thyristor valve controlled shunt reactor (TCSR) with split valveside windings are described. The dependence of the amplitudes of higher-order harmonics of the power winding current on the TCSR operating regime are presented for this TCSR design.
Fast Turn-Off Times Observed in Experimental 4H SiC Thyristors
NASA Technical Reports Server (NTRS)
Niedra, Janis M.
2006-01-01
Room temperature measurements of the turn-off time (t(sub q)) are reported for several packaged, npnp developmental power thyristors based on 4H-type SiC and rated 400 V, 2 A. Turn-off is effected by a 50 V pulse of applied reverse voltage, from a state of a steady 1 A forward current. Plots of t(sub q) against the ramp rate (dV(sub AK)/dt) of reapplied forward voltage are presented for preset values of limiting anode-to-cathode voltage (V(sub AK,max)). The lowest t(sub q) measured was about 180 ns. A rapid rise of these t(sub q) curves was observed for values of V(sub AK,max) that are only about a fifth of the rated voltage, whereas comparative t(sub q) plots for a commercial, fast turn-off, Si-based thyristor at a proportionately reduced V(sub AK,max) showed no such behavior. Hence these SiC thyristors may have problems arising from material defects or surface passivation. The influence the R-C-D gate bypass circuit that was used is briefly discussed.
FET commutated current-FED inverter
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor); Edwards, Dean B. (Inventor)
1983-01-01
A shunt switch comprised of a field-effect transistor (Q.sub.1) is employed to commutate a current-fed inverter (10) using thyristors (SCR1, SCR2) or bijunction transistors (Q.sub.2, Q.sub.3) in a full bridge (1, 2, 3, 4) or half bridge (5, 6) and transformer (T.sub.1) configuration. In the case of thyristors, a tapped inverter (12) is employed to couple the inverter to a dc source to back bias the thyristors during commutation. Alternatively, a commutation power supply (20) may be employed for that purpse. Diodes (D.sub.1, D.sub.2) in series with some voltage dropping element (resistor R.sub.12 or resistors R.sub.1, R.sub.2 or Zener diodes D.sub.4, D.sub.5) are connected in parallel with the thyristors in the half bridge and transformer configuration to assure sharing the back bias voltage. A clamp circuit comprised of a winding (18) negatively coupled to the inductor and a diode (D.sub.3) return stored energy from the inductor to the power supply for efficient operation with buck or boost mode.
Performance of a vane driven-gear pump
NASA Technical Reports Server (NTRS)
Heald, R H
1921-01-01
Given here are the results of a test conducted in a wind tunnel on the performance of a vane-driven gear pump used to pump gasoline upward into a small tank located within the upper wing from which it flows by gravity to the engine carburetor. Information is given on the efficiency of the pump, the head resistance of the vanes, the performance and characteristics of the unit with and without housing about the vanes, the pump performance when motor driven, and resistance and power characteristics.
18. Electrically driven pumps in Armory Street Pump House. Pumps ...
18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT
NASA Astrophysics Data System (ADS)
Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.
2014-12-01
Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.
Compact high voltage solid state switch
Glidden, Steven C.
2003-09-23
A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.
NASA Astrophysics Data System (ADS)
Creswick, F. A.
Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.
Integral inverter/battery charger for use in electric vehicles
NASA Technical Reports Server (NTRS)
Thimmesch, D.
1983-01-01
The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).
A magnetically driven piston pump for ultra-clean applications
NASA Astrophysics Data System (ADS)
LePort, F.; Neilson, R.; Barbeau, P. S.; Barry, K.; Bartoszek, L.; Counts, I.; Davis, J.; deVoe, R.; Dolinski, M. J.; Gratta, G.; Green, M.; Díez, M. Montero; Müller, A. R.; O'Sullivan, K.; Rivas, A.; Twelker, K.; Aharmim, B.; Auger, M.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cleveland, B.; Conley, R.; Cook, J.; Cook, S.; Craddock, W.; Daniels, T.; Dixit, M.; Dobi, A.; Donato, K.; Fairbank, W.; Farine, J.; Fierlinger, P.; Franco, D.; Giroux, G.; Gornea, R.; Graham, K.; Green, C.; Hägemann, C.; Hall, C.; Hall, K.; Hallman, D.; Hargrove, C.; Herrin, S.; Hughes, M.; Hodgson, J.; Juget, F.; Kaufman, L. J.; Karelin, A.; Ku, J.; Kuchenkov, A.; Kumar, K.; Leonard, D. S.; Lutter, G.; Mackay, D.; MacLellan, R.; Marino, M.; Mong, B.; Morgan, P.; Odian, A.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Pushkin, K.; Rollin, E.; Rowson, P. C.; Schmoll, B.; Sinclair, D.; Skarpaas, K.; Slutsky, S.; Stekhanov, V.; Strickland, V.; Swift, M.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Wichoski, U.; Wodin, J.; Yang, L.; Yen, Y.-R.
2011-10-01
A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.
A magnetically driven piston pump for ultra-clean applications.
LePort, F; Neilson, R; Barbeau, P S; Barry, K; Bartoszek, L; Counts, I; Davis, J; deVoe, R; Dolinski, M J; Gratta, G; Green, M; Montero Díez, M; Müller, A R; O'Sullivan, K; Rivas, A; Twelker, K; Aharmim, B; Auger, M; Belov, V; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Cleveland, B; Conley, R; Cook, J; Cook, S; Craddock, W; Daniels, T; Dixit, M; Dobi, A; Donato, K; Fairbank, W; Farine, J; Fierlinger, P; Franco, D; Giroux, G; Gornea, R; Graham, K; Green, C; Hägemann, C; Hall, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Hughes, M; Hodgson, J; Juget, F; Kaufman, L J; Karelin, A; Ku, J; Kuchenkov, A; Kumar, K; Leonard, D S; Lutter, G; Mackay, D; MacLellan, R; Marino, M; Mong, B; Morgan, P; Odian, A; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rollin, E; Rowson, P C; Schmoll, B; Sinclair, D; Skarpaas, K; Slutsky, S; Stekhanov, V; Strickland, V; Swift, M; Vuilleumier, J-L; Vuilleumier, J-M; Wichoski, U; Wodin, J; Yang, L; Yen, Y-R
2011-10-01
A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.
Two dimensional thermal and charge mapping of power thyristors
NASA Technical Reports Server (NTRS)
Hu, S. P.; Rabinovici, B. M.
1975-01-01
The two dimensional static and dynamic current density distributions within the junction of semiconductor power switching devices and in particular the thyristors were obtained. A method for mapping the thermal profile of the device junctions with fine resolution using an infrared beam and measuring the attenuation through the device as a function of temperature were developed. The results obtained are useful in the design and quality control of high power semiconductor switching devices.
Merritt, Bernard T.; Dreifuerst, Gary R.
1994-01-01
A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.
Bidirectional dc-to-dc Power Converter
NASA Technical Reports Server (NTRS)
Griesbach, C. R.
1986-01-01
Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.
46 CFR 56.50-30 - Boiler feed piping.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pump may be used for other purposes. (2) If two independently driven pumps are provided, each capable... requirements. (1) Steam vessels, and motor vessels fitted with steam driven electrical generators shall have at... the necessary connections for this purpose. The arrangement of feed pumps shall be in accordance with...
Chimeric microbial rhodopsins for optical activation of Gs-proteins
Yoshida, Kazuho; Yamashita, Takahiro; Sasaki, Kengo; Inoue, Keiichi; Shichida, Yoshinori; Kandori, Hideki
2017-01-01
We previously showed that the chimeric proteins of microbial rhodopsins, such as light-driven proton pump bacteriorhodopsin (BR) and Gloeobacter rhodopsin (GR) that contain cytoplasmic loops of bovine rhodopsin, are able to activate Gt protein upon light absorption. These facts suggest similar protein structural changes in both the light-driven proton pump and animal rhodopsin. Here we report two trials to engineer chimeric rhodopsins, one for the inserted loop, and another for the microbial rhodopsin template. For the former, we successfully activated Gs protein by light through the incorporation of the cytoplasmic loop of β2-adrenergic receptor (β2AR). For the latter, we did not observe any G-protein activation for the light-driven sodium pump from Indibacter alkaliphilus (IndiR2) or a light-driven chloride pump halorhodopsin from Natronomonas pharaonis (NpHR), whereas the light-driven proton pump GR showed light-dependent G-protein activation. This fact suggests that a helix opening motion is common to G protein coupled receptor (GPCR) and GR, but not to IndiR2 and NpHR. Light-induced difference FTIR spectroscopy revealed similar structural changes between WT and the third loop chimera for each light-driven pump. A helical structural perturbation, which was largest for GR, was further enhanced in the chimera. We conclude that similar structural dynamics that occur on the cytoplasmic side of GPCR are needed to design chimeric microbial rhodopsins. PMID:29362703
100-kA vacuum current breaker of a modular design
NASA Astrophysics Data System (ADS)
Ivanov, V. P.; Vozdvijenskii, V. A.; Jagnov, V. A.; Solodovnikov, S. G.; Mazulin, A. V.; Ryjkov, V. M.
1994-05-01
Direct current breaker of a modular design is developed for the strong field tokamak power supply system. The power supply system comprises four 800 MW alternative current generators with 4 GJ flywheels, thyristor rectifiers providing inductive stores pumping by a current up to 100 kA for 1 - 4 sec. To form current pulses of various shapes in the tokamak windings current breakers are used with either pneumatic or explosive drive, at a current switching synchronously of not worse than 100 mks. Current breakers of these types require that the current conducting elements be replaced after each shot. For recent years vacuum arc quenching chambers with an axial magnetic field are successfully employed as repetitive performance current breakers, basically for currents up to 40 kA. In the report some results of researches of a vacuum switch modular are presented which we used as prototype switch for currents of the order of 100 kA.
Merritt, B.T.; Dreifuerst, G.R.
1994-07-19
A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.
NASA Astrophysics Data System (ADS)
Roy, M.; Sengupta, M.
2012-09-01
Induction heating is a non-contact heating process which became popular due to its energy efficiency. Current source inverter (CSI) based induction heating units are commonly used in the industry. Most of these CSIs are thyristor based, since thyristors of higher ratings are easily available. These being load commutated apparatus a start-up circuit is needed to initiate commutation. In this paper the design and fabrication of two laboratory prototypes have been presented. The first one, a SCR-based CSI fed controlled induction heating unit (IHU), has been tested with two different types of start-up procedures. Thereafter the fabrication and performance of another IGBT-based CSI is compared with the thyristor-based CSI for a 2 kW, 10 kHz application. These two types of CSIs are fully fabricated in laboratory along with the IHU. Performance analysis and simulation of two different CSIs has been done by using SequelGUI2. The triggering pulses for the inverter devices (for both CSI devices as well as auxilliary thyristor of start-up circuit) have been generated and closed-loop control has been done in FPGA platform built around an Altera make cyclone EPIC12Q240C processor which can be programmed using Quartus II software. Close agreement between simulated and experimental results highlight the accuracy of the experimental work.
Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields
NASA Astrophysics Data System (ADS)
Kim, S. H.; Hashi, S.; Ishiyama, K.
2011-01-01
This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.
Low-jitter high-power thyristor array pulse driver and generator
Hanks, Roy L.
2002-01-01
A method and apparatus for generating low-jitter, high-voltage and high-current pulses for driving low impedance loads such as detonator fuses uses a MOSFET driver which, when triggered, discharges a high-voltage pre-charged capacitor into the primary of a toroidal current-multiplying transformer with multiple isolated secondary windings. The secondary outputs are suitable for driving an array of thyristors that discharge a precharged high-voltage capacitor and thus generating the required high-voltage and high-current pulse.
An analytical study of hybrid ejector/internal combustion engine-driven heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.W.
1988-01-01
Because ejectors can combine high reliability with low maintenance cost in a package requiring little capital investment, they may provide attractive heat pumping capability in situations where the importance of their inefficiencies is minimized. One such concept, a hybrid system in which an ejector driven by engine reject heat is used to increase the performance of an internal combustion engine-driven heat pump, was analyzed by modifying an existing ejector heat pump model and combining it with generic compressor and internal combustion engine models. Under the model assumptions for nominal cooling mode conditions, the results showed that hybrid systems could providemore » substantial performance augmentation/emdash/up to 17/percent/ increase in system coefficient of performance for a parallel arrangement of an enhanced ejector with the engine-driven compressor. 4 refs., 4 figs., 4 tabs.« less
Characterization of an induced pressure pumping force for microfluidics
NASA Astrophysics Data System (ADS)
Jiang, Hai; Fan, Na; Peng, Bei; Weng, Xuan
2017-05-01
The electro-osmotic pumping and pressure-driven manipulation of fluids are considered as the most common strategies in microfluidic devices. However, both of them exhibit major disadvantages such as hard integration and high reagent consumption, and they are destructive methods for detection and photo bleaching. In this paper, an electric field-effect flow control approach, combining the electro-osmotic pumping force and the pressure-driven pumping force, was developed to generate the induced pressure-driven flow in a T-shaped microfluidic chip. Electro-osmotic flow between the T-intersection and two reservoirs was demonstrated, and it provided a stable, continuous, and electric field-free flow in the section of the microchannel without the electrodes. The velocity of the induced pressure-driven flow was linearly proportional to the applied voltages. Both numerical and experimental investigations were conducted to prove the concept, and the experimental results showed good agreement with the numerical simulations. In comparison to other induced pressure pumping methods, this approach can induce a high and controllable pressure drop in the electric field-free segment, subsequently causing an induced pressure-driven flow for transporting particles or biological cells. In addition, the generation of bubbles and the blocking of the microchannel are avoided.
NASA Ames Research Center 60 MW Power Supply Modernization
NASA Technical Reports Server (NTRS)
Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)
2001-01-01
The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.
Development of a Compact Efficient Cooling Pump for Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
vanBoeyen, Roger W.; Reeh, Jonathan A.; Trevino, Luis
2008-01-01
With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.
NASA Technical Reports Server (NTRS)
Benner, Steve M (Inventor); Martins, Mario S. (Inventor)
2000-01-01
A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.
Development of a Compact, Efficient Cooling Pump for Space Suit Life Support Systems
NASA Technical Reports Server (NTRS)
van Boeyen, Roger; Reeh, Jonathan; Trevino, Luis
2009-01-01
A compact, low-power electrochemically-driven fluid cooling pump is currently being developed by Lynntech, Inc. With no electric motor and minimal lightweight components, the pump is significantly lighter than conventional rotodynamic and displacement pumps. Reliability and robustness is achieved with the absence of rotating or moving components (apart from the bellows). By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. Lynntech also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit primary life support systems (PLSSs). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops is discussed.
ERIC Educational Resources Information Center
Maloney, Peter C.; Wilson, T. Hastings
1985-01-01
Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)
Silicon Carbide Emitter Turn-Off Thyristor
Wang, Jun; Wang, Gangyao; Li, Jun; ...
2008-01-01
A novel MOS-conmore » trolled SiC thyristor device, the SiC emitter turn-off thyristor (ETO) is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA) and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5 A / cm 2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100 W / cm 2 conduction and the 100 W / cm 2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV) and higher frequency (10 kHz) are needed.« less
Asymmetric quantum well broadband thyristor laser
NASA Astrophysics Data System (ADS)
Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing
2017-11-01
A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.
Fluid driven reciprocating apparatus
Whitehead, J.C.
1997-04-01
An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.
Fluid driven recipricating apparatus
Whitehead, John C.
1997-01-01
An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.
2014-09-04
They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand pump, and buckets to dewater. (3) Align fire pumps to serve as bilge pumps if possible. (4) Check, for...
46 CFR 122.512 - Recommended emergency instructions format.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...
46 CFR 122.512 - Recommended emergency instructions format.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...
46 CFR 122.512 - Recommended emergency instructions format.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pump if...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2014 CFR
2014-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2014-10-01 2014-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2010-10-01 2010-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2013-10-01 2013-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2012-10-01 2012-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
46 CFR 28.840 - Means for stopping pumps, ventilation, and machinery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pumps, ventilation, and machinery. All electrically driven fuel oil transfer pumps, fuel oil unit and service pumps, and ventilation fans shall be fitted with remote controls from a readily accessible... 46 Shipping 1 2011-10-01 2011-10-01 false Means for stopping pumps, ventilation, and machinery. 28...
Fuel system for rotary distributor fuel injection pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopfer, K.H.; Kelly, W.W.
1993-06-01
In a fuel injection pump having a drive shaft, a pump rotor driven by the drive shaft, reciprocating pumping means with periodic intake and pumping strokes to periodically receive an intake charge of fuel and deliver fuel at high pressure for fuel injection is described; a distributor head with a plurality of angularly spaced distributor outlets, the pump rotor providing a distributor rotor with a distributor port connected to the pumping means, the distributor rotor being rotatably mounted in the distributor head for sequential registration of the distributor port with the distributor outlets for distributing said high pressure delivery ofmore » fuel thereto; a fuel system for supplying fuel to the pumping means, having an end chamber at one end of the pump rotor and a fuel supply pump driven by the drive shaft and having an inlet and outlet, the supply pump outlet being connected to the end chamber for supplying fuel thereto, and a pressure regulator for regulating the fuel pressure in the end chamber; and a control valve connected between the pumping means and the end chamber and selectively opened during the intake strokes to supply fuel to the pumping means from the end chamber and during the pumping strokes to spill fuel from the pumping means into the end chamber to terminate said high pressure delivery of fuel; the improvement wherein the fuel system comprises a fuel return passage connected in series with the end chamber downstream thereof, wherein the pressure regulator is mounted in the return passage for regulating the upstream fuel pressure, including the upstream fuel pressure within the end chamber, and is connected for conducting excess fuel for return to the supply pump inlet, and wherein the supply pump is driven by the drive shaft to supply fuel at a rate exceeding the rate of said high pressure delivery of fuel for fuel injection and to provide excess fuel flow continuously through the end chamber and return passage to the pressure regulator.« less
A study on various methods of supplying propellant to an orbit insertion rocket engine
NASA Technical Reports Server (NTRS)
Boretz, J. E.; Huniu, S.; Thompson, M.; Pagani, M.; Paulsen, B.; Lewis, J.; Paul, D.
1980-01-01
Various types of pumps and pump drives were evaluated to determine the lightest weight system for supplying propellants to a planetary orbit insertion rocket engine. From these analyses four candidate propellant feed systems were identified. Systems Nos. 1 and 2 were both battery powered (lithium-thionyl-chloride or silver-zinc) motor driven pumps. System 3 was a monopropellant gas generator powered turbopump. System 4 was a bipropellant gas generator powered turbopump. Parameters considered were pump break horsepower, weight, reliability, transient response and system stability. Figures of merit were established and the ranking of the candidate systems was determined. Conceptual designs were prepared for typical motor driven pumps and turbopump configurations for a 1000 lbf thrust rocket engine.
Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.
Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori
2007-01-01
We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.
An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump
NASA Technical Reports Server (NTRS)
Lindley, B. K.; Martinson, A. R.
1971-01-01
The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.
Method of controlling switching of a multiphase inductor-converter bridge
Kustom, Robert L.; Fuja, Raymond E.
1981-01-01
In an inductor-convertor circuit for transferring electrical energy between a storage coil and a load coil using a storage thyristor bridge, a load thyristor bridge, and a set of commutating capacitors, operation is improved by a method of changing the rate of delivery of energy in a given direction. The change in rate corresponds to a predetermined change in phase angle between the load bridge and the storage bridge and comprises changing the phase of the bridge by two steps, each equal to half the predetermined change and occurring 180.degree. apart. The method assures commutation and minimizes imbalances that lead otherwise to overvoltages.
46 CFR 185.512 - Recommended emergency instructions format.
Code of Federal Regulations, 2011 CFR
2011-10-01
... in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to... fixed extinguishing system if installed. (v) Maneuver vessel to minimize effect of wind on fire. (vi) If...
Hourly simulation of a Ground-Coupled Heat Pump system
NASA Astrophysics Data System (ADS)
Naldi, C.; Zanchini, E.
2017-01-01
In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.
46 CFR 28.265 - Emergency instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Describe your vessel: (Insert length, color, hull type, trim, masts, power, and any additional... the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pumps, if possible...
46 CFR 28.265 - Emergency instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Describe your vessel: (Insert length, color, hull type, trim, masts, power, and any additional... the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pumps, if possible...
46 CFR 28.265 - Emergency instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Describe your vessel: (Insert length, color, hull type, trim, masts, power, and any additional... the vessel. (ii) Keep bilges dry to prevent loss of stability due to water in bilges. Use power driven bilge pump, hand pump, and buckets to dewater. (iii) Align fire pumps to use as bilge pumps, if possible...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Fire pumps. 181.300 Section 181.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) FIRE PROTECTION EQUIPMENT Fire Main System § 181.300 Fire pumps. (a) A self priming, power driven fire pump must be...
Geothermal energy control system and method
Matthews, Hugh B.
1976-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.
Development of a standardized, citywide process for managing smart-pump drug libraries.
Walroth, Todd A; Smallwood, Shannon; Arthur, Karen; Vance, Betsy; Washington, Alana; Staublin, Therese; Haslar, Tammy; Reddan, Jennifer G; Fuller, James
2018-06-15
Development and implementation of an interprofessional consensus-driven process for review and optimization of smart-pump drug libraries and dosing limits are described. The Indianapolis Coalition for Patient Safety (ICPS), which represents 6 Indianapolis-area health systems, identified an opportunity to reduce clinically insignificant alerts that smart infusion pumps present to end users. Through a consensus-driven process, ICPS aimed to identify best practices to implement at individual hospitals in order to establish specific action items for smart-pump drug library optimization. A work group of pharmacists, nurses, and industrial engineers met to evaluate variability within and lack of scrutiny of smart-pump drug libraries. The work group used Lean Six Sigma methodologies to generate a list of key needs and barriers to be addressed in process standardization. The group reviewed targets for smart-pump drug library optimization, including dosing limits, types of alerts reviewed, policies, and safety best practices. The work group also analyzed existing processes at each site to develop a final consensus statement outlining a model process for reviewing alerts and managing smart-pump data. Analysis of the total number of alerts per device across ICPS-affiliated health systems over a 4-year period indicated a 50% decrease (from 7.2 to 3.6 alerts per device per month) after implementation of the model by ICPS member organizations. Through implementation of a standardized, consensus-driven process for smart-pump drug library optimization, ICPS member health systems reduced clinically insignificant smart-pump alerts. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
43. (Credit JTL) View down into # 3 low service ...
43. (Credit JTL) View down into # 3 low service pump pit from elevator car. Worthington low service pump frame on left with pumps at bottom. Tunnel opening leads to #1 low service pump pit. Electric pump housing closest to tunnel opening installed in 1943; pump could deliver 6 mgd. Certrifugal pump near steps was installed in 1947 and is driven by a shaft from a motor at the top of the pit. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion engine...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 118.300 Section 118.300 Shipping COAST GUARD... OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS FIRE PROTECTION EQUIPMENT Fire Main System § 118.300 Fire pumps. (a) A self priming, power driven fire pump must be installed on each vessel. (b) On a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Fire pumps. 76.10-5 Section 76.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 76.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven fire pumps in...
Induced charge electroosmosis micropumps using arrays of Janus micropillars.
Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M
2014-09-07
We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.
Campbell, Gene K.
1983-01-01
A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.
Method of controlling switching of a multiphase inductor-converter bridge. [Patent application
Kustom, R.L.; Fuja, R.E.
In an inductor-convertor circuit for transferring electrical energy between a storage coil and a load coil through a storage thyristor bridge, a load thyristor bridge, and a set of commutating capacitors, operation is improved by a method of changing the rate of delivery of energy in a given direction. The change in rate corresponds to a predetermined change in phase angle between the load bridge and the storage bridge, and comprises changing the phase of the bridge by two steps, each equal to half the predetermined change and occurring 180/sup 0/ apart. The method assures commutation and minimizes imbalances that lead otherwise to overvoltages. 11 figures.
A unique power supply for the PEP II klystron at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassel, R.; Nguyen, M.N.
1997-07-01
Each of the eight 1.2 MW RF klystrons for the PEP-II storage rings require a 2.5 MVA DC power supply of 83 Kv at 23 amps. The design for the supply was base on three factors, low cost, small size to fit existing substation pads, and good protection against damage to the klystron including klystron gun arcs. The supply uses a 12 pulse 12.5 KV primary thyristor star point controller with primary filter inductor to provide rapid voltage control, good voltage regulation, and fast turn off during klystron tube faults. The supply also uses a unique secondary rectifier, filter capacitormore » configuration to minimize the energy available under a klystron fault. The voltage control is from 0--90 KV with a regulation of < 0.1% and voltage ripple of < 1% P-P, (< 0.2% RMS) above 60 KV. The supply utilizes a thyristor crowbar, which under a klystron tube arc limits the energy in the klystron arc to < 5 joules. If the thyristor crowbar is disabled the energy supplied is < 40 joules into the arc. The size of the supply was reduced small enough to fit the existing PEP transformer yard pads. The cost of the power supply was < $140 per KVA.« less
Reliability Design for Neutron Induced Single-Event Burnout of IGBT
NASA Astrophysics Data System (ADS)
Shoji, Tomoyuki; Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Ishiko, Masayasu
Single-event burnout (SEB) caused by cosmic ray neutrons leads to catastrophic failures in insulated gate bipolar transistors (IGBTs). It was found experimentally that the incident neutron induced SEB failure rate increases as a function of the applied collector voltage. Moreover, the failure rate increased sharply with an increase in the applied collector voltage when the voltage exceeded a certain threshold value (SEB cutoff voltage). In this paper, transient device simulation results indicate that impact ionization at the n-drift/n+ buffer boundary is a crucially important factor in the turning-on of the parasitic pnp transistor, and eventually latch-up of the parasitic thyristor causes SEB. In addition, the device parameter dependency of the SEB cutoff voltage was analytically derived from the latch-up condition of the parasitic thyristor. As a result, it was confirmed that reducing the current gain of the parasitic transistor, such as by increasing the n-drift region thickness d was effective in increasing the SEB cutoff voltage. Furthermore, `white' neutron-irradiation experiments demonstrated that suppressing the inherent parasitic thyristor action leads to an improvement of the SEB cutoff voltage. It was confirmed that current gain optimization of the parasitic transistor is a crucial factor for establishing highly reliable design against chance failures.
Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.
Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K
1995-01-01
The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.
Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.
Vanadium-pumped titanium x-ray laser
Nilsen, J.
1992-05-26
A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.
Gas Fride Heat Pumps : The Present and Future
NASA Astrophysics Data System (ADS)
Kurosawa, Shigekichi; Ogura, Masao
In japan techniques for saving energy is an important goal since energy resources such as oil and nuclear power are limited. Recently gas fired absorption heat pumps and gas engine driven heat pumps have been installed in facilifies such as hotels, swimming pools and offices.
In this article recent techniques, applications and future aspects for gas fired heat pumps are explained.
NASA Astrophysics Data System (ADS)
Vanheyden, L.; Evertz, E.
1980-12-01
Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.
Evaluation of Future Fuels in a High Pressure Common Rail System - Part 1 Cummins XPI
2012-10-01
compressed against the underside of the pump head to maintain contact with the pump camshaft. The underside of the pump head is shown in Figure 5...Figure 5. High Pressure Pump Head Unclassified 8 The two barrel retainers located on the underside of the pump head hold the ceramic plungers...which develop the high pressures within the pump. The plungers are driven into the barrels by the tappets as the shaft turns. They are forced back out
Scheme for rapid adjustment of network impedance
Vithayathil, John J.
1991-01-01
A static controlled reactance device is inserted in series with an AC electric power transmission line to adjust its transfer impedance. An inductor (reactor) is serially connected with two back-to-back connected thyristors which control the conduction period and hence the effective reactance of the inductor. Additional reactive elements are provided in parallel with the thyristor controlled reactor to filter harmonics and to obtain required range of variable reactance. Alternatively, the static controlled reactance device discussed above may be connected to the secondary winding of a series transformer having its primary winding connected in series to the transmission line. In a three phase transmission system, the controlled reactance device may be connected in delta configuration on the secondary side of the series transformer to eliminate triplen harmonics.
49 CFR 178.338-17 - Pumps and compressors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a) Liquid pumps and gas compressors, if used, must be of suitable design, adequately protected against breakage by collision, and kept in good condition. They may be driven by motor vehicle power take...
49 CFR 178.337-15 - Pumps and compressors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a) Liquid pumps or gas compressors, if used, must be of suitable design, adequately protected against breakage by collision, and kept in good condition. They may be driven by motor vehicle power take...
Decontamination of Water Containing Radiological Warfare Agents
1975-03-01
debris was cond~ucted undcr Project Snowball. Open tanks of water were exposed to a 500- toxi TNT explosion 2 at varying distances from grouind zero...trailhr; 4-cylinder, 4-stroke, liquid- cooled gasoline engine: aluminum evaporator-conden ser; vapor complressor; watcr pumps; heat exchanger; cngine...field consists of a 10-kw gasoline -engine-driven generator and three electric-motor-driven pumps. See Figure 21 for a photograph of the cation and anion
A charge-driven molecular water pump.
Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping
2007-11-01
Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.
Simons, A P; Lindelauf, A A M A; Ganushchak, Y M; Maessen, J G; Weerwind, P W
2014-01-01
Without volume-buffering capacity in extracorporeal life support (ELS) systems, hypovolemia can acutely reduce support flow. This study aims at evaluating efficacy and safety of strategies for preserving stable ELS during hypovolemia. Flow and/or pressure-guided servo pump control, a reserve-driven control strategy and a volume buffer capacity (VBC) device were evaluated with respect to pump flow, venous line pressure and arterial gaseous microemboli (GME) during simulated normovolemia and hypovolemia. Normovolemia resulted in a GME-free pump flow of 3.1 ± 0.0 L/min and a venous line pressure of -10 ± 1 mmHg. Hypovolemia without servo pump control resulted in a GME-loaded flow of 2.3 ± 0.4 L/min with a venous line pressure of -114 ± 52 mmHg. Servo control resulted in an unstable and GME-loaded flow of 1.5 ± 1.2 L/min. With and without servo pump control, the VBC device stabilised flow (SD = 0.2 and 0.0 L/min, respectively) and venous line pressure (SD=51 and 4 mmHg, respectively) with near-absent GME activity. Reserve-driven pump control combined with a VBC device restored a near GME-free flow of 2.7 ± 0.0 L/min with a venous line pressure of -9 ± 0 mmHg. In contrast to a reserve-driven pump control strategy combined with a VBC device, flow and pressure servo control for ELS show evident deficits in preserving stable and safe ELS flow during hypovolemia.
Engine having multiple pumps driven by a single shaft
Blass, James R.
2001-01-01
An engine comprises an engine housing. A first engine fluid sub-system that includes a first pump and the engine housing defining a first fluid passage is also included in the engine. The engine also includes at least one additional engine fluid sub-system that includes a second pump and the engine housing defining a second fluid passage. A rotating shaft is at least partially positioned in the engine housing, the first pump and the second pump.
Gyro-effect stabilizes unstable permanent maglev centrifugal pump.
Qian, Kun-Xi
2007-03-01
According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.
Vanadium-pumped titanium x-ray laser
Nilsen, Joseph
1992-01-01
A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fire pumps. 95.10-5 Section 95.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Main System, Details § 95.10-5 Fire pumps. (a) Vessels shall be equipped with independently driven fire...
Investigation of lunar base thermal control system options
NASA Technical Reports Server (NTRS)
Ewart, Michael K.
1993-01-01
Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Recent trade-off studies at the Johnson Space Center have focused development efforts on the most promising heat pump and radiator shade technologies. Since these technologies are in the early stages of development and many parameters used in the study are not well defined, a parametric study was done to test the sensitivity to each assumption. The primary comparison factor in these studies was the total mass system, with power requirements included in the form of a mass penalty for power. Heat pump technologies considered were thermally driven heat pumps such as metal hydride, complex compound, absorption and zeolite. Also considered were electrically driven Stirling and vapor compression heat pumps. Radiator shade concepts considered included step shaped, V-shaped and parabolic (or catenary) shades and ground covers. A further trade study compared the masses of heat pump and radiator shade systems.
Norman, Mya A; Evans, Christine E; Fuoco, Anthony R; Noble, Richard D; Koval, Carl A
2005-10-01
Electrokinetic flow provides a mechanism for a variety of fluid pumping schemes. The design and characterization of an electrochemically driven pump that utilizes porous carbon electrodes, iodide/triiodide redox electrolytes, and Nafion membranes is described. Fluid pumping by the cell is reversible and controlled by the cell current. Chronopotentiometry experiments indicate that the total available fluid that can be pumped in a single electrolysis without gas evolution is determined solely by the initial concentration of electrolyte and the applied current. The magnitude of the fluid flow at a given current is determined by the nature of the cation in the electrolyte and by the water absorption properties of the Nafion membrane. For 1 M aqueous electrolytes, pumping rates ranging from 1 to 14 microL/min were obtained for current densities of 10-30 mA/cm2 of membrane area. Molar volume changes for the I3-/I- redox couple and for the alkali cation migration contribute little to the observed volumetric flow rates; the magnitude of the flow is dominated by the migration-induced flow of water.
Geothermal energy control system and method
Matthews, Hugh B.
1977-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.
Ballistic induced pumping of hypersonic heat current in DNA nano wire
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Panahinia, Robabe
2016-12-01
Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.
Phase detector for three-phase power factor controller
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A phase detector for the three phase power factor controller (PFC) is described. The phase detector for each phase includes an operational amplifier which senses the current phase angle for that phase by sensing the voltage across the phase thyristor. Common mode rejection is achieved by providing positive feedback between the input and output of the voltage sensing operational amplifier. this feedback preferably comprises a resistor connected between the output and input of the operational amplifier. The novelty of the invention resides in providing positive feedback such that switching of the operational amplifier is synchronized with switching of the voltage across the thyristor. The invention provides a solution to problems associated with high common mode voltage and enables use of lower cost components than would be required by other approaches.
1996-07-24
to fuel tank 27 aboard 23 test torpedo 26. Pressure switch 19B operates to close solenoid 24 valve 22A and concurrently open solenoid valve 22D...leading to a pump explosion. The boost pump 4 is driven by its 11 motor 14B and positive displacement pump 1 by its respective 12 motor 14A. Pressure ... switch 19A monitors the head pressure 13 created by the boost pump 4 and it will shut off the motor 14A of 14 the positive displacement pump 1 if
Gas-driven pump for ground-water samples
Signor, Donald C.
1978-01-01
Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)
Valving for controlling a fluid-driven reciprocating apparatus
Whitehead, John C.
1995-01-01
A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.
Valving for controlling a fluid-driven reciprocating apparatus
Whitehead, J.C.
1995-06-27
A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.
46 CFR 34.10-5 - Fire pumps-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps-T/ALL. 34.10-5 Section 34.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fire Main System, Details § 34.10-5 Fire pumps—T/ALL. (a) Tankships shall be equipped with independently driven fire pumps in...
46 CFR 34.10-5 - Fire pumps-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Fire pumps-T/ALL. 34.10-5 Section 34.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Fire Main System, Details § 34.10-5 Fire pumps—T/ALL. (a) Tankships shall be equipped with independently driven fire pumps in...
Constant-Pressure Hydraulic Pump
NASA Technical Reports Server (NTRS)
Galloway, C. W.
1982-01-01
Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.
46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...
Thermally driven microfluidic pumping via reversible shape memory polymers
NASA Astrophysics Data System (ADS)
Robertson, J. M.; Rodriguez, R. X.; Holmes, L. R., Jr.; Mather, P. T.; Wetzel, E. D.
2016-08-01
The need exists for autonomous microfluidic pumping systems that utilize environmental cues to transport fluid within a network of channels for such purposes as heat distribution, self-healing, or optical reconfiguration. Here, we report on reversible thermally driven microfluidic pumping enabled by two-way shape memory polymers. After developing a suitable shape memory polymer (SMP) through variation in the crosslink density, thin and flexible microfluidic devices were constructed by lamination of plastic films with channels defined by laser-cutting of double-sided adhesive film. SMP blisters integrated into the devices provide thermally driven pumping, while opposing elastic blisters are used to generate backpressure for reversible operation. Thermal cycling of the device was found to drive reversible fluid flow: upon heating to 60 °C, the SMP rapidly contracted to fill the surface channels with a transparent fluid, and upon cooling to 8 °C the flow reversed and the channel re-filled with black ink. Combined with a metallized backing layer, this device results in refection of incident light at high temperatures and absorption of light (at the portions covered with channels) at low temperatures. We discuss power-free, autonomous applications ranging from thermal regulation of structures to thermal indication via color change.
Enhanced Component Performance Study: Motor-Driven Pumps 1998–2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John Alton
2016-02-01
This report presents an enhanced performance evaluation of motor-driven pumps at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The motor-driven pump failure modes considered for standby systems are failure to start, failure to run less than or equal to one hour, and failure to run more than one hour; for normally running systems, the failure modes considered are failure to start and failure tomore » run. An eight hour unreliability estimate is also calculated and trended. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified in pump run hours per reactor year. Statistically significant decreasing trends were identified for standby systems industry-wide frequency of start demands, and run hours per reactor year for runs of less than or equal to one hour.« less
Pumping approximately integrable systems
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2017-01-01
Weak perturbations can drive an interacting many-particle system far from its initial equilibrium state if one is able to pump into degrees of freedom approximately protected by conservation laws. This concept has for example been used to realize Bose–Einstein condensates of photons, magnons and excitons. Integrable quantum systems, like the one-dimensional Heisenberg model, are characterized by an infinite set of conservation laws. Here, we develop a theory of weakly driven integrable systems and show that pumping can induce large spin or heat currents even in the presence of integrability breaking perturbations, since it activates local and quasi-local approximate conserved quantities. The resulting steady state is qualitatively captured by a truncated generalized Gibbs ensemble with Lagrange parameters that depend on the structure but not on the overall amplitude of perturbations nor the initial state. We suggest to use spin-chain materials driven by terahertz radiation to realize integrability-based spin and heat pumps. PMID:28598444
Hotra, Adam; Suter, Manuel; Biuković, Goran; Ragunathan, Priya; Kundu, Subhashri; Dick, Thomas; Grüber, Gerhard
2016-05-01
The F1 FO -ATP synthase is one of the enzymes that is essential to meet the energy requirement of both the proliferating aerobic and hypoxic dormant stages of the life cycle of mycobacteria. Most F-ATP synthases consume ATP in the α3 :β3 headpiece to drive the γ subunit, which couples ATP cleavage with proton pumping in the c ring of FO via the bottom of the γ subunit. ATPase-driven H(+) pumping is latent in mycobacteria. The presence of a unique 14 amino acid residue loop of the mycobacterial γ subunit has been described and aligned in close vicinity to the c-ring loop Priya R et al. (2013) J Bioenerg Biomembr 45, 121-129 Here, we used inverted membrane vesicles (IMVs) of fast-growing Mycobacterium smegmatis and a variety of covalent and non-covalent inhibitors to characterize the ATP hydrolysis activity of the F-ATP synthase inside IMVs. These vesicles formed a platform to investigate the function of the unique mycobaterial γ loop by deleting the respective loop-encoding sequence (γ166-179 ) in the genome of M. smegmatis. ATP hydrolysis-driven H(+) pumping was observed in IMVs containing the Δγ166-179 mutant protein but not for IMVs containing the wild-type F-ATP synthase. In addition, when compared to the wild-type enzyme, IMVs containing the Δγ166-179 mutant protein showed increased ATP cleavage and lower levels of ATP synthesis, demonstrating that the loop affects ATPase activity, ATPase-driven H(+) pumping and ATP synthesis. These results further indicate that the loop may affect coupling of ATP hydrolysis and synthesis in a different mode. © 2016 Federation of European Biochemical Societies.
NASA Technical Reports Server (NTRS)
Conway, Edmund J.
1992-01-01
An overview of previous studies related to laser power transmission is presented. Particular attention is given to the use of solar pumped lasers for space power applications. Three general laser mechanisms are addressed: photodissociation lasing driven by sunlight, photoexcitation lasing driven directly by sunlight, and photoexcitation lasing driven by thermal radiation.
Custom Unit Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis
2010-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.
Fluid-driven reciprocating apparatus and valving for controlling same
Whitehead, John C.; Toews, Hans G.
1993-01-01
A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.
Flow pumping system for physiological waveforms.
Tsai, William; Savaş, Omer
2010-02-01
A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.
New concepts and new design of permanent maglev rotary artificial heart blood pumps.
Qian, K X; Zeng, P; Ru, W M; Yuan, H Y
2006-05-01
According to tradition, permanent maglev cannot achieve stable equilibrium. The authors have developed, to the contrary, two stable permanent maglev impeller blood pumps. The first pump is an axially driven uni-ventricular assist pump, in which the rotor with impeller is radially supported by two passive magnetic bearings, but has one point contact with the stator axially at standstill. As the pump raises its rotating speed, the increasing hydrodynamic force of fluid acting on the impeller will make the rotor taking off from contacting point and disaffiliate from the stator. Then the rotor becomes fully suspended. The second pump is a radially driven bi-ventricular assist pump, i.e., an impeller total artificial heart. Its rotor with two impellers on both ends is supported by two passive magnetic bearings, which counteract the attractive force between rotor magnets and stator coil iron core. The rotor is affiliated to the stator radially at standstill and becomes levitated during rotation. Therefore, the rotor keeps concentric with stator during rotation but eccentric at standstill, as is confirmed by rotor position detection with Honeywell sensors. It concludes that the permanent maglev needs action of a non-magnetic force to achieve stability but a rotating magnetic levitator with high speed and large inertia can maintain its stability merely with passive magnetic bearings.
High voltage and current, gate assisted, turn-off thyristor development
NASA Technical Reports Server (NTRS)
Nowalk, T. P.; Brewster, J. B.; Kao, Y. C.
1972-01-01
An improved high speed power switch with unique turn-off capability was developed. This gate assisted turn-off thyristor (GATT) was rated 1000 volts and 100 amperes with turn-off times of 2 microseconds. Fifty units were delivered for evaluation. In addition, test circuits designed to relate to the series inverter application were built and demonstrated. In the course of this work it was determined that the basic device design is adequate to meet the static characteristics and dynamic turn-off specification. It was further determined that the turn-on specification is critically dependent on the gate drive circuit due to the distributive nature of the cathode-gate geometry. Future work should emphasize design modifications which reduce the gate current required for fast turn-on, thereby opening the way to higher power (current) devices.
Observation of the Rabi oscillation of light driven by an atomic spin wave.
Chen, L Q; Zhang, Guo-Wan; Bian, Cheng-Ling; Yuan, Chun-Hua; Ou, Z Y; Zhang, Weiping
2010-09-24
Coherent conversion between a Raman pump field and its Stokes field is observed in a Raman process with a strong atomic spin wave initially prepared by another Raman process operated in the stimulated emission regime. The oscillatory behavior resembles the Rabi oscillation in atomic population in a two-level atomic system driven by a strong light field. The Rabi-like oscillation frequency is found to be related to the strength of the prebuilt atomic spin wave. High conversion efficiency of 40% from the Raman pump field to the Stokes field is recorded and it is independent of the input Raman pump field. This process can act as a photon frequency multiplexer and may find wide applications in quantum information science.
Magnetic Heat Pump Containing Flow Diverters
NASA Technical Reports Server (NTRS)
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
[Research on the feasibility of a magnetic-coupling-driven axial flow blood pump].
Yu, Xiaoqing; Ding, Wenxiang; Wang, Wei; Chen, En; Jiang, Zuming; Zou, Wenyan
2004-02-01
A new-designed axial flow blood pump, dived by magnetic coupling and using internal hollow brushless DC motor and inlet and outlet in line with impeller, was tested in mimic circuit. The results showed good performance of the new pump and indicated that its hydrodynamic characteristic can meet the demands of clinical extracorporeal circulation and auxiliary circulation.
Water Pump Development for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently scheduled for March, 2009, after which the pump will be delivered to NASA for further testing.
FMR-driven spin pumping in Y3Fe5O12-based structures
NASA Astrophysics Data System (ADS)
Yang, Fengyuan; Hammel, P. Chris
2018-06-01
Ferromagnetic resonance driven spin pumping, a topic of steadily increasing interest since its emergence over two decades ago, remains one of the most exciting research fields in condensed matter physics. Among the many materials that have been explored for spin pumping, yttrium iron garnet (YIG) is one of the most extensively studied because of its exceptionally low magnetic damping and insulating nature. There is a great amount of literature in the spin pumping and related research fields, too broad for this review to cover. In this Topical Review, we focus on the YIG-based spin pumping results carried out by our groups, including: the mechanism and technical details of our off-axis sputtering technique for the growth of single-crystalline YIG epitaxial films with a high degree ordering, experimental evidence for the high quality of the YIG films, spin pumping results from YIG into various transition metals and their heterostructures, dynamic spin transport in YIG/antiferromagnet hybrid structures, intralayer spin pumping by localized spin wave modes confined by a micromagnetic probe, dynamic spin coupling between YIG and nitrogen-vacancy centers in diamond, parametric spin pumping from high-wavevector spin waves in YIG, and localized spin wave mode behavior in broadly tunable spatially complex magnetic configurations. These results build on the power and versatility of YIG spin pumping to improve our understanding of spin dynamics, spin currents, spin Hall physics, spin–orbit coupling, dynamic magnetic coupling, and the relationship between these phenomena in a broad range of materials, geometries, and settings.
Performance Analysis of a Wind Turbine Driven Swash Plate Pump for Large Scale Offshore Applications
NASA Astrophysics Data System (ADS)
Buhagiar, D.; Sant, T.
2014-12-01
This paper deals with the performance modelling and analysis of offshore wind turbine-driven hydraulic pumps. The concept consists of an open loop hydraulic system with the rotor main shaft directly coupled to a swash plate pump to supply pressurised sea water. A mathematical model is derived to cater for the steady state behaviour of entire system. A simplified model for the pump is implemented together with different control scheme options for regulating the rotor shaft power. A new control scheme is investigated, based on the combined use of hydraulic pressure and pitch control. Using a steady-state analysis, the study shows how the adoption of alternative control schemes in a the wind turbine-hydraulic pump system may result in higher energy yields than those from a conventional system with an electrical generator and standard pitch control for power regulation. This is in particular the case with the new control scheme investigated in this study that is based on the combined use of pressure and rotor blade pitch control.
Input Power Characteristics of a Three-Phase Thyristor Converter
DOT National Transportation Integrated Search
1973-10-01
A phase delay rectifier operating into a passive resistive load was instrumented in the laboratory. Techniques for accurate measurement of power, displacement reactive power, harmonic components, and distortion reactive power are presented. The chara...
NASA Technical Reports Server (NTRS)
1975-01-01
A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.
29. At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo ...
29. At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo Pumps, Buffalo, NY, driven by Allis Chalmers motors (size 3 HSO, head 230, 120 cpm, 1750, rpm, Impulse dia. 15) installed in the 1960s and used for water-cooling system for 230-kv cable; the cables have been removed and the pumps are not currently used. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA
Code of Federal Regulations, 2011 CFR
2011-10-01
... must provide for your towing vessel either a self-priming, power-driven, fixed fire-pump, a fire main... fire hydrants with attached hose to reach any part of the machinery space using a single length of fire... providing a solid stream and a spray pattern. (e) The portable fire pump must be self-priming and power...
Code of Federal Regulations, 2012 CFR
2012-10-01
... must provide for your towing vessel either a self-priming, power-driven, fixed fire-pump, a fire main... fire hydrants with attached hose to reach any part of the machinery space using a single length of fire... providing a solid stream and a spray pattern. (e) The portable fire pump must be self-priming and power...
Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H-J
2015-12-04
Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg(82) and Thr(201), linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg(82)-Thr(201) hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Hsu, Min-Feng; Fu, Hsu-Yuan; Cai, Chun-Jie; Yi, Hsiu-Pin; Yang, Chii-Shen; Wang, Andrew H.-J.
2015-01-01
Retinal bound light-driven proton pumps are widespread in eukaryotic and prokaryotic organisms. Among these pumps, bacteriorhodopsin (BR) proteins cooperate with ATP synthase to convert captured solar energy into a biologically consumable form, ATP. In an acidic environment or when pumped-out protons accumulate in the extracellular region, the maximum absorbance of BR proteins shifts markedly to the longer wavelengths. These conditions affect the light-driven proton pumping functional exertion as well. In this study, wild-type crystal structure of a BR with optical stability under wide pH range from a square halophilic archaeon, Haloquadratum walsbyi (HwBR), was solved in two crystal forms. One crystal form, refined to 1.85 Å resolution, contains a trimer in the asymmetric unit, whereas another contains an antiparallel dimer was refined at 2.58 Å. HwBR could not be classified into any existing subgroup of archaeal BR proteins based on the protein sequence phylogenetic tree, and it showed unique absorption spectral stability when exposed to low pH values. All structures showed a unique hydrogen-bonding network between Arg82 and Thr201, linking the BC and FG loops to shield the retinal-binding pocket in the interior from the extracellular environment. This result was supported by R82E mutation that attenuated the optical stability. The negatively charged cytoplasmic side and the Arg82–Thr201 hydrogen bond may play an important role in the proton translocation trend in HwBR under acidic conditions. Our findings have unveiled a strategy adopted by BR proteins to solidify their defenses against unfavorable environments and maintain their optical properties associated with proton pumping. PMID:26483542
Phased Retrofits in Existing Homes in Florida Phase II: Shallow Plus Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, K.; Parker, D.; Martin, E.
Originally published in February 2016, this revision contains an added section called 'Evaluation of Complete Central System Replacement with Inverter-Driven Heat Pump,' which presents the designs and energy savings evaluations of two different schemes wherein inverter-driven systems replaced a home's existing central system. Analyses for three additional retrofit measures were bolstered by longer-term data; these are described in the sections on supplemental mini-split heat pumps (MSHPs), smart thermostats, and heat pump clothes dryers. The sections on supplemental MSHPs and smart thermostats were also enhanced with larger sample sizes and projections of weather-normalized annual energy savings. Finally, peak system hour energymore » demand-reduction predictions are provided for all retrofit measures where meaningful impacts could be drawn.« less
Phased Retrofits in Existing Homes in Florida Phase II: Shallow Plus Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, K.; Parker, D.; Martin, E.
Originally published in February 2016, this revision contains an added section called 'Evaluation of Complete Central System Replacement with Inverter-Driven Heat Pump,' which presents the designs and energy savings evaluations of two different schemes wherein inverter-driven systems replaced a home’s existing central system. Analyses for three additional retrofit measures were bolstered by longer-term data; these are described in the sections on supplemental mini-split heat pumps (MSHPs), smart thermostats, and heat pump clothes dryers. The sections on supplemental MSHPs and smart thermostats were also enhanced with larger sample sizes and projections of weather-normalized annual energy savings. Finally, peak system hour energymore » demand-reduction predictions are provided for all retrofit measures where meaningful impacts could be drawn.« less
NASA Technical Reports Server (NTRS)
Edmond, John A. (Inventor); Palmour, John W. (Inventor)
1996-01-01
The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.
NASA Astrophysics Data System (ADS)
Ueda, Daiki; Takeuchi, Kiyoshi; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-04-01
A new circuit model that provides a clear guide on designing a MOS-gated thyristor (MGT) is reported. MGT plays a significant role in achieving a steep subthreshold slope of a PN-body tied silicon-on-insulator (SOI) FET (PNBTFET), which is an SOI MOSFET merged with an MGT. The effects of design parameters on MGT and the proposed equivalent circuit model are examined to determine how to regulate the voltage response of MGT and how to suppress power dissipation. It is demonstrated that MGT with low threshold voltages, small hysteresis widths, and small power dissipation can be designed by tuning design parameters. The temperature dependence of MGT is also examined, and it is confirmed that hysteresis width decreases with the average threshold voltage kept nearly constant as temperature rises. The equivalent circuit model can be conveniently used to design low-power PNBTFET.
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.
2017-12-01
Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.
Taenaka, Yoshiyuki; Wakisaka, Yoshinari; Masuzawa, Toru; Tatsumi, Eisuke; Toda, Koichi; Miyazaki, Koji; Eya, Kazuhiro; Baba, Yuzo; Nakatani, Takeshi; Ohno, Takashi; Nishimura, Takashi; Takano, Hisateru
1996-05-01
A centrifugal pump with a unique structure has been developed for chronic support. The pump is driven by a magnetic coupling and has no rotating shaft, no seal around the rotating part, and a balancing hole at the center of the impeller and the thrust bearing. The pump was improved in stepwise fashion to realize good antithrombogenicity and low hemolysis. The first pump, the National Cardiovascular Center (NCVC)-O, had an impeller with 4 rectangular and curved vanes; 6 triangularly shaped curved vanes were employed in the second model, the NCVC-1, to reduce trauma to the blood. In the third design, the NCVC-2, the central hole was enlarged, and the thrust bearing shoulder was rounded so that blood washing was enhanced around the impeller; stream lines also were smoothed for improved antithrombogenicity. The hemolytic property of the device was evaluated in vitro with heparinized fresh goat blood; hemolysis indexes of the NCVC-0, -1, and -2 were 0.05, 0.01, and 0.006 g per 100 L, respectively. Antithrombogenicity of the pumps was examined in animal experiments as a left heart bypass device in goats weighing 52-75 kg. Six NCVC-0 pumps were driven for 14 to 33 (22.0 ± 7.6) days in goats receiving the antiplatelet drug cilostazol orally. Four NCVC-I pumps ran for 1 to 80 (28.5 ± 30.6) days with the same drug regimen in 2 cases and with no anticoagulation therapy in 2 cases. After 3 preliminary 1-week tests of NCVC-2 pumps in animals, the pump was installed in 3 goats; 2 pumps were still running on the 182nd and 58th pumping day. Intracorporeal implantation also was attempted successfully. The results indicate that this pump has promising features for chronic support although longer term and additional evaluations are necessary. © 1996 International Society for Artificial Organs.
Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Toda, K; Miyazaki, K; Eya, K; Baba, Y; Nakatani, T; Ohno, T; Nishimura, T; Takano, H
1996-06-01
A centrifugal pump with a unique structure has been developed for chronic support. The pump is driven by a magnetic coupling and has no rotating shaft, no seal around the rotating part, and a balancing hole at the center of the impeller and the thrust bearing. The pump was improved in stepwise fashion to realize good antithrombogenicity and low hemolysis. The first pump, the National Cardiovascular Center (NCVC)-0, had an impeller with 4 rectangular and curved vanes; 6 triangularly shaped curved vanes were employed in the second model, the NCVC-1, to reduce trauma to the blood. In the third design, the NCVC-2, the central hole was enlarged, and the thrust bearing shoulder was rounded so that blood washing was enhanced around the impeller; stream lines also were smoothed for improved antithrombogenicity. The hemolytic property of the device was evaluated in vitro with heparinized fresh goat blood; hemolysis indexes of the NCVC-0, -1, and -2 were 0.05, 0.01, and 0.006 g per 100 L, respectively. Antithrombogenicity of the pumps was examined in animal experiments as a left heart bypass device in goals weighing 52-75 kg. Six NCVC-0 pumps were driven for 14 to 33 (22.0 +/- 7.6) days in goats receiving the antiplatelet drug cilostazol orally. Four NCVC-1 pumps ran for 1 to 80 (28.5 +/- 30.6) days with the same drug regimen in 2 cases and with no anticoagulation therapy in 2 cases. After 3 preliminary 1-week tests of NCVC-2 pumps in animals, the pump was installed in 3 goats; 2 pumps were still running on the 182nd and 58th pumping day. Intracorporeal implantation also was attempted successfully. The results indicate that this pump has promising features for chronic support although longer term and additional evaluations are necessary.
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
2017-02-21
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
Preliminary study of a gas burner-driven and ground-coupled heat pump system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P.F.
1995-12-31
To address the concerns for higher energy efficiency and the immediate phase out of the chlorofluorocarbons (CFCs), a new gas burner-driven, ground-coupled heat pump (GBGCHP) system is proposed for study. The new system is energy efficient and pose no environmental problem. There are three unique features in the proposed system: (1) a patented gas burner-driven compressor with a floating diaphragm piston-cylinder for energy efficiency and accommodating variable load, (2) the ground coupled water-to-air heat exchangers for high coefficient of performance (COPs), and (3) the new refrigerants based on fluoroiodocarbons (FICS) with very little ozone depletion and global warming potential. Amore » preliminary analysis of a prototype heat pump with 3 ton (10.55 kW) heating capacity is presented. The thermodynamics analysis of the system shows that the steady state COP rating higher than 7 is possible with the system operating in heating mode. Additional research work for the GBGCHP system, especially the FICs` thermodynamic properties in the superheated region, is also described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
From diffusion pumps to cryopumps: The conversion of GSFC's space environment simulator
NASA Technical Reports Server (NTRS)
Cary, Ron
1992-01-01
The SES (Space Environmental Simulator), largest of the Thermal Vacuum Facilities at The Goddard Space Flight Center, recently was converted from an oil diffusion pumped chamber to a Cryopumped chamber. This modification was driven by requirements of flight projects. The basic requirement was to retain or enhance the operational parameters of the chamber such as pumping speed, ultimate vacuum, pump down time, and thermal system performance. To accomplish this task, seventeen diffusion pumps were removed and replaced with eight 1.2 meter (48 inch) diameter cryopumps and one 0.5 meter (20 inch) turbomolecular pump. The conversion was accomplished with a combination of subcontracting and in-house efforts to maximize the efficiency of implementation.
50. (Credit JTL) Locomotivetype steam driven air compressor built by ...
50. (Credit JTL) Locomotive-type steam driven air compressor built by Westinghouse Air Brake Company and located on west wall of old high service room. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA
[Improved design of permanent maglev impeller assist heart].
Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu
2002-12-01
Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.
Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system
NASA Technical Reports Server (NTRS)
Gabacz, L. E.
1973-01-01
The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.
46 CFR 108.415 - Fire pump: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...
46 CFR 108.415 - Fire pump: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...
46 CFR 108.415 - Fire pump: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...
46 CFR 108.415 - Fire pump: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...
46 CFR 108.415 - Fire pump: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... have at least two independently driven fire pumps that can each deliver water at a continuous pitot tube pressure of at least 3.5 kilograms per square centimeter (approximately 50 pounds per square inch) at least two fire hose nozzles that are connected to the highest two fire hydrants on the unit...
Twin-spool turbopumps for ''low'' net positive suction pressure operations
NASA Technical Reports Server (NTRS)
Bair, E. K.; Campbell, W. E.; Ford, O. I.
1970-01-01
Modified single-shaft turbopump incorporates inducer and main pump, each separately driven at different speeds through coaxial-shaft arrangement. Inducer operates at low speed for low net positive suction pressure, main pump operates at high speed to generate high pressure. This arrangement requires no external control for the inducer.
NASA Astrophysics Data System (ADS)
Roy, Pinku; Maiti, Tanmoy
2018-02-01
Double perovskite materials have been studied in detail by many researchers, as their magnetic and electronic properties can be controlled by the substitution of alkaline earth metals or lanthanides in the A site and transition metals in the B site. Here we report the temperature-driven, p-n-type conduction switching assisted, large change in thermopower in La3+-doped Sr2TiFeO6-based double perovskites. Stoichiometric compositions of La x Sr2-x TiFeO6 (LSTF) with 0 ⩽ x ⩽ 0.25 were synthesized by the solid-state reaction method. Rietveld refinement of room-temperature XRD data confirmed a single-phase solid solution with cubic crystal structure and Pm\\bar{3}m space group. From temperature-dependent electrical conductivity and Seebeck coefficient (S) studies it is evident that all the compositions underwent an intermediate semiconductor-to-metal transition before the semiconductor phase reappeared at higher temperature. In the process of semiconductor-metal-semiconductor transition, LSTF compositions demonstrated temperature-driven p-n-type conduction switching behavior. The electronic restructuring which occurs due to the intermediate metallic phase between semiconductor phases leads to the colossal change in S for LSTF oxides. The maximum drop in thermopower (ΔS ~ 2516 µV K-1) was observed for LSTF with x = 0.1 composition. Owing to their enormous change in thermopower of the order of millivolts per kelvin, integrated with p-n-type resistance switching, these double perovskites can be used for various high-temperature multifunctional device applications such as diodes, sensors, switches, thermistors, thyristors, thermal runaway monitors etc. Furthermore, the conduction mechanisms of these oxides were explained by the small polaron hopping model.
Design and Testing of a Small Inductive Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Martin, Adam K.; Eskridge, Richard H.; Dominguez, Alexandra; Polzin, Kurt A.; Riley, Daniel P.; Kimberlin, Adam C.
2015-01-01
The design and testing of a small inductive pulsed plasma thruster (IPPT), shown in Fig. 1 with all the major subsystems required for a thruster of this kind are described. Thrust measurements and imaging of the device operated in rep-rated mode are presented to quantify the performance envelope of the device. The small IPPT described in this paper was designed to serve as a test-bed for the pulsed gas-valves and solid-state switches required for a IPPTs. A modular design approach was used to permit future modifications and upgrades. The thruster consists of the following sub-systems: a) a multi-turn, spiral-wound acceleration coil (27 cm o.d., 10 cm i.d.) driven by a 10 microFarad capacitor and switched with a high-voltage thyristor, b) a fast pulsed gas-valve, and c.) a glow-discharge pre-ionizer (PI) circuit. The acceleration-coil circuit may be operated at voltages up to 4 kV (the thyristor limit is 4.5 kV). The device may be operated at rep-rates up to 30 Hz with the present gas-valve. Thrust measurements and imaging of the device operated in rep-rated mode will be presented. The pre-ionizer consists of a 0.3 microFarad capacitor charged to 4 kV and connected to two annular stainless-steel electrodes bounding the area of the coil-face. The 4 kV potential is held across them and when the gas is puffed in over the coil, the PI circuit is completed, and a plasma is formed. Even at the less than optimal base-pressure in the chamber (approximately 5 × 10(exp -4) torr), the PI held-off the applied voltage, and only discharged upon command. For a capacitor charge of 2 kV the peak coil current is 4.1 kA, and during this pulse a very bright discharge (much brighter than from the PI alone) was observed (see Fig. 2). Interestingly, for discharges at this charge voltage the PI was not required as the current rise rate, dI/dt, of the coil itself was sufficient to ionize the gas.
A Preliminary Cost Study of the Dual Mode Inverter Controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeever, J.W.
2005-01-28
In 1998, the Power Electronics and Electric Machinery Research Center (PEEMRC) at the Oak Ridge National Laboratory (ORNL) started a program to investigate alternate field weakening schemes for permanent magnet (PM) motors. The adjective ''alternate'' was used because at that time, outside research emphasis was on motors with interior-mounted PMs (IPMs). The PEEMRC emphasis was placed on motors with surface-mounted PMs (SPMs) because of the relative ease of manufacturing SPM motors compared with the IPM motors. Today the PEEMRC is continuing research on SPMs while examining the IPMs that have been developed by industry. Out of this task--the goal ofmore » which was to find ways to drive PM motors that inherently have low inductance at high speeds where their back-emf exceeds the supply voltage--ORNL developed and demonstrated the dual mode inverter control (DMIC) [1,2] method of field weakening for SPM motors. The predecessor of DMIC is conventional phase advance (CPA), which was developed by UQM Technologies, Inc. [3]. Fig. 1 shows the three sets of anti-parallel thyristors in the dashed box that comprise the DMIC. If one removes the dashed box by shorting each set of anti-parallel thyristors, the configuration becomes a conventional full bridge inverter on the left driving a three phase motor on the right. CPA may be used to drive this configuration ORNL's initial analyses of CPA and DMIC were based on driving motors with trapezoidal back-emfs [4-6], obtained using double layer lapped stator windings with one slot per pole per phase. A PM motor with a sinusoidal back-emf obtained with two poles per slot per phase has been analyzed under DMIC operation as a University of Tennessee-Knoxville (UTK) doctoral dissertation [7]. In the process of this research, ORNL has completed an analysis that explains and quantifies the role of inductance in these methods of control. The Appendix includes information on the equations for the three components of phase inductance, L{sub gap}, L{sub slot}, and L{sub endturns}. PM motors inherently have a lower inductance because of the increase in effective air gap caused by the magnet, which is in the denominator of the equation for L{sub gap}. L{sub gap} accounts for about half of the phase inductance. Because of the low inductance, there is a propensity for currents to exceed the motor's rated value. DMIC solves this problem for low-inductance PM motors and, in addition, provides a number of safety features that protect against uncontrolled generator mode operation [8,9]; however, the DMIC topology adds a pair of anti-parallel thyristors in each of the three phases, thereby introducing additional silicon costs as well as additional voltage drops during operation. It poses the tradeoff question; under what conditions can the beneficial features of DMIC offset its additional silicon cost and voltage drop losses? The purpose of this report is to address the tradeoff question. Sections of the report will: (1) review the role of self-inductance in performance and control of PM motors, (2) discuss the bounding inductances for motors with trapezoidal back-emfs under CPA control, (3) discuss the bounding inductances for trapezoidal back-emfs under DMIC, (4) discuss the bounding inductances for the PM synchronous motor (PMSM), (5) present the analysis showing how DMIC minimizes current in PMSMs, (6) present the results of a cost study conducted for two motors driven using a CPA inverter and for two motors driven using DMIC, (7) discuss estimating life cycle cost benefits, and (8) present conclusions.« less
Modification of ocean-estuary salt fluxes by density-driven advection of a headland eddy
NASA Astrophysics Data System (ADS)
Fram, J. P.; Stacey, M. T.
2005-05-01
Scalar exchange between San Francisco Bay and the coastal ocean is examined using shipboard observations made across the Golden Gate Channel. Ocean-estuary exchange is often described as a combination of two independent types of mechanisms: density-driven exchange such as gravitational circulation and tidal asymmetries such as tidal trapping. In this study we found that exchange is also governed by an interaction between these mechanisms. Tidally trapped eddies created in shallow shoals are mixed into the main channel earlier in the tidal cycle during the rainy season because the eddies are pushed seaward by gravitational circulation. This interaction increases the tidally averaged dispersive salt flux into the bay. The study consists of experiments during each of three 'seasons': winter/spring runoff (March 2002), summer upwelling (July 2003), and fall relaxation (October 2002). Within each experiment, transects across the channel were repeated approximately every 12 minutes for 25 hours during both spring tide and the following neap tide. Velocity was measured from a boat-mounted ADCP. Scalar concentrations were measured from a tow-yoed SeaSciences Acrobat. Salinity exchange over each spring-neap cycle is quantified with harmonic analysis. Harmonic results are decomposed into flux mechanisms using temporal and spatial correlations. The temporal correlation of cross-sectional averaged salinity and velocity (tidal pumping flux) is the largest part of the dispersive flux of salinity into the bay. From the tidal pumping portion of the dispersive flux, it is shown that there is less exchange than was found in earlier studies. Furthermore, tidal pumping flux scales strongly with flow due to density-driven movement of tidally trapped eddies and density-driven increases in ebb-flood frictional phasing. Complex bathymetry makes salinity exchange scale differently with flow than would be expected from simple tidal pumping and gravitational circulation models.
Technology Solutions Case Study: Field Performance of Inverter-Driven Heat Pumps in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Williamson and R. Aldrich
2015-09-01
To better understand and characterize heating performance, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven ASHPs across the northeast United States during the winter of 2013–2014.
Resonantly photo-pumped nickel-like erbium X-ray laser
Nilsen, Joseph
1990-01-01
A resonantly photo-pumped X-ray laser (10) that enhances the gain of seve laser lines that also lase because of collisional excitations and recombination processes, is described. The laser comprises an aluminum (12) and erbium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like erbium ions (34) are resonantly photo-pumped by line emission from hydrogen-like aluminum ions (32).
Trinkl, J; Havlik, P; Mesana, T; Mitsui, N; Morita, S; Demunck, J L; Tourres, J L; Monties, J R
1993-01-01
Our ventricular assist device uses a valveless volumetric pump operating on the Maillard-Wankel rotary principle. It is driven by an electric motor and provides a semi pulsatile flow. At each cycle, blood is actively aspirated into the device, and overpumping results in collapse at the pump inlet. To prevent overpumping, it is necessary to ensure that pump intake does not exceed venous return. Poor long-term reliability rules out the use of current implantable pressure sensors for this purpose. To resolve this problem, we have developed a method of control based on monitoring of the intensity of electric current consumed by the motor. The method consists of real time monitoring of current intensity at the beginning of each pump cycle. A sudden change in intensity indicates underfilling, and motor speed is reduced to prevent collapse. The current consumed by the motor also depends on the afterload, but the form of the signal remains the same when afterload changes. After demonstrating the feasibility of this technique in a simulator, we are now testing it in animals. We were able to detect and prevent collapse due to overpumping by the cardiac assist device. This system also enables us to know the maximum possible assistance and to thus adapt assistance to the user.
Effect of Frequency and Spatial-Harmonics on Rotary and Linear Induction Motor Characteristics
DOT National Transportation Integrated Search
1972-03-01
A computer analysis is made of the effect of current and MMF airgap harmonics on the output characteristics of rotary and linear induction motors. The current harmonics accompanying thyristor-control operation are evaluated by Fourier analyzing the p...
Regenerative Snubber For GTO-Commutated SCR Inverter
NASA Technical Reports Server (NTRS)
Rippel, Wally E.; Edwards, Dean B.
1992-01-01
Proposed regenerative snubbing circuit substituted for dissipative snubbing circuit in inverter based on silicon controlled rectifiers (SCR's) commutated by gate-turn-off thyristor (GTO). Intended to reduce loss of power that occurs in dissipative snubber. Principal criteria in design: low cost, simplicity, and reliability.
Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere
NASA Astrophysics Data System (ADS)
Boyd, Philip W.
The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1
F"orster-type mechanism of the redox-driven proton pump
NASA Astrophysics Data System (ADS)
Mourokh, Lev; Smirnov, Anatoly; Nori, Franco
2007-03-01
We propose a model to describe an electronically-driven proton pump in the cytochrome c oxidase (CcO). We examine the situation when the electron transport between the two sites embedded into the inner membrane of the mitochondrion occurs in parallel with the proton transfer from the protonable site that is close to the negative (inner) side of the membrane to the other protonable site located nearby the positive (outer) surface of the membrane. In addition to the conventional electron and proton tunnelings between the sites, the Coulomb interaction between electrons and protons localized on the corresponding sites leads to so-called F"orster transfer, i.e. to the process when the simultaneous electron and proton tunnelings are accompanied by the resonant energy transfer between the electrons and protons. Our calculations based on reasonable parameters have demonstrated that the F"orster process facilitates the proton pump at physiological temperatures. We have examined the effects of an electron voltage build-up, external temperature, and molecular electrostatics driving the electron and proton energies to the resonant conditions, and have shown that these parameters can control the proton pump operation.
Advanced solar energy conversion. [solar pumped gas lasers
NASA Technical Reports Server (NTRS)
Lee, J. H.
1981-01-01
An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.
NASA Astrophysics Data System (ADS)
Kim, Jungho
2014-02-01
The effect of additional optical pumping injection into the ground-state ensemble on the ultrafast gain and the phase recovery dynamics of electrically-driven quantum-dot semiconductor optical amplifiers is numerically investigated by solving 1088 coupled rate equations. The ultrafast gain and the phase recovery responses are calculated with respect to the additional optical pumping power. Increasing the additional optical pumping power can significantly accelerate the ultrafast phase recovery, which cannot be done by increasing the injection current density.
Blin, Stéphane; Vaudel, Olivier; Besnard, Pascal; Gabet, Renaud
2009-05-25
Bistabilities between a steady (or pulsating, chaotic) and different pulsating regimes are investigated for an optically injected semi-conductor laser. Both numerical and experimental studies are reported for continuous-wave single-mode semiconductor distributed-feedback lasers emitting at 1.55 microm. Hysteresis are driven by either changing the optically injected power or the frequency difference between both lasers. The effect of the injected laser pumping rate is also examined. Systematic mappings of the possible laser outputs (injection locking, bimodal, wave mixing, chaos or relaxation oscillations) are carried out. At small pumping rates (1.2 times threshold), only locking and bimodal regimes are observed. The extent of the bistable area is either 11 dB or 35 GHz, depending on the varying parameters. At high pumping rates (4 times threshold), numerous injection regimes are observed. Injection locking and its bistabilities are also reported for secondary longitudinal modes.
Quantum statistics and squeezing for a microwave-driven interacting magnon system.
Haghshenasfard, Zahra; Cottam, Michael G
2017-02-01
Theoretical studies are reported for the statistical properties of a microwave-driven interacting magnon system. Both the magnetic dipole-dipole and the exchange interactions are included and the theory is developed for the case of parallel pumping allowing for the inclusion of the nonlinear processes due to the four-magnon interactions. The method of second quantization is used to transform the total Hamiltonian from spin operators to boson creation and annihilation operators. By using the coherent magnon state representation we have studied the magnon occupation number and the statistical behavior of the system. In particular, it is shown that the nonlinearities introduced by the parallel pumping field and the four-magnon interactions lead to non-classical quantum statistical properties of the system, such as magnon squeezing. Also control of the collapse-and-revival phenomena for the time evolution of the average magnon number is demonstrated by varying the parallel pumping amplitude and the four-magnon coupling.
Device and method to relieve cordelle action in a chain driven pump
Dysarz, Edward D.
1994-01-01
A cordelle action relief apparatus or device for use in sucker rod pumps in a petroleum or water well. The device is incorporated in a chain driven pump to prevent the chain from forming a bow or archlike configuration as the chain rolls off of the sprocket and down into the well. When the chain is allowed to form this bow or arch it could damage the well and well casing. The device includes a first rod on the side of the chain and a second rod on the second side of the chain that will allow the rollers of the chain to roll on the rod and further prevent the chain from bowing or arching and will further allow the rollers on the chain to roll on the rods which will further prevent damage to the well casing, the well, and the chain.
NASA Astrophysics Data System (ADS)
Ushimaru, Kenji
1990-08-01
Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.
Detection of pure inverse spin-Hall effect induced by spin pumping at various excitation
NASA Astrophysics Data System (ADS)
Inoue, H. Y.; Harii, K.; Ando, K.; Sasage, K.; Saitoh, E.
2007-10-01
Electric-field generation due to the inverse spin-Hall effect (ISHE) driven by spin pumping was detected and separated experimentally from the extrinsic magnetogalvanic effects in a Ni81Fe19/Pt film. By applying a sample-cavity configuration in which the extrinsic effects are suppressed, the spin pumping using ferromagnetic resonance gives rise to a symmetric spectral shape in the electromotive force spectrum, indicating that the motive force is due entirely to ISHE. This method allows the quantitative analysis of the ISHE and the spin-pumping effect. The microwave-power dependence of the ISHE amplitude is consistent with the prediction of a direct current-spin-pumping scenario.
Vibrational pumping and heating under SERS conditions: fact or myth?
Le Ru, E C; Etchegoin, P G
2006-01-01
We address in this paper the long debated issue of the possibility of vibrational pumping under Surface Enhanced Raman Scattering (SERS) conditions, both theoretically and experimentally. We revisit with simple theoretical models the mechanisms of vibrational pumping and its relation to heating. This presentation provides a clear classification of the various regimes of heating/pumping, from simple global laser heating to selective pumping of a single vibrational mode. We also propose the possibility of extreme pumping driven by stimulated phonon emission, and we introduce and apply a new experimental technique to study these effects in SERS. Our method relies on correlations between Raman peak parameters, and cross-correlation for two Raman peaks. We find strong evidence for local and dynamical heating, but no convincing evidence for selective pumping under our specific experimental SERS conditions.
IEA HPT ANNEX 41 – Cold climate heat pumps: US country report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groll, Eckhard A.; Baxter, Van D.
In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availabilitymore » of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.« less
Pathways of proton transfer in the light-driven pump bacteriorhodopsin
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1993-01-01
The mechanism of proton transport in the light-driven pump bacteriorhodopsin is beginning to be understood. Light causes the all-trans to 13-cis isomerization of the retinal chromophore. This sets off a sequential and directed series of transient decreases in the pKa's of a) the retinal Schiff base, b) an extracellular proton release complex which includes asp-85, and c) a cytoplasmic proton uptake complex which includes asp-96. The timing of these pKa changes during the photoreaction cycle causes sequential proton transfers which result in the net movement of a proton across the protein, from the cytoplasmic to the extracellular surface.
White-light parametric instabilities in plasmas.
Santos, J E; Silva, L O; Bingham, R
2007-06-08
Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.
Johnson, Ethan T; Baron, Daniel B; Naranjo, Belén; Bond, Daniel R; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A
2010-07-01
Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments.
Study toward high-performance thermally driven air-conditioning systems
NASA Astrophysics Data System (ADS)
Miyazaki, Takahiko; Miyawaki, Jin; Ohba, Tomonori; Yoon, Seong-Ho; Saha, Bidyut Baran; Koyama, Shigeru
2017-01-01
The Adsorption heat pump is a technology for cooling and heating by using hot water as a driving heat source. It will largely contribute to energy savings when it is driven by solar thermal energy or waste heat. The system is available in the market worldwide, and there are many examples of application to heat recovery in factories and to solar cooling systems. In the present system, silica gel and zeolite are popular adsorbents in combination with water refrigerant. Our study focused on activated carbon-ethanol pair for adsorption cooling system because of the potential to compete with conventional systems in terms of coefficient of performance. In addition, activated-ethanol pair can generally produce larger cooling effect by an adsorption-desorption cycle compared with that of the conventional pairs in terms of cooling effect per unit adsorbent mass. After the potential of a commercially available activated carbon with highest level specific surface area was evaluated, we developed a new activated carbon that has the optimum pore characteristics for the purpose of solar or waste heat driven cooling systems. In this paper, comparison of refrigerants for adsorption heat pump application is presented, and a newly developed activated carbon for ethanol adsorption heat pump is introduced.
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.
Waste-Heat-Driven Cooling Using Complex Compound Sorbents
NASA Technical Reports Server (NTRS)
Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh
2004-01-01
Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.
NASA Astrophysics Data System (ADS)
Yashvantrai Vyas, Bhargav; Maheshwari, Rudra Prakash; Das, Biswarup
2016-06-01
Application of series compensation in extra high voltage (EHV) transmission line makes the protection job difficult for engineers, due to alteration in system parameters and measurements. The problem amplifies with inclusion of electronically controlled compensation like thyristor controlled series compensation (TCSC) as it produce harmonics and rapid change in system parameters during fault associated with TCSC control. This paper presents a pattern recognition based fault type identification approach with support vector machine. The scheme uses only half cycle post fault data of three phase currents to accomplish the task. The change in current signal features during fault has been considered as discriminatory measure. The developed scheme in this paper is tested over a large set of fault data with variation in system and fault parameters. These fault cases have been generated with PSCAD/EMTDC on a 400 kV, 300 km transmission line model. The developed algorithm has proved better for implementation on TCSC compensated line with its improved accuracy and speed.
Velocity pump reaction turbine
House, Palmer A.
1982-01-01
An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.
Velocity pump reaction turbine
House, Palmer A.
1984-01-01
An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.
Spectral linewidth preservation in parametric frequency combs seeded by dual pumps.
Tong, Zhi; Wiberg, Andreas O J; Myslivets, Evgeny; Kuo, Bill P P; Alic, Nikola; Radic, Stojan
2012-07-30
We demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation. Parametric combs with over 200-nm bandwidth were obtained and characterized with respect to phase noise scaling to demonstrate linewidth preservation over 100 generated tones.
Velocity pump reaction turbine
House, P.A.
An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.
Zigzag laser with reduced optical distortion
Albrecht, G.F.; Comaskey, B.; Sutton, S.B.
1994-04-19
The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends. 11 figures.
Zigzag laser with reduced optical distortion
Albrecht, Georg F.; Comaskey, Brian; Sutton, Steven B.
1994-01-01
The architecture of the present invention has been driven by the need to solve the beam quality problems inherent in Brewster's angle tipped slab lasers. The entrance and exit faces of a solid state slab laser are cut perpendicular with respect to the pump face, thus intrinsically eliminating distortion caused by the unpumped Brewster's angled faces. For a given zigzag angle, the residual distortions inherent in the remaining unpumped or lightly pumped ends may be reduced further by tailoring the pump intensity at these ends.
Geothermal down well pumping system
NASA Technical Reports Server (NTRS)
Matthews, H. B.; Mcbee, W. D.
1974-01-01
A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-07-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies.
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping
Chang, Jen-Yung; Wang, Shuo; Allen, Jeffrey S.; Lee, Seong Hyuk; Chang, Suk Tai; Choi, Young-Ki; Friedrich, Craig; Choi, Chang Kyoung
2014-01-01
An electro-osmosis (EOS) diode pumping platform capable of culturing cells in fluidic cellular micro-environments particularly at low volume flow rates has been developed. Diode pumps have been shown to be a viable alternative to mechanically driven pumps. Typically electrokinetic micro-pumps were limited to low-concentration solutions (≤10 mM). In our approach, surface mount diodes were embedded along the sidewalls of a microchannel to rectify externally applied alternating current into pulsed direct current power across the diodes in order to generate EOS flows. This approach has for the first time generated flows at ultra-low flow rates (from 2.0 nl/s to 12.3 nl/s) in aqueous solutions with concentrations greater than 100 mM. The range of flow was generated by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. Embedding an additional diode on the upper surface of the enclosed microchannel increased flow rates further. We characterized the diode pump-driven fluidics in terms of intensities and frequencies of electric inputs, pH values of solutions, and solution types. As part of this study, we found that the growth of A549 human lung cancer cells was positively affected in the microfluidic diode pumping system. Though the chemical reaction compromised the fluidic control overtime, the system could be maintained fully functional over a long time if the solution was changed every hour. In conclusion, the advantage of miniature size and ability to accurately control fluids at ultra-low volume flow rates can make this diode pumping system attractive to lab-on-a-chip applications and biomedical engineering in vitro studies. PMID:25379101
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
... assure that the emergency diesel generator's diesel driven cooling water pumps perform their required... generators will provide required electrical power as assumed in the accident analyses and the cooling water... Technical Specifications to require an adequate emergency diesel generator and diesel driven cooling water...
A micro surface tension pump (MISPU) in a glass microchip.
Peng, Xing Yue Larry
2011-01-07
A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.
2006-12-31
Reset (Write a Ŕ") * Apply current to melt memory element * Cool quickly to " freeze -in" amorphous state * Amorphous state = high resistance = low...It consists of a 6 jtF storage capacitor switched by 3 series thyristors. The module output is connected to the x-ray source through a ferrite
Long pulse production from short pulses
Toeppen, J.S.
1994-08-02
A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.
Experimental Simulation of Turbine-Exhaust Oxygen Recovery
NASA Technical Reports Server (NTRS)
Clark, Jim A.; Branch, Ryan W.
2004-01-01
In some liquid-propellant rocket engines, the liquid-oxygen boost pump is driven by a turbine that is powered by high-pressure gaseous oxygen. Once it exits the turbine, this gaseous oxygen can be salvaged by injecting it into the subcooled liquid oxygen exiting the boost pump. If the main LOX pump is to function correctly under these circumstances, complete condensation of the gaseous oxygen must quickly follow its injection into the boost-pump discharge. The current investigation uses steam and water in a simple rig that allows the condensation process to be visualized and quantified. This paper offers dimensionless-parameter correlations of the data and trends observed.
Staron, Peter; Maldener, Iris
2012-10-01
Efflux pumps export a wide variety of proteinaceous and non-proteinaceous substrates across the Gram-negative cell wall. For the filamentous cyanobacterium Anabaena sp. strain PCC 7120, the ATP-driven glycolipid efflux pump DevBCA-TolC has been shown to be crucial for the differentiation of N(2)-fixing heterocysts from photosynthetically active vegetative cells. In this study, a homologous system was described. All0809/8/7-TolC form a typical ATP-driven efflux pump as shown by surface plasmon resonance. This putative exporter is also involved in diazotrophic growth of Anabaena sp. PCC 7120. A mutant in all0809 encoding the periplasmic membrane fusion protein of the pump was not able to grow without combined nitrogen. Although heterocysts of this mutant were not distinguishable from those of the wild-type in light and electron micrographs, they were impaired in providing the microoxic environment necessary for N(2) fixation. RT-PCR of all0809 transcripts and localization studies on All0807-GFP revealed that All0809/8/7 was initially downregulated during heterocyst maturation and upregulated at later stages of heterocyst formation in all cells of the filament. A substrate of the efflux pump could not be identified in ATP hydrolysis assays. We discuss a role for All0809/8/7-TolC in maintaining the continuous periplasm and how this would be of special importance for heterocyst differentiation.
Stochastic driven systems far from equilibrium
NASA Astrophysics Data System (ADS)
Kim, Kyung Hyuk
We study the dynamics and steady states of two systems far from equilibrium: a 1-D driven lattice gas and a driven Brownian particle with inertia. (1) We investigate the dynamical scaling behavior of a 1-D driven lattice gas model with two species of particles hopping in opposite directions. We confirm numerically that the dynamic exponent is equal to z = 1.5. We show analytically that a quasi-particle representation relates all phase points to a special phase line directly related to the single-species asymmetric simple exclusion process. Quasi-particle two-point correlations decay exponentially, and in such a manner that quasi-particles of opposite charge dynamically screen each other with a special balance. The balance encompasses all over the phase space. These results indicate that the model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. (2) We investigate the non-equilibrium thermodynamics of a Brownian particle with inertia under feedback control of its inertia. We find such open systems can act as a molecular refrigerator due to an entropy pumping mechanism. We extend the fluctuation theorems to the refrigerator. The entropy pumping modifies both the Jarzynski equality and the fluctuation theorems. We discover that the entropy pumping has a dual role of work and heat. We also investigate the thermodynamics of the particle under a hydrodynamic interaction described by a Langevin equation with a multiplicative noise. The Stratonovich stochastic integration prescription involved in the definition of heat is shown to be the unique physical choice.
Experimental study of operation performance for hydrocarbon fuel pump with low specific speed
NASA Astrophysics Data System (ADS)
Wu, Xianyu; Yang, Jun; Jin, Xuan
2017-10-01
In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven by nitrogen or combustion gas under different operating conditions. A experimental database with regard to the curves of the rotational speed, mass flow rate and net head with regard to centrifugal pump were plotted. These curves were represented as functions of the pressure and temperature at turbine inlet/outlet and the throttle diameter at downstream of centrifugal pump. A sensitivity study has been carried out based on design of experiments. The experimental was employed to analyze net head of centrifugal and throttle characteristics. The research results can accumulate foundations for the close loop control system of turbine pump.
Ohnishi, S Tsuyoshi; Salerno, John C; Ohnishi, Tomoko
2010-12-01
In many energy transducing systems which couple electron and proton transport, for example, bacterial photosynthetic reaction center, cytochrome bc(1)-complex (complex III) and E. coli quinol oxidase (cytochrome bo(3) complex), two protein-associated quinone molecules are known to work together. T. Ohnishi and her collaborators reported that two distinct semiquinone species also play important roles in NADH-ubiquinone oxidoreductase (complex I). They were called SQ(Nf) (fast relaxing semiquinone) and SQ(Ns) (slow relaxing semiquinone). It was proposed that Q(Nf) serves as a "direct" proton carrier in the semiquinone-gated proton pump (Ohnishi and Salerno, FEBS Letters 579 (2005) 4555), while Q(Ns) works as a converter between one-electron and two-electron transport processes. This communication presents a revised hypothesis in which Q(Nf) plays a role in a "direct" redox-driven proton pump, while Q(Ns) triggers an "indirect" conformation-driven proton pump. Q(Nf) and Q(Ns) together serve as (1e(-)/2e(-)) converter, for the transfer of reducing equivalent to the Q-pool. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abbasabadi, Majid; Sahrai, Mostafa
2018-01-01
We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.
Flushing of a polluted lagoon in Canc'un, using a SIBEO wave-driven seawater pump
NASA Astrophysics Data System (ADS)
Czitrom, Steven; Carbajal, Noel
2006-11-01
The coastal lagoon which adorns the seaside resort at Canc'un, Mexico, is heavily polluted as a result of decades of intense tourist activity development and overwhelmed inadequate planning. The natural flushing time of the lagoon, estimated at 2 to 4 years, is insufficient to cope with the waste that is being dumped and a thick layer of organic matter has accumulated on the lagoon bed. Appropriate legal and sewage treatment measures are imperative to curb further dumping and thus attack the root cause of the problem. This aside, however, the existing situation requires additional technical solutions to restore the ecosystem to a less altered state. A wave and tide driven seawater pump, invented and developed at the National University of Mexico, has been proposed to flush the lagoon with an average 0.2 m^3/s of clean and oxygen rich seawater from the neighboring ocean. This flow would reduce the residence time of the lagoon to around 6 months, promoting long term recovery of the ecosystem. The effect and distribution of the pumped water is being studied using a wind and tide driven 3D numerical model of the lagoon hydrodynamics. Some results from this study are presented here.
Corey, John A.
1984-05-29
A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.
Custom Unit Pump Design and Testing for the EVA PLSS
NASA Technical Reports Server (NTRS)
Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis
2009-01-01
This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F pump temperature range, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test. The test results contained a number of anomalies, specifically power increases and a few flow stoppages, that prompted TEES and Honeywell to disassemble and inspect the pump. Inspection indicated contamination in the pump and fit issues may have played roles in the observed anomalies. Testing following reassembly indicated that the performance of the pump 1) matched both the predicted performance values, 2) the performance values measured prior to disassembly, and 3) was free of the anomalies noted in the pre-disassembly testing.
Bose-Einstein condensation of spin wave quanta at room temperature.
Dzyapko, O; Demidov, V E; Melkov, G A; Demokritov, S O
2011-09-28
Spin waves are delocalized excitations of magnetic media that mainly determine their magnetic dynamics and thermodynamics at temperatures far below the critical one. The quantum-mechanical counterparts of spin waves are magnons, which can be considered as a gas of weakly interacting bosonic quasi-particles. Here, we discuss the room-temperature kinetics and thermodynamics of the magnon gas in yttrium iron garnet films driven by parametric microwave pumping. We show that for high enough pumping powers, the thermalization of the driven gas results in a quasi-equilibrium state described by Bose-Einstein statistics with a non-zero chemical potential. Further increases of the pumping power cause a Bose-Einstein condensation documented by an observation of the magnon accumulation at the lowest energy level. Using the sensitivity of the Brillouin light scattering spectroscopy to the degree of coherence of the scattering magnons, we confirm the spontaneous emergence of coherence of the magnons accumulated at the bottom of the spectrum, occurring if their density exceeds a critical value.
Cooling system for high speed aircraft
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Pagel, L. L. (Inventor)
1981-01-01
The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.
NASA Astrophysics Data System (ADS)
Janovcová, Martina; Jandačka, Jozef; Malcho, Milan
2015-05-01
Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.
2015-01-01
Here, we construct an open-channel on-chip electroosmotic pump capable of generating pressures up to ∼170 bar and flow rates up to ∼500 nL/min, adequate for high performance liquid chromatographic (HPLC) separations. A great feature of this pump is that a number of its basic pump units can be connected in series to enhance its pumping power; the output pressure is directly proportional to the number of pump units connected. This additive nature is excellent and useful, and no other pumps can work in this fashion. We demonstrate the feasibility of using this pump to perform nanoflow HPLC separations; tryptic digests of bovine serum albumin (BSA), transferrin factor (TF), and human immunoglobulins (IgG) are utilized as exemplary samples. We also compare the performance of our electroosmotic (EO)-driven HPLC with Agilent 1200 HPLC; comparable efficiencies, resolutions, and peak capacities are obtained. Since the pump is based on electroosmosis, it has no moving parts. The common material and process also allow this pump to be integrated with other microfabricated functional components. Development of this high-pressure on-chip pump will have a profound impact on the advancement of lab-on-a-chip devices. PMID:24495233
Development of a proof of concept low temperature 4He Superfluid Magnetic Pump
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2017-03-01
We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.
A seal-less centrifugal pump (Baylor Gyro Pump) for application to long-term circulatory support.
Minato, N; Sakuma, I; Sasaki, T; Shiono, M; Ohara, Y; Takatani, S; Noon, G P; Nosé, Y
1993-01-01
We are developing a new centrifugal pump, the Baylor Gyro Centrifugal Pump (Gyro Pump), which can function for more than 2 weeks. The concept of the Gyro Pump is that a one-piece rotor-impeller with embedded permanent magnets, driven directly by a brushless direct current motor stator placed outside, rotates like a "gyroscope," and the rotor-impeller is supported by one pivot bearing at the bottom in accordance with the gyroscopic principle. This concept enables us to eliminate a driving shaft and a seal between the driving shaft and the blood chamber, which results in extending the life of the centrifugal pump. The blood passes through the space between the motor stator and the rotor to the impeller portion. In this preliminary phase, two pivot bearings were applied to support the rotor-impeller at the top and the bottom inside the blood chamber. Both pivot bearings showed less blood trauma and less thrombogenicity in in vitro and in vivo studies. The Gyro Pump is a promising second-generation centrifugal pump for long-term circulatory support in the near future.
Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm.
Schäfer, C A; Uehara, H; Konishi, D; Hattori, S; Matsukuma, H; Murakami, M; Shimizu, S; Tokita, S
2018-05-15
A side-pump coupler made of fluoride fibers was fabricated and tested. The tested device had a coupling efficiency of 83% and was driven with an incident pump power of up to 83.5 W, demonstrating high-power operation. Stable laser output of 15 W at a wavelength of around 2.8 μm was achieved over 1 h when using an erbium-doped double-clad fiber as the active medium. To the best of our knowledge, this is the first time a fluoride-glass-fiber-based side-pump coupler has been developed. A test with two devices demonstrated further power scalability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeever, John W; Lawler, Jack; Downing, Mark
2006-05-01
John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM)more » motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current, especially under light load and higher speed. This current reduction, which is the salient feature of DMIC, may be significant when operating duty cycles have low loads at high frequencies. Reduced copper losses make operation more efficient thereby reducing operating costs. In the Deere applications selected for this study, the operating benefit was overshadowed by the motor's rotational losses. Rotational losses of Deere 1 and Deere 2 dominate the overall drive efficiency so that their reduction has the greatest potential to improve performance. A good follow-up project would be to explore cost erective ways to reduce the rotational losses buy 66%. During this analysis it has been shown that, for a PM synchronous motor (PMSM), the DMIC's salient feature is its ability to minimize the current required to deliver a given power. The root-mean-square (rms) current of a motor is determined by the speed, power, motor drive parameters, and controls as I{sub rms} = (n, P, motor drive parameters, controls), where n is the relative speed, {omega}/{omega}{sub base} = {Omega}/{Omega}{sub base}, {omega} is the mechanical frequency, {Omega} is the electrical frequency, and P is the power. The characteristic current is the rms current at infinite speed, when all resistance and rotational losses are neglected. Expressions have been derived for the characteristic currents of PMSMs when the motor is controlled by CPA and by DMIC. The expression for CPA characteristic current is I{sub n{yields}{infinity}}{sup CPA} = nE{sub base}/X = nE{sub base}/n{Omega}{sub b}L = E{sub base}/{Omega}{sub b}L, which is strictly a function of the machine parameters, back-emf at base speed, base speed electrical frequency, and inductance. At high speeds, the rms current tends to remain constant even when the load-power requirements are reduced. The expression for DMIC characteristic current is I{sub n{yields}{infinity}}{sup DMIC} = P/3V{sub max} = P{pi}/3{radical}2V{sub dc}, which has nothing to do with machine parameters. This interesting result shows that at high speeds under DMIC control, the rms current diminishes as the load-power requirements are reduced. It also shows that the DMIC characteristic current can be further reduced by increasing the dc supply voltage. This explains the main benefit of DMIC; its ability to minimize the current required to meet a required load.« less
1979-11-01
Engineering Consultants, Inc. Hydraulics & Hydrology Kevin Blume Consoer, Townsend & Assoc., Ltd. Civil and Structural Oran Patrick City of Moberly, Missouri...structure. Photo 13. - View of the diesel powered pump. Photo 14. - View of the electric driven pump. -4 .... Waer 4ork- I’ n Photo lPhotn Wot cr w-.’)rks
25. Hot well, as seen from port side aft. Waste ...
25. Hot well, as seen from port side aft. Waste water overflow pipe appears at left, behind which is bilge pump. At base of hot well on either side are reciprocating boiler feedwater pumps driven from hot well crosshead. (Labels were applied by HAER recording team and are not original to equipment.) - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
W. J. Massman; R. A. Sommerfeld; A. R. Mosier; K. F. Zeller; T.J . Hehn; S. G. Rochelle
1997-01-01
Pressure pumping at the Earth's surface is caused by short-period atmospheric turbulence, longer-period barometric changes, and quasi-static pressure fields induced by wind blowing across irregular topography. These naturally occurring atmospheric pressure variations induce periodic fluctuations in airflow through snowpacks, soils, and any other porous media at...
NASA Astrophysics Data System (ADS)
Lam, Phoebe J.; Doney, Scott C.; Bishop, James K. B.
2011-09-01
We have compiled a global data set of 62 open ocean profiles of particulate organic carbon (POC), CaCO3, and opal concentrations collected by large volume in situ filtration in the upper 1000 m over the last 30 years. We define concentration-based metrics for the strength (POC concentration at depth) and efficiency (attenuation of POC with depth in the mesopelagic) of the biological pump. We show that the strength and efficiency of the biological pump are dynamic and are characterized by a regime of constant and high transfer efficiency at low to moderate surface POC and a bloom regime where the height of the bloom is characterized by a weak deep biological pump and low transfer efficiency. The variability in POC attenuation length scale manifests in a clear decoupling between the strength of the shallow biological pump (e.g., POC at the export depth) and the strength of the deep biological pump (POC at 500 m). We suggest that the paradigm of diatom-driven export production is driven by a too restrictive perspective on upper mesopelagic dynamics. Indeed, our full mesopelagic analysis suggests that large, blooming diatoms have low transfer efficiency and thus may not export substantially to depth; rather, our analysis suggests that ecosystems characterized by smaller cells and moderately high %CaCO3 have a high mesopelagic transfer efficiency and can have higher POC concentrations in the deep mesopelagic even with relatively low surface or near-surface POC. This has negative implications for the carbon sequestration prospects of deliberate iron fertilization.
Safe Distances From a High-Energy Capacitor Bank for Ear and Lung Protection
2014-06-01
switching network or device such as a Silicon Carbide Gate Turn-Off Thyristor (SGTO), Pulse Forming Network (PFN), Gas Tube, Traveling Wave Tube...increase in pressure produces an imbalance of pressure in the body and causes injury. As an example, the eardrum membrane may break if the outside
Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels
NASA Astrophysics Data System (ADS)
Houhou, H.; Yuan, W.; Wang, G.
2017-05-01
This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.
Electric prototype power processor for a 30cm ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.
1977-01-01
An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.
Baylor Gyro Pump: a completely seal-less centrifugal pump aiming for long-term circulatory support.
Ohara, Y; Sakuma, I; Makinouchi, K; Damm, G; Glueck, J; Mizuguchi, K; Naito, K; Tasai, K; Orime, Y; Takatani, S
1993-07-01
A seal-less centrifugal pump aiming for long-term circulatory support has been developed. In this model, shaft seals that cause thrombus formation and blood leakage were eliminated. A brushless direct current motor was incorporated as a driving unit, and pivot bearings were used to support the impeller. With reference to its motor-driven system, this pump was named the M-Gyro Pump. The first model (M1) yielded an index of hemolysis of 0.005 g/100 L using bovine blood and demonstrated satisfactory performance as a right heart assist for 2 days (4 L/min, 60 mm Hg, 1,800 rpm). The second model (M2) has been developed for left heart assist by employing a stronger motor. The pump capacity was improved to 6 L/min against 240 mm Hg at 1,800 rpm, but significant heat generation was observed. By optimization of motor efficiency, the M2 model can be improved to meet the requirements of a pump for left heart assist.
Satellite Propellant Pump Research
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan
2005-01-01
NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.
Dual-channel current valve in a three terminal zigzag graphene nanoribbon junction
NASA Astrophysics Data System (ADS)
Zhang, L.
2017-02-01
We theoretically propose a dual-channel current valve based on a three terminal zigzag graphene nanoribbon (ZGNR) junction driven by three asymmetric time-dependent pumping potentials. By means of the Keldysh Green’s function method, we show that two asymmetric charge currents can be pumped in the different left-right terminals of the device at a zero bias, which mainly stems from the single photon-assisted pumping approximation and the valley valve effect in a ZGNR p-n junction. The ON and OFF states of pumped charge currents are crucially dependent on the even-odd chain widths of the three electrodes, the pumping frequency, the lattice potential and the Fermi level. Two-tunneling spin valves are also considered to spatially separate and detect 100% polarized spin currents owing to the combined spin pump effect and the valley selective transport in a three terminal ZGNR ferromagnetic junction. Our investigations might be helpful to control the spatial and spin degrees of freedom of electrons in graphene pumping devices.
NASA Astrophysics Data System (ADS)
Aono, Masami; Harata, Tomo; Odawara, Taku; Asai, Shinnosuke; Orihara, Dai; Nogi, Masaya
2018-01-01
Amorphous carbon nitride (a-CN x ) thin films deposited by reactive sputtering have great potential for driving source applications of light-driven active devices. We demonstrate, for the first time, the photoinduced deformation of a-CN x deposited on flexible substrates, namely, poly(ethylene naphthalate) (PEN) films and transparent cellulose nanopaper. a-CN x films without delamination were obtained on both substrates. By decreasing the thickness of PEN films, the photoinduced deformation became extremely large. A light-driven pump was fabricated using a-CN x -coated PEN films, and then the pumping motion was observed up to 10 Hz. When a He-Ne laser traced the surface of a-CN x films deposited on the nanopaper, the sample moved to the opposite side of the laser spot. The motion involved repeated expansions and contractions similar to the motion of caterpillars occurring owing to the temporary photoinduced deformation of a-CN x films.
Transient many-body instability in driven Dirac materials
NASA Astrophysics Data System (ADS)
Pertsova, Anna; Triola, Christopher; Balatsky, Alexander
The defining feature of a Dirac material (DM) is the presence of nodes in the low-energy excitation spectrum leading to a strong energy dependence of the density of states (DOS). The vanishing of the DOS at the nodal point implies a very low effective coupling constant which leads to stability of the node against electron-electron interactions. Non-equilibrium or driven DM, in which the DOS and hence the effective coupling can be controlled by external drive, offer a new platform for investigating collective instabilities. In this work, we discuss the possibility of realizing transient collective states in driven DMs. Motivated by recent pump-probe experiments which demonstrate the existence of long-lived photo-excited states in DMs, we consider an example of a transient excitonic instability in an optically-pumped DM. We identify experimental signatures of the transient excitonic condensate and provide estimates of the critical temperatures and lifetimes of these states for few important examples of DMs, such as single-layer graphene and topological-insulator surfaces.
Long pulse production from short pulses
Toeppen, John S.
1994-01-01
A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).
Use and engineering of efflux pumps for the export of olefins in microbes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Aindrila
2016-07-14
The scope of the project is to investigate efflux pump systems in engineered host microorganisms, such as E. coli, and develop a pump engineered to export a target compound. To initiate the project in coordination with other TOTAL driven projects, the first target compound to be studied was 1-hexene. However, we were investigating other chemicals as Styrene. The main goal of the project was to generate a set of optimized efflux pump systems for microorganisms (E. coli and Streptomyces or other host) engineered to contain biosynthetic pathways to export large titers of target compounds that are toxic (or accumulate andmore » push back biosynthesis) to the host cell. An optimized microbial host will utilize specific and efficient cell wall located pumps to extrude harmful target compounds and enable greater production of these compounds.« less
Theoretical and experimental studies of a magnetically actuated valveless micropump
NASA Astrophysics Data System (ADS)
Ashouri, Majid; Behshad Shafii, Mohammad; Moosavi, Ali
2017-01-01
This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µl min-1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s-1. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability.
Rupenyan, Alisa; van Stokkum, Ivo H M; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Groot, Marie Louise
2009-12-17
Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The application of a pump pulse initiates the photocycle, and with an appropriately tuned dump pulse applied at a time delay after the dump, the molecules in the initial stages of the photochemical process can be de-excited and driven back to the ground state. In this way, we were able to resolve an intermediate on the electronic ground state that represents chromophores that are unsuccessful in isomerization. In particular, the fractions of molecules that undergo slow isomerization (20 ps) have a high probability to enter this state rather than the isomerized K-state. On the ground state reaction surface, return to the stable ground state conformation via a structural or vibrational relaxation occurs in 2-3 ps. Inclusion of this intermediate in the kinetic scheme led to more consistent spectra of the retinal-excited state, and to a more accurate estimation of the quantum yield of isomerization (Phi = 0.4 at pH 6).
Shin, Woonsup; Zhu, Enhua; Nagarale, Rajaram Krishna; Kim, Chang Hwan; Lee, Jong Myung; Shin, Samuel Jaeho; Heller, Adam
2011-06-15
When a current or a voltage is applied across the ceramic membrane of the nongassing Ag/Ag(2)O-SiO(2)-Ag/Ag(2)O pump, protons produced in the anodic reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-) are driven to the cathode, where they are consumed by the reaction Ag(2)O(s) + H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). The flow of water is induced by momentum transfer from the electric field-driven proton-sheet at the surface of the ceramic membrane. About 10(4) water molecules flowed per reacted electron. Because dissolved ions decrease the field at the membrane surface, the flow decreases upon increasing the ionic strength. For this reason Ag(+) ions introduced through the anodic reaction and by dissolution of Ag(2)O decrease the flow. Their accumulation is reduced by applying Nafion-films to the electrodes. The 20 μL min(-1) flow rate of 6 mm i.d. pumps with Nafion coated electrodes operate daily for 5 min at 1 V for 1 month, for 70 h when the pump is pulsed for 30 s every 30 min, and for 2 h when operating continuously.
Optical gain in an optically driven three-level ? system in atomic Rb vapor
NASA Astrophysics Data System (ADS)
Ballmann, C. W.; Yakovlev, V. V.
2018-06-01
In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
NASA Astrophysics Data System (ADS)
Raz, O.; Subaşı, Y.; Jarzynski, C.
2016-04-01
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.
NASA Astrophysics Data System (ADS)
Xu, Gaohuan; Chen, Jianneng; Zhao, Huacheng
2018-06-01
The transmission systems of the differential velocity vane pumps (DVVP) have periodic vibrations under loads. And it is not easy to find the reason. In order to optimize the performance of the pump, the authors proposed DVVP driven by the hybrid Higher-order Fourier non-circular gears and tested it. There were also similar periodic vibrations and noises under loads. Taking into account this phenomenon, the paper proposes fluid mechanics and solid mechanics simulation methodology to analyze the coupling dynamics between fluid and transmission system and reveals the reason. The results show that the pump has the reverse drive phenomenon, which is that the blades drive the non-circular gears when the suction and discharge is alternating. The reverse drive phenomenon leads the sign of the shaft torque to be changed in positive and negative way. So the transmission system produces torsional vibrations. In order to confirm the simulation results, micro strains of the input shaft of the pump impeller are measured by the Wheatstone bridge and wireless sensor technology. The relationships between strain and torque are obtained by experimental calibration, and then the true torque of input shaft is calculated indirectly. The experimental results are consistent to the simulation results. It is proven that the periodic vibrations are mainly caused by fluid solid coupling, which leads to periodic torsional vibration of the transmission system.
Solar-powered Rankine heat pump for heating and cooling
NASA Technical Reports Server (NTRS)
Rousseau, J.
1978-01-01
The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.
An accessible micro-capillary electrophoresis device using surface-tension-driven flow
Mohanty, Swomitra K.; Warrick, Jay; Gorski, Jack; Beebe, David J.
2010-01-01
We present a rapidly fabricated micro-capillary electrophoresis chip that utilizes surface-tension-driven flow for sample injection and extraction of DNA. Surface-tension-driven flow (i.e. passive pumping) injects a fixed volume of sample that can be predicted mathematically. Passive pumping eliminates the need for tubing, valves, syringe pumps, and other equipment typically needed for interfacing with microelectrophoresis chips. This method requires a standard micropipette to load samples before separation, and remove the resulting bands after analysis. The device was made using liquid phase photopolymerization to rapidly fabricate the chip without the need of special equipment typically associated with the construction of microelectrophoresis chips (e.g. cleanroom). Batch fabrication time for the device presented here was 1.5 h including channel coating time to suppress electroosmotic flow. Devices were constructed out of poly-isobornyl acrylate and glass. A standard microscope with a UV source was used for sample detection. Separations were demonstrated using Promega BenchTop 100 bp ladder in hydroxyl ethyl cellulose (HEC) and oligonucleotides of 91 and 118 bp were used to characterize sample injection and extraction of DNA bands. The end result was an inexpensive micro-capillary electrophoresis device that uses tools (e.g. micropipette, electrophoretic power supplies, and microscopes) already present in most labs for sample manipulation and detection, making it more accessible for potential end users. PMID:19425002
NASA Technical Reports Server (NTRS)
Rippel, Wally E.
1990-01-01
Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.
Test SCRs and Triacs with a Lab-Built Checker
ERIC Educational Resources Information Center
Harman, Charles
2010-01-01
Students enrolled in advanced electronics courses and/or industrial electronics classes at the high school level and at technical colleges ultimately learn about solid-state switches such as the SCR (silicon controlled rectifier) and the triac. Both the SCR and the triac are in a family of four-layer devices called thyristors. They are both…
In vivo experimental testing of a microaxial blood pump for right ventricular support.
Christiansen, Stefan; Perez-Bouza, Alberto; Reul, Helmut; Autschbach, Rüdiger
2006-02-01
The incidence of isolated right ventricular (RV) failure is rare in postcardiotomy patients, but high in patients undergoing implantation of a left ventricular assist device or cardiac transplantation. Therefore, we have developed a new microaxial flow device and report on our first in vivo animal trials. Six healthy adult female sheep weighing 80-90 kg underwent implantation of the microaxial blood pump for partial unloading of the right ventricle. This pump is a miniaturized rotary blood pump with a diameter of only 6.4 mm and a weight of 11 g. The inner volume of the pump is limited to 12 mL, and the inner artificial blood contacting surface is 65 cm(2). The pump consists of a rotor driven by an incorporated brushless direct current motor, the housing of the rotor, the inflow cage, the outflow cannula, and the driveline. At the maximum speed of 32,500 rotations/min, a flow of 6 L/min can be delivered. The inflow and outflow conduit were anastomosed to the right atrium and the main pulmonary artery, respectively. Hemodynamic and echocardiographic data as well as blood samples were measured over the whole test period of 7 days. The hearts and lungs as well as the pump were explanted for a thorough examination at the end of the trial. Systemic arterial blood pressures remained unchanged during the entire test period. RV cardiac output was diminished significantly as demonstrated by the echocardiographic studies. The number of platelets decreased perioperatively, but recovered within the test period. The free hemoglobin was not enhanced postoperatively indicating no significant hemolysis. Liver function was only slightly impaired due to operative reasons (increase in bilirubin on the first postoperative day but normalization within the test period). The pathologic examination revealed some clots at the inflow cage and fibrin depositions on the impeller as well as on the inner surface of the outflow graft without an impairment of pump function. Our results demonstrate that this newly developed microaxial blood pump is a promising device for RV support, but it cannot be driven without any anticoagulation.
Nakashima, Keisuke; Nakamura, Takumi; Takeuchi, Satoshi; Shibata, Mikihiro; Demura, Makoto; Tahara, Tahei; Kandori, Hideki
2009-06-18
Halorhodopsin (HR) is a light-driven chloride pump. Cl(-) is bound in the Schiff base region of the retinal chromophore, and unidirectional Cl(-) transport is probably enforced by the specific hydrogen-bonding interaction with the protonated Schiff base and internal water molecules. It is known that HR from Natronobacterium pharaonis (pHR) also pumps NO(3)(-) with similar efficiency, suggesting that NO(3)(-) binds to the Cl(-)-binding site. In the present study, we investigated the properties of the anion-binding site by means of ultrafast pump-probe spectroscopy and low-temperature FTIR spectroscopy. The obtained data were surprisingly similar between pHR-NO(3)(-) and pHR-Cl(-), even though the shapes and sizes of the two anions are quite different. Femtosecond pump-probe spectroscopy showed very similar excited-state dynamics between pHR-NO(3)(-) and pHR-Cl(-). Low-temperature FTIR spectroscopy of unlabeled and [zeta-(15)N]Lys-labeled pHR revealed almost identical hydrogen-bonding strengths of the protonated retinal Schiff base between pHR-NO(3)(-) and pHR-Cl(-), which is similarly strengthened after retinal isomerization. There were spectral variations for water stretching vibrations between pHR-NO(3)(-) and pHR-Cl(-), suggesting that the water molecules hydrate each anion. Nevertheless, the overall spectral features were similar for the two species. These observations strongly suggest that the anion-binding site has a flexible structure and that the interaction between retinal and the anions is weak, despite the presence of an electrostatic interaction. Such a flexible hydrogen-bonding network in the Schiff base region in HR appears to be in remarkable contrast to that in light-driven proton-pumping proteins.
Matos, Marvi A; White, Lee R; Tilton, Robert D
2008-02-15
Many biosensors, including those based on sensing agents immobilized inside hydrogels, suffer from slow response dynamics due to mass transfer limitations. Here we present an internal pumping strategy to promote convective mixing inside crosslinked polymer gels. This is envisioned as a potential tool to enhance biosensor response dynamics. The method is based on electroosmotic flows driven by non-uniform, oscillating electric fields applied across a polyacrylamide gel that has been doped with charged colloidal silica inclusions. Evidence for enhanced mixing was obtained from florescence recovery after photobleaching (FRAP) measurements with fluorescein tracer dyes dissolved in the gel. Mixing rates in silica-laden gels under the action of the applied electric fields were more than an order of magnitude faster than either diffusion or electrophoretically driven mixing in gels that did not contain silica. The mixing enhancement was due in comparable parts to the electroosmotic pumping and to the increase in gel swelling caused by the presence of the silica inclusions. The latter had the effect of increasing tracer mobility in the silica-laden gels.
Low-thrust chemical propulsion system pump technology
NASA Technical Reports Server (NTRS)
Meadville, J. W.
1980-01-01
A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
Development of a jet pump-assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1977-01-01
The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.
Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
Chang, Suk Tai; Beaumont, Erin; Petsev, Dimiter N; Velev, Orlin D
2008-01-01
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.
SSME structural dynamic model development
NASA Technical Reports Server (NTRS)
Foley, Michael J.
1989-01-01
The high pressure fuel turbopump (HPFTP) is a major component of the Space Shuttle Main Engine (SSME) powerhead. The device is a three stage centrifugal pump that is directly driven by a two stage hot gas turbine. The purpose of the pump is to deliver fuel (liquid hydrogen) from the low pressure fuel turbopump (LPFTP) through the main fuel valve (MFV) to the thrust chamber coolant circuits. In doing so, the pump pressurizes the fuel from an inlet pressure of approximately 178 psi to a discharge pressure of over 6000 psi. At full power level (FPL), the pump rotates at a speed of over 37,000 rpm while generating approximately 77,000 horsepower. Obviously, a pump failure at these speeds and power levels could jeopardize the mission. Results are summarized for work in which the solutions obtained from analytical models of the fuel turbopump impellers are compared with the results obtained from dynamic tests.
Refrigerant charge management in a heat pump water heater
Chen, Jie; Hampton, Justin W.
2014-06-24
Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.
Sizing and modelling of photovoltaic water pumping system
NASA Astrophysics Data System (ADS)
Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.
2018-05-01
With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.
Carbon fluxes in the Arabian Sea: Export versus recycling
NASA Astrophysics Data System (ADS)
Rixen, Tim; Gaye, Birgit; Ramaswamy, Venkitasubramani
2016-04-01
The organic carbon pump strongly influences the exchange of carbon between the ocean and the atmosphere. It is known that it responds to global change but the magnitude and the direction of change are still unpredictable. Sediment trap experiments carried out at various sites in the Arabian Sea between 1986 and 1998 have shown differences in the functioning of the organic carbon pump (OCP). An OCP driven by eukaryotic phytoplankton operated in the upwelling region off Oman and during the spring bloom in the northern Arabian Sea. Cyanobacteria capable of fixing nitrogen seem to dominate the phytoplankton community during all other seasons. The export driven by cyanobacteria was much lower than the export driven by eukaryotic phytoplankton. Productivity and nutrient availability seems to be a main factor controlling fluxes during blooms of eukaryotic phytoplankton. The ballast effect caused by inputs of dust into the ocean and its incorporation into sinking particles seems to be the main factor controlling the export during times when cyanobacteria dominate the phytoplankton community. C/N ratios of organic matter exported from blooms dominated by nitrogen fixing cyanobacteria are enhanced and, furthermore, indicate a more efficient recycling of nutrients at shallower water depth. This implies that the bacterial-driven OCP operates more in a recycling mode that keeps nutrients closer to the euphotic zone whereas the OCP driven by eukaryotic phytoplankton reduces the recycling of nutrients by exporting them into greater water-depth.
A compact centrifugal blood pump for extracorporeal circulation: design and performance.
Tanaka, S; Yamamoto, S; Yamakoshi, K; Kamiya, A
1987-08-01
A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.
Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping
NASA Astrophysics Data System (ADS)
Zhao, R.; Rossi, A.; Giblin, S. P.; Fletcher, J. D.; Hudson, F. E.; Möttönen, M.; Kataoka, M.; Dzurak, A. S.
2017-10-01
Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of e f within a measurement uncertainty as low as 0.27 ppm.
Hiermeier, Florian; Männer, Jörg
2017-11-19
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.
Demand thrust pumped propulsion with automatic warm gas valving
NASA Astrophysics Data System (ADS)
Whitehead, J. C.
1992-06-01
Operation of a thrust-on-demand, monopropellant rocket propulsion system which uses lightweight low-pressure tankage, free-piston pumps, and a small high-pressure thrust chamber, is explained. The pump intake-exhaust valves use warm gas pneumatic signals to ensure that two reciprocating pumps are alternately pressurized, with overlap during switchover to permit uninterrupted propellant flow. Experiments demonstrate that the miniature pumps operate at any speed depending on downstream demand, and can deliver nearly their own mass in hydrazine per second, at 7 MPa (1000 psi). The valves, which use the alternating layers of metal and graphite to mitigate the effects of differential thermal expansion, have been warm-gas tested for thousands of cycles. For biopropellant operation, a pair of reciprocating oxidizer pumps would be slaved to the fuel pumps' pneumatic oscillator, to provide for pulsed or continuous demand-driven flow of both liquids. Mass ratios and thrust-to-weight ratios of demand-thrust pumped propulsion systems compare quite favorably to those of pressure-fed and turbo-pumped systems. Due to the relatively high densities of storable propellants, liquid mass fractions greater than 0.95 are attainable with these novel pumps, with thrust/weight ratios above 10. The high performance potential of small propulsion systems which use reciprocating pumps suggests that this technology can significantly increase the capability of many types of small spacecraft.
Hiermeier, Florian; Männer, Jörg
2017-01-01
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts. PMID:29367548
High-voltage, high-current, solid-state closing switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Focia, Ronald Jeffrey
2017-08-22
A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.
Willaert, Wouter; Tozzi, Francesca; Van Hoof, Tom; Ceelen, Wim; Pattyn, Piet; D''Herde, Katharina
2016-01-01
Vascular reperfusion of Thiel cadavers can aid surgical and anatomical instruction. This study investigated whether ideal embalming circumstances provide lifelike vascular flow, enabling surgical practice and enhancing anatomical reality. Pressure-controlled pump-driven administration of blue embalming solution was assessed directly postmortem in a pig model (n = 4). Investigation of subsequent pump-driven vascular injection of red paraffinum perliquidum (PP) included assessment of flow parameters, intracorporeal distribution, anatomical alterations, and feasibility for surgical training. The microscopic distribution of PP was analyzed in pump-embalmed pig and gravity-embalmed human small intestines. Embalming lasted 50-105 min, and maximum arterial pressure was 65 mm Hg. During embalming, the following consecutive alterations were observed: arterial filling, organ coloration, venous perfusion, and further tissue coloration during the next weeks. Most organs were adequately preserved. PP generated low arterial pressures (<30 mm Hg) and drained through the venous cannula. Generally, realistic reperfusion and preservation of original anatomy were observed, but leakage in the pleural, abdominal, and retroperitoneal cavities occurred, and computed tomography showed edematous spleen and liver. Reduction of arterial flow rates after venous drainage is a prerequisite to prevent anatomical deformation, allowing simulation of various surgeries. In pump-embalmed pig small intestines, PP flowed from artery to vein through the capillaries without extravasation. In contrast, arterioles were blocked in gravity-embalmed human tissues. In a pig model, immediate postmortem pressure-controlled pump embalming generates ideal circumstances for (micro)vascular reperfusion with PP, permitting lifelike anatomy instruction and surgical training. © 2016 S. Karger AG, Basel.
AC Resonant charger with charge rate unrelated to primary power frequency
Watson, Harold
1982-01-01
An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.
Ac resonant charger with charge rate unrelated to preimary power requency
Not Available
1979-12-07
An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.
Single Active Switch PV Inverter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanan, V. R.; Pan, Zhiguo
This report presents a new PV inverter topology that uses only one active switch instead of 7 active switches in a conventional PV inverter. It has a buck boost converter and operates at discontinuous current control mode, which can reduce the output stage from an active switch bridge to a thyristor bridge. This concept, if successfully demonstrated, may have great cost and size/weight benefits over conventional solutions. Since the proposed topology is completely different from the traditional boost converter plus voltage source inverter approach, there is no existing control/modulation scheme available. A new modulation scheme for both the main switchmore » and the thyristors has been developed. An active clamping circuit has also been proposed to reduce switching losses and voltage spike during the switching transient. A simulation model has been set up to validate the control algorithm and clamping circuit. Simulated results show that a proposed 10 kW PV inverter can reach 5% total harmonic distortion (THD), 98.8% peak efficiency with only one main active switch, and an inductor weighing less than 3 kg. Based on that, a 10 kW prototype converter has been designed and built.« less
Voltage-Driven Magnetization Switching and Spin Pumping in Weyl Semimetals
NASA Astrophysics Data System (ADS)
Kurebayashi, Daichi; Nomura, Kentaro
2016-10-01
We demonstrate electrical magnetization switching and spin pumping in magnetically doped Weyl semimetals. The Weyl semimetal is a three-dimensional gapless topological material, known to have nontrivial coupling between the charge and the magnetization due to the chiral anomaly. By solving the Landau-Lifshitz-Gilbert equation for a multilayer structure of a Weyl semimetal, an insulator and a metal while taking the charge-magnetization coupling into account, magnetization dynamics is analyzed. It is shown that the magnetization dynamics can be driven by the electric voltage. Consequently, switching of the magnetization with a pulsed electric voltage can be achieved, as well as precession motion with an applied oscillating electric voltage. The effect requires only a short voltage pulse and may therefore be energetically favorable for us in spintronics devices compared to conventional spin-transfer torque switching.
NASA Astrophysics Data System (ADS)
Orth, C. D.
2001-03-01
This paper reviews our current understanding of the relative advantages of direct drive (DD) and indirect drive (ID) for a 1 GWe inertial fusion energy (IFE) power plant driven by a diode-pumped solid-state laser (DPSSL). This comparison is motivated by a recent study (1) that shows that the projected cost of electricity (COE) for DD is actually about the same as that for ID even though the target gain for DD can be much larger. We can therefore no longer assume that DD is the ultimate targeting scenario for IFE, and must begin a more rigorous comparison of these two drive options. The comparison begun here shows that ID may actually end up being preferred, but the uncertainties are still rather large.
AC motor and generator requirements for isolated WECS
NASA Technical Reports Server (NTRS)
Park, G. L.; Mccleer, P. J.; Hanson, B.; Weinberg, B.; Krauss, O.
1985-01-01
After surveying electrically driven loads used on productive farms, the investigators chose three pumps for testing at voltages and frequencies far outside the normal operating range. These loads extract and circulate water and move heat via air, and all are critical to farm productivity. The object was to determine the envelope of supply voltage and frequency over which these loads would operate stably for time intervals under 1 hour. This information is among that needed to determine the feasibility of supplying critical loads, in case of a utility outage, from a wind driven alternator whose output voltage and frequency will vary dramatically in most continental wind regimes. Other related work is surveyed. The salient features and limitations of the test configurations used and the data reduction are described. The development of simulation models suitable for a small computer are outlined. The results are primarily displayed on the voltage frequency plane with the general conclusion that the particular pump models considered will operate over the range of 50 to 90 Hz and a voltage band which starts below rated, decreases as frequency decreases, and is limited on the high side by excessive motor heating. For example, centrifugal pump operating voltage ranges as extensive .4 to 1.4 appear possible. Particular problems with starting, stalling due to lack of motor torque, high speed cavitation, and likely overheating are addressed in a listing of required properties for wind driven alternators and their controllers needed for use in the isolated or stand alone configuration considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galambos, Paul C.
This is the latest in a series of LDRD's that we have been conducting with Florida State University/Florida A&M University (FSU/FAMU) under the campus executive program. This research builds on the earlier projects; ''Development of Highly Integrated Magnetically and Electrostatically Actuated Micropumps'' (SAND2003-4674) and ''Development of Magnetically and Electrostatically Driven Surface Micromachined Pumps'' (SAND2002-0704P). In this year's LDRD we designed 2nd generation of surface micromachined (SMM) gear and viscous pumps. Two SUMMiT{trademark} modules full of design variations of these pumps were fabricated and one SwIFT{trademark} module is still in fabrication. The SwIFT{trademark} fabrication process results in a transparent pump housingmore » cover that will enable visualization inside the pumps. Since the SwIFT{trademark} pumps have not been tested as they are still in fabrication, this report will focus on the 2nd generation SUMMiT{trademark} designs. Pump testing (pressure vs. flow) was conducted on several of the SUMMiT{trademark} designs resulting in the first pump curve for this class of SMM pumps. A pump curve was generated for the higher torque 2nd generation gear pump designed by Jason Hendrix of FSU. The pump maximum flow rate at zero head was 6.5 nl/s for a 30V, 30 Hz square wave signal. This level of flow rate would be more than adequate for our typical SMM SUMMiT{trademark} or SwIFT{trademark} channels which have typical volumes on the order of 50 pl.« less
Optical silencing of body wall muscles induces pumping inhibition in Caenorhabditis elegans
Takahashi, Megumi
2017-01-01
Feeding, a vital behavior in animals, is modulated depending on internal and external factors. In the nematode Caenorhabditis elegans, the feeding organ called the pharynx ingests food by pumping driven by the pharyngeal muscles. Here we report that optical silencing of the body wall muscles, which drive the locomotory movement of worms, affects pumping. In worms expressing the Arch proton pump or the ACR2 anion channel in the body wall muscle cells, the pumping rate decreases after activation of Arch or ACR2 with light illumination, and recovers gradually after terminating illumination. Pumping was similarly inhibited by illumination in locomotion-defective mutants carrying Arch, suggesting that perturbation of locomotory movement is not critical for pumping inhibition. Analysis of mutants and cell ablation experiments showed that the signals mediating the pumping inhibition response triggered by activation of Arch with weak light are transferred mainly through two pathways: one involving gap junction-dependent mechanisms through pharyngeal I1 neurons, which mediate fast signals, and the other involving dense-core vesicle-dependent mechanisms, which mediate slow signals. Activation of Arch with strong light inhibited pumping strongly in a manner that does not rely on either gap junction-dependent or dense-core vesicle-dependent mechanisms. Our study revealed a new aspect of the neural and neuroendocrine controls of pumping initiated from the body wall muscles. PMID:29281635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian
The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less
Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.
1993-01-01
A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Marinov, I.; Gnanadesikan, A.
2011-02-01
The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.
Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes
NASA Astrophysics Data System (ADS)
Marinov, I.; Gnanadesikan, A.
2010-11-01
The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.
TEM Pump With External Heat Source And Sink
NASA Technical Reports Server (NTRS)
Nesmith, Bill J.
1991-01-01
Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demidov, V. E.; Dzyapko, O.; Demokritov, S. O.
The room-temperature dynamics of a magnon gas driven by short microwave pumping pulses is studied. An overpopulation of the lowest energy level of the system following the pumping is observed. Using the sensitivity of the Brillouin light scattering technique to the coherence degree of the scattering magnons we demonstrate the spontaneous emergence of coherence of the magnons at the lowest level, if their density exceeds a critical value. This finding is clear proof of the quantum nature of the observed phenomenon and direct evidence of Bose-Einstein condensation of magnons at room temperature.
Simulation of an ammonia-water heat pump water heater with combustion products-driven evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Blanco, Horacio; Gluesenkamp, K.; Ally, Moonis Raza
Here, the objective of this work is to simulate a single effct (SE) ammonia-water heat pump for domestic water heating, with innovative aspects for cycle simulation and eventual implementation. Seasonal temperature variations demand verfication of distillation column viability. For the given application and temperature ranges, it is found that some variables need to be controlled if the same column is to be used all year round. In addition, a number of simplifications are considered in this work: an advanced evaporator requireing minimal gas flow and surface area, subcooling at two crucial spots of the cycle and the viability of somemore » pump designs to assuage cavitation issues.« less
Simulation of an ammonia-water heat pump water heater with combustion products-driven evaporator
Perez-Blanco, Horacio; Gluesenkamp, K.; Ally, Moonis Raza
2016-12-19
Here, the objective of this work is to simulate a single effct (SE) ammonia-water heat pump for domestic water heating, with innovative aspects for cycle simulation and eventual implementation. Seasonal temperature variations demand verfication of distillation column viability. For the given application and temperature ranges, it is found that some variables need to be controlled if the same column is to be used all year round. In addition, a number of simplifications are considered in this work: an advanced evaporator requireing minimal gas flow and surface area, subcooling at two crucial spots of the cycle and the viability of somemore » pump designs to assuage cavitation issues.« less
Effect of collisions on amplification of laser beams by Brillouin scattering in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphrey, K. A.; Speirs, D. C.; Trines, R. M. G. M.
2013-10-15
We report on particle in cell simulations of energy transfer between a laser pump beam and a counter-propagating seed beam using the Brillouin scattering process in uniform plasma including collisions. The results presented show that the ion acoustic waves excited through naturally occurring Brillouin scattering of the pump field are preferentially damped without affecting the driven Brillouin scattering process resulting from the beating of the pump and seed fields together. We find that collisions, including the effects of Landau damping, allow for a more efficient transfer of energy between the laser beams, and a significant reduction in the amount ofmore » seed pre-pulse produced.« less
Biphoton Generation Driven by Spatial Light Modulation: Parallel-to-Series Conversion
NASA Astrophysics Data System (ADS)
Zhao, Luwei; Guo, Xianxin; Sun, Yuan; Su, Yumian; Loy, M. M. T.; Du, Shengwang
2016-05-01
We demonstrate the generation of narrowband biphotons with controllable temporal waveform by spontaneous four-wave mixing in cold atoms. In the group-delay regime, we study the dependence of the biphoton temporal waveform on the spatial profile of the pump laser beam. By using a spatial light modulator, we manipulate the spatial profile of the pump laser and map it onto the two-photon entangled temporal wave function. This parallel-to-series conversion (or spatial-to-temporal mapping) enables coding the parallel classical information of the pump spatial profile to the sequential temporal waveform of the biphoton quantum state. The work was supported by the Hong Kong RGC (Project No. 601113).
The HALNA project: Diode-pumped solid-state laser for inertial fusion energy
NASA Astrophysics Data System (ADS)
Kawashima, T.; Ikegawa, T.; Kawanaka, J.; Miyanaga, N.; Nakatsuka, M.; Izawa, Y.; Matsumoto, O.; Yasuhara, R.; Kurita, T.; Sekine, T.; Miyamoto, M.; Kan, H.; Furukawa, H.; Motokoshi, S.; Kanabe, T.
2006-06-01
High-enery, rep.-rated, diode-pumped solid-state laser (DPSSL) is one of leading candidates for inertial fusion energy driver (IFE) and related laser-driven high-field applications. The project for the development of IFE laser driver in Japan, HALNA (High Average-power Laser for Nuclear Fusion Application) at ILE, Osaka University, aims to demonstrate 100-J pulse energy at 10 Hz rep. rate with 5 times diffraction limited beam quality. In this article, the advanced solid-state laser technologies for one half scale of HALNA (50 J, 10 Hz) are presented including thermally managed slab amplifier of Nd:phosphate glass and zig-zag optical geometry, and uniform, large-area diode-pumping.
Challenges in realizing a self-contained hydraulically-driven contractile fiber actuator.
Smela, Elisabeth
2017-07-01
The field of soft robots would benefit from electrically controlled contractile actuators in the form of fibers that achieve a strain of 20% in less than a second while exerting high force. This work explores possible designs for achieving this goal using self-contained electroosmotic fluid pumping within a tube-shaped structure. The most promising configuration is a combination of a bellows and a McKibben-type muscle, since pumping fluid from the former to the latter results in contraction of both portions. Realizing such a device entails challenges in fabrication and electrokinetic fluid pumping in closed systems. Further studies of electroosmotic flow in salt-free organic solvents are needed.
Dorier, M; Brun, E; Veronesi, G; Barreau, F; Pernet-Gallay, K; Desvergne, C; Rabilloud, T; Carapito, C; Herlin-Boime, N; Carrière, M
2015-04-28
TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.
Heating and thermal squeezing in parametrically driven oscillators with added noise.
Batista, Adriano A
2012-11-01
In this paper we report a theoretical model based on Green's functions, Floquet theory, and averaging techniques up to second order that describes the dynamics of parametrically driven oscillators with added thermal noise. Quantitative estimates for heating and quadrature thermal noise squeezing near and below the transition line of the first parametric instability zone of the oscillator are given. Furthermore, we give an intuitive explanation as to why heating and thermal squeezing occur. For small amplitudes of the parametric pump the Floquet multipliers are complex conjugate of each other with a constant magnitude. As the pump amplitude is increased past a threshold value in the stable zone near the first parametric instability, the two Floquet multipliers become real and have different magnitudes. This creates two different effective dissipation rates (one smaller and the other larger than the real dissipation rate) along the stable manifolds of the first-return Poincaré map. We also show that the statistical average of the input power due to thermal noise is constant and independent of the pump amplitude and frequency. The combination of these effects causes most of heating and thermal squeezing. Very good agreement between analytical and numerical estimates of the thermal fluctuations is achieved.
Excitonic gap formation in pumped Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Pertsova, Anna; Markiewicz, Robert S.; Balatsky, Alexander V.
2017-05-01
Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.
Atomic Force Microscope Mediated Chromatography
NASA Technical Reports Server (NTRS)
Anderson, Mark S.
2013-01-01
The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a sliding plate system, consisting of two flat surfaces, one of which has a recessed channel. A fluid flow is produced by axially sliding one plate past another, where the fluid has mechanical shear forces imposed at each point along the channel length. The shear-induced flow rates are very reproducible, and do not have pressure or voltage gradient limitations. SDC opens up a new range of enhanced separation kinetics by permitting the sample confinement with submicron dimensions. Small, highly confined liquid is advantageous for chromatographic separation because the separation rate is known to scale according to the square of the confined sample diameter. In addition, because shear-driven flows are not limited by fluid velocity, shear-driven liquid chromatography may provide up to 100,000 plate efficiency.
Conceptual Study of Permanent Magnet Machine Ship Propulsion Systems
1977-12-01
cycloconverter subsystem is designed using advanced thyristors and can be either water or air cooled. The machine-cycloconverter, many-phase or parallel...Turnb, Phase, Poles, Air Gap ................................. 3-9 3-5 Machine Characteristics Versus Number of Poles (large machine, 40 000 hp). Poles...cylindrical permanent magnet generator forces the power conditioner to provide for both frequency change and voltage control. The complexity of this dual
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 27
1977-02-10
input and output conditions. The power section of the circuit is modified to permit triacs and thyristors, respectively, to function. The purpose of the...electronic materials, components, and devices, on circuit theory, pulse techniques, electromagnetic wave propagation, radar, quantum electronic theory...Lasers, Masers, Holography, Quasi-Optical 20 Microelectronics and General Circuit Theory and Information 21 Radars and Radio Wavigati on 22
NASA Astrophysics Data System (ADS)
Lai, Anison K. R.; Chang, Chien-Cheng; Wang, Chang-Yi
2018-04-01
This paper presents a continued study to our previous work on electroosmotic (EO) flow in a channel with vertical baffle plates by further investigating EO flow through an array of baffle plates arranged in parallel to the channel walls. The flow may be driven either in the direction along or in the direction transverse to the plates, thus distinguishing the longitudinal EO pumping (LEOP) and the transverse EO pumping (TEOP). In both types of EO pumping, it is more interesting to examine the cases when the baffle plates develop a higher zeta potential (denoted by α) than that on the channel walls (β). This semi-analytical study enables us to compare between LEOP and TEOP in the pumping efficiency under similar conditions. The TEOP case is more difficult to solve due to the higher order governing partial differential equations caused by the induced non-uniform pressure gradient distribution. In particular, we examine how the EO pumping rates deviate from those predicted by the Helmholtz-Smoluchowski velocity and illustrate the general trend of optimizing the EO pumping rates with respect to the physical and geometric parameters involved.
IRSHAD, Abdul Razaq; SASAKI, Taihei; KUBO, Tomoaki; ODASHIMA, Naoyuki; KATANO, Keiji; OSAWA, Takeshi; TAKAHASHI, Toru; IZAIKE, Yoshiaki
2015-01-01
The objectives of the present study were to develop a programmable piggyback syringe pump for bovine superovulation and to evaluate the effects of a four-times-a-day injection regimen using the pump. Non-lactating Holstein cows were treated with a total of 30 armour units of porcine FSH by injection four times a day with the pump (study, n = 9) or injection twice a day manually (control, n = 9) for four consecutive days from D10 of the estrous cycle. The pump-driven program successfully induced superovulation in all cows tested. The numbers of small (3– < 5 mm in diameter) and large (≥ 10 mm in diameter) follicles were greater in the study group on D11-13 and D14, respectively. There were fewer unovulated follicles detected on D21 (7 days after estrus) in the study group than in the control group (1.2 ± 0.4 and 3.2 ± 0.6, respectively). PMID:26052155
Irshad, Abdul Razaq; Sasaki, Taihei; Kubo, Tomoaki; Odashima, Naoyuki; Katano, Keiji; Osawa, Takeshi; Takahashi, Toru; Izaike, Yoshiaki
2015-01-01
The objectives of the present study were to develop a programmable piggyback syringe pump for bovine superovulation and to evaluate the effects of a four-times-a-day injection regimen using the pump. Non-lactating Holstein cows were treated with a total of 30 armour units of porcine FSH by injection four times a day with the pump (study, n = 9) or injection twice a day manually (control, n = 9) for four consecutive days from D10 of the estrous cycle. The pump-driven program successfully induced superovulation in all cows tested. The numbers of small (3- < 5 mm in diameter) and large (≥ 10 mm in diameter) follicles were greater in the study group on D11-13 and D14, respectively. There were fewer unovulated follicles detected on D21 (7 days after estrus) in the study group than in the control group (1.2 ± 0.4 and 3.2 ± 0.6, respectively).
Matter wave coupling of spatially separated and unequally pumped polariton condensates
NASA Astrophysics Data System (ADS)
Kalinin, Kirill P.; Lagoudakis, Pavlos G.; Berloff, Natalia G.
2018-03-01
Spatial quantum coherence between two separated driven-dissipative polariton condensates created nonresonantly and with a different occupation is studied. We identify the regions where the condensates remain coherent with the phase difference continuously changing with the pumping imbalance and the regions where each condensate acquires its own chemical potential with phase differences exhibiting time-dependent oscillations. We show that in the mutual coherence limit the coupling consists of two competing contributions: a symmetric Heisenberg exchange and the Dzyloshinskii-Moriya asymmetric interactions that enable a continuous tuning of the phase relation across the dyad and derive analytic expressions for these types of interactions. The introduction of nonequal pumping increases the complexity of the type of problems that can be solved by polariton condensates arranged in a graph configuration. If equally pumped polaritons condensates arrange their phases to solve the constrained quadratic minimisation problem with a real symmetric matrix, the nonequally pumped condensates solve that problem for a general Hermitian matrix.
A Superfluid Pulse Tube Refrigerator Without Moving Parts for Sub-Kelvin Cooling
NASA Technical Reports Server (NTRS)
Miller, Franklin K.
2012-01-01
A report describes a pulse tube refrigerator that uses a mixture of He-3 and superfluid He-4 to cool to temperatures below 300 mK, while rejecting heat at temperatures up to 1.7 K. The refrigerator is driven by a novel thermodynamically reversible pump that is capable of pumping the He-3 He-4 mixture without the need for moving parts. The refrigerator consists of a reversible thermal magnetic pump module, two warm heat exchangers, a recuperative heat exchanger, two cold heat exchangers, two pulse tubes, and an orifice. It is two superfluid pulse tubes that run 180 out of phase. All components of this machine except the reversible thermal pump have been demonstrated at least as proof-of-concept physical models in previous superfluid Stirling cycle machines. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters.
de Lange, Martijn F; van Velzen, Benjamin L; Ottevanger, Coen P; Verouden, Karlijn J F M; Lin, Li-Chiang; Vlugt, Thijs J H; Gascon, Jorge; Kapteijn, Freek
2015-11-24
A large fraction of global energy is consumed for heating and cooling. Adsorption-driven heat pumps and chillers could be employed to reduce this consumption. MOFs are often considered to be ideal adsorbents for heat pumps and chillers. While most published works to date on this topic have focused on the use of water as a working fluid, the instability of many MOFs to water and the fact that water cannot be used at subzero temperatures pose certain drawbacks. The potential of using alcohol-MOF pairs in adsorption-driven heat pumps and chillers is investigated. To this end, 18 different selected MOF structures in combination with either methanol or ethanol as a working fluid are considered, and their potential is assessed on the basis of adsorption measurements and thermodynamic efficiencies. If alcohols are used instead of water, then (1) adsorption occurs at lower relative pressures for methanol and even lower pressure for ethanol, (2) larger pores can be utilized efficiently, as hysteresis is absent for pores smaller than 3.4 nm (2 nm for water), (3) larger pore sizes need to be employed to ensure the desired stepwise adsorption, (4) the effect of (polar/apolar) functional groups in the MOF is far less pronounced, (5) the energy released or taken up per cycle is lower, but heat and mass transfer may be enhanced, (6) stability of MOFs seems to be less of an issue, and (7) cryogenic applications (e.g., ice making) become feasible. From a thermodynamic perspective, UiO-67, CAU-3, and ZIF-8 seem to be the most promising MOFs for both methanol and ethanol as working fluids. Although UiO-67 might not be completely stable, both CAU-3 and ZIF-8 have the potential to be applied, especially in subzero-temperature adsorption chillers (AC).
NASA Technical Reports Server (NTRS)
Vargo, S. E.; Green, A. A.; Muntz, E. P.
2000-01-01
The success of NASA's future space missions and the development of portable, commercial instrument packages will depend greatly on miniaturized components enabled by the use of microelectromechanical systems (MEMS).
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand... any fixed extinguishing-system. (5) Maneuver the vessel to minimize the effect of wind on the fire. (6...
Light energy conservation processes in Halobacterium halobium cells
NASA Technical Reports Server (NTRS)
Bogomolni, R. A.
1977-01-01
Proton pumping driven by light or by respiration generates an electrochemical potential difference across the membrane in Halobacterium halobium. The pH changes induced by light or by respiration in cell suspensions are complicated by proton flows associated with the functioning of the cellular energy transducers. A proton-per-ATP ratio of about 3 is calculated from simultaneous measurements of phosphorylation and the proton inflow. This value is compatible with the chemiosmotic coupling hypothesis. The time course of the light-induced changes in membrane potential indicates that light-driven pumping increases a dark pre-existing potential of about 130 mV only by a small amount (20 to 30 mV). The complex kinetic features of the membrane potential changes do not closely follow those of the pH changes, which suggests that flows of ions other than protons are involved. A qualitative model consistent with the available data is presented.
Gas engine heat pump cycle analysis. Volume 1: Model description and generic analysis
NASA Astrophysics Data System (ADS)
Fischer, R. D.
1986-10-01
The task has prepared performance and cost information to assist in evaluating the selection of high voltage alternating current components, values for component design variables, and system configurations and operating strategy. A steady-state computer model for performance simulation of engine-driven and electrically driven heat pumps was prepared and effectively used for parametric and seasonal performance analyses. Parametric analysis showed the effect of variables associated with design of recuperators, brine coils, domestic hot water heat exchanger, compressor size, engine efficiency, insulation on exhaust and brine piping. Seasonal performance data were prepared for residential and commercial units in six cities with system configurations closely related to existing or contemplated hardware of the five GRI engine contractors. Similar data were prepared for an advanced variable-speed electric unit for comparison purposes. The effect of domestic hot water production on operating costs was determined. Four fan-operating strategies and two brine loop configurations were explored.
Datta, S.; Do, L.V.; Young, T.M.
2004-01-01
A simple compressed-gas driven system for field processing and extracting water for subsequent analyses of hydrophobic organic compounds is presented. The pumping device is a pneumatically driven pump and filtration system that can easily clarify at 4L/min. The extraction device uses compressed gas to drive filtered water through two parallel XAD-2 resin columns, at about 200 mL/min. No batteries or inverters are required for water collection or processing. Solvent extractions were performed directly in the XAD-2 glass columns. Final extracts are cleaned-up on Florisil cartridges without fractionation and contaminants analyzed by GC-MS. Method detection limits (MDLs) and recoveries for dissolved organic contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides are reported along with results of surface water analysis for the San Francisco Bay, CA.
Ridderstråle, Martin
2017-01-01
Background: Depending on available resources, competencies, and pedagogic preference, initiation of insulin pump therapy can be performed on either an individual or a group basis. Here we compared the two models with respect to resources used. Methods: Time-driven activity-based costing (TDABC) was used to compare initiating insulin pump treatment in groups (GT) to individual treatment (IT). Activities and cost drivers were identified, timed, or estimated at location. Medical quality and patient satisfaction were assumed to be noninferior and were not measured. Results: GT was about 30% less time-consuming and 17% less cost driving per patient and activity compared to IT. As a batch driver (16 patients in one group) GT produced an upward jigsaw-shaped accumulative cost curve compared to the incremental increase incurred by IT. Taking the alternate cost for those not attending into account, and realizing the cost of opportunity gained, suggested that GT was cost neutral already when 5 of 16 patients attended, and that a second group could be initiated at no additional cost as the attendance rate reached 15:1. Conclusions: We found TDABC to be effective in comparing treatment alternatives, improving cost control and decision making. Everything else being equal, if the setup is available, our data suggest that initiating insulin pump treatment in groups is far more cost effective than on an individual basis and that TDABC may be used to find the balance point. PMID:28366085
Self-powered enzyme micropumps
NASA Astrophysics Data System (ADS)
Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman
2014-05-01
Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkuch, E.
1984-01-17
The apparatus comprises at least one positive displacement pump, which is driven by the sea waves. The quantity of delivery of this pump is adjustable in accordance with the lengths of strokes made by the ocean waves. This is made possible in that the positive displacement pump comprises pistons having different volume displacements. The height of the incoming waves is measured by a membrane box connected to a transducer which generates signals such that only that piston of the plurality of pistons is made to operate, which has by design a volume displacement which gives the optimal recovery of themore » energy of the ocean waves. The or these pistons pump a working fluid into a storage vessel, which allows the generation of peak load as well as base load electrical energy.« less
Small hydraulic turbine drives
NASA Technical Reports Server (NTRS)
Rostafinski, W. A.
1970-01-01
Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.
Credit BG. Interior of Deluge Water Booster Station displaying highcapacity ...
Credit BG. Interior of Deluge Water Booster Station displaying high-capacity electrically driven water pumps for fire fighting service - Edwards Air Force Base, North Base, Deluge Water Booster Station, Northeast of A Street, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Berger, Andrew J.; Edwards, Eric R. J.; Nembach, Hans T.; Karenowska, Alexy D.; Weiler, Mathias; Silva, Thomas J.
2018-03-01
Functional spintronic devices rely on spin-charge interconversion effects, such as the reciprocal processes of electric field-driven spin torque and magnetization dynamics-driven spin and charge flow. Both dampinglike and fieldlike spin-orbit torques have been observed in the forward process of current-driven spin torque and dampinglike inverse spin-orbit torque has been well studied via spin pumping into heavy metal layers. Here, we demonstrate that established microwave transmission spectroscopy of ferromagnet/normal metal bilayers under ferromagnetic resonance can be used to inductively detect the ac charge currents driven by the inverse spin-charge conversion processes. This technique relies on vector network analyzer ferromagnetic resonance (VNA-FMR) measurements. We show that in addition to the commonly extracted spectroscopic information, VNA-FMR measurements can be used to quantify the magnitude and phase of all ac charge currents in the sample, including those due to spin pumping and spin-charge conversion. Our findings reveal that Ni80Fe20/Pt bilayers exhibit both dampinglike and fieldlike inverse spin-orbit torques. While the magnitudes of both the dampinglike and fieldlike inverse spin-orbit torque are of comparable scale to prior reported values for similar material systems, we observed a significant dependence of the dampinglike magnitude on the order of deposition. This suggests interface quality plays an important role in the overall strength of the dampinglike spin-to-charge conversion.
Design of a high-pressure circulating pump for viscous liquids.
Seifried, Bernhard; Temelli, Feral
2009-07-01
The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.
Shin, Jae Yoon; Shaloski, Michael A; Crim, F Fleming; Case, Amanda S
2017-03-23
We present evidence for vibrational enhancement of the rate of bimolecular reactions of Br atoms with dimethylsulfoxide (DMSO) and methanol (CH 3 OH) in the condensed phase. The abstraction of a hydrogen atom from either of these solvents by a Br atom is highly endoergic: 3269 cm -1 for DMSO and 1416 or 4414 cm -1 for CH 3 OH, depending on the hydrogen atom abstracted. Thus, there is no thermal abstraction reaction at room temperature. Broadband electronic transient absorption shows that following photolysis of bromine precursors Br atoms form van der Waals complexes with the solvent molecules in about 5 ps and this Br • -solvent complex undergoes recombination. To explore the influence of vibrational energy on the abstraction reactions, we introduce a near-infrared (NIR) pump pulse following the photolysis pulse to excite the first overtone of the C-H (or O-H) stretch of the solvent molecules. Using single-wavelength detection, we observe a loss of the Br • -solvent complex that requires the presence of both photolysis and NIR pump pulses. Moreover, the magnitude of this loss depends on the NIR wavelength. Although this loss of reactive Br supports the notion of vibrationally driven chemistry, it is not concrete evidence of the hydrogen-abstraction reaction. To verify that the loss of reactive Br results from the vibrationally driven bimolecular reaction, we examine the pH dependence of the solution (as a measure of the formation of the HBr product) following long-time irradiation of the sample with both photolysis and NIR pump beams. We observe that when the NIR beam is on-resonance, the hydronium ion concentration increases fourfold as compared to that when it is off-resonance, suggesting the formation of HBr via a vibrationally driven hydrogen-abstraction reaction in solution.
Johnson, Ethan T.; Baron, Daniel B.; Naranjo, Belén; Bond, Daniel R.; Schmidt-Dannert, Claudia; Gralnick, Jeffrey A.
2010-01-01
Microorganisms can use complex photosystems or light-dependent proton pumps to generate membrane potential and/or reduce electron carriers to support growth. The discovery that proteorhodopsin is a light-dependent proton pump that can be expressed readily in recombinant bacteria enables development of new strategies to probe microbial physiology and to engineer microbes with new light-driven properties. Here, we describe functional expression of proteorhodopsin and light-induced changes in membrane potential in the bacterium Shewanella oneidensis strain MR-1. We report that there were significant increases in electrical current generation during illumination of electrochemical chambers containing S. oneidensis expressing proteorhodopsin. We present evidence that an engineered strain is able to consume lactate at an increased rate when it is illuminated, which is consistent with the hypothesis that proteorhodopsin activity enhances lactate uptake by increasing the proton motive force. Our results demonstrate that there is coupling of a light-driven process to electricity generation in a nonphotosynthetic engineered bacterium. Expression of proteorhodopsin also preserved the viability of the bacterium under nutrient-limited conditions, providing evidence that fulfillment of basic energy needs of organisms may explain the widespread distribution of proteorhodopsin in marine environments. PMID:20453141
Proposal of laser-driven automobile
NASA Astrophysics Data System (ADS)
Yabe, Takashi; Oozono, Hirokazu; Taniguchi, Kazumoto; Ohkubo, Tomomasa; Miyazaki, Sho; Uchida, Shigeaki; Baasandash, Choijil
2004-09-01
We propose an automobile driven by piston motion, which is driven by water-laser coupling. The automobile can load a solar-pumped fiber laser or can be driven by ground-based lasers. The vehicle is much useful for the use in other planet in which usual combustion engine cannot be used. The piston is in a closed system and then the water will not be exhausted into vacuum. In the preliminary experiment, we succeeded to drive the cylindrical piston of 0.2g (6mm in diameter) on top of water placed inside the acrylic pipe of 8 mm in inner diameter and the laser is incident from the bottom and focused onto the upper part of water by the lens (f=8mm) attached to the bottom edge.
Finite Element Method Applied to Fuse Protection Design
NASA Astrophysics Data System (ADS)
Li, Sen; Song, Zhiquan; Zhang, Ming; Xu, Liuwei; Li, Jinchao; Fu, Peng; Wang, Min; Dong, Lin
2014-03-01
In a poloidal field (PF) converter module, fuse protection is of great importance to ensure the safety of the thyristors. The fuse is pre-selected in a traditional way and then verified by finite element analysis. A 3D physical model is built by ANSYS software to solve the thermal-electric coupled problem of transient process in case of external fault. The result shows that this method is feasible.
High-Speed, high-power, switching transistor
NASA Technical Reports Server (NTRS)
Carnahan, D.; Ohu, C. K.; Hower, P. L.
1979-01-01
Silicon transistor rate for 200 angstroms at 400 to 600 volts combines switching speed of transistors with ruggedness, power capacity of thyristor. Transistor introduces unique combination of increased power-handling capability, unusally low saturation and switching losses, and submicrosecond switching speeds. Potential applications include high power switching regulators, linear amplifiers, chopper controls for high frequency electrical vehicle drives, VLF transmitters, RF induction heaters, kitchen cooking ranges, and electronic scalpels for medical surgery.
Control of electromagnetic stirring by power focusing in large induction crucible furnaces
NASA Astrophysics Data System (ADS)
Frizen, V. E.; Sarapulov, F. N.
2011-12-01
An approach is proposed for the calculation of the operating conditions of an induction crucible furnace at the final stage of melting with the power focused in various regions of melted metal. The calculation is performed using a model based on the method of detailed magnetic equivalent circuits. The combination of the furnace and a thyristor frequency converter is taken into account in modeling.
Sakudo, Akikazu; Toyokawa, Yoichi; Imanishi, Yuichiro
2016-01-01
Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses. Viral titer was reduced by one log within 0.94 min. Results from detection of viral capsid proteins, hexon and penton, by Western blotting and immunochromatography were unaffected by the plasma treatment. In contrast, analysis using the polymerase chain reaction suggested that plasma treatment damages the viral genomic DNA. Reactive chemical products (hydrogen peroxide, nitrate, and nitrite), ultraviolet light (UV-A) and slight temperature elevations were observed during the operation of the gas plasma device. Viral titer versus intensity of each potential virucidal factor were used to identify the primary mechanism of disinfection of adenovirus. Although exposure to equivalent levels of UV-A or heat treatment did not inactivate adenovirus, treatment with a relatively low concentration of hydrogen peroxide efficiently inactivated the virus. Our results suggest the nitrogen gas plasma generates reactive chemical products that inactivate adenovirus by damaging the viral genomic DNA. PMID:27322066
Silicon controlled rectifier polyphase bridge inverter commutated with gate-turn-off thyristor
NASA Technical Reports Server (NTRS)
Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)
1986-01-01
A polyphase SCR inverter (10) having N switching poles, each comprised of two SCR switches (1A, 1B; 2A, 2B . . . NA, NB) and two diodes (D1B; D1B; D2A, D2B . . . DNA, DNB) in series opposition with saturable reactors (L1A, L1B; L2A, L2B . . . LNA, LNB) connecting the junctions between the SCR switches and diodes to an output terminal (1, 2 . . . 3) is commutated with only one GTO thyristor (16) connected between the common negative terminal of a dc source and a tap of a series inductor (14) connected to the positive terminal of the dc source. A clamp winding (22) and diode (24) are provided, as is a snubber (18) which may have its capacitance (c) sized for maximum load current divided into a plurality of capacitors (C.sub.1, C.sub.2 . . . C.sub.N), each in series with an SCR switch S.sub.1, S.sub.2 . . . S.sub.N). The total capacitance may be selected by activating selected switches as a function of load current. A resistor 28 and SCR switch 26 shunt reverse current when the load acts as a generator, such as a motor while braking.
Active control system for high speed windmills
Avery, D.E.
1988-01-12
A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.
Active control system for high speed windmills
Avery, Don E.
1988-01-01
A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.
Pumping Performance or RBCC Engine under Sea Level Static Condition
NASA Astrophysics Data System (ADS)
Kouchi, Toshinori; Tomioka, Sadatake; Kanda, Takeshi
Numerical simulations were conducted to predict the ejector pumping performance of a rocket-ramjet combined-cycle engine under a take-off condition. The numerical simulations revealed that the suction airflow was chocked at the exit of the engine throat when the ejector rocket was driven by cold N2 gas at the chamber pressure of 3MPa. When the ejector-driving gas was changed from cold N2 gas to hot combustion gas, the suction performance decreased remarkably. Mach contours in the engine revealed that the rocket plume constricted when the driving gas was the hot combustion gas. The change of the area of the stream tube area seemed to induce the pressure rise in the duct and decreasing in the pumping performance.
Current fluctuations in periodically driven systems
NASA Astrophysics Data System (ADS)
Barato, Andre C.; Chetrite, Raphael
2018-05-01
Small nonequelibrium systems driven by an external periodic protocol can be described by Markov processes with time-periodic transition rates. In general, current fluctuations in such small systems are large and may play a crucial role. We develop a theoretical formalism to evaluate the rate of such large deviations in periodically driven systems. We show that the scaled cumulant generating function that characterizes current fluctuations is given by a maximal Floquet exponent. Comparing deterministic protocols with stochastic protocols, we show that, with respect to large deviations, systems driven by a stochastic protocol with an infinitely large number of jumps are equivalent to systems driven by deterministic protocols. Our results are illustrated with three case studies: a two-state model for a heat engine, a three-state model for a molecular pump, and a biased random walk with a time-periodic affinity.
NASA Astrophysics Data System (ADS)
García-Sánchez, P.; Ramos, A.; Green, Nicolas G.; Morgan, H.
2008-12-01
Net fluid flow of electrolytes driven on an array of microelectrodes subjected to a travelling-wave potential is presented. Two sizes of platinum microelectrodes have been studied. In both arrays, at low voltages the liquid flows according to the prediction given by ac electroosmotic theory. At voltages above a threshold the fluid flow is reversed. Measurements of the electrical current when the microelectrode array is pumping the liquid are also reported. Transient behaviours in both electrical current and fluid velocity have been observed.
NASA Astrophysics Data System (ADS)
Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M.
2015-04-01
TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients. Electronic supplementary information (ESI) available: Nanoparticle physico-chemical characterization: size distribution in exposure medium, as measured by DLS (Fig. S1), and X-ray diffraction patterns of A12 and R20 (Fig. S2); characterization of the protein corona on A12 and R20 (Table S1-S4 and experimental). See DOI: 10.1039/c5nr00505a
INTERIOR OF BOILER BUILDING, FIRST LEVEL, EAST SIDE, SHOWING STEAMDRIVEN ...
INTERIOR OF BOILER BUILDING, FIRST LEVEL, EAST SIDE, SHOWING STEAM-DRIVEN PISTON PUMPS FOR FUEL OIL, CAMERA FACING EAST. - New Haven Rail Yard, Central Steam Plant and Oil Storage, Vicinity of Union Avenue, New Haven, New Haven County, CT
An electrochemical pumping system for on-chip gradient generation.
Xie, Jun; Miao, Yunan; Shih, Jason; He, Qing; Liu, Jun; Tai, Yu-Chong; Lee, Terry D
2004-07-01
Within the context of microfluidic systems, it has been difficult to devise pumping systems that can deliver adequate flow rates at high pressure for applications such as HPLC. An on-chip electrochemical pumping system based on electrolysis that offers certain advantages over designs that utilize electroosmotic driven flow has been fabricated and tested. The pump was fabricated on both silicon and glass substrates using photolithography. The electrolysis electrodes were formed from either platinum or gold, and SU8, an epoxy-based photoresist, was used to form the pump chambers. A glass cover plate and a poly(dimethylsiloxane) (PDMS) gasket were used to seal the chambers. Filling of the chambers was accomplished by using a syringe to inject liquid via filling ports, which were later sealed using a glass cover plate. The current supplied to the electrodes controlled the rate of gas formation and, thus, the resulting fluid flow rate. At low backpressures, flow rates >1 microL/min have been demonstrated using <1 mW of power. Pumping at backpressures as high as 200 psi have been demonstrated, with 20 nL/min having been observed using <4 mW. By integrating two electrochemical pumps with a polymer electrospray nozzle, we have confirmed the successful generation of a solvent gradient via a mass spectrometer.
[Initial experience with a new blood pump].
Margreiter, R; Schwab, W; Klima, G; Koller, J; Baum, M; Dietrich, H; Hager, J; Königsrainer, A
1990-12-01
A new type of blood pump was tested in calves for 6 hours. The pump consists of a rigid housing with a trochoidal internal surface, an inlet and outlet, and two lateral walls. A two-corner piston rotating on an eccentric shaft, describes a trochoidal path, thus creating a gap seal, the gap measuring a constant 10-35 microns. The pump is driven by a watercooled DC motor. For right ventricular assist, a cannula is inserted into the right ventricle through the right atrium, and into the left ventricle for left ventricular assists. From a total of 10 experiments, two left ventricular assists, two right ventricular assists, and three biventricular assists were evaluated. The pump produced a pulsatile flow of 31 at 70 rpm. Energy requirements were 2.19 watts for left, 2.06 for right, and 7.26 for biventricular assists. Plasma hemoglobin remained as low as 10 mg/dl during monoventricular, and increased during biventricular assists to 20 mg/dl after 3 hours, and returned to 16 mg/dl after 6 hours. From these preliminary results it is concluded that this new rotary blood pump may be suitable as a circulatory assist device.
Rotacor: a new rotary blood pump.
Margreiter, R; Schwab, W; Klima, G; Koller, J; Baum, M; Dietrich, H; Hager, J; Königsrainer, A
1990-01-01
A new rotary blood pump was tested in calves for 6 hr. The pump consists of a rigid housing with a trochoidal internal surface, an inlet and outlet, and two lateral walls. A two-corner piston rotates on an eccentric shaft in a trochoidal path, thus creating a gap seal. The pump is driven by a water-cooled DC motor. For right ventricular assist, a cannula was inserted into the right ventricle through the right atrium, and into the left ventricle for left ventricular assist. From a total of 10 experiments, two left ventricular assists, two right ventricular assists, and three biventricular assists were evaluated. The pump produced a pulsatile flow of 3 L at 70 rpm. Energy requirements were 2.19 watts for left, 2.06 for right, and 7.26 for biventricular assists. Plasma hemoglobin remained as low as 10 mg/dl during monoventricular, and increased during biventricular assists to 20 mg/dl after 3 hr, when it started to chop again; after 6 hr it was 16 mg/dl. From these preliminary results it is concluded that this new type of blood pump may be suitable as a circulatory assist device.
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
Electrostatic coupling of ion pumps.
Nieto-Frausto, J; Lüger, P; Apell, H J
1992-01-01
In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W. S.; Kung, Y. F.; Moritz, B.
We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Synchronization and Random Triggering of Lymphatic Vessel Contractions
Baish, James W.; Kunert, Christian; Padera, Timothy P.; Munn, Lance L.
2016-01-01
The lymphatic system is responsible for transporting interstitial fluid back to the bloodstream, but unlike the cardiovascular system, lacks a centralized pump-the heart–to drive flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing unidirectional flow enforced by intraluminal check valves. Due to the large number and spatial distribution of such pumps, high-level coordination would be unwieldy. This leads to the question of how each segment of lymphatic vessel responds to local signals that can contribute to the coordination of pumping on a network basis. Beginning with elementary fluid mechanics and known cellular behaviors, we show that two complementary oscillators emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress induced nitric oxide production (NO). Using numerical simulation and linear stability analysis we show that the newly identified shear-NO oscillator shares similarities with the well-known Van der Pol oscillator, but has unique characteristics. Depending on the operating conditions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in response to random disturbances or iii) synchronize with weak periodic stimuli. When the complementary shear-driven and stretch-driven oscillators interact, either may dominate, producing a rich family of behaviors similar to those observed in vivo. PMID:27935958
Synchronization and Random Triggering of Lymphatic Vessel Contractions.
Baish, James W; Kunert, Christian; Padera, Timothy P; Munn, Lance L
2016-12-01
The lymphatic system is responsible for transporting interstitial fluid back to the bloodstream, but unlike the cardiovascular system, lacks a centralized pump-the heart-to drive flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing unidirectional flow enforced by intraluminal check valves. Due to the large number and spatial distribution of such pumps, high-level coordination would be unwieldy. This leads to the question of how each segment of lymphatic vessel responds to local signals that can contribute to the coordination of pumping on a network basis. Beginning with elementary fluid mechanics and known cellular behaviors, we show that two complementary oscillators emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress induced nitric oxide production (NO). Using numerical simulation and linear stability analysis we show that the newly identified shear-NO oscillator shares similarities with the well-known Van der Pol oscillator, but has unique characteristics. Depending on the operating conditions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in response to random disturbances or iii) synchronize with weak periodic stimuli. When the complementary shear-driven and stretch-driven oscillators interact, either may dominate, producing a rich family of behaviors similar to those observed in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamo, Naoki; Hashiba, Tsuyoshi; Kikukawa, Takashi
2006-03-10
A gene encoding putative retinal protein was cloned from Haloterrigena turkmenica (JCM9743). The deduced amino acid sequence was most closely related to that of deltarhodopsin, which functions as a light-driven H{sup +} pump and was identified in a novel strain Haloterrigena sp. arg-4 (K. Ihara, T. Uemura, I. Katagiri, T. Kitajima-Ihara, Y. Sugiyama, Y. Kimura, Y. Mukohata, Evolution of the archaeal rhodopsins: Evolution rate changes by gene duplication and functional differentiation, J. Mol. Biol. 285 (1999) 163-174. GenBank Accession No. AB009620). Thus, we called the present protein H. turkmenica deltarhodopsin (HtdR) in this report. Differing from the Halobacterium salinarum bacteriorhodopsinmore » (bR), functional expression of HtdR was achieved in Escherichia coli membrane with a high yield of 10-15mg protein/L culture. The photocycle of purified HtdR was similar to that of bR. The photo-induced electrogenic proton pumping activity of HtdR was verified. We co-expressed both HtdR and EmrE, a proton-coupled multi-drug efflux transporter in E. coli, and the cells successfully extruded ethidium, a substrate of EmrE, on illumination.« less
Key parameters controlling the performance of catalytic motors.
Esplandiu, Maria J; Afshar Farniya, Ali; Reguera, David
2016-03-28
The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.
Development of mechanical circulatory support devices in China.
Wang, Wei; Zhu, De-Ming; Ding, Wen-Xiang
2009-11-01
Myocardial dysfunction leading to low cardiac output syndrome is a common clinical pathophysiological state. Currently, the use of mechanical circulatory support (MCS) is an essential aspect of the treatment of patients with cardiac failure. Several groups in China are engaged in the design and development of MCS devices. These devices can be classified as pulsatile, rotary, and total artificial heart (TAH). There are two types of pulsatile pump, which are driven by air (pneumatic). One of these pumps, the Luo-Ye pump, has been used clinically for short-term support since 1998. The other is a push-plate left ventricular device, which has a variable rate mode. Various rotary devices are classified into axial and centrifugal pumps, depending on the impeller geometry. Most rotary pumps are based on the maglev principle, and some types have been used clinically. Others are still being studied in the laboratory or in animal experiments. Furthermore, certain types of total implantable pump, such as the UJS-III axial pump and the UJS-IV aortic valvo-pump, have been developed. Only one type of TAH has been developed in China. The main constituents of this artificial heart are two axial pumps, two reservoir tanks mimicking the right and left atria, flow meters, two pressure gauges, and a resistance adaptor. Although the development of mechanical assist devices in China is still in a nascent stage, a number of different types of MCS devices are currently being studied.
Elementary Hemodynamic Principles Based on Modified Bernoulli's Equation.
ERIC Educational Resources Information Center
Badeer, Henry S.
1985-01-01
Develops and expands basic concepts of Bernoulli's equation as it applies to vascular hemodynamics. Simple models are used to illustrate gravitational potential energy, steady nonturbulent flow, pump-driven streamline flow, and other areas. Relationships to the circulatory system are also discussed. (DH)
Use of TCSR with Split Windings for Shortening the Spar Cycle Time in 500 kV Lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matinyan, A. M., E-mail: al-drm@mail.ru; Peshkov, M. V.; Karpov, V. N.
The arc-fault recharge phenomenon in single-phase automatic reclosure (SPAR) of a line is examined. Abrief description is given of the design of a 500 kV thyristor controlled shunt reactor (TCSR) with split valve-side windings. This type of TCSR is shown to effectively quench a single-phase arc fault in a power transmission line and shortens the SPAR cycle time.
Development of a Proof of Concept Low Temperature Superfluid Magnetic Pump with Applications
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.
State of the art particle and photon detectors such as Transition Edge Sensors (TES) and Microwave Kinetic Inductance Detectors (MKID) use large arrays of sensors or detectors for space science missions. As the size of these space science detectors increases, future astrophysics missions will require sub-Kelvin coolers over larger areas. This leads to not only increased cooling power requirements, but also a requirement for distributed sub-Kelvin cooling. Development of a proof of concept Superfluid Magnetic Pump is discussed in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He- 4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, or active magnetic regenerative refrigerators. Due to its superior thermal transport properties this pump can also be used as a simple circulator of sub-Lambda 4He to distribute cooling over large surface areas. The pump discussed in this work was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pascal. This pump worked in an "ideal" thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be put to test in suitable sub Kelvin refrigeration systems. Numerical modeling of an Active Magnetic Regenerative Refrigerator (AMRR) that uses the Superfluid Magnetic Pump (SMP) to circulate liquid 3He-4He through a magnetic regenerator is presented as a potential application of such a pump.
Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.
Yuhki, A; Nogawa, M; Takatani, S
2000-06-01
In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.
46 CFR 111.101-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Applicability. 111.101-1 Section 111.101-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Submersible Motor-Driven Bilge Pumps § 111.101-1 Applicability. This subpart applies to each...
46 CFR 111.101-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Applicability. 111.101-1 Section 111.101-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Submersible Motor-Driven Bilge Pumps § 111.101-1 Applicability. This subpart applies to each...
46 CFR 111.101-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Applicability. 111.101-1 Section 111.101-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Submersible Motor-Driven Bilge Pumps § 111.101-1 Applicability. This subpart applies to each...
46 CFR 111.101-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Applicability. 111.101-1 Section 111.101-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Submersible Motor-Driven Bilge Pumps § 111.101-1 Applicability. This subpart applies to each...
46 CFR 111.101-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Applicability. 111.101-1 Section 111.101-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Submersible Motor-Driven Bilge Pumps § 111.101-1 Applicability. This subpart applies to each...
Characterization of High-power Quasi-cw Laser Diode Arrays
NASA Technical Reports Server (NTRS)
Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.
2005-01-01
NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.
Advanced space engine preliminary design
NASA Technical Reports Server (NTRS)
Cuffe, J. P. B.; Bradie, R. E.
1973-01-01
A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.
Aerodynamics of electrically driven freight pipeline system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundgren, T.S.; Zhao, Y.
2000-06-01
This paper examines the aerodynamic characteristics of a freight pipeline system in which freight capsules are individually propelled by electrical motors. The fundamental difference between this system and the more extensively studied pneumatic capsule pipeline is the different role played by aerodynamic forces. In a driven system the propelled capsules are resisted by aerodynamic forces and, in reaction, pump air through the tube. In contrast, in a pneumatically propelled system external blowers pump air through the tubes, and this provides the thrust for the capsules. An incompressible transient analysis is developed to study the aerodynamics of multiple capsules in amore » cross-linked two-bore pipeline. An aerodynamic friction coefficient is used as a cost parameter to compare the effects of capsule blockage and headway and to assess the merits of adits and vents. The authors conclude that optimum efficiency for off-design operation is obtained with long platoons of capsules in vented or adit connected tubes.« less
High-Resolution Structure and Mechanism of an F/V-Hybrid Rotor Ring in a Na+-coupled ATP Synthase
Matthies, Doreen; Zhou, Wenchang; Klyszejko, Adriana L.; Anselmi, Claudio; Yildiz, Özkan; Brandt, Karsten; Müller, Volker; Faraldo-Gómez, José D.; Meier, Thomas
2014-01-01
All rotary ATPases catalyze the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H+ or Na+. Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved the crystal structure of the Na+-driven membrane rotor of the Acetobacterium woodii ATP synthase, at 2.1 Å resolution. Unlike known structures, this rotor ring is a 9:1 heteromer of F- and V-type c-subunits, and therefore features a hybrid configuration of ion-binding sites along its circumference. Molecular and kinetic simulations are used to dissect the mechanisms of Na+ recognition and rotation of this c-ring, and to explain the functional implications of the V-type c-subunit. These structural and mechanistic insights indicate an evolutionary path between synthases and pumps involving adaptations in the rotor ring. PMID:25381992
NASA Technical Reports Server (NTRS)
Belliveau, J. W.; Lanyi, J. K.
1977-01-01
Halobacterium halobium is known to contain sheets of bacteriorhodopsin, a pigment which upon exposure to light undergoes cyclic protonation and deprotonation, resulting in net H(+) translocation. In this paper, experiments were conducted to test H. halobium cell envelope vesicles for respiration-induced glutamate uptake. It is shown that glutamate transport in H. halobium cell envelope vesicles can occur as a result of respiration, as well as light acting on bacteriorhodopsin. Glutamate transport can be energized by the oxidation of dimethyl phenylenediamine, and the properties of the transport system are entirely analogous to those observed with illumination as the source of energy. In the case of respiration-dependent glutamate transport, the transportation is also driven by a Na(+) gradient, thereby confirming the existence of a single glutamate transport system independent of the source of energy. The analogy observed is indirect evidence that the cytochrome oxidase of H. halobium functions as a H(+) pump.
Reynolds, J A; Johnson, E A; Tanford, C
1985-01-01
If a ligand binds with unequal affinity to two distinct states of a protein, then the equilibrium between the two states becomes a function of the concentration of the ligand. A necessary consequence is that the ligand must also affect the forward and/or reverse rate constants for transition between the two states. For an enzyme or transport protein with such a transition as a slow step in the catalytic cycle, the overall rate also becomes a function of ligand concentration. These conclusions are independent of whether or not the ligand is a direct participant in the reaction. If it is a direct participant, then the kinetic effect arising from the principle of linked functions is distinct from the direct catalytic effect. These principles suffice to account for the biphasic response of the hydrolytic activity of ATP-driven ion pumps to the concentration of ATP, without the need to invoke more than one ATP binding site per catalytic center. PMID:2987939
Third-generation blood pumps with mechanical noncontact magnetic bearings.
Hoshi, Hideo; Shinshi, Tadahiko; Takatani, Setsuo
2006-05-01
This article reviews third-generation blood pumps, focusing on the magnetic-levitation (maglev) system. The maglev system can be categorized into three types: (i) external motor-driven system, (ii) direct-drive motor-driven system, and (iii) self-bearing or bearingless motor system. In the external motor-driven system, Terumo (Ann Arbor, MI, U.S.A.) DuraHeart is an example where the impeller is levitated in the axial or z-direction. The disadvantage of this system is the mechanical wear in the mechanical bearings of the external motor. In the second system, the impeller is made into the rotor of the motor, and the magnetic flux, through the external stator, rotates the impeller, while the impeller levitation is maintained through another electromagnetic system. The Berlin Heart (Berlin, Germany) INCOR is the best example of this principle where one-axis control combination with hydrodynamic force achieves high performance. In the third system, the stator core is shared by the levitation and drive coil to make it as if the bearing does not exist. Levitronix CentriMag (Zürich, Switzerland), which appeared recently, employs this concept to achieve stable and safe operation of the extracorporeal system that can last for a duration of 14 days. Experimental systems including HeartMate III (Thoratec, Woburn, MA, U.S.A.), HeartQuest (WorldHeart, Ottawa, ON, Canada), MagneVAD (Gold Medical Technologies, Valhalla, NY, U.S.A.), MiTiHeart (MiTi Heart, Albany, NY, U.S.A.), Ibaraki University's Heart (Hitachi, Japan) and Tokyo Medical and Dental University/Tokyo Institute of Technology's disposable and implantable maglev blood pumps are also reviewed. In reference to second-generation blood pumps, such as the Jarvik 2000 (Jarvik Heart, New York, NY, U.S.A.), which is showing remarkable achievement, a question is raised whether a complicated system such as the maglev system is really needed. We should pay careful attention to future clinical outcomes of the ongoing clinical trials of the second-generation devices before making any further remarks. What is best for patients is the best for everyone. We should not waste any efforts unless they are actually needed to improve the quality of life of heart-failure patients.
Picosecond time scale dynamics of short pulse laser-driven shocks in tin
NASA Astrophysics Data System (ADS)
Grigsby, W.; Bowes, B. T.; Dalton, D. A.; Bernstein, A. C.; Bless, S.; Downer, M. C.; Taleff, E.; Colvin, J.; Ditmire, T.
2009-05-01
The dynamics of high strain rate shock waves driven by a subnanosecond laser pulse in thin tin slabs have been investigated. These shocks, with pressure up to 1 Mbar, have been diagnosed with an 800 nm wavelength ultrafast laser pulse in a pump-probe configuration, which measured reflectivity and two-dimensional interferometry of the expanding rear surface. Time-resolved rear surface expansion data suggest that we reached pressures necessary to shock melt tin upon compression. Reflectivity measurements, however, show an anomalously high drop in the tin reflectivity for free standing foils, which can be attributed to microparticle formation at the back surface when the laser-driven shock releases.
NASA Astrophysics Data System (ADS)
Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-04-01
Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.
Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms
Laramie, Matthew B.; Pilliod, David S.; Goldberg, Caren S.; Strickler, Katherine M.
2015-09-29
Environmental DNA (eDNA) analysis is an effective method of determining the presence of aquatic organisms such as fish, amphibians, and other taxa. This publication is meant to guide researchers and managers in the collection, concentration, and preservation of eDNA samples from lentic and lotic systems. A sampling workflow diagram and three sampling protocols are included as well as a list of suggested supplies. Protocols include filter and pump assembly using: (1) a hand-driven vacuum pump, ideal for sample collection in remote sampling locations where no electricity is available and when equipment weight is a primary concern; (2) a peristaltic pump powered by a rechargeable battery-operated driver/drill, suitable for remote sampling locations when weight consideration is less of a concern; (3) a 120-volt alternating current (AC) powered peristaltic pump suitable for any location where 120-volt AC power is accessible, or for roadside sampling locations. Images and detailed descriptions are provided for each step in the sampling and preservation process.
NASA Astrophysics Data System (ADS)
Zume, Joseph; Tarhule, Aondover
2008-06-01
Visual MODFLOW, a numerical groundwater flow model, was used to evaluate the impacts of groundwater exploitation on streamflow depletion in the Alluvium and Terrace aquifer of the Beaver-North Canadian River (BNCR) in northwestern Oklahoma, USA. Water demand in semi-arid northwestern Oklahoma is projected to increase by 53% during the next five decades, driven primarily by irrigation, public water supply, and agricultural demand. Using MODFLOW’s streamflow routing package, pumping-induced changes in baseflow and stream leakage were analyzed to estimate streamflow depletion in the BNCR system. Simulation results indicate groundwater pumping has reduced baseflow to streams by approximately 29% and has also increased stream leakage into the aquifer by 18% for a net streamflow loss of 47%. The magnitude and intensity of streamflow depletion, however, varies for different stream segments, ranging from 0 to 20,804 m3/d. The method provides a framework for isolating and quantifying impacts of aquifer pumping on stream function in semiarid alluvial environments.
Spectral transfers and zonal flow dynamics in the generalized Charney-Hasegawa-Mima model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashmore-Davies, C.N.; Thyagaraja, A.; McCarthy, D.R.
2005-12-15
The mechanism of four nonlinearly interacting drift or Rossby waves is used as the basic process underlying the turbulent evolution of both the Charney-Hasegawa-Mima-equation (CHME) and its generalized modification (GCHME). Hasegawa and Kodama's concept of equivalent action (or quanta) is applied to the four-wave system and shown to control the distribution of energy and enstrophy between the modes. A numerical study of the GCHME is described in which the initial state contains a single finite-amplitude drift wave (the pump wave), and all the modulationally unstable modes are present at the same low level (10{sup -6} times the pump amplitude). Themore » simulation shows that at first the fastest-growing modulationally unstable modes dominate but reveals that at a later time, before pump depletion occurs, long- and short-wavelength modes, driven by pairs of fast-growing modes, grow at 2{gamma}{sub max}. The numerical simulation illustrates the development of a spectrum of turbulent modes from a finite-amplitude pump wave.« less
Histamine stimulates chloride secretion in omeprazole-inhibited frog gastric mucosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGreevy, J.; Barton, R.; Housinger, T.
1986-03-05
Omeprazole (OME) stops hydrogen ion (H) secretion in the histamine (HIST)-stimulated gastric mucosa while the chloride (Cl) which had accompanied the H continues to be pumped into the lumen. This finding suggests that the Cl pump is independent of the H/K ATP-ase driven H pump. To test this hypothesis, 16 Ussing-chambered frog mucosas were exposed to OME prior to HIST stimulation. If the Cl pump is independent, HIST should stimulate Cl secretion in the OME-inhibited mucosa. A 1 hr control (CON) interval preceded exposure to OME (10/sup -4/M) in the nutrient solution. Potential difference (PD), short-circuit current (Isc), resistance (R),more » H flux (J/sup H/) and Cl flux (J/sup Cl/ with /sup 36/Cl) were measured every 15 min. After 1 hr of OME exposure, HIST (10/sup -5/M) was added to the nutrient solution. The findings demonstrate that HIST stimulates Cl secretion in the OME-inhibited bullfrog gastric mucosa.« less
Expanding the View of Proton Pumping in Cytochrome c Oxidase through Computer Simulation
Peng, Yuxing; Voth, Gregory A.
2011-01-01
In cytochrome c oxidase (CcO), a redox-driven proton pump, protons are transported by the Grotthuss shuttling via hydrogen-bonded water molecules and protonatable residues. Proton transport through the D-pathway is a complicated process that is highly sensitive to alterations in the amino acids or the solvation structure in the channel, both of which can inhibit proton pumping and enzymatic activity. Simulations of proton transport in the hydrophobic cavity showed a clear redox state dependence. To study the mechanism of proton pumping in CcO, multi-state empirical valence bond (MS-EVB) simulations have been conducted, focusing on the proton transport through the D-pathway and the hydrophobic cavity next to the binuclear center. The hydration structures, transport pathways, effects of residues, and free energy surfaces of proton transport were revealed in these MS-EVB simulations. The mechanistic insight gained from them is herein reviewed and placed in context for future studies. PMID:22178790
PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump
NASA Technical Reports Server (NTRS)
Domijan, Alexander, Jr.; Buchh, Tariq Aslam
1995-01-01
A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
Raman conversion in intense femtosecond Bessel beams in air
NASA Astrophysics Data System (ADS)
Scheller, Maik; Chen, Xi; Ariunbold, Gombojav O.; Born, Norman; Moloney, Jerome; Kolesik, Miroslav; Polynkin, Pavel
2014-05-01
We demonstrate experimentally that bright and nearly collimated radiation can be efficiently generated in air pumped by an intense femtosecond Bessel beam. We show that this nonlinear conversion process is driven by the rotational Raman response of air molecules. Under optimum conditions, the conversion efficiency from the Bessel pump into the on-axis propagating beam exceeds 15% and is limited by the onset of intensity clamping and plasma refraction on the beam axis. Our experimental findings are in excellent agreement with numerical simulations based on the standard model for the ultrafast nonlinear response of air.
Primeau, John J.
1983-03-01
A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.
Preliminary design package for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.
Compact, high energy gas laser
Rockwood, Stephen D.; Stapleton, Robert E.; Stratton, Thomas F.
1976-08-03
An electrically pumped gas laser amplifier unit having a disc-like configuration in which light propagation is radially outward from the axis rather than along the axis. The input optical energy is distributed over a much smaller area than the output optical energy, i.e., the amplified beam, while still preserving the simplicity of parallel electrodes for pumping the laser medium. The system may thus be driven by a comparatively low optical energy input, while at the same time, owing to the large output area, large energies may be extracted while maintaining the energy per unit area below the threshold of gas breakdown.
Chang, Hsin-Yang; Choi, Sylvia K.; Vakkasoglu, Ahmet Selim; Chen, Ying; Hemp, James; Fee, James A.; Gennis, Robert B.
2012-01-01
The heme-copper oxygen reductases are redox-driven proton pumps. In the current work, the effects of mutations in a proposed exit pathway for pumped protons are examined in the ba3-type oxygen reductase from Thermus thermophilus, leading from the propionates of heme a3 to the interface between subunits I and II. Recent studies have proposed important roles for His376 and Asp372, both of which are hydrogen-bonded to propionate-A of heme a3, and for Glu126II (subunit II), which is hydrogen-bonded to His376. Based on the current results, His376, Glu126II, and Asp372 are not essential for either oxidase activity or proton pumping. In addition, Tyr133, which is hydrogen-bonded to propionate-D of heme a3, was also shown not to be essential for function. However, two mutations of the residues hydrogen-bonded to propionate-A, Asp372Ile and His376Asn, retain high electron transfer activity and normal spectral features but, in different preparations, either do not pump protons or exhibit substantially diminished proton pumping. It is concluded that either propionate-A of heme a3 or possibly the cluster of groups centered about the conserved water molecule that hydrogen-bonds to both propionates-A and -D of heme a3 is a good candidate to be the proton loading site. PMID:22431640
Chang, Hsin-Yang; Choi, Sylvia K; Vakkasoglu, Ahmet Selim; Chen, Ying; Hemp, James; Fee, James A; Gennis, Robert B
2012-04-03
The heme-copper oxygen reductases are redox-driven proton pumps. In the current work, the effects of mutations in a proposed exit pathway for pumped protons are examined in the ba(3)-type oxygen reductase from Thermus thermophilus, leading from the propionates of heme a(3) to the interface between subunits I and II. Recent studies have proposed important roles for His376 and Asp372, both of which are hydrogen-bonded to propionate-A of heme a(3), and for Glu126(II) (subunit II), which is hydrogen-bonded to His376. Based on the current results, His376, Glu126(II), and Asp372 are not essential for either oxidase activity or proton pumping. In addition, Tyr133, which is hydrogen-bonded to propionate-D of heme a(3), was also shown not to be essential for function. However, two mutations of the residues hydrogen-bonded to propionate-A, Asp372Ile and His376Asn, retain high electron transfer activity and normal spectral features but, in different preparations, either do not pump protons or exhibit substantially diminished proton pumping. It is concluded that either propionate-A of heme a(3) or possibly the cluster of groups centered about the conserved water molecule that hydrogen-bonds to both propionates-A and -D of heme a(3) is a good candidate to be the proton loading site.
77 FR 16175 - Station Blackout
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
... not have access to ADAMS or if there are problems in accessing the documents located in ADAMS, contact... with turbine trip and unavailability of the onsite emergency ac power system). Station blackout does... powered, such as turbine- or diesel-driven pumps. Thus, the reliability of such components, dc battery...
Machinist's Mate 1 and C: Rate Training Manual.
ERIC Educational Resources Information Center
Naval Training Command, Pensacola, FL.
The rate training manual covers the duties required to efficiently operate and maintain ship propulsion machinery and associated equipment and to maintain applicable records and reports. Chapters cover: turbines; reduction gears; steam-driven generators; heat exchangers and air ejectors; pumps; piping and valves; distilling plants; refrigeration…
76 FR 3604 - Information Collection; Qualified Products List for Engine Driven Pumps
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... levels. 2. Reliability and endurance requirements. These requirements include a 100-hour endurance test... evaluated to meet specific requirements related to safety, effectiveness, efficiency, and reliability of the... of the collection of information, including the validity of the methodology and assumptions used; (3...
Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle
NASA Technical Reports Server (NTRS)
Kliman, G. B.
1982-01-01
An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.
Inverter for interfacing advanced energy sources to a utility grid
Steigerwald, Robert L.
1984-01-01
A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.
In-line Microwave Warmer for Blood and Intravenous Fluids.
1989-12-14
circuit was designed and tested. This circuit uses a digitally controlled optically coupled Triac , a thyristor device, which acts as a switch to allow...three sites of the circuit : Inlet Port of Heating Chamber Interior Path of Heating Chamber Outlet Port of Heating Chamber 4) Feedback Control Mechanism...accomplished through use of a closed loop test circuit depicted in Figure 1-2. This test circuit can be used to heat iv fluids or blood on a continuous
1983-04-01
34.. .. . ...- "- -,-. SIGNIFICANCE AND EXPLANATION Many different codes for the simulation of semiconductor devices such as transitors , diodes, thyristors are already circulated...partially take into account the consequences introduced by degenerate semiconductors (e.g. invalidity of Boltzmann’s statistics , bandgap narrowing). These...ft - ni p nep /Ut(2.10) Sni *e p nie 2.11) .7. (2.10) can be physically interpreted as the application of Boltzmann statistics . However (2.10) a.,zo
Minority Carrier Lifetimes in Halide Chemical Vapor Deposition SiC
2006-06-01
less efficient than IGBTs , or thyristors. In other words, with the increase of blocking voltage, bipolar devices are preferred. The on-state losses...was inductively heated by a 50 kW generator operating at the frequency of approximately 10 kHz. The HCVD reaction zone is similar in shape and...C, the furnace was backfilled with argon to the pressure of 600 Torr and the temperature was increased slowly to the growth temperature. Growth
NASA Astrophysics Data System (ADS)
Tokuchi, Akira; Kamitsukasa, Fumiyoshi; Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro
2015-01-01
We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch's robustness and long-term reliability.
Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin
2013-02-01
For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.
NASA Astrophysics Data System (ADS)
Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook
2016-11-01
Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC-HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC-HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC-HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC-HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.
Klimczak, Mariusz; Soboń, Grzegorz; Kasztelanic, Rafał; Abramski, Krzysztof M.; Buczyński, Ryszard
2016-01-01
Coherence of supercontinuum sources is critical for applications involving characterization of ultrafast or rarely occurring phenomena. With the demonstrated spectral coverage of supercontinuum extending from near-infrared to over 10 μm in a single nonlinear fiber, there has been a clear push for the bandwidth rather than for attempting to optimize the dynamic properties of the generated spectrum. In this work we provide an experimental assessment of the shot-to-shot noise performance of supercontinuum generation in two types of soft glass photonic crystal fibers. Phase coherence and intensity fluctuations are compared for the cases of an anomalous dispersion-pumped fiber and an all-normal dispersion fiber. With the use of the dispersive Fourier transformation method, we demonstrate that a factor of 100 improvement in signal-to-noise ratio is achieved in the normal-dispersion over anomalous dispersion-pumped fiber for 390 fs long pump pulses. A double-clad design of the photonic lattice of the fiber is further postulated to enable a pump-related seeding mechanism of normal-dispersion supercontinuum broadening under sub-picosecond pumping, which is otherwise known for similar noise characteristics as modulation instability driven, soliton-based spectra. PMID:26759188
NASA Astrophysics Data System (ADS)
Haghshenasfard, Zahra; Cottam, M. G.
2018-01-01
Theoretical studies are reported for the quantum-statistical properties of microwave-driven multi-mode magnon systems as represented by ferromagnetic nanowires with a stripe geometry. Effects of both the exchange and the dipole-dipole interactions, as well as a Zeeman term for an external applied field, are included in the magnetic Hamiltonian. The model also contains the time-dependent nonlinear effects due to parallel pumping with an electromagnetic field. Using a coherent magnon state representation in terms of creation and annihilation operators, we investigate the effects of parallel pumping on the temporal evolution of various nonclassical properties of the system. A focus is on the interbranch mixing produced by the pumping field when there are three or more modes. In particular, the occupation magnon number and the multi-mode cross correlations between magnon modes are studied. Manipulation of the collapse and revival phenomena of the average magnon occupation number and the control of the cross correlation between the magnon modes are demonstrated through tuning of the parallel pumping field amplitude and appropriate choices for the coherent magnon states. The cross correlations are a direct consequence of the interbranch pumping effects and do not appear in the corresponding one- or two-mode magnon systems.
Capillary pumping independent of the liquid surface energy and viscosity
NASA Astrophysics Data System (ADS)
Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter
2018-03-01
Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.
A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.
Qian, K X; Zeng, P; Ru, W M; Yuan, H Y
2003-07-01
Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics.
Design and optimization of a Holweck pump via linear kinetic theory
NASA Astrophysics Data System (ADS)
Naris, Steryios; Koutandou, Eirini; Valougeorgis, Dimitris
2012-05-01
The Holweck pump is widely used in the vacuum pumping industry. It can be a self standing apparatus or it can be part of a more advanced pumping system. It is composed by an inner rotating cylinder (rotor) and an outer stationary cylinder (stator). One of them, has spiral guided grooves resulting to a gas motion from the high towards the low vacuum port. Vacuum pumps may be simulated by the DSMC method but due to the involved high computational cost in many cases manufactures commonly resort to empirical formulas and experimental data. Recently a computationally efficient simulation of the Holweck pump via linear kinetic theory has been proposed by Sharipov et al [1]. Neglecting curvature and end effects the gas flow configuration through the helicoidal channels is decomposed into four basic flows. They correspond to pressure and boundary driven flows through a grooved channel and through a long channel with a T shape cross section. Although the formulation and the methodology are explained in detail, results are very limited and more important they are presented in a normalized way which does not provide the needed information about the pump performance in terms of the involved geometrical and flow parameters. In the present work the four basic flows are solved numerically based on the linearized BGK model equation subjected to diffuse boundary conditions. The results obtained are combined in order to create a database of the flow characteristics for a large spectrum of the rarefaction parameter and various geometrical configurations. Based on this database the performance characteristics which are critical in the design of the Holweck pump are computed and the design parameters such as the angle of the pump and the rotational speed, are optimized. This modeling may be extended to other vacuum pumps.
Geometrical Optimization Approach to Isomerization: Models and Limitations.
Chang, Bo Y; Shin, Seokmin; Engel, Volker; Sola, Ignacio R
2017-11-02
We study laser-driven isomerization reactions through an excited electronic state using the recently developed Geometrical Optimization procedure. Our goal is to analyze whether an initial wave packet in the ground state, with optimized amplitudes and phases, can be used to enhance the yield of the reaction at faster rates, driven by a single picosecond pulse or a pair of femtosecond pulses resonant with the electronic transition. We show that the symmetry of the system imposes limitations in the optimization procedure, such that the method rediscovers the pump-dump mechanism.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
Lee, W. S.; Kung, Y. F.; Moritz, B.; ...
2017-03-13
Here, we investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W. S.; Kung, Y. F.; Moritz, B.
Here, we investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Proton pumping accompanies calcification in foraminifera.
Toyofuku, Takashi; Matsuo, Miki Y; de Nooijer, Lennart Jan; Nagai, Yukiko; Kawada, Sachiko; Fujita, Kazuhiko; Reichart, Gert-Jan; Nomaki, Hidetaka; Tsuchiya, Masashi; Sakaguchi, Hide; Kitazato, Hiroshi
2017-01-27
Ongoing ocean acidification is widely reported to reduce the ability of calcifying marine organisms to produce their shells and skeletons. Whereas increased dissolution due to acidification is a largely inorganic process, strong organismal control over biomineralization influences calcification and hence complicates predicting the response of marine calcifyers. Here we show that calcification is driven by rapid transformation of bicarbonate into carbonate inside the cytoplasm, achieved by active outward proton pumping. Moreover, this proton flux is maintained over a wide range of pCO 2 levels. We furthermore show that a V-type H + ATPase is responsible for the proton flux and thereby calcification. External transformation of bicarbonate into CO 2 due to the proton pumping implies that biomineralization does not rely on availability of carbonate ions, but total dissolved CO 2 may not reduce calcification, thereby potentially maintaining the current global marine carbonate production.
Proton pumping accompanies calcification in foraminifera
NASA Astrophysics Data System (ADS)
Toyofuku, Takashi; Matsuo, Miki Y.; de Nooijer, Lennart Jan; Nagai, Yukiko; Kawada, Sachiko; Fujita, Kazuhiko; Reichart, Gert-Jan; Nomaki, Hidetaka; Tsuchiya, Masashi; Sakaguchi, Hide; Kitazato, Hiroshi
2017-01-01
Ongoing ocean acidification is widely reported to reduce the ability of calcifying marine organisms to produce their shells and skeletons. Whereas increased dissolution due to acidification is a largely inorganic process, strong organismal control over biomineralization influences calcification and hence complicates predicting the response of marine calcifyers. Here we show that calcification is driven by rapid transformation of bicarbonate into carbonate inside the cytoplasm, achieved by active outward proton pumping. Moreover, this proton flux is maintained over a wide range of pCO2 levels. We furthermore show that a V-type H+ ATPase is responsible for the proton flux and thereby calcification. External transformation of bicarbonate into CO2 due to the proton pumping implies that biomineralization does not rely on availability of carbonate ions, but total dissolved CO2 may not reduce calcification, thereby potentially maintaining the current global marine carbonate production.
Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min
2014-10-20
An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits.
NASA Astrophysics Data System (ADS)
Sakata, H.; Kimpara, K.; Komori, K.; Tomiki, M.
2014-05-01
We report Q-switched pulse generation in Tm-doped fiber lasers by introducing piezoelectric-driven microbend into an elliptical coating fiber in a fiber ring resonator. Compared with the untreated circular fiber having a diameter of 240 μm, the elliptical coating fiber was flattened to have a major axis diameter of about 300 μm. We employed a pair of comblike plates attached on the piezoelectric actuators in order to bend the fiber from both sides. The output pulse power is improved by optimizing the tooth-width and spatial period of the comb-like plates, so that the elliptical coating fiber is easily bent and the propagation mode is efficiently coupled to radiation modes around λ = 1.9 μm. The Tm-doped fiber is pumped by a laser diode emitting at 1.63 μm and the pump light is introduced to the fiber ring resonator via the wavelength division multiplexing coupler. The emission spectra showed that the center oscillation wavelength was typically 1.92 μm. When the pump power was increased to 156 mW, the output pulse showed a peak power of 42.5 W with a pulse width of 1.06 μs. We expect that the in-fiber Q-switching technique will provide simple laser systems for environmental sensing and medical applications.
Key parameters controlling the performance of catalytic motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David, E-mail: dreguera@ub.edu
2016-03-28
The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential andmore » the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.« less
On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels.
Li, Yanbo; Ren, Yukun; Liu, Weiyu; Chen, Xiaoming; Tao, Ye; Jiang, Hongyuan
2017-04-01
In this study, we develop a nondimensional physical model to demonstrate fluid flow at the micrometer dimension driven by traveling-wave induction electrohydrodynamics (EHD) through direct numerical simulation. In order to realize an enhancement in the pump flow rate as well as a flexible adjustment of anisotropy of flow behavior generated by induction EHD in microchannels, while not adding the risk of causing dielectric breakdown of working solution and material for insulation, a pair of synchronized traveling-wave voltage signals are imposed on double-sided electrode arrays that are mounted on the top and bottom insulating substrate, respectively. Accordingly, we present a model evidence, that not only the pump performance is improved evidently, but a variety of flow profiles, including the symmetrical and parabolic curve, plug-like shape and even biased flow behavior of quite high anisotropy are produced by the device design of "mix-type", "superimposition-type" and "adjustable-type" proposed herein as well, with the resulting controllable fluid motion being able to greatly facilitate an on-demand transportation mode of on-chip bio-microfluidic samples. Besides, automatic conversion in the direction of pump flow is achievable by switching on and off a second voltage wave. Our results provide utilitarian guidelines for constructing flexible electrokinetic framework useful in controllable transportation of particle and fluid samples in modern microfluidic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
46 CFR 169.675 - Generators and motors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... with a nameplate of corrosion-resistant material marked with the following information as applicable... having only electrically driven fire and bilge pumps must have two generators. One of these generators... at the lowest part of the frame for attaching a drain pipe or drain plug. (f) Except as provided in...
46 CFR 131.340 - Recommended placard for emergency instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... weathertight door, hatch, and air-port to prevent taking water aboard or further flooding in the vessel. (2) Keep bilges dry to prevent loss of stability from water in bilges. Use power-driven bilge pump, hand... Section 131.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS...
Miniature Gas-Circulating Machine
NASA Technical Reports Server (NTRS)
Swift, Walter L.; Valenzuela, Javier A.; Sixsmith, Herbert; Nutt, William E.
1993-01-01
Proposed gas-circulating machine consists essentially of centrifugal pump driven by induction motor. Noncontact bearings suppress wear and contamination. Used to circulate helium (or possibly hydrogen or another gas) in regeneration sorption-compressor refrigeration system aboard spacecraft. Also proves useful in terrestrial applications in which long life, reliability, and low contamination essential.
Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study
MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...
77 FR 29861 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... an in-flight failure of the hydraulic control panel, which resulted in the absence of pressure and... absence of pressure and quantity indication of the hydraulic system and accompanying alerts for... shut-off of the engine driven hydraulic pumps, resulting in complete absence of hydraulic pressure...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... rating the Altherma products in Europe. The test procedures are EN 14511 ``Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling'' and... rated according to European Standard EN 14511, ``Air conditioners, liquid chilling packages and heat...
Jet Engines as High-Capacity Vacuum Pumps
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.
1983-01-01
Large diffuser operations envelope and long run times possible. Jet engine driven ejector/diffuser system combines two turbojet engines and variable-area-ratio ejector in two stages. Applications in such industrial proesses as handling corrosive fumes, evaporation of milk and fruit juices, petroleum distillation, and dehydration of blood plasma and penicillin.
A novel permanent maglev rotary LVAD with passive magnetic bearings.
Qian, K X; Yuan, H Y; Zeng, P; Ru, W M
2005-01-01
It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.
Nonlinear model for offline correction of pulmonary waveform generators.
Reynolds, Jeffrey S; Stemple, Kimberly J; Petsko, Raymond A; Ebeling, Thomas R; Frazer, David G
2002-12-01
Pulmonary waveform generators consisting of motor-driven piston pumps are frequently used to test respiratory-function equipment such as spirometers and peak expiratory flow (PEF) meters. Gas compression within these generators can produce significant distortion of the output flow-time profile. A nonlinear model of the generator was developed along with a method to compensate for gas compression when testing pulmonary function equipment. The model and correction procedure were tested on an Assess Full Range PEF meter and a Micro DiaryCard PEF meter. The tests were performed using the 26 American Thoracic Society standard flow-time waveforms as the target flow profiles. Without correction, the pump loaded with the higher resistance Assess meter resulted in ten waveforms having a mean square error (MSE) higher than 0.001 L2/s2. Correction of the pump for these ten waveforms resulted in a mean decrease in MSE of 87.0%. When loaded with the Micro DiaryCard meter, the uncorrected pump outputs included six waveforms with MSE higher than 0.001 L2/s2. Pump corrections for these six waveforms resulted in a mean decrease in MSE of 58.4%.
Clausell, Mathis; Fang, Zhihui; Chen, Wei
2014-07-01
Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.
Electric field divertor plasma pump
Schaffer, Michael J.
1994-01-01
An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.
Electric field divertor plasma pump
Schaffer, M.J.
1994-10-04
An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.
Gigahertz single-electron pumping in silicon with an accuracy better than 9.2 parts in 10{sup 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamahata, Gento, E-mail: yamahata.gento@lab.ntt.co.jp; Karasawa, Takeshi; Fujiwara, Akira
2016-07-04
High-speed and high-accuracy pumping of a single electron is crucial for realizing an accurate current source, which is a promising candidate for a quantum current standard. Here, using a high-accuracy measurement system traceable to primary standards, we evaluate the accuracy of a Si tunable-barrier single-electron pump driven by a single sinusoidal signal. The pump operates at frequencies up to 6.5 GHz, producing a current of more than 1 nA. At 1 GHz, the current plateau with a level of about 160 pA is found to be accurate to better than 0.92 ppm (parts per million), which is a record value for 1-GHz operation. At 2 GHz,more » the current plateau offset from 1ef (∼320 pA) by 20 ppm is observed. The current quantization accuracy is improved by applying a magnetic field of 14 T, and we observe a current level of 1ef with an accuracy of a few ppm. The presented gigahertz single-electron pumping with a high accuracy is an important step towards a metrological current standard.« less
Miniature Scroll Pumps Fabricated by LIGA
NASA Technical Reports Server (NTRS)
Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam
2009-01-01
Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.
11.72 sq cm SiC Wafer-scale Interconnected 64 kA PiN Diode
2012-01-30
drop of 10.3 V. The dissipated energy was 382 J and the calculated action exceeded 1.7 MA2 -s. Preliminary development of high voltage interconnection...scale diode action (surge current integral), a key reliability parameter, exceeded 1.7 MA2 -s. Figure 6: The wafer-scale interconnected diode...scale diode was 382 J and the calculated action exceeded 1.7 MA2 -sec. High voltage operation of PiN diodes, thyristors, and other semiconductor
2016-06-01
inch gun on impact [1]. The potential of the EM railgun renders the need to store dangerous explosives associated with the conventional warheads...leaves the gun . The simulation will outline some critical performance characteristics of a buck-boost power supply as compared to a thyristor-based...between the rails and from the projectile position along the length of the gun x [5]: 3 1 2 2 2 w o
2006-08-01
semiconductor (nMOS) and turned it off through a positive metal oxide semiconductor (pMOS). For turn-on, although 1 V worked, a HP6227B power supply at 2...E3614A power supply at –8 V provided IG during the rise time, and thus need enough capacitance working to a frequency around 3/trise time...load’s screw terminal posts would have reduced the ESL and ESR. The SGTO turned off 5.8 A from the power supply at 20 V and was usually fan cooled
A miniature, nongassing electroosmotic pump operating at 0.5 V.
Shin, Woonsup; Lee, Jong Myung; Nagarale, Rajaram Krishna; Shin, Samuel Jaeho; Heller, Adam
2011-03-02
Electroosmotic pumps are arguably the simplest of all pumps, consisting merely of two flow-through electrodes separated by a porous membrane. Most use platinum electrodes and operate at high voltages, electrolyzing water. Because evolved gas bubbles adhere and block parts of the electrodes and the membrane, steady pumping rates are difficult to sustain. Here we show that when the platinum electrodes are replaced by consumed Ag/Ag(2)O electrodes, the pumps operate well below 1.23 V, the thermodynamic threshold for electrolysis of water at 25 °C, where neither H(2) nor O(2) is produced. The pumping of water is efficient: 13 000 water molecules are pumped per reacted electron and 4.8 mL of water are pumped per joule at a flow rate of 0.13 mL min(-1) V(-1) cm(-2), and a flow rate per unit of power is 290 mL min(-1) W(-1). The water is driven by protons produced in the anode reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-), traveling through the porous membrane, consumed by hydroxide ions generated in the cathode reaction Ag(2)O(s) + 2 H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). A pump of 2 mm thickness and 0.3 cm(2) cross-sectional area produces flow of 5-30 μL min(-1) when operating at 0.2-0.8 V and 0.04-0.2 mA. Its flow rate can be either voltage or current controlled. The flow rate suffices for the delivery of drugs, such as a meal-associated boli of insulin.
Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line
Gaul, Christopher J.
2001-01-01
The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.
NASA Astrophysics Data System (ADS)
Meng, Dennis Desheng; Kim, C. J.
As an alternative or supplement to small batteries, the much-anticipated micro-direct methanol fuel cell (μDMFC) faces several key technical issues such as methanol crossover, reactant delivery, and byproduct release. This paper addresses two of the issues, removal of CO 2 bubbles and delivery of methanol fuel, in a non-prohibitive way for system miniaturization. A recently reported bubble-driven pumping mechanism is applied to develop active μDMFCs free of an ancillary pump or a gas separator. The intrinsically generated CO 2 bubbles in the anodic microchannels are used to pump and circulate the liquid fuel before being promptly removed as a part of the pumping mechanism. Without a discrete liquid pump or gas separator, the widely known packaging penalty incurred within many micro-fuel-cell systems can be alleviated so that the system's power/energy density does not decrease dramatically as a result of miniaturization. Since the power required for pumping is provided by the byproduct of the fuel cell reaction, the parasitic power loss due to an external pump is also eliminated. The fuel circulation is visually confirmed, and the effectiveness for fuel cell applications is verified during continuous operation of a μDMFC for over 70 min with 1.2 mL of 2 M methanol. The same device was shown to operate for only 5 min if the pumping mechanism is disabled by blocking the gas venting membrane. Methanol consumption while utilizing the reported self-circulation mechanism is estimated to be 46%. Different from common pump-free fuel delivery approaches, the reported mechanism delivers the fuel actively and is independent of gravity.
NASA Astrophysics Data System (ADS)
Kumarasubramanian, R.; Xavier, Goldwin; Nishanthi, W. Mary; Rajasekar, R.
2017-05-01
Considering the fuel crises today many work and research were conducted to reduce the fuel consumption of the internal combustion engine. The fuel consumption of an internal combustion engine can be relatively reduced by use of the electromagnetic clutch water pump and pneumatic compressor. Normally in an engine, the water pump is driven by the crankshaft, with an aid of belt, for the circulation of the water for the cooling process. The circulation of coolant is resisted by the thermostat valve, while the temperature inside the coolant jacket of the engine is below 375K the thermostat is closed only above 375K it tends to open. But water pump run continuously even when thermostat is closed. In pneumatic braking system, pneumatic or air compressor purpose is to compress the air and stored into the storage tank for the brake operation. When the air pressure of the storage tanks gets increases above its storage capacity pressure is regulated by governor, by passing them to atmosphere. Such unnecessary work of this water pump and air compressor can be minimized by use of the electromagnetic clutch water pump and air compressor. The European Driving Cycle is used to evaluate the performance of this water pump and air compressor when used in an engine. The result shows that the fuel economy of the engine while using electromagnetic water pump and pneumatic compressor were improved by 8.0% compared with conventional types which already exist. The application of these electromagnetic water pump and pneumatic compressor are expected to contribute for the improvement of engine performance because of their effect in reduction of the rate of fuel consumption.
Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
Okamoto, Eiji; Hashimoto, Takuya; Mitamura, Yoshinori
2003-01-01
In this study, we developed a new miniature motor-driven pulsatile left ventricular assist device (LVAD) for implantation into a Japanese patient of average build by means of computer-aided design and manufacturing (CAD/CAM) technology. A specially designed miniature ball-screw and a high-performance brushless DC motor were used in an artificial heart actuator to allow miniaturization. A blood pump chamber (stroke volume 55 ml) and an inflow and outflow port were designed by computational fluid dynamics (CFD) analysis. The geometry of the blood pump was evaluated using the value of index of pump geometry (IPG) = (Reynolds shear stress) x (occupied volume) as a quantitative index for optimization. The calculated value of IPG varied from 20.6 Nm to 49.1 Nm, depending on small variations in pump geometry. We determined the optimum pump geometry based on the results of quantitative evaluation using IPG and qualitative evaluation using the flow velocity distribution with blood flow tracking. The geometry of the blood pump that gave lower shear stress had more optimum spiral flow around the diaphragm-housing (D-H) junction. The volume and weight of the new LVAD, made of epoxy resin, is 309 ml and 378 g, but further miniaturization will be possible by improving the geometry of both the blood pump and the back casing. Our results show that our new design method for an implantable LVAD using CAD/CAM promises to improve blood compatibility with greater miniaturization.
Field Performance of Inverter-Driven Heat Pumps in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, James; Aldrich, Robb
2015-08-01
CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistancemore » systems.« less
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J.; Whinnery, Jr., Leroy; Even, Jr., William R.
2005-01-25
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Castable three-dimensional stationary phase for electric field-driven applications
Shepodd, Timothy J [Livermore, CA; Whinnery, Jr., Leroy; Even, Jr., William R.
2009-02-10
A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
Rogue waves in a multistable system.
Pisarchik, Alexander N; Jaimes-Reátegui, Rider; Sevilla-Escoboza, Ricardo; Huerta-Cuellar, G; Taki, Majid
2011-12-30
Clear evidence of rogue waves in a multistable system is revealed by experiments with an erbium-doped fiber laser driven by harmonic pump modulation. The mechanism for the rogue wave formation lies in the interplay of stochastic processes with multistable deterministic dynamics. Low-frequency noise applied to a diode pump current induces rare jumps to coexisting subharmonic states with high-amplitude pulses perceived as rogue waves. The probability of these events depends on the noise filtered frequency and grows up when the noise amplitude increases. The probability distribution of spike amplitudes confirms the rogue wave character of the observed phenomenon. The results of numerical simulations are in good agreement with experiments.
Explosive electromagnetic radiation by the relaxation of a multimode magnon system.
Vasyuchka, V I; Serga, A A; Sandweg, C W; Slobodianiuk, D V; Melkov, G A; Hillebrands, B
2013-11-01
Microwave emission from a parametrically pumped ferrimagnetic film of yttrium iron garnet was studied versus the magnon density evolution, which was detected by Brillouin light scattering spectroscopy. It has been found that the shutdown of external microwave pumping leads to an unexpected effect: The conventional monotonic decrease of the population of parametrically injected magnons is accompanied by an explosive behavior of electromagnetic radiation at the magnon frequency. The developed theory shows that this explosion is caused by a nonlinear energy transfer from parametrically driven short-wavelength dipolar-exchange magnons to a long-wavelength dipolar magnon mode effectively coupled to an electromagnetic wave.
NASA Astrophysics Data System (ADS)
Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.
2016-03-01
We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Maggs, J. E.; Gallagher, D. L.; Kurth, W. S.; Scarf, F. L.
1981-01-01
Observations are presented of the parametric decay and spatial collapse of Langmuir waves driven by an electron beam streaming into the solar wind from the Jovian bow shock. Long wavelength Langmuir waves upstream of the bow shock are effectively converted into short wavelength waves no longer in resonance with the beam. The conversion is shown to be the result of a nonlinear interaction involving the beam-driven pump, a sideband emission, and a low level of ion-acoustic turbulence. The beam-driven Langmuir wave emission breaks up into a complex sideband structure with both positive and negative Doppler shifts. In some cases, the sideband emission consists of isolated wave packets with very short duration bursts, which are very intense and are thought to consist of envelope solitons which have collapsed to spatial scales of only a few Debye lengths.
Thermally driven advection for radioxenon transport from an underground nuclear explosion
NASA Astrophysics Data System (ADS)
Sun, Yunwei; Carrigan, Charles R.
2016-05-01
Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.
Pumps, feed and sets: is procurement limiting outcomes?
Ojo, Omorogieva
This article aims to review the unique ways in which enteral feed, ancillary items and pumps are procured in the UK and to evaluate whether these are inhibiting innovation and reducing the choices of patients. There are a number of models that have been developed across the UK for the procurement of enteral feed, feeding accessories and pump. The two most common are the hospital-based nutrition support team, which may have an overarching role in the community, and the home enteral nutrition (HEN) team, a multidisciplinary community-based team with skilled health professionals dedicated to the delivery of the enteral nutrition service. While the HEN service has its advantages over other models in the community, it is primarily driven by its clinical role. The lack of significant opportunity for clinical audits and research within the service limits the prospects for service improvement, innovation and patients' choices.
Continuous all-optical deceleration of molecular beams and demonstration with Rb atoms
NASA Astrophysics Data System (ADS)
Long, Xueping; Jayich, Andrew; Campbell, Wesley
2017-04-01
Ultracold samples of molecules are desirable for a variety of applications, such as many-body physics, precision measurement and quantum information science. However, the pursuit of ultracold molecules has achieved limited success: spontaneous emission into many different dark states makes it hard to optically decelerate molecules to trappable speed. We propose to address this problem with a general optical deceleration technique that exploits a pump-dump pulse pair from a mode-locked laser. A molecular beam is first excited by a counter-propagating ``pump'' pulse. The molecular beam is then driven back to the initial ground state by a co-propagating ``dump'' pulse via stimulated emission. The delay between the pump and dump pulse is set to be shorter than the excited state lifetimes in order to limit decays to dark states. We report progress benchmarking this stimulated force by accelerating a cold sample of neutral Rb atoms.
NASA Astrophysics Data System (ADS)
Baker, N. R.; Donakowski, T. D.; Foster, R. B.; Sala, D. L.; Tison, R. R.; Whaley, T. P.; Yudow, B. D.; Swenson, P. F.
1980-01-01
The heat actuated heat pump centered integrated community energy system (HAHP-ICES) is described. The system utilizes a gas fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general nonsite specific application assumes a hypothetical community of one 59,000 cu ft office building and five 24 unit, low rise apartment buildings located in a region with a climate similar to Chicago. Various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results provided the selection criteria for the site specific application of the HAHP-ICES concept to a real world community. The site-specific community consists of: 42 town houses; five 120 unit, low rise apartment buildings; five 104 unit high rise apartment buildings; one 124,000 cu ft office building; and a single 135,000 cu ft retail building.
The pressure is all in your head: A cilia-driven high-pressure pump in the head of a deep-sea animal
NASA Astrophysics Data System (ADS)
Nawroth, Janna; Katija, Kakani; Shelley, Michael; Kanso, Eva
2017-11-01
Motile cilia are microscopic, hair-like structures on the cell surface that can sense and propel the extracellular fluid environment. In many ciliated systems found in nature, such as the mammalian airways and marine sponges, the organization and collective behavior of the cilia favors the pumping of fluids at low pressures and high volumes. We recently discovered an alternate design located in the head of a deep-sea animal called Larvacean. Here, cilia morphology, kinematics and flow indicate a role in maintaining the hydrostatic skeleton of the animal by generating a high-pressure flow. We describe our empirical and computational approaches toward understanding the design principles and dynamic range of this newly discovered pumping mechanism. In ongoing work, we further explore the fluid dynamic constraints on the morphological diversity of cilia and the resulting categories of fluid transport functions.
Left Ventricular Assist Devices: The Adolescence of a Disruptive Technology.
Pinney, Sean P
2015-10-01
Clinical outcomes for patients with advanced heart failure receiving left ventricular assist devices are driven by appropriate patient selection, refined surgical technique, and coordinated medical care. Perhaps even more important is innovative pump design. The introduction and widespread adoption of continuous-flow ventricular assist devices has led to a paradigm shift within the field of mechanical circulatory support, making the promise of lifetime device therapy closer to reality. The disruption caused by this new technology, on the one hand, produced meaningful improvements in patient survival and quality of life, but also introduced new clinical challenges, such as bleeding, pump thrombosis, and acquired valvular heart disease. Further evolution within this field will require financial investment to sustain innovation leading to a fully implantable, durable, and cost-effective pump for a larger segment of patients with advanced heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar
This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less
Galbán-Malagón, Cristóbal; Berrojalbiz, Naiara; Ojeda, María-José; Dachs, Jordi
2012-05-29
Semivolatile persistent organic pollutants have the potential to reach remote environments, such as the Arctic Ocean, through atmospheric transport and deposition. Here we show that this transport of polychlorinated biphenyls to the Arctic Ocean is strongly retarded by the oceanic biological pump. A simultaneous sampling of atmospheric, seawater and plankton samples was performed in July 2007 in the Greenland Current and Atlantic sector of the Arctic Ocean. The atmospheric concentrations declined during atmospheric transport over the Greenland Current with estimated half-lives of 1-4 days. These short half-lives can be explained by the high air-to-water net diffusive flux, which is similar in magnitude to the estimated settling fluxes in the water column. Therefore, the decrease of atmospheric concentrations is due to sequestration of atmospheric polychlorinated biphenyls by enhanced air-water diffusive fluxes driven by phytoplankton uptake and organic carbon settling fluxes (biological pump).
Automated apparatus for producing gradient gels
Anderson, N.L.
1983-11-10
Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.
Automated apparatus for producing gradient gels
Anderson, Norman L.
1986-01-01
Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.
Organo-erbium systems for optical amplification at telecommunications wavelengths.
Ye, H Q; Li, Z; Peng, Y; Wang, C C; Li, T Y; Zheng, Y X; Sapelkin, A; Adamopoulos, G; Hernández, I; Wyatt, P B; Gillin, W P
2014-04-01
Modern telecommunications rely on the transmission and manipulation of optical signals. Optical amplification plays a vital part in this technology, as all components in a real telecommunications system produce some loss. The two main issues with present amplifiers, which rely on erbium ions in a glass matrix, are the difficulty in integration onto a single substrate and the need of high pump power densities to produce gain. Here we show a potential organic optical amplifier material that demonstrates population inversion when pumped from above using low-power visible light. This system is integrated into an organic light-emitting diode demonstrating that electrical pumping can be achieved. This opens the possibility of direct electrically driven optical amplifiers and optical circuits. Our results provide an alternative approach to producing low-cost integrated optics that is compatible with existing silicon photonics and a different route to an effective integrated optics technology.
NASA Technical Reports Server (NTRS)
Sisk, Gregory A.
1989-01-01
The high-pressure oxidizer turbopump (HPOTP) consists of two centrifugal pumps, on a common shaft, that are directly driven by a hot-gas turbine. Pump shaft axial thrust is balanced in that the double-entry main inducer/impeller is inherently balanced and the thrusts of the preburner pump and turbine are nearly equal but opposite. Residual shaft thrust is controlled by a self-compensating, non-rubbing, balance piston. Shaft hang-up must be avoided if the balance piston is to perform properly. One potential cause of shaft hang-up is contact between the Phase 2 bearing support and axial spring cartridge of the HPOTP main pump housing. The status of the bearing support/axial spring cartridge interface is investigated under current loading conditions. An ANSYS version 4.3, three-dimensional, finite element model was generated on Lockheed's VAX 11/785 computer. A nonlinear thermal analysis was then executed on the Marshall Space Flight Center Engineering Analysis Data System (EADS). These thermal results were then applied along with the interference fit and bolt preloads to the model as load conditions for a static analysis to determine the gap status of the bearing support/axial spring cartridge interface. For possible further analysis of the local regions of HPOTP main pump housing assembly, detailed ANSYS submodels were generated using I-DEAS Geomod and Supertab (Appendix A).
Fong, Jeffrey; Xiao, Zhiming; Takahata, Kenichi
2015-02-21
We demonstrate an active, implantable drug delivery device embedded with a microfluidic pump that is driven by a radio-controlled actuator for temporal drug delivery. The polyimide-packaged 10 × 10 × 2 mm(3) chip contains a micromachined pump chamber and check valves of Parylene C to force the release of the drug from a 76 μL reservoir by wirelessly activating the actuator using external radio-frequency (RF) electromagnetic fields. The rectangular-shaped spiral-coil actuator based on nitinol, a biocompatible shape-memory alloy, is developed to perform cantilever-like actuation for pumping operation. The nitinol-coil actuator itself forms a passive 185 MHz resonant circuit that serves as a self-heat source activated via RF power transfer to enable frequency-selective actuation and pumping. Experimental wireless operation of fabricated prototypes shows successful release of test agents from the devices placed in liquid and excited by radiating tuned RF fields with an output power of 1.1 W. These tests reveal a single release volume of 219 nL, suggesting a device's capacity of ~350 individual ejections of drug from its reservoir. The thermal behavior of the activated device is also reported in detail. This proof-of-concept prototype validates the effectiveness of wireless RF pumping for fully controlled, long-lasting drug delivery, a key step towards enabling patient-tailored, targeted local drug delivery through highly miniaturized implants.
78 FR 73460 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-06
... America Code 29, Hydraulic Power. (e) Unsafe Condition This AD was prompted by reports of turbine wheel...-400ER series airplanes. This proposed AD was prompted by reports of turbine wheel bursts in the air driven pump (ADP) turbine gearbox assembly (TGA), which resulted in the release of high energy fragments...
Heavy Lift Helicopter - Prototype Technical Summary
1980-04-01
in an inte- grated design. The following paragraphs discuss the swash - plate actuator servo loops and provide details...instrumentation in the prototype aircraft. Development testing of the flight control module in conjunc- tion with the transmission-driven pump and the reservoir was...PFCS employed cockpit controllers and force-feel actuation developed in the ATC
Genetic algorithm driven spectral shaping of supercontinuum radiation in a photonic crystal fiber
NASA Astrophysics Data System (ADS)
Michaeli, Linor; Bahabad, Alon
2018-05-01
We employ a genetic algorithm to control a pulse-shaping system pumping a nonlinear photonic crystal with ultrashort pulses. With this system, we are able to modify the spectrum of the generated supercontinuum (SC) radiation to yield narrow Gaussian-like features around pre-selected wavelengths over the whole SC spectrum.
Punchets: nonlinear transport in Hamiltonian pump-ratchet hybrids
NASA Astrophysics Data System (ADS)
Dittrich, Thomas; Medina Sánchez, Nicolás
2018-02-01
‘Punchets’ are hybrids between ratchets and pumps, combining a spatially periodic static potential, typically asymmetric under space inversion, with a local driving that breaks time-reversal invariance, and are intended to model metal or semiconductor surfaces irradiated by a collimated laser beam. Their crucial feature is irregular driven scattering between asymptotic regions supporting periodic (as opposed to free) motion. With all binary spatio-temporal symmetries broken, scattering in punchets typically generates directed currents. We here study the underlying nonlinear transport mechanisms, from chaotic scattering to the parameter dependence of the currents, in three types of Hamiltonian models, (i) with spatially periodic potentials where only in the driven scattering region, spatial and temporal symmetries are broken, and (ii), spatially asymmetric (ratchet) potentials with a driving that only breaks time-reversal invariance. As more realistic models of laser-irradiated surfaces, we consider (iii), a driving in the form of a running wave confined to a compact region by a static envelope. In this case, the induced current can even run against the direction of wave propagation, drastically evidencing its nonlinear nature. Quantizing punchets is indicated as a viable research perspective.
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1986-01-01
The archaebacteria occupy a unique place in phylogenetic trees constructed from analyses of sequences from key informational macromolecules, and their study continues to yield interesting ideas on the early evolution and divergence of biological forms. It is now known that the halobacteria among these species contain various retinal-proteins, resembling eukaryotic rhodopsins, but with different functions. Two of these pigments, located in the cytoplasmic membranes of the bacteria, are bacteriorhodopsin (a light-driven proton pump) and halorhodopsin (a light-driven chloride pump). Comparison of these systems is expected to reveal structure/function relationships in these simple (primitive?) energy transducing membrane components and evolutionary relationships which had produced the structural features which allow the divergent functions. Findings indicate that very different primary structures are needed for these proteins to accomplish their different functions. Indeed, analysis of partial amino acid sequences from halo-opsin shows already that few if any long segments exist which are homologous to bacterio-opsin. Either these proteins diverged a very long time ago to allow for the observed differences, or the evolutionary clock in the halobacteria runs faster than usual.
Gas Engine-Driven Heat Pump with Desiccant Dehumidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abu-Heiba, Ahmad
About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating themore » desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.« less
Pseudothermalization in driven-dissipative non-Markovian open quantum systems
NASA Astrophysics Data System (ADS)
Lebreuilly, José; Chiocchetta, Alessio; Carusotto, Iacopo
2018-03-01
We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem. Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory, which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs, we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation, we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the pseudothermalization effect.
Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John Alton
2015-11-01
This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The TDP failure modes considered are failure to start (FTS), failure to run less than or equal to one hour (FTR=1H), failure to run more than one hour (FTR>1H), and normally running systems FTS and failure to run (FTR). The component reliability estimates and themore » reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified for TDP unavailability, for frequency of start demands for standby TDPs, and for run hours in the first hour after start. Statistically significant decreasing trends were identified for start demands for normally running TDPs, and for run hours per reactor critical year for normally running TDPs.« less
An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease.
Urban, M; Bhargava, T; Hamer, J E
1999-01-01
Cells tolerate exposure to cytotoxic compounds through the action of ATP-driven efflux pumps belonging to the ATP-binding cassette (ABC) superfamily of membrane transporters. Phytopathogenic fungi encounter toxic environments during plant invasion as a result of the plant defense response. Here we demonstrate the requirement for an ABC transporter during host infection by the fungal plant pathogen Magnaporthe grisea. The ABC1 gene was identified in an insertional mutagenesis screen for pathogenicity mutants. The ABC1 insertional mutant and a gene-replacement mutant arrest growth and die shortly after penetrating either rice or barley epidermal cells. The ABC1-encoded protein is similar to yeast ABC transporters implicated in multidrug resistance, and ABC1 gene transcripts are inducible by toxic drugs and a rice phytoalexin. However, abc1 mutants are not hypersensitive to antifungal compounds. The non-pathogenic, insertional mutation in ABC1 occurs in the promoter region and dramatically reduces transcript induction by metabolic poisons. These data strongly suggest that M.grisea requires the up-regulation of specific ABC transporters for pathogenesis; most likely to protect itself against plant defense mechanisms. PMID:9927411
Molecular alignment effect on the photoassociation process via a pump-dump scheme.
Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin
2015-09-07
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.
Molecular alignment effect on the photoassociation process via a pump-dump scheme
NASA Astrophysics Data System (ADS)
Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin
2015-09-01
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X1Σ+) is associated into the molecule in the bound states of the excited state (A1Σ+) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j> on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.
Jensen, Vivi Flou Hjorth; Mølck, Anne-Marie; Mårtensson, Martin; Strid, Mette Aagaard; Chapman, Melissa; Lykkesfeldt, Jens; Bøgh, Ingrid Brück
2017-06-01
Group housing is considered to be important for rats, which are highly sociable animals. Single housing may impact behaviour and levels of circulating stress hormones. Rats are typically used in the toxicological evaluation of insulin analogues. Human insulin (HI) is frequently used as a reference compound in these studies, and a comparator model of persistent exposure by HI infusion from external pumps has recently been developed to support toxicological evaluation of long-acting insulin analogues. However, this model requires single housing of the animals. Developing an insulin-infusion model which allows group housing would therefore greatly improve animal welfare. The aim of the present study was to investigate the suitability of implantable infusion pumps for HI infusion in group-housed rats. Group housing of rats implanted with a battery-driven pump proved to be possible. Intravenous infusion of HI lowered blood glucose levels persistently for two weeks, providing a comparator model for use in two-week repeated-dose toxicity studies with new long-acting insulin analogues, which allows group housing, and thereby increasing animal welfare compared with an external infusion model.
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai
2015-01-01
Summary Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode. PMID:26171286
How gas cools (or, apples can fall up)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
This primer on gas cooling systems explains the basics of heat exchange within a refrigeration system, the principle of reverse-cycle refrigeration, and how a gas-engine-driven heat pump can provide cooling, additional winter heating capacity, and hot water year-round. Gas cooling equipment available or under development include natural gas chillers, engine-driven chillers, and absorption chillers. In cogeneration systems, heat recovered from an engine's exhaust and coolant may be used in an absorption chiller to provide air-conditioning. Gas desiccant cooling systems may be used in buildings and businesses that are sensitive to high humidity levels.
A 16 MJ compact pulsed power system for electromagnetic launch
NASA Astrophysics Data System (ADS)
Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu
2015-07-01
This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.
Design of power electronics for TVC EMA systems
NASA Technical Reports Server (NTRS)
Nelms, R. Mark
1993-01-01
The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.
Aaland, K.
1983-08-09
A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.
A 16 MJ compact pulsed power system for electromagnetic launch.
Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu
2015-07-01
This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.
NASA Astrophysics Data System (ADS)
Bejarano, Roberto Villa
Cold-start performance enhancement of a pump-assisted, capillary-driven, two-phase cooling loop was attained using proportional integral and fuzzy logic controls to manage the boiling condition inside the evaporator. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting fluid, was also investigated for enhancing heat transfer performance of capillary driven (passive) thermal devices was also studied. A proportional-integral control algorithm was used to regulate the boiling condition (from pool boiling to thin-film boiling) and backpressure in the evaporator during cold-start and low heat input conditions. Active flow control improved the thermal resistance at low heat inputs by 50% compared to the baseline (constant flow rate) case, while realizing a total pumping power savings of 56%. Temperature overshoot at start-up was mitigated combining fuzzy-logic with a proportional-integral controller. A constant evaporator surface temperature of 60°C with a variation of +/-8°C during start-up was attained with evaporator thermal resistances as low as 0.10 cm2--K/W. The surface tension of aqueous solutions of n-Pentanol, a self-rewetting working fluid, as a function of concentration and temperature were also investigated. Self-rewetting working fluids are promising in two-phase heat transfer applications because they have the ability to passively drive additional working fluid towards the heated surface; thereby increasing the dryout limitations of the thermal device. Very little data is available in literature regarding the surface tension of these fluids due to the complexity involved in fluid handling, heating, and experimentation. Careful experiments were performed to investigate the surface tension of n-Pentanol + water. The concentration and temperature range investigated were from 0.25%wt. to1.8%wt and 25°C to 85°C, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.D.
1995-11-01
The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in themore » NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.« less
Long-term in vivo left ventricular assist device study with a titanium centrifugal pump.
Ohtsuka, G; Nakata, K; Yoshikawa, M; Mueller, J; Takano, T; Yamane, S; Gronau, N; Glueck, J; Takami, Y; Sueoka, A; Letsou, G; Schima, H; Schmallegger, H; Wolner, E; Koyanagi, H; Fujisawa, A; Baldwin, J C; Nosé, Y
1998-01-01
A totally implantable centrifugal artificial heart has been developed. The plastic prototype, Gyro PI 601, passed 2 day hemodynamic tests as a functional total artificial heart, 2 week screening tests for antithrombogenicity, and 1 month system feasibility. Based on these results, a metallic prototype, Gyro PI 702, was subjected to in vivo left ventricular assist device (LVAD) studies. The pump system employed the Gyro PI 702, which has the same inner dimensions and the same characteristics as the Gyro PI 601, including an eccentric inlet port, a double pivot bearing system, and a magnet coupling system. The PI 702 is driven with the Vienna DC brushless motor actuator. For the in vivo LVAD study, the pump actuator package was implanted in the preperitoneal space in two calves, from the left ventricular apex to the descending aorta. Case 1 achieved greater than 9 month survival without any complications, at an average flow rate of 6.6 L/min with 10.2 W input power. Case 2 was killed early due to the excessive growth of the calf, which caused functional obstruction of the inlet port. There was no blood clot inside the pump. During these periods, neither case exhibited any physiologic abnormalities. The PI 702 pump gives excellent results as a long-term implantable LVAD.
Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian
2015-11-24
We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids.
Packaged peristaltic micropump for controlled drug delivery application
NASA Astrophysics Data System (ADS)
Vinayakumar, K. B.; Nadiger, Girish; R. Shetty, Vikas; Dinesh, N. S.; Nayak, M. M.; Rajanna, K.
2017-01-01
Micropump technology has evolved significantly in the last two decades and is finding a variety of applications ranging from μTAS (micro Total Analysis System) to drug delivery. However, the application area of the micropump is limited owing to: simple pumping mechanism, ease of handling, controlled (microliter to milliliter) delivery, continuous delivery, and accuracy in flow rate. Here, the author presents the design, development, characterization, and precision flow controlling of a DC-motor driven peristaltic pump for controlled drug delivery application. All the micropump components were fabricated using the conventional fabrication technique. The volume flow variation of the pump has been characterized for different viscous fluids. The change in volume flow due to change in back pressure has been presented in detail. The fail-safe mode operation of the pump has been tested and leak rate was measured (˜0.14% leak for an inlet pressure of 140 kPa) for different inlet pressures. The precision volume flow of the pump has been achieved by measuring the pinch cam position and load current. The accuracy in the volume flow has been measured after 300 rotations. Finally, the complete system has been integrated with the necessary electronics and an android application has been developed for the self-administration of bolus and basal delivery of insulin.
Choi, Ah Reum; Shi, Lichi; Brown, Leonid S.; Jung, Kwang-Hwan
2014-01-01
A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids. PMID:25347537
NASA Astrophysics Data System (ADS)
Zhang, Shaotong; Jia, Yonggang; Wen, Mingzheng; Wang, Zhenhao; Zhang, Yaqi; Zhu, Chaoqi; Li, Bowen; Liu, Xiaolei
2017-02-01
A scientific hypothesis is proposed and preliminarily verified in this paper: under the driving of seepage flows, there might be a vertical migration of fine-grained soil particles from interior to surface of seabed, which is defined as `sub-bottom sediment pump action' in this paper. Field experiments were performed twice on the intertidal flat of the Yellow River delta to study this process via both trapping the pumped materials and recording the pore pressures in the substrate. Experimental results are quite interesting as we did observe yellow slurry which is mainly composed of fine-grained soil particles appearing on the seabed surface; seepage gradients were also detected in the intertidal flat, under the action of tides and small wind waves. Preliminary conclusions are that `sediment pump' occurs when seepage force exceeds a certain threshold: firstly, it is big enough to disconnect the soil particles from the soil skeleton; secondly, the degree of seabed fluidization or bioturbation is big enough to provide preferred paths for the detached materials to migrate upwards. Then they would be firstly pumped from interior to the surface of seabed and then easily re-suspended into overlying water column. Influential factors of `sediment pump' are determined as hydrodynamics (wave energy), degree of consolidation, index of bioturbation (permeability) and content of fine-grained materials (sedimentary age). This new perspective of `sediment pump' may provide some implications for the mechanism interpretation of several unclear geological phenomena in the Yellow River delta area.
Electric vehicle energy management system
NASA Astrophysics Data System (ADS)
Alaoui, Chakib
This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.
14 CFR 135.163 - Equipment requirements: Aircraft carrying passengers under IFR.
Code of Federal Regulations, 2014 CFR
2014-01-01
... vertical speed indicator; (b) A free-air temperature indicator; (c) A heated pitot tube for each airspeed indicator; (d) A power failure warning device or vacuum indicator to show the power available for gyroscopic... sources of energy (with means of selecting either) of which at least one is an engine-driven pump or...
14 CFR 135.163 - Equipment requirements: Aircraft carrying passengers under IFR.
Code of Federal Regulations, 2010 CFR
2010-01-01
... vertical speed indicator; (b) A free-air temperature indicator; (c) A heated pitot tube for each airspeed indicator; (d) A power failure warning device or vacuum indicator to show the power available for gyroscopic... sources of energy (with means of selecting either) of which at least one is an engine-driven pump or...
14 CFR 135.163 - Equipment requirements: Aircraft carrying passengers under IFR.
Code of Federal Regulations, 2013 CFR
2013-01-01
... vertical speed indicator; (b) A free-air temperature indicator; (c) A heated pitot tube for each airspeed indicator; (d) A power failure warning device or vacuum indicator to show the power available for gyroscopic... sources of energy (with means of selecting either) of which at least one is an engine-driven pump or...
14 CFR 135.163 - Equipment requirements: Aircraft carrying passengers under IFR.
Code of Federal Regulations, 2011 CFR
2011-01-01
... vertical speed indicator; (b) A free-air temperature indicator; (c) A heated pitot tube for each airspeed indicator; (d) A power failure warning device or vacuum indicator to show the power available for gyroscopic... sources of energy (with means of selecting either) of which at least one is an engine-driven pump or...
14 CFR 135.163 - Equipment requirements: Aircraft carrying passengers under IFR.
Code of Federal Regulations, 2012 CFR
2012-01-01
... vertical speed indicator; (b) A free-air temperature indicator; (c) A heated pitot tube for each airspeed indicator; (d) A power failure warning device or vacuum indicator to show the power available for gyroscopic... sources of energy (with means of selecting either) of which at least one is an engine-driven pump or...
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
2016-08-29
nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven fire pump by § 181.300 must have at least three 9.5 liter (21/2 gallon) buckets, with an attached... 46 Shipping 7 2011-10-01 2011-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST...
Code of Federal Regulations, 2012 CFR
2012-10-01
... PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven fire pump by § 181.300 must have at least three 9.5 liter (21/2 gallon) buckets, with an attached... 46 Shipping 7 2012-10-01 2012-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST...
Code of Federal Regulations, 2014 CFR
2014-10-01
... PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven fire pump by § 181.300 must have at least three 9.5 liter (21/2 gallon) buckets, with an attached... 46 Shipping 7 2014-10-01 2014-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST...
Code of Federal Regulations, 2013 CFR
2013-10-01
... PROTECTION EQUIPMENT Additional Equipment § 181.610 Fire bucket. A vessel not required to have a power driven fire pump by § 181.300 must have at least three 9.5 liter (21/2 gallon) buckets, with an attached... 46 Shipping 7 2013-10-01 2013-10-01 false Fire bucket. 181.610 Section 181.610 Shipping COAST...
49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... vehicle crashes. S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles... requirements. S5.1Vehicle requirements. S5.1.1Vehicles with GVWR of 10,000 pounds or less. Each passenger car... has an electrically driven fuel pump that normally runs when the vehicle's electrical system is...
The Electron Runaround: Understanding Electric Circuit Basics through a Classroom Activity
ERIC Educational Resources Information Center
Singh, Vandana
2010-01-01
Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not…
Travers, Timothy; Wang, Katherine J.; Lopez, Cesar A.; ...
2018-02-09
Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this paper, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.
NASA Astrophysics Data System (ADS)
Song, Huaqing; Wang, Qi; Wang, Dongdong; Li, Li
2018-03-01
In this paper, we demonstrated passively Q-switched wavelength-tunable 1-μm fiber lasers utilizing few-layer black phosphorus saturable absorbers. The few-layer BP was deposited onto the tapered fibers by an optically driven process. The wavelength tunability was achieved with a fiber Sagnac loop comprised of a piece of polarization maintaining fiber and a polarization controller. Stable Q-switching laser operations were observed at wavelengths ranging from 1040.5 to 1044.6 nm at threshold pump power of 220 mW. Maximal pulse energy of 141.27 nJ at a repetition rate of 63 kHz was recorded under pump power of 445 mW.
Feedback control for manipulating magnetization in spin-exchange optical pumping system
NASA Astrophysics Data System (ADS)
Zhang, Ke; Li, Jun; Jiang, Min; Zhao, Nan; Peng, XinHua
2018-08-01
Control of magnetization plays an important role in the scientific and technological field of manipulating spin systems. In this work, we study the problem of manipulating nuclear magnetization in the spin-exchange optical pumping system, including accelerating the recovery of nuclear polarization and fixing it on a specific desired state. A real-time feedback control strategy is exploited here. We have also done some numerical simulations, with the results clearly demonstrating the effectiveness of our method, that the nuclear magnetization is able to be driven towards the equilibrium state at a much faster speed and also can be stabilized to a target state. We expect that our feedback control method can find applications in gyro experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travers, Timothy; Wang, Katherine J.; Lopez, Cesar A.
Gram-negative multidrug resistance currently presents a serious threat to public health with infections effectively rendered untreatable. Multiple molecular mechanisms exist that cause antibiotic resistance and in addition, the last three decades have seen slowing rates of new drug development. In this paper, we summarize the use of various computational techniques for investigating the mechanisms of multidrug resistance mediated by Gram-negative tripartite efflux pumps and membranes. Recent work in our lab combines data-driven sequence and structure analyses to study the interactions and dynamics of these bacterial components. Computational studies can complement experimental methodologies for gaining crucial insights into combatting multidrug resistance.
NASA Astrophysics Data System (ADS)
Umucalılar, R. O.; Carusotto, I.
2017-11-01
We investigate theoretically a driven dissipative model of strongly interacting photons in a nonlinear optical cavity in the presence of a synthetic magnetic field. We show the possibility of using a frequency-dependent incoherent pump to create a strongly correlated ν =1 /2 bosonic Laughlin state of light: Due to the incompressibility of the Laughlin state, fluctuations in the total particle number and excitation of edge modes can be tamed by imposing a suitable external potential profile for photons. We further propose angular-momentum-selective spectroscopy of the emitted light as a tool to obtain unambiguous signatures of the microscopic physics of the quantum Hall liquid of light.
Pure detection of the acoustic spin pumping in Pt/YIG/PZT structures
NASA Astrophysics Data System (ADS)
Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Saitoh, Eiji
2014-11-01
The acoustic spin pumping (ASP) stands for the generation of a spin voltage from sound waves in a ferromagnet/paramagnet junction. In this letter, we propose and demonstrate a method for pure detection of the ASP, which enables the separation of sound-wave-driven spin currents from the spin Seebeck effect due to the heating of a sample caused by a sound-wave injection. Our demonstration using a Pt/YIG/PZT sample shows that the ASP signal in this structure measured by a conventional method is considerably offset by the heating signal and that the pure ASP signal is one order of magnitude greater than that reported in the previous study.
NASA Technical Reports Server (NTRS)
Baumann, T. L.; Pattern, T. C.; Mckee, H. B.
1972-01-01
Two alternate oxygen-hydrogen auxiliary propulsion system concepts for use with the space shuttle vehicle were evaluated. The two concepts considered were: (1) gaseous oxygen-hydrogen systems with electric or hydraulic motor driven pumps to provide system pressure and (2) liquid oxygen-hydrogen systems which delivered propellants to the engines in a liquid state without the need for pumps. The various means of implementing each of the concepts are compared on the basis of weight, technology requirements, and operational considerations. It was determined that the liquid oxygen-hydrogen system concepts have the potential to produce substantial weight reductions in the space shuttle orbiter total impulse range.
Experimental Research into Noise Emission of A Gear Micropump with Plastic Rotor
NASA Astrophysics Data System (ADS)
Rodionov, L. V.; Rekadze, P. D.
2018-01-01
The previous researches show that it’s possible to replace several parts of gear pump to plastic ones. This substitution leads to cost and noise reduction of the pump. Therefore, the series of acoustic experiments on a test bench were carry-out. Sound pressure levels were recorded with microphone, located in a pipe made of a vacuum rubber. Conducted experiment shows that acoustic characteristics of the micropump depend on the different material of driven rotor. Experimental result indicates that the proposed measures for replacing metal rotor to plastic one reduce micropump noise on the studied modes. The maximum achieved acoustic efficiency on equivalent level is 11 dB.
NASA Technical Reports Server (NTRS)
1977-01-01
The NASA-McGannon cataract surgery tool is a tiny cutter-pump which liquefies and pumps the cataract lens material from the eye. Inserted through a small incision in the cornea, the tool can be used on the hardest cataract lens. The cutter is driven by a turbine which operates at about 200,000 revolutions per minute. Incorporated in the mechanism are two passages for saline solutions, one to maintain constant pressure within the eye, the other for removal of the fragmented lens material and fluids. Three years of effort have produced a design, now being clinically evaluated, with excellent potential for improved cataract surgery. The use of this tool is expected to reduce the patient's hospital stay and recovery period significantly.
Zhou, Yue; Cheung, Kim K Y; Li, Qin; Yang, Sigang; Chui, P C; Wong, Kenneth K Y
2010-07-15
We demonstrate a dispersion-tuned fiber optical parametric oscillator (FOPO)-based swept source with a sweep rate of 40 kHz and a wavelength tuning range of 109 nm around 1550 nm. The cumulative speed exceeds 4,000,000 nm/s. The FOPO is pumped by a sinusoidally modulated pump, which is driven by a clock sweeping linearly from 1 to 1.0006 GHz. A spool of dispersion-compensating fiber is added inside the cavity to perform dispersion tuning. The instantaneous linewidth is 0.8 nm without the use of any wavelength selective element inside the cavity. 1 GHz pulses with pulse width of 150 ps are generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran-Valle, Omar; Pena-Gallardo, Rafael; Segundo-Ramirez, Juan
This paper presents a comparative study of the application of Flexible AC Transmission System (FACTS) devices, as Thyristor Controlled Series Capacitor (TCSC), Static Synchronous Compensator (STATCOM) and Unified Power Controller (UPFC) on congestion management and voltage support in the area of the Istmo of Tehuantepec, Oaxaca, Mexico. The present work provides an analysis about the performance of the control of active and reactive power of the FACTS controllers applied to mentioned problems in the power system.
NASA Astrophysics Data System (ADS)
Grube, R.; Tursky, W.; Gerzovskovits, S.; Schierz, W.
1982-12-01
An asymmetrical gate assisted turn-off thyristor and two types of rectifier diodes were developed. These devices are suitable for self-commutated convertors working at frequencies between 15 and 30 kHz for direct connection to 380 V and 500 V lines and for power outputs up to 20 kVA. Such convertors allow economic and easily controllable power supplies to be realized for applications such as welding, inductive heating, ultrasonic generators, and radar modulators.
Nonthermal Radiation Processes in Interplanetary Plasmas
NASA Astrophysics Data System (ADS)
Chian, A. C. L.
1990-11-01
RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large amplitude to exceed the thresfiold conditions, nonlinear mode conversion electromagnetic waves can be effected through parametric instabilities. A number of electromagnetic parametric instabilities driven by intense Langmuir waves can be excited in a plasma: (1) electromagnetic decay/fusion instabilities driven by a traveling Langmuir pump; (2) double electromagnetic decay/fusion instabilities driven by two oppositely directed Langmuir pumps; and (3) electromagnetic oscillating two-stream instabilities driven by two counterstreaming Langmuir pumps. It is concluded that the electromagnetic parametric instabilities induced by Langmuir waves are likely sources of nonthermal radiations in interplanetary plasmas. Keq ( : INTERPLANETARY MEDIUM - PLASMAS
Daly, Amanda R; Sobajima, Hideo; Olia, Salim E; Takatani, Setsuo; Kameneva, Marina V
2010-01-01
In vitro evaluation of the potential of a circulatory-assist device to damage blood cells has generally been performed using blood from various species. Problems with this approach include the variability of blood sensitivity to mechanical stress in different species, preparation of blood including the adjustment of hematocrit to a standard value, changes in the mechanical properties of blood that occur during storage, and necessity to pool blood samples to obtain an adequate amount of blood for in vitro circulating systems. We investigated whether the mechanical degradation of a drag-reducing polymer (DRP) solution resulting in the loss of drag-reducing ability can indicate the degree of shear-induced blood damage within blood pumps. DRP solution (polyethylene oxide, 4,500 kDa, 1,000 ppm) or porcine blood were driven through a turbulent flow system by a centrifugal pump, either the Bio-Pump BPX-80 (Medtronic, Inc.) or CentriMag (Levitronix LLC) at a constant pressure gradient of 300 mm Hg for 120 minutes. DRP mechanical degradation was evaluated by reduction of flow rate and solution viscosity. A proposed index of DRP mechanical degradation (PDI) is similar to the normalized index of hemolysis (NIH) typically used to quantify the results of in vitro testing of blood pumps. Results indicate that the mechanical degradation of DRP solutions may provide a sensitive standard method for the evaluation of potential blood trauma produced by blood pumps without the use of blood.
Daly, Amanda R.; Sobajima, Hideo; Olia, Salim E.; Takatani, Setsuo; Kameneva, Marina V.
2011-01-01
In vitro evaluation of the potential of a circulatory-assist device to damage blood cells has generally been performed using blood from various species. Problems with this approach include the variability of blood sensitivity to mechanical stress in different species, preparation of blood including the adjustment of hematocrit to a standard value, changes in the mechanical properties of blood that occur during storage, and necessity to pool blood samples to obtain an adequate amount of blood for in vitro circulating systems. We investigated whether the mechanical degradation of a drag-reducing polymer (DRP) solution resulting in the loss of drag-reducing ability can indicate the degree of shear-induced blood damage within blood pumps. DRP solution (polyethylene oxide, 4,500 kDa, 1,000 ppm) or porcine blood were driven through a turbulent flow system by a centrifugal pump, either the Bio-Pump BPX-80 (Medtronic, Inc.) or CentriMag (Levitronix LLC) at a constant pressure gradient of 300 mm Hg for 120 minutes. DRP mechanical degradation was evaluated by reduction of flow rate and solution viscosity. A proposed index of DRP mechanical degradation (PDI) is similar to the normalized index of hemolysis (NIH) typically used to quantify the results of in vitro testing of blood pumps. Results indicate that the mechanical degradation of DRP solutions may provide a sensitive standard method for the evaluation of potential blood trauma produced by blood pumps without the use of blood. PMID:20019596
NASA Astrophysics Data System (ADS)
Iorsh, Ivan; Glauser, Marlene; Rossbach, Georg; Levrat, Jacques; Cobet, Munise; Butté, Raphaël; Grandjean, Nicolas; Kaliteevski, Mikhail A.; Abram, Richard A.; Kavokin, Alexey V.
2012-09-01
The main emission characteristics of electrically driven polariton lasers based on planar GaN microcavities with embedded InGaN quantum wells are studied theoretically. The polariton emission dependence on pump current density is first modeled using a set of semiclassical Boltzmann equations for the exciton polaritons that are coupled to the rate equation describing the electron-hole plasma population. Two experimentally relevant pumping geometries are considered, namely the direct injection of electrons and holes into the strongly coupled microcavity region and intracavity optical pumping via an embedded light-emitting diode. The theoretical framework allows the determination of the minimum threshold current density Jthr,min as a function of lattice temperature and exciton-cavity photon detuning for the two pumping schemes. A Jthr,min value of 5 and 6 A cm-2 is derived for the direct injection scheme and for the intracavity optical pumping one, respectively, at room temperature at the optimum detuning. Then an approximate quasianalytical model is introduced to derive solutions for both the steady-state and high-speed current modulation. This analysis makes it possible to show that the exciton population, which acts as a reservoir for the stimulated relaxation process, gets clamped once the condensation threshold is crossed, a behavior analogous to what happens in conventional laser diodes with the carrier density above threshold. Finally, the modulation transfer function is calculated for both pumping geometries and the corresponding cutoff frequency is determined.
Microgravity heat pump for space station thermal management.
Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L
2003-01-01
A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.
Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.
Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y
2006-01-01
It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.
High V-PPase activity is beneficial under high salt loads, but detrimental without salinity.
Graus, Dorothea; Konrad, Kai R; Bemm, Felix; Patir Nebioglu, Meliha Görkem; Lorey, Christian; Duscha, Kerstin; Güthoff, Tilman; Herrmann, Johannes; Ferjani, Ali; Cuin, Tracey Ann; Roelfsema, M Rob G; Schumacher, Karin; Neuhaus, H Ekkehard; Marten, Irene; Hedrich, Rainer
2018-06-25
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H + -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP i hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na + sequestration. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Dual nozzle single pump fuel injection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.
1992-02-25
This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is suppliedmore » by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.« less
Thermal engine driven heat pump for recovery of volatile organic compounds
Drake, Richard L.
1991-01-01
The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.
Theoretical regime diagrams for thermally driven flows in a beta-plane channel. [in atmosphere
NASA Technical Reports Server (NTRS)
Geisler, J. E.; Fowlis, W. W.
1979-01-01
It is noted that thermally driven flows in rotating laboratory containers with cylindrical geometry can be axially symmetric or wavelike depending on the experimental parameters. In anticipation that rotating fluid experiments might soon be done in spherical shell geometry, Barcilon's model has been extended to a beta-plane channel in order to gain a rough understanding of the effects of rotating spherical geometry. An incompressible fluid version of the Charney (1947) model of baroclinic instability, modified to include Ekman pumping at rigid horizontal boundaries is used. With this model, stability boundaries are mapped out for individual zonal wavenumbers in the parameter space used by Barcilon.
Mass sensitivity studies for an inductively driven railgun
NASA Astrophysics Data System (ADS)
Scanlon, J. J., III; Young, A. F.
1991-01-01
Those areas which result in substantial system mass reductions for an HPG (homopolar generator) driven EML (electromagnetic launcher) are identified. Sensitivity studies are performed by varying launch mass, peak acceleration, launcher efficiency, inductance gradient, injection velocity, barrel mass per unit length, fuel tankage and pump estimates, and component energy and power densities. Two major contributors to the system mass are the allowed number of shots per barrel versus the number required for the mission, and the barrel length. The effects of component performance parameters, such as friction coefficient, injection velocity, ablation coefficient, rail resistivity, armature voltage, peak acceleration, and inductance gradient on these two areas, are addressed.
R744 ejector technology future perspectives
NASA Astrophysics Data System (ADS)
Hafner, Armin; Banasiak, Krzysztof
2016-09-01
Carbon Dioxide, CO2 (R744) was one of the first commonly applied working fluids in the infancy of refrigeration more than 100 years ago. In contrast to ammonia it mainly disappeared after the first generation of synthetic refrigerants have been introduced to the market after 1930. One reason was that the transition from low-rpm belt driven compressors towards the direct electrical motor driven compressors (50-60 Hz) was not performed for CO2 compressors before the revival introduced by Gustav Lorentzen in the 90is of last century. Since 1988 an enormous R & D effort has been made to further develop CO2 refrigeration technology in spite of the opposition from the chemical industry. Today CO2 refrigeration and heat pumping technologies are accepted as viable and sustainable alternatives for several applications like commercial refrigeration, transport refrigeration, vehicle air conditioning & heat pumping, domestic hot water heat pumps and industrial applications. For some applications, the current threshold to introduce R744 technology can be overcome when the system design takes into account the advantage of the thermo dynamical- and fluid properties of CO2. I.e. the system is designed for transcritical operation with all it pros and cons and takes into consideration how to minimize the losses, and to apply the normally lost expansion work. Shortcut-designs, i.e. drop in solutions, just replacing the H(C)FC refrigeration unit with an CO2 systems adapted for higher system pressures will not result in energy efficient products. CO2 systems do offer the advantage of enabling flooded evaporators supported with adapted ejector technology. These units offer high system performances at low temperature differences and show low temperature air mal-distributions across evaporators. This work gives an overview for the development possibilities for several applications during the next years. Resulting in a further market share increase of CO2 refrigeration and heat pump systems, as energy efficient alternatives to current systems not applying natural working fluids.