Sample records for thyroid cell proliferation

  1. Cold thyroid nodules show a marked increase in proliferation markers.

    PubMed

    Krohn, Knut; Stricker, Ingo; Emmrich, Peter; Paschke, Ralf

    2003-06-01

    Thyroid follicular adenomas and adenomatous thyroid nodules are a frequent finding in geographical areas with iodine deficiency. They occur as hypofunctioning (scintigraphically cold) or hyperfunctioning (scintigraphically hot) nodules. Their predominant clonal origin suggests that they result from clonal expansion of a single cell, which is very likely the result of a prolonged increase in proliferation compared with non-affected surrounding cells. To test whether increased cell proliferation is detectable in cold thyroid nodules, we studied paraffin-embedded tissue from 40 cold thyroid nodules and their surrounding normal thyroid tissue for the occurrence of the proliferating cell nuclear antigen (PCNA) and Ki-67 (MIB-1 antibody) epitopes as markers for cell proliferation. All 40 thyroid nodules were histologically well characterized and have been studied for molecular characteristics before. The labeling index (number of labeled cells versus total cell number) for nodular and surrounding tissue was calculated. In 33 cold thyroid nodules a significant (p < or = 0.05) increase in the labeling index for PCNA was detectable. In 19 cold thyroid nodules a significant (p < or = 0.05) increase in the labeling index for Ki-67 was detectable. Moreover, surrounding tissues with lymphocyte infiltration showed a significantly higher labeling index for both PCNA and Ki-67 compared with normal surrounding tissue. These findings are first evidence that an increased thyroid epithelial cell proliferation is a uniform feature common to most cold nodules. However, the increase of proliferation markers shows a heterogeneity that is not correlated with histopathologic, molecular, or clinical characteristics.

  2. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Liu, Lianyong; Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Ourmore » findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.« less

  3. Role of Dicer1 in thyroid cell proliferation and differentiation.

    PubMed

    Penha, Ricardo Cortez Cardoso; Sepe, Romina; De Martino, Marco; Esposito, Francesco; Pellecchia, Simona; Raia, Maddalena; Del Vecchio, Luigi; Decaussin-Petrucci, Myriam; De Vita, Gabriella; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2017-01-01

    DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.

  4. [The implementation of computer model in research of dynamics of proliferation of cells of thyroid gland follicle].

    PubMed

    Abduvaliev, A A; Gil'dieva, M S; Khidirov, B N; Saĭdalieva, M; Khasanov, A A; Musaeva, Sh N; Saatov, T S

    2012-04-01

    The article deals with the results of computational experiments in research of dynamics of proliferation of cells of thyroid gland follicle in normal condition and in the case of malignant neoplasm. The model studies demonstrated that the chronic increase of parameter of proliferation of cells of thyroid gland follicle results in abnormal behavior of numbers of cell cenosis of thyroid gland follicle. The stationary state interrupts, the auto-oscillations occur with transition to irregular oscillations with unpredictable cell proliferation and further to the "black hole" effect. It is demonstrated that the present medical biologic experimental data and theory propositions concerning the structural functional organization of thyroid gland on cell level permit to develop mathematical models for quantitative analysis of numbers of cell cenosis of thyroid gland follicle in normal conditions. The technique of modeling of regulative mechanisms of living systems and equations of cell cenosis regulations was used

  5. SASH1 inhibits proliferation and invasion of thyroid cancer cells through PI3K/Akt signaling pathway

    PubMed Central

    Sun, Dawei; Zhou, Rui; Liu, Huamin; Sun, Wenhai; Dong, Anbing; Zhang, Hongmei

    2015-01-01

    The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY-family of signal adapter proteins, has an important regulatory role in tumorigenesis, but its implication in thyroid carcinoma has not been yet investigated. In this study, we investigated the role of SASH1 in proliferation and invasion of thyroid cancer cells and the underlying mechanism. Our results demonstrated that SASH1 is down-regulated in thyroid cancer cells. Overexpression of SASH1 inhibits thyroid cancer cell proliferation, migration and invasion with decreased epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of SASH1 inhibits thyroid cancer cell proliferation and invasion through down-regulation of PI3K and Akt phosphorylation. Taken together, the present study showed that the loss or inhibition of SASH1 expression may play an important role in thyroid cancer development, invasion, and metastasis and that SASH1 may be a potential therapeutic target for the treatment of thyroid cancer. PMID:26722413

  6. SASH1 inhibits proliferation and invasion of thyroid cancer cells through PI3K/Akt signaling pathway.

    PubMed

    Sun, Dawei; Zhou, Rui; Liu, Huamin; Sun, Wenhai; Dong, Anbing; Zhang, Hongmei

    2015-01-01

    The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY-family of signal adapter proteins, has an important regulatory role in tumorigenesis, but its implication in thyroid carcinoma has not been yet investigated. In this study, we investigated the role of SASH1 in proliferation and invasion of thyroid cancer cells and the underlying mechanism. Our results demonstrated that SASH1 is down-regulated in thyroid cancer cells. Overexpression of SASH1 inhibits thyroid cancer cell proliferation, migration and invasion with decreased epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of SASH1 inhibits thyroid cancer cell proliferation and invasion through down-regulation of PI3K and Akt phosphorylation. Taken together, the present study showed that the loss or inhibition of SASH1 expression may play an important role in thyroid cancer development, invasion, and metastasis and that SASH1 may be a potential therapeutic target for the treatment of thyroid cancer.

  7. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.

    PubMed

    Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen

    2011-02-15

    CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.

  8. PPARδ INDUCES CELL PROLIFERATION BY A CYCLIN E1-DEPENDENT MECHANISM AND IS UPREGULATED IN THYROID TUMORS

    PubMed Central

    Zeng, Lingchun; Geng, Yan; Tretiakova, Maria; Yu, Xuemei; Sicinski, Peter; Kroll, Todd G.

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) are lipid sensing nuclear receptors that have been implicated in multiple physiologic processes including cancer. Here, we determine that PPARδ induces cell proliferation through a novel cyclin E1-dependent mechanism and is upregulated in many human thyroid tumors. The expression of PPARδ was induced coordinately with proliferation in primary human thyroid cells by activation of serum, TSH/cAMP/pKa or EGF/MEK/ERK mitogenic signaling pathways. Engineered overexpression of PPARδ increased thyroid cell number, the incorporation of BrdU and the phosphorylation of Rb 40–45% in just 2 days, one usual cell population doubling. The synthetic PPARδ agonist GW501516 augmented these PPARδ proliferation effects in a dose-dependent manner. Overexpression of PPARδ increased cyclin E1 protein 9-fold, whereas knock down of PPARδ by siRNA reduced both cyclin E1 protein and cell proliferation 2-fold. Induction of proliferation by PPARδ wasabrogated by knockdown of cyclin E1 by siRNA in primary thyroid cells and by knockout of cyclin E1 in mouse embryo fibroblasts, confirming a cyclin E1 dependence for this PPARδ pathway. In addition, the mean expression of native PPARδ was increased 2- to 5-fold (p<0.0001) and correlated with that of the in situ proliferation marker Ki67 (R=0.8571; p=0.02381) in six different classes of benign and malignant human thyroid tumors. Our experiments identify a PPARδ mechanism that induces cell proliferation through cyclin E1 and is regulated by growth factor and lipid signals. The data argue for systematic investigation of PPARδ antagonists as anti-neoplastic agents and implicate altered PPARδ-cyclin E1 signaling in thyroid and other carcinomas. PMID:18701481

  9. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation.

    PubMed

    Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J

    2017-06-01

    Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  10. Mechanisms and kinetics of proliferation and fibrosis development in a mouse model of thyrocyte hyperplasia.

    PubMed

    Ciornei, Radu Tudor; Hong, So-Hee; Fang, Yujiang; Zhu, Ziwen; Braley-Mullen, Helen

    2016-01-01

    IFN-γ(-/-) NOD.H-2h4 mice develop autoimmune disease with extensive hyperplasia and proliferation of thyroid epithelial cells (TEC H/P) and fibrosis. Splenic T cells from donors with severe TEC H/P transfer TEC H/P to SCID recipients. The goal of this study was to determine what factors control TEC H/P development/progression by examining T cells, markers of apoptosis, senescence and proliferation in thyroids of SCID recipients over time. At 28days, T cell infiltration was maximal, thyrocytes were proliferating, and fibrosis was moderate. At days 60 and 90, thyroids were larger with more fibrosis. T cells, cytokines and thyrocyte proliferation decreased, and cell cycle inhibitor proteins, and anti-apoptotic molecules increased. T cells and thyrocytes had foci of phosphorylated histone protein H2A.X, indicative of cellular senescence, when TEC H/P progressed and thyrocyte proliferation declined. Some thyrocytes were regenerating at day 90, with irregularly shaped empty follicles and ciliated epithelium. Proliferating thyrocytes were thyroid transcription factor (TTF1)-positive, suggesting they derived from epithelial cells and not brachial cleft remnants. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. In vitro pituitary and thyroid cell proliferation assays and their relevance as alternatives to animal testing.

    PubMed

    Jomaa, Barae; Aarts, Jac M M J G; de Haan, Laura H J; Peijnenburg, Ad A C M; Bovee, Toine F H; Murk, Albertinka J; Rietjens, Ivonne M C M

    2013-01-01

    This study investigates the in vitro effect of eleven thyroid-active compounds known to affect pituitary and/or thyroid weights in vivo, using the proliferation of GH3 rat pituitary cells in the so-called "T-screen," and of FRTL-5 rat thyroid cells in a newly developed test denoted "TSH-screen" to gain insight into the relative value of these in vitro proliferation tests for an integrated testing strategy (ITS) for thyroid activity. Pituitary cell proliferation in the T-screen was stimulated by three out of eleven tested compounds, namely thyrotropin releasing hormone (TRH), triiodothyronine (T3) and thyroxine (T4). Of these three compounds, only T4 causes an increase in relative pituitary weight, and thus T4 was the only compound for which the effect in the in vitro assay correlated with a reported in vivo effect. As to the newly developed TSH-screen, two compounds had an effect, namely, thyroid-stimulating hormone (TSH) induced and T4 antagonized FRTL-5 cell proliferation. These effects correlated with in vivo changes induced by these compounds on thyroid weight. Altogether, the results indicate that most of the selected compounds affect pituitary and thyroid weights by modes of action different from a direct thyroid hormone receptor (THR) or TSH receptor (TSHR)-mediated effect, and point to the need for additional in vitro tests for an ITS. Additional analysis of the T-screen revealed a positive correlation between the THR-mediated effects of the tested compounds in vitro and their effects on relative heart weight in vivo, suggesting that the T-screen may directly predict this THR-mediated in vivo adverse effect.

  12. Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction

    PubMed Central

    Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi

    2011-01-01

    While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376

  13. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation

    PubMed Central

    Kang, Hong Soon; Kumar, Dhirendra; Liao, Grace; Lichti-Kaiser, Kristin; Gerrish, Kevin; Liao, Xiao-Hui; Refetoff, Samuel; Jothi, Raja; Jetten, Anton M.

    2017-01-01

    Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division–related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development. PMID:29083325

  14. RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis

    PubMed Central

    Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun

    2015-01-01

    A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma. PMID:25755717

  15. Semiquantitative immunohistochemical marker staining and localization in canine thyroid carcinoma and normal thyroid gland.

    PubMed

    Pessina, P; Castillo, V; Sartore, I; Borrego, J; Meikle, A

    2016-09-01

    Immunoreactive proteins in follicular cells, fibroblasts and endothelial cells were assessed in canine thyroid carcinomas and healthy thyroid glands. No differences were detected in thyrotropin receptor and thyroglobulin staining between cancer and normal tissues, but expression was higher in follicular cells than in fibroblasts. Fibroblast growth factor-2 staining was more intense in healthy follicular cells than in those of carcinomas. Follicular cells in carcinomas presented two- to three-fold greater staining intensity of thyroid transcription factor-1 and proliferating cell nuclear antigen, respectively, than healthy cells, and a similar trend was found for the latter antigen in fibroblasts. Vascular endothelial growth factor staining was more intense in the endothelial cells of tumours than in those of normal tissues. In conclusion, greater expression of factors related to proliferation and angiogenesis was demonstrated in several cell types within thyroid carcinomas compared to healthy tissues, which may represent mechanisms of tumour progression in this disease. © 2014 John Wiley & Sons Ltd.

  16. Trefoil factor 3 is required for differentiation of thyroid follicular cells and acts as a context-dependent tumor suppressor.

    PubMed

    Abols, A; Ducena, K; Andrejeva, D; Sadovska, L; Zandberga, E; Vilmanis, J; Narbuts, Z; Tars, J; Eglitis, J; Pirags, V; Line, A

    2015-01-01

    Trefoil factor 3 (TFF3) is overexpressed in a variety of solid epithelial cancers, where it has been shown to promote migration, invasion, proliferation, survival and angiogenesis. On the contrary, in the majority of thyroid tumors, it is downregulated, yet its role in the development of thyroid cancer remains unknown. Here we show that TFF3 exhibits strong cytoplasmic staining of normal thyroid follicular cells and colloid and the staining is increased in hyperfunctioning thyroid nodules, while it is decreased in all thyroid cancers of follicular cell origin. By meta-analysis of gene expression datasets, we found that in the thyroid cancer, conversely to the breast cancer, the expression of TFF3 mRNA was downregulated by estrogen signaling and confirmed this by treating thyroid cancer cells with estradiol. Forced expression of TFF3 in anaplastic thyroid cancer cells resulted in decreased cell proliferation, clonal spheroid formation and entry into the S phase. Furthermore, it induced acquisition of epithelial-like cell morphology and expression of the differentiation markers of thyroid follicular cells and transcription factors implicated in the thyroid morphogenesis and function. Taken together, this study provides the first evidence that TFF3 may act as a tumor suppressor or an oncogene depending on the cellular context.

  17. Change of body height is regulated by thyroid hormone during metamorphosis in flatfishes and zebrafish.

    PubMed

    Xu, Juan; Ke, Zhonghe; Xia, Jianhong; He, Fang; Bao, Baolong

    2016-09-15

    Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Reactivity of thyroid papillary carcinoma cells to thyroid stimulating hormone-dominated endocrine therapy

    PubMed Central

    Ma, Yuqin; Zhang, Xia; Wang, Yutao

    2017-01-01

    This study investigated the effect of thyroid stimulating hormone (TSH) on the proliferation of papillary thyroid carcinoma (PTC) cells and the therapeutic effect of levothyroxine sodium (TH). PTC cells (TPC-1) were cultured using 0.1, 1.0 and 10 U/l TSH and 10−2, 10−4 and 10−6 mol/l TH. After the appropriate concentration was screened, TPC-1 cells were further divided into control group, TSH group, TH group and TSH+TH group. The cell proliferation was detected via methyl thiazolyl tetrazolium (MTT) method, TPC-1 cell cycle was detected via flow cytometer, and the mRNA and protein expression of cyclin D1 were detected via real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Compared with control group, TSH significantly promoted the proliferation of TPC-1 cells (P<0.05 or P<0.01), obviously promoted the transition of TPC-1 cells from G1 phase to S phase (P<0.01) and remarkably increased the mRNA and protein expression of cyclin D1 (P<0.01); but TH had a significant inhibitory effect on these results of TSH (P<0.05 or P<0.01). TSH can promote the proliferation of PTC cells, and the appropriate complement of TH can inhibit its proliferation. PMID:29250166

  19. Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.

    PubMed

    Silva, Veronica; Hilly, Ohad; Strenov, Yulia; Tzabari, Cochava; Hauptman, Yirmi; Feinmesser, Raphael

    2016-01-01

    To evaluate the potential carcinogenic effects of radiofrequency energy (RFE) emitted by cell phones on human thyroid primary cells. Primary thyroid cell culture was prepared from normal thyroid tissue obtained from patients who underwent surgery at our department. Subconfluent thyroid cells were irradiated under different conditions inside a cell incubator using a device that simulates cell phone-RFE. Proliferation of control and irradiated cells was assessed by the immunohistochemical staining of antigen Kiel clone-67 (Ki-67) and tumor suppressor p53 (p53) expression. DNA ploidy and the stress biomarkers heat shock protein 70 (HSP70) and reactive oxygen species (ROS) was evaluated by fluorescence-activated cell sorting (FACS). Our cells highly expressed thyroglobulin (Tg) and sodium-iodide symporter (NIS) confirming the origin of the tissue. None of the irradiation conditions evaluated here had an effect neither on the proliferation marker Ki-67 nor on p53 expression. DNA ploidy was also not affected by RFE, as well as the expression of the biomarkers HSP70 and ROS. Our conditions of RFE exposure seem to have no potential carcinogenic effect on human thyroid cells. Moreover, common biomarkers usually associated to environmental stress also remained unchanged. We failed to find an association between cell phone-RFE and thyroid cancer. Additional studies are recommended.

  20. Loss of c-KIT expression in thyroid cancer cells.

    PubMed

    Franceschi, Sara; Lessi, Francesca; Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria

    2017-01-01

    Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression.

  1. Loss of c-KIT expression in thyroid cancer cells

    PubMed Central

    Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria

    2017-01-01

    Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression. PMID:28301608

  2. Evidence that thyroid hormone induces olfactory cellular proliferation in salmon during a sensitive period for imprinting.

    PubMed

    Lema, Sean C; Nevitt, Gabrielle A

    2004-09-01

    Salmon have long been known to imprint and home to natal stream odors, yet the mechanisms driving olfactory imprinting remain obscure. The timing of imprinting is associated with elevations in plasma thyroid hormone levels, with possible effects on growth and proliferation of the peripheral olfactory system. Here, we begin to test this idea by determining whether experimentally elevated plasma levels of 3,5,3'-triiodothyronine (T(3)) influence cell proliferation as detected by the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique in the olfactory epithelium of juvenile coho salmon (Oncorhynchus kisutch). We also explore how natural fluctuations in thyroxine (T(4)) relate to proliferation in the epithelium during the parr-smolt transformation. In both studies, we found that BrdU labeled both single and clusters of mitotic cells. The total number of BrdU-labeled cells in the olfactory epithelium was significantly greater in fish with artificially elevated T(3) compared with placebo controls. This difference in proliferation was restricted to the basal region of the olfactory epithelium, where multipotent progenitor cells differentiate into olfactory receptor neurons. The distributions of mitotic cluster sizes differed significantly from a Poisson distribution for both T(3) and placebo treatments, suggesting that proliferation tends to be non-random. Over the course of the parr-smolt transformation, changes in the density of BrdU cells showed a positive relationship with natural fluctuations in plasma T(4). This relationship suggests that even small changes in thyroid activity can stimulate the proliferation of neural progenitor cells in the salmon epithelium. Taken together, our results establish a link between the thyroid hormone axis and measurable anatomical changes in the peripheral olfactory system.

  3. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways.

    PubMed

    Zhang, Li; Liu, Lianyong; He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang; Tian, Jianqing

    2016-08-26

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.

    PubMed

    Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.

  5. Fetal cell carcinogenesis of the thyroid: a modified theory based on recent evidence.

    PubMed

    Takano, Toru

    2014-01-01

    Thyroid cancer cells were believed to be generated by multi-step carcinogenesis, in which cancer cells are derived from thyrocytes, via multiple incidences of damage to their genome, especially in oncogenes or anti-oncogenes that accelerate proliferation or foster malignant phenotypes, such as the ability to invade the surrounding tissue or metastasize to distant organs, until a new hypothesis, fetal cell carcinogenesis, was presented. In fetal cell carcinogenesis, thyroid tumor cells are assumed to be derived from three types of fetal thyroid cell which only exist in fetuses or young children, namely, thyroid stem cells (TSCs), thyroblasts and prothyrocytes, by proliferation without differentiation. Genomic alternations, such as RET/PTC and PAX8-PPARγ1 rearrangements and a mutation in the BRAF gene, play an oncogenic role by preventing thyroid fetal cells from differentiating. Fetal cell carcinogenesis effectively explains recent molecular and clinical evidence regarding thyroid cancer, including thyroid cancer initiating cells (TCICs), and it underscores the importance of identifying a stem cells and clarifying the molecular mechanism of organ development in cancer research. It introduces three important concepts, the reverse approach, stem cell crisis and mature and immature cancers. Further, it implies that analysis of a small population of cells in a cancer tissue will be a key technique in establishing future laboratory tests. In the contrary, mass analysis such as gene expression profiling, whole genomic scan, and proteomics analysis may have definite limitations since they can only provide information based on many cells.

  6. GPER/ERK&AKT/NF-κB pathway is involved in cadmium-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells.

    PubMed

    Zhu, Ping; Liao, Ling-Yao; Zhao, Ting-Ting; Mo, Xiao-Mei; Chen, George G; Liu, Zhi-Min

    2017-02-15

    The higher incidence of thyroid cancer in women during reproductive years compared with men and the increased risk associated with the therapeutic use of estrogen have strongly suggested that estrogen may be involved in the occurrence and development of thyroid cancer. Cadmium (Cd) is a potent metalloestrogen that disrupts the endocrine system by mimicking the effects of 17β-estradiol (E2). In the present study, we demonstrate that similar to E2 and G1, a specific agonist for G protein-coupled estrogen receptor (GPER), Cd induces the proliferation, invasion and migration of human WRO and FRO thyroid cancer cells that have endogenous GPER. Moreover, like E2 and G1, Cd leads to a rapid activation of ERK/AKT, and then nuclear translocation of NF-κB, increased expression of cyclin A and D1, and secretion of IL-8, all of which are significantly attenuated by GPER blockage or knock-down in both WRO and FRO cells. Furthermore, the Cd-induced proliferation, invasion and migration are suppressed either by specific inhibitors for GPER, ERK, AKT and NF-κB, or by knock-down of GPER. These results suggest that GPER/ERK&AKT/NF-κB signaling pathway is involved in the Cd-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Flavonoid Fraction of Citrus reticulata Juice Reduces Proliferation and Migration of Anaplastic Thyroid Carcinoma Cells.

    PubMed

    Celano, Marilena; Maggisano, Valentina; De Rose, Roberta Francesca; Bulotta, Stefania; Maiuolo, Jessica; Navarra, Michele; Russo, Diego

    2015-01-01

    Effects of flavonoids extracted from Citrus reticulata (mandarin) juice on proliferation and migration of 3 human anaplastic thyroid carcinoma (ATC) cell lines were evaluated. Flavonoid components of Mandarin juice extract (MJe) were analyzed by uHPLC. Proliferation of CAL-62, C-643, and 8505C cells, measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, was significantly reduced by MJe in a concentration- and time-dependent way, with maximal effect elicited at 0.5 mg/ml concentration after 48 h. Cytofluorimetric analysis showed a block in the G2/M phase of the cell cycle, accompanied by low cell mortality owed to autophagic death. The extract caused also a reduction of cell migration, associated with decreased activity of the metalloproteinase MMP-2. These findings demonstrate that the flavonoid fraction of mandarin juice exerts in vitro antiproliferative effects on ATC cells, associated with a reduction of migration, suggesting for such a functional food a potential use as adjuvant in the treatment of thyroid cancer.

  8. Verteporfin inhibits papillary thyroid cancer cells proliferation and cell cycle through ERK1/2 signaling pathway

    PubMed Central

    Liao, Tian; Wei, Wen-Jun; Wen, Duo; Hu, Jia-Qian; Wang, Yu; Ma, Ben; Cao, Yi-Min; Xiang, Jun; Guan, Qing; Chen, Jia-Ying; Sun, Guo-Hua; Zhu, Yong-Xue; Li, Duan-Shu; Ji, Qing-Hai

    2018-01-01

    Verteporfin, a FDA approved second-generation photosensitizer, has been demonstrated to have anticancer activity in various tumors, but not including papillary thyroid cancer (PTC). In current pre-clinical pilot study, we investigate the effect of verteporfin on proliferation, apoptosis, cell cycle and tumor growth of PTC. Our results indicate verteporfin attenuates cell proliferation, arrests cell cycle in G2/S phase and induces apoptosis of PTC cells. Moreover, treatment of verteporfin dramatically suppresses tumor growth from PTC cells in xenograft mouse model. We further illustrate that exposure to MEK inhibitor U0126 inactivates phosphorylation of ERK1/2 and MEK in verteporfin-treated PTC cells. These data suggest verteporfin exhibits inhibitory effect on PTC cells proliferation and cell cycle partially via ERK1/2 signalling pathway, which strongly encourages the further application of verteporfin in the treatment against PTC. PMID:29721041

  9. The role of prospero homeobox 1 (PROX1) expression in follicular thyroid carcinoma cells

    PubMed Central

    Rudzinska, Magdalena; Ledwon, Joanna K.; Gawel, Damian; Sikorska, Justyna; Czarnocka, Barbara

    2017-01-01

    The prospero homeobox 1 (Prox1) transcription factor is a key player during embryogenesis and lymphangiogenesis. Altered Prox1 expression has been found in a variety of human cancers, including papillary thyroid carcinoma (PTC). Interestingly, Prox1 may exert tumor suppressive or tumor promoting effect, depending on the tissue context. In this study, we have analyzed Prox1 expression in normal and malignant human thyroid carcinoma cell lines. Moreover, we determined the effect of Prox1 silencing and overexpression on the cellular processes associated with the metastatic potential of tumor cells: proliferation, migration, invasion, apoptosis and anchorage-independent growth, in the follicular thyroid carcinoma (FTC) FTC-133 cell line. We found that Prox1 expression was significantly higher in FTC-derived cells than in PTC-derived cells and normal thyroid, and it was associated with the PI3K/Akt signaling pathway. In the FTC-133 cells, it was associated with cell invasive potential, motility and wound closure capacities, but not with proliferation or apoptosis. Modifying Prox1 expression also induced substantial changes in the cytoskeleton structure and cell morphology. In conclusion, we have shown that Prox1 plays an important role in the development of FTC and that its suppression prevents, whereas its overexpression promotes, the malignant behavior of thyroid follicular cancer cells. PMID:29371975

  10. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    PubMed

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  11. Hexamethylenebisacetamide (HMBA) is a growth factor for human, ovine and porcine thyroid cells.

    PubMed

    Fayet, G; Amphoux-Fazekas, T; Aouani, A; Hovsépian, S

    1996-03-01

    Hexamethylenebisacetamide (HMBA) provokes in murine erythroleukemia cells (MELC) a commitment to terminal differentiation leading to the activation of the expression of hemoglobin. HMBA has been tested also in other cells from colon cancer, melanoma or lung cancer. However it has not yet been tested in the thyroid. We demonstrate in this paper that HMBA in kinetics and concentration-response experiments increases the proliferation of human thyroid cells isolated from Graves'-Basedow patients. It also acts like a growth factor for ovine and porcine thyroid cells, respectively, from the OVNIS line and the ATHOS line. This molecule which is a differentiating factor in the MELC system and a growth factor in human thyroid cell cultures represents a potential to get human thyroid cell lines expressing specialized functions.

  12. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells.

    PubMed

    Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi

    2017-07-01

    The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.

  13. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways.

    PubMed

    Zhao, L M; Pang, A X

    2017-01-16

    Iodine-131 (131I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following 131I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with 131I. They were then assessed for 131I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and 131I or with a NF-κB inhibitor of BMS-345541 and 131I, non-transfected SW579 cells were assessed in JNK/NFκB pathways. It was observed that 131I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G0/G1 phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and 131I, the non-transfected SW579 cell lines significantly inhibited JNK pathway, NF-κB pathway and the expression of BTG2. However, when treated with BMS-345541 and 131I, only the NF-κB pathway was suppressed. 131I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF-κB pathways.

  14. Development of a functional thyroid model based on an organoid culture system.

    PubMed

    Saito, Yoshiyuki; Onishi, Nobuyuki; Takami, Hiroshi; Seishima, Ryo; Inoue, Hiroyoshi; Hirata, Yuki; Kameyama, Kaori; Tsuchihashi, Kenji; Sugihara, Eiji; Uchino, Shinya; Ito, Koichi; Kawakubo, Hirofumi; Takeuchi, Hiroya; Kitagawa, Yuko; Saya, Hideyuki; Nagano, Osamu

    2018-03-04

    The low turnover rate of thyroid follicular cells and the lack of a long-term thyroid cell culture system have hampered studies of thyroid carcinogenesis. We have now established a thyroid organoid culture system that supports thyroid cell proliferation in vitro. The established mouse thyroid organoids performed thyroid functions including thyroglobulin synthesis, iodide uptake, and the production and release of thyroid hormone. Furthermore, transplantation of the organoids into recipient mice resulted in the formation of normal thyroid-like tissue capable of iodide uptake and thyroglobulin production in vivo. Finally, forced expression of oncogenic NRAS (NRAS Q61R ) in thyroid organoids established from p53 knockout mice and transplantation of the manipulated organoids into mouse recipients generated a model of poorly differentiated thyroid cancer. Our findings suggest that this newly developed thyroid organoid culture system is a potential research tool for the study of thyroid physiology and pathology including thyroid cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line.

    PubMed

    Yang, Tianzheng; Zhai, Hongyan; Yan, Ruihong; Zhou, Zhenhu; Gao, Lei; Wang, Luqing

    2018-01-01

    Thyroid cancer is a common malignant tumor. Long non-coding RNA colon cancer-associated transcript 1 (lncRNA CCAT1) is highly expressed in many cancers; however, the molecular mechanism of CCAT1 in thyroid cancer remains unclear. Hence, this study aimed to investigate the effect of CCAT1 on human thyroid cancer cell line FTC-133. FTC-133 cells were transfected with CCAT1 expressing vector, CCAT1 shRNA, miR-143 mimic, and miR-143 inhibitor, respectively. After different treatments, cell viability, proliferation, migration, invasion, and apoptosis were measured. Moreover, the regulatory relationship of CCAT1 and miR-143, as well as miR-143 and VEGF were tested using dual-luciferase reporter assay. The relative expressions of CCAT1, miR-143, and VEGF were tested by qRT-PCR. The expressions of apoptosis-related factors and corresponding proteins in PI3K/AKT and MAPK pathways were analyzed using western blot analysis. The results suggested that CCAT1 was up-regulated in the FTC-133 cells. CCAT1 suppression decreased FTC-133 cell viability, proliferation, migration, invasion, and miR-143 expression, while it increased apoptosis and VEGF expression. CCAT1 might act as a competing endogenous RNA (ceRNA) for miR-143. Moreover, CCAT1 activated PI3K/AKT and MAPK signaling pathways through inhibition of miR-143. This study demonstrated that CCAT1 exhibited pro-proliferative and pro-metastasis functions on FTC-133 cells and activated PI3K/AKT and MAPK signaling pathways via down-regulation of miR-143. These findings will provide a possible target for clinical treatment of thyroid cancer.

  16. Canonical transient receptor potential channel 2 (TRPC2): old name-new games. Importance in regulating of rat thyroid cell physiology.

    PubMed

    Törnquist, Kid; Sukumaran, Pramod; Kemppainen, Kati; Löf, Christoffer; Viitanen, Tero

    2014-11-01

    In addition to the TSH-cyclic AMP signalling pathway, calcium signalling is of crucial importance in thyroid cells. Although the importance of calcium signalling has been thoroughly investigated for several decades, the nature of the calcium channels involved in signalling is unknown. In a recent series of investigations using the well-studied rat thyroid FRTL-5 cell line, we showed that these cells exclusively express the transient receptor potential canonical 2 (TRPC2) channel. Our results suggested that the TRPC2 channel is of significant importance in regulating thyroid cell function. These investigations were the first to show that thyroid cells express a member of the TRPC family of ion channels. In this review, we will describe the importance of the TRPC2 channel in regulating TSH receptor expression, thyroglobulin maturation, intracellular calcium and iodide homeostasis and that the channel also regulates thyroid cell proliferation.

  17. The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells.

    PubMed

    Vitagliano, Donata; De Falco, Valentina; Tamburrino, Anna; Coluzzi, Sabrina; Troncone, Giancarlo; Chiappetta, Gennaro; Ciardiello, Fortunato; Tortora, Giampaolo; Fagin, James A; Ryan, Anderson J; Carlomagno, Francesca; Santoro, Massimo

    2011-02-01

    Oncogenic conversion of the RET tyrosine kinase is a frequent feature of medullary thyroid carcinoma (MTC). ZD6474 (vandetanib) is an ATP-competitive inhibitor of RET, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor receptors kinases. In this study, we have studied ZD6474 mechanism of action in TT and MZ-CRC-1 human MTC cell lines, carrying cysteine 634 to tryptophan (C634W) and methionine 918 to threonine (M918T) RET mutation respectively. ZD6474 blunted MTC cell proliferation and RET, Shc and p44/p42 mitogen-activated protein kinase (MAPK) phosphorylation. Single receptor knockdown by RNA interference showed that MTC cells depended on RET for proliferation. Adoptive expression of the ZD6474-resistant V804M RET mutant rescued proliferation of TT cells under ZD6474 treatment, showing that RET is a key ZD6474 target in these MTC cells. Upon RET inhibition, adoptive stimulation of EGFR partially rescued TT cell proliferation, MAPK signaling, and expression of cell-cycle-related genes. This suggests that simultaneous inhibition of RET and EGFR by ZD6474 may overcome the risk of MTC cells to escape from RET blockade through compensatory over-activation of EGFR.

  18. miR-4295 promotes cell proliferation and invasion in anaplastic thyroid carcinoma via CDKN1A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Mingchen; Geng, Yiwei; Laboratory of Tumor Biology, Zhengzhou University, Zhengzhou

    2015-09-04

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in anaplastic thyroid carcinoma (ATC), has remained elusive. Here, we identified that miR-4295 promotes ATC cell proliferation by negatively regulates its target gene CDKN1A. In ATC cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-4295, while miR-4295 inhibitor significantly inhibited the cell proliferation. Transwell assay showed that miR-4295 mimics significantly promoted the migration and invasion of ATC cells, whereas miR-4295 inhibitors significantly reduced cell migration and invasion. luciferase assaysmore » confirmed that miR-4295 directly bound to the 3'untranslated region of CDKN1A, and western blotting showed that miR-4295 suppressed the expression of CDKN1A at the protein levels. This study indicated that miR-4295 negatively regulates CDKN1A and promotes proliferation and invasion of ATC cell lines. Thus, miR-4295 may represent a potential therapeutic target for ATC intervention. - Highlights: • miR-4295 mimics promote the proliferation and invasion of ATC cells. • miR-4295 inhibitors inhibit the proliferation and invasion of ATC cells. • miR-4295 targets 3′UTR of CDKN1A in ATC cells. • miR-4295 negatively regulates CDKN1A in ATC cells.« less

  19. Critical Role for the Protons in FRTL-5 Thyroid Cells: Nuclear Sphingomyelinase Induced-Damage

    PubMed Central

    Albi, Elisabetta; Perrella, Giuseppina; Lazzarini, Andrea; Cataldi, Samuela; Lazzarini, Remo; Floridi, Alessandro; Ambesi-Impiombato, Francesco Saverio; Curcio, Francesco

    2014-01-01

    Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until now there have been no indications in the literature about their possible mechanism of action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that proton beams stimulate slightly nuclear neutral sphingomyelinase activity and inhibit nuclear sphingomyelin-synthase activity in quiescent cells whereas stimulate strongly nuclear neutral sphingomyelinase activity and do not change nuclear sphingomyelin-synthase activity in proliferating cells. The study of neutral sphingomyelinase/sphingomyelin-synthase ratio, a marker of functional state of the cells, indicated that proton beams induce FRTL-5 cells in a proapoptotic state if the cells are quiescent and in an initial apoptotic state if the cells are proliferating. The changes of cell life are accompanied by a decrease of nuclear sphingomyelin and increase of bax protein. PMID:24979136

  20. Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer.

    PubMed

    Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V

    2013-06-01

    Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.

  1. Hes1 Is Required for Appropriate Morphogenesis and Differentiation during Mouse Thyroid Gland Development

    PubMed Central

    Carre, Aurore; Rachdi, Latif; Tron, Elodie; Richard, Bénédicte; Castanet, Mireille; Schlumberger, Martin; Bidart, Jean-Michel

    2011-01-01

    Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis). To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1 −/− mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p<0.05) at E9.5 and at E11.5. Moreover, Hes1 −/− mouse embryos showed a significantly smaller total thyroid surface area (−40 to −60%) compared to wild type mice at all study time points (E9.5−E16.5). In both Hes1 −/− and wild type mouse embryos, most Nkx2-1-positive thyroid cells expressed the cell cycle inhibitor p57 at E9.5 in correlation with low proliferation index. In Hes1 −/− mouse embryos, fusion of the median anlage with the ultimobranchial bodies was delayed by 3 days (E16.5 vs. E13.5 in wild type mice). After fusion of thyroid anlages, hypoplastic Hes1 −/− thyroids revealed a significantly decreased labelling area for T4 (−78%) and calcitonin (−65%) normalized to Nkx2-1 positive cells. Decreased T4-synthesis might be due to reduced Nis labelling area (−69%). These findings suggest a dual role of Hes1 during thyroid development: first, control of the number of both thyrocyte and C-cell progenitors, via a p57-independent mechanism; second, adequate differentiation and endocrine function of thyrocytes and C-cells. PMID:21364918

  2. Role of UDP-Glucuronosyltransferase (UGT) 2B2 in Metabolism of Triiodothyronine: Effect of Microsomal Enzyme Inducers in Sprague Dawley and UGT2B2-Deficient Fischer 344 Rats

    PubMed Central

    Richardson, Terrilyn A.; Klaassen, Curtis D.

    2010-01-01

    Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) can impact thyroid hormone homeostasis in rodents. Increased glucuronidation can result in reduction of serum thyroid hormone and a concomitant increase in thyroid-stimulating hormone (TSH). UGT2B2 is thought to glucuronidate triiodothyronine (T3). The purposes of this study were to determine the role of UGT2B2 in T3 glucuronidation and whether increased T3 glucuronidation mediates the increased TSH observed after MEI treatment. Sprague Dawley (SD) and UGT2B2-deficient Fischer 344 (F344) rats were fed a control diet or diet containing pregnenolone-16α-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum thyroxine (T4), T3, and TSH concentrations, hepatic androsterone/T4/T3 glucuronidation, and thyroid follicular cell proliferation were determined. In both SD and F344 rats, MEI treatments decreased serum T4, whereas serum T3 was maintained (except with PCB treatment). Hepatic T4 glucuronidation increased significantly after MEI in both rat strains. Compared with the other MEI, only PCN treatment significantly increased T3 glucuronidation (281 and 497%) in both SD and UGT2B2-deficient F344 rats, respectively, and increased both serum TSH and thyroid follicular cell proliferation. These data demonstrate an association among increases in T3 glucuronidation, TSH, and follicular cell proliferation after PCN treatment, suggesting that T3 is glucuronidated by other PCN-inducible UGTs in addition to UGT2B2. These data also suggest that PCN (rather than 3-MC or PCB) promotes thyroid tumors through excessive TSH stimulation of the thyroid gland. PMID:20421340

  3. Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells.

    PubMed

    Antico Arciuch, Valeria G; Russo, Marika A; Kang, Kristy S; Di Cristofano, Antonio

    2013-09-01

    Rapidly proliferating and neoplastically transformed cells generate the energy required to support rapid cell division by increasing glycolysis and decreasing flux through the oxidative phosphorylation (OXPHOS) pathway, usually without alterations in mitochondrial function. In contrast, little is known of the metabolic alterations, if any, which occur in cells harboring mutations that prime their neoplastic transformation. To address this question, we used a Pten-deficient mouse model to examine thyroid cells where a mild hyperplasia progresses slowly to follicular thyroid carcinoma. Using this model, we report that constitutive phosphoinositide 3-kinase (PI3K) activation caused by PTEN deficiency in nontransformed thyrocytes results in a global downregulation of Krebs cycle and OXPHOS gene expression, defective mitochondria, reduced respiration, and an enhancement in compensatory glycolysis. We found that this process does not involve any of the pathways classically associated with the Warburg effect. Moreover, this process was independent of proliferation but contributed directly to thyroid hyperplasia. Our findings define a novel metabolic switch to glycolysis driven by PI3K-dependent AMPK inactivation with a consequent repression in the expression of key metabolic transcription regulators. ©2013 AACR.

  4. Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.

    PubMed

    Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua

    2017-05-01

    Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.

  5. The effect of low level laser on anaplastic thyroid cancer

    NASA Astrophysics Data System (ADS)

    Rhee, Yun-Hee; Moon, Jeon-Hwan; Ahn, Jin-Chul; Chung, Phil-Sang

    2015-02-01

    Low-level laser therapy (LLLT) is a non-thermal phototherapy used in several medical applications, including wound healing, reduction of pain and amelioration of oral mucositis. Nevertheless, the effects of LLLT upon cancer or dysplastic cells have been so far poorly studied. Here we report that the effects of laser irradiation on anaplastic thyroid cancer cells leads to hyperplasia. 650nm of laser diode was performed with a different time interval (0, 15, 30, 60J/cm2 , 25mW) on anaplastic thyroid cancer cell line FRO in vivo. FRO was orthotopically injected into the thyroid gland of nude mice and the irradiation was performed with the same method described previously. After irradiation, the xenograft evaluation was followed for one month. The thyroid tissues from sacrificed mice were undergone to H&E staining and immunohistochemical staining with HIF-1α, Akt, TGF-β1. We found the aggressive proliferation of FRO on thyroid gland with dose dependent. In case of 60 J/ cm2 of energy density, the necrotic bodies were found in a center of the thyroid. The phosphorylation of HIF-1α and Akt was detected in the thyroid gland, which explained the survival signaling of anaplastic cancer cell was turned on the thyroid gland. Furthermore, TGF-β1 expression was decreased after irradiation. In this study, we demonstrated that insufficient energy density irradiation occurred the decreasing of TGF-β1 which corresponding to the phosphorylation of Akt/ HIF-1α. This aggressive proliferation resulted to the hypoxic condition of tissue for angiogenesis. We suggest that LLLT may influence to cancer aggressiveness associated with a decrease in TGF-β1 and increase in Akt/HIF-1α.

  6. Metabolic Reprogramming in Thyroid Carcinoma

    PubMed Central

    Coelho, Raquel Guimaraes; Fortunato, Rodrigo S.; Carvalho, Denise P.

    2018-01-01

    Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer. PMID:29629339

  7. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  8. Downregulation of Notch-regulated Ankyrin Repeat Protein Exerts Antitumor Activities against Growth of Thyroid Cancer.

    PubMed

    Chu, Bing-Feng; Qin, Yi-Yu; Zhang, Sheng-Lai; Quan, Zhi-Wei; Zhang, Ming-Di; Bi, Jian-Wei

    2016-07-05

    The Notch-regulated ankyrin repeat protein (NRARP) is recently found to promote proliferation of breast cancer cells. The role of NRARP in carcinogenesis deserves extensive investigations. This study attempted to investigate the expression of NRARP in thyroid cancer tissues and assess the influence of NRARP on cell proliferation, apoptosis, cell cycle, and invasion in thyroid cancer. Thirty-four cases with thyroid cancer were collected from the Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine between 2011 and 2012. Immunohistochemistry was used to detect the level of NRARP in cancer tissues. Lentivirus carrying NRARP-shRNA (Lenti-NRARP-shRNA) was applied to down-regulate NRARP expression. Cell viability was tested after treatment with Lenti-NRARP-shRNA using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis and cell cycle distribution were determined by flow cytometry. Cell invasion was tested using Transwell invasion assay. In addition, expressions of several cell cycle-associated and apoptosis-associated proteins were examined using Western blotting after transfection. Student's t-test, one-way analysis of variance (ANOVA), or Kaplan-Meier were used to analyze the differences between two group or three groups. NRARP was highly expressed in thyroid cancer tissues. Lenti-NRARP-shRNA showed significantly inhibitory activities against cell growth at a multiplicity of infection of 10 or higher (P < 0.05). Lenti-NRARP-shRNA-induced G1 arrest (BHT101: 72.57% ± 5.32%; 8305C: 75.45% ± 5.26%) by promoting p21 expression, induced apoptosis by promoting bax expression and suppressing bcl-2 expression, and inhibited cell invasion by suppressing matrix metalloproteinase-9 expression. Downregulation of NRARP expression exerts significant antitumor activities against cell growth and invasion of thyroid cancer, that suggests a potential role of NRARP in thyroid cancer targeted therapy.

  9. Thyroid Hormone Induces Apoptosis in Primary Cell Cultures of Tadpole Intestine: Cell Type Specificity and Effects of Extracellular Matrix

    PubMed Central

    Su, Yuan; Shi, Yufang; Stolow, Melissa A.; Shi, Yun-Bo

    1997-01-01

    Thyroid hormone (T3 or 3,5,3′-triiodothyronine) plays a causative role during amphibian metamorphosis. To investigate how T3 induces some cells to die and others to proliferate and differentiate during this process, we have chosen the model system of intestinal remodeling, which involves apoptotic degeneration of larval epithelial cells and proliferation and differentiation of other cells, such as the fibroblasts and adult epithelial cells, to form the adult intestine. We have established in vitro culture conditions for intestinal epithelial cells and fibroblasts. With this system, we show that T3 can enhance the proliferation of both cell types. However, T3 also concurrently induces larval epithelial apoptosis, which can be inhibited by the extracellular matrix (ECM). Our studies with known inhibitors of mammalian cell death reveal both similarities and differences between amphibian and mammalian cell death. These, together with gene expression analysis, reveal that T3 appears to simultaneously induce different pathways that lead to specific gene regulation, proliferation, and apoptotic degeneration of the epithelial cells. Thus, our data provide an important molecular and cellular basis for the differential responses of different cell types to the endogenous T3 during metamorphosis and support a role of ECM during frog metamorphosis. PMID:9396758

  10. TT-1, an analog of melittin, triggers apoptosis in human thyroid cancer TT cells via regulating caspase, Bcl-2 and Bax

    PubMed Central

    Wan, Lanlan; Zhang, Daqi; Zhang, Jinnan; Ren, Liqun

    2018-01-01

    Melittin is a 26 amino acid residue antimicrobial peptide with known antitumor activity. In the present study, a novel peptide TT-1, derived from melittin and contained only 11 amino acids, was designed, and its antitumor effect was investigated. The present study is aimed to elucidate the effects and relative mechanisms of TT-1 on a human thyroid cancer cell line (TT) in vitro and in vivo. Cell viability assays, Annexin V/propidium iodide assays, western blotting and quantitative reverse transcription polymerase chain reaction were performed. Furthermore, a tumor-xenograft model was established to investigate the apoptotic mechanisms of TT-1 on TT cells. The results obtained indicated that TT-1 was able to suppress the proliferation of TT cells and exhibited low cytotoxicity to normal thyroid cells in vitro. The apoptotic rates of TT cells were also increased following TT-1 treatment. Additionally, TT-1 stimulated caspase-3, caspase-9 and Bax, and inhibited B-cell lymphoma 2 mRNA and protein expression. Finally, it was also demonstrated that TT-1 is able to markedly suppress tumor growth in a TT-bearing nude mouse model. In summary, TT-1 may inhibit the proliferation of TT cells by inducing apoptosis in vitro and in vivo, indicating that TT-1 may be a potential candidate for the treatment of thyroid cancer. PMID:29387245

  11. Unraveling the different toxic effect of flufenoxuron on the thyroid endocrine system of the Mongolia racerunner (Eremias Argus) at different stages.

    PubMed

    Chang, Jing; Li, Wei; Guo, Baoyuan; Xu, Peng; Wang, Yinghuan; Li, Jianzhong; Wang, Huili

    2017-04-01

    Flufenoxuron is a widely used pesticide to inhibit the synthesis of chitin during insect development and its effect on the growth of lizards has been little addressed. The hypothalamus-pituitary-thyroid (HPT) axis plays an important role on the development of lizards. In this study, the lizards at different development stages (proliferation and resting stages) were exposed to flufenoxuron for 21 days. The plasma thyroid hormone levels, thyroid gland histopathology and expression profiles of thyroid hormone receptors (trα, trβ), deiodinases (dio1, dio2), and transthyretin (ttr) genes were measured to evaluated the toxic effect of flufenoxuron on the HPT axis at different stages. The flufenoxuron exposure showed more seriously effect on the triiodothyronine (T3) level at resting phase than that at proliferation stage. The follicle epithelium cell height in the thyroid was only significantly increased when the exposed male lizards were at proliferation stage. The alteration of HPT axis-related genes expression was gender and tissue dependent after flufenoxuron treatment. The lizards exposed to flufenoxuron showed that the trα, trβ, dio1, dio2, and ttr genes in the female liver were more sensitive at the proliferation stage than that at the resting stage. In the male brain, the expressions of trα, trβ, dio1, and dio2 gene were significant decreased at proliferation stage while significant increased at resting stage after flufenoxuron exposure. Therefore, the thyroid endocrine system of lizards could be affected by the flufenoxuron exposure and the different development stage should also be considered when study the toxic effect of contaminants on the lizards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thyroid hormone participates in the regulation of neural stem cells and oligodendrocyte precursor cells in the central nervous system of adult rat.

    PubMed

    Fernandez, M; Pirondi, S; Manservigi, M; Giardino, L; Calzà, L

    2004-10-01

    Oligodendrocyte development and myelination are under thyroid hormone control. In this study we analysed the effects of chronic manipulation of thyroid status on the expression of a wide spectrum of oligodendrocyte precursor cells (OPCs) markers and myelin basic protein (MBP) in the subventricular zone (SVZ), olfactory bulb and optic nerve, and on neural stem cell (NSC) lineage in adult rats. Hypo- and hyperthyroidism were induced in male rats, by propyl-thio-uracil (PTU) and L-thyroxin (T4) treatment, respectively. Hypothyroidism increased and hyperthyroidism downregulated proliferation in the SVZ and olfactory bulb (Ki67 immunohistochemistry and Western blotting, bromodeoxyuridine uptake). Platelet-derived growth factor receptor alpha (PDGFalpha-R) and MBP mRNA levels decreased in the optic nerve of hypothyroid rats; the same also occurred at the level of MBP protein. Hyperthyroidism slightly upregulates selected markers such as NG2 in the olfactory bulb. The lineage of cells derived from primary cultures of NSC prepared from the forebrain of adult hypo- and hyperthyroid also differs from those derived from control animals. Although no difference of in vitro proliferation of NSCs was observed in the presence of epidermal growth factor, maturation of oligodendrocytes (defined by process number and length) was enhanced in hyperthyroidism, suggesting a more mature state than in control animals. This difference was even greater when compared with the hypothyroid group, the morphology of which suggested a delay in differentiation. These results indicate that thyroid hormone affects NSC and OPC proliferation and maturation also in adulthood.

  13. The BRAF{sup T1799A} mutation confers sensitivity of thyroid cancer cells to the BRAF{sup V600E} inhibitor PLX4032 (RG7204)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Joanna; Liu, Ruixin; Xing, Mingzhao

    2011-01-28

    Research highlights: {yields} Exciting therapeutic potential has been recently reported for the BRAF{sup V600E} inhibitor PLX4032 in melanoma. {yields} We tested the effects of PLX4032 on the growth of thyroid cancer cells which often harbor the BRAF{sup V600E} mutation. {yields} We observed a potent BRAF{sup V600E}-dependent inhibition of thyroid cancer cells by PLX4032. {yields} We thus demonstrated an important therapeutic potential of PLX4032 for thyroid cancer. -- Abstract: Aberrant signaling of the Ras-Raf-MEK-ERK (MAP kinase) pathway driven by the mutant kinase BRAF{sup V600E}, as a result of the BRAF{sup T1799A} mutation, plays a fundamental role in thyroid tumorigenesis. This studymore » investigated the therapeutic potential of a BRAF{sup V600E}-selective inhibitor, PLX4032 (RG7204), for thyroid cancer by examining its effects on the MAP kinase signaling and proliferation of 10 thyroid cancer cell lines with wild-type BRAF or BRAF{sup T1799A} mutation. We found that PLX4032 could effectively inhibit the MAP kinase signaling, as reflected by the suppression of ERK phosphorylation, in cells harboring the BRAF{sup T1799A} mutation. PLX4032 also showed a potent and BRAF mutation-selective inhibition of cell proliferation in a concentration-dependent manner. PLX4032 displayed low IC{sub 50} values (0.115-1.156 {mu}M) in BRAF{sup V600E} mutant cells, in contrast with wild-type BRAF cells that showed resistance to the inhibitor with high IC{sub 50} values (56.674-1349.788 {mu}M). Interestingly, cells with Ras mutations were also sensitive to PLX4032, albeit moderately. Thus, this study has confirmed that the BRAF{sup T1799A} mutation confers cancer cells sensitivity to PLX4032 and demonstrated its specific potential as an effective and BRAF{sup T1799A} mutation-selective therapeutic agent for thyroid cancer.« less

  14. Differential action of glycoprotein hormones: significance in cancer progression.

    PubMed

    Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J

    2014-02-01

    Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

  15. Implication from thyroid function decreasing during chemotherapy in breast cancer patients: chemosensitization role of triiodothyronine

    PubMed Central

    2013-01-01

    Background Thyroid hormones have been shown to regulate breast cancer cells growth, the absence or reduction of thyroid hormones in cells could provoke a proliferation arrest in G0-G1 or weak mitochondrial activity, which makes cells insensitive to therapies for cancers through transforming into low metabolism status. This biological phenomenon may help explain why treatment efficacy and prognosis vary among breast cancer patients having hypothyroid, hyperthyroid and normal function. Nevertheless, the abnormal thyroid function in breast cancer patients has been considered being mainly caused by thyroid diseases, few studied influence of chemotherapy on thyroid function and whether its alteration during chemotherapy can influence the respose to chemotherapy is still unclear. So, we aimed to find the alterations of thyroid function and non-thyroidal illness syndrome (NTIS) prevalence druing chemotherapy in breast cancer patients, and investigate the influence of thyroid hormones on chemotherapeutic efficacy. Methods Thyroid hormones and NTIS prevalence at initial diagnosis and during chemotherapy were analyzed in 685 breast diseases patients (369 breast cancer, 316 breast benign lesions). The influence of thyroid hormones on chemotherapeutic efficacy was evaluated by chemosensitization test, to compare chemotherapeutic efficacy between breast cancer cells with chemotherapeutics plus triiodothyronine (T3) and chemotherapeutics only. Results In breast cancer, NTIS prevalence at the initial diagnosis was higher and increased during chemotherapy, but declined before the next chemotherapeutic course. Thyroid hormones decreased signigicantly during chemotherapy. T3 can enhance the chemosensitivity of MCF-7 to 5-Fu and taxol, with progression from G0-G1 phase to S phase. The similar chemosensitization role of T3 were found in MDA-MB-231. We compared chemotherapeutic efficacy among groups with different usage modes of T3, finding pretreatment with lower dose of T3, using higher dose of T3 together with 5-Fu or during chemotherapy with 5-Fu were all available to achieve chemosensitization, but pretreatment with lower dose of T3 until the end of chemotherapy may be a safer and more efficient therapy. Conclusions Taken together, thyroid hormones decreasing during chemotherapy was found in lots of breast cancer patients. On the other hand, thyroid hormones can enhance the chemotherapeutic efficacy through gatherring tumor cells in actively proliferating stage, which may provide a new adjuvant therapy for breast cancer in furture, especially for those have hypothyroidism during chemotherapy. PMID:23829347

  16. TPA induces a block of differentiation and increases the susceptibility to neoplastic transformation of a rat thyroid epithelial cell line.

    PubMed

    Portella, G; Vitagliano, D; Li, Z; Sferratore, F; Santoro, M; Vecchio, G; Fusco, A

    1998-01-01

    The PC Cl 3 cell line is a well-characterized epithelial cell line of rat thyroid origin. This cell line retains in vitro the typical markers of thyroid differentiation: thyroglobulin (TG) synthesis and secretion, iodide uptake, thyroperoxidase (TPO) expression, and dependency on TSH for growth. Although the differentiated phenotype of thyroid cells has been relatively well described, the molecular mechanisms that regulate both differentiation and neoplastic transformation of thyroid cells still need to be investigated in detail. Protein kinase C (PKC), the target of tetradecanoylphorbol acetate (TPA), regulates growth and differentiation of several cell types. Here we show that treatment of PC Cl 3 cells with TPA induces an acute block of thyroid differentiation. TPA-treated PC Cl 3 cells are unable to trap iodide and the expression levels of thyroglobulin, TSH receptor, and TPO genes are drastically reduced by TPA treatment. This differentiation block is not caused by a reduced expression of one of the master genes of thyroid differentiation, the thyroid transcription factor 1 (TTF-1). TPA-treated PC Cl 3 cells display an increased growth rate indicating that, in addition to the differentiation block, TPA also significantly affects the growth regulation of thyroid cells. Finally, TPA treatment dramatically increases the number of transformation foci induced in PC Cl 3 cells by retroviruses carrying v-Ki-ras, v-Ha-ras, and v-mos oncogenes. These findings support the notion that the PKC pathway can influence proliferation, differentiation, and neoplastic transformation of thyroid cells in culture.

  17. Long noncoding RNA AB074169 inhibits cell proliferation via modulation of KHSRP-mediated p21 expression in papillary thyroid carcinoma.

    PubMed

    Gou, Qiheng; Gao, Linbo; Nie, Xinwen; Pu, Wenchen; Zhu, Jingqiang; Wang, Yichao; Liu, Xuesha; Tan, Shuangyan; Zhou, Jian-Kang; Gong, Yanqiu; He, Juan; Wu, Ke; Xie, Yuxin; Zhao, Wanjun; Dai, Lunzhi; Liu, Lunxu; Xiang, Rong; Wei, Yu-Quan; Zhang, Lin; Peng, Yong

    2018-05-07

    Long noncoding RNAs (lncRNAs) are emerging as a novel class of regulators in gene expression associated with tumorigenesis. However, the role of lncRNAs in papillary thyroid carcinoma (PTC) is poorly understood. Here we conducted global lncRNA profiling and identified lncRNA AB074169 (lncAB) as significantly downregulated in PTC. Decreased expression of lncAB in PTC was caused by CpG hypermethylation within its gene promoter. Functional studies showed that lncAB overexpression led to cell cycle arrest and tumor growth inhibition in vitro and in vivo, whereas lncAB knockdown promoted cell proliferation. Mechanistic analyses revealed that lncAB bound KH-type splicing regulatory protein (KHSRP) and also decreased expression of KHSRP, thus increasing CDKN1a (p21) expression and decreasing CDK2 expression to repress cell proliferation. Taken together, these findings demonstrate that lncAB functions as a tumor suppressor during PTC tumorigenesis. Copyright ©2018, American Association for Cancer Research.

  18. Neurobehavioral and Thyroid Evaluations of Rats Developmentally Exposed to Tris(1,3-dichloro-2-propyl)phosphate(TDCPP)

    EPA Science Inventory

    TDCPP is an organophosphate flame retardant with widespread usage and documented human exposures through food, inhalation, dust ingestion, and breast milk. Findings of decreased neural proliferation in cell culture and abnormal development and altered thyroid hormones in larval z...

  19. The transcriptional repressor DREAM is involved in thyroid gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Andrea, Barbara; Di Palma, Tina; Mascia, Anna

    2005-04-15

    Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds tomore » DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca{sup 2+} interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function.« less

  20. Nucleophosmin is overexpressed in thyroid tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed inmore » tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.« less

  1. Culture promotes transfer of thyroid epithelial cell hyperplasia and proliferation by reducing regulatory T cell numbers.

    PubMed

    Kayes, Timothy D; Braley-Mullen, Helen

    2013-01-01

    IFN-γ(-/-) NOD.H-2h4 mice develop a spontaneous autoimmune thyroid disease, thyroid epithelial cell hyperplasia and proliferation (TEC H/P) when given NaI in their water for 7+ mo. TEC H/P can be transferred to IFN-γ(-/-) SCID mice by splenocytes from mice with severe (4-5+) disease, and transfer of TEC H/P is improved when splenocytes are cultured prior to transfer. Older (9+ mo) IFN-γ(-/-) NOD.H-2h4 mice have elevated numbers of FoxP3(+) T reg cells, up to 2-fold greater than younger (2 mo) mice. During culture, the number of T reg decreases and this allows the improved transfer of TEC H/P. Co-culture with IL-2 prior to transfer prevents the decrease of T reg and improves their in vitro suppressive ability resulting in reduced TEC H/P in recipient mice. Therefore, culturing splenocytes improves transfer of TEC H/P by reducing the number of T reg and IL-2 inhibits transfer by preserving T reg number and function. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Nancy L., E-mail: nlcho@partners.org; Lin, Chi-Iou; Du, Jinyan

    Highlights: Black-Right-Pointing-Pointer Kinome profiling is a novel technique for identifying activated kinases in human cancers. Black-Right-Pointing-Pointer Src activity is increased in invasive thyroid cancers. Black-Right-Pointing-Pointer Inhibition of Src activity decreased proliferation and invasion in vitro. Black-Right-Pointing-Pointer Further investigation of Src targeted therapies in thyroid cancer is warranted. -- Abstract: Background: Novel therapies are needed for the treatment of invasive thyroid cancers. Aberrant activation of tyrosine kinases plays an important role in thyroid oncogenesis. Because current targeted therapies are biased toward a small subset of tyrosine kinases, we conducted a study to reveal novel therapeutic targets for thyroid cancer using amore » bead-based, high-throughput system. Methods: Thyroid tumors and matched normal tissues were harvested from twenty-six patients in the operating room. Protein lysates were analyzed using the Luminex immunosandwich, a bead-based kinase phosphorylation assay. Data was analyzed using GenePattern 3.0 software and clustered according to histology, demographic factors, and tumor status regarding capsular invasion, size, lymphovascular invasion, and extrathyroidal extension. Survival and invasion assays were performed to determine the effect of Src inhibition in papillary thyroid cancer (PTC) cells. Results: Tyrosine kinome profiling demonstrated upregulation of nine tyrosine kinases in tumors relative to matched normal thyroid tissue: EGFR, PTK6, BTK, HCK, ABL1, TNK1, GRB2, ERK, and SRC. Supervised clustering of well-differentiated tumors by histology, gender, age, or size did not reveal significant differences in tyrosine kinase activity. However, supervised clustering by the presence of invasive disease showed increased Src activity in invasive tumors relative to non-invasive tumors (60% v. 0%, p < 0.05). In vitro, we found that Src inhibition in PTC cells decreased cell invasion and proliferation. Conclusion: Global kinome analysis enables the discovery of novel targets for thyroid cancer therapy. Further investigation of Src targeted therapy for advanced thyroid cancer is warranted.« less

  3. Thyrotropin receptor and membrane interactions in FRTL-5 thyroid cell strain in microgravity.

    PubMed

    Albi, E; Ambesi-Impiombato, F S; Peverini, M; Damaskopoulou, E; Fontanini, E; Lazzarini, R; Curcio, F; Perrella, G

    2011-01-01

    The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264 km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.

  4. Thyrotropin Receptor and Membrane Interactions in FRTL-5 Thyroid Cell Strain in Microgravity

    NASA Astrophysics Data System (ADS)

    Albi, E.; Ambesi-Impiombato, F. S.; Peverini, M.; Damaskopoulou, E.; Fontanini, E.; Lazzarini, R.; Curcio, F.; Perrella, G.

    2011-01-01

    The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.

  5. Up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis in human papillary thyroid cancer cells.

    PubMed

    Mo, Xiao-Mei; Li, Li; Zhu, Ping; Dai, Yu-Jie; Zhao, Ting-Ting; Liao, Ling-Yao; Chen, George G; Liu, Zhi-Min

    2016-08-15

    17β-estradiol (E2) has been suggested to play a role in the development and progression of papillary thyroid cancer. Heat shock protein 27 (Hsp27) is a member of the Hsp family that is responsible for cell survival under stressful conditions. Previous studies have shown that the 5'-promoter region of Hsp27 gene contains a specificity protein-1 (Spl) and estrogen response element half-site (ERE-half), which contributes to Hsp27 induction by E2 in breast cancer cells. However, it is unclear whether Hsp27 can be up-regulated by E2 and which estrogen receptor (ER) isoform and tethered transcription factor are involved in this regulation in papillary thyroid cancer cells. In the present study, we demonstrated that Hsp27 can be effectively up-regulated by E2 at mRNA and protein levels in human K1 and BCPAP papillary thyroid cancer cells which have more than two times higher level of ERα than that of ERβ. The up-regulation of Hsp27 by E2 is mediated by ERα/Sp1 and ERβ has repressive effect on this ERα/Sp1-mediated up-regulation of Hsp27. Moreover, we showed that the up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis through interaction with procaspase-3. Targeting this pathway may be a potential strategy for therapy of papillary thyroid cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. A branching morphogenesis program governs embryonic growth of the thyroid gland

    PubMed Central

    Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L.; Fagman, Henrik

    2018-01-01

    ABSTRACT The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1+ cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. PMID:29361553

  7. A branching morphogenesis program governs embryonic growth of the thyroid gland.

    PubMed

    Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L; Fagman, Henrik; Nilsson, Mikael

    2018-01-25

    The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1 + cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. © 2018. Published by The Company of Biologists Ltd.

  8. Influence of thyroid in nervous system growth.

    PubMed

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or are nervous cell specific, genes coding neurotropins or proteins involved in synaptic excitation. The use of new PMRS and MRI non-invasive techniques has enabled identification of metabolic and biochemical markers for alterations in the encephalon of untreated hypothyroid children. Even an excess of thyroid hormones during early nervous system development can cause permanent effects. Hyperthyroidism in fact initially induces accelerated maturation process including cell migration and differentiation, extension of dendritic processes and synaptogenesis but a later excess of thyroid hormones causes reduction of the total number of dendritic spikes, due to early interruption of neuron proliferation. Experimental studies and clinical research have clarified not only the correlation between nervous system maturation and thyroid function during early development stages and the certain finding from this research is that both excess and deficient thyroid hormones can cause permanent anatomo-functional alterations to the nervous system.

  9. Inhibition of Tumorigenesis by the Thyroid Hormone Receptor β in Xenograft Models

    PubMed Central

    Kim, Won Gu; Zhao, Li; Kim, Dong Wook; Willingham, Mark C.

    2014-01-01

    Background: Previous studies showed a close association between several types of human cancers and somatic mutations of thyroid hormone receptor β (TRβ) and reduced expression of TRβ due to epigenetic inactivation and/or deletion of the THRB gene. These observations suggest that TRβ could act as a tumor suppressor in carcinogenesis. However, the mechanisms by which TRβ could function to inhibit tumorigenesis are less well understood. Methods: We used the human follicular thyroid cancer cell lines (FTC-133 and FTC-236 cells) to elucidate how functional expression of the THRB gene could affect tumorigenesis. We stably expressed the THRB gene in FTC cells and evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. Results: Expression of TRβ in FTC-133 cells, as compared with control FTC cells without TRβ, reduced cancer cell proliferation and impeded migration of tumor cells through inhibition of the AKT-mTOR-p70 S6K pathway. TRβ expression in FTC-133 and FTC-236 led to less tumor growth in xenograft models. Importantly, new vessel formation was significantly suppressed in tumors induced by FTC cells expressing TRβ compared with control FTC cells without TRβ. The decrease in vessel formation was mediated by the downregulation of vascular endothelial growth factor in FTC cells expressing TRβ. Conclusions: These findings indicate that TRβ acts as a tumor suppressor through downregulation of the AKT-mTOR-p70 S6K pathway and decreased vascular endothelial growth factor expression in FTC cells. The present results raise the possibility that TRβ could be considered as a potential therapeutic target for thyroid cancer. PMID:23731250

  10. Molecular pathobiology of thyroid neoplasms.

    PubMed

    Tallini, Giovanni

    2002-01-01

    Tumors of thyroid follicular cells provide a very interesting model to understand the development of human cancer. It is becoming apparent that distinct molecular events are associated with specific stages in a multistep tumorigenic process with good genotype/ phenotype correlation. For instance, mutations of the gsp and thyroid-stimulating hormone receptor genes are associated with benign hyperfunctioning thyroid nodules and adenomas while alterations of other specific genes, such as oncogenic tyrosine kinase alterations (RET/PTC, TRK) in papillary carcinoma and the newly discovered PAX8/peroxisome proliferator-activated receptor gamma rearrangement, are distinctive features of cancer. Although activating RAS mutations occur at all stages of thyroid tumorigenesis, evidence is accumulating that they may also play an important role in tumor progression, a role that is well documented for p53. Environmental factors (iodine deficiency, ionizing radiations) have been shown to play a crucial role in promoting the development of thyroid cancer, influencing both its genotypic and phenotypic features. It is possible that the follicular thyroid cell has unique ways to respond to DNA damage. Similarly to leukemia or sarcomas (and unlike most epithelial cancers), numerous specific rearrangements are being discovered in thyroid cancer suggesting preferential activation of DNA repair instead of cell death programs after environmentally induced genetic alterations.

  11. Intrinsic Regulation of Thyroid Function by Thyroglobulin

    PubMed Central

    Sellitti, Donald F.

    2014-01-01

    Background: The established paradigm for thyroglobulin (Tg) function is that of a high molecular weight precursor of the much smaller thyroid hormones, triiodothyronine (T3) and thyroxine (T4). However, speculation regarding the cause of the functional and morphologic heterogeneity of the follicles that make up the thyroid gland has given rise to the proposition that Tg is not only a precursor of thyroid hormones, but that it also functions as an important signal molecule in regulating thyroid hormone biosynthesis. Summary: Evidence supporting this alternative paradigm of Tg function, including the up- or downregulation by colloidal Tg of the transcription of Tg, iodide transporters, and enzymes employed in Tg iodination, and also the effects of Tg on the proliferation of thyroid and nonthyroid cells, is examined in the present review. Also discussed in detail are potential mechanisms of Tg signaling in follicular cells. Conclusions: Finally, we propose a mechanism, based on experimental observations of Tg effects on thyroid cell behavior, that could account for the phenomenon of follicular heterogeneity as a highly regulated cycle of increasing and decreasing colloidal Tg concentration that functions to optimize thyroid hormone production through the transcriptional activation or suppression of specific genes. PMID:24251883

  12. Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells.

    PubMed

    Bertoni, Ana Paula Santin; de Campos, Rafael Paschoal; Tsao, Marisa; Braganhol, Elizandra; Furlanetto, Tania Weber; Wink, Márcia Rosângela

    2018-02-17

    The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.

  13. Inhibition of the Growth of Papillary Thyroid Carcinoma Cells by CI-1040

    PubMed Central

    Henderson, Ying C.; Ahn, Soon-Hyun; Clayman, Gary L.

    2015-01-01

    Background Papillary thyroid carcinoma (PTC), the most common type of thyroid malignancy, usually possesses mutations, either RET/PTC rearrangement or BRAF mutation. Both mutations can activate the mitogen-activated protein kinase kinase/extracellular signal–related kinase signaling transduction pathway, which results in activation of transcription factors that regulate cellular proliferation, differentiation, and apoptosis. Objective To test the effects of CI-1040 (PD184352), a specific MEK1/2 inhibitor, on PTC cells carrying either an RET/PTC1 rearrangement or a BRAF mutation. Design The effects of CI-1040 on PTC cells were evaluated in vitro and in vivo. Main Outcome Measures The effects of CI-1040 on PTC cells were evaluated in vitro using a cell proliferation assay, cell cycle analysis, and immunoblotting. The antitumor effects of CI-1040 in vivo were evaluated in an orthotopic mouse model. Results The concentrations of CI-1040 needed to inhibit 50% cell growth were 0.052μM for PTC cells with a BRAF mutation and 1.1μM for PTC cells with the RET/PTC1 rearrangement. After 3 weeks of oral administration of CI-1040 (300 mg/kg/d) to mice with orthotopic tumor implants of PTC cells, the mean tumor volume of implants bearing the RET/PTC1 rearrangement (n=5) was reduced 47.5% compared with untreated mice (from 701.9 to 368.5 mm3), and the mean volume of implants with a BRAF mutation (n=8) was reduced 31.3% (from 297.3 to 204.2 mm3). Conclusions CI-1040 inhibits PTC cell growth in vitro and in vivo. Because RET/PTC rearrangements are unique to thyroid carcinomas and a high percentage of PTCs possess either mutation, these findings support the clinical evaluation of CI-1040 for patients with PTC. PMID:19380355

  14. Thyroid Dysfunction Associated With Follicular Cell Steatosis in Obese Male Mice and Humans

    PubMed Central

    Lee, Min Hee; Lee, Jung Uee; Joung, Kyong Hye; Kim, Yong Kyung; Ryu, Min Jeong; Lee, Seong Eun; Kim, Soung Jung; Chung, Hyo Kyun; Choi, Min Jeong; Chang, Joon Young; Lee, Sang-Hee; Kweon, Gi Ryang; Kim, Hyun Jin; Kim, Koon Soon; Kim, Seong-Min; Jo, Young Suk; Park, Jeongwon; Cheng, Sheue-Yann

    2015-01-01

    Adult thyroid dysfunction is a common endocrine disorder associated with an increased risk of cardiovascular disease and mortality. A recent epidemiologic study revealed a link between obesity and increased prevalence of hypothyroidism. It is conceivable that excessive adiposity in obesity might lead to expansion of the interfollicular adipose (IFA) depot or steatosis in thyroid follicular cells (thyroid steatosis, TS). In this study, we investigated the morphological and functional changes in thyroid glands of obese humans and animal models, diet-induced obese (DIO), ob/ob, and db/db mice. Expanded IFA depot and TS were observed in obese patients. Furthermore, DIO mice showed increased expression of lipogenesis-regulation genes, such as sterol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), acetyl coenzyme A carboxylase (ACC), and fatty acid synthetase (FASN) in the thyroid gland. Steatosis and ultrastructural changes, including distension of the endoplasmic reticulum (ER) and mitochondrial distortion in thyroid follicular cells, were uniformly observed in DIO mice and genetically obese mouse models, ob/ob and db/db mice. Obese mice displayed a variable degree of primary thyroid hypofunction, which was not corrected by PPARγ agonist administration. We propose that systemically increased adiposity is associated with characteristic IFA depots and TS and may cause or influence the development of primary thyroid failure. PMID:25555091

  15. Functional insulin receptors are overexpressed in thyroid tumors: is this an early event in thyroid tumorigenesis?

    PubMed

    Frittitta, L; Sciacca, L; Catalfamo, R; Ippolito, A; Gangemi, P; Pezzino, V; Filetti, S; Vigneri, R

    1999-01-15

    Insulin receptor (IR), a member of the receptor tyrosine kinase family, is expressed in normal thyroid cells and affects thyroid cell proliferation and differentiation. The authors measured IR content in benign and malignant thyroid tumors by three independent methods: a specific radioimmunoassay, 125I-insulin binding studies, and immunohistochemistry. The results obtained were compared with the IR content in paired, adjacent, normal thyroid tissue. To assess IR function in thyroid carcinoma cells, glucose uptake responsiveness to insulin was also studied in a human transformed thyroid cell line (B-CPAP) and in follicular carcinoma cells in primary culture. In 9 toxic adenomas, the average IR content was similar to that observed in the 9 paired normal thyroid tissue specimens from the same patients (2.2+/-0.3 vs. 2.1+/-0.3). In 13 benign nonfunctioning, or "cold," adenomas, the average IR content was significantly higher (P < 0.001) than in paired normal tissue specimens (4.3+/-0.5 vs. 1.8+/-0.1). In 12 papillary and 10 follicular carcinomas, IR content was significantly higher (P < 0.001) than in the adjacent normal thyroid tissue (4.0+/-0.4 vs. 1.6+/-0.2 and 5.6+/-1.0 vs. 1.8+/-0.2, respectively). The finding of a higher IR content in benign "cold" adenomas and in thyroid carcinomas was confirmed by both binding and immunostaining studies. The current studies indicate that 1) IR content is elevated in most follicular and papillary differentiated thyroid carcinomas, and 2) IR content is also elevated in most benign follicular adenomas ("cold" nodules) but not in highly differentiated, hyperfunctioning follicular adenomas ("hot" nodules), which very rarely become malignant. This observation suggests that increased IR expression is not restricted to the thyroid malignant phenotype but is already present in the premalignant "cold" adenomas. It may contribute, therefore, to thyroid tumorigenesis and/or represent an early event that gives a selective growth advantage to transformed thyroid cells.

  16. Estrogen-Related Receptor Alpha Modulates Lactate Dehydrogenase Activity in Thyroid Tumors

    PubMed Central

    Mirebeau-Prunier, Delphine; Le Pennec, Soazig; Jacques, Caroline; Fontaine, Jean-Fred; Gueguen, Naig; Boutet-Bouzamondo, Nathalie; Donnart, Audrey; Malthièry, Yves; Savagner, Frédérique

    2013-01-01

    Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis. PMID:23516535

  17. TC-1 Overexpression Promotes Cell Proliferation in Human Non-Small Cell Lung Cancer that Can Be Inhibited by PD173074

    PubMed Central

    Zhang, Na; Bai, Guangzhen; Zhong, Daixing; Su, Kai; Liu, Boya; Li, Xiaofei; Wang, Yunjie; Wang, Xiaoping

    2014-01-01

    Thyroid cancer-1 (TC-1), a natively disordered protein, is widely expressed in vertebrates and overexpressed in many kinds of tumors. However, its exact role and regulation mechanism in human non-small cell lung cancer (NSCLC) are still unclear. In the present study, we found that TC-1 is highly expressed in NSCLC and that its aberrant expression is strongly associated with NSCLC cell proliferation. Exogenous TC-1 overexpression promotes cell proliferation, accelerates the cell G1-to-S-phase transition, and reduces apoptosis in NSCLC. The knockdown of TC-1, however, inhibits NSCLC cell proliferation, cycle transition, and apoptosis resistance. Furthermore, we also demonstrated that PD173074, which functions as an inhibitor of the TC-1 in NSCLC, decreases the expression of TC-1 and inhibits TC-1 overexpression mediated cell proliferation in vitro and in vivo. Nevertheless, the inhibition function of PD173074 on NSCLC cell proliferation was eliminated in cells with TC-1 knockdown. These results suggest that PD173074 plays a significant role in TC-1 overexpression mediated NSCLC cell proliferation and may be a potential intervention target for the prevention of cell proliferation in NSCLC. PMID:24941347

  18. Hashimoto thyroiditis: a century later.

    PubMed

    Ahmed, Rania; Al-Shaikh, Safa; Akhtar, Mohammed

    2012-05-01

    More than a century has passed since the first description of Hashimoto thyroiditis (HT) as a clinicopathologic entity. HT is an autoimmune disease in which a breakdown of immune tolerance is caused by interplay of a variety of immunologic, genetic, and environmental factors. Thyrocyte injury resulting from environmental factors results in expression of new or hidden epitopes that leads to proliferation of autoreactive T and B cells. Infiltration of thyroid by these cells results in HT. In addition to the usual type of HT, several variants such as the fibrous type and Riedal thyroiditis are also recognized. The most recently recognized variant is immunoglobulin G4(+) HT, which may occur as isolated thyroid limited disease or as part of a generalized Ig4-related sclerosing disease. The relationship between HT and Riedel thyroiditis remains unclear; however, recent evidence seems to suggest that it may also be part of the spectrum of Ig4-related sclerosing disease. HT is frequently associated with papillary thyroid carcinoma and may indeed be a risk factor for developing this type of cancer. The relationship between thyroid lymphoma and HT on the other hand appears well established.

  19. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yanfei; Qin, Huadong; Cui, Yunfu, E-mail: yfma77@126.com

    Highlights: •MiR-34a is up- and GAS1 is down-regulated in papillary thyroid carcinoma. •GAS1 is a direct target for miR-34a. •MiR-34a promotes PTC cells proliferation and inhibits apoptosis through PI3K/Akt/Bad pathway. -- Abstract: MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors.more » However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.« less

  20. Excess thyroid hormone inhibits embryonic neural stem/progenitor cells proliferation and maintenance through STAT3 signalling pathway.

    PubMed

    Chen, Chunhai; Zhou, Zhou; Zhong, Min; Li, Maoquan; Yang, Xuesen; Zhang, Yanwen; Wang, Yuan; Wei, Aimin; Qu, Mingyue; Zhang, Lei; Xu, Shangcheng; Chen, Shude; Yu, Zhengping

    2011-07-01

    Hyperthyroidism is prevalent during pregnancy, but little is known about the effects of excess thyroid hormone on the development of embryonic neural stem/progenitor cells (NSCs), and the mechanisms underlying these effects. Previous studies indicate that STAT3 plays a crucial role in determining NSC fate during neurodevelopment. In this study, we investigated the effects of a supraphysiological dose of 3,5,3'-L-triiodothyronine (T3) on the proliferation and maintenance of NSCs derived from embryonic day 13.5 mouse neocortex, and the involvement of STAT3 in this process. Our results suggest that excess T3 treatment inhibits NSC proliferation and maintenance. T3 decreased tyrosine phosphorylation of JAK1, JAK2 and STAT3, and subsequently inhibited STAT3-DNA binding activity. Furthermore, proliferation and maintenance of NSCs were decreased by inhibitors of JAKs and STAT3, indicating that the STAT3 signalling pathway is involved in the process of NSC proliferation and maintenance. Taken together, these results suggest that the STAT3 signalling pathway is involved in the process of T3-induced inhibition of embryonic NSC proliferation and maintenance. These findings provide data for understanding the effects of hyperthyroidism during pregnancy on fetal brain development, and the mechanisms underlying these effects.

  1. Squamous cell carcinoma of the lung with highly proliferating fibromatosis-like stroma: a rare phenomenon.

    PubMed

    Tajima, Shogo; Takanashi, Yusuke; Koda, Kenji

    2015-01-01

    Few cases of carcinoma with exuberant stromal proliferation have been documented, apart from scirrhous carcinoma. To the best of our knowledge, previous cases of carcinoma exhibiting exuberant stromal proliferation have exclusively been reported in the thyroid gland, specifically as papillary carcinoma. The exuberant stromal proliferation has been recognized to be similar to either fibromatosis or nodular fasciitis. Herein, we report a case of a 74-year-old Japanese man whose tumor in the upper lobe of his right lung displayed highly proliferating stroma with dispersed, poorly differentiated squamous cell carcinoma nests. The stromal spindle cells (fibroblasts/myofibroblasts) had similar molecular profiles to those typically observed in fibromatosis rather than nodular fasciitis, resulting in the designation of "fibromatosis-like" stroma. The presence of carcinoma cells, along with stromal cells, expressing TGF-β in this case likely fostered continuous stromal proliferation, presumably in conjunction with the unique microenvironment in which the carcinoma cells were present.

  2. Thyroid Hormone Acts Locally to Increase Neurogenesis, Neuronal Differentiation, and Dendritic Arbor Elaboration in the Tadpole Visual System

    PubMed Central

    Thompson, Christopher K.

    2016-01-01

    Thyroid hormone (TH) regulates many cellular events underlying perinatal brain development in vertebrates. Whether and how TH regulates brain development when neural circuits are first forming is less clear. Furthermore, although the molecular mechanisms that impose spatiotemporal constraints on TH action in the brain have been described, the effects of local TH signaling are poorly understood. We determined the effects of manipulating TH signaling on development of the optic tectum in stage 46–49 Xenopus laevis tadpoles. Global TH treatment caused large-scale morphological effects in tadpoles, including changes in brain morphology and increased tectal cell proliferation. Either increasing or decreasing endogenous TH signaling in tectum, by combining targeted DIO3 knockdown and methimazole, led to corresponding changes in tectal cell proliferation. Local increases in TH, accomplished by injecting suspensions of tri-iodothyronine (T3) in coconut oil into the midbrain ventricle or into the eye, selectively increased tectal or retinal cell proliferation, respectively. In vivo time-lapse imaging demonstrated that local TH first increased tectal progenitor cell proliferation, expanding the progenitor pool, and subsequently increased neuronal differentiation. Local T3 also dramatically increased dendritic arbor growth in neurons that had already reached a growth plateau. The time-lapse data indicate that the same cells are differentially sensitive to T3 at different time points. Finally, TH increased expression of genes pertaining to proliferation and neuronal differentiation. These experiments indicate that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting cell proliferation and differentiation and by acting on neurons to increase dendritic arbor elaboration. SIGNIFICANCE STATEMENT Thyroid hormone (TH) is a critical regulator of perinatal brain development in vertebrates. Abnormal TH signaling in early pregnancy is associated with significant cognitive deficits in humans; however, it is difficult to probe the function of TH in early brain development in mammals because of the inaccessibility of the fetal brain in the uterine environment and the challenge of disambiguating maternal versus fetal contributions of TH. The external development of tadpoles allows manipulation and direct observation of the molecular and cellular mechanisms underlying TH's effects on brain development in ways not possible in mammals. We find that endogenous TH locally regulates neurogenesis at developmental stages relevant to circuit assembly by affecting neural progenitor cell proliferation and differentiation and by acting on neurons to enhance dendritic arbor elaboration. PMID:27707971

  3. My approach to oncocytic tumours of the thyroid

    PubMed Central

    Asa, S L

    2004-01-01

    The traditional approach to oncocytic thyroid lesions classified these as a separate entity, and applied criteria that are somewhat similar to those used for follicular lesions of the thyroid. In general, the guidelines to distinguish hyperplasia from neoplasia, and benign from malignant were crude and unsubstantiated by scientific evidence. In fact, there is no basis to separate oncocytic lesions from other classifications of thyroid pathology. The factors that result in mitochondrial accumulation are largely unrelated to the genetic events that result in proliferation and neoplastic transformation of thyroid follicular epithelial cells. The concept of classifying oncocytic lesions, including follicular variant papillary carcinomas, based on nuclear morphology, immunohistochemical profiles, and molecular markers may pave the way for a better understanding of the biology of oncocytic lesions of the thyroid. PMID:14990587

  4. Triiodothyronine promotes the proliferation of epicardial progenitor cells through the MAPK/ERK pathway.

    PubMed

    Deng, Song-Bai; Jing, Xiao-Dong; Wei, Xiao-Ming; Du, Jian-Lin; Liu, Ya-Jie; Qin, Qin; She, Qiang

    2017-04-29

    Thyroid hormone has important functions in the development and physiological function of the heart. The aim of this study was to determine whether 3,5,3'-Triiodothyronine (T3) can promote the proliferation of epicardial progenitor cells (EPCs) and to investigate the potential underlying mechanism. Our results showed that T3 significantly promoted the proliferation of EPCs in a concentration- and time-dependent manner. The thyroid hormone nuclear receptor inhibitor bisphenol A (100 μmol/L) did not affect T3's ability to induce proliferation. Further studies showed that the mRNA expression levels of mitogen-activated protein kinase 1 (MAPK1), MAPK3, and Ki67 in EPCs in the T3 group (10 nmol/L) increased 2.9-, 3-, and 4.1-fold, respectively, compared with those in the control group (P < 0.05). In addition, the mRNA expression of the cell cycle protein cyclin D1 in the T3 group increased approximately 2-fold compared with the control group (P < 0.05), and there were more EPCs in the S phase of the cell cycle (20.6% vs. 12.0%, P < 0.05). The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway inhibitor U0126 (10 μmol/L) significantly inhibited the ability of T3 to promote the proliferation of EPCs and to alter cell cycle progression. This study suggested that T3 significantly promotes the proliferation of EPCs, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fine needle aspiration of secondary synovial sarcoma of the thyroid gland.

    PubMed

    Murro, Diana; Slade, Jamie Macagba; Syed, Sahr; Gattuso, Paolo

    2015-11-01

    Synovial sarcomas (SS) of the head and neck region are extremely rare and arise in only 5% of cases. We present a case of secondary SS of the thyroid originally diagnosed as medullary carcinoma on fine needle aspiration (FNA). A 41-year-old man presented with several weeks of dysphonia and a left thyroid mass. FNA of the thyroid nodule showed a cellular smear composed of loosely cohesive oval to spindle-shaped cells with irregular nuclear borders, finely granular chromatin, and inconspicuous nucleoli. The patient was diagnosed with medullary carcinoma and underwent a total thyroidectomy. Intro-operatively, the mass was found to arise from the tracheoesophageal groove with spread to the left thyroid. Microscopic examination of the thyroid tumor revealed a dense spindle cell proliferation with abundant mitoses, scant cords and nests of epithelial cells and foci of necrosis. The spindle cells were positive for bcl2 and vimentin and the epithelial cells were positive for cytokeratin 8/18 and epithelial membrane antigen (EMA). Both spindle and epithelial cells were negative for thyroglobulin, calcitonin, synaptophysin and chromogranin. Fluorescence in situ hybridization (FISH) demonstrated translocation (X;18)(p11;q11), confirming the diagnosis of SS. The patient underwent a total laryngopharyngoesophagectomy with subsequent adjuvant therapy and is currently disease free. Only 6 cases of histologically confirmed primary SS of the thyroid have been reported. To the best of our knowledge, this is the first case of FISH-confirmed secondary SS of the thyroid and also the first case of SS arising from the tracheoesophageal groove. © 2015 Wiley Periodicals, Inc.

  6. Circular RNA circZFR contributes to papillary thyroid cancer cell proliferation and invasion by sponging miR-1261 and facilitating C8orf4 expression.

    PubMed

    Wei, Hong; Pan, Lin; Tao, Deyou; Li, Rongguo

    2018-06-08

    In recent years, more and more circular RNAs (circRNAs) have been identified in multiple tissues and cells. Increasing evidences show circRNAs play important roles in human cancers. However, the role of circRNAs in papillary thyroid carcinoma (PTC) remains largely unknown. In this study, we identified a new circRNA circZFR that was significantly upregulated in PTC tissues compared to adjacent normal tissues. Furthermore, circZFR expression level was negatively correlated with clinical severity. We found that circZFR knockdown dramatically inhibited the proliferation, migration and invasion of PTC cells in vitro. Mechanistically, we found circZFR could promote C8orf4 expression via serving as a competing endogenous RNA (ceRNA) of miR-1261 in PTC cells. Rescue assays indicated that restoration of C8orf4 significantly attenuated the inhibitory effects of circZFR knockdown on PTC cell proliferation, migration and invasion. In summary, our findings demonstrated that circRNA circZFR exerted oncogenic roles via regulating miR-1261/C8orf4 axis in PTC, which suggested circZFR might be a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system.

    PubMed

    Popławski, Piotr; Wiśniewski, Jacek R; Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef; Piekiełko-Witkowska, Agnieszka

    2017-01-01

    Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3',5'-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3'-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The 'downregulated' group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes in local availability of thyroid hormones might favor a shift from a differentiated to a more proliferation-prone state of cancer tissues and cell lines.

  8. Restoration of type 1 iodothyronine deiodinase expression in renal cancer cells downregulates oncoproteins and affects key metabolic pathways as well as anti-oxidative system

    PubMed Central

    Rijntjes, Eddy; Richards, Keith; Rybicka, Beata; Köhrle, Josef

    2017-01-01

    Type 1 iodothyronine deiodinase (DIO1) contributes to deiodination of 3,5,3’,5’-tetraiodo-L-thyronine (thyroxine, T4) yielding of 3,5,3’-triiodothyronine (T3), a powerful regulator of cell differentiation, proliferation, and metabolism. Our previous work showed that loss of DIO1 enhances proliferation and migration of renal cancer cells. However, the global effects of DIO1 expression in various tissues affected by cancer remain unknown. Here, the effects of stable DIO1 re-expression were analyzed on the proteome of renal cancer cells, followed by quantitative real-time PCR validation in two renal cancer-derived cell lines. DIO1-induced changes in intracellular concentrations of thyroid hormones were quantified by L-MS/MS and correlations between expression of DIO1 and potential target genes were determined in tissue samples from renal cancer patients. Stable re-expression of DIO1, resulted in 26 downregulated proteins while 59 proteins were overexpressed in renal cancer cells. The ‘downregulated’ group consisted mainly of oncoproteins (e.g. STAT3, ANPEP, TGFBI, TGM2) that promote proliferation, migration and invasion. Furthermore, DIO1 re-expression enhanced concentrations of two subunits of thyroid hormone transporter (SLC7A5, SLC3A2), enzymes of key pathways of cellular energy metabolism (e.g. TKT, NAMPT, IDH2), sex steroid metabolism and anti-oxidative response (AKR1C2, AKR1B10). DIO1 expression resulted in elevated intracellular concentration of T4. Expression of DIO1-affected genes strongly correlated with DIO1 transcript levels in tissue samples from renal cancer patients as well as with their poor survival. This first study addressing effects of deiodinase re-expression on proteome of cancer cells demonstrates that induced DIO1 re-expression in renal cancer robustly downregulates oncoproteins, affects key metabolic pathways, and triggers proteins involved in anti-oxidative protection. This data supports the notion that suppressed DIO1 expression and changes in local availability of thyroid hormones might favor a shift from a differentiated to a more proliferation-prone state of cancer tissues and cell lines. PMID:29272308

  9. Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior

    PubMed Central

    Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Pereira Gimba, Etel Rodrigues; Soares, Paula

    2016-01-01

    Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches. PMID:27409830

  10. Osteopontin-a splice variant is overexpressed in papillary thyroid carcinoma and modulates invasive behavior.

    PubMed

    Ferreira, Luciana Bueno; Tavares, Catarina; Pestana, Ana; Pereira, Catarina Leite; Eloy, Catarina; Pinto, Marta Teixeira; Castro, Patricia; Batista, Rui; Rios, Elisabete; Sobrinho-Simões, Manuel; Gimba, Etel Rodrigues Pereira; Soares, Paula

    2016-08-09

    Osteopontin (OPN) is a matricellular protein overexpressed in cancer cells and modulates tumorigenesis and metastasis, including in thyroid cancer (TC). The contribution of each OPN splice variant (OPN-SV), named OPNa, OPNb and OPNc, in TC is currently unknown. This study evaluates the expression of total OPN (tOPN) and OPN-SV in TC tissues and cell lines, their correlation with clinicopathological, molecular features and their functional roles. We showed that tOPN and OPNa are overexpressed in classic papillary thyroid carcinoma (cPTC) in relation to adjacent thyroid, adenoma and follicular variant of papillary thyroid carcinoma (fvPTC) tissues. In cPTC, OPNa overexpression is associated with larger tumor size, vascular invasion, extrathyroid extension and BRAFV600E mutation. We found that TC cell lines overexpressing OPNa exhibited increased proliferation, migration, motility and in vivo invasion. Conditioned medium secreted from cells overexpressing OPNa induce MMP2 and MMP9 metalloproteinases activity. In summary, we described the expression pattern of OPN-SV in cPTC samples and the key role of OPNa expression on activating TC tumor progression features. Our findings highlight OPNa variant as TC biomarker, besides being a putative target for cPTC therapeutic approaches.

  11. [Thyroid hormones and the development of the nervous system].

    PubMed

    Mussa, G C; Zaffaroni, M; Mussa, F

    1990-09-01

    The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Antitumor effect of CXCR4 antagonist AMD3100 on the tumorigenic cell line of BHP10-3 papillary thyroid cancer cells.

    PubMed

    Jung, Young Ho; Lee, Doh Young; Cha, Wonjae; Kim, Bo Hae; Sung, Myung-Whun; Kim, Kwang Hyun; Ahn, Soon-Hyun

    2016-10-01

    A tumorigenic cell line (BHP10-3M) derived from nontumorigenic papillary thyroid carcinoma (PTC) cells (BHP10-3) having rearranged during transfection (RET)/PTC1 gene rearrangement might have a higher expression of CXCR4, either quantitatively or functionally. The authors also postulated that CXCR4-mediated invasion or tumorigenesis could be blocked by CXCR4 antagonists, including AMD3100. The expression of CXCR4 in BHP10-3 and BHP10-3M cells was assessed using immunoblot analysis, flow cytometry, and quantitative reverse-transcriptase polymerase chain reaction (RT-PCR). The effect of AMD3100 on BHP10-3 and BHP10-3M cell lines was evaluated using cell proliferation assay, invasion assay, and tumor growth experiment in nude mice. Immunoblotting, flow cytometry, and quantitative RT-PCR proved that BHP10-3M cells expressed a higher level of CXCR4 than BHP10-3 cells. Although blocking CXCR4 with AMD3100 did not suppress cell proliferation in both cell lines from 1 ng/mL to 100 ng/mL concentration, AMD3100 suppressed invasion of BHP10-3M cells in vitro in a dose-dependent manner. At higher concentrations from 10(3) ng/mL to 10(5) ng/mL, the proliferation of BHP10-3M cells was inhibited more strongly by AMD3100 than that of BHP10-3 cells. Intraperitoneal injection of AMD3100 inhibited tumor formation by BHP10-3M cells in the thyroid of nude mice. A tumorigenic cell line (BHP10-3M) of PTC showed higher expression of CXCR4 quantitatively and functionally than a nontumorigenic cell line (BHP10-3). The CXCR4 antagonist (AMD3100) showed a significant antitumor effect on the tumorigenic cell line of PTC BHP10-3 cells both in vitro and in vivo. CXCR4 antagonist can be expected to have an adjuvant role in the management of PTC. © 2016 Wiley Periodicals, Inc. Head Neck, 2016 © 2016 Wiley Periodicals, Inc. Head Neck 38: First-1486, 2016. © 2016 Wiley Periodicals, Inc.

  13. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-06-13

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  14. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Wei, E-mail: hongwei@tijmu.edu.cn; College of Basic Medicine, Tianjin Medical University, 300070 Tianjin; Li, Jinru

    Highlights: Black-Right-Pointing-Pointer Corepressor Alien interacts with histone methyltransferase ESET in vivo. Black-Right-Pointing-Pointer Alien/ESET complex is recruited to nTRE of T3-responsive gene by liganded TR{beta}1. Black-Right-Pointing-Pointer ESET-mediated H3K9 methylation is required for liganded TR{beta}1-repressed transcription. Black-Right-Pointing-Pointer ESET is involved in T3-repressed G1/S phase transition and proliferation. -- Abstract: The ligand-bound thyroid hormone receptor (TR) is known to repress via a negative TRE (nTRE) the expression of E2F1, a key transcription factor that controls the G1/S phase transition. Alien has been identified as a novel interacting factor of E2F1 and acts as a corepressor of E2F1. The detailed molecular mechanism by whichmore » Alien inhibits E2F1 gene expression remains unclear. Here, we report that the histone H3 lysine 9 (H3K9) methyltransferase (HMT) ESET is an integral component of the corepressor Alien complex and the Alien/ESET complex is recruited to both sites, the E2F1 and the nTRE site of the E2F1 gene while the recruitment to the negative thyroid hormone response element (nTRE) is induced by the ligand-bound TR{beta}1 within the E2F1 gene promoter. We show that, overexpression of ESET promotes, whereas knockdown of ESET releases, the inhibition of TR{beta}1-regulated gene transcription upon T3 stimulation; and H3K9 methylation is required for TR{beta}1-repressed transcription. Furthermore, depletion of ESET impairs thyroid hormone-repressed proliferation as well as the G1/S transition of the cell cycle. Taken together, our data indicate that ESET is involved in TR{beta}1-mediated transcription repression and provide a molecular basis of thyroid hormone-induced repression of proliferation.« less

  15. Functioning and nonfunctioning thyroid adenomas involve different molecular pathogenetic mechanisms.

    PubMed

    Tonacchera, M; Vitti, P; Agretti, P; Ceccarini, G; Perri, A; Cavaliere, R; Mazzi, B; Naccarato, A G; Viacava, P; Miccoli, P; Pinchera, A; Chiovato, L

    1999-11-01

    The molecular biology of follicular cell growth in thyroid nodules is still poorly understood. Because gain-of-function (activating) mutations of the thyroid-stimulating hormone receptor (TShR) and/or Gs alpha genes may confer TSh-independent growth advantage to neoplastic thyroid cells, we searched for somatic mutations of these genes in a series of hyperfunctioning and nonfunctioning follicular thyroid adenomas specifically selected for their homogeneous gross anatomy (single nodule in an otherwise normal thyroid gland). TShR gene mutations were identified by direct sequencing of exons 9 and 10 of the TShR gene in genomic DNA obtained from surgical specimens. Codons 201 and 227 of the Gs alpha gene were also analyzed. At histology, all hyperfunctioning nodules and 13 of 15 nonfunctioning nodules were diagnosed as follicular adenomas. Two nonfunctioning thyroid nodules, although showing a prevalent microfollicular pattern of growth, had histological features indicating malignant transformation (a minimally invasive follicular carcinoma and a focal papillary carcinoma). Activating mutations of the TShR gene were found in 12 of 15 hyperfunctioning follicular thyroid adenomas. In one hyperfunctioning adenoma, which was negative for TShR mutations, a mutation in codon 227 of the Gs alpha gene was identified. At variance with hyperfunctioning thyroid adenomas, no mutation of the TShR or Gs alpha genes was detected in nonfunctioning thyroid nodules. In conclusion, our findings clearly define a different molecular pathogenetic mechanism in hyperfunctioning and nonfunctioning follicular thyroid adenomas. Activation of the cAMP cascade, which leads to proliferation but maintains differentiation of follicular thyroid cells, typically occurs in hyperfunctioning thyroid adenomas. Oncogenes other than the TShR and Gs alpha genes are probably involved in nonfunctioning follicular adenomas.

  16. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells.

    PubMed

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Park, Young Joo; Cho, Bo Youn

    2007-10-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.

  17. Microarray Analysis of Thyroid Stimulating Hormone, Insulin-Like Growth Factor-1, and Insulin-Induced Gene Expression in FRTL-5 Thyroid Cells

    PubMed Central

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Cho, Bo Youn

    2007-01-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation. PMID:17982240

  18. Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats.

    PubMed

    Silva, J F; Ocarino, N M; Vieira, A L S; Nascimento, E F; Serakides, R

    2013-08-01

    Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo- and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase-2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC-47, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1 and cyclooxygenase-2 (COX-2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX-2 expression in the corpus luteum (p < 0.05), while hyperthyroidism did not alter COX-2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC-47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC-47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p < 0.05) and increased VEGF expression in the corpus luteum. In contrast, hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX-2 expression in the corpus luteum of female rats. © 2013 Blackwell Verlag GmbH.

  19. Estrogen Induced Metastatic Modulators MMP-2 and MMP-9 Are Targets of 3,3′-Diindolylmethane in Thyroid Cancer

    PubMed Central

    Rajoria, Shilpi; Suriano, Robert; George, Andrea; Shanmugam, Arulkumaran; Schantz, Stimson P.; Geliebter, Jan; Tiwari, Raj K.

    2011-01-01

    Background Thyroid cancer is the most common endocrine related cancer with increasing incidences during the past five years. Current treatments for thyroid cancer, such as surgery or radioactive iodine therapy, often require patients to be on lifelong thyroid hormone replacement therapy and given the significant recurrence rates of thyroid cancer, new preventive modalities are needed. The present study investigates the property of a natural dietary compound found in cruciferous vegetables, 3,3′-diindolylmethane (DIM), to target the metastatic phenotype of thyroid cancer cells through a functional estrogen receptor. Methodology/Principal Findings Thyroid cancer cell lines were treated with estrogen and/or DIM and subjected to in vitro adhesion, migration and invasion assays to investigate the anti-metastatic and anti-estrogenic effects of DIM. We observed that DIM inhibits estrogen mediated increase in thyroid cell migration, adhesion and invasion, which is also supported by ER-α downregulation (siRNA) studies. Western blot and zymography analyses provided direct evidence for this DIM mediated inhibition of E2 enhanced metastasis associated events by virtue of targeting essential proteolytic enzymes, namely MMP-2 and MMP-9. Conclusion/Significance Our data reports for the first time that DIM displays anti-estrogenic like activity by inhibiting estradiol enhanced thyroid cancer cell proliferation and in vitro metastasis associated events, namely adhesion, migration and invasion. Most significantly, MMP-2 and MMP-9, which are known to promote and enhance metastasis, were determined to be targets of DIM. This anti-estrogen like property of DIM may lead to the development of a novel preventive and/or therapeutic dietary supplement for thyroid cancer patients by targeting progression of the disease. PMID:21267453

  20. Evaluation of proliferation potential in thyroid normo-/hypofunctioning and hyperfunctioning nodules.

    PubMed

    Cornianu, Marioara; Stan, V; Lazăr, Elena; Dema, Alis; Golu, Ioana; Tăban, Sorina; Vlad, Mihaela; Faur, Alexandra; Vărcuş, F; Babău, F

    2011-01-01

    Thyroid follicular adenomas (FA) and adenomatous thyroid nodules (AN) - lesions that are frequently found in areas with iodine deficiency, can be normo-/hypofunctioning (scintigraphically cold - SCN) or hyperfunctioning (scintigraphically hot - SHN) nodules. Evaluation of proliferation potential in thyroid nodules on tissue samples obtained at surgery from euthyroid patients clinically diagnosed with SCN and from patients with thyroid hyperfunction and SHN. We investigated the proliferation activity estimated by assessing PCNA and Ki-67 proliferation markers in 20 SCN (eight FA and 12 AN) and 16 toxic nodules (six hyperfunctioning FA and 10 toxic multinodular goiters), on formalin-fixed and paraffin-embedded tissue samples, 4-5 μm thick; we used the immunohistochemical technique in LSAB system (DAB visualization) with anti-PCNA (PC10) and anti-Ki-67 (MIB-1) monoclonal antibodies. For each case, we calculated the proliferation index PI-PCNA and PI-Ki-67. The dates were statistically evaluated using the t-unpaired test. We observed a higher PI-PCNA in thyroid nodules than in the normal surrounding thyroid tissue, with statistically significant values for FA (14.3% vs. 3.8%; p<0.029) and also for AN (8.36% vs. 1.24%; p<0.001). The mean PI-Ki-67 in nodules vs. surrounding thyroid tissue was 1.64% vs. 1.10% in FA (p<0.35) and 1.07% vs. 0.51% in AN (p>0.05). We also noted: (1) significantly higher PI-PCNA values (p < 0.01) in FA (14.03%) than in AN (8.36%), as compared to statistically insignificant values for Ki-67 (1.64% vs. 1.07%; p>0.05); (2) increased proliferation rate (p<0.01) in thyroid nodules with aspects of lymphocytic thyroiditis (LT) (PI-Ki-67 was 1.21%) as compared to nodules without LT (PI-Ki-67 was 0.12%); (3) a mean PI-PCNA of 8.5% and PI-Ki-67 of 4.61% in toxic thyroid nodules (TTN) vs. 3.01% and 1.5% in normal surrounding thyroid, respectively. The clinical expression of SCN is the consequence of increased thyrocyte proliferation in the nodules; the increased proliferative potential of TTN thyrocytes is a common feature of nodules, independent of their histopathological characteristics.

  1. Introducing the thyroid gland as another victim of the insulin resistance syndrome.

    PubMed

    Rezzonico, Jorge; Rezzonico, Mariana; Pusiol, Eduardo; Pitoia, Fabián; Niepomniszcze, Hugo

    2008-04-01

    Insulin is a thyroid growth factor that stimulates proliferation of thyroid cells in culture. In order to evaluate the effects of insulin resistance (IR) on the thyroid gland, we developed a prospective study in euthyroid women. One hundred eleven women (mean age 32.2 +/- 7 years) were evaluated by a thyroid ultrasound (US) and basal and postprandial serum insulin. Subjects were divided into four groups as follows: G1 (n = 42), subjects with IR and obesity; G2 (n = 21), subjects with obesity without IR; G3 (n = 17), subjects with IR and normal weight; and G4 (n = 31) control group (without IR and obesity). The thyroid volume (TV), measured by US, showed the following values: G1, 17 +/- 3 mL; G2, 13.8 +/- 2.8 mL; G3, 16.2 +/- 2.1 mL; and G4,12.1 +/- 2.4 mL. There was no significant difference in TV between G1 and G3, but differences between G1 and G2, and between G3 and G4 were significant at p < 0.05. The percentage of nodular thyroid glands observed by US in each group was as follows: G1, 50%; G2, 23.8%; G3, 61%; G4, 16.1%. Again, the differences between G1 and G2 and between G3 and G4 were statistically significant (p < 0.005 and p < 0.001, respectively, for each comparison). It is concluded that the higher circulating levels of insulin cause increased thyroid proliferation. The clinical manifestations are the larger thyroid volume and the formation of nodules. Thus, the thyroid gland appears to be another victim of the insulin resistance syndrome.

  2. miR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lianyong; Wang, Jingnan; Li, Xiangqi

    2015-02-20

    microRNAs (miRNAs) are frequently dysregulated in human malignancies. It was recently shown that miR-204-5p is downregulated in papillary thyroid carcinoma (PTC); however, the functional significance of this observation is not known. This study investigated the role of miR-204-5p in PTC. Overexpressing miR-204-5p suppressed PTC cell proliferation and induced cell cycle arrest and apoptosis. The results of a luciferase reporter assay showed that miR-204-5p can directly bind to the 3′ untranslated region (UTR) of insulin-like growth factor-binding protein 5 (IGFBP5) mRNA, and IGFBP5 overexpression partially reversed the growth-inhibitory effects of miR-204-5p. These results indicate that miR-204-5p acts as a tumor suppressormore » in PTC by regulating IGFBP5 expression and that miR-204-5p can potentially serve as an antitumorigenic agent in the treatment of PTC. - Highlights: • miR-204-5p expression is downregulated in PTC tissues and cell lines. • miR-204-5p suppresses proliferation and promotes apoptosis in PTC cells. • miR-204-5p suppresses IGFBP5 expression by direct binding to the 3′-UTR. • IGFBP5 overexpression reverses the effects of miR-204-5p.« less

  3. Molecular and cell biological effects of 3,5,3'-triiodothyronine on progenitor cells of the enteric nervous system in vitro.

    PubMed

    Mohr, Roland; Neckel, Peter; Zhang, Ying; Stachon, Susanne; Nothelfer, Katharina; Schaeferhoff, Karin; Obermayr, Florian; Bonin, Michael; Just, Lothar

    2013-11-01

    Thyroid hormones play important roles in the development of neural cells in the central nervous system. Even minor changes to normal thyroid hormone levels affect dendritic and axonal outgrowth, sprouting and myelination and might even lead to irreversible damages such as cretinism. Despite our knowledge of the influence on the mammalian CNS, the role of thyroid hormones in the development of the enteric nervous system (ENS) still needs to be elucidated. In this study we have analyzed for the first time the influence of 3,5,3'-triiodothyronine (T3) on ENS progenitor cells using cell biological assays and a microarray technique. In our in vitro model, T3 inhibited cell proliferation and stimulated neurite outgrowth of differentiating ENS progenitor cells. Microarray analysis revealed a group of 338 genes that were regulated by T3 in differentiating enterospheres. 67 of these genes are involved in function and development of the nervous system. 14 of them belong to genes that are involved in axonal guidance or neurite outgrowth. Interestingly, T3 regulated the expression of netrin G1 and endothelin 3, two guidance molecules that are involved in human enteric dysganglionoses. The results of our study give first insights how T3 may affect the enteric nervous system. T3 is involved in proliferation and differentiation processes in enterospheres. Microarray analysis revealed several interesting gene candidates that might be involved in the observed effects on enterosphere differentiation. Future studies need to be conducted to better understand the gene to gene interactions. © 2013.

  4. Hormonal regulation of growth and life span of bullfrog tadpole tail epidermal cells cultured in vitro.

    PubMed

    Nishikawa, A; Yoshizato, K

    1986-02-01

    Epidermal cells were dissociated from tails of the bullfrog tadpole, Rana catesbeiana, and cultured to investigate their response to steroid and thyroid hormones. Charcoal-treated serum (CTS) was used in the growth medium when cells were to be grown in the absence of steroid and thyroid hormones. The cells could be maintained for 2 weeks with a small increase in cell number in medium that contained CTS (CTS medium). Addition of cortisol to CTS medium increased both cellular attachment to the culture dishes and the proliferation of the attached cells with an optimum concentration of 5 X 10(-7) M. The cells remained viable and attached for at least a week. Cortisol stimulated the rate of protein synthesis 1.8-fold but did not alter the rate of DNA synthesis. The cells did not proliferate in the medium containing triiodothyronine (T3) and detached themselves from the dish within 5 days, which occurred in a dose-dependent manner with a maximum effect at 10(-8) M. It drastically decreased the rate of DNA synthesis but did not influence the rate of protein synthesis. These responses of cells to cortisol and T3 may reflect growth and death of tail epidermal cells in vivo at metamorphosis.

  5. Stimulation by thyroid-stimulating hormone and Grave's immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo.

    PubMed

    Sato, K; Yamazaki, K; Shizume, K; Kanaji, Y; Obara, T; Ohsumi, K; Demura, H; Yamaguchi, S; Shibuya, M

    1995-09-01

    To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.

  6. Ghrelin and obestatin in thyroid gland - immunohistochemical expression in nodular goiter, papillary and medullary cancer.

    PubMed

    Gurgul, Edyta; Kasprzak, Aldona; Blaszczyk, Agata; Biczysko, Maciej; Surdyk-Zasada, Joanna; Seraszek-Jaros, Agnieszka; Ruchala, Marek

    2015-01-01

    Previous studies analyzing ghrelin and obestatin expression in thyroid gland tissue are not unanimous and are mostly related to ghrelin. The role of ghrelin and obestatin in the thyroid gland appears very interesting due to their probable involvement in cell proliferation. Furthermore, since the thyroid gland is associated with the maintenance of energy balance, the relationship between ghrelin, obestatin and thyroid function is worthy of consideration. The aim of the study was to assess ghrelin and obestatin immunocytochemical expression in nodular goiter (NG), papillary cancer (PTC) and medullary cancer (MTC). Analyzed samples included 9 cases of NG, 8 cases of PTC and 11 cases of MTC. The analysis of ghrelin and obestatin expression was performed by use of the immunohistochemical (IHC) EnVision system and evaluated with filter HSV software (quantitative morphometric analysis). Quantitative ghrelin expression in MTC cells was higher than in NG (p = 0.013) and correlated negatively with the size of the tumor (r= -0.829, p < 0.05). We did not observe any differences in ghrelin expression neither between MTC and PTC nor between NG and PTC. Obestatin immunoexpression pattern in all analyzed specimens was irregular and poorly accented. The strongest immunoreactivity for obestatin was demonstrated in NG. In MTC obestatin expression was significantly weaker than in NG and PTC (p < 0.05 in both cases). In NG the intensity of obestatin immunostaining was significantly higher than that of ghrelin (p = 0.03). Conversely, ghrelin expression in MTC was definitely more evident than obestatin immunoreactivity (p < 0.01). There was no statistically significant difference between ghrelin and obestatin expression in PTC. No correlations were detected between reciprocal tissue expressions of ghrelin and obestatin in the analyzed specimens of NG, PTC or MTC. The differences between ghrelin expression in NG and MTC suggest that ghrelin may be involved in thyroid cell proliferation. The differences between ghrelin and obestatin immunoreactivity in benign and malignant thyroid tumors could support the theory of alternative transcription of the preproghrelin gene and independent production of ghrelin and obestatin.

  7. Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide.

    PubMed

    Hester, Susan D; Nesnow, Stephen

    2008-03-15

    Conazoles are azole-containing fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay. The goal of this study was to identify pathways and networks of genes that were associated with thyroid tumorigenesis through transcriptional analyses. To this end, we compared transcriptional profiles from tissues of rats treated with a tumorigenic and a non-tumorigenic conazole. Triadimefon, a rat thyroid tumorigen, and myclobutanil, which was not tumorigenic in rats after a 2-year bioassay, were administered in the feed to male Wistar/Han rats for 30 or 90 days similar to the treatment conditions previously used in their chronic bioassays. Thyroid gene expression was determined using high density Affymetrix GeneChips (Rat 230_2). Gene expression was analyzed by the Gene Set Expression Analyses method which clearly separated the tumorigenic treatments (tumorigenic response group (TRG)) from the non-tumorigenic treatments (non-tumorigenic response group (NRG)). Core genes from these gene sets were mapped to canonical, metabolic, and GeneGo processes and these processes compared across group and treatment time. Extensive analyses were performed on the 30-day gene sets as they represented the major perturbations. Gene sets in the 30-day TRG group had over representation of fatty acid metabolism, oxidation, and degradation processes (including PPARgamma and CYP involvement), and of cell proliferation responses. Core genes from these gene sets were combined into networks and found to possess signaling interactions. In addition, the core genes in each gene set were compared with genes known to be associated with human thyroid cancer. Among the genes that appeared in both rat and human data sets were: Acaca, Asns, Cebpg, Crem, Ddit3, Gja1, Grn, Jun, Junb, and Vegf. These genes were major contributors in the previously developed network from triadimefon-treated rat thyroids. It is postulated that triadimefon induces oxidative response genes and activates the nuclear receptor, Ppargamma, initiating transcription of gene products and signaling to a series of genes involved in cell proliferation.

  8. Thyroid metastasis as initial presentation of clear cell renal carcinoma

    PubMed Central

    Ramírez-Plaza, César Pablo; Domínguez-López, Marta Elena; Blanco-Reina, Francisco

    2015-01-01

    Introduction Metastatic tumors account for 1.4–2.5% of thyroid malignancies. About 25–30% of patients with clear cell renal carcinoma (CCRC) have distant metastasis at the time of diagnosis, being the thyroid gland a rare localization [5%]. Presentation of the case A 62-year woman who underwent a cervical ultrasonography and a PAAF biopsy reporting atypical follicular proliferation with a few intranuclear vacuoles “suggestive” of thyroid papillary cancer in the context of a multinodular goiter was reported. A total thyroidectomy was performed and the histology of a clear cell renal carcinoma (CCRC) was described in four nodules of the thyroid gland. A CT scan was performed and a renal giant right tumor was found. The patient underwent an eventful radical right nephrectomy and the diagnosis of CCRC was confirmed. Discussion Thyroid metastasis (TM) from CCRC are usually apparent in a metachronic context during the follow-up of a treated primary (even many years after) but may sometimes be present at the same time than the primary renal tumor. Our case is exceptional because the TM was the first evidence of the CCRC, which was subsequently diagnosed and treated. Conclusion The possibility of finding of an incidental metastatic tumor in the thyroid gland from a previous unknown and non-diganosed primary (as CCRC in our case was) is rare and account only for less than 1% of malignancies. Nonetheless, the thyroid gland is a frequent site of metastasis and the presence of “de novo” thyroid nodules in oncologic patients must be always considered and studied. PMID:25827295

  9. [Effects of thyroid hormone on macrophage dysfunction induced by oxidized low-density lipoprotein].

    PubMed

    Ning, Yu; Zhang, Ming; DU, Yun-Hui; Zhang, Hui-Na; Li, Lin-Yi; Qin, Yan-Wen; Wen, Wan-Wan; Zhao, Quan-Ming

    2018-04-25

    It has been recognized that patients with hypothyroidism have higher risks of atherosclerosis and coronary heart disease, however, the mechanisms are largely unknown. Considering that macrophage dysfunction plays an important role in the formation and development of atherosclerosis plaques, this study aimed to investigate the direct effects of thyroid hormone on macrophage functions and to provide new insight for the mechanism of hypothyroid atherosclerosis. RAW264.7 cells (mouse leukaemic monocyte macrophage cell line) were incubated with oxidized low-density lipoprotein (oxLDL) to establish macrophage foam cells model in vitro, and the protective effects of different concentration of thyroxine (T4) on the macrophage foam cells function were explored. The proliferation, migration and cell aging of macrophages were detected by MTT method, scratch test and β-galactosidase staining respectively. The ELISA method was used to detect the secretion of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-1β (IL-1β). Western blot analysis was applied to measure the phosphorylation of focal adhesion kinase (FAK), which was required for the process of proliferation and migration of macrophages. The results showed that oxLDL significantly inhibited the macrophage proliferation and migration, induced cell senescence, and promoted the secretion of TNF-α, MCP-1, and IL-1β; while T4 reversed those effects of oxLDL on macrophage in a concentration-dependent manner. Moreover, oxLDL increased the phosphorylation of FAK in macrophage, while T4 concentration-dependently reversed the effect. These results suggest that T4 modulates macrophage proliferation, migration, senescence, and secretion of inflammation factors in a concentration-dependent way.

  10. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells

    PubMed Central

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A.; Bugalho, Maria João

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas. PMID:28234980

  11. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone.

    PubMed

    Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana

    2003-01-10

    It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.

  12. Knockdown of BAG3 induces epithelial-mesenchymal transition in thyroid cancer cells through ZEB1 activation.

    PubMed

    Meng, X; Kong, D-H; Li, N; Zong, Z-H; Liu, B-Q; Du, Z-X; Guan, Y; Cao, L; Wang, H-Q

    2014-02-27

    The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial-mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis.

  13. Knockdown of BAG3 induces epithelial–mesenchymal transition in thyroid cancer cells through ZEB1 activation

    PubMed Central

    Meng, X; Kong, D-H; Li, N; Zong, Z-H; Liu, B-Q; Du, Z-X; Guan, Y; Cao, L; Wang, H-Q

    2014-01-01

    The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial–mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis. PMID:24577090

  14. Flavonoids, Thyroid Iodide Uptake and Thyroid Cancer—A Review

    PubMed Central

    Gonçalves, Carlos F. L.; de Freitas, Mariana L.; Ferreira, Andrea C. F.

    2017-01-01

    Thyroid cancer is the most common malignant tumor of the endocrine system and the incidence has been increasing in recent years. In a great part of the differentiated carcinomas, thyrocytes are capable of uptaking iodide. In these cases, the main therapeutic approach includes thyroidectomy followed by ablative therapy with radioiodine. However, in part of the patients, the capacity to concentrate iodide is lost due to down-regulation of the sodium-iodide symporter (NIS), the protein responsible for transporting iodide into the thyrocytes. Thus, therapy with radioiodide becomes ineffective, limiting therapeutic options and reducing the life expectancy of the patient. Excessive ingestion of some flavonoids has been associated with thyroid dysfunction and goiter. Nevertheless, studies have shown that some flavonoids can be beneficial for thyroid cancer, by reducing cell proliferation and increasing cell death, besides increasing NIS mRNA levels and iodide uptake. Recent data show that the flavonoids apingenin and rutin are capable of increasing NIS function and expression in vivo. Herein we review literature data regarding the effect of flavonoids on thyroid cancer, besides the effect of these compounds on the expression and function of the sodium-iodide symporter. We will also discuss the possibility of using flavonoids as adjuvants for therapy of thyroid cancer. PMID:28604619

  15. Thiocoraline alters neuroendocrine phenotype and activates the Notch pathway in MTC-TT cell line

    PubMed Central

    Tesfazghi, Sara; Eide, Jacob; Dammalapati, Ajitha; Korlesky, Colin; Wyche, Thomas P; Bugni, Tim S; Chen, Herbert; Jaskula-Sztul, Renata

    2013-01-01

    Medullary thyroid cancer (MTC) is an aggressive neuroendocrine tumor (NET). Previous research has shown that activation of Notch signaling has a tumor suppressor role in NETs. The potential therapeutic effect of thiocoraline on the activation of the Notch pathway in an MTC cell line (TT) was investigated. Thiocoraline was isolated from a marine bacterium Verrucosispora sp. MTT assay (3-[4, 5-dimethylthiazole-2-yl]-2, 5-diphenyltetrazolium bromide) was used to determine the IC50 value and to measure cell proliferation. Western blot revealed the expression of Notch isoforms, NET, and cell cycle markers. Cell cycle progression was validated by flow cytometry. The mRNA expression of Notch isoforms and downstream targets were measured using real-time PCR. The IC50 value for thiocoraline treatment in TT cells was determined to be 7.6 nmol/L. Thiocoraline treatment decreased cell proliferation in a dose- and time-dependent manner. The mechanism of growth inhibition was found to be cell cycle arrest in G1 phase. Thiocoraline activated the Notch pathway as demonstrated by the dose-dependent increase in mRNA and protein expression of Notch isoforms. Furthermore, treatment with thiocoraline resulted in changes in the expression of downstream targets of the Notch pathway (HES1, HES2, HES6, HEY1, and HEY2) and reduced expression of NET markers, CgA, and ASCL1. Thiocoraline is a potent Notch pathway activator and an inhibitor of MTC-TT cell proliferation at low nanomolar concentrations. These results provide exciting evidence for the use of thiocoraline as a potential treatment for intractable MTC. Thiocoraline is a potent Notch pathway activator and an inhibitor of medullary thyroid cancer cell line (MTC-TT) cell proliferation at low nanomolar concentrations. These results provide evidence for the use of thiocoraline as a potential treatment for intractable MTC. PMID:24403239

  16. Pioglitazone Induces a Proadipogenic Antitumor Response in Mice with PAX8-PPARγ Fusion Protein Thyroid Carcinoma

    PubMed Central

    Dobson, Melissa E.; Diallo-Krou, Ericka; Grachtchouk, Vladimir; Yu, Jingcheng; Colby, Lesley A.; Wilkinson, John E.; Giordano, Thomas J.

    2011-01-01

    Approximately 35% of follicular thyroid carcinomas harbor a chromosomal translocation that results in expression of a paired box gene 8-peroxisome proliferator-activated receptor γ gene (PPARγ) fusion protein (PPFP). To better understand the oncogenic role of PPFP and its relationship to endogenous PPARγ, we generated a transgenic mouse model that combines Cre-dependent PPFP expression (PPFP;Cre) with homozygous deletion of floxed Pten (PtenFF;Cre), both thyroid specific. Although neither PPFP;Cre nor PtenFF;Cre mice develop thyroid tumors, the combined PPFP;PtenFF;Cre mice develop metastatic thyroid cancer, consistent with patient data that PPFP is occasionally found in benign thyroid adenomas and that PPFP carcinomas have increased phosphorylated AKT/protein kinase B. We then tested the effects of the PPARγ agonist pioglitazone in our mouse model. Pioglitazone had no effect on PtenFF;Cre mouse thyroids. However, the thyroids in pioglitazone-fed PPFP;PtenFF;Cre mice decreased 7-fold in size, and metastatic disease was prevented. Remarkably, pioglitazone caused an adipogenic response in the PPFP;PtenFF;Cre thyroids characterized by lipid accumulation and the induction of a broad array of adipocyte PPARγ target genes. These data indicate that, in the presence of pioglitazone, PPFP has PPARγ-like activity that results in trans-differentiation of thyroid carcinoma cells into adipocyte-like cells. Furthermore, the data predict that pioglitazone will be therapeutic in patients with PPFP-positive carcinomas. PMID:21952241

  17. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy.

    PubMed

    Zhang, Lei; Liu, Wen; Wang, Qun; Li, Qinpei; Wang, Huijuan; Wang, Jun; Teng, Tieshan; Chen, Mingliang; Ji, Ailing; Li, Yanzhang

    2018-03-02

    Medullary thyroid cancer (MTC) is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1) plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K), which is the key enzyme in the mammalian target of rapamycin (mTOR) pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53)-sestrins-AMPK-mTOR signaling pathway.

  18. Microrna-199a-5p Functions as a Tumor Suppressor via Suppressing Connective Tissue Growth Factor (CTGF) in Follicular Thyroid Carcinoma.

    PubMed

    Sun, Dawei; Han, Shen; Liu, Chao; Zhou, Rui; Sun, Weihai; Zhang, Zhijun; Qu, Jianjun

    2016-04-11

    BACKGROUND The objective of this study was to explore the role of miR-199a-5p in the development of thyroid cancer, including its anti-proliferation effect and downstream signaling pathway. MATERIAL AND METHODS We conducted qRT-PCR analysis to detect the expressions of several microRNAs in 42 follicular thyroid carcinoma patients and 42 controls. We identified CTGF as target of miR-491, and viability and cell cycle status were determined in FTC-133 cells transfected with CTGF siRNA, miR-199a mimics, or inhibitors. RESULTS We identified an underexpression of miR-199a-5p in follicular thyroid carcinoma tissue samples compared with controls. Then we confirmed CTGF as a target of miR-199a-5p thyroid cells by using informatics analysis and luciferase reporter assay. Additionally, we found that mRNA and protein expression levels of CTGF were both clearly higher in malignant tissues than in benign tissues. miR-199a-5p mimics and CTGF siRNA similarly downregulated the expression of CTGF, and reduced the viability of FTC-133 cells by arresting the cell cycle in G0 phase. Transfection of miR-199a-5p inhibitors increased the expression of CTGF and promoted the viability of the cells by increasing the fraction of cells in G2/M and S phases. CONCLUSIONS Our study proves that the CTGF gene is a target of miR-199a-5p, demonstrating the negatively related association between CTGF and miR-199a. These findings suggest that miR-199a-5p might be a novel therapeutic target in the treatment of follicular thyroid carcinoma.

  19. New approaches to thyroid hormones and purinergic signaling.

    PubMed

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.

  20. New Approaches to Thyroid Hormones and Purinergic Signaling

    PubMed Central

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  1. Mutual regulation of TGF-β1, TβRII and ErbB receptors expression in human thyroid carcinomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincione, Gabriella, E-mail: g.mincione@unich.it; Center of Excellence on Aging, Ce.S.I., ‘G. d'Annunzio’ University Foundation, Chieti; Tarantelli, Chiara

    2014-09-10

    The role of EGF and TGF-β1 in thyroid cancer is still not clearly defined. TGF-β1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF-β1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF-β1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC andmore » FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF-β1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF-β1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF-β1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF-β1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF-β1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF-β1 treatment in follicular thyroid carcinoma cells. • EGF and TGF-β1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF-β1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma.« less

  2. 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30.

    PubMed

    Vivacqua, Adele; Bonofiglio, Daniela; Albanito, Lidia; Madeo, Antonio; Rago, Vittoria; Carpino, Amalia; Musti, Anna Maria; Picard, Didier; Andò, Sebastiano; Maggiolini, Marcello

    2006-10-01

    The higher incidence of thyroid carcinoma (TC) in women during reproductive years compared with men and the increased risk associated with the therapeutic use of estrogens have suggested a pathogenetic role exerted by these steroids in the development of TC. In the present study, we evaluated the potential of 17beta-estradiol (E2), genistein (G), and 4-hydroxyta-moxifen (OHT) to regulate the expression of diverse estrogen target genes and the proliferation of human WRO, FRO, and ARO thyroid carcinoma cells, which were used as a model system. We have ascertained that ARO cells are devoid of estrogen receptors (ERs), whereas both WRO and FRO cells express a single variant of ERalpha that was neither transactivated, modulated, nor translocated into the nucleus upon treatment with ligands. However, E2, G, and OHT were able either to induce the transcriptional activity of c-fos promoter constructs, including those lacking the estrogen-responsive elements, or to increase c-fos, cyclin A, and D1 expression. It is noteworthy that we have demonstrated that the G protein-coupled receptor 30 (GPR30) and the mitogen-activated protein kinase (MAPK) pathway mediate both the up-regulation of c-fos and the growth response to E2, G, and OHT in TC cells studied, because these stimulatory effects were prevented by silencing GPR30 and using the MEK inhibitor 2'-amino-3'-methoxyflavone (PD 98059). Our findings provide new insight into the molecular mechanisms through which estrogens may induce the progression of TC.

  3. Differential expression profile of CXCR3 splicing variants is associated with thyroid neoplasia. Potential role in papillary thyroid carcinoma oncogenesis?

    PubMed Central

    Urra, Soledad; Fischer, Martin C.; Martínez, José R.; Véliz, Loreto; Orellana, Paulina; Solar, Antonieta; Bohmwald, Karen; Kalergis, Alexis; Riedel, Claudia; Corvalán, Alejandro H.; Roa, Juan C.; Fuentealba, Rodrigo; Cáceres, C. Joaquin; López-Lastra, Marcelo; León, Augusto; Droppelmann, Nicolás; González, Hernán E.

    2018-01-01

    Papillary thyroid cancer (PTC) is the most prevalent endocrine neoplasia. The increased incidence of PTC in patients with thyroiditis and the frequent immune infiltrate found in PTC suggest that inflammation might be a risk factor for PTC development. The CXCR3-ligand system is involved in thyroid inflammation and CXCR3 has been found upregulated in many tumors, suggesting its pro-tumorigenic role under the inflammatory microenvironment. CXCR3 ligands (CXCL4, CXCL9, CXCL10 and CXCL11) trigger antagonistic responses partly due to the presence of two splice variants, CXCR3A and CXCR3B. Whereas CXCR3A promotes cell proliferation, CXCR3B induces apoptosis. However, the relation between CXCR3 variant expression with chronic inflammation and PTC development remains unknown. Here, we characterized the expression pattern of CXCR3 variants and their ligands in benign tumors and PTC. We found that CXCR3A and CXCL10 mRNA levels were increased in non-metastatic PTC when compared to non-neoplastic tissue. This increment was also observed in a PTC epithelial cell line (TPC-1). Although elevated protein levels of both isoforms were detected in benign and malignant tumors, the CXCR3A expression remained greater than CXCR3B and promoted proliferation in Nthy-ori-3-1 cells. In non-metastatic PTC, inflammation was conditioning for the CXCR3 ligands increased availability. Consistently, CXCL10 was strongly induced by interferon gamma in normal and tumor thyrocytes. Our results suggest that persistent inflammation upregulates CXCL10 expression favoring tumor development via enhanced CXCR3A-CXCL10 signaling. These findings may help to further understand the contribution of inflammation as a risk factor in PTC development and set the basis for potential therapeutic studies. PMID:29416784

  4. Long Noncoding RNA H19 Inhibits Cell Viability, Migration, and Invasion Via Downregulation of IRS-1 in Thyroid Cancer Cells

    PubMed Central

    Wang, Peng; Xu, Weimin; Liu, Haixia; Bu, Qingao; Sun, Diwen

    2017-01-01

    Thyroid cancer is a common endocrine gland malignancy which exhibited rapid increased incidence worldwide in recent decades. This study was aimed to investigate the role of long noncoding RNA H19 in thyroid cancer. Long noncoding RNA H19 was overexpressed or knockdown in thyroid cancer cells SW579 and TPC-1, and the expression of long noncoding RNA H19 was detected by real-time polymerase chain reaction. The cell viability, migration, and invasion were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, Transwell assay, and wound healing assay, respectively. Furthermore, cell apoptosis was analyzed by flow cytometry, and expressions of some factors that were related to phosphatidyl inositide 3-kinases/protein kinase B and nuclear factor κB signal pathway were measured by Western blotting. This study revealed that cell viability and migration/invasion of SW579 and TPC-1 were significantly decreased by long noncoding RNA H19 overexpression compared with the control group (P < .05), whereas cell apoptosis was statistically increased (P < .001). Meanwhile, cell viability and migration/invasion were significantly increased after long noncoding RNA H19 knockdown (P < .05). Furthermore, long noncoding RNA H19 negatively regulated the expression of insulin receptor substrate 1 and thus effect on cell proliferation and apoptosis. Insulin receptor substrate 1 regulated the activation of phosphatidyl inositide 3-kinases/AKT and nuclear factor κB signal pathways. In conclusion, long noncoding RNA H19 could suppress cell viability, migration, and invasion via downregulation of insulin receptor substrate 1 in SW579 and TPC-1 cells. These results suggested the important role of long noncoding RNA H19 in thyroid cancer, and long noncoding RNA H19 might be a potential target of thyroid cancer treatment. PMID:29332545

  5. Induction of type 1 iodothyronine deiodinase expression inhibits proliferation and migration of renal cancer cells.

    PubMed

    Poplawski, Piotr; Rybicka, Beata; Boguslawska, Joanna; Rodzik, Katarzyna; Visser, Theo J; Nauman, Alicja; Piekielko-Witkowska, Agnieszka

    2017-02-15

    Type 1 iodothyronine deiodinase (DIO1) regulates peripheral metabolism of thyroid hormones that control cellular proliferation, differentiation and metabolism. The significance of DIO1 in cancer is unknown. In this study we hypothesized that diminished expression of DIO1, observed in renal cancer, contributes to the carcinogenic process in the kidney. Here, we demonstrate that ectopic expression of DIO1 in renal cancer cells changes the expression of genes controlling cell cycle, including cyclin E1 and E2F5, and results in inhibition of proliferation. The expression of genes encoding collagens (COL1A1, COL4A2, COL5A1), integrins (ITGA4, ITGA5, ITGB3) and transforming growth factor-β-induced (TGFBI) is significantly altered in renal cancer cells with induced expression of DIO1. Finally, we show that overexpression of DIO1 inhibits migration of renal cancer cells. In conclusion, we demonstrate for the first time that loss of DIO1 contributes to renal carcinogenesis and that its induced expression protects cells against cancerous proliferation and migration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Notch3 as a novel therapeutic target in metastatic medullary thyroid cancer.

    PubMed

    Lou, Irene; Odorico, Scott; Yu, Xiao-Min; Harrison, April; Jaskula-Sztul, Renata; Chen, Herbert

    2018-01-01

    Medullary thyroid cancer portends poor survival once liver metastasis occurs. We hypothesize that Notch3 overexpression in medullary thyroid cancer liver metastasis will decrease proliferation and growth of the tumor. TT cells were modified genetically to overexpress Notch3 in the presence of doxycycline, creating the TT-Notch3 cell line. Mice were injected intrasplenically with either TT-Notch3 or control vector TT-TRE cells. Each cell line had 3 treatment groups: control with 12 weeks of standard chow, early DOX with doxycycline chow at day 0 and for 70 days thereafter, and late DOX with doxycycline chow at 8 weeks. Each animal underwent micro-computed tomography to evaluate for tumor formation and tumor quantification was performed. Animals were killed at 12 weeks, and the harvested liver was stained with Ki-67, hematoxylin and eosin, and Notch3. Induction of Notch3 did not prevent formation of medullary thyroid cancer liver metastases as all mice in the early DOX group developed tumors. However, induction of Notch after medullary thyroid cancer liver tumor formation decreased tumor size, as seen on micro-computed tomography scans (late DOX group). This translated to a 37-fold decrease in tumor volume (P = .001). Notch3 overexpression also resulted in decreased Ki-67 index (P = .038). Moreover, Notch3 induction led to increased areas of neutrophil infiltration and necrosis on hematoxylin and eosin staining of the tumors CONCLUSION: Notch3 overexpression demonstrates an antiproliferative effect on established metastatic medullary thyroid cancer liver tumors and is a potential therapeutic target in treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Tissue-Specific Upregulation of MDS/EVI Gene Transcripts in the Intestine by Thyroid Hormone during Xenopus Metamorphosis

    PubMed Central

    Hasebe, Takashi; Fu, Liezhen; Heimeier, Rachel A.; Das, Biswajit; Ishizuya-Oka, Atsuko; Shi, Yun-Bo

    2013-01-01

    Background Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. Methodology/Principal Findings The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. Conclusions/Significance Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells. PMID:23383234

  8. Hypothyroidism Induces a Moderate Steatohepatitis Accompanied by Liver Regeneration, Mast Cells Infiltration, and Changes in the Expression of the Farnesoid X Receptor.

    PubMed

    Rodríguez-Castelán, J; Corona-Pérez, A; Nicolás-Toledo, L; Martínez-Gómez, M; Castelán, F; Cuevas-Romero, E

    2017-03-01

    Hypothyroidism is associated with the development of non-alcoholic steatohepatitis, but cellular mechanisms have been scarcely analyzed. Thyroid hormones regulate the synthesis and secretion of bile acids that are endogenous ligands of the farnesoid receptor (FXRα), which have been involved in the development of non-alcoholic steatohepatitis. However, the relationship between thyroid hormones and FXRα expression in the liver is yet unknown. Control ( n =6) and methimazole-induced hypothyroid ( n =6) female rabbits were used to evaluate the amount of lipids and glycogen, vascularization, hepatocytes proliferation, immune cells infiltration, and expression of FXRα. Student- t or Mann-Whitney U tests were carried out to determine significant differences. Hypothyroidism induced steatosis, glycogen loss, fibrosis, and a minor vascularization in the liver. In contrast, hypothyroidism increased the proliferation of hepatocytes and the infiltration of mast cells, but did not modify the number of immune cells into sinusoids. These changes were associated with a minor anti-FXRα immunoreactivity of periportal hepatocytes and pericentral immune cells. Our results suggest that hypothyroidism induces a moderate non-alcoholic steatohepatitis, alllowing the hepatic regeneration. The FXRα may be involved in the development of non-alcoholic steatohepatitis in hypothyroid subjects. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Establishment and culture optimization of a new type of pituitary immortalized cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokubu, Yuko; Asashima, Makoto; Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells undermore » sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.« less

  10. Morphology and histochemistry of the "C" cells of guinea pig thyroid gland after treatment with STH preparation: Part II--young animals.

    PubMed

    Sawicki, B

    1977-01-01

    Investigations were carried out on 32 male guinea pigs 2 to 3 months of age. The STH (produced by BIOMED, Warszawa, Poland) was administered intramuscularly every other day, in 7 injections of 20 Evans's units (E. U.) or 100 E. U./kg body weight each. Thyroid gland sections were stained with heamatoxylin and eosin and with the Azan method. The C cells were detected with the modified silver method of Grimelius and with the HCl-toluidine blue and HCl-lead haemotoxylin techniques. Moreover, reactions were performed for succinate and alpha-glycerophosphate dehydrogenases and also for non-specific esterases and non-specific acetylcholinesterase. STH evoked proliferation of the C cells, changed their morphology and activity pattern of the enzymes present therein, probably testifying to an enhanced secretory activity of these cells.

  11. Thyroid hormone actions on male reproductive system of teleost fish.

    PubMed

    Tovo-Neto, Aldo; da Silva Rodrigues, Maira; Habibi, Hamid R; Nóbrega, Rafael Henrique

    2018-04-17

    Thyroid hormones (THs) play important roles in the regulation of many biological processes of vertebrates, such as growth, metabolism, morphogenesis and reproduction. An increasing number of studies have been focused on the involvement of THs in the male reproductive system of vertebrates, in particular of fish. Therefore, this mini-review aims to summarize the main findings on THs role in male reproductive system of fish, focusing on sex differentiation, testicular development and spermatogenesis. The existing data in the literature have demonstrated that THs exert their roles at the different levels of the hypothalamic-pituitary-gonadal (HPG) axis. In general a positive correlation has been shown between THs and fish reproductive status; where THs are associated with testicular development, growth and maturation. Recently, the molecular mechanisms underlying the role of THs in spermatogenesis have been unraveled in zebrafish testis. THs promote germ cell proliferation and differentiation by increasing a stimulatory growth factor of spermatogenesis produced by Sertoli cells. In addition, THs enhanced the gonadotropin-induced androgen release in zebrafish testis. Next to their functions in the adult testis, THs are involved in the gonadal sex differentiation through modulating sex-related gene expression, and testicular development via regulation of Sertoli cell proliferation. In conclusion, this mini-review showed that THs modulate the male reproductive system during the different life stages of fish. The physiological and molecular mechanisms showed a link between the thyroid and reproduction, suggesting a possibly co-evolution and interdependence of these two systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Molecular Aspects of Thyroid Hormone Actions

    PubMed Central

    Cheng, Sheue-Yann; Leonard, Jack L.; Davis, Paul J.

    2010-01-01

    Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T3 via transcriptional regulation. Two TR genes, α and β, encode four T3-binding receptor isoforms (α1, β1, β2, and β3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T3, transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T3 target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T3-dependent manner. In the absence of T3, corepressors act to repress the basal transcriptional activity, whereas in the presence of T3, coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRβ gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T3. Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin αvβ3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na+/H+ exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T4 is an agonist at the plasma membrane without conversion to T3. Tetraiodothyroacetic acid is a T4 analog that inhibits the actions of T4 and T3 at the integrin, including angiogenesis and tumor cell proliferation. T3 can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin αvβ3. Downstream consequences of phosphatidylinositol 3-kinase activation by T3 include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T3 and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T4 and rT3, but not T3, is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRα1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton. PMID:20051527

  13. GDC-0941 inhibits metastatic characteristics of thyroid carcinomas by targeting both the phosphoinositide-3 kinase (PI3K) and hypoxia-inducible factor-1α (HIF-1α) pathways.

    PubMed

    Burrows, Natalie; Babur, Muhammad; Resch, Julia; Ridsdale, Sophie; Mejin, Melissa; Rowling, Emily J; Brabant, Georg; Williams, Kaye J

    2011-12-01

    Phosphoinositide 3-kinase (PI3K) regulates the transcription factor hypoxia-inducible factor-1 (HIF-1) in thyroid carcinoma cells. Both pathways are associated with aggressive phenotype in thyroid carcinomas. Our objective was to assess the effects of the clinical PI3K inhibitor GDC-0941 and genetic inhibition of PI3K and HIF on metastatic behavior of thyroid carcinoma cells in vitro and in vivo. Vascular endothelial growth factor ELISA, HIF activity assays, proliferation studies, and scratch-wound migration and cell spreading assays were performed under various O(2) tensions [normoxia, hypoxia (1 and 0.1% O(2)), and anoxia] with or without GDC-0941 in a panel of four thyroid carcinoma cell lines (BcPAP, WRO, FTC133, and 8505c). Genetic inhibition was achieved by overexpressing phosphatase and tensin homolog (PTEN) into PTEN-null cells and by using a dominant-negative variant of HIF-1α (dnHIF). In vivo, human enhanced green fluorescence protein-expressing follicular thyroid carcinomas (FTC) were treated with GDC-0941 (orally). Spontaneous lung metastasis was confirmed by viewing enhanced green fluorescence protein-positive colonies cultured from lung tissue. GDC-0941 inhibited hypoxia/anoxia-induced HIF-1α and HIF-2α expression and HIF activity in thyroid carcinoma cells. Basal (three of four cell lines) and/or hypoxia-induced (four of four) secreted vascular endothelial growth factor was inhibited by GDC-0941, whereas selective HIF targeting predominantly affected hypoxia/anoxia-mediated secretion (P < 0.05-0.0001). Antiproliferative effects of GDC-0941 were more pronounced in PTEN mutant compared with PTEN-restored cells (P < 0.05). Hypoxia increased migration in papillary cells and cell spreading/migration in FTC cells (P < 0.01). GDC-0941 reduced spreading and migration in all O(2) conditions, whereas dnHIF had an impact only on hypoxia-induced migration (P < 0.001). In vivo, GDC-0941 reduced expression of HIF-1α, phospho-AKT, GLUT-1, and lactate dehydrogenase A in FTC xenografts. DnHIF expression and GDC-0941 reduced FTC tumor growth and metastatic lung colonization (P < 0.05). PI3K plays a prominent role in the metastatic behavior of thyroid carcinoma cells irrespective of O(2) tension and appears upstream of HIF activation. GDC-0941 significantly inhibited the metastatic phenotype, supporting the clinical development of PI3K inhibition in thyroid carcinomas.

  14. MicroRNA-375/SEC23A as biomarkers of the in vitro efficacy of vandetanib.

    PubMed

    Lassalle, Sandra; Zangari, Joséphine; Popa, Alexandra; Ilie, Marius; Hofman, Véronique; Long, Elodie; Patey, Martine; Tissier, Frédérique; Belléannée, Geneviève; Trouette, Hélène; Catargi, Bogdan; Peyrottes, Isabelle; Sadoul, Jean-Louis; Bordone, Olivier; Bonnetaud, Christelle; Butori, Catherine; Bozec, Alexandre; Guevara, Nicolas; Santini, José; Hénaoui, Imène Sarah; Lemaire, Géraldine; Blanck, Olivier; Vielh, Philippe; Barbry, Pascal; Mari, Bernard; Brest, Patrick; Hofman, Paul

    2016-05-24

    In this study, we performed microRNA (miRNA) expression profiling on a large series of sporadic and hereditary forms of medullary thyroid carcinomas (MTC). More than 60 miRNAs were significantly deregulated in tumor vs adjacent non-tumor tissues, partially overlapping with results of previous studies. We focused our attention on the strongest up-regulated miRNA in MTC samples, miR-375, the deregulation of which has been previously observed in a variety of human malignancies including MTC. We identified miR-375 targets by combining gene expression signatures from human MTC (TT) and normal follicular (Nthy-ori 3-1) cell lines transfected with an antagomiR-375 inhibitor or a miR-375 mimic, respectively, and from an in silico analysis of thyroid cell lines of Cancer Cell Line Encyclopedia datasets. This approach identified SEC23A as a bona fide miR-375 target, which we validated by immunoblotting and immunohistochemistry of non-tumor and pathological thyroid tissue. Furthermore, we observed that miR-375 overexpression was associated with decreased cell proliferation and synergistically increased sensitivity to vandetanib, the clinically relevant treatment of metastatic MTC. We found that miR-375 increased PARP cleavage and decreased AKT phosphorylation, affecting both cell proliferation and viability. We confirmed these results through SEC23A direct silencing in combination with vandetanib, highlighting the importance of SEC23A in the miR-375-associated increased sensitivity to vandetanib.Since the combination of increased expression of miR-375 and decreased expression of SEC23A point to sensitivity to vandetanib, we question if the expression levels of miR-375 and SEC23A should be evaluated as an indicator of eligibility for treatment of MTC patients with vandetanib.

  15. M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation

    PubMed Central

    Morgan, Hugh P.; O’Reilly, Francis J.; Wear, Martin A.; O’Neill, J. Robert; Fothergill-Gilmore, Linda A.; Hupp, Ted; Walkinshaw, Malcolm D.

    2013-01-01

    We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC50 value of 0.24 mM, whereas thyroid hormone (triiodo-l-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC50 of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC50 (concentration that gives 50% activation) of 7 μM] shifts the equilibrium to the tetrameric active R-state, which has a similar activity to that of the constitutively fully active isoform M1PYK. Proliferation assays using HCT-116 cells showed that addition of inhibitors phenylalanine and T3 both increased cell proliferation, whereas addition of the activator F16BP reduced proliferation. F16BP abrogates the inhibitory effect of both phenylalanine and T3, highlighting a dominant role of M2PYK allosteric activation in the regulation of cancer proliferation. X-ray structures show constitutively fully active M1PYK and F16BP-bound M2PYK in an R-state conformation with a lysine at the dimer-interface acting as a peg in a hole, locking the active tetramer conformation. Binding of phenylalanine in an allosteric pocket induces a 13° rotation of the protomers, destroying the peg-in-hole R-state interface. This distinct T-state tetramer is stabilized by flipped out Trp/Arg side chains that stack across the dimer interface. X-ray structures and biophysical binding data of M2PYK complexes explain how, at a molecular level, fluctuations in concentrations of amino acids, thyroid hormone, and glucose metabolites switch M2PYK on and off to provide the cell with a nutrient sensing and growth signaling mechanism. PMID:23530218

  16. Lovastatin inhibits proliferation of anaplastic thyroid cancer cells through up-regulation of p27 by interfering with the Rho/ROCK-mediated pathway.

    PubMed

    Zhong, Wen-Bin; Hsu, Sung-Po; Ho, Pei-Yin; Liang, Yu-Chih; Chang, Tien-Chun; Lee, Wen-Sen

    2011-12-01

    Previously, we demonstrated that lovastatin, a HMG-CoA reductase inhibitor, induced apoptosis, differentiation, and inhibition of invasiveness of human anaplastic thyroid carcinoma cells (ATCs). Here, we further examined the effect of lovastatin on the growth of ARO cells. Lovastatin (0-20μM) concentration-dependently decreased cell number in cultured ATC and arrested the cell at the G0/G1 phase of the cell cycle. Western blot analysis revealed that lovastatin caused an increase of the protein level of p27 and cyclin-dependent kinase (CDK)4 and a decrease of the protein level of cyclin A2, cyclin D3, and phosphorylated Rb (pRb), but did not significantly change the protein levels of p21, cyclins D1 and E, and CDK2, in ARO cells. The formation of the CDK2-p27 complex was increased and the CDK2 activity was decreased in the lovastatin-treated ARO cells. Pretreatment of ARO cells with a p27, but not p21, antisense oligonucleotide prevented the lovastatin-induced G0/G1 arrest in ARO cells. The lovastatin-induced growth inhibition and translocation of RhoA and Rac1 in ARO cells were completely prevented by mevalonate and partially by geranylgeranyl pyrophosphate. Treatment of ARO cells with Y27632, an inhibitor of Rho-associated kinase, abolished the GGPP-mediated prevention of lovastatin-induced anti-proliferation and up-regulation and prolonged degradation of p27. Taken together, these data suggest that lovastatin treatment caused a reduction of Rho geranylgeranylation, which in turn increased the expression and stability of p27, and then inhibited ARO cell proliferation. These data suggest that lovastatin merits further investigation as multipotent therapy for treatment ATC. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Shikonin Inhibites Migration and Invasion of Thyroid Cancer Cells by Downregulating DNMT1

    PubMed Central

    Zhang, Yue; Sun, Bin; Huang, Zhi

    2018-01-01

    Background Shikonin is a component of Chinese herbal medicine. The aim of this study was to investigate the effects of shikonin on cell migration of papillary thyroid cancer cells of the TPC-1 cell line in vitro and expression levels of the phosphate and tensin homolog deleted on chromosome 10 (PTEN) and DNA methyltransferase 1 (DNMT1) genes. Material/Methods The Cell Counting Kit-8 (CCK-8) assay was performed to evaluate the proliferation of TPC-1 papillary thyroid cancer cells, and the normal thyroid cells, HTori-3, in vitro. A transwell motility assay was used to analyze the migration of TPC-1 cells. Western blot was performed to determine the expression levels of PTEN and DNMT1 genes. A methylation-specific polymerase chain reaction (PCR) (MSP) assay was used to evaluate the methylation of PTEN. Results Following treatment with shikonin, the cell survival rate of TPC-1 cells decreased in a dose-dependent manner; the inhibitory effects on HTori-3 cells were less marked. Shikonin inhibited TPC-1 cell migration and invasion in a dose-dependent manner. The methylation of PTEN was suppressed by shikonin, which also reduced the expression of DNMT1 in a dose-dependent manner, and increased the expression of PTEN. Overexpression of DNMT1 promoted the migration of TPC-1 cells and the methylation of PTEN. Levels of protein expression of PTEN in TPC-1 cells treated with shikonin decreased, and were increased by DNMT1 knockdown. Conclusions Shikonin suppressed the expression of DNMT1, reduced PTEN gene methylation, and increased PTEN protein expression, leading to the inhibition of TPC-1 cell migration. PMID:29389913

  18. LncRNA TNRC6C-AS1 regulates UNC5B in thyroid cancer to influence cell proliferation, migration, and invasion as a competing endogenous RNA of miR-129-5p.

    PubMed

    Hou, Sen; Lin, Qiuyu; Guan, Feng; Lin, Chenghe

    2018-06-12

    To investigate the biological functions and regulatory mechanism of lncRNA TNRC6C-AS1 in thyroid cancer (TC). TNRC6C-AS1, miR-129-5p, and UNC5B expression levels were investigated by qRT-PCR and Western blot. CCK-8 assay was conducted to determine cell proliferation, while transwell assay was for inspection of cell migration and invasion. Through bioinformatic analysis, the interactions among TNRC6C-AS1, miR-129-5p, and UNC5B were predicted. Dual luciferase reporter gene assay and RNA pull-down assay confirmed the predicted target relationships. Tumor xenograft assay was applied to inspect the effect of TNRC6C-AS1 downregulation on TC development in vivo. TNRC6C-AS1 and UNC5B were overexpressed, while miR-129-5p was underexpressed in TC tissues and cells. TNRC6C-AS1/UNC5B downregulation and miR-129-5p overexpression could suppress proliferation, migration, and invasion of TC cells as well as inhibit tumorigenesis in vivo. MiR-129-5p targeted TNRC6C-AS1 and UNC5B in TC cells; and UNC5B expression was downregulated by knocking down TNRC6C-AS1, which competitively bound with miR-129-5p. Downregulation of TNRC6C-AS1 restrained TC development by knocking down UNC5B through upregulating the expression of miR-129-5p. © 2018 Wiley Periodicals, Inc.

  19. Galectins and Carcinogenesis: Their Role in Head and Neck Carcinomas and Thyroid Carcinomas.

    PubMed

    Kindt, Nadège; Journe, Fabrice; Ghanem, Ghanem E; Saussez, Sven

    2017-12-18

    Head and neck cancers are among the most frequently occurring cancers worldwide. Of the molecular drivers described for these tumors, galectins play an important role via their interaction with several intracellular pathways. In this review, we will detail and discuss this role with specific reference to galectins-1, -3, and -7 in angiogenesis, cell proliferation, and invasion as well as in cell transformation and cancer progression. Furthermore, we will evaluate the prognostic value of galectin expression in head and neck cancers including those with oral cavity, salivary gland, and nasopharyngeal pathologies. In addition, we will discuss the involvement of these galectins in thyroid cancers where their altered expression is proposed as a new diagnostic biomarker.

  20. [Pathophysiology of Grave's disease (author's transl)].

    PubMed

    Karsenty, G; Schaison, G

    1982-02-27

    It has been established that Grave's disease is an autoimmune condition characterized by immunization against TSH receptors. Neither the receptors nor the stimulating immunoglobulins have been identified, but there seems to be two types of antireceptor antibodies: some stimulate the production of hormones or of thyroid stimulating immunoglobulins (TSI) and are responsible for thyrotoxicosis; others stimulate cell proliferation or thyroid growth immunoglobulins (TGI) and account for the diffuse goitre. The mechanism that triggers off autoimmunization is still unknown, but the disease frequently occurs in individuals genetically predisposed, as suggested by the high incidence of some HLA B8 and DR W3 antigens.

  1. O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy.

    PubMed

    Cheng, Y U; Li, Honglun; Li, Jianlin; Li, Jisheng; Gao, Yan; Liu, Baodong

    2016-07-01

    O-linked N -acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), a dynamic post-translational modification of nuclear and cytoplasmic proteins, may have a critical role in the regulation of biological cell processes and human cancer. O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Accumulating evidence suggests that O-GlcNAcylation is involved in a variety of types of human cancer. However, the exact role of O-GlcNAcylation in tumor pathogenesis or progression remains to be established. Computed tomography scans of patients with anaplastic thyroid carcinoma (ATC) reveal a rapid growth rate and invasion. The present study demonstrated that O-GlcNAcylation accelerates the progression of ATC. The global O-GlcNAc level of intracellular proteins was increased by overexpression of OGT or downregulation of OGA activity with the specific inhibitor Thiamet-G. By contrast, the global O-GlcNAc level was decreased by silencing of OGT. MTT assay indicated that O-GlcNAcylation significantly promotes cell proliferation. Furthermore, O-GlcNAcylation enhanced cellular biological functions, such as colony formation ability, migration and invasion, of ATC cells in vitro . The findings of the present study suggest that O-GlcNAcylation is associated with malignant properties of thyroid cancer, and may be a potential target for the diagnosis and treatment of thyroid cancer.

  2. Laminin-5γ-2 (LAMC2) Is Highly Expressed in Anaplastic Thyroid Carcinoma and Is Associated With Tumor Progression, Migration, and Invasion by Modulating Signaling of EGFR

    PubMed Central

    Kanojia, Deepika; Okamoto, Ryoko; Jain, Saket; Madan, Vikas; Chien, Wenwen; Sampath, Abhishek; Ding, Ling-Wen; Xuan, Meng; Said, Jonathan W.; Doan, Ngan B.; Liu, Li-Zhen; Yang, Henry; Gery, Sigal; Braunstein, Glenn D.; Koeffler, H. Phillip

    2014-01-01

    Context: Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy having no effective treatment. Laminin subunit-γ-2 (LAMC2) is an epithelial basement membrane protein involved in cell migration and tumor invasion and might represent an ideal target for the development of novel therapeutic approaches for ATC. Objective: The objective of the investigation was to study the role of LAMC2 in ATC tumorigenesis. Design: LAMC2 expression was evaluated by RT-PCR, Western blotting, and immunohistochemistry in tumor specimens, adjacent noncancerous tissues, and cell lines. The short hairpin RNA (shRNA) approach was used to investigate the effect of LAMC2 knockdown on the tumorigenesis of ATC. Results: LAMC2 was highly expressed in ATC samples and cell lines compared with normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed the migration, invasion, and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered the expression of genes associated with migration, invasion, proliferation, and survival. Immunoprecipitation studies showed that LAMC2 bound to epidermal growth factor receptor (EGFR) in the ATC cells. Silencing LAMC2 partially blocked epidermal growth factor-mediated activation of EGFR and its downstream pathway. Interestingly, cetuximab (an EGFR blocking antibody) or EGFR small interfering RNA additively enhanced the antiproliferative activity of the LAMC2 knockdown ATC cells compared with the control cells. Conclusions: To our knowledge, this is the first report investigating the effect of LAMC2 on cell growth, cell cycle, migration, invasion, and EGFR signaling in ATC cells, suggesting that LAMC2 may be a potential therapeutic target for the treatment of ATC. PMID:24170107

  3. 15-Deoxy-Δ12,14-prostaglandin J2 Induces Apoptosis and Upregulates SOCS3 in Human Thyroid Cancer Cells

    PubMed Central

    Trindade-da-Silva, Carlos Antônio; Reis, Carolina Fernandes; Vecchi, Lara; Napimoga, Marcelo Henrique; Sperandio, Marcelo; Matias Colombo, Bruna França; Alves, Patrícia Terra; Ward, Laura Sterian; Ueira-Vieira, Carlos; Goulart, Luiz Ricardo

    2016-01-01

    The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a natural ligand of peroxisome proliferator-activated receptor gamma (PPAR-γ) and a potential mediator of apoptosis in cancer cells. In the present study, we evaluated the effect of 15d-PGJ2 in human thyroid papillary carcinoma cells (TPC-1) using different doses of 15d-PGJ2 (0.6 to 20 μM) to determine IC50 (9.3 μM) via the MTT assay. The supernatant culture medium of the TPC-1 cells that was treated either with 15d-PGJ2 or with vehicle (control) for 24 hours was assessed for IL-6 secretion via CBA assay. RT-qPCR was used to evaluate mRNA expression of IL-6, SOCS1, SOCS3, and STAT3. TPC-1 cells treated with 15d-PGJ2 decreased the secretion and expression of IL-6 and STAT3, while it increased SOCS1 and SOCS3. Overall, we demonstrated that 15d-PGJ2 downregulated IL-6 signaling pathway and led TPC-1 cells into apoptosis. In conclusion, 15d-PGJ2 shows the potential to become a new therapeutic approach for thyroid tumors. PMID:27190500

  4. Combinatorial anticancer effects of curcumin and sorafenib towards thyroid cancer cells via PI3K/Akt and ERK pathways.

    PubMed

    Zhang, Junjia; Yu, Jichun; Xie, Rong; Chen, Wanzhi; Lv, Yunxia

    2016-08-01

    The objective of this study was to examine the in vitro combinatorial anticancer effects of curcumin and sorafenib towards thyroid cancer cells FTC133 using a MTT cytotoxicity assay, and to test whether the mechanism involves induction of apoptosis. The present results demonstrated that curcumin at 15-25 μM dose-dependently suppressed the proliferation of FTC133. Combined treatment (curcumin (25 μM) and sorafenib (2 μM)) resulted in a reduction in cell colony formation and significantly decreased the invasion and migration of FTC133 cells compared with that treated with individual drugs. Western blot showed that the levels of p-ERK and p-Akt proteins were significantly reduced (p < 0.01) in the medicine-treated FTC133 cells. The curcumin was found to dose-dependently inhibit the apoptosis of FTC133 cells possibly via PI3K/Akt and ERK pathways. There is a synergetic antitumour effect between curcumin and sorafenib.

  5. Overexpression of long intergenic noncoding RNA LINC00312 inhibits the invasion and migration of thyroid cancer cells by down-regulating microRNA-197-3p.

    PubMed

    Liu, Kai; Huang, Wen; Yan, Dan-Qing; Luo, Qing; Min, Xiang

    2017-08-31

    The study evaluated the ability of long intergenic noncoding RNA LINC00312 (LINC00312) to influence the proliferation, invasion, and migration of thyroid cancer (TC) cells by regulating miRNA-197-3p. TC tissues and adjacent normal tissues were collected from 211 TC patients. K1 (papillary TC), SW579 (squamous TC), and 8505C (anaplastic TC) cell lines were assigned into a blank, negative control (NC), LINC00312 overexpression, miR-197-3p inhibitors, and LINC00312 overexpression + miR-197-3p mimics group. The expression of LINC00312, miR-197-3p , and p120 were measured using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation was assessed via CCK8 assay, cell invasion through the scratch test, and cell migration via Transwell assay. In comparison with adjacent normal tissues, the expression of LINC00312 is down-regulated and the expression of miR-197-3p is up-regulated in TC tissues. The dual luciferase reporter gene assay confirmed that P120 is a target of miR-197-3p The expression of LINC00312 and p120 was higher in the LINC00312 overexpression group than in the blank and NV groups. However, the expression of miR-197-3p was lower in the LINC00312 overexpression group than in the blank and NC groups. The miR-197-3p inhibitors group had a higher expression of miR-197-3p , but a lower expression of p120 than the blank and NC groups. The LINC00312 overexpression and miR-197-3p inhibitor groups had reduced cell proliferation, invasion and migration than the blank and NC groups. These results indicate that a LINC00312 overexpression inhibits the proliferation, invasion, and migration of TC cells and that this can be achieved by down-regulating miR-197-3p . © 2017 The Author(s).

  6. Re-induction of cell differentiation and (131)I uptake in dedifferentiated FTC-133 cell line by TSHR gene transfection.

    PubMed

    Feng, Fang; Wang, Hui; Hou, Shasha; Fu, Hongliang

    2012-11-01

    Radioiodine therapy is commonly used to treat differentiated thyroid cancer (DTC), but a major challenge is dedifferentiation of DTC with the loss of radioiodine uptake. TSHR is a key molecule regulating thyrocyte proliferation and function. This study aimed to test the therapeutic potential of TSHR in dedifferentiated DTC by gene transfection in order to restore cell differentiation and radioiodine uptake. Dedifferentiated FTC-133 (dFTC-133) cells were obtained by monoclonal culture of FTC-133 cell line after (131)I radiation. Recombinant plasmid pcDNA3.1-hTSHR was transfected into dFTC-133 cells by using Lipofectamine 2000 reagent. Immunofluorescence analysis was carried out to confirm TSHR expression and its location. Radioiodine uptake assay was thereafter investigated. mRNAs and proteins of TSHR and other thyroid differentiated markers were detected by real-time PCR and western blot respectively. Among the thyroid specific genes in dFTC-133 cells with stable low radioiodine uptake, TSHR was down-regulated most significantly compared with FTC-133. Then, after TSHR gene transfection, augmented expression of TSHR was observed in dFTC-133 cell surface and cytoplasm by immunofluorescence analysis. It was found that (125)I uptake was 2.9 times higher (t=28.63, P<.01) in cells with TSHR transfection than control. The mRNAs of TSHR, NIS, TPO and Tg were also significantly increased by 1.7 times (t=13.8, P<.05), 4 times (t=28.52, P<.05), 1.5 times (t=14.43, P<.05) and 2.2 times (t=19.83, P<.05) respectively compared with control group. Decreased TSHR expression correlated with FTC-133 ongoing dedifferentiation. TSHR transfection contributed to the re-differentiation of dedifferentiated thyroid follicular carcinoma cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Identification of BAG3 target proteins in anaplastic thyroid cancer cells by proteomic analysis.

    PubMed

    Galdiero, Francesca; Bello, Anna Maria; Spina, Anna; Capiluongo, Anna; Liuu, Sophie; De Marco, Margot; Rosati, Alessandra; Capunzo, Mario; Napolitano, Maria; Vuttariello, Emilia; Monaco, Mario; Califano, Daniela; Turco, Maria Caterina; Chiappetta, Gennaro; Vinh, Joëlle; Chiappetta, Giovanni

    2018-01-30

    BAG3 protein is an apoptosis inhibitor and is highly expressed in Anaplastic Thyroid Cancer. We investigated the entire set of proteins modulated by BAG3 silencing in the human anaplastic thyroid 8505C cancer cells by using the Stable-Isotope Labeling by Amino acids in Cell culture strategy combined with mass spectrometry analysis. By this approach we identified 37 up-regulated and 54 down-regulated proteins in BAG3-silenced cells. Many of these proteins are reportedly involved in tumor progression, invasiveness and resistance to therapies. We focused our attention on an oncogenic protein, CAV1, and a tumor suppressor protein, SERPINB2, that had not previously been reported to be modulated by BAG3. Their expression levels in BAG3-silenced cells were confirmed by qRT-PCR and western blot analyses, disclosing two novel targets of BAG3 pro-tumor activity. We also examined the dataset of proteins obtained by the quantitative proteomics analysis using two tools, Downstream Effect Analysis and Upstream Regulator Analysis of the Ingenuity Pathways Analysis software. Our analyses confirm the association of the proteome profile observed in BAG3-silenced cells with an increase in cell survival and a decrease in cell proliferation and invasion, and highlight the possible involvement of four tumor suppressor miRNAs and TP53/63 proteins in BAG3 activity.

  8. Selected Case From the Arkadi M. Rywlin International Pathology Slide Seminar: Benign Warthin Tumor of the Thyroid.

    PubMed

    Peckova, Kvetoslava; Daum, Ondrej; Michal, Michael; Curcikova, Radmila; Michal, Michal

    2016-09-01

    We report on an exceedingly rare lesion of the thyroid probably of a branchial cleft origin, which was not published in the world literature before. A 58-year-old woman underwent a total thyroidectomy for bilateral goiter. Grossly, there was one yellowish nodule sized 15 mm in the largest dimension found in the right lobe. Microscopically, the thyroid parenchyma showed signs of Hashimoto thyroiditis. The nodule in the right lobe was composed of a part of solid cell nests appearance, another part resembling a branchial cleft cyst, and a part resembling Warthin tumor. This lesion may belong to the histogenetically similar group of entities in the head and neck region which are derived from branchial cleft derivatives and which, under the inflammatory influence, have the ability to a cystic dilatation and proliferation of the epithelial component. The epithelium can afterwards become papillary and may undergo oncocytic transformation, thus gaining features that impart the resemblance of a Warthin tumor. Club members generally agreed with a submitted diagnosis of benign Warthin tumor of the thyroid.

  9. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model.

    PubMed

    Marano, Francesca; Frairia, Roberto; Rinella, Letizia; Argenziano, Monica; Bussolati, Benedetta; Grange, Cristina; Mastrocola, Raffaella; Castellano, Isabella; Berta, Laura; Cavalli, Roberta; Catalano, Maria Graziella

    2017-06-01

    Anaplastic thyroid cancer is one of the most lethal diseases, and a curative therapy does not exist. Doxorubicin, the only drug approved for anaplastic thyroid cancer treatment, has a very low response rate and causes numerous side effects among which cardiotoxicity is the most prominent. Thus, doxorubicin delivery to the tumor site could be an import goal aimed to improve the drug efficacy and to reduce its systemic side effects. We recently reported that, in human anaplastic thyroid cancer cell lines, combining doxorubicin-loaded nanobubbles with extracorporeal shock waves, acoustic waves used in lithotripsy and orthopedics without side effects, increased the intracellular drug content and in vitro cytotoxicity. In the present study, we tested the efficacy of this treatment on a human anaplastic thyroid cancer xenograft mouse model. After 21 days, the combined treatment determined the greatest drug accumulation in tumors with consequent reduction of tumor volume and weight, and an extension of the tumor doubling time. Mechanistically, the treatment induced tumor apoptosis and decreased cell proliferation. Finally, although doxorubicin caused the increase of fibrosis markers and oxidative stress in animal hearts, loading doxorubicin into nanobubbles avoided these effects preventing heart damage. The improvement of doxorubicin anti-tumor effects together with the prevention of heart damage suggests that the combination of doxorubicin-loaded nanobubbles with extracorporeal shock waves might be a promising drug delivery system for anaplastic thyroid cancer treatment. © 2017 Society for Endocrinology.

  10. Germline PARP4 mutations in patients with primary thyroid and breast cancers.

    PubMed

    Ikeda, Yuji; Kiyotani, Kazuma; Yew, Poh Yin; Kato, Taigo; Tamura, Kenji; Yap, Kai Lee; Nielsen, Sarah M; Mester, Jessica L; Eng, Charis; Nakamura, Yusuke; Grogan, Raymon H

    2016-03-01

    Germline mutations in the PTEN gene, which cause Cowden syndrome, are known to be one of the genetic factors for primary thyroid and breast cancers; however, PTEN mutations are found in only a small subset of research participants with non-syndrome breast and thyroid cancers. In this study, we aimed to identify germline variants that may be related to genetic risk of primary thyroid and breast cancers. Genomic DNAs extracted from peripheral blood of 14 PTEN WT female research participants with primary thyroid and breast cancers were analyzed by whole-exome sequencing. Gene-based case-control association analysis using the information of 406 Europeans obtained from the 1000 Genomes Project database identified 34 genes possibly associated with the phenotype with P < 1.0 × 10(-3). Among them, rare variants in the PARP4 gene were detected at significant high frequency (odds ratio = 5.2; P = 1.0 × 10(-5)). The variants, G496V and T1170I, were found in six of the 14 study participants (43%) while their frequencies were only 0.5% in controls. Functional analysis using HCC1143 cell line showed that knockdown of PARP4 with siRNA significantly enhanced the cell proliferation, compared with the cells transfected with siControl (P = 0.02). Kaplan-Meier analysis using Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA) and The Cancer Genome Atlas (TCGA) datasets showed poor relapse-free survival (P < 0.001, Hazard ratio 1.27) and overall survival (P = 0.006, Hazard ratio 1.41) in a PARP4 low-expression group, suggesting that PARP4 may function as a tumor suppressor. In conclusion, we identified PARP4 as a possible susceptibility gene of primary thyroid and breast cancer. © 2016 Society for Endocrinology.

  11. Germline PARP4 mutations in patients with primary thyroid and breast cancers

    PubMed Central

    Ikeda, Yuji; Kiyotani, Kazuma; Yew, Poh Yin; Kato, Taigo; Tamura, Kenji; Yap, Kai-Lee; Nielsen, Sarah M.; Mester, Jessica L; Eng, Charis; Nakamura, Yusuke; Grogan, Raymon H.

    2016-01-01

    Germline mutations in the PTEN gene, which cause Cowden syndrome (CS), are known to be one of the genetic factors for primary thyroid and breast cancers, however, PTEN mutations are found in only a small subset of research participants with non-syndrome breast and thyroid cancers. In this study, we aimed to identify germline variants that may be related to genetic risk of primary thyroid and breast cancers. Genomic DNAs extracted from peripheral blood of 14 PTEN-wild-type female research participants with primary thyroid and breast cancers were analyzed by whole-exome sequencing. Gene-based case control association analysis using the information of 406 Europeans obtained from the 1000 Genomes Project database identified 34 genes possibly associated with the phenotype with P<1.0×10−3. Among them, rare variants in the PARP4 gene were detected at significant high frequency (odds ratio = 5.2, P = 1.0×10−5). The variants, G496V and T1170I, were found in 6 of the 14 study participants (43%) while their frequencies were only 0.5% in controls. Functional analysis using HCC1143 cell line showed that knockdown of PARP4 with siRNA significantly enhanced the cell proliferation, compared with the cells transfected with siControl (P = 0.02). Kaplan-Meier analysis using GEO, EGA and TCGA datasets showed poor progression-free survival (P = 0.006, Hazard ratio 0.71) and overall survival (P < 0.0001, Hazard ratio 0.79) in a PARP4 low-expression group, suggesting that PARP4 may function as a tumor suppression. In conclusion, we identified PARP4 as a possible susceptibility gene of primary thyroid and breast cancer. PMID:26699384

  12. Identification of Cytological Features Distinguishing Mucosa-Associated Lymphoid Tissue Lymphoma from Reactive Lymphoid Proliferation Using Thyroid Liquid-Based Cytology

    PubMed Central

    Suzuki, Ayana; Hirokawa, Mitsuyoshi; Ito, Aki; Takada, Nami; Higuchi, Miyoko; Hayashi, Toshitetsu; Kuma, Seiji; Miyauchi, Akira

    2018-01-01

    Objective To identify cytological differences between mucosa-associated lymphoid tissue lymphoma (MALT-L) and nonneoplastic lymphocytes using thyroid liquid-based cytology (LBC). Study Design We observed LBC and conventional specimens from 35 MALT-L cases, 3 diffuse large B-cell cell lymphoma (DLBCL) cases, and 44 prominent nonneoplastic lymphocytic infiltration cases. Results In MALT-L cases, the incidence of lymphoglandular bodies in the LBC specimens was lower than that in the conventional specimens (p < 0.001). Moreover, the nuclear sizes in LBC specimens were larger than those in conventional specimens. In 62.9% of the MALT-L and all DLBCL specimens, large nuclei were present in > 10% of the lymphoid cells in LBC specimens. Two cases with prominent nonneoplastic lymphocytic infiltration also exhibited these findings. In LBC specimens, swollen naked nuclei with less punctate chromatin patterns and thin nuclear margins were observed in 92.1% of lymphoma and 20.5% of prominent nonneoplastic lymphocytic infiltration. Elongated nuclei were significantly more apparent in thyroid lymphoma than in prominent nonneoplastic lymphocytic infiltration (p < 0.001), with a significantly higher incidence in LBC specimens than in conventional specimens (p < 0.001). Conclusions Lymphoglandular bodies are not reliable markers for lymphoma diagnosis using LBC specimens. Large, swollen naked, and elongated nuclei are useful in distinguishing thyroid lymphoma from nonneoplastic lymphocytes in LBC specimens. PMID:29597203

  13. Polymorphisms of IKZF3 Gene and Autoimmune Thyroid Diseases: Associated with Graves' Disease but Not with Hashimoto's Thyroiditis.

    PubMed

    Li, Ling; Ding, Xiaolian; Wang, Xuan; Yao, Qiuming; Shao, Xiaoqing; An, Xiaofei; Yan, Ni; Jiang, Yanfei; Wang, Wen; Shi, Liangfeng; Qin, Qiu; Song, Ronghua; Zhang, Jin-An; Sun, Peilong

    2018-01-01

    The IKZF3 gene encodes a zinc-finger protein that plays an important role in the proliferation and differentiation of B lymphocytes. Autoimmune thyroid diseases (AITDs), mainly include Graves' disease (GD) and Hashimoto's thyroiditis (HT), are probably caused by the aberrant proliferation of B cells. The objective of this study was to explore the association between IKZF3 polymorphisms and AITDs. We examined 915 AITD patients (604 GD and 311 HT) and 814 healthy controls. IKZF3 variants (rs2941522, rs907091, rs1453559, rs12150079 and rs2872507) were tested by PCR-ligase detection reaction. It was manifested that that the minor alleles of the five loci increased susceptibility to GD (p<0.05 for rs2941522, and p<0.01 for rs907091, rs1453559, rs12150079 and rs2872507) but in HT patients, these loci showed no significant difference compared with controls. Similarly, the genotype distributions of GD patients manifested obvious differences in all these loci compared with the control group, whereas no statistical differences were observed between HT patients and controls. Furthermore, bioinformatics tools were used to analyze rs1453559, rs12150079 and rs907091. These variants were believed to be the transcription regulator. It is the first time we reported the association between the IKZF3 polymorphisms and GD, indicating that IKZF3 gene tends to bean important risk factor for the development of GD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Spectrum of lesions derived from branchial arches occurring in the thyroid: from solid cell nests to tumors.

    PubMed

    Srbecka, Kristyna; Michalova, Kvetoslava; Curcikova, Radmila; Michal, Michael; Dubova, Magdalena; Svajdler, Marian; Michal, Michal; Daum, Ondrej

    2017-09-01

    There is a group of lesions in the head and neck region derived from branchial arches and related structures which, when inflamed, are characterized by the formation of cysts lined by squamous or glandular epithelium and surrounded by a heavy inflammatory infiltrate rich in germinal centers. In the thyroid, the main source of various structures which may cause diagnostic dilemma is the ultimobranchial body. To investigate the spectrum of such thyroid lesions, the consultation files were reviewed for thyroid samples containing pathological structures regarded to arise from the ultimobranchial body. Positive reaction with antibodies against CK5/6, p63, galectin 3, and CEA, and negative reaction with antibodies against thyroglobulin, TTF-1, and calcitonin were used to confirm the diagnosis. The specific subtype of the ultimobranchial body-derived lesion was then determined based on histological examination of H&E-stained slides. Twenty-one cases of ultimobranchial body-derived lesions were retrieved from the consultation files, 20 of them along with clinical information (M/F = 6/14, mean age 55 years, range 36-68 years). Lesions derived from the ultimobranchial body were classified as follows: (hyperplastic) solid cell nests (nine cases), solid cell nests with focal cystic change (five cases), cystic solid cell nests (two cases), branchial cleft-like cyst (four cases), and finally a peculiar Warthin tumor-like lesion (one case). We suggest that the common denominator of these structures is that they all arise due to activation of inflammatory cells around the vestigial structures, which leads to cystic dilatation and proliferation of the epithelial component.

  15. The bioartificial thyroid: a biotechnological perspective in endocrine organ engineering for transplantation replacement.

    PubMed

    Toni, Roberto; Casa, Claudia Della; Spaletta, Giulia; Marchetti, Giacomo; Mazzoni, Perseo; Bodria, Monica; Ravera, Simone; Dallatana, Davide; Castorina, Sergio; Riccioli, Vincenzo; Castorina, Emilio Giovanni; Antoci, Salvatore; Campanile, Enrico; Raise, Gabriella; Scalise, Gabriella; Rossi, Raffaella; Rossio, Raffaella; Ugolotti, Giorgio; Ugolottio, Giorgio; Martorella, Andrew; Roti, Elio; Rot, Elio; Sgallari, Fiorella; Pinchera, Aldo

    2007-01-01

    A new concept for ex situ endocrine organ bioengineering is presented, focused on the realization of a human bioartificial thyroid gland. It is based on the theoretical assumption and experimental evidence that symmetries in geometrical coordinates of the thyroid tissue remain invariant with respect to developmental, physiological or pathophysiological transformations occuring in the gland architecture. This topological arrangement is dependent upon physical connections established between cells, cell adhesion molecules and extracellular matrix, leading to the view that the thyroid parenchyma behaves like a deformable "putty", moulded onto an elastic stromal/vascular scaffold (SVS) dictating the final morphology of the gland. In particular, we have raised the idea that the geometry of the SVS per se provides pivotal epigenetic information to address the genetically-programmed, thyrocyte and endothelial/vascular proliferation and differentiation towards a functionally mature gland, making organ form a pre-requirementfor organ function. A number of experimental approaches are explored to obtain a reliable replica of a human thyroid SVS, and an informatic simulation is designed based on fractal growth of the thyroid intraparenchymal arterial tree. Various tissue-compatible and degradable synthetic or biomimetic polymers are discussed to act as a template of the thyroid SVS, onto which to co-seed autologous human thyrocyte (TPC) and endothelial/vascular (EVPC) progenitor cells. Harvest and expansion of both TPC and EVPC in primary culture are considered, with specific attention to the selection of normal thyrocytes growing at a satisfactory rate to colonize the synthetic matrix. In addition, both in vitro and in vivo techniques to authenticate TPC and EVPC lineage differentiation are reviewed, including immunocytochemistry, reverse trascriptase-polymerase chain reaction, flow cytomery and proteomics. Finally, analysis of viability of the thyroid construct following implantation in animal hosts is proposed, with the intent to obtain a bioartificial thyroid gland morphologically and functionally adequate for transplantation. We believe that the biotechnological scenario proposed herein may provide a template to construct other, more complex and clinically-relevant bioartificial endocrine organs ex situ, such as human pancreatic islets and the liver, and perhaps a new approach to brain bioengineering.

  16. Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene.

    PubMed

    Montero-Conde, Cristina; Leandro-Garcia, Luis J; Chen, Xu; Oler, Gisele; Ruiz-Llorente, Sergio; Ryder, Mabel; Landa, Iñigo; Sanchez-Vega, Francisco; La, Konnor; Ghossein, Ronald A; Bajorin, Dean F; Knauf, Jeffrey A; Riordan, Jesse D; Dupuy, Adam J; Fagin, James A

    2017-06-20

    Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with Hras G12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-Hras G12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7 , a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.

  17. Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene

    PubMed Central

    Montero-Conde, Cristina; Leandro-Garcia, Luis J.; Chen, Xu; Oler, Gisele; Ruiz-Llorente, Sergio; Ryder, Mabel; Landa, Iñigo; Sanchez-Vega, Francisco; La, Konnor; Ghossein, Ronald A.; Bajorin, Dean F.; Knauf, Jeffrey A.; Riordan, Jesse D.; Dupuy, Adam J.; Fagin, James A.

    2017-01-01

    Oncogenic RAS mutations are present in 15–30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene. PMID:28584132

  18. Pioglitazone, a PPARγ Agonist, Upregulates the Expression of Caveolin-1 and Catalase, Essential for Thyroid Cell Homeostasis: A Clue to the Pathogenesis of Hashimoto's Thyroiditis.

    PubMed

    Werion, Alexis; Joris, Virginie; Hepp, Michael; Papasokrati, Lida; Marique, Lancelot; de Ville de Goyet, Christine; Van Regemorter, Victoria; Mourad, Michel; Lengelé, Benoit; Daumerie, Chantal; Marbaix, Etienne; Brichard, Sonia; Many, Marie-Christine; Craps, Julie

    2016-09-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that regulates the expression of multiple target genes involved in several metabolic pathways as well as in inflammation. The expression and cell localization of caveolin-1 (Cav-1), thyroperoxidase (TPO), and dual oxidase (DUOX), involved in extracellular iodination, is modulated by Th1 cytokines in human normal thyroid cells and in Hashimoto's thyroiditis (HT). The objectives of this study were (i) to analyze the PPARγ protein and mRNA expression at the follicular level in HT versus controls in correlation with the one of Cav-1; (ii) to study the effects of Th1 cytokines on PPARγ and catalase expression in human thyrocyte primary cultures; and (iii) to study the effects of pioglitazone, a PPARγ agonist, on thyroxisome components (Cav-1, TPO, DUOX) and on catalase, involved in antioxidant defense. Although the global expression of PPARγ in the whole gland of patients with HT was not modified compared with controls, there was great heterogeneity among glands and among follicles within the same thyroid. Besides normal (type 1) follicles, there were around inflammatory zones, hyperactive (type 2) follicles with high PPARγ and Cav-1 expression, and inactive (type 3) follicles which were unable to form thyroxine and did not express PPARγ or Cav-1. In human thyrocytes in primary culture, Th1 cytokines decreased PPARγ and catalase expression; pioglitazone increased Cav-1, TPO, and catalase expression. PPARγ may play a central role in normal thyroid physiology by upregulating Cav-1, essential for the organization of the thyroxisome and extracellular iodination. By upregulating catalase, PPARγ may also contribute to cell homeostasis. The inhibitory effect of Th1 cytokines on PPARγ expression may be considered as a new pathogenetic mechanism for HT, and the use of PPARγ agonists could open a new therapeutic approach.

  19. Thyroid Hormone Role and Economy in the Developing Testis.

    PubMed

    Hernandez, Arturo

    2018-01-01

    Thyroid hormones (TH) exhibit pleiotropic regulatory effects on growth, development, and metabolism, and it is becoming increasingly apparent that the developing testis is an important target for them. Testicular development is highly dependent on TH status. Both hypo- and hyperthyroidism affect testis size and the proliferation and differentiation of Sertoli, Leydig, and germ cells, with consequences for steroidogenesis, spermatogenesis, and male fertility. These observations suggest that an appropriate content of TH and by implication TH action in the testis, whether the result of systemic hormonal levels or regulatory mechanisms at the local level, is critical for normal testicular and reproductive function. The available evidence indicates the presence in the developing testis of a number of transporters, deiodinases and receptors that could play a role in the timely delivery of TH action on testicular cells. These include the thyroid hormone receptor alpha (THRA), the MCT8 transporter, the TH-activating deiodinase DIO2, and the TH-inactivating deiodinase DIO3, all of which appear to modulate testicular TH economy and testis outcomes. © 2018 Elsevier Inc. All rights reserved.

  20. Ultrasound guided fine needle aspiration biopsy of parathyroid gland and lesions.

    PubMed

    Dimashkieh, Haytham; Krishnamurthy, Savitri

    2006-03-28

    Parathyroid gland and their tumors comprise a small proportion of non-palpable neck masses that are investigated by ultrasound (US) guided fine needle aspiration biopsy. We reviewed our institution's cases of US guided FNAB of parathyroid gland and their lesions to determine the role of cytology for the preoperative diagnosis of parathyroid gland and their lesions. All cases of FNAB of parathyroid gland and lesions in the last 10 years were reviewed in detail with respect to clinical history and correlated with the histopathologic findings in available cases. The cytologic parameters that were evaluated included cellularity assessed semiquantitatively as scant, intermediate or abundant (<50, 51-500 or >500 cells), cellular distribution (loose clusters, single cells/naked nuclei, rounded clusters, two- and three-dimensional clusters, and presence of prominent vascular proliferation), cellular characteristics (cell size, nuclear shape, presence/absence of a nucleolus, degree of mitosis, amount of cytoplasm, and appearance of nuclear chromatin), and background (colloid-like material and macrophages). Immunostaining for parathyroid hormone (PTH) was performed on selected cases using either destained Pap smears or cell block sections. Twenty cases of US-guided FNAB of parathyroid glands and their lesions including 13 in the expected locations in the neck, 3 in intrathyroid region, 3 in thyroid bed, and 1 metastatic to liver were studied. Majority of the cases showed intermediate cellularity (51-500 cells) with round to oval cells that exhibited a stippled nuclear chromatin, without significant pleomorphism or mitotic activity. The cells were arranged in loose two dimensional groups with many single cells/naked nuclei around the groups. Occasionally macrophages and colloid like material was also encountered. There was no significant difference in the cytomorphologic features between normal gland, hyperplasia adenoma, or carcinoma. Immunocytochemical analysis for PHT was performed for 14 cases (6 destained smears and 8 cell blocks) which showed distinct cytoplasmic positivity. US-guided FNAB is a useful test for confirming the diagnosis of not only clinically suspected parathyroid gland and lesions but also for detecting parathyroid glands in unexpected locations such as in thyroid bed or within the thyroid gland. Although there is significant overlap in the cytomorphologic features of cells derived from parathyroid and thyroid gland, the presence of stippled nuclear chromatin, prominent vascular proliferation with attached epithelial cells, and frequent occurrence of single cells/naked nuclei are useful clues that favor parathyroid origin. Distinction of the different parathyroid lesions including hyperplasia, adenoma, and carcinoma cannot be made solely on cytology. Immunostaining for PTH can be performed on destained Pap smears and cell block sections which can be valuable for confirming parathyroid origin of the cells.

  1. Natural history of thyroid cancer [Review].

    PubMed

    Takano, Toru

    2017-03-31

    Thyroid cancers have long been considered to arise in middle age and, after their repeated proliferation, resulting in further damage to the genome, they progress to more aggressive and lethal cancers. However, in 2014, some studies were reported that might lead to a marked change in our understanding of the natural history of thyroid cancer. A high prevalence of papillary carcinoma in the young suggested that the first initiation of thyroid cancer is likely to occur in the infantile period. Such a conclusion was also supported by a very slow growth rate of papillary microcarcinomas (PMCs) in an observation trial. The proliferation rate of PMCs was negatively correlated with the age, and surgery to remove PMCs did not contribute to reduce mortality from thyroid cancer. These findings strongly suggested the existence of self-limiting cancers, which are truly malignant but do not progress to lethal cancers, for the first time in human history. The early detection of self-limiting cancers results in overdiagnosis. Ultrasonographic screening of the thyroid in the young should be avoided. Lethal thyroid cancers, whose origin is still unknown, appear suddenly after middle age. In the elderly, thyroid cancers are a mixture of self-limiting and lethal cancers; thus, when thyroid cancer is detected, careful follow-up with examination of its growth rate is required.

  2. Aurora kinases are expressed in medullary thyroid carcinoma (MTC) and their inhibition suppresses in vitro growth and tumorigenicity of the MTC derived cell line TT

    PubMed Central

    2011-01-01

    Background The Aurora kinase family members, Aurora-A, -B and -C, are involved in the regulation of mitosis, and alterations in their expression are associated with cell malignant transformation. To date no information on the expression of these proteins in medullary thyroid carcinoma (MTC) are available. We here investigated the expression of the Aurora kinases in human MTC tissues and their potential use as therapeutic targets. Methods The expression of the Aurora kinases in 26 MTC tissues at different TNM stages was analyzed at the mRNA level by quantitative RT-PCR. We then evaluated the effects of the Aurora kinase inhibitor MK-0457 on the MTC derived TT cell line proliferation, apoptosis, soft agar colony formation, cell cycle and ploidy. Results The results showed the absence of correlation between tumor tissue levels of any Aurora kinase and tumor stage indicating the lack of prognostic value for these proteins. Treatment with MK-0457 inhibited TT cell proliferation in a time- and dose-dependent manner with IC50 = 49.8 ± 6.6 nM, as well as Aurora kinases phosphorylation of substrates relevant to the mitotic progression. Time-lapse experiments demonstrated that MK-0457-treated cells entered mitosis but were unable to complete it. Cytofluorimetric analysis confirmed that MK-0457 induced accumulation of cells with ≥ 4N DNA content without inducing apoptosis. Finally, MK-0457 prevented the capability of the TT cells to form colonies in soft agar. Conclusions We demonstrate that Aurora kinases inhibition hampered growth and tumorigenicity of TT cells, suggesting its potential therapeutic value for MTC treatment. PMID:21943074

  3. Effects of PCBs and PBDEs on thyroid hormone, lymphocyte proliferation, hematology and kidney injury markers in residents of an e-waste dismantling area in Zhejiang, China.

    PubMed

    Xu, Peiwei; Lou, Xiaoming; Ding, Gangqiang; Shen, Haitao; Wu, Lizhi; Chen, Zhijian; Han, Jianlong; Wang, Xiaofeng

    2015-12-01

    Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are two typical categories of contaminants released from e-waste dismantling environments. In China, the body burdens of PCBs and PBDEs are associated with abnormal thyroid hormones in populations from e-waste dismantling sites, but the results are limited and contradictory. In this study, we measured the serum levels of PCBs and PBDEs and the thyroid hormone free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH) in 40 residents in an e-waste dismantling area and in 15 residents in a control area. Additionally, we also measured some lymphocyte proliferation indexes, hematologic parameters and kidney injury markers, including white blood cells, neutrophils, monocytes, lymphocytes, hemoglobin, platelets, serum creatinine and beta 2-microglobulin (β2-MG). The results indicated that the mean level of ΣPCBs in the exposure group was significantly higher than that in the control group (964.39 and 67.98 ng g(-1), p<0.0001), but the mean level of ΣPBDEs in the exposure group was not significantly higher than that in the controls (139.32 vs. 75.74 ng g(-1), p>0.05). We determined that serum levels of FT3, FT4, monocytes and lymphocytes were significantly lower, whereas the levels of neutrophils, hemoglobin, platelets and serum creatinine were significantly higher in the exposed group (p<0.05). The mean level of ΣPCBs was negatively correlated with levels of FT3, FT4, monocytes and lymphocytes (p<0.05) and positively correlated with levels of neutrophils, hemoglobin, serum creatinine and β2-MG (p<0.05). Additionally, the mean level of ΣPBDEs was positively correlated with levels of white blood cells, hemoglobin and platelets (p<0.05). Our data suggest that exposure to an e-waste dismantling environment may increase the body burdens of PCBs and the specific PBDEs congeners in native residents and that the contaminants released from e-waste may contribute to abnormal changes in body levels of thyroid hormone, hematology and kidney injury markers. Copyright © 2015. Published by Elsevier B.V.

  4. PKCδ-mediated phosphorylation of BAG3 at Ser187 site induces epithelial-mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells.

    PubMed

    Li, N; Du, Z-X; Zong, Z-H; Liu, B-Q; Li, C; Zhang, Q; Wang, H-Q

    2013-09-19

    Protein kinase C delta (PKCδ) is a serine (Ser)/threonine kinase, which regulates numerous cellular processes, including proliferation, differentiation, migration and apoptosis. In the current study, Chinese hamster ovary cells were transfected with either a constitutively activated PKCδ or a dominant negative PKCδ, phosphoprotein enrichment, two-dimensional difference gel electrophoresis and mass spectrometry was combined to globally identified candidates of PKCδ cascade. We found that Bcl-2 associated athanogene 3 (BAG3) was one of the targets of PKCδ cascade, and BAG3 interacted with PKCδ in vivo. In addition, we clarified that BAG3 was phosphorylate at Ser187 site in a PKCδ-dependent manner in vivo. BAG3 has been implicated in multiple cellular functions, including proliferation, differentiation, apoptosis, migration, invasion, macroautophagy and so on. We generated wild-type (WT)-, Ser187Ala (S187A)- or Ser187Asp (S187D)-BAG3 stably expressing FRO cells, and noticed that phosphorylation state of BAG3 influenced FRO morphology. Finally, for the first time, we showed that BAG3 was implicated in epithelial-mesenchymal transition (EMT) procedure, and phosphorylation state at Ser187 site had a critical role in EMT regulation by BAG3. Collectively, the current study indicates that BAG3 is a novel substrate of PKCδ, and PKCδ-mediated phosphorylation of BAG3 is implicated in EMT and invasiveness of thyroid cancer cells.

  5. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  6. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies

    PubMed Central

    Morshed, S. A.; Davies, T. F.

    2016-01-01

    The immunologic processes involved in Graves' disease (GD) have one unique characteristic – the autoantibodies to the TSH receptor (TSHR) – which have both linear and conformational epitopes. Three types of TSHR antibodies (stimulating, blocking, and cleavage) with different functional capabilities have been described in GD patients, which induce different signaling effects varying from thyroid cell proliferation to thyroid cell death. The establishment of animal models of GD by TSHR antibody transfer or by immunization with TSHR antigen has confirmed its pathogenic role and, therefore, GD is the result of a breakdown in TSHR tolerance. Here we review some of the characteristics of TSHR antibodies with a special emphasis on new developments in our understanding of what were previously called “neutral” antibodies and which we now characterize as autoantibodies to the “cleavage” region of the TSHR ectodomain. PMID:26361259

  7. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyaceticmore » acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark can interfere with TH signaling and AhR function in vitro and might have the potential to cause endocrine disruption. - Highlights: • Endocrine disrupting (ED) potential of currently used pesticides were evaluated in cell culture. • Pesticides were analyzed for disruption of TH and aryl hydrocarbon receptor function. • 6 pesticides increased the GH3 cell proliferation, whereasfour antagonized the T3-induced cell growth. • 11 pesticides had agonistic effect on AhR and 4 antagonized the TCDD-induced AhR transactivation. • The five component mixture had inducing effect in both assays.« less

  8. Characterization of the novel tumor-suppressor gene CCDC67 in papillary thyroid carcinoma.

    PubMed

    Yin, De Tao; Xu, Jianhui; Lei, Mengyuan; Li, Hongqiang; Wang, Yongfei; Liu, Zhen; Zhou, Yubing; Xing, Mingzhao

    2016-02-02

    Some studies showed an association of coiled-coil domain-containing (CCDC) genes with cancers. Our previous limited data specifically suggested a possible pathogenic role of CCDC67 in papillary thyroid cancer (PTC), but this has not been firmly established. The present study was to further investigate and establish this role of CCDC67 in PTC. The expression of CCDC67, both at mRNA and protein levels, was sharply down-regulated in PTC compared with normal thyroid tissues. Lower CCDC67 expression was significantly associated with aggressive tumor behaviors, such as advanced tumor stages and lymph node metastasis, as well as BRAF mutation. Introduced expression of CCDC67 in TPC-1 cells robustly inhibited cell proliferation, colony formation and migration, induced G1 phase cell cycle arrest, and increased cell apoptosis. Primary PTC tumors and matched normal thyroid tissues were obtained from 200 unselected patients at the initial surgery for detection of CCDC67 mRNA and protein by RT-PCR and Western blotting analyses, respectively. Genomic DNA sequencing was performed to detect BRAF mutation in PTC tumors. Clinicopathological data were retrospectively reviewed for correlation analyses. PTC cell line TPC-1 with stable transfection of CCDC67 was used to investigate the functions of CCDC67. This large study demonstrates down-regulation of CCDC67 in PTC, an inverse relationship between CCDC67 expression and PTC aggressiveness and BRAF mutation, and a robust inhibitory effect of CCDC67 on PTC cellular activities. These results are consistent with CCDC67 being a novel and impaired tumor suppressor gene in PTC, providing important prognostic and therapeutic implications for this cancer.

  9. Lipoic Acid Decreases the Viability of Breast Cancer Cells and Activity of PTP1B and SHP2.

    PubMed

    Kuban-Jankowska, Alicja; Gorska-Ponikowska, Magdalena; Wozniak, Michal

    2017-06-01

    Protein tyrosine phosphatases PTP1B and SHP2 are potential targets for anticancer therapy, because of the essential role they play in the development of tumors. PTP1B and SHP2 are overexpressed in breast cancer cells, thus inhibition of their activity can be potentially effective in breast cancer therapy. Lipoic acid has been previously reported to inhibit the proliferation of colon, breast and thyroid cancer cells. We investigated the effect of alpha-lipoic acid (ALA) and its reduced form of dihydrolipoic acid (DHLA) on the viability of MCF-7 cancer cells and on the enzymatic activity of PTP1B and SHP2 phosphatases. ALA and DHLA decrease the activity of PTP1B and SHP2, and have inhibitory effects on the viability and proliferation of breast cancer cells. ALA and DHLA can be considered as potential agents for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells.

    PubMed

    Sahpazidou, Despina; Geromichalos, George D; Stagos, Dimitrios; Apostolou, Anna; Haroutounian, Serkos A; Tsatsakis, Aristidis M; Tzanakakis, George N; Hayes, A Wallace; Kouretas, Dimitrios

    2014-10-15

    A major part of the wineries' wastes is composed of grape stems which are discarded mainly in open fields and cause environmental problems due mainly to their high polyphenolic content. The grape stem extracts' use as a source of high added value polyphenols presents great interest because this combines a profitable venture with environmental protection close to wine-producing zones. In the present study, at first, the Total Polyphenolic Content (TPC) and the polyphenolic composition of grape stem extracts from four different Greek Vitis vinifera varieties were determined by HPLC methods. Afterwards, the grape stem extracts were examined for their ability to inhibit growth of colon (HT29), breast (MCF-7 and MDA-MB-23), renal (786-0 and Caki-1) and thyroid (K1) cancer cells. The cancer cells were exposed to the extracts for 72 h and the effects on cell growth were evaluated using the SRB assay. The results indicated that all extracts inhibited cell proliferation, with IC₅₀ values of 121-230 μg/ml (MCF-7), 121-184 μg/ml (MDA-MD-23), 175-309 μg/ml (HT29), 159-314 μg/ml (K1), 180-225 μg/ml (786-0) and 134->400 μg/ml (Caki-1). This is the first study presenting the inhibitory activity of grape stem extracts against growth of colon, breast, renal and thyroid cancer cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Ionizing Radiation Deregulates the MicroRNA Expression Profile in Differentiated Thyroid Cells.

    PubMed

    Penha, Ricardo Cortez Cardoso; Pellecchia, Simona; Pacelli, Roberto; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2018-03-01

    Ionizing radiation (IR) is a well-known risk factor for papillary thyroid cancer, and it has been reported to deregulate microRNA expression, which is important to thyroid carcinogenesis. Therefore, this study investigated the impact of IR on microRNA expression profile of the normal thyroid cell line (FRTL-5 CL2), as well as its effect on radiosensitivity of thyroid cancer cell lines, especially the human anaplastic thyroid carcinoma cell line (8505c). The global microRNA expression profile of irradiated FRTL-5 CL2 cells (5 Gy X-ray) was characterized, and data were confirmed by quantitative real-time polymerase chain reaction evaluating the expression of rno-miR-10b-5p, rno-miR-33-5p, rno-miR-128-1-5p, rno-miR-199a-3p, rno-miR-296-5p, rno-miR-328a-3p, and rno-miR-541-5p in irradiated cells. The miR-199a-3p and miR-10b-5p targets were validated by quantitative real-time polymerase chain reaction, Western blot, and luciferase target assays. The effects of miR-199a-3p and miR-10b-5p on DNA repair were determined by evaluating the activation of the protein kinases ataxia-telangiectasia mutated, ataxia telangiectasia, and Rad3-related and the serine 39 phosphorylation of variant histone H2AX as an indirect measure of double-strand DNA breaks in irradiated FRTL-5 CL2 cells. The impact of miR-10b-5p on radiosensitivity was analyzed by cell counting and MTT assays in FRTL-5 CL2, Kras-transformed FRTL-5 CL2 (FRTL KiKi), and 8505c cell lines. The results reveal that miR-10b-5p and miR-199a-3p display the most pronounced alterations in expression in irradiated FRTL-5 CL2 cells. Dicer1 and Lin28b were validated as targets of miR-10b-5p and miR-199a-3p, respectively. Functional studies demonstrate that miR-10b-5p increases the growth rate of FRTL-5 CL2 cells, while miR-199a-3p inhibits their proliferation. Moreover, both of these microRNAs negatively affect homologous recombination repair, reducing activated ataxia-telangiectasia mutated and Rad3-related protein levels, consequently leading to an accumulation of the serine 39 phosphorylation of variant histone H2AX. Interestingly, the overexpression of miR-10b-5p decreases the viability of the irradiated FRTL5-CL2 and 8505c cell lines. Consistent with this observation, its inhibition in FRTL KiKi cells, which display high basal expression levels of miR-10b-5p, leads to the opposite effect. These results demonstrate that IR deregulates microRNA expression, affecting the double-strand DNA breaks repair efficiency of irradiated thyroid cells, and suggest that miR-10b-5p overexpression may be an innovative approach for anaplastic thyroid cancer therapy by increasing cancer cell radiosensitivity.

  12. Pleural epithelioid angiosarcoma with lymphatic differentiation arisen after radiometabolic therapy for thyroid carcinoma: immunohistochemical findings and review of the literature.

    PubMed

    Cabibi, Daniela; Pipitone, Giulia; Porcasi, Rossana; Ingrao, Sabrina; Benza, Ignazio; Porrello, Calogero; Cajozzo, Massimo; Giannone, Antonino Giulio

    2017-08-15

    Pleural angiosarcoma is a rare tumor that causes diffuse pleural thickening and effusion, mimicking mesothelioma. Immunohistochemistry is needed to highlight endothelial differentiation. We describe the first case of pleural angiosarcoma with lymphatic differentiation following radiometabolic therapy for thyroid carcinoma. A 50-year-old man showed diffuse pleural thickening and effusion. Nine years earlier, he underwent thyroidectomy and radiometabolic therapy for thyroid carcinoma with lymph node metastases. Histologically, the tumor consisted of a solid proliferation of atypical epithelioid cells and anastomosed vascular spaces, lacking of red blood cells and containing Alcian blue positive material. The tumor showed positive immunostaining for Vimentin, CD31, CK7, D2-40, c-MYC, Ki67, focal positivity for PanCK, and negative immunostaining for Factor VIII, CD34, WT1, CK5/6, Calretinin, EMA, HBME-1, CEA, p63, EpCAM, Bcl-2, TTF1 and Thyroglobulin. CD99 showed a granular/paranuclear pattern of positivity. The histological and immunohistochemical features were consistent with "pleural angiosarcoma with lymphatic differentiation, epithelioid variant". Epithelioid angiosarcoma with lymphatic differentiation is very rare and aggressive. Moreover, the positivity for c-MYC suggests the relationship with radiometabolic therapy. To our knowledge, this is the first case of pleural c-MYC-positive angiosarcoma with lymphatic differentiation reported in the literature and the first one arisen after radiometabolic therapy for thyroid carcinoma.

  13. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  14. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer.

    PubMed

    Lauder, J M

    1977-04-22

    The effects of early hypo- and hyperthyroidism on the rates of cell acquisition and proliferation have been studied in the external granular layer (EGL) of the developing rat cerebellar cortex at 10 days of age using quantitative autoradiographic methods. Both altered thyroid states reduce the rate of cell acquisition in the EGL, but appear to do so for different reasons. Hyperthyroidism shortens the average length of the cell cycle by decreasing the duration of the pre-DNA synthetic phase (G1), indicating that excess thyroxine may exert a direct effect on the EGL. This action involves the early onset of neuronal differentiation (cessation of proliferation)46 which presumably leads to the observed decrease in the rate of cell acquisition (increased doubling time). Such differentiating cells do not, however, leave the proliferative zone or the EGL prematurely, resulting in a reduced labeling index, mitotic index, and growth fraction as non-dividing cells dilute the proliferating cell population. Hypothyroidism, on the other hand, leads to no significant change in the length of the cell cycle or in the mitotic index, but causes a decreased labeling index and growth fraction, as well as a reduced rate of cell acquisition (increased doubling time). No significant change in the amount of cell death in the EGL could be found to explain this apparent discrepancy between the rate of cell proliferation (cell cycle length) and cell acqusiition. The answer to this puzzle appears to lie in the mitotic index, which is not affected to the same extent as the labeling index, although it is also slightly reduced. If cells were to remain longer in mitosis, this could result in a decreased labeling index and growth fraction but nearly normal mitotic index and cell cycle length (as measured using the % labeled mitoses method), since those cells dropping out of the cycling population would be counted as mitoses...

  15. Contemporaneous effects of diabetes mellitus and hypothyroidism on spermatogenesis and immunolocalization of Claudin-11 inside the seminiferous tubules of mice.

    PubMed

    Korejo, Nazar Ali; Wei, Quanwei; Zheng, Kaizhi; Mao, Dagan; Korejo, Rashid Ali; Shah, Atta Hussain; Shi, Fangxiong

    2018-06-26

    Diabetes and hypothyroidism produce adverse effects on body weight and sexual maturity by inhibiting body growth and metabolism. The occurrence of diabetes is always accompanied with thyroid dysfunction. Thus, it is important to take hypo- or hyper-thyroidism into consideration when exploring the adverse effects caused by diabetes. Previous reports have found hypothyroidism inhibits testicular growth by delaying Sertoli cell differentiation and proliferation. Hence, by establishing a mouse model of diabetes combined with hypothyroidism, we provided evidence that poly glandular autoimmune syndrome affected testicular development and spermatogenesis. we mimicked polyglandular deficiency syndrome in both immature and prepubertal mice by induction of diabetes and hypothyroidism, which caused decreases in serum concentrations of testosterone and insulin like growth factor 1 (IGF-1). Such reduction of growth factor resulted in inhibition of testicular and epididymal development. Moreover, expressions of Claudin-11 were observed between Sertoli cells and disrupted in the testes of syndrome group mice. We also found reduced sperm count and motility in prepubertal mice. This mimicry of the diabetes and thyroid dysfunction, will be helpful to better understand the reasons for male infertility in diabetic-cum-hypothyroid patients.

  16. Aberrant activation of M phase proteins by cell proliferation-evoking carcinogens after 28-day administration in rats.

    PubMed

    Yafune, Atsunori; Taniai, Eriko; Morita, Reiko; Hayashi, Hitomi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2013-06-07

    We have previously reported that hepatocarcinogens increase liver cells expressing p21(Cip1), a G1 checkpoint protein and M phase proteins after 28-day treatment in rats. This study aimed to identify early prediction markers of carcinogens available in many target organs after 28-day treatment in rats. Immunohistochemical analysis was performed on Ki-67, p21(Cip1) and M phase proteins [nuclear Cdc2, phospho-Histone H3 (p-Histone H3), Aurora B and heterochromatin protein 1α (HP1α)] with carcinogens targeting different organs. Carcinogens targeting thyroid (sulfadimethoxine; SDM), urinary bladder (phenylethyl isothiocyanate), forestomach (butylated hydroxyanisole; BHA), glandular stomach (catechol; CC), and colon (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and chenodeoxycholic acid) were examined using a non-carcinogenic toxicant (caprolactam) and carcinogens targeting other organs as negative controls. All carcinogens increased Ki-67(+), nuclear Cdc2(+), p-Histone H3(+) or Aurora B(+) carcinogenic target cells, except for both colon carcinogens, which did not increase cell proliferation. On the other hand, p21(Cip1+) cells increased with SDM and CC. HP1α responded only to BHA. Results revealed carcinogens evoking cell proliferation concurrently induced cell cycle arrest at M phase or showing chromosomal instability reflecting aberration in cell cycle regulation, irrespective of target organs, after 28-day treatment. Therefore, M phase proteins may be early prediction markers of carcinogens evoking cell proliferation in many target organs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of selective inhibitors of Aurora kinases on anaplastic thyroid carcinoma cell lines.

    PubMed

    Baldini, Enke; Tuccilli, Chiara; Prinzi, Natalie; Sorrenti, Salvatore; Antonelli, Alessandro; Gnessi, Lucio; Morrone, Stefania; Moretti, Costanzo; Bononi, Marco; Arlot-Bonnemains, Yannick; D'Armiento, Massimino; Ulisse, Salvatore

    2014-10-01

    Aurora kinases are serine/threonine kinases that play an essential role in cell division. Their aberrant expression and/or function induce severe mitotic abnormalities, resulting in either cell death or aneuploidy. Overexpression of Aurora kinases is often found in several malignancies, among which is anaplastic thyroid carcinoma (ATC). We have previously demonstrated the in vitro efficacy of Aurora kinase inhibitors in restraining cell growth and survival of different ATC cell lines. In this study, we sought to establish which Aurora might represent the preferential drug target for ATC. To this end, the effects of two selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) on four human ATC cell lines (CAL-62, BHT-101, 8305C, and 8505C) were analysed. Both inhibitors reduced cell proliferation in a time- and dose-dependent manner, with IC50 ranges of 44.3-134.2 nM for MLN8237 and of 9.2-461.3 nM for AZD1152. Immunofluorescence experiments and time-lapse videomicroscopy yielded evidence that each inhibitor induced distinct mitotic phenotypes, but both of them prevented the completion of cytokinesis. As a result, poliploidy increased in all AZD1152-treated cells, and in two out of four cell lines treated with MLN8237. Apoptosis was induced in all the cells by MLN8237, and in BHT-101, 8305C, and 8505C by AZD1152, while CAL-62 exposed to AZD1152 died through necrosis after multiple rounds of endoreplication. Both inhibitors were capable of blocking anchorage-independent cell growth. In conclusion, we demonstrated that either Aurora-A or Aurora-B might represent therapeutic targets for the ATC treatment, but inhibition of Aurora-A appears more effective for suppressing ATC cell proliferation and for inducing the apoptotic pathway. © 2014 Society for Endocrinology.

  18. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  19. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis

    PubMed Central

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-01-01

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development. PMID:28492553

  20. Cancer risk and clinicopathological characteristics of thyroid nodules harboring thyroid-stimulating hormone receptor gene mutations.

    PubMed

    Mon, Sann Y; Riedlinger, Gregory; Abbott, Collette E; Seethala, Raja; Ohori, N Paul; Nikiforova, Marina N; Nikiforov, Yuri E; Hodak, Steven P

    2018-05-01

    Thyroid-stimulating hormone receptor (TSHR) gene mutations play a critical role in thyroid cell proliferation and function. They are found in 20%-82% of hyperfunctioning nodules, hyperfunctioning follicular thyroid cancers (FTC), and papillary thyroid cancers (PTC). The diagnostic importance of TSHR mutation testing in fine needle aspiration (FNA) specimens remains unstudied. To examine the association of TSHR mutations with the functional status and surgical outcomes of thyroid nodules, we evaluated 703 consecutive thyroid FNA samples with indeterminate cytology for TSHR mutations using next-generation sequencing. Testing for EZH1 mutations was performed in selected cases. The molecular diagnostic testing was done as part of standard of care treatment, and did not require informed consent. TSHR mutations were detected in 31 (4.4%) nodules and were located in exons 281-640, with codon 486 being the most common. Allelic frequency ranged from 3% to 45%. Of 16 cases (12 benign, 3 FTC, 1 PTC) with surgical correlation, 15 had solitary TSHR mutations and 1 PTC had comutation with BRAF V600E. Hyperthyroidism was confirmed in all 3 FTC (2 overt, 1 subclinical). Of 5 nodules with solitary TSHR mutations detected at high allelic frequency, 3 (60%) were FTC. Those at low allelic frequency (3%-22%) were benign. EZH1 mutations were detected in 2 of 4 TSHR-mutant malignant nodules and neither of 2 benign nodules. We report that TSHR mutations occur in ∼5% thyroid nodules in a large consecutive series with indeterminate cytology. TSHR mutations may be associated with an increased cancer risk when present at high allelic frequency, even when the nodule is hyperfunctioning. Benign nodules were however most strongly correlated with TSHR mutations at low allelic frequency. © 2018 Wiley Periodicals, Inc.

  1. Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor.

    PubMed

    Lemkine, G F; Raj, A; Alfama, G; Turque, N; Hassani, Z; Alegria-Prévot, O; Samarut, J; Levi, G; Demeneix, B A

    2005-05-01

    Thyroid hormones (TH) are essential for brain development. However, information on if and how this key endocrine factor affects adult neurogenesis is fragmentary. We thus investigated the effects of TH on proliferation and apoptosis of stem cells in the subventricular zone (SVZ), as well as on migration of transgene-tagged neuroblasts out of the stem cell niche. Hypothyroidism significantly reduced all three of these processes, inhibiting generation of new cells. To determine the mechanisms relaying TH action in the SVZ, we analyzed which receptor was implicated and whether the effects were played out directly at the level of the stem cell population. The alpha TH receptor (TRalpha), but not TRbeta, was found to be expressed in nestin positive progenitor cells of the SVZ. Further, use of TRalpha mutant mice showed TRalpha to be required to maintain full proliferative activity. Finally, a direct TH transcriptional effect, not mediated through other cell populations, was revealed by targeted gene transfer to stem cells in vivo. Indeed, TH directly modulated transcription from the c-myc promoter reporter construct containing a functional TH response element containing TRE but not from a mutated TRE sequence. We conclude that liganded-TRalpha is critical for neurogenesis in the adult mammalian brain.

  2. Establishment and culture optimization of a new type of pituitary immortalized cell line.

    PubMed

    Kokubu, Yuko; Asashima, Makoto; Kurisaki, Akira

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Thyroid nodules, polymorphic variants in DNA repair and RET-related genes, and interaction with ionizing radiation exposure from nuclear tests in Kazakhstan

    PubMed Central

    Sigurdson, Alice J.; Land, Charles E.; Bhatti, Parveen; Pineda, Marbin; Brenner, Alina; Carr, Zhanat; Gusev, Boris I.; Zhumadilov, Zhaxibay; Simon, Steven L.; Bouville, Andre; Rutter, Joni L.; Ron, Elaine; Struewing, Jeffery P.

    2010-01-01

    Risk factors for thyroid cancer remain largely unknown except for ionizing radiation exposure during childhood and a history of benign thyroid nodules. Because thyroid nodules are more common than thyroid cancers and are associated with thyroid cancer risk, we evaluated several polymorphisms potentially relevant to thyroid tumors and assessed interaction with ionizing radiation exposure to the thyroid gland. Thyroid nodules were detected in 1998 by ultrasound screening of 2997 persons who lived near the Semipalatinsk nuclear test site in Kazakhstan when they were children (1949-62). Cases with thyroid nodules (n=907) were frequency matched (1:1) to those without nodules by ethnicity (Kazakh or Russian), gender, and age at screening. Thyroid gland radiation doses were estimated from fallout deposition patterns, residence history, and diet. We analyzed 23 polymorphisms in 13 genes and assessed interaction with ionizing radiation exposure using likelihood ratio tests (LRT). Elevated thyroid nodule risks were associated with the minor alleles of RET S836S (rs1800862, p = 0.03) and GFRA1 -193C>G (rs not assigned, p = 0.05) and decreased risk with XRCC1 R194W (rs1799782, p-trend = 0.03) and TGFB1 T263I (rs1800472, p = 0.009). Similar patterns of association were observed for a small number of papillary thyroid cancers (n=25). Ionizing radiation exposure to the thyroid gland was associated with significantly increased risk of thyroid nodules (age and gender adjusted excess odds ratio/Gy = 0.30, 95% confidence interval 0.05-0.56), with evidence for interaction by genotype found for XRCC1 R194W (LRT p value = 0.02). Polymorphisms in RET signaling, DNA repair, and proliferation genes may be related to risk of thyroid nodules, consistent with some previous reports on thyroid cancer. Borderline support for gene-radiation interaction was found for a variant in XRCC1, a key base excision repair protein. Other pathways, such as genes in double strand break repair, apoptosis, and genes related to proliferation should also be pursued. PMID:19138047

  4. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias.

    PubMed

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-05-01

    PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.

  5. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias

    PubMed Central

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-01-01

    SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917

  6. The Emerging Cell Biology of Thyroid Stem Cells

    PubMed Central

    Latif, Rauf; Minsky, Noga C.; Ma, Risheng

    2011-01-01

    Context: Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. Evidence Acquisition: This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990–2011) and discusses the remaining problems encountered in their differentiation. Evidence Synthesis: Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. Conclusions: Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy. PMID:21778219

  7. The Concerted Action of Type 2 and Type 3 Deiodinases Regulates the Cell Cycle and Survival of Basal Cell Carcinoma Cells.

    PubMed

    Miro, Caterina; Ambrosio, Raffaele; De Stefano, Maria Angela; Di Girolamo, Daniela; Di Cicco, Emery; Cicatiello, Annunziata Gaetana; Mancino, Giuseppina; Porcelli, Tommaso; Raia, Maddalena; Del Vecchio, Luigi; Salvatore, Domenico; Dentice, Monica

    2017-04-01

    Thyroid hormones (THs) mediate pleiotropic cellular processes involved in metabolism, cellular proliferation, and differentiation. The intracellular hormonal environment can be tailored by the type 1 and 2 deiodinase enzymes D2 and D3, which catalyze TH activation and inactivation respectively. In many cellular systems, THs exert well-documented stimulatory or inhibitory effects on cell proliferation; however, the molecular mechanisms by which they control rates of cell cycle progression have not yet been entirely clarified. We previously showed that D3 depletion or TH treatment influences the proliferation and survival of basal cell carcinoma (BCC) cells. Surprisingly, we also found that BCC cells express not only sustained levels of D3 but also robust levels of D2. The aim of the present study was to dissect the contribution of D2 to TH metabolism in the BCC context, and to identify the molecular changes associated with cell proliferation and survival induced by TH and mediated by D2 and D3. We used the CRISPR/Cas9 technology to genetically deplete D2 and D3 in BCC cells and studied the consequences of depletion on cell cycle progression and on cell death. Cell cycle progression was analyzed by fluorescence activated cell sorting analysis of synchronized cells, and the apoptosis rate by annexin V incorporation. Mechanistic investigations revealed that D2 inactivation accelerates cell cycle progression thereby enhancing the proportion of S-phase cells and cyclin D1 expression. Conversely, D3 mutagenesis drastically suppressed cell proliferation and enhanced apoptosis of BCC cells. Furthermore, the basal apoptotic rate was oppositely regulated in D2- and D3-depleted cells. Our results indicate that BCC cells constitute an example in which the TH signal is finely tuned by the concerted expression of opposite-acting deiodinases. The dual regulation of D2 and D3 expression plays a critical role in cell cycle progression and cell death by influencing cyclin D1-mediated entry into the G1-S phase. These findings reinforce the concept that TH is a potential therapeutic target in human BCC.

  8. Aberrant activation of ubiquitin D at G2 phase and apoptosis by carcinogens that evoke cell proliferation after 28-day administration in rats.

    PubMed

    Taniai, Eriko; Yafune, Atsunori; Hayashi, Hitomi; Itahashi, Megu; Hara-Kudo, Yukiko; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-01-01

    We have previously reported that renal carcinogens examined in rats increase tubular cell proliferation and topoisomerase (Topo) IIα(+) cells. The present study was aimed at identifying early prediction markers of carcinogens after 28-day treatment in rats. Following gene expression screening by microarrays in renal tubules with renal carcinogens, immunohistochemical analysis and TUNEL-assay were performed with carcinogens targeting different organs. All renal carcinogens tested (ferric nitrilotriacetic acid, ochratoxin A (OTA), monuron, tris(2-chloroethyl) phosphate, and potassium bromate) increased tubular cells immunoreactive for minichromosome maintenance 3 (Mcm3) or ubiquitin D (Ubd) or those showing apoptosis, compared with untreated controls or non-carcinogenic renal toxicants. Carcinogens targeting the liver (thioacetamide (TAA), fenbendazole, piperonyl butoxide (PBO) and methyleugenol), thyroid (sulfadimethoxine), urinary bladder (phenylethyl isothiocyanate), forestomach (butylated hydroxyanisole), glandular stomach (catechol), and colon (chenodeoxycholic acid and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine) were examined for induction of Mcm3, Ubd, Topo IIα, Ki-67 and apoptosis using non-carcinogenic toxicants as negative controls. All carcinogens increased Mcm3(+), Ubd(+), Topo IIα(+), Ki-67(+) or TUNEL(+) cells, except for hepatocarcinogen PBO and both colon carcinogens, which did not increase cell proliferation. Ubd(+) cells co-expressing Topo IIα was increased without changing phospho-Histone H3-co-expressing cell population as examined with OTA and TAA. Results revealed cooperative responses of Topo IIα, Ubd and apoptosis by carcinogens inducing high proliferation activity, irrespective of target organs, examined here after a 28-day administration. Aberrant expression of Ubd at G(2) phase and increased apoptosis reflecting aberrant cell cycle regulation may be the common feature of these carcinogens.

  9. Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells.

    PubMed

    Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S; Hewitt, Stephen M; Ward, Jerrold M; Kimura, Shioko

    2015-04-01

    Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma-derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer.

  10. Expression of Stanniocalcin 1 in Thyroid Side Population Cells and Thyroid Cancer Cells

    PubMed Central

    Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S.; Hewitt, Stephen M.; Ward, Jerrold M.

    2015-01-01

    Background: Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Method: Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Results: Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma–derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. Conclusion: These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer. PMID:25647164

  11. Nanoparticulate Tetrac Inhibits Growth and Vascularity of Glioblastoma Xenografts.

    PubMed

    Sudha, Thangirala; Bharali, Dhruba J; Sell, Stewart; Darwish, Noureldien H E; Davis, Paul J; Mousa, Shaker A

    2017-06-01

    Thyroid hormone as L-thyroxine (T 4 ) stimulates proliferation of glioma cells in vitro and medical induction of hypothyroidism slows clinical growth of glioblastoma multiforme (GBM). The proliferative action of T 4 on glioma cells is initiated nongenomically at a cell surface receptor for thyroid hormone on the extracellular domain of integrin αvβ3. Tetraiodothyroacetic acid (tetrac) is a thyroid hormone derivative that blocks T 4 action at αvβ3 and has anticancer and anti-angiogenic activity. Tetrac has been covalently bonded via a linker to a nanoparticle (Nanotetrac, Nano-diamino-tetrac, NDAT) that increases the potency of tetrac and broadens the anticancer properties of the drug. In the present studies of human GBM xenografts in immunodeficient mice, NDAT administered daily for 10 days subcutaneously as 1 mg tetrac equivalent/kg reduced tumor xenograft weight at animal sacrifice by 50%, compared to untreated control lesions (p < 0.01). Histopathological analysis of tumors revealed a 95% loss of the vascularity of treated tumors compared to controls at 10 days (p < 0.001), without intratumoral hemorrhage. Up to 80% of tumor cells were necrotic in various microscopic fields (p < 0.001 vs. control tumors), an effect attributable to devascularization. There was substantial evidence of apoptosis in other fields (p < 0.001 vs. control tumors). Induction of apoptosis in cancer cells is a well-described quality of NDAT. In summary, systemic NDAT has been shown to be effective by multiple mechanisms in treatment of GBM xenografts.

  12. ENHANCED BETA-CATENIN EXPRESSION IS ASSOCIATED WITH THE RECURRENCE OF PAPILLARY THYROID CARCINOMA.

    PubMed

    Kordestani, Zeinab; Sanjari, Mojgan; Safavi, Moeinadin; Mashrouteh, Mahdieh; Asadikaram, Gholamreza; FekriSoofiAbadi, Maryam; Mirzazadeh, Ali

    2018-03-02

    A direct role of Catenin beta-1(βcat) in the proliferation of human thyroid tumor cells has been identified. This study aimed to determine if there is an association between βcat gene expression and the staging, recurrence, metastasis, and disease free survival of papillary thyroid cancer. A retrospective cohort study was conducted using data from available information in the medical records and paraffin blocks of 81 of 400 patients referred to the endocrine clinic over a 10-year period. Real-time polymerase chain reaction (PCR) was used to evaluate βcat gene expression. Disease-free survival was assessed using Kaplan-Meier method. The ten-year survival rate in these patients was 98.25% and disease-free survival was 48.1%. Cumulative dose of radioactive iodine that patients received was significantly and positively correlated with βcat gene expression (r = -0.2, p value=0.03).Also, in patients with recurrence, βcat gene expression was higher and statistically significant (5 fold increase p=0.002). Patients in more advanced stage and those with recurrence /distant metastasis had higher βcat gene expression .We found that the patients had a better survival (lower recurrence) if they had a lower βcat gene expression. (SD = 0.142-0.052) (Mantel-Cox test, P =0.002). We concluded that βcat gene expression was positively correlated with recurrence, distant metastasis and TNM stage. PTC = Papillary thyroid carcinoma; βcat = Catenin beta-1; FTC = Follicular thyroid cancer; TCF/LEF-1 = T-cell factor / lymphoid enhancer factor1; IHC = immunohistochemical; TG = Thyroglobulin; AUC = Area under the ROC curve; APC = Adenomatosis polyposis coli.

  13. Cell proliferation in mammalian gastrulation: the ventral node and notochord are relatively quiescent.

    PubMed

    Bellomo, D; Lander, A; Harragan, I; Brown, N A

    1996-04-01

    During gastrulation, the node of the mammalian embryo appears to be an organising centre, homologous to Hensen's node in the chick and the dorsal lip of the amphibian blastopore. In addition, the node serves as a precursor population for the head process, notochord and foregut endoderm. We have studied node architecture and cell morphology by electron microscopy, and cell proliferation using bromodeoxyuridine incorporation and mitotic counts. The dorsal (ectodermal) and ventral (endodermal) components of the node are two distinct populations, separated by a basement membrane. The ventral node, contiguous with the head process, is characterised by a relatively low proliferation rate, with only approximately 10% of cells incorporating BrdU over 4 hr, compared to > 95% in surrounding mesodermal and ectodermal tissues. This is the case from the beginning of node formation, at the no-allantoic-bud stage, until the 7 somite stage, and is not compatible with the idea that the ventral node is a stem cell population. The dorsal node is highly proliferative, its rate of division being indistinguishable from the neurectoderm, with which it is contiguous. In the ventral node, two regions can be recognised: cells in the "pit" are columnar and all monociliated; around them lies a "crown" of cells arranged radially in a horseshoe shape and less often ciliated. Node derivatives share common features with the ventral node; the head process and the notochord are relatively quiescent; and some head process cells are also monociliated. Node and head process monocilia are immotile and appear to be associated with non-proliferation. We suggest that the ventral node contains all the properties of the organiser, while the dorsal node is indistinct from the surrounding epiblast. The cranial end of the foregut pouch, the thyroid diverticulum, and the promyocardium of early somite stage embryos are also areas of low cell division. All the described regions of relative quiescence are sites of expression of members of the TGF beta family, which may be involved in maintaining non-proliferation.

  14. miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongling; Fang, Jin; Zhang, Jichen

    2014-07-18

    Highlights: • miR-182 and CHL1 expression patterns are negatively correlated. • CHL1 is a direct target of miR-182 in PTC cells. • miR-182 suppression inhibits PTC cell growth and invasion. • CHL1 is involved in miR-182-mediated cell behavior. - Abstract: In this study, we investigated the role and underlying mechanism of action of miR-182 in papillary thyroid carcinoma (PTC). Bioinformatics analysis revealed close homolog of LI (CHL1) as a potential target of miR-182. Upregulation of miR-182 was significantly correlated with CHL1 downregulation in human PTC tissues and cell lines. miR-182 suppressed the expression of CHL1 mRNA through direct targeting ofmore » the 3′-untranslated region (3′-UTR). Downregulation of miR-182 suppressed growth and invasion of PTC cells. Silencing of CHL1 counteracted the effects of miR-182 suppression, while its overexpression mimicked these effects. Our data collectively indicate that miR-182 in PTC promotes cell proliferation and invasion through direct suppression of CHL1, supporting the potential utility of miR-182 inhibition as a novel therapeutic strategy against PTC.« less

  15. Molecular characterization of human thyroid hormone receptor β isoform 4.

    PubMed

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus.

  16. Disruption of estrogen homeostasis as a mechanism for uterine toxicity in Wistar Han rats treated with tetrabromobisphenol A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J. Michael, E-mail: sander10@mail.nih.gov; Coulter, Sherry J.; Knudsen, Gabriel A.

    Chronic oral treatment of tetrabromobisphenol A (TBBPA) to female Wistar Han rats resulted in increased incidence of cell proliferation at 250 mg/kg and tumor formation in the uterus at higher doses. The present study was designed to test the hypothesis that disruption of estrogen homeostasis was a major mode-of-action for the observed effects. Biological changes were assessed in serum, liver, and the proximal (nearest the cervix) and distal (nearest the ovaries) sections of the uterine horn of Wistar Han rats 24 h following administration of the last of five daily oral doses of 250 mg/kg. Expression of genes associated withmore » receptors, biosynthesis, and metabolism of estrogen was altered in the liver and uterus. TBBPA treatment also resulted in changes in expression of genes associated with cell division and growth. Changes were also observed in the concentration of thyroxine in serum and in expression of genes in the liver and uterus associated with thyroid hormone receptors. Differential expression of some genes was tissue-dependent or specific to tissue location in the uterus. The biological responses observed in the present study support the hypothesis that perturbation of estrogen homeostasis is a major mode-of-action for TBBPA-mediated cell proliferation and tumorigenesis previously observed in the uterus of TBBPA-treated Wistar Han rats. - Highlights: • Perturbation of estrogen homeostasis in TBBPA-treated female rats was investigated. • Gene expression changes were observed in the liver and uterus of these rats. • Genes associated with estrogen biosynthesis and metabolism were affected. • Genes associated with thyroid homeostasis and cell division/growth were affected. • A mechanism of uterine toxicity via endocrine disruption was indicated.« less

  17. Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland

    PubMed Central

    Gier, Belinda; Butler, Peter C.; Lai, Chi K.; Kirakossian, David; DeNicola, Matthew M.

    2012-01-01

    Background: Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Methods: Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Results: Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. Conclusions: In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted. PMID:22031513

  18. Demonstration of a potent RET transcriptional inhibitor for the treatment of medullary thyroid carcinoma based on an ellipticine derivative

    PubMed Central

    Kumarasamy, Vishnu Muthuraj; Sun, Daekyu

    2017-01-01

    Dominant-activating mutations in the RET (rearranged during transfection) proto-oncogene, which encodes a receptor tyrosine kinase, is often associated with the development of medullary thyroid carcinoma (MTC). The proximal promoter region of the RET gene consists of a guanine-rich sequence containing five runs of three consecutive guanine residues that serve as the binding site for transcriptional factors. As we have recently shown, this stretch of nucleotides in the promoter region is highly dynamic in nature and tend to form non-B DNA secondary structures called G-quadruplexes, which suppress the transcription of the RET gene. In the present study, ellipticine and its derivatives were identified as excellent RET G-quadruplex stabilizing agents. Circular dichroism (CD) spectroscopic studies revealed that the incorporation of a piperidine ring in an ellipticine derivative, NSC311153 improves its binding with the G-quadruplex structure and the stability induced by this compound is more potent than ellipticine. Furthermore, this compound also interfered with the transcriptional mechanism of the RET gene in an MTC derived cell line, TT cells and significantly decreased the endogenous RET protein expression. We demonstrated the specificity of NSC311153 by using papillary thyroid carcinoma (PTC) cells, the TPC1 cell line which lacks the G-quadruplex forming sequence in the promoter region due to chromosomal rearrangement. The RET downregulation selectively suppresses cell proliferation by inhibiting the intracellular Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways in the TT cells. In the present study, we also showed that the systemic administration of a water soluble NSC311153 analog in a mouse MTC xenograft model inhibited the tumor growth through RET downregulation. PMID:28498409

  19. Clear cell variant of follicular thyroid carcinoma with normal thyroid-stimulating hormone value: a case report

    PubMed Central

    2014-01-01

    Introduction Clear cell carcinomas of the thyroid gland with normal thyroid-stimulating hormone value are very rare, but clear cell changes are described in most reported cases of thyroidal lesions. Case presentation In this report, we describe the case of a 50-year-old Caucasian woman with a normal thyroid-stimulating hormone level who underwent surgery to treat a multi-nodular goiter. The pathology was a clear cell variant of follicular thyroid carcinoma. The tumor was 1cm in diameter and consisted of pure clear cells. Conclusion Clear cell variants of follicular thyroid carcinoma are rarely seen, especially it is misdiagnosed with metastatic renal cell carcinoma. In this report, we describe the case of a patient with a clear cell variant of follicular thyroid carcinoma with an interesting pathology. PMID:24884725

  20. The calcimimetic compound NPS R-568 suppresses parathyroid cell proliferation in rats with renal insufficiency. Control of parathyroid cell growth via a calcium receptor.

    PubMed Central

    Wada, M; Furuya, Y; Sakiyama, J; Kobayashi, N; Miyata, S; Ishii, H; Nagano, N

    1997-01-01

    Parathyroid (PT) cell hyperplasia is a common consequence of chronic renal insufficiency (CRI). NPS R-568 is a phenylalkylamine compound that acts as an agonist (calcimimetic) at the cell surface calcium receptor (CaR). To test the hypothesis that the CaR plays a role in PT hyperplasia in CRI, we tested the effect of NPS R-568 on PT cell proliferation in rats with renal insufficiency. Rats were subjected to 5/6 nephrectomy and then infused intraperitoneally with 5-bromodeoxyuridine (BrdU) to label S-phase cells. Two groups of nephrectomized rats received NPS R-568 by gavage twice daily for 4 d (1.5 and 15 mg/kg body wt). On day 5, the number of BrdU-positive PT cells of vehicle-treated nephrectomized rats was 2.6-fold greater than that of the sham-operated control. Low and high doses of NPS R-568 reduced the number of BrdU-positive PT cells by 20 and 50%, respectively. No changes in staining, however, were observed in ileal epithelial cells (CaR-negative) or in thyroidal C-cells (CaR-positive). Furthermore, the effect of NPS R-568 could not be explained by changes in serum 1,25(OH)2D3 or phosphorus. These results indicate that NPS R-568 suppresses PT cell proliferation in rats with renal insufficiency, and lend support to the linkage between the CaR and PT hyperplasia in CRI. PMID:9399943

  1. Correlation between thyroidal and peripheral blood total T cells, CD8+ T cells, and CD8+ T- regulatory cells and T-cell reactivity to calsequestrin and collagen XIII in patients with Graves' ophthalmopathy.

    PubMed

    Al-Ansari, Farah; Lahooti, Hooshang; Stokes, Leanne; Edirimanne, Senarath; Wall, Jack

    2018-05-22

    Purpose/aim of the study: Graves' ophthalmopathy (GO) is closely related to the thyroid autoimmune disorder Graves' disease. Previous studies have suggested roles for thyroidal CD8 +  T cells and autoimmunity against calsequestrin-1 (CASQ)-1 in the link between thyroidal and orbital autoimmune reactions in GO. A role for autoimmunity against CollXIII has also been suggested. In this study, we aimed to investigate correlations between some thyroidal and peripheral blood T-cell subsets and thyroidal T-cell reactivity against CASQ1 and CollXIII in patients with GO. Fresh thyroid tissues were processed by enzyme digestion and density gradient to isolate mononuclear cells (MNCs). Peripheral blood MNCs were also isolated using density gradient. Flow-cytometric analysis was used to identify the various T-cell subsets. T -cell reactivity to CASQ1 and CollXIII was measured by a 5-day culture of the MNCs and BrdU uptake method. We found a positive correlation between thyroidal CD8 +  T cells and CD8 +  T-regulatory (T-reg) cells in patients with GO. Thyroidal T cells from two out of the three patients with GO tested (66.7%) showed a positive response to CASQ1, while thyroidal T cells from none of the six Graves' Disease patients without ophthalmopathy (GD) tested showed a positive response to this antigen. Thyroidal T cells from these patient groups however, showed no significant differences in their response to CollXIII. Our observations provide further evidence for a possible role of thyroidal CD8 +  T cells, CD8 +  T-reg cells and the autoantigen CASQ1 in the link between thyroidal and orbital autoimmune reactions of GO.

  2. “Stockpile” of Slight Transcriptomic Changes Determines the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells

    PubMed Central

    Porreca, Immacolata; Ulloa Severino, Luisa; D’Angelo, Fulvio; Cuomo, Danila; Ceccarelli, Michele; Altucci, Lucia; Amendola, Elena; Nebbioso, Angela; Mallardo, Massimo

    2016-01-01

    Epidemiological and experimental data highlighted the thyroid-disrupting activity of bisphenol A (BPA). Although pivotal to identify the mechanisms of toxicity, direct low-dose BPA effects on thyrocytes have not been assessed. Here, we report the results of microarray experiments revealing that the transcriptome reacts dynamically to low-dose BPA exposure, adapting the changes in gene expression to the exposure duration. The response involves many genes, enriching specific pathways and biological functions mainly cell death/proliferation or DNA repair. Their expression is only slightly altered but, since they enrich specific pathways, this results in major effects as shown here for transcripts involved in the DNA repair pathway. Indeed, even though no phenotypic changes are induced by the treatment, we show that the exposure to BPA impairs the cell response to further stressors. We experimentally verify that prolonged exposure to low doses of BPA results in a delayed response to UV-C-induced DNA damage, due to impairment of p21-Tp53 axis, with the BPA-treated cells more prone to cell death and DNA damage accumulation. The present findings shed light on a possible mechanism by which BPA, not able to directly cause genetic damage at environmental dose, may exert an indirect genotoxic activity. PMID:26982218

  3. Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model

    PubMed Central

    Park, Jeong Won; Han, Cho Rong; Zhao, Li; Willingham, Mark C.; Cheng, Sheue-yann

    2015-01-01

    Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (ThrbPV/PVPten+/− mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. Wild type and ThrbPV/PVPten+/− mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition. S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase (CDK) 4, CDK 6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated ThrbPV/PVPten+/− mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated ThrbPV/PVPten+/− mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of epithelial-mesenchymal transition. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer. PMID:26552408

  4. An Adult Mouse Thyroid Side Population Cell Line that Exhibits Enriched Epithelial–Mesenchymal Transition

    PubMed Central

    Murata, Tsubasa; Iwadate, Manabu; Takizawa, Yoshinori; Miyakoshi, Masaaki; Hayase, Suguru; Yang, Wenjing; Cai, Yan; Yokoyama, Shigetoshi; Nagashima, Kunio; Wakabayashi, Yoshiyuki; Zhu, Jun

    2017-01-01

    Background: Studies of thyroid stem/progenitor cells have been hampered due to the small organ size and lack of tissue, which limits the yield of these cells. A continuous source that allows the study and characterization of thyroid stem/progenitor cells is desired to push the field forward. Method: A cell line was established from Hoechst-resistant side population cells derived from mouse thyroid that were previously shown to contain stem/progenitor-like cells. Characterization of these cells were carried out by using in vitro two- and three-dimensional cultures and in vivo reconstitution of mice after orthotopic or intravenous injection, in conjunction with quantitative reverse transcription polymerase chain reaction, Western blotting, immunohisto(cyto)chemistry/immunofluorescence, and RNA seq analysis. Results: These cells were named SPTL (side population cell-derived thyroid cell line). Under low serum culturing conditions, SPTL cells expressed the thyroid differentiation marker NKX2-1, a transcription factor critical for thyroid differentiation and function, while no expression of other thyroid differentiation marker genes were observed. SPTL cells formed follicle-like structures in Matrigel® cultures, which did not express thyroid differentiation marker genes. In mouse models of orthotopic and intravenous injection, the latter following partial thyroidectomy, a few SPTL cells were found in part of the follicles, most of which expressed NKX2-1. SPTL cells highly express genes involved in epithelial–mesenchymal transition, as demonstrated by RNA seq analysis, and exhibit a gene-expression pattern similar to anaplastic thyroid carcinoma. Conclusion: These results demonstrate that SPTL cells have the capacity to differentiate into thyroid to a limited degree. SPTL cells may provide an excellent tool to study stem cells, including cancer stem cells of the thyroid. PMID:28125936

  5. Prevention and reversal of experimental autoimmune thyroiditis (EAT) in mice by administration of anti-L3T4 monoclonal antibody at different stages of disease development.

    PubMed

    Stull, S J; Kyriakos, M; Sharp, G C; Braley-Mullen, H

    1988-11-01

    Experimental autoimmune thyroiditis (EAT) can be induced in CBA/J mice following the transfer of spleen cells from mouse thyroglobulin (MTg)-sensitized donors that have been activated in vitro with MTg. Since L3T4+ T cells are required to transfer EAT in this model, the present study was undertaken to assess the effectiveness of the anti-L3T4 monoclonal antibody (mAb) GK1.5 in preventing or arresting the development of EAT. Spleen cells from mice given mAb GK1.5 prior to sensitization with MTg and adjuvant could not transfer EAT to normal recipients and cells from these mice did not proliferate in vitro to MTg. Donor mice given GK1.5 before immunization did not develop anti-MTg autoantibody and recipients of cells from such mice also produced little anti-MTg. GK1.5 could also prevent the proliferation and activation of sensitized effector cell precursors when added to in vitro cultures. When a single injection of mAb GK1.5 was given to recipients of in vitro-activated spleen cells, EAT was reduced whether the mAb was given prior to cell transfer or as late as 19 days after cell transfer. Whereas the incidence and severity of EAT was consistently reduced by injecting recipient mice with GK1.5, the same mice generally had no reduction in anti-MTg autoantibody. Since EAT is consistently induced in control recipients by 14-19 days after cell transfer, the ability of mAb GK1.5 to inhibit EAT when injected 14 or 19 days after cell transfer indicates that a single injection of the mAb GK1.5 can cause reversal of the histopathologic lesions of EAT in mice. These studies further establish the important role of L3T4+ T cells in the pathogenesis of EAT in mice and also suggest that therapy with an appropriate mAb may be an effective treatment for certain autoimmune diseases even when the therapy is initiated late in the course of the disease.

  6. Potential Molecular Targets of Statins in the Prevention of Hepatocarcinogenesis.

    PubMed

    Ridruejo, Ezequiel; Romero-Caími, Giselle; Obregón, María J; Kleiman de Pisarev, Diana; Alvarez, Laura

    2018-04-09

    Hepatocellular carcinoma (HCC) represents 90% of liver tumors. Statins, may reduce the incidence of various tumors, including HCC. Antitumoral activities may be mediated by changes in transforming growth factor-beta (TGF-β1) and thyroid hormones (TH) regulation. The aim of our study is to establish the statins mechanism of action and the potential key molecules involved in an in vivo and in vitro HCC model. We used two models: in vivo (in rats) using diethylnitrosamine (DEN) and hexachlorobenzene (HCB) to develop HCC, we analyzed cell proliferation parameters (proliferating cell nuclear antigen, PCNA) and cholesterol metabolism (hydroxy-methylglutaryl-CoA reductase, HMGCoAR). In vitro (Hep-G2 cells) we evaluated the effects of different doses of Atorvastatin (AT) and Simvastatin (SM) on HCB induced proliferation and analyzed proliferative parameters, colesterol metabolism, TGF-β1 mRNA, c-Src and TH levels. In vivo, we observed that cell proliferation significantly increased as well as cholesterol serum levels in rats treated with HCB. In vitro, we observed the same results on PCNA as in vivo. The statins prevented the increase in HMG-CoAR mRNA levels induced by HCB, reaching levels similar to controls at máximum doses: AT (30 μM), and SM (20 μM). Increases in PCNA, TGF-β1, and pc-Src, and decreases in deiodinase I mRNA levels induced by HCB were not observed when cells were pre-treated with AT and SM at maximum doses. Statins can prevent the proliferative HCB effects on Hep-G2 cells. TGF-β1, c-Src and TH may be the statins molecular targets in hepatocarcinogenesis.

  7. S100A8 is a Novel Therapeutic Target for Anaplastic Thyroid Carcinoma

    PubMed Central

    Reeb, Ashley N.; Li, Wen; Sewell, Will; Marlow, Laura A.; Tun, Han W.; Smallridge, Robert C.; Copland, John A.; Spradling, Kyle; Chernock, Rebecca

    2015-01-01

    Context: Anaplastic thyroid carcinoma (ATC) is one of the most deadly human malignancies. It is 99% lethal, and patients have a median survival of only 6 months after diagnosis. Despite these grim statistics, the mechanism underlying the tumorigenic capability of ATC cells is unclear. Objective: S100A8 and S100A9 proteins have emerged as critical mediators in cancer. The aim was to investigate the expression and function of S100A8 and S100A9 in ATC and the mechanisms involved. Design: We determined the expression of S100A8 and S100A9 in human ATC by gene array analysis and immunohistochemistry. Using RNAi-mediated stable gene knockdown in human ATC cell lines and bioluminescent imaging of orthotopic and lung metastasis mouse models of human ATC, we investigated the effects of S100A8 and S100A9 on tumorigenesis and metastasis. Results: We demonstrated that S100A8 and S100A9 were overexpressed in ATC but not in other types of thyroid carcinomas. In vivo analysis in mice using ATC cells that had S100A8 knocked down revealed reduced tumor growth and lung metastasis, as well as significantly prolonged animal survival. Mechanistic investigations showed that S100A8 promotes ATC cell proliferation through an interaction with RAGE, which activates the p38, ERK1/2 and JNK signaling pathways in the tumor cells. Conclusions: These findings establish a novel role for S100A8 in the promoting and enhancing of ATC progression. They further suggest that the inhibition of S100A8 could represent a relevant therapeutic target, with the potential of enabling a more effective treatment path for this deadly disease. PMID:25423568

  8. S100A8 is a novel therapeutic target for anaplastic thyroid carcinoma.

    PubMed

    Reeb, Ashley N; Li, Wen; Sewell, Will; Marlow, Laura A; Tun, Han W; Smallridge, Robert C; Copland, John A; Spradling, Kyle; Chernock, Rebecca; Lin, Reigh-Yi

    2015-02-01

    Anaplastic thyroid carcinoma (ATC) is one of the most deadly human malignancies. It is 99% lethal, and patients have a median survival of only 6 months after diagnosis. Despite these grim statistics, the mechanism underlying the tumorigenic capability of ATC cells is unclear. S100A8 and S100A9 proteins have emerged as critical mediators in cancer. The aim was to investigate the expression and function of S100A8 and S100A9 in ATC and the mechanisms involved. We determined the expression of S100A8 and S100A9 in human ATC by gene array analysis and immunohistochemistry. Using RNAi-mediated stable gene knockdown in human ATC cell lines and bioluminescent imaging of orthotopic and lung metastasis mouse models of human ATC, we investigated the effects of S100A8 and S100A9 on tumorigenesis and metastasis. We demonstrated that S100A8 and S100A9 were overexpressed in ATC but not in other types of thyroid carcinomas. In vivo analysis in mice using ATC cells that had S100A8 knocked down revealed reduced tumor growth and lung metastasis, as well as significantly prolonged animal survival. Mechanistic investigations showed that S100A8 promotes ATC cell proliferation through an interaction with RAGE, which activates the p38, ERK1/2 and JNK signaling pathways in the tumor cells. These findings establish a novel role for S100A8 in the promoting and enhancing of ATC progression. They further suggest that the inhibition of S100A8 could represent a relevant therapeutic target, with the potential of enabling a more effective treatment path for this deadly disease.

  9. Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomy comparing with nontransplantation models.

    PubMed

    Arauchi, Ayumi; Shimizu, Tatsuya; Yamato, Masayuki; Obara, Takao; Okano, Teruo

    2009-12-01

    For hormonal deficiency caused by endocrine organ diseases, continuous oral hormone administration is indispensable to supplement the shortage of hormones. In this study, as a more effective therapy, we have tried to reconstruct the three-dimensional thyroid tissue by the cell sheet technology, a novel tissue engineering approach. The cell suspension obtained from rat thyroid gland was cultured on temperature-responsive culture dishes, from which confluent cells detach as a cell sheet simply by reducing temperature without any enzymatic treatment. The 8-week-old Lewis rats were exposed to total thyroidectomy as hypothyroidism models and received thyroid cell sheet transplantation 1 week after total thyroidectomy. Serum levels of free triiodothyronine (fT(3)) and free thyroxine (fT(4)) significantly decreased 1 week after total thyroidectomy. On the other hand, transplantation of the thyroid cell sheets was able to restore the thyroid function 1 week after the cell sheet transplantation, and improvement was maintained for 4 weeks. Moreover, morphological analyses showed typical thyroid follicle organization, and anti-thyroid-transcription-factor-1 antibody staining demonstrated the presence of follicle epithelial cells. The presence of functional microvessels was also detected within the engineered thyroid tissues. In conclusion, our results indicate that thyroid cell sheets transplanted in a model of total thyroidectomy can reorganize histologically to resemble a typical thyroid gland and restore thyroid function in vivo. In this study, we are the first to confirm that engineered thyroid tissue can repair hypothyroidism models in rats and, therefore, cell sheet transplantation of endocrine organs may be suitable for the therapy of hormonal deficiency.

  10. Thyroid hormone is essential for pituitary somatotropes and lactotropes.

    PubMed

    Stahl, J H; Kendall, S K; Brinkmeier, M L; Greco, T L; Watkins-Chow, D E; Campos-Barros, A; Lloyd, R V; Camper, S A

    1999-04-01

    Mice homozygous for a disruption in the alpha-subunit essential for TSH, LH, and FSH activity (alphaGsu-/-) exhibit hypothyroidism and hypogonadism similar to that observed in TSH receptor-deficient hypothyroid mice (hyt) and GnRH-deficient hypogonadal mutants (hpg). Although the five major hormone-producing cells of the anterior pituitary are present in alphaGsu-/- mice, the relative proportions of each cell type are altered dramatically. Thyrotropes exhibit hypertrophy and hyperplasia, and somatotropes and lactotropes are underrepresented. The size and number of gonadotropes in alphaGsu mutants are not remarkable in contrast to the hypertrophy characteristic of gonadectomized animals. The reduction in lactotropes is more severe in alphaGsu mutants (13-fold relative to wild-type) than in hyt or hpg mutants (4.5- and 1.5-fold, respectively). In addition, T4 replacement therapy of alphaGsu mutants restores lactotropes to near-normal levels, illustrating the importance of T4, but not alpha-subunit, for lactotrope proliferation and function. T4 replacement is permissive for gonadotrope hypertrophy in alphaGsu mutants, consistent with the role for T4 in the function of gonadotropes. This study reveals the importance of thyroid hormone in developing the appropriate proportions of anterior pituitary cell types.

  11. Apigenin in Combination with Akt Inhibition Significantly Enhances Thyrotropin-Stimulated Radioiodide Accumulation in Thyroid Cells

    PubMed Central

    Lakshmanan, Aparna; Doseff, Andrea I.; Ringel, Matthew D.; Saji, Motoyasu; Rousset, Bernard; Zhang, Xiaoli

    2014-01-01

    Background: Selectively increased radioiodine accumulation in thyroid cells by thyrotropin (TSH) allows targeted treatment of thyroid cancer. However, the extent of TSH-stimulated radioiodine accumulation in some thyroid tumors is not sufficient to confer therapeutic efficacy. Hence, it is of clinical importance to identify novel strategies to selectively further enhance TSH-stimulated thyroidal radioiodine accumulation. Methods: PCCl3 rat thyroid cells, PCCl3 cells overexpressing BRAFV600E, or primary cultured tumor cells from a thyroid cancer mouse model, under TSH stimulation were treated with various reagents for 24 hours. Cells were then subjected to radioactive iodide uptake, kinetics, efflux assays, and protein extraction followed by Western blotting against selected antibodies. Results: We previously reported that Akt inhibition increased radioiodine accumulation in thyroid cells under chronic TSH stimulation. Here, we identified Apigenin, a plant-derived flavonoid, as a reagent to further enhance the iodide influx rate increased by Akt inhibition in thyroid cells under acute TSH stimulation. Akt inhibition is permissive for Apigenin's action, as Apigenin alone had little effect. This action of Apigenin requires p38 MAPK activity but not PKC-δ. The increase in radioiodide accumulation by Apigenin with Akt inhibition was also observed in thyroid cells expressing BRAFV600E and in primary cultured thyroid tumor cells from TRβPV/PV mice. Conclusion: Taken together, Apigenin may serve as a dietary supplement in combination with Akt inhibitors to enhance therapeutic efficacy of radioiodine for thyroid cancer. PMID:24400871

  12. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway.

    PubMed

    Wu, Dapeng; Li, Lei; Yan, Wei

    2016-04-15

    Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blotin vitroandin vivo Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results fromin vitroandin vivostudies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. © 2016. Published by The Company of Biologists Ltd.

  13. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway

    PubMed Central

    Wu, Dapeng; Li, Lei; Yan, Wei

    2016-01-01

    ABSTRACT Thyroid cancer 1 (TC-1, C8ofr4) is widely expressed in vertebrates and associated with many kinds of tumors. Previous studies indicated that TC-1 functions as a positive regulator in the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, its exact role and regulation mechanism in radiosensitivity of NSCLC are still unclear. The expression level of TC-1 was measured by qRT-PCR and western blot in NSCLC cell lines. Proliferation and apoptosis of NSCLC cells in response to TC-1 knockdown or/and radiation were determined by MTT assay and flow cytometry, respectively. The activation of the Wnt/β-catenin signaling pathway was further examined by western blot in vitro and in vivo. Compared to TC-1 siRNA or radiotherapy alone, TC-1 silencing combined with radiation inhibited cell proliferation and induced apoptosis in NSCLC cell lines by inactivating of the Wnt/β-catenin signaling pathway. Furthermore, inhibition of the Wnt/β-catenin signaling pathway by XAV939, a Wnt/β-catenin signaling inhibitor, contributed to proliferation inhibition and apoptosis induction in NSCLC A549 cells. Combinative treatment of A549 xenografts with TC-1 siRNA and radiation caused significant tumor regression and inactivation of the Wnt/β-catenin signaling pathway relative to TC-1 siRNA or radiotherapy alone. The results from in vitro and in vivo studies indicated that TC-1 silencing sensitized NSCLC cell lines to radiotherapy through the Wnt/β-catenin signaling pathway. PMID:27029901

  14. Conservation in the involvement of heterochronic genes and hormones during developmental transitions.

    PubMed

    Faunes, Fernando; Larraín, Juan

    2016-08-01

    Developmental transitions include molting in some invertebrates and the metamorphosis of insects and amphibians. While the study of Caenorhabditis elegans larval transitions was crucial to determine the genetic control of these transitions, Drosophila melanogaster and Xenopus laevis have been classic models to study the role of hormones in metamorphosis. Here we review how heterochronic genes (lin-4, let-7, lin-28, lin-41), hormones (dafachronic acid, ecdysone, thyroid hormone) and the environment regulate developmental transitions. Recent evidence suggests that some heterochronic genes also regulate transitions in higher organisms that they are controlled by hormones involved in metamorphosis. We also discuss evidence demonstrating that heterochronic genes and hormones regulate the proliferation and differentiation of embryonic and neural stem cells. We propose the hypothesis that developmental transitions are regulated by an evolutionary conserved mechanism in which heterochronic genes and hormones interact to control stem/progenitor cells proliferation, cell cycle exit, quiescence and differentiation and determine the proper timing of developmental transitions. Finally, we discuss the relevance of these studies to understand post-embryonic development, puberty and regeneration in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The cytology of a thyroid granular cell tumor.

    PubMed

    Chang, Shu-Mei; Wei, Chang-Kuo; Tseng, Chih-En

    2009-01-01

    Granular cell tumor (GCT) of the thyroid is rare. Before this report, only four cases of thyroid GCT have been reported, none of which presented a cytopathological examination. In this paper, we report the fine needle aspiration cytology and pathological analysis of a thyroid GCT from a 12-year-old girl who presented with a painless neck mass. The tumor cells were single, in syncytial clusters, or pseudofollicles, contained small round, oval, or spindle nuclei, indistinct nucleoli, and a large amount of grayish, granular fragile cytoplasm. The background contained granular debris and naked nuclei. A differential diagnosis of thyroid GCT with more frequent thyroid lesions containing cytoplasmic granules, including Hurthle cells, macrophages, follicular cells, and cells of black thyroid syndrome, was also performed.

  16. Mechanisms of action of nonpeptide hormones on resveratrol-induced antiproliferation of cancer cells.

    PubMed

    Lin, Hung-Yun; Hsieh, Meng-Ti; Cheng, Guei-Yun; Lai, Hsuan-Yu; Chin, Yu-Tang; Shih, Ya-Jung; Nana, André Wendindondé; Lin, Shin-Ying; Yang, Yu-Chen S H; Tang, Heng-Yuan; Chiang, I-Jen; Wang, Kuan

    2017-09-01

    Nonpeptide hormones, such as thyroid hormone, dihydrotestosterone, and estrogen, have been shown to stimulate cancer proliferation via different mechanisms. Aside from their cytosolic or membrane-bound receptors, there are receptors on integrin α v β 3 for nonpeptide hormones. Interaction between hormones and integrin α v β 3 can induce signal transduction and eventually stimulate cancer cell proliferation. Resveratrol induces inducible COX-2-dependent antiproliferation via integrin α v β 3 . Resveratrol and hormone-induced signals are both transduced by activated extracellular-regulated kinases 1 and 2 (ERK1/2); however, hormones promote cell proliferation, while resveratrol induces antiproliferation in cancer cells. Hormones inhibit resveratrol-stimulated phosphorylation of p53 on Ser15, resveratrol-induced nuclear COX-2 accumulation, and formation of p53-COX-2 nuclear complexes. Subsequently, hormones impair resveratrol-induced COX-2-/p53-dependent gene expression. The inhibitory effects of hormones on resveratrol action can be blocked by different antagonists of specific nonpeptide hormone receptors but not integrin α v β 3 blockers. Results suggest that nonpeptide hormones inhibit resveratrol-induced antiproliferation in cancer cells downstream of the interaction between ligand and receptor and ERK1/2 activation to interfere with nuclear COX-2 accumulation. Thus, the surface receptor sites for resveratrol and nonpeptide hormones are distinct and can induce discrete ERK1/2-dependent downstream antiproliferation biological activities. It also indicates the complex pathways by which antiproliferation is induced by resveratrol in various physiological hormonal environments. . © 2017 New York Academy of Sciences.

  17. Differential expression of connexin 43 in human autoimmune thyroid disease.

    PubMed

    Jiang, Xiao-Yan; Feng, Xiao-Hong; Li, Guo-Yan; Zhao, Qian; Yin, Hui-Qing

    2010-05-01

    Gap junctions provide a pathway for cell-to-cell communication. Reduced thyroid epithelial cell-cell communication has been reported in some animal models of autoimmune thyroid disease. In order to assess whether this change was similar to human autoimmune thyroid disease, we identified some connexin proteins and their corresponding mRNA in human thyroid gland. The aim of our study was to explore the expression of connexin 43 (Cx43) in the thyroid gland from normal and diseased human thyroid tissue by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). The expression levels of Cx43 in Grave's disease were significantly increased in comparison with those of normal thyroid tissue. There was a significant decrease in expression of Cx43 in Hashimoto's thyroiditis, compared with normal thyroid tissue. These data indicate that changes of Cx43 expression in human autoimmune thyroid disease were associated with variations in thyroid function and hormone secretion. 2009 Elsevier GmbH. All rights reserved.

  18. T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc.

    PubMed

    Li, Jian; Liu, Yun; Kong, Dongdong; Ren, Shujuan; Li, Na

    2016-05-01

    In the present study, a two-hybrid yeast bioassay and a T-screen were used to screen for the thyroid receptor (TR)-disrupting activity of select metallic compounds (CdCl2, ZnCl2, HgCl2, CuSO4, MnSO4, and MgSO4). The results reveal that none of the tested metallic compounds showed TR-agonistic activity, whereas ZnCl2, HgCl2, and CdCl2 demonstrated TR antagonism. For the yeast assay, the dose-response relationship of these metallic compounds was established, and the concentrations producing 20 % of the maximum effect of ZnCl2, HgCl2, and CdCl2 were 9.1 × 10(-5), 3.2 × 10(-6), and 1.2 × 10(-6) mol/L, respectively. The T-screen also supported the finding that ZnCl2, HgCl2, and CdCl2 decreased the cell proliferation at concentrations ranging from 10(-6) to 10(-4) mol/L. Furthermore, the thyroid-disrupting activity of metallic compounds in environmental water samples collected from the Guanting Reservoir, Beijing, China was evaluated. Solid-phase extraction was used to separate the organic extracts, and a modified two-hybrid yeast bioassay revealed that the metallic compounds in the water samples could affect thyroid hormone-induced signaling by decreasing the binding of the thyroid hormone. The addition of ethylenediaminetetraacetic acid (30 mg/L) could eliminate the effects. Thus, the cause(s) of the thyroid toxicity in the water samples appeared to be partly related to the metallic compounds.

  19. Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer

    PubMed Central

    Bharali, Dhruba J; Yalcin, Murat; Davis, Paul J; Mousa, Shaker A

    2013-01-01

    Aim The aim was to evaluate tetraiodothyroacetic acid (tetrac), a thyroid hormone analog of l-thyroxin, conjugated to poly(lactic-co-glycolic acid) nanoparticles (T-PLGA-NPs) both in vitro and in vivo for the treatment of drug-resistant breast cancer. Materials & methods The uptake of tetrac and T-PLGA-NPs in doxorubicin-resistant MCF7 (MCF7-Dx) cells was evaluated using confocal microscopy. Cell proliferation assays and a chick chorioallantoic membrane model of FGF2-induced angiogenesis were used to evaluate the anticancer effects of T-PLGA-NPs. In vivo efficacy was examined in a MCF7-Dx orthotopic tumor BALBc nude mouse model. Results T-PLGA-NPs were restricted from entering into the cell nucleus, and T-PLGA-NPs inhibited angiogenesis by 100% compared with 60% by free tetrac. T-PLGA-NPs enhanced inhibition of tumor-cell proliferation at a low-dose equivalent of free tetrac. In vivo treatment with either tetrac or T-PLGA-NPs resulted in a three- to five-fold inhibition of tumor weight. Conclusion T-PLGA-NPs have high potential as anticancer agents, with possible applications in the treatment of drug-resistant cancer. PMID:23448245

  20. Carcinogenesis of PIK3CA

    PubMed Central

    2013-01-01

    PIK3CA is the most frequently mutated oncogene in human cancers. PIK3CA is phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha. It controls cell growth, proliferation, motility, survival, differentiation and intracellular trafficking. In most of human cancer alteration occurred frequently in the alpha isoform of phosphatidylinositol 3 kinase. PIK3CA mutations were most frequent in endometrial, ovarian, colorectal, breast, cervical, squamous cell cancer of the head and neck, chondroma, thyroid carcinoma and in cancer family syndrome. Inhibition of PI3K signaling can diminish cell proliferation, and in some circumstances, promote cell death. Consequently, components of this pathway present attractive targets for cancer therapeutics. A number of PI3K pathway inhibitors have been developed and used. PI3K inhibitors (both pan-PI3K and isoform-specific PI3K inhibitors), dual PI3K-mTOR inhibitors that are catalytic site inhibitors of the p110 isoforms and mTOR (the kinase component of both mTORC1 and mTORC2), mTOR catalytic site inhibitors, and AKT inhibitors are the most advanced in the clinic. They are approved for the treatment of several carcinomas. PMID:23768168

  1. Painless giant cell thyroiditis diagnosed by fine needle aspiration and associated with intense thyroidal uptake of gallium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, L.R.; Moreno, A.J.; Pittman, D.L.

    1986-05-01

    A 52-year-old woman presented with fever, goiter, and no evidence of pain or tenderness in the thyroid. A diagnosis of silent thyroiditis was made after obtaining evidence of biochemical thyrotoxicosis, intense gallium-67 citrate thyroidal localization, and cytologic thyroiditis. Fine needle aspiration biopsy of the thyroid revealed numerous giant cells in all areas of the thyroid, typical of subacute thyroiditis. This is believed to be the first time painless thyroiditis is reported with the classic cytologic feature of painful subacute thyroiditis.

  2. Lymphocyte function following radioiodine therapy in patients with thyroid carcinoma.

    PubMed

    Barsegian, V; Müller, S P; Horn, P A; Bockisch, A; Lindemann, M

    2011-01-01

    Since the nuclear disaster in Fukushima has raised great concern about the danger of radioactivity, we here addressed the question if the therapeutic use of iodine 131, the most frequently applied radionuclide, was harmful to immune function in patients. It was our aim to define for the first time in a clinical setting how radioiodine therapy alters anti-microbial immune responses. In 21 patients with thyroid carcinoma anti-microbial lymphocyte responses were assessed by lymphocyte transformation test and ELISpot - measuring lymphocyte proliferation and on a single cell level production of pro- and anti-inflammatory cytokines (interferon-γ and interleukin-10) - prior to therapy, at day 1 and day 7 post therapy. Proliferative lymphocyte responses and interferon-γ production after in vitro stimulation with microbial antigens were significantly (p < 0.05) increased at day 1 vs. pre therapy, and returned to pre therapy levels at day 7. On the contrary, at day 1 interleukin-10 production was significantly (p < 0.05) reduced. Thus, we observed a short-term increase in pro-inflammatory immune responses. However, T lymphocyte responses were in the range of healthy controls at all three time points. Thyroid carcinoma patients receiving radioiodine therapy do not display any sign of immunosuppression.

  3. [Poorly differentiated thyroid carcinomas: new therapeutic considerations].

    PubMed

    Graf, Hans

    2005-10-01

    For most differentiated thyroid carcinomas, as papillary and follicular carcinomas, following total thyroidectomy and 131I therapy for thyroid remnant ablation, treatment with thyroid hormones to suppress TSH levels will reduce the growth of any remaining thyroid cancer cells, and thyroid cell-specific radiation therapy will either cure or control the disease. Thyroid carcinomas are considered poorly differentiated when they start to lose such functions as iodine uptake and thyrotropin-dependence for growth and production of thyroid proteins like NIS, thyroglobulin and desiodases. One of the greatest challenges in the management of patients with follicular cell-derived thyroid cancer is the treatment of tumors that progressed despite surgery, (131)I and T4 suppression of TSH. With the better knowledge of the abnormal molecular signaling in thyroid cancer cells, actually known targeted cancer therapies, directed against molecules involved in neoplastic transformation, are being used. As the critical molecular requirements for tumor initiation, maintenance and progression are identified, combination therapies with targeted agents acting on each of them will improve the treatment of poorly differentiated thyroid carcinoma.

  4. Identification of thyroid tumor cell vulnerabilities through a siRNA-based functional screening.

    PubMed

    Anania, Maria; Gasparri, Fabio; Cetti, Elena; Fraietta, Ivan; Todoerti, Katia; Miranda, Claudia; Mazzoni, Mara; Re, Claudia; Colombo, Riccardo; Ukmar, Giorgio; Camisasca, Stefano; Pagliardini, Sonia; Pierotti, Marco; Neri, Antonino; Galvani, Arturo; Greco, Angela

    2015-10-27

    The incidence of thyroid carcinoma is rapidly increasing. Although generally associated with good prognosis, a fraction of thyroid tumors are not cured by standard therapy and progress to aggressive forms for which no effective treatments are currently available. In order to identify novel therapeutic targets for thyroid carcinoma, we focused on the discovery of genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same degree for the viability of normal cells (non-oncogene addiction paradigm). We screened a siRNA oligonucleotide library targeting the human druggable genome in thyroid cancer BCPAP cell line in comparison with immortalized normal human thyrocytes (Nthy-ori 3-1). We identified a panel of hit genes whose silencing interferes with the growth of tumor cells, while sparing that of normal ones. Further analysis of three selected hit genes, namely Cyclin D1, MASTL and COPZ1, showed that they represent common vulnerabilities for thyroid tumor cells, as their inhibition reduced the viability of several thyroid tumor cell lines, regardless the histotype or oncogenic lesion. This work identified non-oncogenes essential for sustaining the phenotype of thyroid tumor cells, but not of normal cells, thus suggesting that they might represent promising targets for new therapeutic strategies.

  5. Pax8 modulates the expression of Wnt4 that is necessary for the maintenance of the epithelial phenotype of thyroid cells

    PubMed Central

    2014-01-01

    Background The transcription factor Pax8 is expressed during thyroid development and is involved in the morphogenesis of the thyroid gland and maintenance of the differentiated phenotype. In particular, Pax8 has been shown to regulate genes that are considered markers of thyroid differentiation. Recently, the analysis of the gene expression profile of FRTL-5 differentiated thyroid cells after the silencing of Pax8 identified Wnt4 as a novel target. Like the other members of the Wnt family, Wnt4 has been implicated in several developmental processes including regulation of cell fate and patterning during embryogenesis. To date, the only evidence on Wnt4 in thyroid concerns its down-regulation necessary for the progression of thyroid epithelial tumors. Results Here we demonstrate that Pax8 is involved in the transcriptional modulation of Wnt4 gene expression directly binding to its 5’-flanking region, and that Wnt4 expression in FRTL-5 cells is TSH-dependent. Interestingly, we also show that in thyroid cells a reduced expression of Wnt4 correlates with the alteration of the epithelial phenotype and that the overexpression of Wnt4 in thyroid cancer cells is able to inhibit cellular migration. Conclusions We have identified and characterized a functional Pax8 binding site in the 5’-flanking region of the Wnt4 gene and we show that Pax8 modulates the expression of Wnt4 in thyroid cells. Taken together, our results suggest that in thyroid cells Wnt4 expression correlates with the integrity of the epithelial phenotype and is reduced when this integrity is perturbed. In the end, we would like to suggest that the overexpression of Wnt4 in thyroid cancer cells is able to revert the mesenchymal phenotype. PMID:25270402

  6. The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression.

    PubMed

    Heiden, Katherine B; Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Wang, Yimin; Liu, Dingxie; Xing, Mingzhao; Prinz, Richard A; Xu, Xiulong

    2014-11-01

    Cancer stem cells (CSCs) have been recently identified in thyroid neoplasm. Anaplastic thyroid cancer (ATC) contains a higher percentage of CSCs than well-differentiated thyroid cancer. The signaling pathways and the transcription factors that regulate thyroid CSC self-renewal remain poorly understood. The objective of this study is to use two ATC cell lines (KAT-18 and SW1736) as a model to study the role of the sonic hedgehog (Shh) pathway in maintaining thyroid CSC self-renewal and to understand its underlying molecular mechanisms. The expression and activity of aldehyde dehydrogenase (ALDH), a marker for thyroid CSCs, was analyzed by Western blot and ALDEFLUOR assay, respectively. The effect of three Shh pathway inhibitors (cyclopamine, HhAntag, GANT61), Shh, Gli1, Snail knockdown, and Gli1 overexpression on thyroid CSC self-renewal was analyzed by ALDEFLUOR assay and thyrosphere formation. The sensitivity of transfected KAT-18 cells to radiation was evaluated by a colony survival assay. Western blot analysis revealed that ALDH protein levels in five thyroid cancer cell lines (WRO82, a follicular thyroid cancer cell line; BCPAP and TPC1, two papillary thyroid cancer cell lines; KAT-18 and SW1736, two ATC cell lines) correlated with the percentage of the ALDH(High) cells as well as Gli1 and Snail expression. The Shh pathway inhibitors, Shh and Gli1 knockdown, in KAT-18 cells decreased thyroid CSC self-renewal and increased radiation sensitivity. In contrast, Gli1 overexpression led to increased thyrosphere formation, an increased percentage of ALDH(High) cells, and increased radiation resistance in KAT-18 cells. Inhibition of the Shh pathway by three specific inhibitors led to decreased Snail expression and a decreased number of ALDH(High) cells in KAT-18 and SW1736. Snail gene knockdown decreased the number of ALDH(High) cells in KAT-18 and SW1736 cells. The Shh pathway promotes the CSC self-renewal in ATC cell lines by Gli1-induced Snail expression.

  7. Establishment of a non-tumorigenic papillary thyroid cell line (FB-2) carrying the RET/PTC1 rearrangement.

    PubMed

    Basolo, Fulvio; Giannini, Riccardo; Toniolo, Antonio; Casalone, Rosario; Nikiforova, Marina; Pacini, Furio; Elisei, Rossella; Miccoli, Paolo; Berti, Piero; Faviana, Pinuccia; Fiore, Lisa; Monaco, Carmen; Pierantoni, Giovanna Maria; Fedele, Monica; Nikiforov, Yuri E; Santoro, Massimo; Fusco, Alfredo

    2002-02-10

    A novel human thyroid papillary carcinoma cell line (FB-2) has been established and characterized. FB-2 cells harbor the RET/PTC1 chimeric oncogene in which the RET kinase domain is fused to the H4 gene. FB-2 cells neither formed colonies in semisolid media nor induced tumors after heterotransplant into severe combined immunodeficient mice. However, HMGI(Y), HMGI-C and c-myc genes, which are associated to thyroid cell transformation, were abundantly expressed in FB-2 cells but not in normal thyroid cells. FB-2 cells only partially retained the differentiated thyroid phenotype. In fact, the PAX-8 gene, which codes for a transcriptional factor required for thyroid cell differentiation, was expressed, while thyroglobulin, TSH-receptor and thyroperoxidase genes were not. Moreover, FB-2 cells produced high levels of interleukin (IL)-6 and IL-8. Copyright 2001 Wiley-Liss, Inc.

  8. Thyroid Hormone Regulation of Metabolism

    PubMed Central

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  9. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus-pituitary-thyroid axis of male Fischer 344 rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.

    Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that ismore » neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor {alpha} and {beta}, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk assessments for AA.« less

  10. Development of the thyroid gland.

    PubMed

    Nilsson, Mikael; Fagman, Henrik

    2017-06-15

    Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed. © 2017. Published by The Company of Biologists Ltd.

  11. Thyroid dysfunction: an autoimmune aspect.

    PubMed

    Khan, Farah Aziz; Al-Jameil, Noura; Khan, Mohammad Fareed; Al-Rashid, May; Tabassum, Hajera

    2015-01-01

    Auto immune thyroid disease (AITD) is the common organ specific autoimmune disorder, Hashimoto thyroiditis (HT) and Grave's disease (GD) are its well-known sequelae. It occurs due to loss of tolerance to autoantigens thyroid peroxidase (TPO), thyroglobulin (Tg), thyroid stimulating hormone receptor (TSH-R) which leads to the infiltration of the gland. T cells in chronic autoimmune thyroiditis (cAIT) induce apoptosis in thyroid follicular cells and cause destruction of the gland. Presences of TPO antibodies are common in HT and GD, while Tg has been reported as an independent predictor of thyroid malignancy. Cytokines are small proteins play an important role in autoimmunity, by stimulating B and T cells. Various cytokines IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-14, TNF-α and IFN-γ are found in thyroid follicular cells which enhance inflammatory response with nitric oxide (NO) and prostaglandins.

  12. Cytomorphological Spectrum of Thyroiditis: A Review of 110 Cases

    PubMed Central

    Nair, Rahul; Gambhir, Anushree; Kaur, Supreet; Pandey, Aditi; Shetty, Abhinav; Naragude, Piyusha

    2018-01-01

    Introduction Different types of thyroiditis may share some parallel clinical and biochemical features. Timely intervention can significantly reduce morbidity and mortality. Aim Aim of this study is to find the frequency of various thyroiditis, study the cytomorphological features and correlate with clinical findings including radiological findings, thyroid function test, and anti-thyroid peroxidase antibodies (Anti-TPO antibodies). Materials and Methods The study included consecutive 110 cases of thyroiditis. Detailed cytomorphological features were studied and correlated with ultrasonography findings, thyroid function test, anti-thyroid peroxidase antibodies (anti-TPO) and histopathological features where thyroidectomy specimens were received for histopathological examination. Results The majority were Hashimoto's thyroiditis (n = 100) and females (n = 103). Other forms of thyroiditis were Hashimoto's thyroiditis with colloid goiter (n = 5), De Quervain's thyroiditis (n = 3), and one case each of postpartum thyroiditis and Hashimoto's thyroiditis with associated malignancy. The majority of patients were in the age group of 21–40 (n = 70) and the majority (n = 73) had diffuse enlargement of thyroid. The majority of patients were hypothyroid (n = 52). The serum anti-TPO antibodies were elevated in 47 patients out of 71 patients. In the 48 patients who underwent ultrasonography, 38 were diagnosed as having thyroiditis. The most consistent cytomorphological features seen in fine-needle aspiration smears of Hashimoto's thyroiditis were increased background lymphocytes, lymphocytic infiltration of thyroid follicular cell clusters, and Hurthle cells. Conclusion The diagnostic cytological features in Hashimoto's thyroiditis are increased background lymphocytes, lymphocytic infiltration of thyroid follicular cell clusters, and Hurthle cells. FNAC remains the “Gold Standard” for diagnosing Hashimoto's thyroiditis. Clinical history, thyroid function, and biochemical parameters are the key for diagnosis of other forms of thyroiditis. PMID:29686830

  13. A human thyroid cancer cell line, DH-14-3, newly established from poorly differentiated thyroid carcinoma.

    PubMed

    Teshima, Jin; Doi, Hideyuki; Fujimori, Keisei; Watanabe, Michio; Nakajima, Noriaki; Nakano, Tomoyuki; Takahashi, Yoshio; Ohuchi, Noriaki; Satomi, Susumu

    2013-06-01

    Poorly differentiated thyroid carcinoma (PDTC) is a newly recognized histological type of malignant thyroid tumor, accounting for about 2 - 13% of all thyroid carcinomas. PDTC is considered as a morphologically and biologically intermediate stage between well-differentiated thyroid carcinoma and anaplastic thyroid carcinoma. PDTC preferentially manifests bone metastases. We here established a cell line from a resected tumor specimen from a 70-year-old male patient with PDTC who presented with multiple bone metastases. This new thyroid tumor cell line was designated as DH-14-3 and was subsequently grown in culture for several years. DH-14-3 cells express thyroglobulin in the cytoplasm and thyroid transcription factor-1 in the nuclei, both proteins of which are specific markers for the thyroid gland. Importantly, triiodothyronine (T3) was detected in the cultured medium of DH-14-3 cells, in which, however, thyroxine (T4) was undetectable. Moreover, DH-14-3 cells secreted interleukin-8, transforming growth factor-β1, vascular endothelial growth factor, matrix metalloproteinase-1 and parathyroid hormone-related protein, all of which may be responsible for the aggressiveness or bone metastasis of PDTC. Thus, the production of these proteins may reflect the metastatic potential of this cell line. DH-14-3 cells also express CXC chemokine receptor-4 and epidermal growth factor receptor, and carry a missense mutation in the p53 tumor suppressor gene. In fact, transplantation of DH-14-3 cells into the back of nude mice resulted in the formation of tumors, thereby confirming the capability of tumorigenesis. DH-14-3 cells may be useful for investigating the biological features of PDTC and will contribute to the therapeutic study of thyroid cancer.

  14. Downregulation of miR‑135a predicts poor prognosis in acute myeloid leukemia and regulates leukemia progression via modulating HOXA10 expression.

    PubMed

    Xu, Hongwei; Wen, Quan

    2018-05-23

    MicroRNA‑135a (miR‑135a) has been shown to exert important roles in various human cancer types, such as glioblastoma, thyroid carcinoma and renal carcinoma. However, the function of miR‑135a in acute myeloid leukemia (AML) remains largely unknown. In the present study, it was demonstrated that miR‑135a expression was significantly downregulated in AML cells compared with normal control cells. Furthermore, the downregulation of miR‑135a in patients with AML predicted poor prognosis. Through functional experiments, overexpression of miR‑135a was demonstrated to significantly inhibit the proliferation and cell cycle of AML cells, while it promoted cellular apoptosis. miR‑135a directly targeted HOXA10 in AML cells. miR‑135a overexpression significantly suppressed the mRNA and protein levels of HOXA10 in AML cells. Moreover, there was an inverse association between miR‑135a expression and HOXA10 level in AML samples. Additionally, by ectopic expression of HOXA10, restoration of HOXA10 significantly abolished the effects of miR‑135a overexpression on AML cell proliferation, cell cycle and apoptosis. In conclusion, the present study demonstrated that miR‑135a serves as a tumor suppressor in AML by targeting HOXA10, and miR‑135a may be a promising prognostic biomarker for AML patients.

  15. Thyrotoxicosis: a rare presenting symptom of Hurthle cell carcinoma of the thyroid.

    PubMed

    Wong, C P; AuYong, T K; Tong, C M

    2003-10-01

    Hurthle cell carcinoma of the thyroid is a rare type of thyroid neoplasm. The most common clinical presentation is a single palpable thyroid nodule. The neoplasm typically presents as a nonfunctioning or cold nodule on a Tc-99m sodium pertechnetate or radioiodine thyroid scan. We report a case of Hurthle cell carcinoma of the thyroid in a woman presenting with thyrotoxicosis. The Tc-99m thyroid scan was also interesting in that the nodule was a hot or hyperfunctioning area, resulting in a rare scintigraphic finding in a rare tumor. Clinicopathologic aspects and related issues are further discussed.

  16. Lenvatinib and Pembrolizumab in DTC

    ClinicalTrials.gov

    2018-05-21

    Columnar Cell Variant Thyroid Gland Papillary Carcinoma; Follicular Variant Thyroid Gland Papillary Carcinoma; Poorly Differentiated Thyroid Gland Carcinoma; Recurrent Thyroid Gland Carcinoma; Stage III Differentiated Thyroid Gland Carcinoma AJCC v7; Stage III Thyroid Gland Follicular Carcinoma AJCC v7; Stage III Thyroid Gland Papillary Carcinoma AJCC v7; Stage IV Thyroid Gland Follicular Carcinoma AJCC v7; Stage IV Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVA Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVA Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVA Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVB Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVB Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVB Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVC Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVC Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVC Thyroid Gland Papillary Carcinoma AJCC v7; Tall Cell Variant Thyroid Gland Papillary Carcinoma; Thyroid Gland Oncocytic Follicular Carcinoma

  17. Human herpes simplex viruses in benign and malignant thyroid tumours.

    PubMed

    Jensen, Kirk; Patel, Aneeta; Larin, Alexander; Hoperia, Victoria; Saji, Motoyasu; Bauer, Andrew; Yim, Kevin; Hemming, Val; Vasko, Vasyl

    2010-06-01

    To test the hypothesis that herpes viruses may have a role in thyroid neoplasia, we analysed thyroid tissues from patients with benign (44) and malignant (65) lesions for HSV1 and HSV2 DNA. Confirmatory studies included direct sequencing, analysis of viral gene expression, and activation of viral-inducible signalling pathways. Expression of viral entry receptor nectin-1 was examined in human samples and in cancer cell lines. In vitro experiments were performed to explore the molecular mechanisms underlying thyroid cancer cell susceptibility to HSV. HSV DNA was detected in 43/109 (39.4%) examined samples. HSV capsid protein expression correlated with HSV DNA status. HSV-positive tumours were characterized by activation of virus-inducible signalling such as interferon-beta expression and nuclear NFkappaB expression. Lymphocyte infiltration and oncocytic cellular features were common in HSV-positive tumours. HSV1 was detected with the same frequency in benign and malignant thyroid tumours. HSV2 was significantly associated with papillary thyroid cancer and the presence of lymph node metastases. The expression of HSV entry receptor nectin-1 was increased in thyroid tumours compared to normal thyroid tissue and further increased in papillary thyroid cancer. Nectin-1 expression was detected in all examined thyroid cancer cell lines. Nectin-1 expression in cancer cells correlated with their susceptibility to HSV. Inhibition of PI3K/AKT or MAPK/ERK signalling did not affect the level of nectin-1 expression but decreased thyroid cancer cell susceptibility to HSV. These findings showed that HSV is frequently detected in thyroid cancer. During tumour progression, thyroid cells acquire increased susceptibility to HSV due to increased expression of viral entry mediator nectin-1 and activation of mitogenic signalling in cancer cells.

  18. Selective Ablation of Tumor Suppressors in Parafollicular C Cells Elicits Medullary Thyroid Carcinoma.

    PubMed

    Song, Hai; Lin, Chuwen; Yao, Erica; Zhang, Kuan; Li, Xiaoling; Wu, Qingzhe; Chuang, Pao-Tien

    2017-03-03

    Among the four different types of thyroid cancer, treatment of medullary thyroid carcinoma poses a major challenge because of its propensity of early metastasis. To further investigate the molecular mechanisms of medullary thyroid carcinoma and discover candidates for targeted therapies, we developed a new mouse model of medullary thyroid carcinoma based on our CGRP CreER mouse line. This system enables gene manipulation in parafollicular C cells in the thyroid, the purported cells of origin of medullary thyroid carcinoma. Selective inactivation of tumor suppressors, such as p53 , Rb , and Pten , in mature parafollicular C cells via an inducible Cre recombinase from CGRP CreER led to development of murine medullary thyroid carcinoma. Loss of Pten accelerated p53 / Rb -induced medullary thyroid carcinoma, indicating interactions between pathways controlled by tumor suppressors. Moreover, labeling differentiated parafollicular C cells by CGRP CreER allows us to follow their fate during malignant transformation to medullary thyroid tumor. Our findings support a model in which mutational events in differentiated parafollicular C cells result in medullary thyroid carcinoma. Through expression analysis including RNA-Seq, we uncovered major signaling pathways and networks that are perturbed following the removal of tumor suppressors. Taken together, these studies not only increase our molecular understanding of medullary thyroid carcinoma but also offer new candidates for designing targeted therapies or other treatment modalities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Percentage and function of CD4+CD25+ regulatory T cells in patients with hyperthyroidism

    PubMed Central

    Jiang, Ting-Jun; Cao, Xue-Liang; Luan, Sha; Cui, Wan-Hui; Qiu, Si-Huang; Wang, Yi-Chao; Zhao, Chang-Jiu; Fu, Peng

    2018-01-01

    The current study observed the percentage of peripheral blood (PB) CD4+CD25+ regulatory T cells (Tregs) and the influence of CD4+CD25+ Tregs on the proliferation of naïve CD4 T cells in patients with hyperthyroidism. Furthermore, preliminary discussions are presented on the action mechanism of CD4+CD25+ Tregs on hyperthyroidism attacks. The present study identified that compared with the percentage of PB CD4+CD25+ Tregs in healthy control subjects, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism (P>0.05). For patients with hyperthyroidism, CD4+CD25+ Tregs exhibited significantly reduced inhibition of the proliferation of naïve CD4 T cells and decreased secretion capacity on the cytokines of CD4 T cells, compared with those of healthy control subjects (P<0.05). In addition, it was demonstrated that thyroid function of patients with hyperthyroidism was significantly improved (P<0.05) subsequent to receiving medication. Compared with the percentage of PB CD4+CD25+ Tregs in patients with hyperthyroidism before treatment, no significant changes were observed in the percentage of PB CD4+CD25+ Tregs in hyperthyroidism patients following treatment (P>0.05). In the patients with hyperthyroidism, following treatment, CD4+CD25+ Tregs exhibited significantly increased inhibition of the proliferation of naïve CD4 T cells and increased secretion capacity of CD4 T cell cytokines, compared with those of the patients with hyperthyroidism prior to treatment (P<0.05). PB CD4+CD25+ Tregs function was decreased in patients with hyperthyroidism, and its non-proportional decrease may be closely associated with the occurrence and progression of hyperthyroidism. PMID:29207121

  20. Dysregulation of the Phosphatidylinositol 3-kinase Pathway in Thyroid Neoplasia

    PubMed Central

    Paes, John E.; Ringel, Matthew D.

    2008-01-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is an important regulator of many cellular events, including apoptosis, proliferation, and motility. Enhanced activation of this pathway can occur through several mechanisms, such as inactivation of its negative regulator, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and activating mutations and gene amplification of the gene encoding the catalytic subunit of PI3K (PIK3CA). These genetic abnormalities have been particularly associated with follicular thyroid neoplasia and anaplastic thyroid cancer, suggesting an important role for PI3K signaling in these disorders. In this review, the role of PI3K pathway activation in thyroid cancer will be discussed, with a focus on recent advances. PMID:18502332

  1. Immune Response in Thyroid Cancer: Widening the Boundaries

    PubMed Central

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  2. c-erbA and v-erbA modulate growth and gene expression of a mouse glial precursor cell line.

    PubMed

    Iglesias, T; Llanos, S; López-Barahona, M; Pérez-Aranda, A; Rodríguez-Peña, A; Bernal, J; Höhne, A; Seliger, B; Muñoz, A

    1994-07-01

    The c-erbA alpha protooncogene coding for the thyroid hormone (T3) receptor (TR alpha 1) and the viral, mutated v-erbA oncogene were expressed in an immortal mouse glial cell line (B3.1) using retroviral vectors. c-erbA alpha expression led to a decrease in cell proliferation in high and low serum conditions, both in the presence and in the absence of T3. In serum-free medium, c-erbA-expressing cells (B3.1 + TR alpha 1) were completely arrested, whereas cells expressing v-erbA (B3.1 + v-erbA) showed a higher DNA synthesis rate than normal B3.1 cells. Although proliferation of all three cell types was stimulated by platelet-derived growth factor and basic fibroblast growth factor, differences were also observed in the response to these agents. B3.1 + TR alpha 1 cells were more sensitive to platelet-derived growth factor than B3.1 and B3.1 + v-erbA cells. In contrast, B3.1 cells responded to basic fibroblast growth factor better than B3.1 + TR alpha 1 or B3.1 + v-erbA cells. Insulin-like growth factor I potentiated the action of platelet-derived growth factor and basic fibroblast growth factor. Again, different responses to treatment with insulin-like growth factor I alone were observed; B3.1 + TR alpha 1 cells did not respond to it, whereas B3.1 + v-erbA cells showed a dramatic stimulation by this agent. Interestingly, in the presence of T3, the blockade in B3.1 + TR alpha 1 cell proliferation was accompanied by the down-regulation of the typical astrocytic genes, glial fibrillary acidic protein and vimentin. These hormone effects were not found in v-erbA-expressing cells. In addition, v-erbA inhibited the basal expression of the cyclic nucleotide phosphodiesterase gene, an oligodendrocytic marker.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Thyroid Hormone and Leptin in the Testis

    PubMed Central

    Ramos, Cristiane Fonte; Zamoner, Ariane

    2014-01-01

    Leptin is primarily expressed in white adipose tissue; however, it is expressed in the hypothalamus and reproductive tissues as well. Leptin acts by activating the leptin receptors (Ob-Rs). Additionally, the regulation of several neuroendocrine and reproductive functions, including the inhibition of glucocorticoids and enhancement of thyroxine and sex hormone concentrations in human beings and mice are leptin functions. It has been suggested that thyroid hormones (TH) could directly regulate leptin expression. Additionally, hypothyroidism compromises the intracellular integration of leptin signaling specifically in the arcuate nucleus. Two TH receptor isoforms are expressed in the testis, TRa and TRb, with TRa being the predominant one that is present in all stages of development. The effects of TH involve the proliferation and differentiation of Sertoli and Leydig cells during development, spermatogenesis, and steroidogenesis. In this context, TH disorders are associated with sexual dysfunction. An endocrine and/or direct paracrine effect of leptin on the gonads inhibits testosterone production in Leydig cells. Further studies are necessary to clarify the effects of both hormones in the testis during hypothyroidism. The goal of this review is to highlight the current knowledge regarding leptin and TH in the testis. PMID:25505448

  4. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    NASA Astrophysics Data System (ADS)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  5. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiao-Min, E-mail: rxm200318@gmail.com; Guo, Liang-Hong, E-mail: LHGuo@rcees.ac.cn; Gao, Yu, E-mail: francesscototti@gmail.com

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effectmore » on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2′-OH-BDE-28, 3′-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3′-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. - Highlights: ► Thyroid hormone (TH) activity of OH-PBDEs with different Br number was evaluated. ► Four different experimental approaches were employed to investigate the mechanism. ► Low-brominated OH-PBDEs were agonists, but high-brominated ones were antagonists. ► Low-brominated OH-PBDEs bind to TH receptor differently than high-brominated ones.« less

  6. The RET p.G533C mutation confers predisposition to multiple endocrine neoplasia type 2A in a Brazilian kindred and is able to induce a malignant phenotype in vitro and in vivo.

    PubMed

    Oliveira, Mariana N L; Hemerly, Jefferson P; Bastos, André U; Tamanaha, Rosana; Latini, Flavia R M; Camacho, Cléber P; Impellizzeri, Anelise; Maciel, Rui M B; Cerutti, Janete M

    2011-09-01

    We have previously described a p.G533C substitution in the rearranged during transfection (RET) oncogene in a large family with medullary thyroid carcinoma. Here, we explore the functional transforming potential of RET p.G533C mutation. Plasmids expressing RET mutants (p.G533C and p.C634Y) and RET wild type were stable transfected into a rat thyroid cell line (PCCL3). Biological and biochemical effects of RET p.G533C were investigated both in vitro and in vivo. Moreover, we report the first case of pheochromocytoma among the RET p.G533C-carriers in this Brazilian family and explore the RET mutational status in DNA isolated from pheochromocytoma. Ectopic expression of RET p.G533C and p.C634Y activates RET/MAPK/ERK pathway at similar levels and significantly increased cell proliferation, compared with RET wild type. We additionally show that p.G533C increased cell viability, anchorage-independent growth, and micronuclei formation while reducing apoptosis, hallmarks of the malignant phenotype. RET p.G533C down-regulates the expression of thyroid specific genes in PCCL3. Moreover, RET p.G533C-expressing cells were able to induce liver metastasis in nude mice. Finally, we described two novel RET variants (G548V and S556T) in the DNA isolated from pheochromocytoma while they were absent in the DNA isolated from blood. Our in vitro and in vivo analysis indicates that this mutation confers a malignant phenotype to PCCL3 cells. These findings, in association with the report of first case of pheochromocytoma in the Brazilian kindred, suggest that this noncysteine mutation may be more aggressive than was initially considered.

  7. Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis.

    PubMed

    Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko

    2017-04-01

    In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  8. Vitamin D 1alpha-hydroxylase (CYP1alpha) polymorphism in Graves' disease, Hashimoto's thyroiditis and type 1 diabetes mellitus.

    PubMed

    Pani, Michael A; Regulla, Karoline; Segni, Maria; Krause, Maren; Hofmann, Stefan; Hufner, Michael; Herwig, Jurgen; Pasquino, Anna Maria; Usadel, Klaus-H; Badenhoop, Klaus

    2002-06-01

    The vitamin D endocrine system plays a role in the regulation of (auto)immunity and cell proliferation. Vitamin D 1alpha-hydroxylase (CYP1alpha) is one of the key enzymes regulating both systemic and tissue levels of 1,25-dihyroxyvitamin D(3) (1,25(OH)(2)D(3)). Administration of 1,25(OH)(2)D(3), whose serum levels were found to be reduced in type 1 diabetes and thyroid autoimmunity, prevents these diseases in animal models. We therefore investigated a recently reported CYP1alpha polymorphism for an association with type 1 diabetes mellitus, Graves' disease and Hashimoto's thyroiditis. Four hundred and seven Caucasian pedigrees with one offspring affected by either type 1 diabetes (209 families), Graves' disease (92 families) or Hashimoto's thyroiditis (106 families) were genotyped for a C/T polymorphism in intron 6 of the CYP1alpha gene on chromosome 12q13.1-13.3 and transmission disequilibrium testing (TDT) was performed. Subsets of affected offspring stratified for HLA-DQ haplotype were compared using chi(2) testing. There was no deviation from the expected transmission frequency in either type 1 diabetes mellitus (P=0.825), Graves' disease (P=0.909) or Hashimoto's thyroiditis (P=0.204). However, in Hashimoto's thyroiditis the CYP1alpha C allele was significantly more often transmitted to HLA-DQ2(-) patients (27 transmitted vs 14 not transmitted; TDT: P=0.042) than expected. The C allele was less often transmitted to HLA-DQ2(+) patients (9 transmitted vs 12 not transmitted; TDT: P=0.513), although the difference was not significant (chi(2) test: P=0.143). A similar difference was observed in type 1 diabetes between offspring with high and low risk HLA-DQ haplotypes (chi(2) test: P=0.095). The CYP1alpha intron 6 polymorphism appears not to be associated with type 1 diabetes mellitus, Graves' disease and Hashimoto's thyroiditis. A potential association in subsets of patients with type 1 diabetes and Hashimoto's thyroiditis should be further investigated as well as its functional implications.

  9. Primary mucinous carcinoma of thyroid gland with prominent signet-ring-cell differentiation: a case report and review of the literature.

    PubMed

    Wang, Jian; Guli, Qie-Re; Ming, Xiao-Cui; Zhou, Hai-Tao; Cui, Yong-Jie; Jiang, Yue-Feng; Zhang, Di; Liu, Yang

    2018-01-01

    This study reports a case of primary mucinous carcinoma of the thyroid gland with signet-ring-cell differentiation, and reviews the literature to evaluate its real incidence and the prognosis of these patients. A 74-year-old Chinese woman, presenting with a mass in the right lobe of thyroid gland, came to the hospital. Computed tomography revealed a mass in the right lobe of the thyroid gland, accompanied with right neck lymphadenectasis and airway deviation caused by tumor compression. Thyroid imaging suggested a thyroid malignant tumor and suspicious lymph node metastasis. Histologically, the tumor was characterized by the tumor cells arranged in small nests or trabeculae with an abundant extracellular mucoid matrix. The tumor cells formed diffuse invasion among thyroid follicles. In the peripheral regions, prominent signet-ring-cells formed a sheet-like structure and extended into the extrathyroidal fat tissue. The tumor cells were diffusely positive for thyroid transcription factor-1 (TTF-1) and PAX8, while they were focally positive for pan-cytokeratin (AE1/AE3) and weakly expressed thyroglobulin. Based on the histological features and immunohistochemical profile, a diagnosis of primary mucinous carcinoma of the thyroid gland with signet-ring-cell differentiation was rendered. Using a panel of immunohistochemical markers may be helpful for differential diagnosis and for determining whether the tumor is primary or not.

  10. Zebrafish bcl2l is a survival factor in thyroid development.

    PubMed

    Porreca, Immacolata; De Felice, Elena; Fagman, Henrik; Di Lauro, Roberto; Sordino, Paolo

    2012-06-15

    Regulated cell death, defined in morphological terms as apoptosis, is crucial for organ morphogenesis. While differentiation of the thyroid gland has been extensively studied, nothing is yet known about the survival mechanisms involved in the development of this endocrine gland. Using the zebrafish model system, we aim to understand whether genes belonging to the Bcl-2 family that control apoptosis are implicated in regulation of cell survival during thyroid development. Evidence of strong Bcl-2 gene expression in mouse thyroid precursors prompted us to investigate the functions played by its zebrafish homologs during thyroid development. We show that the bcl2-like (bcl2l) gene is expressed in the zebrafish thyroid primordium. Morpholino-mediated knockdown and mutant analyses revealed that bcl2l is crucial for thyroid cell survival and that this function is tightly modulated by the transcription factors pax2a, nk2.1a and hhex. Also, the bcl2l gene appears to control a caspase-3-dependent apoptotic mechanism during thyroid development. Thyroid precursor cells require an actively maintained survival mechanism to properly proceed through development. The bcl2l gene operates in the inhibition of cell death under direct regulation of a thyroid specific set of transcription factors. This is the first demonstration of an active mechanism to ensure survival of the thyroid primordium during morphogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Mixed primary squamous cell carcinoma, follicular carcinoma, and micropapillary carcinoma of the thyroid gland: A case report.

    PubMed

    Dong, Su; Song, Xue-Song; Chen, Guang; Liu, Jia

    2016-08-01

    Primary squamous cell carcinoma of the thyroid gland is rare, and mixed squamous cell and follicular carcinoma is even rarer still, with only a few cases reported in the literature. The simultaneous presentation of three primary cancers of the thyroid has not been reported previously. Here we report a case of primary squamous cell carcinoma of the thyroid, follicular thyroid carcinoma, and micropapillary thyroid carcinoma. A 62-year-old female patient presented with complaints of pain and a 2-month history of progressively increased swelling in the anterior region of the neck. Fine-needle-aspiration cytology of both lobes indicated the possibility of the presence of a follicular neoplasm. Total thyroidectomy with left-sided modified radical neck dissection was performed. Postoperative pathological examination confirmed the diagnosis of thyroid follicular carcinoma with squamous cell carcinoma and micropapillary carcinoma of the thyroid. Thyroid-stimulating hormone suppressive therapy with l-thyroxine was administered. Radioiodine and radiotherapy also were recommended, but the patient did not complete treatment as scheduled. The patient remained alive more than 9 months after operation. The present case report provides an example of the coexistence of multiple distinct malignancies in the thyroid. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Thyroid Hormone‐Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis

    PubMed Central

    Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun‐Bo; Ishizuya‐Oka, Atsuko

    2016-01-01

    Abstract In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real‐time reverse transcription‐polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up‐regulated during both natural and TH‐induced metamorphosis in a tissue‐specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up‐regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ‐secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH‐induced up‐regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028–1039 PMID:27870267

  13. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination.

    PubMed

    Ren, Xiao-Min; Guo, Liang-Hong; Gao, Yu; Zhang, Bin-Tian; Wan, Bin

    2013-05-01

    Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2'-OH-BDE-28, 3'-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3'-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Toxicity profiles in rats treated with tumorigenic and nontumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.

    PubMed

    Wolf, Douglas C; Allen, James W; George, Michael H; Hester, Susan D; Sun, Guobin; Moore, Tanya; Thai, Sheau-Fung; Delker, Don; Winkfield, Ernest; Leavitt, Sharon; Nelson, Gail; Roop, Barbara C; Jones, Carlton; Thibodeaux, Julie; Nesnow, Stephen

    2006-01-01

    Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepatocellular tumors and/or rat thyroid follicular cell tumors. The particular mode of toxic and tumorigenic action for these compounds is not known, however it has been proposed that triadimefon-induced rat thyroid tumors arise through the specific mechanism of increased TSH. The present study was designed to identify commonalities of effects across the different conazoles and to determine unique features of the tissue responses that suggest a toxicity pathway and a mode of action for the observed thyroid response for triadimefon. Male Wistar/Han rats were treated with triadimefon (100, 500, 1800 ppm), propiconazole (100, 500, 2500 ppm), or myclobutanil (100, 500, 2000 ppm) in feed for 4, 30, or 90 days. The rats were evaluated for clinical signs, body and liver weight, histopathology of thyroid and liver, hepatic metabolizing enzyme activity, and serum T3, T4, TSH, and cholesterol levels. There was a dose-dependent increase in liver weight but not body weight for all treatments. The indication of cytochrome induction, pentoxyresorufin O-dealkylation (PROD) activity, had a dose-related increase at all time points for all conazoles. Uridine diphopho-glucuronosyl transferase (UDPGT), the T4 metabolizing enzyme measured as glucuronidation of 1-naphthol, was induced to the same extent after 30 and 90 days for all three conazoles. Livers from all high dose treated rats had centrilobular hepatocyte hypertrophy after 4 days, while only triadimefon and propiconazole treated rats had hepatocyte hypertrophy after 30 days, and only triadimefon treated rats had hepatocyte hypertrophy after 90 days. Thyroid follicular cell hypertrophy, increased follicular cell proliferation, and colloid depletion were present only after 30 days in rats treated with the high dose of triadimefon. A dose-dependent decrease in T4 was present after 4 days with all 3 compounds but only the high doses of propiconazole and triadimefon produced decreased T4 after 30 days. T3 was decreased after high-dose triadimefon after 4 days and in a dose-dependent manner for all compounds after 30 days. Thyroid hormone levels did not differ from control values after 90 days and TSH was not increased in any exposure group. A unique pattern of toxic responses was not identified for each conazole and the hypothesized mode of action for triadimefon-induced thyroid gland tumors was not supported by the data.

  15. Cytotechnologist performance for screening microfollicular atypia in indeterminate thyroid fine-needle aspirates.

    PubMed

    VandenBussche, Christopher J; Olson, Matthew T; Adams, Christina; Ali, Syed Z

    2014-01-01

    We previously identified a high level of accuracy among our cytotechnologists (CTs) for identifying nuclear atypia in thyroid fine-needle aspiration (FNA) specimens. Herewith, we present our CT performance at screening for microfollicular atypia. 8,814 thyroid FNA specimens were identified in our archives, all screened by 1 of 11 CTs and signed out by a cytopathologist. A subsample of cases was categorized either as atypia of uncertain significance (AUS) with microfollicular proliferation (AUS-F) or suspicious for a follicular neoplasm (SFN). The agreement rate was low between CTs and cytopathologists for SFN and AUS-F. Only 55.8% of SFN screening diagnoses were upheld; 27.9% were downgraded to AUS, 10.4% were downgraded to benign, and 5% were upgraded. Of AUS-F screening diagnoses, 35.5% were upheld, 33.7% were downgraded to benign, and 20.2% were upgraded to SFN. Among all cases, two-step discrepancies were uncommon. Most disagreements were one-category discrepancies between AUS-F and SFN. The evaluation of microfollicular atypia is challenging given that certain follicular lesions cannot be definitively diagnosed on cytology, a high level of subjectivity is involved in the interpretation of such lesions, and the presence of nuclear or Hurthle cell atypia may complicate the diagnosis. © 2014 S. Karger AG, Basel.

  16. Primary mucinous carcinoma with rhabdoid cells of the thyroid gland: a case report.

    PubMed

    Matsuo, Mioko; Tuneyoshi, Masazumi; Mine, Mari

    2016-06-10

    Primary mucinous carcinoma of the thyroid gland is a rare disease; only 6 cases of primary mucinous carcinoma of the thyroid have been previously reported. Primary mucinous carcinoma of the thyroid gland with incomplete tumor resection tends to be associated with a poor prognosis, resulting in death within a few months. An early and appropriate diagnosis may contribute to improvement in patient prognosis; however, it is extremely difficult to diagnose primary mucinous carcinoma of the thyroid. We present the seventh reported case of primary mucinous carcinoma in the thyroid gland; moreover, rhabdoid cells were detected, which, to our knowledge, is a novel finding. An 81-year-old Japanese woman was initially diagnosed with a poorly differentiated thyroid carcinoma, and she underwent a hemithyroidectomy. Pathological examination revealed the presence of abundant mucus and agglomeration of large atypical cells. Rhabdoid cells were also seen scattered among the tumor cells. Immunostaining was performed for various markers, and on the basis of these results, we diagnosed the lesion as primary mucinous carcinoma with rhabdoid cells in the thyroid gland. Ten months after surgery, recurrence was noted in the paratracheal lymph nodes; therefore, total resection of the residual thyroid gland and paratracheal lymphadenectomy with thyroid-stimulating hormone suppression were performed. The patient is currently alive and disease-free. The current case is of interest not only because of the rare histological findings, but also because the patient achieved long-term survival following diagnosis of a mucinous carcinoma. We believe this report will be helpful for diagnosing future cases of mucinous carcinoma of the thyroid.

  17. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine

    PubMed Central

    Nagarajah, James; Le, Mina; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Larson, Steven M.; Ho, Alan L.; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A.; Fagin, James A.

    2016-01-01

    Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer. PMID:27669459

  18. Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine.

    PubMed

    Nagarajah, James; Le, Mina; Knauf, Jeffrey A; Ferrandino, Giuseppe; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Saqcena, Mahesh; Larson, Steven M; Ho, Alan L; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A; Fagin, James A

    2016-11-01

    Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer.

  19. CD40 expression in human thyroid tissue: evidence for involvement of multiple cell types in autoimmune and neoplastic diseases.

    PubMed

    Smith, T J; Sciaky, D; Phipps, R P; Jennings, T A

    1999-08-01

    CD40, a member of the tumor necrosis factor-alpha (TNF-alpha) receptor family of surface molecules, is expressed by a variety of cell types. It is a crucial activational molecule displayed by lymphocytes and other bone marrow-derived cells and recently has also been found on nonlymphoid cells such as fibroblasts, endothelia, and epithelial cells in culture. While its role in lymphocyte signaling and activation has been examined in great detail, the function of CD40 expression on nonlymphoid cells, especially in vivo, is not yet understood. Most of the studies thus far have been conducted in cell culture. In this article, we report that several cell types resident in thyroid tissue in vivo can display CD40 under pathological conditions. Sections from a total of 46 different cases were examined immunohistochemically and included nodular hyperplasia, chronic lymphocytic thyroiditis, diffuse hyperplasia, follicular neoplasia, papillary carcinoma, and medullary carcinoma. Thyroid epithelial cells, lymphocytes, macrophages, endothelial cells, and spindle-shape fibroblast-like cells were found to stain positively in the context of inflammation. The staining pattern observed in all cell types was entirely membranous. In general, epithelial staining was limited to that adjacent to lymphocytic infiltration except in 5 of 17 cases of neoplasia and in diffuse hyperplasia. Moreover, we were able to detect CD40 mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) in human thyroid tissue. These results constitute convincing evidence for expression of CD40 in nonlymphocytic elements of the human thyroid gland. Our findings suggest a potentially important pathway that might be of relevance to the pathogenesis of thyroid diseases. They imply the potential participation of the CD40/CD40 ligand bridge in the cross-talk between resident thyroid cells and bone marrow-derived cells recruited to the thyroid.

  20. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  1. Production of platelet-derived endothelial cell growth factor by normal and transformed human cells in culture.

    PubMed Central

    Usuki, K; Heldin, N E; Miyazono, K; Ishikawa, F; Takaku, F; Westermark, B; Heldin, C H

    1989-01-01

    Platelet-derived endothelial cell growth factor (PD-ECGF) is a 45-kDa endothelial cell mitogen which has angiogenic properties in vivo. We report here that human foreskin fibroblasts, a human squamous cell carcinoma cell line, and 2 out of the 3 human thyroid carcinoma cell lines investigated produce PD-ECGF, whereas 21 other cell lines examined do not. The positive cell lines contained a 1.8-kilobase PD-ECGF mRNA, and a 45-kDa protein could be demonstrated in lysates of the cell lines by immunoblotting and immunoprecipitation using a specific antiserum against PD-ECGF. Furthermore, the cell lysates contained mitogenic activity for endothelial cells that was neutralized by the PD-ECGF antiserum. PD-ECGF was found to be secreted only slowly from the producer cells, consistent with the previous finding that the primary translation product lacks a signal sequence. The restricted expression and intracellular sequestration of PD-ECGF imply a strictly controlled function in endothelial cell proliferation and angiogenesis. Aberrant production of PD-ECGF may play a role in tumor angiogenesis. Images PMID:2678104

  2. Functional expression of the thyrotropin receptor in C cells: new insights into their involvement in the hypothalamic-pituitary-thyroid axis

    PubMed Central

    Morillo-Bernal, Jesús; Fernández-Santos, José M; Utrilla, José C; de Miguel, Manuel; García-Marín, Rocío; Martín-Lacave, Inés

    2009-01-01

    Thyroid C cells, or parafollicular cells, are mainly known for producing calcitonin, a hormone involved in calcium homeostasis with hypocalcemic and hypophosphatemic effects. Classically, the main endocrine activity of this cell population has been believed to be restricted to its roles in serum calcium and bone metabolism. Nonetheless, in the last few years evidence has been accumulating in the literature with regard to local regulatory peptides secreted by C cells, such as somatostatin, ghrelin, thyrotropin releasing hormone or the recently described cocaine- and amphetamine-related transcript, which could modify thyroid function. As thyrotropin is the main hormone controlling the hypothalamic-pituitary-thyroid axis and, accordingly, thyroid function, we have examined the functional expression of the thyrotropin receptor in C-cell lines and in thyroid tissues. We have found that rat and human C-cell lines express the thyrotropin receptor at both mRNA and protein levels. Furthermore, incubation of C cells with thyrotropin resulted in a 10-fold inhibition of thyrotropin-receptor expression, and a concomitant decrease of the steady-state mRNA levels for calcitonin and calcitonin gene-related peptide determined by quantitative real-time PCR was found. Finally, thyrotropin receptor expression by C cells was confirmed at protein level in both normal and pathological thyroid tissues by immunohistochemistry and immunofluorescence. These results confirm that C cells, under regulation by thyrotropin, are involved in the hypothalamic-pituitary-thyroid axis and suggest a putative role in local fine-tuning of follicular cell activity. PMID:19493188

  3. Gene expression profiles reveal that DCN, DIO1, and DIO2 are underexpressed in benign and malignant thyroid tumors.

    PubMed

    Arnaldi, L A T; Borra, R C; Maciel, R M B; Cerutti, J M

    2005-03-01

    To investigate the molecular events involved in the pathogenesis and/or progression of thyroid tumors, we compared the gene expression profiles of three thyroid carcinoma cell lines, which represent major tumor subtypes of thyroid cancer and normal thyroid tissue. Using cDNA array methodology, we investigated the expression of 1807 open reading frame expressed sequence tags (ORESTES), selected from head and neck tumor libraries generated through the Brazilian Human Cancer Project-LICR/FAPESP. We found that 505 transcripts were differentially expressed in the thyroid carcinoma cell lines. Using a more stringent criterion, transcripts underexpressed or overexpressed more than fivefold in 1 of 3 or 3 of 3 carcinoma cell lines, a list of 55 ESTs were detected. Five candidate genes were further validated by quantitative polymerase chain reaction (qPCR) in an independent set of 52 thyroid tumors and 22 matched normal thyroid tissues. DCN was found underexpressed in a high percentage of the follicular thyroid adenomas, follicular thyroid carcinomas, and follicular variant of papillary thyroid carcinomas. DIO1 and DIO2 were underexpressed in nearly all papillary thyroid carcinomas. These genes not only could help to better define a tumor signature for thyroid tumors, but may, in part, also become useful as potential targets for thyroid tumor treatment.

  4. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti

    PubMed Central

    2013-01-01

    Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties. PMID:23394545

  5. Sustained neonatal hyperthyroidism in the rat affects myelination in the central nervous system.

    PubMed

    Marta, C B; Adamo, A M; Soto, E F; Pasquini, J M

    1998-07-15

    We have carried out a study of the effects of sustained neonatal hyperthyroidism on myelin and on the oligodendroglial cells, in an effort to obtain further insight into the molecular mechanisms underlying the action of thyroid hormones on the central nervous system (CNS). Expression of the mRNAs of myelin basic protein (MBP) myelin proteolipid protein (PLP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), transferrin, and c-Jun was investigated in 10- and 17-day-old normal and hyperthyroid rats, using Northern blot analysis. At 10 days of age, the levels of all the explored mRNAs were markedly higher in the experimental animals. The mRNA of transferrin showed a ninefold increase over control values, suggesting the possibility that this putative trophic factor might act as one of the mediators in the action of thyroid hormones. At 17 days of age on the other hand, the levels of all the mRNAs decreased markedly, reaching values below control, except for c-Jun, which remained higher than in normals. At 70 days of age, hyperthyroid rats showed clear evidence of myelin deficit, in agreement with previous results of our laboratories (Pasquini et al.: J Neurochem 57: Suppl S124, 1991). Immunocytochemistry of 70-day-old rat brain tissue sections showed a substantial reduction in the amount of MBP-reacting structures and a marked decrease in the number of oligodendroglial cells. Although the above-mentioned results could be the consequence, as proposed by Barres et al. (Development 120:1097-1108, 1994) and Baas et al. (Glia 19:324-332, 1997) of a premature arrest in oligodendroglial cell proliferation followed by early differentiation, the persistent high levels of expression of c-Jun, together with the dramatic decrease in the number of oligodendrocytes, suggested the possibility that prolonged hyperthyroidism could activate apoptotic mechanisms in the myelin forming cells. Using propidium iodide-labeled isolated oligodendroglial cells, we found, by flow cytometry, a significant increase in the number of apoptotic/hypo-diploid propidium iodide-positive cells. These results indicate that one of the actions of sustained levels of thyroid hormones in the neonate rat is to increase oligodendroglial cell death by apoptosis.

  6. Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.

    PubMed

    Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji

    2009-07-01

    It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low-dose irradiation enhanced and suppressed, respectively, the in vivo fibroblast-mediated growth promotion. This effect was, however, not observed in the in vitro experiment with conditioned medium or even that allowing cell-cell contact. The intrathyroidal stromal microenvironments, particularly fibroblasts, appear to enhance the growth of thyroid carcinomas through soluble factor(s), which is modulated differently by high- and low-dose irradiation. To our knowledge this is the first study to show epithelial-stromal interaction in thyroid carcinoma.

  7. Neonatal hypothyroidism affects testicular glucose homeostasis through increased oxidative stress in prepubertal mice: effects on GLUT3, GLUT8 and Cx43.

    PubMed

    Sarkar, D; Singh, S K

    2017-07-01

    Thyroid hormones (THs) play an important role in maintaining the link between metabolism and reproduction and the altered THs status is associated with induction of oxidative stress in various organs like brain, heart, liver and testis. Further, reactive oxygen species play a pivotal role in regulation of glucose homeostasis in several organs, and glucose utilization by Leydig cells is essential for testosterone biosynthesis and thus is largely dependent on glucose transporter 8 (GLUT8). Glucose uptake by Sertoli cells is mediated through glucose transporter 3 (GLUT3) under the influence of THs to meet energy requirement of developing germ cells. THs also modulate level of gap junctional protein such as connexin 43 (Cx43), a potential regulator of cell proliferation and apoptosis in the seminiferous epithelium. Although the role of transient neonatal hypothyroidism in adult testis in terms of testosterone production is well documented, the effect of THs deficiency in early developmental period and its role in testicular glucose homeostasis and oxidative stress with reference to Cx43 in immature mice remain unknown. Therefore, the present study was conducted to evaluate the effect of neonatal hypothyroidism on testicular glucose homeostasis and oxidative stress at postnatal days (PND) 21 and 28 in relation to GLUT3, GLUT8 and Cx43. Hypothyroidism induced by 6-propyl-2-thiouracil (PTU) markedly decreased testicular glucose level with considerable reduction in expression level of GLUT3 and GLUT8. Likewise, lactate dehydrogenase (LDH) activity and intratesticular concentration of lactate were also decreased in hypothyroid mice. There was also a rise in germ cell apoptosis with increased expression of caspase-3 in PTU-treated mice. Further, neonatal hypothyroidism affected germ cell proliferation with decreased expression of proliferating cell nuclear antigen (PCNA) and Cx43. In conclusion, our results suggest that neonatal hypothyroidism alters testicular glucose homeostasis via increased oxidative stress in prepubertal mice, thereby affecting germ cell survival and proliferation. © 2017 American Society of Andrology and European Academy of Andrology.

  8. Pax2.1 is required for the development of thyroid follicles in zebrafish.

    PubMed

    Wendl, Thomas; Lun, Klaus; Mione, Marina; Favor, Jack; Brand, Michael; Wilson, Stephen W; Rohr, Klaus B

    2002-08-01

    The thyroid gland is an organ primarily composed of endoderm-derived follicular cells. Although disturbed embryonic development of the thyroid gland leads to congenital hypothyroidism in humans and mammals, the underlying principles of thyroid organogenesis are largely unknown. In this study, we introduce zebrafish as a model to investigate the molecular and genetic mechanisms that control thyroid development. Marker gene expression suggests that the molecular pathways of early thyroid development are essentially conserved between fish and mammals. However during larval stages, we find both conserved and divergent features of development compared with mammals. A major difference is that in fish, we find evidence for hormone production not only in thyroid follicular cells, but also in an anterior non-follicular group of cells. We show that pax2.1 and pax8, members of the zebrafish pax2/5/8 paralogue group, are expressed in the thyroid primordium. Whereas in mice, only Pax8 has a function during thyroid development, analysis of the zebrafish pax2.1 mutant no isthmus (noi(-/-)) demonstrates that pax2.1 has a role comparable with mouse Pax8 in differentiation of the thyroid follicular cells. Early steps of thyroid development are normal in noi(-/-), but later expression of molecular markers is lost and the formation of follicles fails. Interestingly, the anterior non-follicular site of thyroid hormone production is not affected in noi(-/-). Thus, in zebrafish, some remaining thyroid hormone synthesis takes place independent of the pathway leading to thyroid follicle formation. We suggest that the noi(-/-) mutant serves as a new zebrafish model for hypothyroidism.

  9. Antineoplastic Effects of PPARγ Agonists, with a Special Focus on Thyroid Cancer.

    PubMed

    Ferrari, Silvia Martina; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro; Fallahi, Poupak

    2016-01-01

    Peroxisome Proliferator-Activated Receptor-γ (PPARγ) is a ligand-activated nuclear hormone receptor that functions as transcription factor and plays an important role in lipid metabolism and insulin sensitization. Recent studies have shown that PPARγ is overexpressed in many tumor types, including cancers of breast, lung, pancreas, colon, glioblastoma, prostate and thyroid differentiated/anaplastic cancers. These data suggest a role of PPARγ in tumor development and/or progression. PPARγ is emerging as a growth-limiting and differentiation-promoting factor, and it exerts a tumor suppressor role. Moreover, naturally-occurring and synthetic PPARγ agonists promote growth inhibition and apoptosis. Thiazolidinediones (TZDs) are synthetic agonists of PPARγ that were developed to treat type II diabetes. These compounds also display anticancer effects which appear mainly to be independent of their PPARγ agonist activity. Various preclinical and clinical studies strongly suggest a role for TZDs both alone and in combination with existing chemotherapeutic agents, for the treatment of cancer. Differentiation therapy involves the use of agents with the ability to induce differentiation in cells that have lost this ability, i.e. cancer cells, targeting pathways capable of re-activating blocked terminal differentiation programs. PPARγ agonists have been shown to induce differentiation in solid tumors such as thyroid differentiated/ anaplastic cancers and sarcomas. However, emerging data suggest that chronic use of TZDs is associated with increased risk of adverse cardiovascular events. The exploration of newer PPARγ agonists can help in unveiling the underlying mechanisms of these drugs, providing new molecules that are able to treat cancer, without increasing the cardiovascular risk of neoplastic patients.

  10. KT5823 Differentially Modulates Sodium Iodide Symporter Expression, Activity, and Glycosylation between Thyroid and Breast Cancer Cells

    PubMed Central

    Beyer, Sasha; Lakshmanan, Aparna; Liu, Yu-Yu; Zhang, Xiaoli; Wapnir, Irene; Smolenski, Albert

    2011-01-01

    Na+/I− symporter (NIS)-mediated iodide uptake into thyroid follicular cells serves as the basis of radioiodine therapy for thyroid cancer. NIS protein is also expressed in the majority of breast tumors, raising potential for radionuclide therapy of breast cancer. KT5823, a staurosporine-related protein kinase inhibitor, has been shown to increase thyroid-stimulating hormone-induced NIS expression, and thus iodide uptake, in thyroid cells. In this study, we found that KT5823 does not increase but decreases iodide uptake within 0.5 h of treatment in trans-retinoic acid and hydrocortisone-treated MCF-7 breast cancer cells. Moreover, KT5823 accumulates hypoglycosylated NIS, and this effect is much more evident in breast cancer cells than thyroid cells. The hypoglycosylated NIS is core glycosylated, has not been processed through the Golgi apparatus, but is capable of trafficking to the cell surface. KT5823 impedes complex NIS glycosylation at a regulatory point similar to brefeldin A along the N-linked glycosylation pathway, rather than targeting a specific N-glycosylated site of NIS. KT5823-mediated effects on NIS activity and glycosylation are also observed in other breast cancer cells as well as human embryonic kidney cells expressing exogenous NIS. Taken together, KT5823 will serve as a valuable pharmacological reagent to uncover mechanisms underlying differential NIS regulation between thyroid and breast cancer cells at multiple levels. PMID:21209020

  11. Expression of PACAP and PAC1 Receptor in Normal Human Thyroid Gland and in Thyroid Papillary Carcinoma.

    PubMed

    Bardosi, Sebastian; Bardosi, Attila; Nagy, Zsuzsanna; Reglodi, Dora

    2016-10-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) belongs to the vasoactive intestinal peptide-secretin-glucagon peptide family, isolated first from ovine hypothalamus. The diverse physiological effects of PACAP are known mainly from animal experiments, including several actions in endocrine glands. Alteration of PACAP expression has been shown in several tumors, but changes in expression of PACAP and its specific PAC1 receptor in human thyroid gland pathologies have not yet been investigated. Therefore, the aim of the present study was to investigate expression of PACAP and its PAC1 receptor in human thyroid papillary carcinoma, the most common endocrine malignant tumor. PACAP and PAC1 receptor expressions were investigated from thyroid gland samples of patients with papillary carcinomas. The staining intensity of follicular epithelial cells and thyroid colloid of tumor tissue was compared to that of tumor-free tissue in the same thyroid glands in a semi-quantitative way. Our results reveal that both PACAP(-like) and PAC1 receptor(-like) immunoreactivities are altered in papillary carcinoma. Stronger PACAP immunoreactivity was observed in active follicles. Colloidal PACAP immunostaining was either lacking or very weak, and more tumorous cells displayed strong apical immunoreactivity. Regarding PAC1 receptor, cells of the normal thyroid tissue showed strong granular expression, which was lacking in the tumor cells. The cytoplasm of tumor cells displayed weak, minimal staining, while in a few tumor cells we observed strong PAC1 receptor expression. This pattern was similar to that observed in the PACAP expression, but fewer in number. In summary, we showed alteration of PACAP and PAC1 receptor expression in human thyroid papillary carcinoma, indicating that PACAP regulation is disturbed in tumorous tissue of the thyroid gland. The exact role of PACAP in thyroid tumor growth should be further explored.

  12. Image analysis for TSH mRNA in situ hybridization in pituitary glands from rats with thyroid follicular cell hypertrophy after treatment with three different test compounds.

    PubMed

    Funk, Juergen; Ebeling, Martin; Singer, Thomas; Landes, Christian

    2017-10-01

    The goal of this in situ hybridization and image analysis technique is to study the effects of new pharmacological/chemical entities on the thyroid and pituitary gland in rats, reveal the pathogenesis of thyroid follicular cell hypertrophy and to retrospectively exclude the risk of thyroid tumor development in humans. In the present study, we describe the increase of thyroid-stimulating hormone- (TSH-) beta subunit mRNA in the pars distalis of the pituitary gland and the quantitative measurement of TSH mRNA positive cells from rats of three 4-week toxicity studies treated with three different test compounds inducing thyroid follicular cell and hepatocellular hypertrophy in rats. Compared to immunohistochemistry (IHC), in situ hybridization (ISH) for TSH was found to be more sensitive. With this technique we are able to exclude a direct effect of the test compound on the thyroid gland by showing the activation of thyrotrope cells from the pituitary gland and therefore this technique retrospectively enables us to exclude a possible risk for humans at an early stage of drug development. Also in case blood serum samples for evaluation of TSH are not available anymore or hepatocellular hypertrophy is not present (close metabolic relationship between thyroid gland and liver in rodents), the described method allows retrospective investigations on thyroid follicular cell hypertrophy or hyperplasia. This can be of high relevance in human safety assessment for certain drugs in order to exclude a primary effect on the thyroid gland especially when it comes to thyroid neoplasia in rodents as previously described. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thyroid Cells Exposed to Simulated Microgravity Conditions - Comparison of the Fast Rotating Clinostat and the Random Positioning Machine

    NASA Astrophysics Data System (ADS)

    Warnke, Elisabeth; Kopp, Sascha; Wehland, Markus; Hemmersbach, Ruth; Bauer, Johann; Pietsch, Jessica; Infanger, Manfred; Grimm, Daniela

    2016-06-01

    The ground-based facilities 2D clinostat (CN) and Random Positioning Machine (RPM) were designed to simulate microgravity conditions on Earth. With support of the CORA-ESA-GBF program we could use both facilities to investigate the impact of simulated microgravity on normal and malignant thyroid cells. In this review we report about the current knowledge of thyroid cancer cells and normal thyrocytes grown under altered gravity conditions with a special focus on growth behaviour, changes in the gene expression pattern and protein content, as well as on altered secretion behaviour of the cells. We reviewed data obtained from normal thyrocytes and cell lines (two poorly differentiated follicular thyroid cancer cell lines FTC-133 and ML-1, as well as the normal thyroid cell lines Nthy-ori 3-1 and HTU-5). Thyroid cells cultured under conditions of simulated microgravity (RPM and CN) and in Space showed similar changes with respect to spheroid formation. In static 1 g control cultures no spheroids were detectable. Changes in the regulation of cytokines are discussed to be involved in MCS (multicellular spheroids) formation. The ESA-GBF program helps the scientists to prepare future spaceflight experiments and furthermore, it might help to identify targets for drug therapy against thyroid cancer.

  14. Accidental finding of Hashimoto-like thyroiditis in male B.U.T. 6 turkeys at slaughter.

    PubMed

    Plesch, P; Schade, B; Breithaupt, A; Bellof, G; Kienzle, E

    2014-10-01

    In the context of a study on the tolerance of rapeseed meal in B.U.T. 6 turkeys, thyroid glands were histologically and immunohistochemically examined because of potential thyreostatic effects. In all groups including the controls with no rapeseed meal in their food, there was a high incidence of lymphocytic infiltration and thyroiditis (14% of thyroids with moderate to severe lymphocytic thyroiditis). Thirty per cent of mononuclear inflammatory cells were immunohistochemically identified as T cells. There were occasional accumulations of PAX-5 labelled cells, indicating germinal centre development. These lesions resemble Hashimoto's disease in humans. The effect on thyroid function is unknown. Mild hypothyreosis might enhance productivity but also explain dispositions towards diseases seen in context with thyroid dysfunction such as skin diseases (foot pad disease?) and cardiovascular problems. Further studies on thyroid function in these turkeys are needed. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  15. Surface-modified gold nanorods for specific cell targeting

    NASA Astrophysics Data System (ADS)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  16. Cytologic aspects of an interesting case of medullary thyroid carcinoma coexisting with Hashimoto's thyroiditis.

    PubMed

    Patel, Bidish K; Roy, Arun; Badhe, Bhawana A; Siddaraju, Neelaiah

    2016-01-01

    Among primary thyroid neoplasms, papillary thyroid carcinoma (PTC) and primary thyroid lymphoma (PTL) are known to coexist and are pathogenetically linked with Hashimoto's thyroiditis (HT). However, HT occurring in association with medullary thyroid carcinoma (MTC) is rarely documented. We report here an interesting case. A 34-year-old female with a solitary thyroid nodule underwent fine needle aspiration cytology (FNAC) that was interpreted as "MTC with admixed reactive lymphoid cells, derived possibly from a pretracheal lymph node." Total thyroidectomy specimen showed "MTC with coexisting HT." At a later stage, a follow-up FNAC from the recurrent thyroid swelling showed features consistent with HT. As an academic exercise, the initial smears on which a diagnosis of MTC was offered were reviewed to look for evidence of coexisting HT that showed scanty and patchy aggregates of reactive lymphoid cells without Hürthle cells. Our case highlights an unusual instance of MTC in concurrence with HT that can create a tricky situation for cytopathologists.

  17. Critical Pitfalls in the use of BRAF Mutation as a Diagnostic Tool in Thyroid Nodules: a Case Report.

    PubMed

    Kuhn, Elisabetta; Ragazzi, Moira; Zini, Michele; Giordano, Davide; Nicoli, Davide; Piana, Simonetta

    2016-09-01

    Thyroid fine-needle aspiration (FNA) cytology is the primary tool for the diagnostic evaluation of thyroid nodules. BRAF mutation analysis is employed as an ancillary tool in indeterminate cases, as recommended by the American Thyroid Association management guidelines. Hereby, we report the case of a 73-year-old woman who presented an 8-mm-size, ill-defined, left thyroid nodule. FNA resulted "suspicious for papillary thyroid carcinoma". BRAF mutation status was analyzed, and somatic BRAF (V600E) mutation identified. The patient underwent a total thyroidectomy. At histological examination, the nodule was composed of Langerhans cells, admixed with many eosinophils. A final diagnosis of Langerhans cell histiocytosis of the thyroid was made. Our case emphasizes the critical diagnostic pitfalls due to the use of BRAF (V600E) mutation analysis in thyroid FNA. Notably, BRAF (V600E) mutation is common in melanoma, colorectal carcinoma, lung carcinoma, ovarian carcinoma, brain tumors, hairy cell leukemia, multiple myeloma, and histiocytoses. Therefore, in cases of indeterminate FNA with unclassifiable atypical cells BRAF (V600E) mutated, the possibility of a localization of hystiocytosis or a secondary thyroid malignancy should be taken into account.

  18. Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity

    PubMed Central

    Rapoport, Basil

    2014-01-01

    Thyroid autoimmunity involves loss of tolerance to thyroid proteins in genetically susceptible individuals in association with environmental factors. In central tolerance, intrathymic autoantigen presentation deletes immature T cells with high affinity for autoantigen-derived peptides. Regulatory T cells provide an alternative mechanism to silence autoimmune T cells in the periphery. The TSH receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (Tg) have unusual properties (“immunogenicity”) that contribute to breaking tolerance, including size, abundance, membrane association, glycosylation, and polymorphisms. Insight into loss of tolerance to thyroid proteins comes from spontaneous and induced animal models: 1) intrathymic expression controls self-tolerance to the TSHR, not TPO or Tg; 2) regulatory T cells are not involved in TSHR self-tolerance and instead control the balance between Graves' disease and thyroiditis; 3) breaking TSHR tolerance involves contributions from major histocompatibility complex molecules (humans and induced mouse models), TSHR polymorphism(s) (humans), and alternative splicing (mice); 4) loss of tolerance to Tg before TPO indicates that greater Tg immunogenicity vs TPO dominates central tolerance expectations; 5) tolerance is induced by thyroid autoantigen administration before autoimmunity is established; 6) interferon-α therapy for hepatitis C infection enhances thyroid autoimmunity in patients with intact immunity; Graves' disease developing after T-cell depletion reflects reconstitution autoimmunity; and 7) most environmental factors (including excess iodine) “reveal,” but do not induce, thyroid autoimmunity. Micro-organisms likely exert their effects via bystander stimulation. Finally, no single mechanism explains the loss of tolerance to thyroid proteins. The goal of inducing self-tolerance to prevent autoimmune thyroid disease will require accurate prediction of at-risk individuals together with an antigen-specific, not blanket, therapeutic approach. PMID:24091783

  19. Doxorubicin-Loaded Nanobubbles Combined with Extracorporeal Shock Waves: Basis for a New Drug Delivery Tool in Anaplastic Thyroid Cancer.

    PubMed

    Marano, Francesca; Argenziano, Monica; Frairia, Roberto; Adamini, Aloe; Bosco, Ornella; Rinella, Letizia; Fortunati, Nicoletta; Cavalli, Roberta; Catalano, Maria Graziella

    2016-05-01

    No standard chemotherapy is available for anaplastic thyroid cancer (ATC). Drug-loaded nanobubbles (NBs) are a promising innovative anticancer drug formulation, and combining them with an externally applied trigger may further control drug release at the target region. Extracorporeal shock waves (ESWs) are acoustic waves widely used in urology and orthopedics, with no side effects. The aim of the present work was to combine ESWs and new doxorubicin-loaded glycol chitosan NBs in order to target doxorubicin and enhance its antitumor effect in ATC cell lines. CAL-62 and 8305C cells were treated with empty NBs, fluorescent NBs, free doxorubicin, and doxorubicin-loaded NBs in the presence or in the absence of ESWs. NB entrance was evaluated by fluorescence microscopy and flow cytofluorimetry. Cell viability was assessed by Trypan Blue exclusion and WST-1 proliferation assays. Doxorubicin intracellular content was measured by high-performance liquid chromatography. Treatment with empty NBs and ESWs, even in combination, was safe, as cell viability and growth were not affected. Loading NBs with doxorubicin and combining them with ESWs generated the highest cytotoxic effect, resulting in drug GI50 reduction of about 40%. Mechanistically, ESWs triggered intracellular drug release from NBs, resulting in the highest nuclear drug content. Combined treatment with doxorubicin-loaded NBs and ESWs is a promising drug delivery tool for ATC treatment with the possibility of using lower doxorubicin doses and thus limiting its systemic side effects.

  20. Orbital Fibroblasts From Thyroid Eye Disease Patients Differ in Proliferative and Adipogenic Responses Depending on Disease Subtype

    PubMed Central

    Kuriyan, Ajay E.; Woeller, Collynn F.; O'Loughlin, Charles W.; Phipps, Richard P.; Feldon, Steven E.

    2013-01-01

    Purpose. Thyroid eye disease (TED) patients are classified as type I (predominantly fat compartment enlargement) or type II (predominantly extraocular muscle enlargement) based on orbital imaging. Orbital fibroblasts (OFs) can be driven to proliferate or differentiate into adipocytes in vitro. We tested the hypothesis that type I OFs undergo more adipogenesis than type II OFs, whereas type II OFs proliferate more than type I OFs. We also examined the effect of cyclooxygenase (COX) inhibitors on OF adipogenesis and proliferation. Methods. Type I, type II, and non-TED OFs were treated with transforming growth factor-beta (TGFβ) to induce proliferation and with 15-deoxy-Δ−12,14-prostaglandin J2 (15d-PGJ2) to induce adipogenesis. Proliferation was measured using the [3H]thymidine assay, and adipogenesis was measured using the AdipoRed assay, Oil Red O staining, and flow cytometry. The effect of COX inhibition on adipogenesis and proliferation was also studied. Results. Type II OFs incorporated 1.7-fold more [3H]thymidine than type I OFs (P < 0.05). Type I OFs accumulated 4.8-fold more lipid than type II OFs (P < 0.05) and 12.6-fold more lipid than non-TED OFs (P < 0.05). Oil Red O staining and flow cytometry also demonstrated increased adipogenesis in type I OFs compared to type II and non-TED OFs. Cyclooxygenase inhibition significantly decreased proliferation and adipogenesis in type II OFs, but not type I OFs. Conclusions. We have demonstrated that OFs from TED patients have heterogeneous responses to proproliferative and proadipogenic stimulators in vitro in a manner that corresponds to their different clinical manifestations. Furthermore, we demonstrated a differential effect of COX inhibitors on type I and type II OF proliferation and adipogenesis. PMID:24135759

  1. MicroRNAs in thyroid development, function and tumorigenesis.

    PubMed

    Fuziwara, Cesar Seigi; Kimura, Edna Teruko

    2017-11-15

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that modulate the vast majority of cellular processes. During development, the correct timing and expression of miRNAs in the tissue differentiation is essential for organogenesis and functionality. In thyroid gland, DICER and miRNAs are necessary for accurately establishing thyroid follicles and hormone synthesis. Moreover, DICER1 mutations and miRNA deregulation observed in human goiter influence thyroid tumorigenesis. The thyroid malignant transformation by MAPK oncogenes is accompanied by global miRNA changes, with a marked reduction of "tumor-suppressor" miRNAs and activation of oncogenic miRNAs. Loss of thyroid cell differentiation/function, and consequently iodine trapping impairment, is an important clinical characteristic of radioiodine-refractory thyroid cancer. However, few studies have addressed the direct role of miRNAs in thyroid gland physiology. Here, we focus on what we have learned in the thyroid follicular cell differentiation and function as revealed by cell and animal models and miRNA modulation in thyroid tumorigenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. What is your diagnosis? Ventral neck mass in a dog.

    PubMed

    Fernandez, Nicole J; Clark, Edward G; Larson, Victoria S

    2008-12-01

    : A 14-year-old male Labrador Retriever was presented for lethargy and collapse. On physical examination, numerous abnormalities were found, including a large ventral neck mass (100 cm(3)) in the area of the thyroid gland. Fine-needle aspirates revealed 2 apparent populations of cells: one suspected to be a well-differentiated thyroid carcinoma, and the other consisting of large pleomorphic to spindloid cells suggestive of sarcoma. Two days later, the dog died at home. A full necropsy was not performed, but examination of the head and neck revealed a well-encapsulated mass adjacent to the cranial trachea and larynx. A section of the mass was evaluated histologically and a diagnosis of anaplastic thyroid carcinoma was made. Immunohistochemical evaluation with antibodies to thyroglobulin, cytokeratin, and vimentin confirmed distinct populations of malignant epithelial and malignant mesenchymal cells, and the diagnosis was amended to thyroid carcinosarcoma. Thyroid carcinosarcoma is a rare neoplasm in dogs in which the cell type comprising the mesenchymal component can vary. Immunochemistry to demonstrate the 2 cell types may be necessary to differentiate thyroid carcinosarcoma from anaplastic thyroid carcinoma.

  3. Absence of the BRAF mutation in HBME1+ and CK19+ atypical cell clusters in Hashimoto thyroiditis: supportive evidence against preneoplastic change.

    PubMed

    Nasr, Michel R; Mukhopadhyay, Sanjay; Zhang, Shengle; Katzenstein, Anna-Luise A

    2009-12-01

    An association between Hashimoto thyroiditis and papillary thyroid carcinoma has been postulated for decades. We undertook this study to identify potential precursors of papillary thyroid carcinoma in Hashimoto thyroiditis using a combination of morphologic, immunohistochemical, and molecular techniques. For the study, samples from 59 cases of Hashimoto thyroiditis were stained with antibodies to HBME1 and cytokeratin (CK)19. Tiny HBME1+ and CK19+ atypical cell clusters were identified and analyzed for the BRAF mutation by the colorimetric Mutector assay and allele-specific polymerase chain reaction. HBME1+ and CK19+ atypical cell clusters were identified in 12 (20%) of 59 cases. The minute size (<1 mm) of the clusters and the incomplete nuclear changes precluded a diagnosis of papillary microcarcinoma. The atypical cell clusters from all 12 cases were negative for BRAF. The absence of the BRAF mutation in these atypical cell clusters suggests that they may not be preneoplastic. Caution should be exercised in interpreting positive HBME1 or CK19 staining in Hashimoto thyroiditis.

  4. Hepatitis C Virus E2 Protein Induces Upregulation of IL-8 Pathways and Production of Heat Shock Proteins in Human Thyroid Cells.

    PubMed

    Hammerstad, Sara Salehi; Stefan, Mihaela; Blackard, Jason; Owen, Randall P; Lee, Hanna J; Concepcion, Erlinda; Yi, Zhengzi; Zhang, Weijia; Tomer, Yaron

    2017-02-01

    Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms. Copyright © 2017 by the Endocrine Society

  5. The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos

    PubMed Central

    Dong, Wu; Macaulay, Laura J; Kwok, Kevin WH; Hinton, David E; Ferguson, P Lee; Stapleton, Heather M

    2015-01-01

    Polybrominated diphenyl ethers and their hydroxyl-metabolites (OH-BDEs) are commonly detected contaminants in human serum in the US population. They are also considered to be endocrine disruptors, and are specifically known to affect thyroid hormone regulation. In this study, we investigated and compared the effects of a PBDE and its OH-BDE metabolite on developmental pathways regulated by thyroid hormones using zebrafish as a model. Exposure to 6-OHBDE 47 (10–100 nM), but not BDE 47 (1–50 μM), led to decreased melanin pigmentation and increased apoptosis in the retina of zebrafish embryos in a concentration-dependent manner in short-term exposures (4 – 30 hours). Six-OH-BDE 47 exposure also significantly decreased thyroid hormone receptor β (THRβ) mRNA expression, which was confirmed using both RT-PCR and in situ hybridization (whole mount and paraffin- section). Interestingly, exposure to the native thyroid hormone, triiodothyronine (T3) also led to similar responses: decreased THRβ mRNA expression, decreased melanin pigmentation and increased apoptosis, suggesting that 6-OH-BDE 47 may be acting as a T3 mimic. To further investigate short-term effects that may be regulated by THRβ, experiments using a morpholino gene knock down and THRβ mRNA over expression were conducted. Knock down of THRβ led to decreases in melanin pigmentation and increases in apoptotic cells in the eye of zebrafish embryos, similar to exposure to T3 and 6-OH-BDE 47, but THRβ mRNA overexpression rescued these effects. Histological analysis of eyes at 22 hpf from each group revealed that exposure to T3 or to 6-OH-BDE 47 was associated with a decrease of melanin and diminished proliferation of cells in layers of retina near the choroid. This study suggests that 6-OH-BDE 47 disrupts the activity of THRβ in early life stages of zebrafish, and warrants further studies on effects in developing humans. PMID:25767823

  6. Peripheral blood natural killer cells and mild thyroid abnormalities in women with reproductive failure

    PubMed Central

    Triggianese, P; Perricone, C; Conigliaro, P; Chimenti, MS; Perricone, R; De Carolis, C

    2015-01-01

    Abnormalities in peripheral blood natural killer (NK) cells have been reported in women with primary infertility and recurrent spontaneous abortion (RSA) and several studies have been presented to define cutoff values for abnormal peripheral blood NK cell levels in this context. Elevated levels of NK cells were observed in infertile/RSA women in the presence of thyroid autoimmunity (TAI), while no studies have been carried out, to date, on NK cells in infertile/RSA women with non-autoimmune thyroid diseases. The contribution of this study is two-fold: (1) the evaluation of peripheral blood NK cell levels in a cohort of infertile/RSA women, in order to confirm related data from the literature; and (2) the assessment of NK cell levels in the presence of both TAI and subclinical hypothyroidism (SCH) in order to explore the possibility that the association between NK cells and thyroid function is not only restricted to TAI but also to SCH. In a retrospective study, 259 age-matched women (primary infertility [n = 49], primary RSA [n = 145], and secondary RSA [n = 65]) were evaluated for CD56+CD16+NK cells by flow cytometry. Women were stratified according to thyroid status: TAI, SCH, and without thyroid diseases (ET). Fertile women (n = 45) were used as controls. Infertile/RSA women showed higher mean NK cell levels than controls. The cutoff value determining the abnormal NK cell levels resulted ⩾15% in all the groups of women. Among the infertile/RSA women, SCH resulted the most frequently associated thyroid disorder while no difference resulted in the prevalence of TAI and ET women between patients and controls. A higher prevalence of women with NK cell levels ⩾15% was observed in infertile/RSA women with SCH when compared to TAI/ET women. According to our data, NK cell assessment could be used as a diagnostic tool in women with reproductive failure and we suggest that the possible association between NK cell levels and thyroid function can be described not only in the presence of TAI but also in the presence of non-autoimmune thyroid disorders. PMID:26657164

  7. Human a-L-fucosidase-1 attenuates the invasive properties of thyroid cancer.

    PubMed

    Vecchio, Giancarlo; Parascandolo, Alessia; Allocca, Chiara; Ugolini, Clara; Basolo, Fulvio; Moracci, Marco; Strazzulli, Andrea; Cobucci-Ponzano, Beatrice; Laukkanen, Mikko O; Castellone, Maria Domenica; Tsuchida, Nobuo

    2017-04-18

    Glycans containing α-L-fucose participate in diverse interactions between cells and extracellular matrix. High glycan expression on cell surface is often associated with neoplastic progression. The lysosomal exoenzyme, α-L-fucosidase-1 (FUCA-1) removes fucose residues from glycans. The FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors. However, the role of FUCA-1 in tumor progression remains unclear. It is speculated that its inactivation perturbs glycosylation of proteins involved in cell adhesion and promotes cancer. FUCA-1 expression of various thyroid normal and cancer tissues assayed by immunohistochemical (IHC) staining was high in normal thyroids and papillary thyroid carcinomas (PTC), whereas it progressively decreased in poorly differentiated, metastatic and anaplastic thyroid carcinomas (ATC). FUCA-1 mRNA expression from tissue samples and cell lines and protein expression levels and enzyme activity in thyroid cancer cell lines paralleled those of IHC staining. Furthermore, ATC-derived 8505C cells adhesion to human E-selectin and HUVEC cells was inhibited by bovine α-L-fucosidase or Lewis antigens, thus pointing to an essential role of fucose residues in the adhesive phenotype of this cancer cell line. Finally, 8505C cells transfected with a FUCA-1 containing plasmid displayed a less invasive phenotype versus the parental 8505C. These results demonstrate that FUCA-1 is down-regulated in ATC compared to PTC and normal thyroid tissues and cell lines. As shown for other human cancers, the down-regulation of FUCA-1 correlates with increased aggressiveness of the cancer type. This is the first report indicating that the down-regulation of FUCA-1 is related to the increased aggressiveness of thyroid cancer.

  8. Comparative study of the primary cilia in thyrocytes of adult mammals

    PubMed Central

    Utrilla, J C; Gordillo-Martínez, F; Gómez-Pascual, A; Fernández-Santos, J M; Garnacho, C; Vázquez-Román, V; Morillo-Bernal, J; García-Marín, R; Jiménez-García, A; Martín-Lacave, I

    2015-01-01

    Since their discovery in different human tissues by Zimmermann in 1898, primary cilia have been found in the vast majority of cell types in vertebrates. Primary cilia are considered to be cellular antennae that occupy an ideal cellular location for the interpretation of information both from the environment and from other cells. To date, in mammalian thyroid gland, primary cilia have been found in the thyrocytes of humans and dogs (fetuses and adults) and in rat embryos. The present study investigated whether the existence of this organelle in follicular cells is a general event in the postnatal thyroid gland of different mammals, using both immunolabeling by immunofluorescence and electron microscopy. Furthermore, we aimed to analyse the presence of primary cilia in various thyroid cell lines. According to our results, primary cilia are present in the adult thyroid gland of most mammal species we studied (human, pig, guinea pig and rabbit), usually as a single copy per follicular cell. Strikingly, they were not found in rat or mouse thyroid tissues. Similarly, cilia were also observed in all human thyroid cell lines tested, both normal and neoplastic follicular cells, but not in cultured thyrocytes of rat origin. We hypothesize that primary cilia could be involved in the regulation of normal thyroid function through specific signaling pathways. Nevertheless, further studies are needed to shed light on the permanence of these organelles in the thyroid gland of most species during postnatal life. PMID:26228270

  9. The possible role of CD4⁺CD25(high)Foxp3⁺/CD4⁺IL-17A⁺ cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis.

    PubMed

    Xue, Haibo; Yu, Xiurong; Ma, Lei; Song, Shoujun; Li, Yuanbin; Zhang, Li; Yang, Tingting; Liu, Huan

    2015-12-01

    Hashimoto thyroiditis (HT) is a prototypic organ-specific autoimmune thyroid disease, for which the exact etiology remains unclear. The aim of this study was to investigate dynamic changes in regulatory T cell (Treg) and T helper 17 cell (Th17) populations in patients with HT at different stages of thyroid dysfunction, as well as to analyze the possible correlation between the Treg/Th17 cell axis and autoimmune status in HT. We assessed thyroid function and autoantibody serology both in HT patients and in healthy controls (HCs) and divided HT patients into three subgroups according to thyroid function. We then determined the percentages of Treg and Th17 cells in peripheral blood mononuclear cells and analyzed mRNA expression of the Treg and Th17 cell-defining transcription factors Foxp3 and RORγt. In addition, serum levels of TGF-β and IL-17A were assessed. We found that the percentage of Treg cells, Foxp3 mRNA levels, and the ratio of Treg/Th17 cells were all significantly lower in HT patients, while Th17 cell percentages and RORγt mRNA levels were significantly higher. Interestingly, we also observed significant differences in these measurements between HT patient subgroups. Serum IL-17A levels were markedly increased in HT patients, while serum concentrations of TGF-β were lower, compared to HCs. The ratio of Treg/Th17 cells was negatively correlated with the levels of serum thyroperoxidase antibody, thyroglobulin antibody, and thyrotropin (TSH) in HT patients. Taken together, our data suggest that the balance between Treg and Th17 cells shifts in favor of Th17 cells during clinical progression of HT, which is negatively correlated with levels of thyroid-specific autoantibodies and TSH, implying that Treg/Th17 cell imbalance may contribute to thyroid damage in HT.

  10. Riedel's thyroiditis and multifocal fibrosclerosis are part of the IgG4-related systemic disease spectrum.

    PubMed

    Dahlgren, Mollie; Khosroshahi, Arezou; Nielsen, G Petur; Deshpande, Vikram; Stone, John H

    2010-09-01

    Riedel's thyroiditis is a chronic fibrosing disorder of unknown etiology often associated with "multifocal fibrosclerosis." IgG4-related systemic disease is characterized by IgG4+ plasma cell infiltration and fibrosis throughout many organs. We hypothesized that Riedel's thyroiditis is part of the IgG4-related systemic disease spectrum. We searched our institution's pathology database using the terms "Riedel's," "struma," "thyroid," and "fibrosis," and identified 3 cases of Riedel's thyroiditis. Riedel's thyroiditis was diagnosed if there was a fibroinflammatory process involving all or a portion of the thyroid gland, with evidence of extension of the process into surrounding tissues. Immunohistochemical stains for IgG4 and IgG were performed. The histopathologic and immunohistochemical features of each involved organ were evaluated. The clinical features of one patient with multiple organ system disease were described. All 3 thyroidectomy samples stained positively for IgG4-bearing plasma cells. One patient had extensive extrathyroidal involvement diagnostic of IgG4-related systemic disease, including cholangitis, pseudotumors of both the lung and lacrimal gland, and a lymph node contiguous to the thyroid that stained intensely for IgG4+ plasma cells. The histologic features of all organs involved were consistent with IgG4-related systemic disease. Patient 3 had 10 IgG4+ plasma cells per high-power field initially, but rebiopsy 2 years later demonstrated no IgG4+ plasma cells. That patient's second biopsy, characterized by fibrosis and minimal residual inflammation, further solidifies the link between IgG4-bearing plasma cells in tissue and the histologic evolution to Riedel's thyroiditis. Riedel's thyroiditis is part of the IgG4-related systemic disease spectrum. In many cases, multifocal fibrosclerosis and IgG4-related systemic disease are probably the same entity.

  11. Pathogenesis of thyroid nodules: histological classification?

    PubMed

    Salabè, G B

    2001-02-01

    Thyroid nodule genesis may be considered as an amplification of thyroid heterogeneity due to genetic and/or epigenetic mechanisms. We classified the thyroid nodules in five types with distinct histological features: hyperplastic, neoplastic, colloid, cystic and thyroiditic nodules. Hyperplastic: Thyrocyte proliferation is under the control of TSH but several other paracrine and autocrine factors are secreted by follicular cells, the stromal apparatus and the lymphocytes, which are implicated in initiation and perpetuation of thyroid hyperplasia. Growth occurs mainly through TSHR, cAMP and PKA. Constitutive cAMP overproduction has been shown to be due to point mutation of the TSHR or Gs protein, producing overgrowth and hyperfunction. Neoplastic: Several activated oncogenes have been identified in thyroid malignancies. Oncogenes relevant to the thyroid carcinogenesis are: mutated TSHR and gsp (constitutive activation of cAMP); TRK (receptor for NGF); RET/PTC (phosphorylation of tyrosine kinase receptor)--an isoform of this oncogene is induced by radiation: ras (it encodes Gs proteins transducing mitogenic signals); and c-MET (receptor for hepatocyte growth factor). The evolution of a differentiated thyroid cancer towards an undifferentiated cancer is due to a mutation of a family of proteins (i.e., p53), which acts as a brake, preventing the genomic instability of cancer. It is suggested that a tumor initiates by RET or ras and possibly progresses--as a result of additional mutations and by p53 mutation--to anaplastic carcinoma. Colloid: Flattening of the epithelium and dilatation of follicles containing viscous material--made up by a concentrated solution of thyroglobulin (hTg)--is the characteristic of the colloid nodule. A defect of intraluminal reabsorption of hTg has been suggested but not proven. Experimentally, a load of iodine is able to change thyroid hyperplasia to a colloid feature; however, a load of iodine is rarely found in the clinical history of patients. A new clue to the pathogenesis comes from the finding that a relevant part of the colloid (10-20%) is made up of insoluble globules, where hTg is compacted in a polymeric form. It is suggested that stocking hTg into globules is defective in colloid nodules, leading to enormous enlargement of the follicle. Cystic: It is estimated that between 15 and 40% of thyroid nodules are partly or entirely cystic. The 'true cyst' is rare; most of the so-called cystic nodules are 'pseudocysts', which follow necrosis and colliquation. Necrosis issues as an imbalance between growth and the precisely regulated process of angiogenesis. More recently, the VEGF/VPF has been found to be at the origin of recent and recurrent cysts. Immunotoxic and apoptotic mechanisms have also been suggested. Chemical analysis of cystic fluid showed a 'denatured' and 'serum-like' pattern suggesting different mechanisms in the pathogenesis of the pseudocystic thyroid nodules. Thyroiditic: Nodular lymphocytic thyroiditis (NLT) includes two different entities: 1) lymphocyte thyroiditis growing as a nodule in a hyperplastic or normal gland, and 2) lymphocyte thyroiditis associated in the same nodule with other nodular diseases of the thyroid: papillary thyroid carcinoma and lymphoma have been found to be associated to chronic lymphocytic thyroiditis.

  12. Characterization of thyroid cancer cell lines in murine orthotopic and intracardiac metastasis models.

    PubMed

    Morrison, Jennifer A; Pike, Laura A; Lund, Greg; Zhou, Qiong; Kessler, Brittelle E; Bauerle, Kevin T; Sams, Sharon B; Haugen, Bryan R; Schweppe, Rebecca E

    2015-06-01

    Thyroid cancer incidence has been increasing over time, and it is estimated that ∼1950 advanced thyroid cancer patients will die of their disease in 2015. To combat this disease, an enhanced understanding of thyroid cancer development and progression as well as the development of efficacious, targeted therapies are needed. In vitro and in vivo studies utilizing thyroid cancer cell lines and animal models are critically important to these research efforts. In this report, we detail our studies with a panel of authenticated human anaplastic and papillary thyroid cancer (ATC and PTC) cell lines engineered to express firefly luciferase in two in vivo murine cancer models-an orthotopic thyroid cancer model as well as an intracardiac injection metastasis model. In these models, primary tumor growth in the orthotopic model and the establishment and growth of metastases in the intracardiac injection model are followed in vivo using an IVIS imaging system. In the orthotopic model, the ATC cell lines 8505C and T238 and the PTC cell lines K1/GLAG-66 and BCPAP had take rates >90 % with final tumor volumes ranging 84-214 mm(3) over 4-5 weeks. In the intracardiac model, metastasis establishment was successful in the ATC cell lines HTh74, HTh7, 8505C, THJ-16T, and Cal62 with take rates ≥70 %. Only one of the PTC cell lines tested (BCPAP) was successful in the intracardiac model with a take rate of 30 %. These data will be beneficial to inform the choice of cell line and model system for the design of future thyroid cancer studies.

  13. Defective ciliogenesis in thyroid hürthle cell tumors is associated with increased autophagy

    PubMed Central

    Lee, Junguee; Yi, Shinae; Kang, Yea Eun; Chang, Joon Young; Kim, Jung Tae; Sul, Hae Joung; Kim, Jong Ok; Kim, Jin Man; Kim, Joon; Porcelli, Anna Maria; Kim, Koon Soon; Shong, Minho

    2016-01-01

    Primary cilia are found in the apical membrane of thyrocytes, where they may play a role in the maintenance of follicular homeostasis. In this study, we examined the distribution of primary cilia in the human thyroid cancer to address the involvement of abnormal ciliogenesis in different thyroid cancers. We examined 92 human thyroid tissues, including nodular hyperplasia, Hashimoto's thyroiditis, follicular tumor, Hürthle cell tumor, and papillary carcinoma to observe the distribution of primary cilia. The distribution and length of primary cilia facing the follicular lumen were uniform across variable-sized follicles in the normal thyroid gland. However, most Hürthle cells found in benign and malignant thyroid diseases were devoid of primary cilia. Conventional variant of papillary carcinoma (PTC) displayed longer primary cilia than those of healthy tissue, whereas both the frequency and length of primary cilia were decreased in oncocytic variant of PTC. In addition, ciliogenesis was markedly defective in primary Hürthle cell tumors, including Hürthle cell adenomas and carcinomas, which showed higher level of autophagosome biogenesis. Remarkably, inhibition of autophagosome formation by Atg5 silencing or treatment with pharmacological inhibitors of autophagosome formation restored ciliogenesis in the Hürthle cell carcinoma cell line XTC.UC1 which exhibits a high basal autophagic flux. Moreover, the inhibition of autophagy promoted the accumulation of two factors critical for ciliogenesis, IFT88 and ARL13B. These results suggest that abnormal ciliogenesis, a common feature of Hürthle cells in diseased thyroid glands, is associated with increased basal autophagy. PMID:27816963

  14. Culture Models for Studying Thyroid Biology and Disorders

    PubMed Central

    Toda, Shuji; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Matsunobu, Aki; Yamamoto, Mihoko; Ootani, Akifumi; Yamasaki, Fumio; Koike, Eisuke; Sugihara, Hajime

    2011-01-01

    The thyroid is composed of thyroid follicles supported by extracellular matrix, capillary network, and stromal cell types such as fibroblasts. The follicles consist of thyrocytes and C cells. In this microenvironment, thyrocytes are highly integrated in their specific structural and functional polarization, but monolayer and floating cultures cannot allow thyrocytes to organize the follicles with such polarity. In contrast, three-dimensional (3-D) collagen gel culture enables thyrocytes to form 3-D follicles with normal polarity. However, these systems never reconstruct the follicles consisting of both thyrocytes and C cells. Thyroid tissue-organotypic culture retains 3-D follicles with both thyrocytes and C cells. To create more appropriate experimental models, we here characterize four culture systems above and then introduce the models for studying thyroid biology and disorders. Finally, we propose a new approach to the cell type-specific culture systems on the basis of in vivo microenvironments of various cell types. PMID:22363871

  15. The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines.

    PubMed

    Dicitore, Alessandra; Grassi, Elisa Stellaria; Caraglia, Michele; Borghi, Maria Orietta; Gaudenzi, Germano; Hofland, Leo J; Persani, Luca; Vitale, Giovanni

    2016-01-01

    The oncogenic activation of the rearranged during transfection (RET) proto-oncogene has a main role in the pathogenesis of medullary thyroid cancer (MTC). Several lines of evidence suggest that RET function could be influenced by cyclic AMP (cAMP)-dependent protein kinase A (PKA) activity. We evaluated the in vitro anti-tumor activity of 8-chloroadenosine-3',5'-cyclic monophosphate (8-Cl-cAMP) and PKA type I-selective cAMP analogs [equimolar combination of the 8-piperidinoadenosine-3',5'-cyclic monophosphate (8-PIP-cAMP) and 8-hexylaminoadenosine-3',5'-cyclic monophosphate (8-HA-cAMP) in MTC cell lines (TT and MZ-CRC-1)]. 8-Cl-cAMP and the PKA I-selective cAMP analogs showed a potent anti-proliferative effect in both cell lines. In detail, 8-Cl-cAMP blocked significantly the transition of TT cell population from G2/M to G0/G1 phase and from G0/G1 to S phase and of MZ-CRC-1 cells from G0/G1 to S phase. Moreover, 8-Cl-cAMP induced apoptosis in both cell lines, as demonstrated by FACS analysis for annexin V-FITC/propidium iodide, the activation of caspase-3 and PARP cleavage. On the other hand, the only effect induced by PKA I-selective cAMP analogs was a delay in G0/G1-S and S-G2/M progression in TT and MZ-CRC-1 cells, respectively. In conclusion, these data demonstrate that cAMP analogs, particularly 8-Cl-cAMP, significantly suppress in vitro MTC proliferation and provide rationale for a potential clinical use of cAMP analogs in the treatment of advanced MTC.

  16. TSH Receptor Function Is Required for Normal Thyroid Differentiation in Zebrafish

    PubMed Central

    Opitz, Robert; Maquet, Emilie; Zoenen, Maxime; Dadhich, Rajesh

    2011-01-01

    TSH is the primary physiological regulator of thyroid gland function. The effects of TSH on thyroid cells are mediated via activation of its membrane receptor [TSH receptor (TSHR)]. In this study, we examined functional thyroid differentiation in zebrafish and characterized the role of TSHR signaling during thyroid organogenesis. Cloning of a cDNA encoding zebrafish Tshr showed conservation of primary structure and functional properties between zebrafish and mammalian TSHR. In situ hybridization confirmed that the thyroid is the major site of tshr expression during zebrafish development. In addition, we identified tpo, iyd, duox, and duoxa as novel thyroid differentiation markers in zebrafish. Temporal analyses of differentiation marker expression demonstrated the induction of an early thyroid differentiation program along with thyroid budding, followed by a delayed onset of duox and duoxa expression coincident with thyroid hormone synthesis. Furthermore, comparative analyses in mouse and zebrafish revealed for the first time a thyroid-enriched expression of cell death regulators of the B-cell lymphoma 2 family during early thyroid morphogenesis. Knockdown of tshr function by morpholino microinjection into embryos did not affect early thyroid morphogenesis but caused defects in later functional differentiation. The thyroid phenotype observed in tshr morphants at later stages comprised a reduction in number and size of functional follicles, down-regulation of differentiation markers, as well as reduced thyroid transcription factor expression. A comparison of our results with phenotypes observed in mouse models of defective TSHR and cAMP signaling highlights the value of zebrafish as a model to enhance the understanding of functional differentiation in the vertebrate thyroid. PMID:21737742

  17. Neurotrophin Receptors TrkA, p75NTR, and Sortilin Are Increased and Targetable in Thyroid Cancer.

    PubMed

    Faulkner, Sam; Jobling, Philip; Rowe, Christopher W; Rodrigues Oliveira, S M; Roselli, Severine; Thorne, Rick F; Oldmeadow, Christopher; Attia, John; Jiang, Chen Chen; Zhang, Xu Dong; Walker, Marjorie M; Hondermarck, Hubert

    2018-01-01

    Neurotrophin receptors are emerging targets in oncology, but their clinicopathologic significance in thyroid cancer is unclear. In this study, the neurotrophin tyrosine receptor kinase TrkA (also called NTRK1), the common neurotrophin receptor p75 NTR , and the proneurotrophin receptor sortilin were analyzed with immunohistochemistry in a cohort of thyroid cancers (n = 128) and compared with adenomas and normal thyroid tissues (n = 62). TrkA was detected in 20% of thyroid cancers, compared with none of the benign samples (P = 0.0007). TrkA expression was independent of histologic subtypes but associated with lymph node metastasis (P = 0.0148), suggesting the involvement of TrkA in tumor invasiveness. Nerves in the tumor microenvironment were positive for TrkA. p75 NTR was overexpressed in anaplastic thyroid cancers compared with papillary and follicular subtypes (P < 0.0001). Sortilin was overexpressed in thyroid cancers compared with benign thyroid tissues (P < 0.0001). Neurotrophin receptor expression was confirmed in a panel of thyroid cancer cell lines at the mRNA and protein levels. Functional investigations using the anaplastic thyroid cancer cell line CAL-62 found that siRNA against TrkA, p75 NTR , and sortilin decreased cell survival and cell migration through decreased SRC and ERK activation. Together, these data reveal TrkA, p75 NTR , and sortilin as potential therapeutic targets in thyroid cancer. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Extract of Ginkgo biloba exacerbates liver metastasis in a mouse colon cancer Xenograft model.

    PubMed

    Wang, Huan; Wu, Xia; Lezmi, Stephane; Li, Qian; Helferich, William G; Xu, Yueqing; Chen, Hong

    2017-12-02

    Metastasis refers to the spread of a primary tumor cell from the primary site to other locations in the body and it is generally associated with the severity of a tumor. Extract of Ginkgo biloba (EGb) contains various bioactive compounds and it exerts beneficial effects including improvements in brain function and reduced risk of cardiovascular diseases. On the other hand, increased risk of thyroid and liver cancers by EGb have been reported in animals. A colon cancer metastasis model was established using intrasplenic injection of a human colon cancer cell line, SW620-luc in athymic mice to investigate the potential impact of EGb on colon cancer progression. After tumor establishment, EGb was intraperitonically injected daily for 5 wks. EGb significantly increased the rate of metastasis in mouse liver and decreased the number of necrotic and apoptotic cells in the metastatic liver when compared to the control. Meanwhile, EGb significantly induced proliferation of tumor cells in the metastatic liver, indicated by increased staining of Ki67 and H3S10p. mRNA expression of genes involved in cell cycle, metastasis, apoptosis, and oxidative stress were altered by EGb treatment in livers with tumors. Moreover, EGb activated the stress-responsive MAPK pathways in the liver with metastatic tumors. EGb exacerbated liver metastasis in a mouse colon cancer metastasis model. This is potentially due to the increased tumor cell proliferation involving stimulated MAPK pathways.

  19. Silencing of Y-box binding protein-1 by RNA interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through NF-κB signaling pathway in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Hong; Sun, Ruowen; Chi, Zuofei; Li, Shuang; Hao, Liangchun

    2017-09-01

    Y-box binding protein-1 (YB-1), a member of Y-box protein family binding DNA and RNA, has been proposed as a novel marker in multiple malignant tumors and found to be associated with tumor malignancy. Neuroblastoma is an embryonal tumor arising from neuroblast cells of the autonomic nervous system, which is the most common cancer diagnosed in infants. It has been reported that YB-1 is highly expressing in various human tumors including nasopharynx, thyroid, lung, breast, colon, ovary, and prostate cancers. This study aimed to investigate the functional role of YB-1 in neuroblastoma by silencing YB-1 using RNA interference (shRNA) in neuroblastoma SH-SY5Y cells. We found that silencing of YB-1 decreased the proliferation, migration, and invasion of SH-SY5Y cells. At molecular level, inhibition of YB-1 decreased the expression level of PCNA as well as MMP-2 in neuroblastoma SH-SY5Y cells. Also, we discovered that YB-1 silencing sensitized SH-SY5Y cells to cisplatin and promoted the apoptosis induced by cisplatin due to down-regulation of multidrug resistance (MDR) 1 protein via NF-κB signaling pathway. Therefore, we consider that targeting YB-1 is promising for neuroblastoma treatment and for overcoming its cisplatin resistance in the development of new neuroblastoma therapeutic strategies.

  20. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.)

    PubMed Central

    Koronowicz, Aneta A.; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment. PMID:26799209

  1. Identification of Novel Pax8 Targets in FRTL-5 Thyroid Cells by Gene Silencing and Expression Microarray Analysis

    PubMed Central

    Di Palma, Tina; Conti, Anna; de Cristofaro, Tiziana; Scala, Serena; Nitsch, Lucio; Zannini, Mariastella

    2011-01-01

    Background The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown. Methodology/Principal Findings To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation. Conclusions/Significance This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies. PMID:21966443

  2. Thyroid nodule as a first manifestation of Hodgkin lymphoma–report of two cases and literature review

    PubMed Central

    2013-01-01

    Abstract Lymphomas account for less than 5% of thyroid malignant lesions. Vast majority of them are B-cell non-Hodgkin lymphomas (NHL), while Hodgkin lymphoma (HL) is extremely rare. Here we present two cases of HL, at baseline manifesting as a thyroid lesion. First patient, 29-year-old pregnant female, initially suspected for metastatic medullary thyroid cancer, was eventually diagnosed with mixed cellularity type of thyroid HL. Second patient, 22-year-old woman with suspicion of advanced thyroid cancer, was in the end diagnosed with an extra-lymphatic classical HL of the thyroid. In both cases, despite repeated fine-needle aspiration biopsy, cytological examination gave inconclusive or misleading results. On histopathological examination, thyroid tumor cells were positive for CD15 and CD30 antigen, which is typical for Reed-Sternberg cells. In the report authors also discuss difficulties in management as well as potential importance of novel methods such as FISH, PCR and other molecular techniques in diagnostics of thyroid lymphomas. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2896947559559648 PMID:23856094

  3. Mixed germ cells tumour primarily located in the thyroid -- a case report.

    PubMed

    Wierzbicka-Chmiel, Joanna; Chrószcz, Małgorzata; Słomian, Grzegorz; Kajdaniuk, Dariusz; Zajęcki, Wojciech; Borgiel-Marek, Halina; Marek, Bogdan

    2012-01-01

    Germ cells tumours most frequently occur in the gonads. Extragonadal localisation is rare and concerns mainly the mediastinum, retroperitoneum and pineal. We present the first description of a patient with a mixed germ cells tumour located primarily in the thyroid. A 35-year-old man in a good clinical condition was admitted to diagnose metastasis revealed in an X-ray of his lungs. Abnormal laboratory tests showed high concentrations of beta-HCG and LDH. Ultrasound examination revealed: hypoechogenic area 8 × 4 × 5 mm in the left testicle, and enlarged left thyroid lobe with echogenically heterogenous mass. In cytological examination of the thyroid, carcinomatous cells were found, which suggested metastasis. A diagnosis of cancerous spread of testicular cancer to the lungs and thyroid was made. The left testicle, with spermatic cord, was removed, yet in the histopathological examination no carcinomatous cells were found. Rescue chemotherapy, according to the BEP scheme (bleomycin, etoposide, cisplatin) was started, but during its course the patient died. Histopathology disclosed primary mixed germ cells tumour in the thyroid, predominantly with carcinoma embryonale and focuses of choriocarcinoma. Extragonadal germ cells tumours rarely occur in the thyroid. In medical literature, some cases of teratomas and a single case of yolk sac tumour in the thyroid have been described. The presence of choriocarcinoma was responsible for the high serum concentration of beta-HCG. Surgery of germ cells tumours proves insufficient. The conventional chemotherapy is based on cisplatin. In conclusion, extragonadal germ cells tumours are rare, but should be considered while co-existing with elevated markers such as: AFP, beta-HCG and lack of abnormalities in the gonads.

  4. Preoperative Cytologic Diagnosis of Warthin-like Variant of Papillary Thyroid Carcinoma.

    PubMed

    Kim, Jisup; Lim, Beom Jin; Hong, Soon Won; Pyo, Ju Yeon

    2018-03-01

    Warthin-like variant of papillary thyroid carcinoma (WLV-PTC) is a relatively rare variant of papillary thyroid carcinoma with favorable prognosis. However, preoperative diagnosis using fine-needle aspiration (FNA) specimens is challenging especially with lymphocytic thyroiditis characterized by Hürthle cells and lymphocytic background. To determine a helpful cytological differential point, we compared WLV-PTC FNA findings with conventional papillary thyroid carcinoma with lymphocytic thyroiditis (PTC-LT) and conventional papillary thyroid carcinoma without lymphocytic thyroiditis (PTC) regarding infiltrating inflammatory cells and their distribution. Preoperative diagnosis or potential for WLV-PTC will be helpful for surgeons to decide the scope of operation. Of the 8,179 patients treated for papillary thyroid carcinoma between January 2007 and December 2012, 16 patients (0.2%) were pathologically confirmed as WLV-PTC and four cases were available for cytologic review. For comparison, we randomly selected six PTC-LT cases and five PTC cases during the same period. The number of intratumoral and background lymphocytes, histiocytes, neutrophils, and the presence of giant cells were evaluated and compared using conventional smear and ThinPrep preparations. WLV-PTC showed extensive lymphocytic smear with incorporation of thyroid follicular tumor cell clusters and frequent histiocytes. WLV-PTC was associated with higher intratumoral and background lymphocytes and histiocytes compared with PTC-LT or PTC. The difference was more distinct in liquid-based cytology. The lymphocytic smear pattern and the number of inflammatory cells of WLV-PTC are different from those of PTC-LT or PTC and will be helpful for the differential diagnosis of WLV-PTC in preoperative FNA.

  5. Preoperative Cytologic Diagnosis of Warthin-like Variant of Papillary Thyroid Carcinoma

    PubMed Central

    Kim, Jisup; Lim, Beom Jin; Hong, Soon Won; Pyo, Ju Yeon

    2018-01-01

    Background Warthin-like variant of papillary thyroid carcinoma (WLV-PTC) is a relatively rare variant of papillary thyroid carcinoma with favorable prognosis. However, preoperative diagnosis using fine-needle aspiration (FNA) specimens is challenging especially with lymphocytic thyroiditis characterized by Hürthle cells and lymphocytic background. To determine a helpful cytological differential point, we compared WLV-PTC FNA findings with conventional papillary thyroid carcinoma with lymphocytic thyroiditis (PTC-LT) and conventional papillary thyroid carcinoma without lymphocytic thyroiditis (PTC) regarding infiltrating inflammatory cells and their distribution. Preoperative diagnosis or potential for WLV-PTC will be helpful for surgeons to decide the scope of operation. Methods Of the 8,179 patients treated for papillary thyroid carcinoma between January 2007 and December 2012, 16 patients (0.2%) were pathologically confirmed as WLV-PTC and four cases were available for cytologic review. For comparison, we randomly selected six PTC-LT cases and five PTC cases during the same period. The number of intratumoral and background lymphocytes, histiocytes, neutrophils, and the presence of giant cells were evaluated and compared using conventional smear and ThinPrep preparations. Results WLV-PTC showed extensive lymphocytic smear with incorporation of thyroid follicular tumor cell clusters and frequent histiocytes. WLV-PTC was associated with higher intratumoral and background lymphocytes and histiocytes compared with PTC-LT or PTC. The difference was more distinct in liquid-based cytology. Conclusions The lymphocytic smear pattern and the number of inflammatory cells of WLV-PTC are different from those of PTC-LT or PTC and will be helpful for the differential diagnosis of WLV-PTC in preoperative FNA. PMID:29429327

  6. Immunohistochemistry of medullary thyroid carcinoma and C-cell hyperplasia by an affinity-purified anti-human calcitonin antiserum.

    PubMed

    Hayashida, C Y; Alves, V A; Kanamura, C T; Ezabella, M C; Abelin, N M; Nicolau, W; Bisi, H; Toledo, S P

    1993-08-15

    The diagnosis of medullary thyroid carcinoma (MTC) depends on the calcitonin immunohistochemistry. Familial MTC is associated with C-cell hyperplasia (CCH), whereas sporadic MTC is not. A specific and sensitive calcitonin immunohistochemistry is necessary for the diagnosis of MTC and CCH. An affinity-purified anti-calcitonin antiserum (APxCT) was used for immunohistochemistry of the thyroids of 15 patients with MTC. The thyroids of five patients with familial MTC were studied in detail, with each gland sectioned in 48 areas. Between three and ten independent MTC were found in each thyroid, and CCH was found in all five patients (24.2%, varying from 8.4-56.3% of the 48 areas from each thyroid). MTC and CCH were localized mainly in the middle third and in the central axis of the thyroid lobes. They often were found together in the same area (in a total of 21 areas for the five thyroids sectioned in 48 areas) but ten areas with MTC did not have CCH, and 37 areas with CCH did not have MTC. In ten thyroids partially studied, CCH was indicated in three patients thought to have sporadic MTC. In two thyroids, with follicular and papillary carcinoma, a higher density of C-cells was found around the tumors, but disease was not characterized as CCH. APxCT antiserum increased the immunohistochemical specificity and sensitivity. The distinction of the familial from the sporadic MTC requires a careful and extensive search of CCH. C-cells in high density may be found around follicular cell carcinomas, being a potential source of diagnostic error.

  7. A Case of Painful Hashimoto Thyroiditis that Mimicked Subacute Thyroiditis

    PubMed Central

    Seo, Hye Mi; Kim, Miyeon; Bae, Jaeseok; Kim, Jo-Heon; Lee, Jeong Won; Lee, Sang Ah; Koh, Gwanpyo

    2012-01-01

    Hashimoto thyroiditis (HT) is an autoimmune thyroid disorder that usually presents as a diffuse, nontender goiter, whereas subacute thyroiditis (SAT) is an uncommon disease that is characterized by tender thyroid enlargement, transient thyrotoxicosis, and an elevated erythrocyte sedimentation rate (ESR). Very rarely, patients with HT can present with painful, tender goiter or fever, a mimic of SAT. We report a case of painful HT in a 68-year-old woman who presented with pain and tenderness in a chronic goiter. Her ESR was definitely elevated and her thyroid laboratory tests suggested subclinical hypothyroidism of autoimmune origin. 99mTc pertechnetate uptake was markedly decreased. Fine needle aspiration biopsy revealed reactive and polymorphous lymphoid cells and occasional epithelial cells with Hürthle cell changes. Her clinical symptoms showed a dramatic response to glucocorticoid treatment. She became hypothyroid finally and is now on levothyroxine therapy. PMID:22570820

  8. Management of thyroid gland invasion in laryngeal and hypopharyngeal squamous cell carcinoma.

    PubMed

    Arslanoğlu, Seçil; Eren, Erdem; Özkul, Yılmaz; Ciğer, Ejder; Kopar, Aylin; Önal, Kazım; Etit, Demet; Tütüncü, G Yazgı

    2016-02-01

    The objective of this study was to determine the incidence of thyroid gland invasion in laryngeal and hypopharyngeal squamous cell carcinoma; and the association between clinicopathological parameters and thyroid gland invasion. Medical records of 75 patients with laryngeal and hypopharyngeal squamous cell carcinoma who underwent total laryngectomy with thyroidectomy were reviewed, retrospectively. Preoperative computed tomography scans, clinical and operative findings, and histopathological data of the specimens were evaluated. There were 73 male and two female patients with an age range of 41-88 years (mean 60.4 years). Hemithyroidectomy was performed in 62 (82.7 %) and total thyroidectomy was performed in 13 patients (17.3 %). Four patients had histopathologically proven thyroid gland invasion (5.3 %). In three patients, thyroid gland involvement was by means of direct invasion. Thyroid gland invasion was significantly correlated with thyroid cartilage invasion. Therefore, prophylactic thyroidectomy should not be a part of the treatment policy for these tumors.

  9. Long non-coding RNA BANCR regulates cancer stem cell markers in papillary thyroid cancer via the RAF/MEK/ERK signaling pathway.

    PubMed

    Wang, Yuanyuan; Lin, Xiangde; Fu, Xinghao; Yan, Wei; Lin, Fusheng; Kuang, Penghao; Luo, Yezhe; Lin, Ende; Hong, Xiaoquan; Wu, Guoyang

    2018-06-18

    Thyroid cancer is one of the most common malignant tumors of the endocrine system. Among all thyroid cancers, papillary thyroid carcinoma (PTC) is the most common type. The BRAF-activated non-coding RNA (BANCR) is a 693-bp nucleotide transcript which was first identified in melanoma. However, the role of BANCR in the development of thyroid cancer remains unclear. Therefore, the present study investigated the potential involvement of BANCR in the development of thyroid cancer in vitro using patient tissue samples and a panel of thyroid cancer cell lines, and in vivo using a xenograft mouse model. We observed that BANCR was expressed at a higher level in human thyroid tumor tissues than that noted in the adjacent normal tissues. The expression level of BANCR differed between cultured thyroid cancer cell lines; BANCR expression was lower in the BCPAP cell line than that observed in the CAL-62, WRO and FTC-133 cell lines. Western blot analysis and flow cytometry revealed that overexpression of BANCR in the BCPAP cell line resulted in increased expression of the cancer stem cell markers, LGR5 and EpCAM. Single-clone formation experiments showed that upregulated expression of BANCR in the BCPAP cell line promoted an increase in the number of clones formed. Similarly, in microsphere formation experiments, overexpression of BANCR resulted in increased number and size of microspheres compared with the control cell line. Western blotting experiments showed that BANCR overexpression in BCPAP upregulated the expression of phosphorylated c-Raf, MEK1/2 and ERK1/2. Inhibition of c-Raf via U0126 decreased the expression of LGR5 and EpCAM, as well as phosphorylated levels of c-Raf, MEK1/2 and ERK1/2 in the BCPAP cells, compared to levels in the DMSO controls. In the xenograft mouse model, BANCR overexpression in the thyroid cancer cells significantly increased tumor growth. Taken together, these results suggest that BANCR plays a role in PTC development by regulating the expression of cancer stem cell markers LGR5 and EpCAM via the c-Raf/MEK/ERK signaling pathway. Therefore, BANCR may be used as a novel prognostic marker for PTC.

  10. [Analysis of thyroid lesions in childhood recipients after hematopoietic stem cell transplantation].

    PubMed

    Maeda, Naoko; Hamajima, Takashi; Yambe, Yuko; Sekimizu, Masahiro; Horibe, Keizo

    2013-03-01

    We performed a physical examination and ultrasonography of the thyroid gland in 24 patients who had received hematopoietic stem cell transplantation with a total-body irradiation (TBI)-containing regimen during childhood. When ultrasonography revealed thyroid nodules larger than 1 cm in diameter, fine-needle aspiration biopsies were performed. Of 5 patients with palpable masses and thyroid nodules larger than 1 cm, adenomatous goiter was diagnosed in 4 cases and thyroid cancer in 1. Of the remaining 19 patients in whom no palpable mass was detected in the physical examination, 5 had thyroid nodules (including 1 adenomatous goiter), 6 had cystic lesions, and 8 exhibited no abnormalities on ultrasonography. No significant differences in sex, age at transplantation, interval between transplantation and evaluation, primary disease, preconditioning regimen, status at transplantation, stem cell source, chronic graft-versus-host disease, hypogonadism, or hypothyroidism were observed between patients with and without nodules. Individuals who received hematopoietic stem cell transplantation with a TBI-containing regimen are at risk of secondary thyroid cancer due to radiotherapy and require regular clinical evaluations of the thyroid gland by palpation, and ultrasonography should be incorporated into these checkups.

  11. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    PubMed

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Mutant HABP2 Causes Non-Medullary Thyroid Cancer | Center for Cancer Research

    Cancer.gov

    The thyroid is a butterfly-shaped gland that lies at the base of the throat in front of the windpipe. A member of the endocrine system, the thyroid secretes hormones to regulate heart rate, blood pressure, temperature, and metabolism. Cancer of the thyroid is the most common endocrine cancer and the eighth most common cancer in the U.S. An estimated 63,450 Americans will be diagnosed with thyroid cancer this year. The vast majority is of follicular cell origin, and the remaining cancer originates from parafollicular cells, so called medullary thyroid cancer.

  13. Fine needle aspiration biopsy of three cases of squamous cell carcinoma presenting as a thyroid mass: cytological findings and differential diagnosis.

    PubMed

    Rosa, M; Toronczyk, K

    2012-02-01

    Primary squamous cell carcinomas of the thyroid gland are extremely rare, comprising about 1% of thyroid malignancies. Although squamous cell carcinomas are readily identified as such on aspiration cytology in the majority of cases, the differentiation of primary versus metastatic tumour might not always be easy. Herein, we report three cases of squamous cell carcinomas involving the thyroid gland. Fine needle aspiration cytology (FNAC) was performed in three patients with a thyroid mass using standard guidelines. Smears were stained with Diff-Quik and Papanicolaou stains. Two patients were male and one was female, aged 59, 45 and 35 years, respectively. In all three patients a thyroid mass was present. FNAC smears in all cases showed cytological features of squamous cell carcinoma including keratinization and necrosis. After clinical and cytological correlation, one case appeared to be primary, one case metastatic, and in the third case no additional clinical information or biopsy follow-up was available for further characterization. Because primary squamous cell carcinoma of the thyroid is a rare finding, metastatic squamous cell carcinoma should always be excluded first. Metastatic disease usually presents in the setting of widespread malignancy, therefore a dedicated clinical and radiological investigation is necessary in these cases. In both clinical scenarios the patient's prognosis is poor. © 2010 Blackwell Publishing Ltd.

  14. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis.

    PubMed

    Ha, Tae Kwun; Jung, Inae; Kim, Mi Eun; Bae, Sung Kwon; Lee, Jun Sik

    2017-07-01

    Thyroid cancer is the most common endocrine malignancy and can range in severity from relatively slow-growing occult differentiated thyroid cancer to uniformly aggressive and fatal anaplastic thyroid cancer. A subset of patients with papillary thyroid cancer present with aggressive disease that is refractory to conventional treatment. Myricetin is a flavonol compound found in a variety of berries as well as walnuts and herbs. Previous studies have demonstrated that myricetin exhibits anti-cancer activity against several tumor types. However, an anti-cancer effect of myricetin against human papillary thyroid cancer (HPTC) cells has not been established. The present investigation was undertaken to gain insights into the molecular mechanism of the anti-cancer activity of myricetin against HPTC cells. We examined the cytotoxicity, DNA damaging, and cell cycle arresting activities of myricetin using SNU-790 HPTC cells. We found that myricetin exhibited cytotoxicity and induced DNA condensation in SNU-790 HPTC cells in a dose-dependent manner. Moreover, myricetin up-regulated the activation of caspase cascades and the Bax:Bcl-2 expression ratio. In addition, myricetin induced the release of apoptosis-inducing factor (AIF) and altered the mitochondrial membrane potential. Our results suggest that myricetin induces the death of SNU-790 HPTC cells and thus may prove useful in the development of therapeutic agents for human thyroid cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Sclerosing mucoepidermoid carcinoma with eosinophilia of thyroid gland in a male patient: a case report and literature review.

    PubMed

    Lai, Chi-Yun; Chao, Tzu-Chieh; Lin, Jen-Der; Hsueh, Chuen

    2015-01-01

    Sclerosing mucoepidermoid carcinoma with eosinophilia (SMECE) was first described by Chan et al in 1991. It is characterized by nest or strands of epidermoid tumor cells with squamous differentiation, rare mucous cells, prominent sclerotic stroma, eosinophilic and lymphoplasmacytic infiltration, and a background of chronic lymphocytic thyroiditis in the non-neoplastic thyroid gland. It is important to recognize SMECE of thyroid and differentiate it from squamous cell carcinoma or other neoplasms with squamous differentiation/metaplasia. In published cases, the SMECE of thyroid gland predominantly occurs in women. We report a case of SMECE of thyroid in a 45-year-old male patient. All cases in male patients were Caucasian described in English literature, and our case is the first one in Asian.

  16. Leveraging the immune system to treat advanced thyroid cancers.

    PubMed

    French, Jena D; Bible, Keith; Spitzweg, Christine; Haugen, Bryan R; Ryder, Mabel

    2017-06-01

    Inflammation has long been associated with the thyroid and with thyroid cancers, raising seminal questions about the role of the immune system in the pathogenesis of advanced thyroid cancers. With a growing understanding of dynamic tumour-immune cell interactions and the mechanisms by which tumour cells evade antitumour immunity, the field of cancer immunotherapy has been revolutionised. In this Review, we provide evidence to support the presence of an antitumour immune response in advanced thyroid cancers linked to cytotoxic T cells and NK cells. This antitumour response, however, is likely blunted by the presence of immunosuppressive pathways within the microenvironment, facilitated by tumour-associated macrophages or increased expression of negative regulators of cytotoxic T-cell function. Current and future efforts to incorporate immune-based therapies into existing tumour cell or endothelial-derived therapies-eg, with kinase inhibitors targeting tumour-associated macrophages or antibodies blocking negative regulators on T cells-could provide improved and durable responses for patients with disease that is otherwise refractory to treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents.

    PubMed

    Hurley, P M

    1998-08-01

    Of 240 pesticides screened for carcinogenicity by the U.S. Environmental Protection Agency Office of Pesticide Programs, at least 24 (10%) produce thyroid follicular cell tumors in rodents. Thirteen of the thyroid carcinogens also induce liver tumors, mainly in mice, and 9 chemicals produce tumors at other sites. Some mutagenic data are available on all 24 pesticides producing thyroid tumors. Mutagenicity does not seem to be a major determinant in thyroid carcinogenicity, except for possibly acetochlor; evidence is less convincing for ethylene thiourea and etridiazole. Studies on thyroid-pituitary functioning, including indications of thyroid cell growth and/or changes in thyroxine, triiodothyronine, or thyroid-stimulating hormone levels, are available on 19 pesticides. No such antithyroid information is available for etridiazole, N-octyl bicycloheptene dicarboximide, terbutryn, triadimefon, and trifluralin. Of the studied chemicals, only bromacil lacks antithyroid activity under study conditions. Intrathyroidal and extrathyroidal sites of action are found: amitrole, ethylene thiourea, and mancozeb are thyroid peroxidase inhibitors; and acetochlor, clofentezine, fenbuconazole, fipronil, pendimethalin, pentachloronitrobenzene, prodiamine, pyrimethanil, and thiazopyr seem to enhance the hepatic metabolism and excretion of thyroid hormone. Thus, with 12 pesticides that mode of action judgments can be made, 11 disrupt thyroid-pituitary homeostasis only; no chemical is mutagenic only; and acetochlor may have both antithyroid and some mutagenic activity. More information is needed to identify other potential antithyroid modes of thyroid carcinogenic action.

  18. [An immunocytochemical study of the C-cell function of the thyroid in rats exposed on the Kosmos-2044 biosatellite].

    PubMed

    Loginov, V I

    1993-01-01

    Immunocytochemical analysis of thyroid gland C-cells of the rats exposed to a 14-day space flight revealed a decrease in the number of C-cells, volume of their nuclei and a declined percentage of active secretory C-cells, which point to a decline of calcitonin proactive and calcitonin secretory hypofunction of the thyroid C-cells system in flown rats. Tail suspension as a microgravity model caused similar changes in C-cells.

  19. Immunosuppression involving increased myeloid-derived suppressor cell levels, systemic inflammation and hypoalbuminemia are present in patients with anaplastic thyroid cancer

    PubMed Central

    SUZUKI, SHINICHI; SHIBATA, MASAHIKO; GONDA, KENJI; KANKE, YASUYUKI; ASHIZAWA, MAI; UJIIE, DAISUKE; SUZUSHINO, SEIKO; NAKANO, KEIICHI; FUKUSHIMA, TOSHIHIKO; SAKURAI, KENICHI; TOMITA, RYOUICHI; KUMAMOTO, KENSUKE; TAKENOSHITA, SEIICHI

    2013-01-01

    Anaplastic thyroid carcinoma (ATC) is one of the most aggressive neoplasms in humans and myeloid-derived suppressor cells (MDSCs) contribute to the negative regulation of immune responses in the context of cancer and inflammation. In order to investigate the pathophysiology of thyroid cancer, peripheral blood mononuclear cells (PBMCs) were obtained from 49 patients with thyroid cancer, 18 patients with non-cancerous thyroid diseases and 22 healthy volunteers. The MDSC levels were found to be higher in patients with any type of thyroid cancer (P<0.05), patients with ATC (P<0.001) and patients with medullary thyroid carcinoma (P<0.05), when compared to patients with non-cancerous thyroid diseases. The MDSC levels were also higher in patients with stage III–IV thyroid cancer compared to those in patients with non-cancerous thyroid diseases (P<0.05). The stimulation index (SI) of phytohemagglutinin (PHA)-induced lymphocyte blastogenesis was significantly lower, the C-reactive protein (CRP) levels were significantly higher and the serum albumin levels were significantly lower in patients with ATC compared to those in patients with non-cancerous thyroid diseases. The SI was significantly lower in stage III and IV thyroid cancer compared to that in non-cancerous thyroid disease (P<0.05). Furthermore, the CRP levels were higher and the concentration of albumin was lower in stage IV thyroid cancer compared to those in non-cancerous thyroid disease (P<0.05). Patients with thyroid carcinoma were then classified into one of two groups according to a %PBMC of MDSC cut-off level of 1.578, which was the average %PBMC of MDSC of patients with any type of thyroid carcinoma. In patients with higher MDSC levels, the production of CRP and interleukin (IL)-10 was significantly higher (P<0.05) and the albumin levels were significantly lower (P<0.05) compared to those in patients with lower MDSC levels. These data indicate that MDSCs are increased in patients with ATC. Furthermore, these patients exhibited suppression of cell-mediated immune responses, chronic inflammation and nutritional impairment. PMID:24649277

  20. Size of thyroid carcinoma by histotype and variants: A population-based study in a mildly iodine-deficient area.

    PubMed

    Marina, Michela; Ceda, Gian Paolo; Corcione, Luigi; Sgargi, Paolo; Michiara, Maria; Silini, Enrico Maria; Ceresini, Graziano

    2017-10-01

    Data relating the size of thyroid cancer with histological types and variants are scarce. All incident thyroid cancer diagnosed between 2003 and 2012 in a mildly iodine-deficient area were derived from a population-based tumor registry. Undifferentiated/anaplastic thyroid cancer and incidental cases were excluded. Major diameter of thyroid cancer, as assessed by pathological examination, was stratified in classes: ≤10 mm; 11-20 mm; 21-40 mm; and >40 mm. For each class, absolute and relative frequencies of histological types were calculated. Tumors >20 mm were more frequent among follicular thyroid carcinoma (FTC) and Hürthle cell carcinoma than in other histotypes, with median size of 22.50 mm (95% confidence interval [CI] 16.71-28.29) and 25.00 mm (95% CI 17.04-32.96) in FTC and Hürthle cell carcinoma, respectively. Odds ratio for tumors >20 mm was significant for FTC and Hürthle cell carcinoma only (P < .0001). Among the histotypes and variants of differentiated thyroid cancer, FTC and Hürthle cell carcinoma are characterized by the largest size. © 2017 Wiley Periodicals, Inc.

  1. Simultaneous Delivery of Highly Diverse Bioactive Compounds from Blend Electrospun Fibers for Skin Wound Healing.

    PubMed

    Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael

    2015-07-15

    Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications.

  2. mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib.

    PubMed

    Hanly, Elyse K; Bednarczyk, Robert B; Tuli, Neha Y; Moscatello, Augustine L; Halicka, H Dorota; Li, Jiangwei; Geliebter, Jan; Darzynkiewicz, Zbigniew; Tiwari, Raj K

    2015-11-24

    Treatment options for advanced metastatic thyroid cancer patients are limited. Vemurafenib, a BRAFV600E inhibitor, has shown promise in clinical trials although cellular resistance occurs. Combination therapy that includes BRAFV600E inhibition and avoids resistance is a clinical need. We used an in vitro model to examine combination treatment with vemurafenib and mammalian target of rapamycin (mTOR) inhibitors, metformin and rapamycin. Cellular viability and apoptosis were analyzed in thyroid cell lines by trypan blue exclusion and TUNEL assays. Combination of vemurafenib and metformin decreased cell viability and increased apoptosis in both BCPAP papillary thyroid cancer cells and 8505c anaplastic thyroid cancer cells. This combination was also found to be active in vemurafenib-resistant BCPAP cells. Changes in expression of signaling molecules such as decreased mTOR expression in BCPAP and enhanced inhibition of phospho-MAPK in resistant BCPAP and 8505c were observed. The second combination of vemurafenib and rapamycin amplified cell death in BCPAP cells. We conclude that combination of BRAFV600E and mTOR inhibition forms the basis of a treatment regimen that should be further investigated in in vivo model systems. Metformin or rapamycin adjuvant treatment may provide clinical benefits with minimal side effects to BRAFV600E-positive advanced thyroid cancer patients treated with vemurafenib.

  3. mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib

    PubMed Central

    Hanly, Elyse K.; Bednarczyk, Robert B.; Tuli, Neha Y.; Moscatello, Augustine L.; Halicka, H. Dorota; Li, Jiangwei; Geliebter, Jan; Darzynkiewicz, Zbigniew; Tiwari, Raj K.

    2015-01-01

    Treatment options for advanced metastatic thyroid cancer patients are limited. Vemurafenib, a BRAFV600E inhibitor, has shown promise in clinical trials although cellular resistance occurs. Combination therapy that includes BRAFV600E inhibition and avoids resistance is a clinical need. We used an in vitro model to examine combination treatment with vemurafenib and mammalian target of rapamycin (mTOR) inhibitors, metformin and rapamycin. Cellular viability and apoptosis were analyzed in thyroid cell lines by trypan blue exclusion and TUNEL assays. Combination of vemurafenib and metformin decreased cell viability and increased apoptosis in both BCPAP papillary thyroid cancer cells and 8505c anaplastic thyroid cancer cells. This combination was also found to be active in vemurafenib-resistant BCPAP cells. Changes in expression of signaling molecules such as decreased mTOR expression in BCPAP and enhanced inhibition of phospho-MAPK in resistant BCPAP and 8505c were observed. The second combination of vemurafenib and rapamycin amplified cell death in BCPAP cells. We conclude that combination of BRAFV600E and mTOR inhibition forms the basis of a treatment regimen that should be further investigated in in vivo model systems. Metformin or rapamycin adjuvant treatment may provide clinical benefits with minimal side effects to BRAFV600E-positive advanced thyroid cancer patients treated with vemurafenib. PMID:26284586

  4. Postotic and preotic cranial neural crest cells differently contribute to thyroid development.

    PubMed

    Maeda, Kazuhiro; Asai, Rieko; Maruyama, Kazuaki; Kurihara, Yukiko; Nakanishi, Toshio; Kurihara, Hiroki; Miyagawa-Tomita, Sachiko

    2016-01-01

    Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Mps1/TTK: a novel target and biomarker for cancer.

    PubMed

    Xie, Yuan; Wang, Anqiang; Lin, Jianzhen; Wu, Liangcai; Zhang, Haohai; Yang, Xiaobo; Wan, Xueshuai; Miao, Ruoyu; Sang, Xinting; Zhao, Haitao

    2017-02-01

    Monopolar spindle1 (Mps1, also known as TTK) is the core component of the spindle assembly checkpoint, which functions to ensure proper distribution of chromosomes to daughter cells. Mps1 is hardly detectable in normal organs except the testis and placenta. However, high levels of Mps1 are found in many types of human malignancies, including glioblastoma, thyroid carcinoma, breast cancer, and other cancers. Several Mps1 inhibitors can inhibit the proliferation of cancer cells and exhibit demonstrable survival benefits. Mps1 can be utilized as a new immunogenic epitope, which is able to induce potent cytotoxic T lymphocyte activity against cancer cells while sparing normal cells. Some clinical trials have validated its safety, immunogenicity and clinical response. Thus, Mps1 may be a novel target for cancer therapy. Mps1 is differentially expressed between normal and malignant tissues, indicating its potential as a molecular biomarker for diagnosis. Meanwhile, the discovery that it clearly correlates with recurrence and survival time suggests it may serve as an independent prognostic biomarker as well.

  6. Overexpression of BID in thyroids of transgenic mice increases sensitivity to iodine-induced autoimmune thyroiditis

    PubMed Central

    2014-01-01

    Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380

  7. Thyroid Regeneration: Characterization of Clear Cells After Partial Thyroidectomy

    PubMed Central

    Ozaki, Takashi; Matsubara, Tsutomu; Seo, Daekwan; Okamoto, Minoru; Nagashima, Kunio; Sasaki, Yoshihito; Hayase, Suguru; Murata, Tsubasa; Liao, Xiao-Hui; Hanson, Jeffrey; Rodriguez-Canales, Jaime; Thorgeirsson, Snorri S.; Kakudo, Kennichi; Refetoff, Samuel

    2012-01-01

    Although having the capacity to grow in response to a stimulus that perturbs the pituitary-thyroid axis, the thyroid gland is considered not a regenerative organ. In this study, partial thyroidectomy (PTx) was used to produce a condition for thyroid regeneration. In the intact thyroid gland, the central areas of both lobes served as the proliferative centers where microfollicles, and bromodeoxyuridine (BrdU)-positive and/or C cells, were localized. Two weeks after PTx, the number of BrdU-positive cells and cells with clear or faintly eosinophilic cytoplasm were markedly increased in the central area and continuous to the cut edge. Clear cells were scant in the cytoplasm, as determined by electron microscopy; some retained the characteristics of calcitonin-producing C cells by having neuroendocrine granules, whereas others retained follicular cell-specific features, such as the juxtaposition to a lumen with microvilli. Some cells were BrdU-positive and expressed Foxa2, the definitive endoderm lineage marker. Serum TSH levels drastically changed due to the thyroidectomy-induced acute reduction in T4-generating tissue, resulting in a goitrogenesis setting. Microarray followed by pathway analysis revealed that the expression of genes involved in embryonic development and cancer was affected by PTx. The results suggest that both C cells and follicular cells may be altered by PTx to become immature cells or immature cells that might be derived from stem/progenitor cells on their way to differentiation into C cells or follicular cells. These immature clear cells may participate in the repair and/or regeneration of the thyroid gland. PMID:22454152

  8. IgG4-Related Disease of the Thyroid Gland Requiring Emergent Total Thyroidectomy: A Case Report.

    PubMed

    Zhao, Zitong; Lee, Yu Jin; Zheng, Shuwei; Khor, Li Yan; Lim, Kok Hing

    2018-05-31

    IgG4-related disease of the thyroid gland is a recently recognized subtype of thyroiditis, often with rapid progression requiring surgical treatment. It is considered as a spectrum of disease varying from early IgG4-related Hashimoto's thyroiditis (HT) pattern to late fibrosing HT or Riedel's thyroiditis patterns. Here, we report a 47-year-old Malay woman presenting with progressively painless neck swelling over 3 years and subclinical hypothyroidism. Computed tomography (CT) scan revealed diffuse thyroid enlargement (up to 13 cm) with retrosternal extension and without regional lymphadenopathy. Fine needle aspiration of the thyroid showed a limited number of follicular epithelial cell groups with widespread Hurthle cell change and scanty background colloid, but no evidence of lymphocytosis. The cytologic features fell into the category of 'atypia of undetermined significance'. Subsequently, the patient developed hypercapnic respiratory failure secondary to extrinsic upper airway compression by the thyroid mass and underwent emergent total thyroidectomy. Histology of the thyroid showed diffuse dense lymphoplasmacytic infiltrate and fibrosis. Follicular cells exhibited reactive nuclear features and some Hurthle cell change. IgG4+ plasma cells were over 40/high power field while overall IgG4/IgG ratio was above 50%. The overall features suggest the diagnosis of IgG4-related disease of the thyroid gland in the form of IgG4-related HT. Post-surgery, the patient was found to have markedly elevated serum IgG4 concentration but PET/CT did not show significant increased fludeoxyglucose uptake in other areas. Her recovery was complicated by a ventilator-associated pneumonia with empyema, limiting early use of corticosteroids for treatment of IgG4-related disease.

  9. Thyroid epithelial cell hyperplasia in IFN-gamma deficient NOD.H-2h4 mice.

    PubMed

    Yu, Shiguang; Sharp, Gordon C; Braley-Mullen, Helen

    2006-01-01

    The role of inflammatory cells in thyroid epithelial cell (thyrocyte) hyperplasia is unknown. Here, we demonstrate that thyrocyte hyperplasia in IFN-gamma-/- NOD.H-2h4 mice has an autoimmune basis. After chronic exposure to increased dietary iodine, 60% of IFN-gamma-/- mice had severe thyrocyte hyperplasia with minimal or moderate lymphocyte infiltration, and thyroid dysfunction with reduced serum T4. All mice produced anti-thyroglobulin autoantibody. Some wild-type NOD.H-2h4 mice had isolated areas of thyrocyte hyperplasia with predominantly lymphocytic infiltration, whereas IL-4-/- and 50% of wild-type NOD.H-2h4 mice developed lymphocytic thyroiditis but no thyrocyte hyperplasia. Both thyroid infiltrating inflammatory cells and environmental factors (iodine) were required to induce thyrocyte hyperplasia. Splenocytes from IFN-gamma-/- mice with thyrocyte hyperplasia, but not splenocytes from naïve IFN-gamma-/- mice, induced hyperplasia in IFN-gamma-/- NOD.H-2h4.SCID mice. These results may provide clues for understanding the mechanisms underlying development of epithelial cell hyperplasia not only in thyroids but also in other tissues and organs.

  10. Fetal microchimeric cells in autoimmune thyroid diseases: harmful, beneficial or innocent for the thyroid gland?

    PubMed

    Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter

    2013-01-01

    Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD.

  11. Thyroid hormone affects secretory activity and uncoupling protein-3 expression in rat harderian gland.

    PubMed

    Chieffi Baccari, Gabriella; Monteforte, Rossella; de Lange, Pieter; Raucci, Franca; Farina, Paola; Lanni, Antonia

    2004-07-01

    The effects of T(3) administration on the rat Harderian gland were examined at morphological, biochemical, and molecular levels. T(3) induced hypertrophy of the two cell types (A and B) present in the glandular epithelium. In type A cells, the hypertrophy was mainly due to an increase in the size of the lipid compartment. The acinar lumina were filled with lipoproteic substances, and the cells often showed an olocrine secretory pattern. In type B cells, the hypertrophy largely consisted of a marked proliferation of mitochondria endowed with tightly packed cristae, the mitochondrial number being nearly doubled (from 62 to 101/100 microm(2)). Although the average area of individual mitochondria decreased by about 50%, the total area of the mitochondrial compartment increased by about 80% (from 11 to 19/100 microm(2)). This could be ascribed to T(3)-induced mitochondrial proliferation. The morphological and morphometric data correlated well with our biochemical results, which indicated that mitochondrial respiratory activity is increased in hyperthyroid rats. T(3), by influencing the metabolic function of the mitochondrial compartment, induces lipogenesis and the release of secretory product by type A cells. Mitochondrial uncoupling proteins 2 and 3 were expressed at both mRNA and protein levels in the euthyroid rat Harderian gland. T(3) treatment increased the mRNA levels of both uncoupling protein 2 (UCP2) and UCP3, but the protein level only of UCP3. A possible role for these proteins in the Harderian gland is discussed.

  12. Iodide handling by the thyroid epithelial cell.

    PubMed

    Nilsson, M

    2001-01-01

    Iodination of thyroglobulin, the key event in the synthesis of thyroid hormone, is an extracellular process that takes place inside the thyroid follicles at the apical membrane surface that faces the follicular lumen. The supply of iodide involves two steps of TSH-regulated transport, basolateral uptake and apical efflux, that imprint the polarized phenotype of the thyroid cell. Iodide uptake is generated by the sodium/iodide symporter present in the basolateral plasma membrane. A candidate for the apical iodide-permeating mechanism is pendrin, a chloride/iodide transporting protein recently identified in the apical membrane. In physiological conditions, transepithelial iodide transport occurs without intracellular iodination, despite the presence of large amounts of thyroglobulin and thyroperoxidase inside the cells. The reason is that hydrogen peroxide, serving as electron acceptor in iodide-protein binding and normally produced at the apical cell surface, is rapidly degraded by cytosolic glutathione peroxidase once it enters the cells. Iodinated thyroglobulin in the lumen stores not only thyroid hormone but iodine incorporated in iodotyrosine residues as well. After endocytic uptake and degradation of thyroglobulin, intracellular deiodination provides a mechanism for recycling of iodide to participate in the synthesis of new thyroid hormone at the apical cell surface.

  13. Small cell lung cancer with metastasis to the thyroid in a patient with toxic multinodular goiter.

    PubMed

    Ozgu, Eylem Sercan; Gen, Ramazan; Ilvan, Ahmet; Ozge, Cengiz; Polat, Ayşe; Vayisoglu, Yusuf

    2012-11-01

    Thyroid metastasis of lung cancer is rarely observed in clinical practice. The primary cancers which metastasize to the thyroid gland are mostly renal cell carcinoma, lung cancer, and breast cancer. Transient destructive thyrotoxicosis is caused by massive metastasis of extrathyroid tumors. We herein present a case report of a patient with small cell carcinoma of lung with metastasis to the thyroid and thyrotoxicosis due to toxic multinodular goiter. A 66-year-old man complained of swelling around the right side of the neck, dyspnea, progressive weight loss, and palpitation starting since 3 months before his admission. The patient was diagnosed with small cell carcinoma of lung with metastasis to the thyroid and thyrotoxicosis due to toxic multinodular goiter. The case report presented here illustrates the challenge of making a definitive and adequate diagnosis, particularly if the patient presents with 2 potential causes of thyrotoxicosis. Thyroid scintigraphy is an important tool for differential diagnosis of thyrotoxicosis.

  14. Ultrasound findings of diffuse metastasis of gastric signet-ring-cell carcinoma to the thyroid gland.

    PubMed

    Morita, Koji; Sakamoto, Takahiko; Ota, Shuji; Masugi, Hideo; Chikuta, Ikumi; Mashimo, Yamato; Edo, Naoki; Tokairin, Takuo; Seki, Nobuhiko; Ishikawa, Toshio

    2017-01-01

    It has been shown that metastases to the thyroid from extrathyroidal malignancies occur as solitary or multiple nodules, or may involve the whole thyroid gland diffusely. However, diffuse metastasis of gastric cancer to the thyroid is extremely rare. Here, we report a case of a 74-year-old woman with diffuse infiltration of gastric adenocarcinoma (signet-ring-cell carcinoma/poorly differentiated adenocarcinoma) cells in the thyroid. The pathological diagnosis was made based on upper gastrointestinal endoscopy with biopsy and fine-needle aspiration cytology of the thyroid. An 18F-FDG PET/CT revealed multiple lesions with increased uptake, including the bilateral thyroid gland. On thyroid ultrasound examination, diffuse enlargement with internal heterogeneity and hypoechoic reticular lines was observed. On color Doppler imaging, a blood-flow signal was not detected in these hypoechoic lines. These findings were similar to those of diffuse metastases caused by other primary cancers, such as lung cancer, as reported earlier. Therefore, the presence of hypoechoic reticular lines without blood-flow signals is probably common to diffuse thyroid metastasis from any origin and an important diagnostic finding. This is the first report to show detailed ultrasound findings of diffuse gastric cancer metastasis to the thyroid gland using color Doppler.

  15. NEW DEVELOPMENTS IN THE DIAGNOSIS AND TREATMENT OF THYROID CANCER

    PubMed Central

    Schneider, David F.; Chen, Herbert

    2013-01-01

    Thyroid cancer exists in several forms. Differentiated thyroid cancers include papillary and follicular histologies. These tumors exist along a spectrum of differentiation, and their incidence continues to climb. A number of advances in the diagnosis and treatment of differentiated thyroid cancers now exist. These include molecular diagnostics and more advanced strategies for risk stratification. Medullary cancer arises from the parafollicular cells and not the follicular cells. Therefore, diagnosis and treatment differs from differentiated thyroid tumors. Genetic testing and newer adjuvant therapies has changed the diagnosis and treatment of medullary thyroid cancer. This review will focus on the epidemiology, diagnosis, work-up, and treatment of both differentiated and medullary thyroid cancers, focusing specifically on newer developments in the field. PMID:23797834

  16. Excess Iodide Induces an Acute Inhibition of the Sodium/Iodide Symporter in Thyroid Male Rat Cells by Increasing Reactive Oxygen Species

    PubMed Central

    Arriagada, Alejandro A.; Albornoz, Eduardo; Opazo, Ma. Cecilia; Becerra, Alvaro; Vidal, Gonzalo; Fardella, Carlos; Michea, Luis; Carrasco, Nancy; Simon, Felipe; Elorza, Alvaro A.; Bueno, Susan M.; Kalergis, Alexis M.

    2015-01-01

    Na+/I− symporter (NIS) mediates iodide (I−) uptake in the thyroid gland, the first and rate-limiting step in the biosynthesis of the thyroid hormones. The expression and function of NIS in thyroid cells is mainly regulated by TSH and by the intracellular concentration of I−. High doses of I− for 1 or 2 days inhibit the synthesis of thyroid hormones, a process known as the Wolff-Chaikoff effect. The cellular mechanisms responsible for this physiological response are mediated in part by the inhibition of I− uptake through a reduction of NIS expression. Here we show that inhibition of I− uptake occurs as early as 2 hours or 5 hours after exposure to excess I− in FRTL-5 cells and the rat thyroid gland, respectively. Inhibition of I− uptake was not due to reduced NIS expression or altered localization in thyroid cells. We observed that incubation of FRTL-5 cells with excess I− for 2 hours increased H2O2 generation. Furthermore, the inhibitory effect of excess I− on NIS-mediated I− transport could be recapitulated by H2O2 and reverted by reactive derived oxygen species scavengers. The data shown here support the notion that excess I− inhibits NIS at the cell surface at early times by means of a posttranslational mechanism that involves reactive derived oxygen species. PMID:25594695

  17. Thyroid Autoimmunity is Associated with Decreased Cytotoxicity T Cells in Women with Repeated Implantation Failure

    PubMed Central

    Huang, Chunyu; Liang, Peiyan; Diao, Lianghui; Liu, Cuicui; Chen, Xian; Li, Guangui; Chen, Cong; Zeng, Yong

    2015-01-01

    Thyroid autoimmunity (TAI), which is defined as the presence of autoantibodies against thyroid peroxidase (TPO) and/or thyroglobulin (TG), is related to repeated implantation failure (RIF). It is reported that TAI was involved in reproductive failure not only through leading thyroid function abnormality, but it can also be accompanied with immune imbalance. Therefore, this study was designed to investigate the association of thyroid function, immune status and TAI in women with RIF. Blood samples were drawn from 72 women with RIF to evaluate the prevalence of TAI, the thyroid function, the absolute numbers and percentages of lymphocytes. The prevalence of thyroid function abnormality in RIF women with TAI was not significantly different from that in RIF women without TAI (χ2 = 0.484, p > 0.05). The absolute number and percentage of T cells, T helper (Th) cells, B cells and natural killer (NK) cells were not significantly different in RIF women with TAI compared to those without TAI (all p > 0.05). The percentage of T cytotoxicity (Tc) cells was significantly decreased in RIF women with TAI compared to those without TAI (p < 0.05). Meanwhile, Th/Tc ratio was significantly increased (p < 0.05). These results indicated that the decreased Tc percentage and increased Th/Tc ratio may be another influential factor of adverse pregnancy outcomes in RIF women with TAI. PMID:26308040

  18. Differential expression of glucose transporters in normal and pathologic thyroid tissue.

    PubMed

    Matsuzu, Kenichi; Segade, Fernando; Matsuzu, Utako; Carter, Aaron; Bowden, Donald W; Perrier, Nancy D

    2004-10-01

    Malignant cells demonstrate increased glucose uptake and utilization. Immunohistochemical studies have suggested that enhanced glucose uptake in cancer cells may be caused by the overexpression of glucose transporters (GLUTs), in most cases GLUT1 and/or GLUT3. The aim of this study was to examine in detail the expression pattern and levels of GLUT genes in normal and pathologic thyroid tissues and to evaluate the clinical significance of GLUT mRNA levels. One hundred fifty-two surgically resected thyroid tissue samples from 103 patients were evaluated. Samples included: normal thyroid tissue (n = 58), benign thyroid disease (n = 61), and thyroid carcinoma (n = 33). Expression of the GLUT1, GLUT2, GLUT3, GLUT4, and GLUT10 genes were examined by reverse transcription-polymerase chain reaction (RT-PCR) and mRNA levels were quantitated by real-time RT-PCR. All thyroid parenchymal cells expressed GLUT1, GLUT3, GLUT4, and GLUT10. GLUT1 showed increased expression in carcinoma cases (p < 0.0001) and also in comparison with paired normal tissue samples from the same patient (p < 0.0001). Other GLUTs were statistically unchanged in pathologic tissues. These results are consistent with the theory that GLUT1 is upregulated during carcinogenesis and may play a major role in enhanced glucose uptake in thyroid cancer cells.

  19. Pathogenesis of ophthalmopathy in autoimmune thyroid disease.

    PubMed

    Heufelder, A E

    2000-01-01

    What causes GO is still a mystery, but the disease process results from a complex interplay of genetic and environmental factors. Genes such as those for HLA genes may determine a patient's susceptibility to the disease and its severity, but environmental factors, often unknown, may determine its course. Once established, the chronic inflammatory process within the orbital tissues appears to take on a momentum of its own. Given our current state of knowledge, the following working scheme for the pathogenesis of GO can be proposed (Fig. 1): On the background of a permissive immunogenetic milieu, circulating T cells in patients with GD, directed against certain antigens on thyroid follicular cells, recognize antigenic epitopes that are shared by tissues contained in the orbital space. Of the cell types residing in these tissues, preadipocytes and fibroblasts, most likely act as target and effector cells of the orbital immune process, respectively. This includes preadipocyte fibroblasts present in the perimysium of extraocular muscles, which do not appear to be immunologically different from those located in the orbital connective tissue. Orbital preadipocyte fibroblasts may be stimulated by unknown circulating or locally produced factors to differentiate into mature adipocytes that express increased levels of TSHr. How autoreactive T cells escape deletion and control by the immune system and come to be directed against a self-antigen presented by cells residing in the thyroid gland and extrathyroidal locations, is still unknown. Proliferation and expansion of autoreactive T cell clones may be due to mimicry of a host antigen by a microorganism, but this remains speculative. T cell recruitment into the orbital tissues is facilitated by certain chemokines and cytokines, which help to attract T cells by stimulating the expression of certain adhesion molecules (e.g., ICAM-1, VCAM-1, CD44) in vascular endothelium and connective tissue cells. These adhesion receptors are known to also play an important costimulatory role by activating T cells and facilitating antigen recognition, which amplifies the cellular immune process. Analysis of variable region genes of T cell antigen receptors in orbital T cells of patients with active GO has revealed their restricted TcR V gene usage, suggesting that antigen-driven selection and/or expansion of specific T cells may occur early in the evolution of GO. T cells and macrophages populating the orbital space are known to synthesize and release a [figure: see text] number of cytokines (most likely a Th1-type spectrum) into the surrounding tissue. Cytokines, oxygen free radicals and fibrogenic growth factors, released both from infiltrating inflammatory and residential cells, act upon orbital preadipocytes in a paracrine and autocrine manner to stimulate adipogenesis, fibroblast proliferation, glycosaminoglycan synthesis, and the expression of immunomodulatory molecules. Smoking, a well-known aggravating factor in GO, may aggravate tissue hypoxia and exert important immunomodulatory effects. The long held hypothesis of a thyroid cross-reactive antigen within the orbital tissues has recently gained significant support by an animal model of GO, and by in vitro and ex vivo studies. If confirmed in immunological studies, these data may well explain the localized infiltration of the orbital tissues by autoreactive lymphocytes that share intriguing molecular features with intrathyroidal lymphocytes. Local release of particular cytokines, TSHr-directed antibodies, or other factors might further enhance adipogenesis, glycosaminoglycan synthesis and expression of immunomodulatory proteins within the orbit. Other factors, including inflammatory cytokines, might act as counterbalancing inhibitors of these effects. However, if the net effect of these changes is to increase the volume of the fatty connective tissues within the orbit, then proptosis, extraocular muscle dysfunction, and periorbital congestion will ensue. Whether this hypothetical sequence of events will finally explain the involvement of the orbit in GD is unknown. Future studies will be aimed at identifying factors that might modulate adipogenesis in orbital cells and clarifying the link between adipogenesis and TSHr expression in the orbit. Taken together, a number of important details in the complex pathogenesis of GO have been resolved in recent years, but many challenges are still ahead. Elucidation of the primary antigen and how it is recognized by the immune system will be key issues.

  20. Gefitinib in Treating Patients With Metastatic or Unresectable Head and Neck Cancer or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-11

    Anaplastic Thyroid Cancer; Insular Thyroid Cancer; Metastatic Parathyroid Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Parathyroid Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Thyroid Cancer; Recurrent Verrucous Carcinoma of the Larynx; Stage III Follicular Thyroid Cancer; Stage III Papillary Thyroid Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Larynx; Stage IIIB Non-small Cell Lung Cancer; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVA Basal Cell Carcinoma of the Lip; Stage IVA Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Follicular Thyroid Cancer; Stage IVA Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Lymphoepithelioma of the Oropharynx; Stage IVA Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVA Papillary Thyroid Cancer; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVB Basal Cell Carcinoma of the Lip; Stage IVB Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Follicular Thyroid Cancer; Stage IVB Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVB Lymphoepithelioma of the Oropharynx; Stage IVB Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVB Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVB Papillary Thyroid Cancer; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVC Basal Cell Carcinoma of the Lip; Stage IVC Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Follicular Thyroid Cancer; Stage IVC Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVC Lymphoepithelioma of the Oropharynx; Stage IVC Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVC Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVC Papillary Thyroid Cancer; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Thryoid Gland Nonmedullary Carcinoma; Thyroid Gland Medullary Carcinoma; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  1. Zn(II)-curc targets p53 in thyroid cancer cells.

    PubMed

    Garufi, Alessia; D'Orazi, Valerio; Crispini, Alessandra; D'Orazi, Gabriella

    2015-10-01

    TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.

  2. Generation of recombinant canine interleukin-15 and evaluation of its effects on the proliferation and function of canine NK cells.

    PubMed

    Lee, Soo-Hyeon; Shin, Dong-Jun; Kim, Sang-Ki

    2015-05-15

    Interleukin-15 (IL-15) is a pleiotropic cytokine that plays a pivotal role in both innate and adaptive immunity. IL-15 is also a promising cytokine for treating cancer. Despite the growing importance of the clinical use of IL-15 for immunotherapy, no attempts have been made to generate a recombinant canine IL-15 (rcIL-15) and to examine its effects on the antitumor activities of immune effector cells in dogs. Here, we generated an rcIL-15 protein consisting of Asn-49-Ser-162 with a C-terminal His tag and examined its functions ex vivo in terms of the proliferation and antitumor effects on canine non-B, non-T, large granular natural killer (NK) cells. Non-B, non-T, large granular NK cells rapidly expanded in response to stimulation with rcIL-15 in the presence of IL-2, and a majority of the cells that selectively expanded over 21 days exhibited a CD3(-)CD5(-)CD4(-)CD8(+/-)CD21(-) phenotype. Purified rcIL-15 significantly enhanced the expansion rate of canine NK cells derived from peripheral blood mononuclear cells compared to human IL-15, or culture in the absence of IL-15 for 21 days (p<0.05). Purified rcIL-15 was superior at enhancing the effector function of NK cells compared to human IL-15. The cytotoxic activity against canine thyroid adenocarcinoma (CTAC) cells, interferon-γ production, and the mRNA expression levels of perforin and granzyme B of expanded NK cells cultured with rcIL-15 were significantly elevated compared to those cultured with human IL-15 or without IL-15 (p<0.05). Intravenous administration of rcIL-15 significantly increased the numbers of lymphocytes in the peripheral blood of dogs on days 6, 8, and 11 after injection compared to numbers before administration (p<0.05). The results of this study suggest that the rcIL-15 protein, consisting of Asn-49-Ser-162, enhanced the proliferation and antitumor effects of canine NK cells and promoted the generation of lymphocytes in dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Hürthle cell tumor dwelling in hot thyroid nodules: preoperative detection with technetium-99m-MIBI dual-phase scintigraphy.

    PubMed

    Vattimo, A; Bertelli, P; Cintorino, M; Burroni, L; Volterrani, D; Vella, A; Lazzi, S

    1998-05-01

    Single injection dual-phase scintigraphy (early and late acquisitions) with 99mTc-MIBI was used to differentiate benign and malignant hot thyroid nodules. Thirteen euthyroid and two hyperthyroid patients displaying a hot thyroid nodule on the 99mTc scan due to an autonomously functioning thyroid nodule (AFTN) underwent early (15-30 min) and late (3-4 hr) thyroid scintigraphy after the administration of 740-1000 MBq 99mTc-MIBI. Visual scoring was done to assess nodular tracer uptake and retention. In addition, the nodular-to-thyroid (N/T) uptake ratio in the early and late image and the washout rates (WO) from the nodule and thyroidal tissue were measured. All patients underwent thyroid surgery. Histopathology revealed a Hürthle cell tumor in three nodules, a benign adenoma with oxyphilic metaplasia in two nodules and a benign adenoma without oxyphilic cells in the remaining 10 nodules. The Hürthle cell tumor nodules displayed intense and persistent uptake of 99mTc-MIBI (N/T was 2.81 +/- 0.52 and 5.53 +/- 1.06 in early and late images, respectively; WO from the nodule was 12.33 +/- 0.47, WO from the thyroidal tissue was 22.00 +/- 3.56). The benign nodules showed intense uptake in the early image and intense uptake to absent retention in the late image (N/T was 2.94 +/- 1.31 and 1.62 +/- 0.50 in the early and late images, respectively; WO from the nodule was 20.25 +/- 2.92, WO from the thyroidal tissue was 20.33 +/- 2.92). Single injection dual-phase 99mTc-MIBI scintigraphy of the thyroid with AFTN can identify nodules as a result of the activity of a Hürthle cell tumor, since these tumors cause intense and persistent tracer uptake in contrast with a benign AFTN.

  4. The Next Generation of Orthotopic Thyroid Cancer Models: Immunocompetent Orthotopic Mouse Models of BRAFV600E-Positive Papillary and Anaplastic Thyroid Carcinoma

    PubMed Central

    Vanden Borre, Pierre; McFadden, David G.; Gunda, Viswanath; Sadow, Peter M.; Varmeh, Shohreh; Bernasconi, Maria; Jacks, Tyler

    2014-01-01

    Background: While the development of new treatments for aggressive thyroid cancer has advanced in the last 10 years, progress has trailed headways made with other malignancies. A lack of reliable authenticated human cell lines and reproducible animal models is one major roadblock to preclinical testing of novel therapeutics. Existing xenograft and orthotopic mouse models of aggressive thyroid cancer rely on the implantation of highly passaged human thyroid carcinoma lines in immunodeficient mice. Genetically engineered models of papillary and undifferentiated (anaplastic) thyroid carcinoma (PTC and ATC) are immunocompetent; however, slow and stochastic tumor development hinders high-throughput testing. Novel models of PTC and ATC in which tumors arise rapidly and synchronously in immunocompetent mice would facilitate the investigation of novel therapeutics and approaches. Methods: We characterized and utilized mouse cell lines derived from PTC and ATC tumors arising in genetically engineered mice with thyroid-specific expression of endogenous BrafV600E/WT and deletion of either Trp53 (p53) or Pten. These murine thyroid cancer cells were transduced with luciferase- and GFP-expressing lentivirus and implanted into the thyroid glands of immunocompetent syngeneic B6129SF1/J mice in which the growth characteristics were assessed. Results: Large locally aggressive thyroid tumors form within one week of implantation. Tumors recapitulate their histologic subtype, including well-differentiated PTC and ATC, and exhibit CD3+, CD8+, B220+, and CD163+ immune cell infiltration. Tumor progression can be followed in vivo using luciferase and ex vivo using GFP. Metastatic spread is not detected at early time points. Conclusions: We describe the development of the next generation of murine orthotopic thyroid cancer models. The implantation of genetically defined murine BRAF-mutated PTC and ATC cell lines into syngeneic mice results in rapid and synchronous tumor formation. This model allows for preclinical investigation of novel therapeutics and/or therapeutic combinations in the context of a functional immune system. PMID:24295207

  5. Multiple squamous cells in thyroid fine needle aspiration: Friends or foes?

    PubMed

    Gage, Heather; Hubbard, Elizabeth; Nodit, Laurentia

    2016-08-01

    Abundant squamous cells are rarely encountered in thyroid FNA with only few case reports noted in the literature. Their presence and cytologic features may pose a diagnostic dilemma and challenges for proper classification and follow-up. We intend to gain more insight into the frequency of this finding and its clinical significance. Our electronic records were searched over 16 years to reveal 15 thyroid FNAs with abundant squamous cells. The available cytology and surgical resection slides were reviewed and radiologic records and clinical follow-up was documented. Only 15 out of 8811 thyroid FNAs from our department contained predominantly squamous cells (0.17%) of which two were interpreted as nondiagnostic, four as atypical, eight as benign, and one malignant. Surgical follow-up was available in eight cases only with benign lesions representing the majority of the cases (squamous metaplasia in Hashimoto thyroiditis, benign epidermoid/branchial cleft or thyroglossal duct cysts, and one case squamous cell carcinoma). The cases without surgical resection were stable on subsequent ultrasound studies. Thyroid aspirates with predominance of squamous cells cannot be classified in the current Bethesda categories. Even when interpreted as atypical or equivocal, the squamous cells present in our small case series were mostly benign. The only malignant case was easily identified cytologically because of its higher degree of differentiation. The most common pitfall for atypical squamous cells in these aspirates was squamous metaplasia in the setting of Hashimoto thyroiditis and degenerative changes. Diagn. Cytopathol. 2016;44:676-681. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Cortical and subcortical innervation of band heterotopia after developmental thyroid hormone insufficiency

    EPA Science Inventory

    The characteristic laminated cytoarchitecture of the neocortex emerges from the orderly proliferation and migration of neurons during corticogenesis. Not surprisingly, developmental disorders affecting the laminar positioning of cortical neurons can have dramatic affects on cogni...

  7. Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells

    PubMed Central

    Suhane, Sonal; Ramanujan, V Krishnan

    2011-01-01

    Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435

  8. What Does the Thyroid Gland Do?

    MedlinePlus

    ... it helps other cells do their job. hypothyroidism (hi-poh-THY-royd-izm): when your thyroid gland ... thyroid hormone (“hypo” means ‘under’ or ‘below’). hyperthyroidism (hi-purr-THY-royd-izm): when your thyroid gland ...

  9. Hashimoto's thyroiditis and acute chest syndrome revealing sickle cell anemia in a 32 years female patient.

    PubMed

    Igala, Marielle; Nsame, Daniela; Ova, Jennie Dorothée Guelongo Okouango; Cherkaoui, Siham; Oukkach, Bouchra; Quessar, Asmae

    2015-01-01

    Sickle cell anemia results from a single amino acid substitution in the gene encoding the β-globin subunit. Polymerization of deoxygenated sickle hemoglobin leads to decreased deformability of red blood cells. Hashimoto's thyroiditis is a common thyroid disease now recognized as an auto-immune thyroid disorder, it is usually thought to be haemolytic autoimmune anemia. We report the case of a 32 years old women admitted for chest pain and haemolysis anemia in which Hashimoto's thyroiditis and sickle cell anemia were found. In our observation the patient is a young woman whose examination did not show signs of goitre but the analysis of thyroid function tests performed before an auto-immune hemolytic anemia (confirmed by a high level of unconjugated bilirubin and a Coombs test positive for IgG) has found thyroid stimulating hormone (TSH) and positive thyroid antibody at rates in excess of 4.5 times their normal value. In the same period, as the hemolytic anemia, and before the atypical chest pain and anguish they generated in the patient, the search for hemoglobinopathies was made despite the absence of a family history of haematological disease or painful attacks in childhood. Patient electrophoresis's led to research similar cases in the family. The mother was the first to be analyzed with ultimately diagnosed with sickle cell trait have previously been ignored. This case would be a form with few symptoms because the patient does not describe painful crises in childhood or adolescence.

  10. Pembrolizumab-Induced Thyroiditis: Comprehensive Clinical Review and Insights Into Underlying Involved Mechanisms.

    PubMed

    Delivanis, Danae A; Gustafson, Michael P; Bornschlegl, Svetlana; Merten, Michele M; Kottschade, Lisa; Withers, Sarah; Dietz, Allan B; Ryder, Mabel

    2017-08-01

    Thyroid immune-related adverse events (irAEs) in patients treated with programmed death receptor-1 (PD-1) blockade are increasingly recognized as one of the most common adverse effects. Our aim was to determine the incidence and examine the potential mechanisms of anti-PD-1-induced thyroid irAEs. Single-center, retrospective cohort study. We studied 93 patients with advanced cancer (ages 24 to 82 years; 60% males) who received at least one infusion of pembrolizumab. Thyroid test results and thyroid imaging modalities were reviewed. Comprehensive 10-color flow cytometry of peripheral blood was performed. Thirteen (14%) thyroid irAEs were observed. Thyroiditis occurred in seven patients (54%), from which four recovered. New onset of hypothyroidism overt/subclinical developed in three patients. Levothyroxine dosing required doubling in three patients with a known history of hypothyroidism. Thyroperoxidase antibodies were positive in the minority of the patients [4/13 (31%)] and diffuse increased 18fludeoxyglucose uptake of the thyroid gland was observed in the majority [7/11 (64%)] of patients. We observed more circulating CD56+CD16+ natural killer (NK) cells and an elevated HLA-DR surface expression in the inflammatory intermediate CD14+CD16+ monocytes in anti-PD-1-treated patients. Thyroid dysfunction is common in cancer patients treated with pembrolizumab. Reversible destructive thyroiditis and overt hypothyroidism are the most common clinical presentations. The mechanism of thyroid destruction appears independent of thyroid autoantibodies and may include T cell, NK cell, and/or monocyte-mediated pathways. Because the thyroid is a frequent target of anti-PD-1 therapies, patients with therapeutically refractory thyroid cancer may be ideal candidates for this treatment. Copyright © 2017 Endocrine Society

  11. Differential regulation of monocarboxylate transporter 8 expression in thyroid cancer and hyperthyroidism.

    PubMed

    Badziong, Julia; Ting, Saskia; Synoracki, Sarah; Tiedje, Vera; Brix, Klaudia; Brabant, Georg; Moeller, Lars Christian; Schmid, Kurt Werner; Fuhrer, Dagmar; Zwanziger, Denise

    2017-09-01

    Thyroid hormone (TH) transporters are expressed in thyrocytes and most play a role in TH release. We asked whether expression of the monocarboxylate transporter 8 (MCT8) and the L-type amino acid transporters LAT2 and LAT4 is changed with thyrocyte dedifferentiation and in hyperfunctioning thyroid tissues. Protein expression and localization of transporters was determined by immunohistochemistry in human thyroid specimen including normal thyroid tissue (NT, n  = 19), follicular adenoma (FA, n  = 44), follicular thyroid carcinoma (FTC, n  = 45), papillary thyroid carcinoma (PTC, n  = 40), anaplastic thyroid carcinoma (ATC, n  = 40) and Graves' disease (GD, n  = 50) by calculating the 'hybrid' (H) score. Regulation of transporter expression was investigated in the rat follicular thyroid cell line PCCL3 under basal and thyroid stimulating hormone (TSH) conditions. MCT8 and LAT4 were localized at the plasma membrane, while LAT2 transporter showed cytoplasmic localization. MCT8 expression was downregulated in benign and malignant thyroid tumours as compared to NT. In contrast, significant upregulation of MCT8, LAT2 and LAT4 was found in GD. Furthermore, a stronger expression of MCT8 was demonstrated in PCCL3 cells after TSH stimulation. Downregulation of MCT8 in thyroid cancers qualifies MCT8 as a marker of thyroid differentiation. The more variable expression of LATs in distinct thyroid malignancies may be linked with other transporter properties relevant to altered metabolism in cancer cells, i.e. amino acid transport. Consistent upregulation of MCT8 in GD is in line with increased TH release in hyperthyroidism, an assumption supported by our in vitro results showing TSH-dependent upregulation of MCT8. © 2017 European Society of Endocrinology.

  12. Metallothionein Isoform Expression in Benign and Malignant Thyroid Lesions.

    PubMed

    Wojtczak, Beata; Pula, Bartosz; Gomulkiewicz, Agnieszka; Olbromski, Mateusz; Podhorska-Okolow, Marzena; Domoslawski, Paweł; Bolanowski, Marek; Daroszewski, Jacek; Dziegiel, Piotr

    2017-09-01

    Metallothioneins (MTs) are involved in numerous cell processes such as binding and transport of zinc and copper ions, differentiation, proliferation and apoptosis, therefore contributing to carcinogenesis. Scarce data exist on their expression in benign and malignant lesions of the thyroid. mRNA expression of functional isoforms of MT genes (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1X, MT2A, MT4) was studied in 17 nodular goiters (NG), 12 follicular adenomas (FA) and 26 papillary thyroid carcinomas (PTC). One-way ANOVA revealed significant differences in mRNA expression levels of MT1A (p<0.05), MT1E (p<0.005), MT1F (p<0.0001), MT1G (p<0.005), MT1X (p<0.0005) and MT2A (p<0.005) in the analyzed samples. Post hoc analysis confirmed a significantly lower expression of MT1A mRNA in PTC compared to NG (p<0.05). Significant down-regulation was also noted for other MT isoforms in PTC in comparison to NG: MT1E (p<0.05), MT1F (p<0.0001), MT1G (p<0.005), MT1X (p<0.0005) and MT2A (p<0.05). In addition, significant down-regulation of MT1F and MT1G in FA compared to NG was observed (p<0.005 and p<0.05, respectively). Expression of functional MT isoforms may contribute to thyroid carcinogenesis and potentially serve as a diagnostic marker in distinguishing benign and malignant lesions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. NFE2-Related Transcription Factor 2 Coordinates Antioxidant Defense with Thyroglobulin Production and Iodination in the Thyroid Gland.

    PubMed

    Ziros, Panos G; Habeos, Ioannis G; Chartoumpekis, Dionysios V; Ntalampyra, Eleni; Somm, Emmanuel; Renaud, Cédric O; Bongiovanni, Massimo; Trougakos, Ioannis P; Yamamoto, Masayuki; Kensler, Thomas W; Santisteban, Pilar; Carrasco, Nancy; Ris-Stalpers, Carrie; Amendola, Elena; Liao, Xiao-Hui; Rossich, Luciano; Thomasz, Lisa; Juvenal, Guillermo J; Refetoff, Samuel; Sykiotis, Gerasimos P

    2018-06-01

    The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated by cell-autonomous regulation of Tg gene expression by Nrf2 via its direct binding to two evolutionarily conserved antioxidant response elements in an upstream enhancer. Yet, despite upregulating Tg levels, Nrf2 limits Tg iodination both under basal conditions and in response to excess iodide. Nrf2 exerts pleiotropic roles in the thyroid gland to couple cell stress defense mechanisms to iodide metabolism and the thyroid hormone synthesis machinery, both under basal conditions and in response to excess iodide.

  14. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonelli, Alessandro, E-mail: a.antonelli@med.unipi.it; Ferrari, Silvia Martina, E-mail: sm.ferrari@int.med.unipi.it; Frascerra, Silvia, E-mail: lafrasce@gmail.com

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} hadmore » a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.« less

  15. Establishment and Characterization of Novel Human Primary and Metastatic Anaplastic Thyroid Cancer Cell Lines and Their Genomic Evolution Over a Year as a Primagraft

    PubMed Central

    Okamoto, Ryoko; Nagata, Yasunobu; Kanojia, Deepika; Venkatesan, Subhashree; M. T., Anand; Braunstein, Glenn D.; Said, Jonathan W.; Doan, Ngan B.; Ho, Quoc; Akagi, Tadayuki; Gery, Sigal; Liu, Li-zhen; Tan, Kar Tong; Chng, Wee Joo; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Context: Anaplastic thyroid cancer (ATC) has no effective treatment, resulting in a high rate of mortality. We established cell lines from a primary ATC and its lymph node metastasis, and investigated the molecular factors and genomic changes associated with tumor growth. Objective: The aim of the study was to understand the molecular and genomic changes of highly aggressive ATC and its clonal evolution to develop rational therapies. Design: We established unique cell lines from primary (OGK-P) and metastatic (OGK-M) ATC specimen, as well as primagraft from the metastatic ATC, which was serially xeno-transplanted for more than 1 year in NOD scid gamma mice were established. These cell lines and primagraft were used as tools to examine gene expression, copy number changes, and somatic mutations using RNA array, SNP Chip, and whole exome sequencing. Results: Mice carrying sc (OGK-P and OGK-M) tumors developed splenomegaly and neutrophilia with high expression of cytokines including CSF1, CSF2, CSF3, IL-1β, and IL-6. Levels of HIF-1α and its targeted genes were also elevated in these tumors. The treatment of tumor carrying mice with Bevacizumab effectively decreased tumor growth, macrophage infiltration, and peripheral WBCs. SNP chip analysis showed homozygous deletion of exons 3–22 of the PARD3 gene in the cells. Forced expression of PARD3 decreased cell proliferation, motility, and invasiveness, restores cell-cell contacts and enhanced cell adhesion. Next generation exome sequencing identified the somatic changes present in the primary, metastatic, and primagraft tumors demonstrating evolution of the mutational signature over the year of passage in vivo. Conclusion: To our knowledge, we established the first paired human primary and metastatic ATC cell lines offering unique possibilities for comparative functional investigations in vitro and in vivo. Our exome sequencing also identified novel mutations, as well as clonal evolution in both the metastasis and primagraft. PMID:25365311

  16. Hashimoto thyroiditis: clinical and diagnostic criteria.

    PubMed

    Caturegli, P; De Remigis, A; Rose, N R

    2014-01-01

    Hashimoto thyroiditis (HT), now considered the most common autoimmune disease, was described over a century ago as a pronounced lymphoid goiter affecting predominantly women. In addition to this classic form, several other clinico-pathologic entities are now included under the term HT: fibrous variant, IgG4-related variant, juvenile form, Hashitoxicosis, and painless thyroiditis (sporadic or post-partum). All forms are characterized pathologically by the infiltration of hematopoietic mononuclear cells, mainly lymphocytes, in the interstitium among the thyroid follicles, although specific features can be recognized in each variant. Thyroid cells undergo atrophy or transform into a bolder type of follicular cell rich in mitochondria called Hürthle cell. Most HT forms ultimately evolve into hypothyroidism, although at presentation patients can be euthyroid or even hyperthyroid. The diagnosis of HT relies on the demonstration of circulating antibodies to thyroid antigens (mainly thyroperoxidase and thyroglobulin) and reduced echogenicity on thyroid sonogram in a patient with proper clinical features. The treatment remains symptomatic and based on the administration of synthetic thyroid hormones to correct the hypothyroidism as needed. Surgery is performed when the goiter is large enough to cause significant compression of the surrounding cervical structures, or when some areas of the thyroid gland mimic the features of a nodule whose cytology cannot be ascertained as benign. HT remains a complex and ever expanding disease of unknown pathogenesis that awaits prevention or novel forms of treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase.

    PubMed

    Sharma, Rajni; Di Dalmazi, Giulia; Caturegli, Patrizio

    2016-08-01

    Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2(h4) mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade.

  18. Computer assisted detection and analysis of tall cell variant papillary thyroid carcinoma in histological images

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Baloch, Zubair; Kim, Caroline

    2015-03-01

    The number of new cases of thyroid cancer are dramatically increasing as incidences of this cancer have more than doubled since the early 1970s. Tall cell variant (TCV-PTC) papillary thyroid carcinoma is one type of thyroid cancer that is more aggressive and usually associated with higher local recurrence and distant metastasis. This variant can be identified through visual characteristics of cells in histological images. Thus, we created a fully automatic algorithm that is able to segment cells using a multi-stage approach. Our method learns the statistical characteristics of nuclei and cells during the segmentation process and utilizes this information for a more accurate result. Furthermore, we are able to analyze the detected regions and extract characteristic cell data that can be used to assist in clinical diagnosis.

  19. Infiltration of the thyroid gland by T-cell prolymphocytic leukemia.

    PubMed

    Fujiwara, Kazunori; Fukuhara, Takahiro; Kitano, Hiroya; Okazaki, Toshiro

    2014-08-01

    T-cell prolymphocytic leukemia (T-PLL) is rare, accounting for only 0.06% of all malignant lymphomas, and is classified as a T-cell mature lymphoma. The disease affects mainly elderly patients and is characterized by splenomegaly, lymphadenopathy, skin infiltration, and a high leukocyte count, but thyroid filtration has never been detected as far as we could determine. We report here a case of infiltration of the thyroid gland by T-PLL. An 89-year-old woman who had been treated for Hashimoto's thyroiditis for 20 years presented with a progressively enlarging thyroid mass accompanied by dyspnea and dysphasia. Atypical lymphocytes with irregular nuclei were observed in the peripheral blood. An open biopsy of the thyroid provided pathological evidence of T-PLL, and bone marrow examination showed infiltration by T-PLL. The diagnosis was therefore infiltration of the thyroid gland by T-PLL. Chemotherapy was initiated, but six months after termination, recurrence of neck swelling was observed. The patient was then treated with radiotherapy, but she died of a major stroke 15 months after onset. This is the first report of T-PLL infiltration of the thyroid gland, reminding physicians to keep in mind a broad differential diagnosis when encountering a patient with diffuse thyroid lesions and abnormal lymphocytes in the peripheral blood.

  20. Diffuse large B cell lymphoma of thyroid as a masquerader of anaplastic carcinoma of thyroid, diagnosed by FNA: a case report.

    PubMed

    Daneshbod, Yahya; Omidvari, Shapour; Daneshbod, Khosrow; Negahban, Shahrzad; Dehghani, Mehdi

    2006-10-19

    Both thyroid lymphoma and anaplastic carcinoma of thyroid present with rapidly growing mass in eldery patients. Anaplastic carcinoma has high mortality rate and combination of surgery, radiation therapy and multidrug chemotherapy are the best chance for cure. Prognosis of thyroid lymphoma is excellent and chemotherapy for widespred lymphoms and radiotherapy with or without adjuvant chemotherapy for tumors localized to the gland, are the treatment of choice. This article reports a 70 year old man presenting with diffuse neck swelling and hoarseness of few weeks duration. Fine needle aspiration was done and reported as anaplastic carcinoma of thyroid which thyroidectomy was planned. The slides were sent for second opinion. After review, with initial diagnosis of anaplastic carcinoma versus lymphoma, immunocytochemical study was performed. Smears were positive for B cell markers and negative for cytokeratin, so with the impression of diffuse large B cell lymphoma, the patient received two courses of chemotherapy by which the tumor disappeared during two weaks. Despite previous reports, stating easy diagnosis of high-grade thyroid lymphoma on the grounds of cytomorphological features we like to emphasize, overlapping cytologic features of the curable high grade thyroid lymphoma form noncurable anaplastic thyroid carcinoma and usefulness of immunocytochemistry to differentiate these two disease.

  1. Diffuse large B cell lymphoma of thyroid as a masquerader of anaplastic carcinoma of thyroid, diagnosed by FNA: a case report

    PubMed Central

    Daneshbod, Yahya; Omidvari, Shapour; Daneshbod, Khosrow; Negahban, Shahrzad; Dehghani, Mehdi

    2006-01-01

    Background Both thyroid lymphoma and anaplastic carcinoma of thyroid present with rapidly growing mass in eldery patients. Anaplastic carcinoma has high mortality rate and combination of surgery, radiation therapy and multidrug chemotherapy are the best chance for cure. Prognosis of thyroid lymphoma is excellent and chemotherapy for widespred lymphoms and radiotherapy with or without adjuvant chemotherapy for tumors localized to the gland, are the treatment of choice. Case report This article reports a 70 year old man presenting with diffuse neck swelling and hoarseness of few weeks duration. Fine needle aspiration was done and reported as anaplastic carcinoma of thyroid which thyroidectomy was planned. The slides were sent for second opinion. After review, with initial diagnosis of anaplastic carcinoma versus lymphoma, immunocytochemical study was performed. Smears were positive for B cell markers and negative for cytokeratin, so with the impression of diffuse large B cell lymphoma, the patient received two courses of chemotherapy by which the tumor disappeared during two weaks. Conclusion Despite previous reports, stating easy diagnosis of high-grade thyroid lymphoma on the grounds of cytomorphological features we like to emphasize, overlapping cytologic features of the curable high grade thyroid lymphoma form noncurable anaplastic thyroid carcinoma and usefulness of immunocytochemistry to differentiate these two disease. PMID:17052355

  2. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis

    PubMed Central

    Okada, Morihiro; Miller, Thomas C.; Fu, Liezhen

    2015-01-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis. PMID:26086244

  3. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  4. SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways.

    PubMed

    Grassi, Elisa Stellaria; Vezzoli, Valeria; Negri, Irene; Lábadi, Árpád; Fugazzola, Laura; Vitale, Giovanni; Persani, Luca

    2015-11-03

    Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide.The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, metastatization and refractoriness even to the most recently developed therapies.In this study we show for the first time a significant hyperactivation of ROCK/HDAC6 pathway in thyroid cancer tissues, and its negative correlation with p53 DNA binding ability.We demonstrate that a small compound, SP600125 (SP), is able to induce cell death selectively in undifferentiated thyroid cancer cell lines by specifically acting on the pathogenic pathways of cancer development. In detail, SP acts on the ROCK/HDAC6 pathway involved in dedifferentiation and invasiveness of undifferentiated human cancers, by restoring its physiological activity level. As main consequence, cancer cell migration is inhibited and, at the same time, cell death is induced through the mitotic catastrophe. Moreover, SP exerts a preferential action on the mutant p53 by increasing its DNA binding ability. In TP53-mutant cells that survive mitotic catastrophe this process results in p21 induction and eventually lead to premature senescence. In conclusion, SP has been proved to be able to simultaneously block cell replication and migration, the two main processes involved in cancer development and dissemination, making it an ideal candidate for developing new drugs against anaplastic thyroid cancer.

  5. Management of the thyroid gland during total laryngectomy in patients with laryngeal squamous cell carcinoma.

    PubMed

    Mourad, Moustafa; Saman, Masoud; Sawhney, Raja; Ducic, Yadranko

    2015-08-01

    The goal of the study was to determine the role of routine total thyroidectomy and hemithyroidectomy in patients undergoing total laryngectomy for laryngeal squamous cell carcinoma. The study group consisted of 343 patients who underwent total laryngectomy (98 treated with surgery alone, 136 treated following radiation failure, and 109 following chemoradiation failure). Total thyroidectomy was performed in all obstructing and bilateral lesions or if there was suspicion of contralateral lobe involvement. Hemithyroidectomy was performed in all lateralized lesions. Retrospective histopathologic analysis of thyroid specimens was subsequently performed. In all, 262 patients underwent total thyroidectomy during total laryngectomy, six of which demonstrated squamous cell carcinoma evident within the thyroid gland (4 from transglottic lesions, 2 from subglottic lesions). Hemithyroidectomy was performed in 81 patients, with only one patient demonstrating evidence of squamous cell carcinoma within the thyroid gland. Hypothyroidism was observed in 88% (n = 61) of patients who underwent thyroid lobectomy alone, requiring hormone supplementation. Routine surgical management of the thyroid gland should not be performed, except in cases of subglottic primary lesions, lesions with significant subglottic extension, or transglottic lesions. Despite efforts to preserve the contralateral thyroid lobe in cases of selective lobectomy, these patients often have a high rate of hypothyroidism, and a total thyroidectomy should be considered when involvement of the thyroid gland is suspected. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Veliparib, Capecitabine, and Temozolomide in Patients With Advanced, Metastatic, and Recurrent Neuroendocrine Tumor

    ClinicalTrials.gov

    2017-09-26

    Functional Pancreatic Neuroendocrine Tumor; Malignant Somatostatinoma; Merkel Cell Carcinoma; Metastatic Adrenal Gland Pheochromocytoma; Metastatic Carcinoid Tumor; Multiple Endocrine Neoplasia Type 1; Multiple Endocrine Neoplasia Type 2A; Multiple Endocrine Neoplasia Type 2B; Neuroendocrine Neoplasm; Non-Functional Pancreatic Neuroendocrine Tumor; Pancreatic Glucagonoma; Pancreatic Insulinoma; Recurrent Adrenal Cortex Carcinoma; Recurrent Adrenal Gland Pheochromocytoma; Recurrent Merkel Cell Carcinoma; Somatostatin-Producing Neuroendocrine Tumor; Stage III Adrenal Cortex Carcinoma; Stage III Thyroid Gland Medullary Carcinoma; Stage IIIA Merkel Cell Carcinoma; Stage IIIB Merkel Cell Carcinoma; Stage IV Adrenal Cortex Carcinoma; Stage IV Merkel Cell Carcinoma; Stage IVA Thyroid Gland Medullary Carcinoma; Stage IVB Thyroid Gland Medullary Carcinoma; Stage IVC Thyroid Gland Medullary Carcinoma; Thymic Carcinoid Tumor; VIP-Producing Neuroendocrine Tumor; Well Differentiated Adrenal Cortex Carcinoma; Zollinger Ellison Syndrome

  7. Autoimmune Thyroid Disorders

    PubMed Central

    Iddah, M. A.; Macharia, B. N.

    2013-01-01

    Purpose of Review. Studies have been published in the field of autoimmune thyroid diseases since January 2005. The review is organized into areas of etiology, autoimmune features, autoantibodies, mechanism of thyroid cell injury, B-cell responses, and T-cell responses. Also it reviews the diagnosis and the relationship between autoimmune thyroid disease, neoplasm, and kidney disorders. Recent Findings. Autoimmune thyroid diseases have been reported in people living in different parts of the world including North America, Europe, Baalkans, Asia, Middle East, South America, and Africa though the reported figures do not fully reflect the number of people infected per year. Cases are unrecognized due to inaccurate diagnosis and hence are treated as other diseases. However, the most recent studies have shown that the human autoimmune thyroid diseases (AITDs) affect up to 5% of the general population and are seen mostly in women between 30 and 50 years. Summary. Autoimmune thyroid disease is the result of a complex interaction between genetic and environmental factors. Overall, this review has expanded our understanding of the mechanism involved in pathogenesis of AITD and the relationship between autoimmune thyroid disease, neoplasm, and kidney disease. It has opened new lines of investigations that will ultimately result in a better clinical practice. PMID:23878745

  8. Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer.

    PubMed

    Yu, Yang; Yu, Xiaohui; Fan, Chenling; Wang, Hong; Wang, Renee; Feng, Chen; Guan, Haixia

    2018-06-25

    Papillary thyroid cancer is a prevalent endocrine malignancy. Although alterations in glutamine metabolism have been reported in several types of hematological and solid tumors, little is known about the functions of glutamine and glutaminolysis-associated proteins in papillary thyroid cancer. Here, we demonstrated the glutamine dependence of papillary thyroid cancer cells, and with the use of RT 2 -PCR arrays, we screened for the aberrant overexpression of glutaminase in human papillary thyroid cancer tissues and cells. These results were later confirmed via real-time PCR, Western blots, and immunohistochemical staining. We found that the levels of glutaminase were significantly correlated with extrathyroidal extension. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. The proliferative, viable, migratory, and invasive abilities of papillary thyroid cancer cells were impaired by both the pharmacological inhibition and the genetic knockdown of glutaminase. Additionally, the inhibition of glutaminase deactivated the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, promoting autophagy and apoptosis. Collectively, these findings show that glutaminase-mediated glutamine dependence may be a potential therapeutic target for papillary thyroid cancer. PTC cells are glutamine-dependent, and GLS is aberrantly overexpressed in PTC. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. Inhibition of GLS impairs the viability of PTC cells. GLS blockade causes deactivation of mTORC1 and induction of autophagy and apoptosis. GLS may be a potential therapeutic target for PTC.

  9. Thyroid hormone receptor interactor 13 (TRIP13) overexpression associated with tumor progression and poor prognosis in lung adenocarcinoma.

    PubMed

    Li, Wei; Zhang, Gengyan; Li, Xiaojun; Wang, Xiaojing; Li, Qing; Hong, Lei; Shen, Yuangbing; Zhao, Chenling; Gong, Xiaomeng; Chen, Yuqing; Zhou, Jihong

    2018-05-15

    Thyroid hormone receptor interactor 13 (TRIP13) is an AAA + -ATPase that plays a key role in mitotic checkpoint complex inactivation and is associated with the progression of several cancers. However, its role in lung adenocarcinogenesis remains unknown. Here, we report that TRIP13 is highly overexpressed in multiple lung adenocarcinoma cell lines and tumor tissues. Clinically, TRIP13 expression is positively associated with tumor size, T-stage, and N-stage, and Kaplan-Meier analysis revealed that heightened TRIP13 expression is associated with lower overall survival. TRIP13 promotes lung adenocarcinoma cell proliferation, clonogenicity, and migration while inhibiting apoptosis and G2/M phase shift in vitro. Accordingly, TRIP13-silenced xenograft tumors displayed significant growth inhibition in vivo. Bioinformatics analysis demonstrated that TRIP13 interacts with a protein network associated with dsDNA break repair and PI3K/Akt signaling. TRIP13 upregulatesAkt Ser473 and downregulatesAkt Thr308 /mTOR Ser2448 activity, which suppresses accurate dsDNA break repair. TRIP13 also downregulates pro-apoptotic Bad Ser136 and cleaved caspase-3 while upregulating survivin. In conclusion, heightened TRIP13 expression appears to promote lung adenocarcinoma tumor progression and displays potential as a therapeutic target or biomarker for lung adenocarcinoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Identification of genes mediating thyroid hormone action in the developing mouse cerebellum.

    PubMed

    Takahashi, Masaki; Negishi, Takayuki; Tashiro, Tomoko

    2008-02-01

    Despite the indispensable role thyroid hormone (TH) plays in brain development, only a small number of genes have been identified to be directly regulated by TH and its precise mechanism of action remains largely unknown, partly because most of the previous studies have been carried out at postnatal day 15 or later. In the present study, we screened for TH-responsive genes in the developing mouse cerebellum at postnatal day 4 when morphological alterations because of TH status are not apparent. Among the new candidate genes selected by comparing gene expression profiles of experimentally hypothyroid, hypothyroid with postnatal thyroxine replacement, and control animals using oligoDNA microarrays, six genes were confirmed by real-time PCR to be positively (orc1l, galr3, sort1, nlgn3, cdk5r2, and zfp367) regulated by TH. Among these, sort1, cdk5r2, and zfp367 were up-regulated already at 1 h after a single injection of thyroxine to the hypothyroid or control animal, suggesting them to be possible primary targets of the hormone. Cell proliferation and apoptosis examined by BrdU incorporation and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay revealed that hypothyroidism by itself did not enhance apoptosis at this stage, but rather increased cell survival, possibly through regulation of these newly identified genes.

  11. Fetal microchimeric cells in autoimmune thyroid diseases

    PubMed Central

    Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter

    2013-01-01

    Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD. PMID:23723083

  12. Forkhead transcription factor foxe1 regulates chondrogenesis in zebrafish.

    PubMed

    Nakada, Chisako; Iida, Atsumi; Tabata, Yoko; Watanabe, Sumiko

    2009-12-15

    Forkhead transcription factor (Fox) e1 is a causative gene for Bamforth-Lazarus syndrome, which is characterized by hypothyroidism and cleft palate. Applying degenerate polymerase chain reaction using primers specific for the conserved forkhead domain, we identified zebrafish foxe1 (foxe1). Foxe1 is expressed in the thyroid, pharynx, and pharyngeal skeleton during development; strongly expressed in the gill and weakly expressed in the brain, eye, and heart in adult zebrafish. A loss of function of foxe1 by morpholino antisense oligo (MO) exhibited abnormal craniofacial development, shortening of Meckel's cartilage and the ceratohyals, and suppressed chondrycytic proliferation. However, at 27 hr post fertilization, the foxe1 MO-injected embryos showed normal dlx2, hoxa2, and hoxb2 expression, suggesting that the initial steps of pharyngeal skeletal development, including neural crest migration and specification of the pharyngeal arch occurred normally. In contrast, at 2 dpf, a severe reduction in the expression of sox9a, colIIaI, and runx2b, which play roles in chondrocytic proliferation and differentiation, was observed. Interestingly, fgfr2 was strongly upregulated in the branchial arches of the foxe1 MO-injected embryos. Unlike Foxe1-null mice, normal thyroid development in terms of morphology and thyroid-specific marker expression was observed in foxe1 MO-injected zebrafish embryos. Taken together, our results indicate that Foxe1 plays an important role in chondrogenesis during development of the pharyngeal skeleton in zebrafish, probably through regulation of fgfr2 expression. Furthermore, the roles reported for FOXE1 in mammalian thyroid development may have been acquired during evolution. (c) 2009 Wiley-Liss, Inc.

  13. Effects of mild hyperthyroidism on levels of amino acids in the developing Lurcher cerebellum.

    PubMed

    Messer, A; Eisenberg, B; Martin, D L

    1989-01-01

    This study examines the question of whether intrinsically defective mutant Lurcher Purkinje cells, which degenerate during postnatal weeks two to five, followed by later loss of granule cells are competent to respond to neonatal hyperthyroidism, which is known to cause premature differentiation of Purkinje cells and an acceleration of the peak of proliferation in granule cells in normal rodent cerebellum. Both total amounts and concentrations (per mg wet weight) of Tau, Glu, Asp and GABA were assayed as markers of cell function in Lurcher and wild-type mice made very mildly hyperthyroid by feeding nursing dams high-thyroxine food. Tau, which is present in relatively high concentrations in Purkinje cells, was affected by hyperthyroid treatment in the Lurcher in a manner that is most consistent with an acceleration of the degenerative process in Purkinje cells. The acidic amino acids Glu and Asp show later changes and response to hormone which seem to be a reaction to the Purkinje cell pattern, probably in the granule cells. We conclude that the Lurcher cerebellum is particularly sensitive to thyroid hormone, and that it responds to low levels of hyperthyroidism in a distinct way.

  14. Histopathologic and immunohistochemical features of Hashimoto thyroiditis.

    PubMed

    Amani, H Kazem

    2011-01-01

    Intrathyroid lymphoid tissue is accrued in Hashimoto thyroiditis (HT). Histologically, this acquired lymphoid tissue bears a close resemblance to mucosa-associated lymphoid tissue (MALT) and can evolve to lymphoma. To demonstrate the morphological, and immunohistochemical profiles of Hashimoto thyroiditis and to ascertain the importance of light chain restriction in distinguishing HT with extensive lymphoplasmacytoid infiltrate from MALT lymphoma. We studied histopathologically and immunohistochemically (CD20, CD3, Igk, Igl and cytokeratin) 30 cases of HT for evaluation of the lymphoid infiltrate and the presence of lymphoepithelial lesions (LELs). Distinguishing between early thyroid lymphoma and HT was evaluated by light chain restriction. These findings were compared with two cases of primary thyroid lymphoma. The histopathological findings were characteristic of HT. Immunohistochemistry confirmed inconspicuous, rare B-cell LELs as well as a prominent T-lymphocyte population. Testing for light chain restriction showed polyclonal population of plasma cells. The cases of MALT lymphoma had distinct destructive lymphoepithelial lesions, B-cell immunophenotyping and showed kappa light chain restriction in the plasmacytoid population. Hashimoto thyroiditis differs both histopathologically and immunohistochemically from thyroid lymphoma. In suspicious cases, immunohistochemistry could be helpful in reaching a definitive diagnosis.

  15. The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.

    PubMed

    Mansourian, Azad Reza

    2010-08-15

    The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xuemei; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine {sup 131}I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from {sup 131}I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells bymore » JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced {sup 131}I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.« less

  17. Inflammatory myofibroblastic tumors of the lung carrying a chimeric A2M-ALK gene: report of 2 infantile cases and review of the differential diagnosis of infantile pulmonary lesions.

    PubMed

    Tanaka, Mio; Kohashi, Kenichi; Kushitani, Kei; Yoshida, Misa; Kurihara, Sho; Kawashima, Masumi; Ueda, Yuka; Souzaki, Ryota; Kinoshita, Yoshiaki; Oda, Yoshinao; Takeshima, Yukio; Hiyama, Eiso; Taguchi, Tomoaki; Tanaka, Yukichi

    2017-08-01

    We report 2 infantile cases of pulmonary tumor carrying a chimeric A2M-ALK gene. A2M-ALK is a newly identified anaplastic lymphoma kinase (ALK)-related chimeric gene from a tumor diagnosed as fetal lung interstitial tumor (FLIT). FLIT is a recently recognized infantile pulmonary lesion defined as a mass-like lesion that morphologically resembles the fetal lung. Grossly, FLIT characteristically appears as a well-circumscribed spongy mass, whereas the tumors in these patients were solid and firm. Histologically, the tumors showed intrapulmonary lesions composed of densely proliferating polygonal or spindle-shaped mesenchymal cells with diffuse and dense infiltrations of inflammatory cells forming microcystic or micropapillary structures lined by thyroid transcription factor 1-positive pneumocytes, favoring inflammatory myofibroblastic tumor rather than FLIT. The proliferating cells were immunoreactive for ALK, and A2M-ALK was identified in both tumors with reverse-transcription polymerase chain reaction. The dense infiltration of inflammatory cells, immunoreactivity for ALK, and identification of an ALK-related chimeric gene suggested a diagnosis of inflammatory myofibroblastic tumor. Histologically, most reported FLITs show sparse inflammatory infiltrates and a relatively low density of interstitial cells in the septa, although prominent infiltration of inflammatory cells and high cellularity of interstitial cells are seen in some FLITs. The present cases suggest that ALK rearrangements, including the chimeric A2M-ALK gene, may be present in these infantile pulmonary lesions, especially those with inflammatory cell infiltration. We propose that these infantile pulmonary lesions containing a chimeric A2M-ALK gene be categorized as a specific type of inflammatory myofibroblastic tumor that develops exclusively in neonates and infants. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Low Intensity Pulsed Ultrasound (LIPUS) Influences the Multilineage Differentiation of Mesenchymal Stem and Progenitor Cell Lines through ROCK-Cot/Tpl2-MEK-ERK Signaling Pathway*

    PubMed Central

    Kusuyama, Joji; Bandow, Kenjiro; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-01-01

    Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway. PMID:24550383

  19. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway.

    PubMed

    Kusuyama, Joji; Bandow, Kenjiro; Shamoto, Mitsuo; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-04-11

    Mesenchymal stem cells (MSCs) are pluripotent cells that can differentiate into multilineage cell types, including adipocytes and osteoblasts. Mechanical stimulus is one of the crucial factors in regulating MSC differentiation. However, it remains unknown how mechanical stimulus affects the balance between adipogenesis and osteogenesis. Low intensity pulsed ultrasound (LIPUS) therapy is a clinical application of mechanical stimulus and facilitates bone fracture healing. Here, we applied LIPUS to adipogenic progenitor cell and MSC lines to analyze how multilineage cell differentiation was affected. We found that LIPUS suppressed adipogenic differentiation of both cell types, represented by impaired lipid droplet appearance and decreased gene expression of peroxisome proliferator-activated receptor γ2 (Pparg2) and fatty acid-binding protein 4 (Fabp4). LIPUS also down-regulated the phosphorylation level of peroxisome proliferator-activated receptor γ2 protein, inhibiting its transcriptional activity. In contrast, LIPUS promoted osteogenic differentiation of the MSC line, characterized by increased cell calcification as well as inductions of runt-related transcription factor 2 (Runx2) and Osteocalcin mRNAs. LIPUS induced phosphorylation of cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, which was essential for the phosphorylation of mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKs). Notably, effects of LIPUS on both adipogenesis and osteogenesis were prevented by a Cot/Tpl2-specific inhibitor. Furthermore, effects of LIPUS on MSC differentiation as well as Cot/Tpl2 phosphorylation were attenuated by the inhibition of Rho-associated kinase. Taken together, these results indicate that mechanical stimulus with LIPUS suppresses adipogenesis and promotes osteogenesis of MSCs through Rho-associated kinase-Cot/Tpl2-MEK-ERK signaling pathway.

  20. Change in permeability of the plasma membrane of blood cells in irradiated animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, A.S.; Kobyalko, V.O.; Lazarev, N.M.

    1994-11-01

    The Chernobyl nuclear disaster showed the exposure of the thyroid gland to radioactive iodine is an important factor of radiation damage to animals. Examination of domestic animals showed a marked inhibition of thyroid hormone secretion and changes in red cell membrane permeability for calcium in the absence of marked hematological shifts. At the same time the disturbed thyroid statis is associated with changes in some structural and functional parameters of blood cells. This research on calves shows that radiation damage to the thyroid produces a modifying effect on blood cell membrane permeability for calcium during both the acute and latemore » periods following exposure to 131I. 15 refs., 2 figs., 1 tab.« less

  1. Features of morfological changes in primary thyroid gland CTLL cultures of rats descendants prenatally exposed by radioisotopes of iodine-131.

    PubMed

    Boiko, O A; Lavrenchuk, H Yo; Lypska, A I; Talko, V V; Asmolkov, V S

    2017-12-01

    to investigate morphological changes in the primary thyroid cell culture of rat infants whose parents were prenatally exposed by radioisotope iodine 131. obtaining and culturing of thyroid tissue primary cell cultures of newborn rats, cytological (receipt and analysis of cell cultures agents for optical microscopy), biophysical (flow cytometry), statistics. It was shown that cells in thyroid primary culture of offspring rats prenatally exposed by radioisotopes of iodine 131 signs of destructive degenerative changes were observed mostly when animals of both sexes were irra diated. Increased number of two and three nuclear cells and induction of ring like cells is an evidence of signifi cant genotoxic violation and points to the genome instability in offspring of animals exposed by radioisotope iodine 131. Analysis and quantitative morphological parameters of cells in thyroid primary culture of newborn rats whose parents were exposed prenatally by radioisotopes of iodine 131 showed that upon exposure to radiation thy roid undergoes destructive changes at the cellular level and, even in the second generation of offspring, leads to disruption of its functions. O. A. Boiko, H. Yo. Lavrenchuk, A. I. Lypska, V. V. Talko, V. S. Asmolkov.

  2. IgG4-positive extranodal marginal zone lymphoma arising in Hashimoto's thyroiditis: clinicopathological and cytogenetic features of a hitherto undescribed condition.

    PubMed

    Tan, Char-Loo; Ong, Yew-Kwang; Tan, Soo-Yong; Ng, Siok-Bian

    2016-05-01

    Hashimoto's thyroiditis was recently divided into IgG4-plasma cell-rich and IgG4-plasma cell-poor subtypes. The former, also known as IgG4 thyroiditis, is associated with clinical, serological, sonographic and morphological features that are distinctive from those of the non-IgG4 subgroup. We describe an interesting case of IgG4-positive mucosa-associated lymphoid tissue (MALT) lymphoma arising in a background of IgG4 thyroiditis. The thyroid gland showed typical features of IgG4 thyroiditis, including characteristic patterns of fibrosis. A dense lymphoplasmacytic infiltrate diffusely involved the entire gland without formation of a destructive tumour mass. Lymphoepithelial lesions were prominent. There were abundant IgG4-positive plasma cells, with the IgG4/IgG ratio exceeding 40%. The IgG4-positive plasma cells were monotypic for kappa light chain, and there was monoclonal IGH rearrangement. Fluorescence in-situ hybridization revealed IGH translocation without translocation of MALT1, bcl-10, or FOXP1. This represents the first case of IgG4-producing MALT lymphoma associated with IgG4 thyroiditis. IGH translocation with an unknown partner gene was identified. We suggest the performance of serum and immunohistochemical investigations for IgG and IgG4 in all cases of Hashimoto's thyroiditis to diagnose IgG4 thyroiditis. In addition, clonality assays and light chain studies are useful to exclude a low-grade lymphoma arising in this context. © 2015 John Wiley & Sons Ltd.

  3. [Consensus statement for accreditation of multidisciplinary thyroid cancer units].

    PubMed

    Díez, Juan José; Galofré, Juan Carlos; Oleaga, Amelia; Grande, Enrique; Mitjavila, Mercedes; Moreno, Pablo

    2016-03-01

    Thyroid cancer is the leading endocrine system tumor. Great advances have recently been made in understanding of the origin of these tumors and the molecular biology that makes them grow and proliferate, which have been associated to improvements in diagnostic procedures and increased availability of effective local and systemic treatments. All of the above makes thyroid cancer a paradigm of how different specialties should work together to achieve the greatest benefit for the patients. Coordination of all the procedures and patient flows should continue throughout diagnosis, treatment, and follow-up, and is essential for further optimization of resources and time. This manuscript was prepared at the request of the Working Group on Thyroid Cancer of the Spanish Society of Endocrinology and Nutrition, and is aimed to provide a consensus document on the definition, composition, requirements, structure, and operation of a multidisciplinary team for the comprehensive care of patients with thyroid cancer. For this purpose, we have included contributions by several professionals from different specialties with experience in thyroid cancer treatment at centers where multidisciplinary teams have been working for years, with the aim of developing a practical consensus applicable in clinical practice. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  4. Thyroid tuberculosis: presenting symptom of mediastinal tuberculous lymphadenitis--an unusual case.

    PubMed

    Chandanwale, Shirish S; Buch, Archana C; Vimal, Shruti S; Sachdeva, Punita

    2014-01-01

    Tuberculosis of thyroid gland is extremely rare. It spreads to thyroid by lymphogenous or heamatogenous route or from adjacent focus, either from larynx or cervical and mediastinal adenitis. We report an unusual case of a 33-year-old male with thyroid swelling. Fine needle aspiration (FNA) smears showed epithelioid cells without necrosis and acid fast bacilli (AFB). Subsequent investigation revealed mediastinal tuberculous lymphadenitis on Computerized Tomography (CT) scan. FNA confirmed the diagnosis of mediastinal tuberculous lymphadenitis. We conclude, when epithelioid cells are seen on FNA thyroid, tuberculosis must be ruled out especially in regions where there is high prevalence of tuberculosis.

  5. Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity

    PubMed Central

    Kopp, Sascha; Warnke, Elisabeth; Wehland, Markus; Aleshcheva, Ganna; Magnusson, Nils E.; Hemmersbach, Ruth; Juhl Corydon, Thomas; Bauer, Johann; Infanger, Manfred; Grimm, Daniela

    2015-01-01

    Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3–1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture. The FTC-133 cancer cells formed larger and numerous MCS than the normal cells. In order to explain the different behaviour, we analyzed the gene expression of IL6, IL7, IL8, IL17, OPN, NGAL, VEGFA and enzymes associated cytoskeletal or membrane proteins (ACTB, TUBB, PFN1, CPNE1, TGM2, CD44, FLT1, FLK1, PKB, PKC, ERK1/2, Casp9, Col1A1) as well as the amount of secreted proteins (IL-6, IL-7, IL-8, IL-17, OPN, NGAL, VEGFA). Several of these components changed during RPM-exposure in each cell line. Striking differences between normal and malignant cells were observed in regards to the expression of genes of NGAL, VEGFA, OPN, IL6 and IL17 and to the secretion of VEGFA, IL-17, and IL-6. These results suggest several gravi-sensitive growth or angiogenesis factors being involved in 3D formation of thyroid cells cultured under simulated microgravity. PMID:26576504

  6. Aggressive Variants of Papillary Thyroid Carcinoma: Hobnail, Tall Cell, Columnar, and Solid.

    PubMed

    Nath, Meryl C; Erickson, Lori A

    2018-05-01

    Papillary thyroid carcinomas are the most common endocrine cancer and are usually associated with good survival. However, some variants of papillary thyroid carcinomas may behave more aggressively than classic papillary thyroid carcinomas. The tall cell variant of papillary thyroid carcinoma is the most common aggressive variant of papillary thyroid carcinoma. The aggressive behavior has been ascribed to the histologic subtype and/or to the clinicopathologic features, an issue that remains controversial. The columnar variant of papillary thyroid carcinoma can be aggressive, particularly in older patients, with larger tumors showing a diffusely infiltrative growth pattern and extrathyroidal extension. A papillary thyroid carcinoma is designated as solid/trabecular variant when all or nearly all of a tumor not belonging to any of the other variants has a solid, trabecular, or nested (insular) appearance. This tumor must be distinguished from poorly differentiated thyroid carcinoma which has the same growth pattern but lacks nuclear features of papillary thyroid carcinoma and may show tumor necrosis and high mitotic activity. New to the fourth edition of the WHO Classification of Tumours of Endocrine Organs, the hobnail variant of papillary thyroid carcinoma is a moderately differentiated papillary thyroid carcinoma variant with aggressive clinical behavior and significant mortality. All of these variants are histologically unique and important to recognize due to their aggressive behavior.

  7. Identification of metastatic papillary thyroid carcinoma in FNA specimens using thyroid peroxidase immunohistochemistry.

    PubMed

    Shield, P W; Crouch, S J; Papadimos, D J; Walsh, M D

    2018-06-01

    We evaluated immunohistochemical staining for thyroid peroxidase (TPO), a glycoprotein found in the apical plasma membrane of thyroid follicular cells, as a marker for metastatic PTC in FNA samples and compared results with thyroglobulin (Tg) and thyroid transcription factor 1 (TTF1) staining. Cell block sections prepared from 100 FNA specimens were stained with a rabbit monoclonal antibody to TPO (EP159). The FNAs included 64 metastatic malignancies from non-thyroid primary sites, including 18 lung, and 36 cases of thyroid tumours (29 PTC, six cases of medullary thyroid carcinoma and one thyroid anaplastic carcinoma). Thyroid tumours were stained with TTF1 and Tg in addition to TPO. All cases of metastatic lung carcinoma also had TTF-1 staining results. TPO staining was negative in all non-thyroid malignancies. Ninety percent (26/29) of PTC were positive. All positive cases showed strong cytoplasmic staining, although 54% (14/26) showed positivity in less than half of the cells. By comparison, Tg staining of TPC cases was present in 62% and TTF-1 in 100%. In addition to showing higher sensitivity, interpretation of staining results with TPO was generally easier with than Tg. All metastatic lung adenocarcinomas were positive for TTF-1 and TPO negative. The six medullary cancers showed positivity in 17%, 0% and 83% with TPO, Tg and TTF-1, respectively. TPO (mAb EP159) may be a useful addition to immunohistochemical panels for FNA specimens where metastatic PTC is a consideration, particularly in cases where metastatic lung carcinoma features in the differential diagnosis. © 2018 John Wiley & Sons Ltd.

  8. Graves' disease: diagnostic and therapeutic challenges (multimedia activity).

    PubMed

    Kahaly, George J; Grebe, Stefan K G; Lupo, Mark A; McDonald, Nicole; Sipos, Jennifer A

    2011-06-01

    Graves' disease is the most common cause of hyperthyroidism in the United States. Graves' disease occurs more often in women with a female:male ratio of 5:1 and a population prevalence of 1% to 2%. A genetic determinant to the susceptibility to Graves' disease is suspected because of familial clustering of the disease, a high sibling recurrence risk, the familial occurrence of thyroid autoantibodies, and the 30% concordance in disease status between identical twins. Graves' disease is an autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid antigen-specific T cells into the thyroid and thyroid-stimulating hormone receptor expressing tissues, with the production of autoantibodies to well-defined thyroidal antigens, such as thyroid peroxidase, thyroglobulin, and the thyroid-stimulating hormone receptor. The thyroid-stimulating hormone receptor is central to the regulation of thyroid growth and function. Stimulatory autoantibodies in Graves' disease activate the thyroid-stimulating hormone receptor leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Below-normal levels of baseline serum thyroid-stimulating hormone receptor, normal to elevated serum levels of T4, elevated serum levels of T3 and thyroid-stimulating hormone receptor autoantibodies, and a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow) thyroid gland confirm diagnosis of Graves' disease (available at: http://supplements.amjmed.com/2010/hyperthyroid/faculty.php). This Resource Center is also available through the website of The American Journal of Medicine (www.amjmed.com). Click on the “Thyroid/Graves' Disease” link in the “Resource Centers” section, found on the right side of the Journal homepage. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Luchuan; Lv, Bin; Chen, Bo

    2015-07-10

    Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, wasmore » picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na{sup +}/I{sup −} symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC). - Highlights: • Significant upregulated miR-146b was picked up from thyroid relative miRNAs in DTC. • MiR-146b was negatively regulated by HDAC3 in normal thyroid carcinoma cells. • NIS activity and expression could be regulated by miR-146b in thyroid carcinoma. • MiR-146b inhibition could recover the decreased radioiodine-sensitivity of DTC cells.« less

  10. Radioiodide induces apoptosis in human thyroid tissue in culture.

    PubMed

    Russo, Eleonora; Guerra, Anna; Marotta, Vincenzo; Faggiano, Antongiulio; Colao, Annamaria; Del Vecchio, Silvana; Tonacchera, Massimo; Vitale, Mario

    2013-12-01

    Radioiodide ((131)I) is routinely used for the treatment of toxic adenoma, Graves' disease, and for ablation of thyroid remnant after thyroidectomy in patients with thyroid cancer. The toxic effects of ionizing radiations on living cells can be mediated by a necrotic and/or apoptotic process. The involvement of apoptosis in radiation-induced cell death in the thyrocytes has been questioned. The knowledge of the mechanisms that underlie the thyrocyte death in response to radiations can help to achieve a successful treatment with the lowest (131)I dose. We developed a method to study the effects of (131)I in human thyroid tissue in culture, by which we demonstrated that (131)I induces thyroid cell apoptosis. Human thyroid tissues of about 1 mm(3) were cultured in vitro and cell viability was determined up to 3 weeks by the MTT assay. Radioiodide added to the culture medium was actively taken up by the tissues. The occurrence of apoptosis in the thyrocytes was assessed by measuring the production of a caspase-cleavage fragment of cytokeratin 18 (M30) by an enzyme-linked immunoassay. Neither variation of cell number nor spontaneous apoptosis was revealed after 1 week of culture. (131)I added to the culture medium induced a dose-dependent and a time-dependent generation of M30 fragment. The apoptotic process was confirmed by the generation of caspase-3 and PARP cleavage products. These results demonstrate that (131)I induces apoptosis in human thyrocytes. Human thyroid tissue cultures may be useful to investigate the cell death pathways induced by (131)I.

  11. Biochemical properties of thyroid peroxidase (TPO) expressed in human breast and mammary-derived cell lines

    PubMed Central

    Godlewska, Marlena; Krasuska, Wanda

    2018-01-01

    Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes. PMID:29513734

  12. Biochemical properties of thyroid peroxidase (TPO) expressed in human breast and mammary-derived cell lines.

    PubMed

    Godlewska, Marlena; Krasuska, Wanda; Czarnocka, Barbara

    2018-01-01

    Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes.

  13. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner.

    PubMed

    Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y

    2014-06-01

    Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. This laboratory-based study used human decidua from first (8-11 weeks; n = 18) and second (12-16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10-) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel(®) was evaluated. Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different cell isolates were unaffected by T3 so changes in cell numbers could not account for any observed effects. In the first trimester, T3 decreased VEGF-A secretion by total decidual cells (P < 0.05) and increased angiopoietin-2 secretion by stromal-depleted cells (P < 0.05) but in the second trimester total decidual cells showed only increased angiogenin secretion (P < 0.05). In the first trimester, T3 reduced IL-10 secretion by total decidual cells (P < 0.05), and reduced granulocyte macrophage colony stimulating factor (P < 0.01), IL-8 (P < 0.05), IL-10 (P < 0.01), IL-1β (P < 0.05) and monocyte chemotactic protein -1 (P < 0.001) secretion by macrophages, but increased tumour necrosis factor-α secretion by stromal-depleted cells (P < 0.05) and increased IL-6 by uNK cells (P < 0.05). In contrast, in the second trimester T3 increased IL-10 secretion by total decidual cells (P < 0.01) but did not affect cytokine secretion by uNK cells and macrophages. Conditioned media from first trimester T3-treated total decidual cells and macrophages did not alter EVT invasion compared with untreated controls. Thus, treatment of decidual cells with T3 resulted in changes in both angiogenic growth factor and cytokine secretion in a cell type-specific and gestational age-dependent manner, with first trimester decidual macrophages being the most responsive to T3 treatment, but these changes in decidual cell secretome did not affect EVT invasion in vitro. Our results are based on in vitro findings and we cannot be certain if a similar response occurs in human pregnancy in vivo. Optimal maternal thyroid hormone concentrations could play a critical role in maintaining a balanced inflammatory response in early pregnancy to prevent fetal immune rejection and promote normal placental development through the regulation of the secretion of critical cytokines and angiogenic growth factors by human decidual cells. Our data suggest that there is an ontogenically determined regulatory 'switch' in T3 responsiveness between the first and second trimesters, and support the notion that the timely and early correction of maternal thyroid dysfunction is critical in influencing pregnancy outcomes. This study is funded by Wellbeing of Women (RG/1082/09 to S.Y.C., M.D.K., J.A.F., L.S.L., G.E.L.) and Action Medical Research - Henry Smith Charity (SP4335 to M.D.K., S.Y.C., L.S.L., J.A.F.). The authors have no conflicts of interest to disclose.

  14. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner

    PubMed Central

    Vasilopoulou, E.; Loubière, L.S.; Lash, G.E.; Ohizua, O.; McCabe, C.J.; Franklyn, J.A.; Kilby, M.D.; Chan, S.Y.

    2014-01-01

    STUDY QUESTION Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? SUMMARY ANSWER T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. WHAT IS KNOWN ALREADY Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. STUDY DESIGN, SIZE, DURATION This laboratory-based study used human decidua from first (8–11 weeks; n = 18) and second (12–16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10−) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel® was evaluated. MAIN RESULTS AND THE ROLE OF CHANCE Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different cell isolates were unaffected by T3 so changes in cell numbers could not account for any observed effects. In the first trimester, T3 decreased VEGF-A secretion by total decidual cells (P < 0.05) and increased angiopoietin-2 secretion by stromal-depleted cells (P < 0.05) but in the second trimester total decidual cells showed only increased angiogenin secretion (P < 0.05). In the first trimester, T3 reduced IL-10 secretion by total decidual cells (P < 0.05), and reduced granulocyte macrophage colony stimulating factor (P < 0.01), IL-8 (P < 0.05), IL-10 (P < 0.01), IL-1β (P < 0.05) and monocyte chemotactic protein -1 (P < 0.001) secretion by macrophages, but increased tumour necrosis factor-α secretion by stromal-depleted cells (P < 0.05) and increased IL-6 by uNK cells (P < 0.05). In contrast, in the second trimester T3 increased IL-10 secretion by total decidual cells (P < 0.01) but did not affect cytokine secretion by uNK cells and macrophages. Conditioned media from first trimester T3-treated total decidual cells and macrophages did not alter EVT invasion compared with untreated controls. Thus, treatment of decidual cells with T3 resulted in changes in both angiogenic growth factor and cytokine secretion in a cell type-specific and gestational age-dependent manner, with first trimester decidual macrophages being the most responsive to T3 treatment, but these changes in decidual cell secretome did not affect EVT invasion in vitro. LIMITATIONS, REASONS FOR CAUTION Our results are based on in vitro findings and we cannot be certain if a similar response occurs in human pregnancy in vivo. WIDER IMPLICATIONS OF THE FINDINGS Optimal maternal thyroid hormone concentrations could play a critical role in maintaining a balanced inflammatory response in early pregnancy to prevent fetal immune rejection and promote normal placental development through the regulation of the secretion of critical cytokines and angiogenic growth factors by human decidual cells. Our data suggest that there is an ontogenically determined regulatory ‘switch’ in T3 responsiveness between the first and second trimesters, and support the notion that the timely and early correction of maternal thyroid dysfunction is critical in influencing pregnancy outcomes. STUDY FUNDING/COMPETING INTEREST(S) This study is funded by Wellbeing of Women (RG/1082/09 to S.Y.C., M.D.K., J.A.F., L.S.L., G.E.L.) and Action Medical Research – Henry Smith Charity (SP4335 to M.D.K., S.Y.C., L.S.L., J.A.F.). The authors have no conflicts of interest to disclose. PMID:24626803

  15. Follicular thyroid cancer and Hürthle cell carcinoma: challenges in diagnosis, treatment, and clinical management.

    PubMed

    Grani, Giorgio; Lamartina, Livia; Durante, Cosimo; Filetti, Sebastiano; Cooper, David S

    2018-06-01

    Follicular thyroid cancer is the second most common differentiated thyroid cancer histological type and has been overshadowed by its more common counterpart-papillary thyroid cancer-despite its unique biological behaviour and less favourable outcomes. In this Review, we comprehensively review the literature on follicular thyroid cancer to provide an evidence-based guide to the management of these tumours, to highlight the lack of evidence behind guideline recommendations, and to identify changes and challenges over the past decades in diagnosis, prognosis, and treatment. We highlight that correct identification of cancer in indeterminate cytological samples is challenging and ultrasonographic features can be misleading. Despite certain unique aspects of follicular thyroid cancer presentation and prognosis, no specific recommendations exist for follicular thyroid cancer and Hürthle cell carcinoma in evidence-based guidelines. Efforts should be made to stimulate additional research in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Recent developments in the investigation of thyroid regulation and thyroid carcinogenesis.

    PubMed Central

    Hard, G C

    1998-01-01

    This review covers new mechanistic information spanning the past 10 years relevant to normal and abnormal thyroid growth and function that may assist in the risk assessment of chemicals inducing thyroid follicular cell neoplasia. Recent studies have shown that thyroid regulation occurs via a complex interactive network mediated through several different messenger systems. Increased thyroid-stimulating hormone (TSH) levels activate the signal transduction pathways to stimulate growth and differentiation of the follicular cell. The important role of TSH in growth as well as in function helps to explain how disruptions in the thyroid-pituitary axis may influence thyroid neoplasia in rodents. New investigations that couple mechanistic studies with information from animal cancer bioassays (e. g., sulfamethazine studies) confirm the linkage between prolonged disruption of the thyroid-pituitary axis and thyroid neoplasia. New initiation/promotion studies in rodents also support the concept that chronic stimulation of the thyroid induced by goitrogens can result in thyroid tumors. Some of these studies confirm previous suggestions regarding the importance of chemically induced thyroid peroxidase inhibition and the inhibition of 3,3',5, 5'-tetraiodothyronine (T4, thyroxine) deiodinases on disruption of the thyroid-pituitary axis leading to thyroid neoplasia. Some comparative physiologic and mechanistic data highlight certain differences between rodents and humans that could be expected to confer an increased vulnerability of rodents to chronic hypersecretion of TSH. New data from epidemiologic and molecular genetic studies in humans contribute further to an understanding of thyroid neoplasia. Acute exposure to ionizing radiation, especially in childhood, remains the only verified cause of thyroid carcinogenesis in humans. Iodine deficiency studies as a whole remain inconclusive, even though several new studies in humans examine the role of dietary iodine deficiency in thyroid cancer. Specific alterations in gene expression have been identified in human thyroid neoplasia, linked to tumor phenotype, and thus oncogene activation and tumor-suppressor gene inactivation may also be factors in the development and progression of thyroid cancer in humans. An analysis by the U.S. EPA Risk Assessment Forum, prepared as a draft report in 1988 and completed in 1997, focused on the use of a threshold for risk assessment of thyroid follicular tumors. New studies, involving several chemicals, provide further support that there will be no antithyroid activity until critical intracellular concentrations are reached. Thus, for chemically induced thyroid neoplasia linked to disruptions in the thyroid-pituitary axis, a practical threshold for thyroid cancer would be expected. More information on thyroid autoregulation, the role of oncogene mutations and growth factors, and studies directly linking persistently high TSH levels with the sequential cellular development of thyroid follicular cell neoplasia would provide further confirmation. PMID:9681969

  17. Less aggressive disease in patients with primary squamous cell carcinomas of the thyroid gland and coexisting lymphocytic thyroiditis.

    PubMed

    Asik, Mehmet; Binnetoglu, Emine; Sen, Hacer; Gunes, Fahri; Muratli, Asli; Kankaya, Duygu; Uysal, Fatma; Sahin, Mustafa; Ukinc, Kubilay

    2015-01-01

    Primary squamous cell carcinoma (SCC) of the thyroid gland is extremely rare. Infrequently, primary SCC of the thyroid gland is accompanied by other thyroid diseases such as Hashimoto's thyroiditis (HT). Recently, studies have demonstrated that differentiated thyroid cancer with coexisting HT has a better prognosis. However, the prognosis of patients with primary SCC of the thyroid gland and coexistent HT has not been clearly identified. We compared the clinical characteristics and disease stages of patients with primary SCC with and without lymphocytic thyroiditis (LT). We reviewed reports of primary SCC of the thyroid gland published in the English literature. We identified 46 papers that included 17 cases of primary SCC of the thyroid gland with LT and 77 cases of primary SCC of the thyroid gland without LT. Lymph node metastasis and local invasion rates did not differ between these two groups. Distant metastases were absent in patients with LT, and were observed in 13 (16.9%) patients without LT. A greater proportion of patients without LT had advanced stage disease (stage IV A-B-C) than patients with LT (p < 0.05). Patients with primary SCC of the thyroid gland and coexisting LT had lower tumour-node-metastasis stage and frequency of distant metastasis than those without LT. Lymphocytic infiltration in patients with SCC appears to limit tumour growth and distant metastases.

  18. Autoimmune thyrotoxicosis: diagnostic challenges.

    PubMed

    Ponto, Katharina A; Kahaly, George J

    2012-09-01

    Autoimmune thyrotoxicosis or Graves' disease (GD) is the most common cause of hyperthyroidism in the United States (full text available online: http://education.amjmed.com/pp1/249). GD occurs more often in women (ratio 5:1) and has a population prevalence of 1-2%. A genetic determinant to the susceptibility to GD is suspected because of familial clustering of the disease, a high sibling recurrence risk, and the familial occurrence of thyroid autoantibodies. GD is a systemic autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid-antigen-specific T cells into the thyroid and thyroid stimulating hormone receptor (TSHR) expressing tissues, i.e. orbit, skin, with the production of autoantibodies to well-defined thyroidal antigens. Stimulatory autoantibodies in GD activate the TSHR leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Diagnosis of GD is straightforward in a patient with a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow on neck ultrasound) thyroid gland, associated orbitopathy, biochemically confirmed thyrotoxicosis, positive TSHR autoantibodies, and often a family history of autoimmune disorders. Copyright © 2012. Published by Elsevier Inc.

  19. Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.

    PubMed

    Antonica, Francesco; Kasprzyk, Dominika Figini; Schiavo, Andrea Alex; Romitti, Mírian; Costagliola, Sabine

    2017-01-01

    During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.

  20. Fine-needle aspiration study of cystic papillary thyroid carcinoma: Rare cytological findings

    PubMed Central

    Mokhtari, Maral; Kumar, Perikala Vijayananda; Hayati, Kamran

    2016-01-01

    Background: Cystic papillary thyroid carcinoma (CPTC) is a variant of papillary carcinoma that has many mimickers in cytological grounds. Aim: To study the cytomorphologic features of CPTC and compare them to those of other cystic thyroid lesions using fine-needle aspiration cytology (FNAC). We also aimed to identify the cytomorphologic features that distinguish CPTC from other cystic thyroid lesions. Materials and Methods: Seventy-three cases of CPTC were included in the study. The cytomorphologic features of these cases were analyzed. The FNA smears of other thyroid lesions with cystic changes (300 colloid goiters, 290 adenomatoid nodules, 11 follicular neoplasms, and 9 hurtle cell neoplasm) were also studied. Results: The smears in CPTC revealed isolated follicular cells, small groups of cells with scalloped margins, cell swirls, small clusters with a cartwheel pattern, papillary clusters, intranuclear inclusions, nuclear grooves, sticky colloid, intracellular colloids, psammoma bodies, multinucleated giant cells, and foamy and hemosiderin laden macrophages. Small groups of cells with scalloped borders, cellular swirls, and small clusters with a cartwheel pattern were seen in CPTC, but not in other cystic lesions. Interestingly, mesothelial-like cells and hemophagocytic cells were seen in five and three cases of CPTC, respectively, but not in other cystic lesions. Conclusion: Mesothelial-like cells and hemophagocytic cells were observed in five and three cases of CPTC, respectively. Similar finding have not been previously reported in the literature. PMID:27756982

  1. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase

    PubMed Central

    Sharma, Rajni; Di Dalmazi, Giulia

    2016-01-01

    Background: Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2h4 mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. Methods: NOD-H2h4 mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. Results: CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. Conclusions: This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2h4 mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade. PMID:27296629

  2. FOLLICULAR CELL CARCINOMA OF THE THYROID GLAND IN THREE CAPTIVE AGED RACCOON DOGS (NYCTEREUTES PROCYONOIDES).

    PubMed

    Kido, Nobuhide; Itagaki, Iori; Ono, Kaori; Omiya, Tomoko; Matsumoto, Rei

    2015-12-01

    The clinical and histologic features of thyroid carcinoma in raccoon dogs have not been previously reported. Three of four raccoon dogs (Nyctereutes procyonoides) over 8 yr of age at the Nogeyama Zoological Gardens developed thyroid follicular cell carcinomas that were detected at necropsy. The affected raccoon dogs were rescued from the wild and were housed at the Nogeyama Zoological Gardens for 8 yr 8 mo, 8 yr 10 mo, and 10 yr 3 mo, respectively. Although all of them appeared lethargic and developed partial alopecia or desquamation of their skin, they did not display any other specific clinical signs associated with a thyroid lesion. Serum thyroid hormone values were examined in two of the affected raccoon dogs and the average and standard deviation values (free-thyroxin [FT4]: 0.078 ± 0.077 pM/L and 0.062 ± 0.0039 pM/L; free-triiodothyronine [FT3]: 3.261 ± 0.765 pM/L and 3.407 ± 0.919 pM/L) were lower than the reference range (FT4: 0.141 ± 0.117 pM/L; FT3: 5.139 ± 2.412 pM/L) derived from a clinically normal raccoon dog. On necropsy, the thyroid lobes were markedly enlarged bilaterally. Histopathologically, the neoplastic cells in the thyroid gland appeared round or oval and columnar or cuboidal with minimal heteromorphism. Moreover, mostly small (but occasionally large) follicles were identified, and the neoplastic cells had infiltrated into the surrounding capsule and blood vessels. The histopathologic features of the thyroid tumors in the raccoon dogs revealed that the tumors were derived from follicular cells.

  3. Cowden syndrome-associated germline SDHD variants alter PTEN nuclear translocation through SRC-induced PTEN oxidation

    PubMed Central

    Yu, Wanfeng; He, Xin; Ni, Ying; Ngeow, Joanne; Eng, Charis

    2015-01-01

    Germline mutations in the PTEN tumor-suppressor gene and germline variations in succinate dehydrogenase subunit D gene (SDHD-G12S, SDHD-H50R) are associated with a subset of Cowden syndrome and Cowden syndrome-like individuals (CS/CSL) and confer high risk of breast, thyroid and other cancers. However, very little is known about the underlying crosstalk between SDHD and PTEN in CS-associated thyroid cancer. Here, we show SDHD-G12S and SDHD-H50R lead to impaired PTEN function through alteration of its subcellular localization accompanied by resistance to apoptosis and induction of migration in both papillary and follicular thyroid carcinoma cell lines. Other studies have shown elevated proto-oncogene tyrosine kinase (SRC) activity in invasive thyroid cancer cells; so, we explore bosutinib, a specific inhibitor for SRC, to explore SRC as a mediator of SDH-PTEN crosstalk in this context. We show that SRC inhibition could rescue SDHD dysfunction-induced cellular phenotype and tumorigenesis only when wild-type PTEN is expressed, in thyroid cancer lines. Patient lymphoblast cells carrying either SDHD-G12S or SDHD-H50R also show increased nuclear PTEN and more oxidized PTEN after hydrogen peroxide treatment. Like in thyroid cells, bosutinib decreases oxidative PTEN in patient lymphoblast cells carrying SDHD variants, but not in patients carrying both SDHD variants and PTEN truncating mutations. In summary, our data suggest a novel mechanism whereby SDHD germline variants SDHD-G12S or SDHD-H50R induce thyroid tumorigenesis mediated by PTEN accumulation in the nucleus and may shed light on potential treatment with SRC inhibitors like bosutinib in PTEN-wild-type SDHD-variant/mutation positive CS/CSL patients and sporadic thyroid neoplasias. PMID:25149476

  4. Hexamethylenebisacetamide modulation of thyroglobulin and protein levels in thyroid cells is not mediated by phosphatidylinositol-3-kinase: a study with wortmannin.

    PubMed

    Aouani, A; Samih, N; Amphoux-Fazekas, T; Hovsépian, S; Fayet, G

    1999-04-01

    Hexamethylenebisacetamide (HMBA) induces in murine erythroleukemia cells (MELC) the commitment to terminal differentiation leading to globin gene expression. In the thyroid, HMBA acts as a growth factor and also as a differentiating agent. In the present paper, we studied the effect of HMBA on the very specific thyroid marker thyroglobulin (Tg) in two different thyroid cell systems, i.e., porcine cells in primary culture and ovine cells in long term culture. Using wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, we investigated whether this enzyme is involved in HMBA mode of action. We found that HMBA is a positive modulator of Tg production in porcine cells, but a negative effector in the OVNIS cell line. As all HMBA effects studied in the present paper, i.e., Tg production and total protein levels, are not inhibited by wortmannin, we suggest the non-involvement of phosphatidylinositol-3-kinase in HMBA mode of action.

  5. Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism.

    PubMed

    Filetti, S; Bidart, J M; Arturi, F; Caillou, B; Russo, D; Schlumberger, M

    1999-11-01

    The recent cloning of the gene encoding the sodium/iodide symporter (NIS) has enabled better characterization of the molecular mechanisms underlying iodide transport, thus opening the way to clarifying its role in thyroid diseases. Several studies, at both the mRNA and the protein expression levels, have demonstrated that TSH, the primary regulator of iodide uptake, upregulates NIS gene expression and NIS protein abundance, both in vitro and in vivo. However, other factors, including iodide, retinoic acid, transforming growth factor-beta, interleukin-1alpha and tumour necrosis factor alpha, may participate in the regulation of NIS expression. Investigation of NIS mRNA expression in different thyroid tissues has revealed increased levels of expression in Graves' disease and toxic adenomas, whereas a reduction or loss of NIS transcript was detected in differentiated thyroid carcinomas, despite the expression of other specific thyroid markers. NIS mRNA was also detected in non-thyroid tissues able to concentrate radioiodine, including salivary glands, stomach, thymus and breast. The production of specific antibodies against the NIS has facilitated study of the expression of the symporter protein. Despite of the presence of high levels of human (h)NIS mRNA, normal thyroid glands exhibit a heterogeneous expression of NIS protein, limited to the basolateral membrane of the thyrocytes. By immunohistochemistry, staining of hNIS protein was stronger in Graves' and toxic adenomas and reduced in thyroid carcinomas. Measurement of iodide uptake by thyroid cancer cells is the cornerstone of the follow-up and treatment of patients with thyroid cancer. However, radioiodide uptake is found only in about 67% of patients with persistent or recurrent disease. Several studies have demonstrated a decrease in or a loss of NIS expression in primary human thyroid carcinomas, and immunohistochemical studies have confirmed this considerably decreased expression of the NIS protein in thyroid cancer tissues, suggesting that the low expression of NIS may represent an early abnormality in the pathway of thyroid cell transformation, rather than being a consequence of cancer progression. The relationship between radioiodine uptake and NIS expression by thyroid cancer cells require further study. New strategies, based on manipulation of NIS expression, to obtain NIS gene reactivation or for use as NIS gene therapy in the treatment of radiosensitive cancer, are also being investigated.

  6. Thyroid C-Cell Biology and Oncogenic Transformation

    PubMed Central

    Cote, Gilbert J.; Grubbs, Elizabeth G.; Hofmann, Marie-Claude

    2017-01-01

    The thyroid parafollicular cell, or commonly named “C-cell,” functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that Multiple Endocrine Neoplasia, type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma. Thyroid C-cells are known to express RET at high levels relative to most cell types, therefore aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations has uncovered mutation of RAS family members and inactivation of Rb1 regulatory pathway as potential mediators of C-cell transformation. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation will help in the development of novel molecular targeted therapies. PMID:26494382

  7. Metastasis of colon cancer to the thyroid gland: a case diagnosed on fine-needle aspirate by a combined cytological, immunocytochemical, and molecular approach.

    PubMed

    Cozzolino, Immacolata; Malapelle, Umberto; Carlomagno, Chiara; Palombini, Lucio; Troncone, Giancarlo

    2010-12-01

    Fine-needle aspiration (FNA) with cytological evaluation reliably diagnoses primary and secondary thyroid neoplasms. However, identifying the primary origin of a metastatic process involving the thyroid gland is challenging. In particular, metastasis of colon cancer to the thyroid gland is very rare. In this case report, a right lobe solid thyroid nodule in a 66-year-old male was aspirated. FNA cytology showed necrosis and atypical tall columnar cells; since, the patient at age 60 had undergone surgery for a sigmoid-rectal cancer metastasizing to the liver and subsequently to the lung, a suspicion of metastasis from colon cancer was raised. This was corroborated by cell-block immunocytochemistry showing a cytokeratin (CK) 7 negative/CK20-positive staining pattern; thyreoglobulin and TTF-1 were both negative. Since KRAS codon 12/13 mutations frequently occur in colon cancer, whereas they are extremely uncommon in primary thyroid tumors, DNA was extracted from the aspirated cells, and KRAS mutational analysis was carried out. The codon 12 G12D mutation was found; the same mutation was evident in the primary cancer of the colon and in its liver and lung metastasis. Thus, a combined cytological, immunocytochemical and molecular approach unquestionably correlated metastatic adenocarcinoma cells aspirated from the thyroid to a colo-rectal origin. © 2010 Wiley-Liss, Inc.

  8. The radiation biology of the thyroid.

    PubMed

    Malone, J F

    1975-10-01

    The structure and function of the thyroid gland are described. A detailed analysis of population kinetics in the gland suggests a method of measuring cell survival after irradiation that has many features in common with methods used in other mammalian cell systems. This method is used to obtain survival curves for thyroid cells afer irradiation. The effects on survival of splitting the radiation dose into two or multiple fractions, radiation type, and radioprotective agents are also examined. In the light of these data the tolerance of thyroid tissue to radiation exposure under various conditions is discussed. The dosimetry and biological effects of 125I and 131I are described in detail, and compared with X-rays. Radioiodine treatment of thyrotoxicosis is presented in relation to the known biological effects of the isotopes on the gland. Carcinogenic action of ionizing radiations in the thyroid are reviewed with particular reference to the clinical consequences of observations in this field.

  9. Hurthle Cell Cancer

    MedlinePlus

    ... can be more aggressive than other types of thyroid cancer. Surgery to remove the thyroid gland is the ... factors Factors that increase the risk of developing thyroid cancer include: Being female Being older Having a history ...

  10. Modulation of Sodium Iodide Symporter in Thyroid Cancer

    PubMed Central

    Lakshmanan, Aparna; Scarberry, Daniel

    2015-01-01

    Radioactive iodine (RAI) is a key therapeutic modality for thyroid cancer. Loss of RAI uptake in thyroid cancer inversely correlates with patient’s survival. In this review, we focus on the challenges encountered in delivering sufficient doses of I-131 to eradicate metastatic lesions without increasing the risk of unwanted side effects. Sodium iodide symporter (NIS) mediates iodide influx, and NIS expression and function can be selectively enhanced in thyroid cells by thyroid-stimulating hormone. We summarize our current knowledge of NIS modulation in normal and cancer thyroid cells, and we propose that several reagents evaluated in clinical trials for other diseases can be used to restore or further increase RAI accumulation in thyroid cancer. Once validated in preclinical mouse models and clinical trials, these reagents, mostly small-molecule inhibitors, can be readily translated into clinical practice. We review available genetically engineered mouse models of thyroid cancer in terms of their tumor development and progression as well as their thyroid function. These mice will not only provide important insights into the mechanisms underlying the loss of RAI uptake in thyroid tumors but will also serve as preclinical animal models to evaluate the efficacy of candidate reagents to selectively increase RAI uptake in thyroid cancers. Taken together, we anticipate that the optimal use of RAI in the clinical management of thyroid cancer is yet to come in the near future. PMID:25234361

  11. Interphase ribosomal RNA cistron staining in thyroid epithelial cells in Grave's disease, Hashimoto's thyroiditis and benign and malignant tumours of the thyroid gland

    PubMed Central

    Mamaev, N N; Grynyeva, E N; Blagosklonnaya, Y V

    1996-01-01

    Aim—To evaluate the expression of ribosomal cistrons in human thyroid epithelial cells (TECs) of patients with Grave's disease, Hashimoto's thyroiditis and benign and malignant tumours of the thyroid gland. Methods—TEC nucleoli were investigated in fine needle biopsy specimens from 10 controls, 39 patients with Grave's disease, 15 with Hashimoto's thyroiditis, 56 with benign, and 15 with malignant tumours of the thyroid. A one step silver staining method was applied. In most cases serum concentrations of thyroxine and triiodothyronine as well as goitre size were determined. In every case 100 TECs were evaluated for the mean numbers of nucleoli and for the average number of argyrophilic nucleolar organiser regions (AgNORs) per nucleus. Results—NORs were activated in all patients, but not in controls. The numbers of AgNORs in patients with Grave's disease were closely correlated with thyroxine or triiodothyronine, or both, concentrations and with the size of the thyroid. In patients with Hashimoto's thyroiditis about 30% of TECs nucleoli did not contain AgNORs, whereas others were heavily impregnated with silver. Compared with controls and benign tumours, the nucleoli of carcinomatous TECs were larger and irregular in shape. The mean number of AgNORs per nucleus in malignant cells was higher than that in their benign counterparts. Conclusions—The mechanism by which NORs are activated in TECs varies depending on the type of lesion. The higher AgNOR score in TECs from malignant tumours can be used to distinguish them from their benign counterparts. Images PMID:16696083

  12. Bioprinting of a functional vascularized mouse thyroid gland construct.

    PubMed

    Bulanova, Elena A; Koudan, Elizaveta V; Degosserie, Jonathan; Heymans, Charlotte; Pereira, Frederico DAS; Parfenov, Vladislav A; Sun, Yi; Wang, Qi; Akhmedova, Suraya A; Sviridova, Irina K; Sergeeva, Natalia S; Frank, Georgy A; Khesuani, Yusef D; Pierreux, Christophe E; Mironov, Vladimir A

    2017-08-18

    Bioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS) as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modeling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within a collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, EC from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of a capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of the thyroid gland construct, we depleted endogenous EC from TS before bioprinting. EC from AS completely revascularized depleted thyroid tissue. The cultured bioprinted construct was functional as it could normalize blood thyroxine levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents a further advance in bioprinting technology, exploring the self-assembling properties of tissue spheroids.

  13. Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection.

    PubMed Central

    Lemoine, N. R.; Mayall, E. S.; Jones, T.; Sheer, D.; McDermid, S.; Kendall-Taylor, P.; Wynford-Thomas, D.

    1989-01-01

    Human primary thyroid follicular epithelial cells were transfected with a plasmid containing an origin-defective SV40 genome (SVori-) to produce several immortal cell lines. Two of the 10 cell lines analysed expressed specific features of thyroid epithelial function (iodide-trapping and thyroglobulin production). These two lines were characterised in detail and found to be growth factor-independent, capable of anchorage-independent growth at low frequency but non-tumorigenic in nude mice. These differentiated, These differentiated, partially transformed cell lines were shown to be suitable for gene transfer at high frequency using simple coprecipitation techniques. Images Figure 2 Figure 3 Figure 4 PMID:2557880

  14. A small subgroup of Hashimoto's thyroiditis is associated with IgG4-related disease.

    PubMed

    Jokisch, Friedrich; Kleinlein, Irene; Haller, Bernhard; Seehaus, Tanja; Fuerst, Heinrich; Kremer, Marcus

    2016-03-01

    IgG4-related disease is a newly identified syndrome characterized by high serum IgG4 levels and increased IgG4-positive plasma cells in involved organs. The incidence of IgG4-related thyroiditis in the Caucasian population of Europe is unknown. We investigated formalin-fixed thyroid gland samples of 216 patients (191 Hashimoto's thyroiditis, 5 Riedel's thyroiditis, and 20 goiters, as controls), morphologically, and immunohistochemically. Cases were divided into two groups: IgG4-related Hashimoto's thyroiditis (24 cases) together with Riedel thyroiditis (1 case) and 171 non-IgG4-related thyroiditis. Compared to the non-IgG4-related cases, IgG4-related thyroiditis showed a higher IgG4/IgG ratio (0.6 vs. 0.1, p < 0.0001), a higher median IgG4 count (45.2 vs. 6.2, p < 0.0001), an association with younger age (42.1 vs. 48.1 years, p = 0.036), and a lower female-to-male ratio (11:1 vs. 17.5:1). Fibrous variant of Hashimoto's thyroiditis was diagnosed in 23 of the 24 IgG4-related cases (96 %) and in 13 of 167 (18 %, p > 0.001) non-IgG4-related cases. The single case of IgG4-related Riedel's thyroiditis also showed a higher median IgG4 plasma cell count (56.3 vs. 14.3) and a higher IgG4/IgG ratio (0.5 vs. 0.2) than the four cases of non-IgG4-related Riedel's thyroiditis. Our data suggests the incidence of IgG4-related disease (IgG4-RD) of the thyroid gland in Europe is considerably lower than that observed in other studies. A significant elevation of IgG4-positive plasma cells was only found in a small group of Hashimoto's thyroiditis and then accompanied by intense fibrosis, indicating an association with IgG4-RD. Morphologically, IgG4-RD of the thyroid gland differs from that in other organ systems, exhibiting a dense fibrosis without intense eosinophilia or obliterative phlebitis.

  15. PRDM1 expression via human parvovirus B19 infection plays a role in the pathogenesis of Hashimoto thyroiditis.

    PubMed

    Wang, Lu; Zhang, Wei-Ping; Yao, Li; Zhang, Wei; Zhu, Jin; Zhang, Wei-Chen; Zhang, Yue-Hua; Wang, Zhe; Yan, Qing-Guo; Guo, Ying; Fan, Lin-Ni; Liu, Yi-Xiong; Huang, Gao-Sheng

    2015-12-01

    Ectopic lymphoid follicle infiltration is a key event in Hashimoto thyroiditis (HT). Positive regulatory domain zinc finger protein 1 (PRDM1), which is induced by antigen stimulation, can regulate all lymphocyte lineages. Several groups independently demonstrated that human parvovirus B19 (PVB19) is closely associated with HT. Hence, we determined whether PRDM1 is expressed in HT thyroid tissue and whether there is any correlation between PRDM1 expression and PVB19 in the pathogenesis of HT. We detected PRDM1 expression in HT (n = 86), normal thyroid tissue (n = 30), and nontoxic nodular goiter (n = 20) samples using immunohistochemistry. We also detected PVB19 protein in HT samples in a double-blind manner and analyzed the correlation between the 2 proteins using immunofluorescence confocal detection and coimmunoprecipitation. Furthermore, we detected changes of the expression levels of PRDM1 and PVB19 in transfected primary thyroid follicular epithelial cells using real-time quantitative polymerase chain reaction. We found that PRDM1 protein is significantly highly expressed in the injured follicular epithelial cells in HT (83/86 cases) than in normal thyroid cells (0/30 cases) or in nontoxic nodular goiter cells (0/20 cases) (P < .001). In HT, the PRDM1 expression pattern was the same as that of PVB19, whereas PRDM1 and PVB19 were coexistent in the involved epithelial cells. Statistical analysis showed a significant correlation between PRDM1 and PVB19 (P < .001). In addition, primary thyroid epithelial cells also showed PRDM1 up-regulation after PVB19 NS1 transfection. Our findings suggest a previously unrecognized role of PRDM1 and PVB19 in the pathogenesis of HT. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Bexarotene via CBP/p300 induces suppression of NF-κB-dependent cell growth and invasion in thyroid cancer.

    PubMed

    Cras, Audrey; Politis, Béatrice; Balitrand, Nicole; Darsin-Bettinger, Diane; Boelle, Pierre Yves; Cassinat, Bruno; Toubert, Marie-Elisabeth; Chomienne, Christine

    2012-01-15

    Retinoic acid (RA) treatment has been used for redifferentiation of metastatic thyroid cancer with loss of radioiodine uptake. The aim of this study was to improve the understanding of RA resistance and investigate the role of bexarotene in thyroid cancer cells. A model of thyroid cancer cell lines with differential response to RA was used to evaluate the biological effects of retinoid and rexinoid and to correlate this with RA receptor levels. Subsequently, thyroid cancer patients were treated with 13-cis RA and bexarotene and response evaluated on radioiodine uptake reinduction on posttherapy scan and conventional imaging. In thyroid cancer patients, 13-cis RA resistance can be bypassed in some tumors by bexarotene. A decreased tumor growth without differentiation was observed confirming our in vitro data. Indeed, we show that ligands of RARs or RXRs exert different effects in thyroid cancer cell lines through either differentiation or inhibition of cell growth and invasion. These effects are associated with restoration of RARβ and RXRγ levels and downregulation of NF-κB targets genes. We show that bexarotene inhibits the transactivation potential of NF-κB in an RXR-dependent manner through decreased promoter permissiveness without interfering with NF-κB nuclear translocation and binding to its responsive elements. Inhibition of transcription results from the release of p300 coactivator from NF-κB target gene promoters and subsequent histone deacetylation. This study highlights dual mechanisms by which retinoids and rexinoids may target cell tumorigenicity, not only via RARs and RXRs, as expected, but also via NF-κB pathway. ©2011 AACR.

  17. Surgical management of medullary thyroid cancer.

    PubMed

    Mazeh, H; Sippel, R S

    2012-12-01

    Although thyroid cancer accounts for only 1.5% of all malignancies in the US it is the most rapidly increasing cancer in incidence and it is the most common endocrine malignancy that accounts for over 95% of the endocrine malignancies. Medullary thyroid cancer (MTC) originates from the parafollicular C cells and it represents 6-8% of all thyroid cancer cases. As many as 25% of the MTCs are familial and carry a specific germline mutation as compared to only than 10% familial inheritance in non-medullary thyroid cancers. While well-differentiated thyroid malignancies carry a very good prognosis, recurrence and survival rates of patients with MTC are significantly worse. The difference in cell origin and differentiation also results in different available adjunct therapy. The aim of this study is to review in detail the surgical management of patients with MTC.

  18. Effect of protracted estrogen administration on the thyroid of Ames dwarf mice.

    PubMed

    Vidal, S; Cameselle-Teijeiro, J; Horvath, E; Kovacs, K; Bartke, A

    2001-04-01

    The effect of protracted estrogen administration on estrogen receptor expression and cellular composition of the thyroid was examined in genetically thyrotropin (TSH)-deficient female Ames dwarf mice (df/df) to reveal whether estrogen might act independently from TSH. inducing changes in thyroid morphology and function. To evaluate such changes, the thyroid from four estrogen-implanted Ames dwarf mice, four sham-implanted Ames dwarf mice and four sham-implanted normal littermate mice were investigated histologically, immunohistochemically and morphometrically. Our morphologic study demonstrated significant differences in the colloid areas of normal and dwarf mice (P<0.001). The correlation observed between this parameter and body weights (r=0.610, P<0.05) and thyroid weights (r=0.729, P<0.01) suggests that the decrease in the colloid areas is not a result of abnormal folliculogenesis but is in direct correlation with the small thyroid and body size of dwarf mice. Although two types of estrogen receptors are known to exist in the present study, only the alpha (ERalpha) variant was found in the thyroid. ERalpha immunoreactivity was detected in the nuclei of parafollicular cells but not of the follicular epithelium. No significant differences were reported in ER expression between estrogen-implanted dwarf mice and sham-implanted dwarf mice, suggesting that estrogen receptor expression in the thyroid is independent of circulating estrogen levels. In spite of the absence of ERalpha in follicular cells, protracted estrogen administration affected mainly the follicular cells. Our results suggest that when TSH is absent estrogens may exert a negative feedback on the activity of follicular cells.

  19. Alien/CSN2 gene expression is regulated by thyroid hormone in rat brain.

    PubMed

    Tenbaum, Stephan P; Juenemann, Stefan; Schlitt, Thomas; Bernal, Juan; Renkawitz, Rainer; Muñoz, Alberto; Baniahmad, Aria

    2003-02-01

    Alien has been described as a corepressor for the thyroid hormone receptor (TR). Corepressors are coregulators that mediate gene silencing of DNA-bound transcriptional repressors. We describe here that Alien gene expression in vivo is regulated by thyroid hormone both in the rat brain and in cultured cells. In situ hybridization revealed that Alien is widely expressed in the mouse embryo and also throughout the rat brain. Hypothyroid animals exhibit lower expression of both Alien mRNAs and protein levels as compared with normal animals. Accordingly, we show that Alien gene is inducible after thyroid hormone treatment both in vivo and in cell culture. In cultured cells, the hormonal induction is mediated by either TRalpha or TRbeta, while cells lacking detectable amounts of functional TR lack hormonal induction of Alien. We have detected two Alien-specific mRNAs by Northern experiments and two Alien-specific proteins in vivo and in cell lines by Western analysis, one of the two forms representing the CSN2 subunit of the COP9 signalosome. Interestingly, both Alien mRNAs and both detected proteins are regulated by thyroid hormone in vivo and in cell lines. Furthermore, we provide evidence for the existence of at least two Alien genes in rodents. Taken together, we conclude that Alien gene expression is under control of TR and thyroid hormone. This suggests a negative feedback mechanism between TR and its own corepressor. Thus, the reduction of corepressor levels may represent a control mechanism of TR-mediated gene silencing.

  20. Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea.

    PubMed

    Sharlin, David S; Visser, Theo J; Forrest, Douglas

    2011-12-01

    Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr(-/-) mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development.

  1. The Molecular Effect of Diagnostic Absorbed Doses from 131I on Papillary Thyroid Cancer Cells In Vitro.

    PubMed

    Stasiołek, Mariusz; Adamczewski, Zbigniew; Śliwka, Przemysław W; Puła, Bartosz; Karwowski, Bolesław; Merecz-Sadowska, Anna; Dedecjus, Marek; Lewiński, Andrzej

    2017-06-15

    Diagnostic whole-body scan is a standard procedure in patients with thyroid cancer prior to the application of a therapeutic dose of 131 I. Unfortunately, administration of the radioisotope in a diagnostic dose may decrease further radioiodine uptake-the phenomenon called "thyroid stunning". We estimated radiation absorbed dose-dependent changes in genetic material, in particular in the sodium iodide symporter (NIS) gene promoter, and the NIS protein level in a K1 cell line derived from the metastasis of a human papillary thyroid carcinoma exposed to 131 I in culture. The different activities applied were calculated to result in absorbed doses of 5, 10 and 20 Gy. Radioiodine did not affect the expression of the NIS gene at the mRNA level, however, we observed significant changes in the NIS protein level in K1 cells. The decrease of the NIS protein level observed in the cells subjected to the lowest absorbed dose was paralleled by a significant increase in 8-oxo-dG concentrations ( p < 0.01) and followed by late activation of the DNA repair pathways. Our findings suggest that the impact of 131 I radiation on thyroid cells, in the range compared to doses absorbed during diagnostic procedures, is not linear and depends on various factors including the cellular components of thyroid pathology.

  2. Blocks to thyroid cancer cell apoptosis can be overcome by inhibition of the MAPK and PI3K/AKT pathways.

    PubMed

    Gunda, V; Bucur, O; Varnau, J; Vanden Borre, P; Bernasconi, M J; Khosravi-Far, R; Parangi, S

    2014-03-06

    Current treatment for recurrent and aggressive/anaplastic thyroid cancers is ineffective. Novel targeted therapies aimed at the inhibition of the mutated oncoprotein BRAF(V600E) have shown promise in vivo and in vitro but do not result in cellular apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a tumor-selective manner by activating the extrinsic apoptotic pathway. Here, we show that a TRAIL-R2 agonist antibody, lexatumumab, induces apoptosis effectively in some thyroid cancer cell lines (HTh-7, TPC-1 and BCPAP), while more aggressive anaplastic cell lines (8505c and SW1736) show resistance. Treatment of the most resistant cell line, 8505c, using lexatumumab in combination with the BRAF(V600E) inhibitor, PLX4720, and the PI3K inhibitor, LY294002, (triple-drug combination) sensitizes the cells by triggering both the extrinsic and intrinsic apoptotic pathways in vitro as well as 8505c orthotopic thyroid tumors in vivo. A decrease in anti-apoptotic proteins, pAkt, Bcl-xL, Mcl-1 and c-FLIP, coupled with an increase in the activator proteins, Bax and Bim, results in an increase in the Bax to Bcl-xL ratio that appears to be critical for sensitization and subsequent apoptosis of these resistant cells. Our results suggest that targeting the death receptor pathway in thyroid cancer can be a promising strategy for inducing apoptosis in thyroid cancer cells, although combination with other kinase inhibitors may be needed in some of the more aggressive tumors initially resistant to apoptosis.

  3. Thyroid sclerosing mucoepidermoid carcinoma with eosinophilia distinct from the salivary type.

    PubMed

    Hirokawa, Mitsuyoshi; Takada, Nami; Abe, Hideyuki; Suzuki, Ayana; Higuchi, Miyoko; Miya, Akihiro; Hayashi, Toshitetsu; Fukushima, Mitsuhiro; Kawahara, Akihiko; Miyauchi, Akira

    2018-04-26

    We report three cases of thyroid sclerosing mucoepidermoid carcinoma with eosinophilia (SMECE), which is an extremely rare variant of mucoepidermoid carcinoma (MEC). The aims of this report were to describe the clinicopathological findings, including results from immunohistochemical and fluorescence in situ hybridization analysis of thyroid SMECE, as well as to discuss the distinction between thyroid SMECE and its salivary counterpart. The cases included a 63-year-old female, a 44-year-old male, and a 66-year-old female, with all patients presenting with Hashimoto's thyroiditis. Nodal metastasis was not found in any of the three cases. Neither regional recurrences nor distant metastases were found in any patient during the follow-up, which was 20 years, 3 years, and 18 months, respectively. Histologically, tumors were composed of epidermoid carcinoma cells, intermediate type carcinoma cells, and goblet cell-type mucus-secreting carcinoma cells, with all tumors displaying a sclerotic stroma with eosinophilic and lymphocytic infiltration. The formation of eosinophilic abscess in the tumor nests that might be a novel characteristic finding of SMECE was observed. Immunohistochemically, the carcinoma cells were positive for cytokeratin 34βE12, TTF-1, and PAX8, but negative for thyroglobulin. In two cases, increased IgG4-positive plasma cells were observed. Mastermind-like transcriptional coactivator 2 (MAML2), according to fluorescence in situ hybridization, was intact in all cases. In conclusion, thyroid SMECE has favorable outcomes and seems to be genetically different from salivary MEC. This is the first report to describe the presence of increased IgG4-positive plasma cells in the stroma of SMECE.

  4. Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide.

    PubMed

    Liu, Hongliang; Hou, Changchun; Zeng, Qiang; Zhao, Liang; Cui, Yushan; Yu, Linyu; Wang, Lingzhi; Zhao, Yang; Nie, Junyan; Zhang, Bin; Wang, Aiguo

    2016-09-01

    Excess fluoride and iodide coexist in drinking water in many regions, but few studies have investigated the single or interactive effects on thyroid in vivo. In our study, Wistar rats were exposed to excess fluoride and/or iodide through drinking water for 2 or 8 months. The structure and function of the thyroid, cells apoptosis and the expression of inositol-requiring enzyme 1 (IRE1) pathway-related factors were analyzed. Results demonstrated that excess fluoride and/or iodide could change thyroid follicular morphology and alter thyroid hormone levels in rats. After 8 months treatment, both single and co-exposure of the two microelements could raise the thyroid cells apoptosis. However, the expressions of IRE1-related factors were only increased in fluoride-alone and the combined groups. In conclusion, thyroid structure and thyroid function were both affected by excess fluoride and/or iodide. IRE1-induced apoptosis were involved in this cytotoxic process caused by fluoride or the combination of two microelements. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Management of thyroid cytological material, pre-analytical procedures and bio-banking.

    PubMed

    Bode-Lesniewska, Beata; Cochand-Priollet, Beatrix; Straccia, Patrizia; Fadda, Guido; Bongiovanni, Massimo

    2018-06-09

    Thyroid nodules are common and increasingly detected due to recent advances in imaging techniques. However, clinically relevant thyroid cancer is rare and the mortality from aggressive thyroid cancer remains constant. FNAC (Fine Needle Aspiration Cytology) is a standard method for diagnosing thyroid malignancy and the discrimination of malignant nodules from goiter. As the examined nodules on thyroid FNAC are often small incidental findings, it is important to maintain a low rate of undetermined diagnoses requiring further clinical work up or surgery. The most important factors determining the accuracy of the cytological diagnosis and suitability for biobanking of thyroid FNACs are the quality of the sample and availability of adequate tissue for auxiliary studies. This article analyses technical aspects (pre-analytics) of performing thyroid FNACs, including image guidance and rapid on slide evaluation (ROSE), sample collection methods (conventional slides, liquid based methods (LBC), cell blocks) and storage (bio-banking). The spectrum of the special studies (immunocytochemistry on direct slides or LBC, immunohistochemistry on cell blocks and molecular methods) required for improving the precision of the cytological diagnosis of the thyroid nodules is discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Warthin tumor-like papillary thyroid carcinoma with a minor dedifferentiated component: report of a case with clinicopathologic considerations.

    PubMed

    Amico, Paolo; Lanzafame, Salvatore; Li Destri, Giovanni; Greco, Paolo; Caltabiano, Rosario; Vecchio, Giada Maria; Magro, Gaetano

    2010-01-01

    Warthin tumor-like papillary thyroid carcinoma is an uncommon variant of papillary thyroid carcinoma. We report a rare case of Warthin tumor-like variant of papillary thyroid carcinoma with a dedifferentiated component consisting of a solid tumor area composed of neoplastic cells with a spindle to tall cell morphology associated with marked nuclear pleomorphism, atypical mitoses, and foci of necrosis. Although our patient presented with a locally aggressive disease (T3 N1b Mo), she is disease-free without radioiodine therapy after a 23-month follow-up period. We emphasize that Warthin tumor-like papillary thyroid carcinoma, like other morphological variants of papillary carcinoma, may occasionally undergo dedifferentiation. As this component may be only focally detectable, we suggest an extensive sampling of all large-sized (>3 cm) papillary thyroid carcinoma. Recognition of any dedifferentiated component in a Warthin tumor-like papillary thyroid carcinoma should be reported, including its percentage, because it may reflect a more aggressive clinical course.

  7. Warthin Tumor-Like Papillary Thyroid Carcinoma with a Minor Dedifferentiated Component: Report of a Case with Clinicopathologic Considerations

    PubMed Central

    Amico, Paolo; Lanzafame, Salvatore; Li Destri, Giovanni; Greco, Paolo; Caltabiano, Rosario; Vecchio, Giada Maria; Magro, Gaetano

    2010-01-01

    Warthin tumor-like papillary thyroid carcinoma is an uncommon variant of papillary thyroid carcinoma. We report a rare case of Warthin tumor-like variant of papillary thyroid carcinoma with a dedifferentiated component consisting of a solid tumor area composed of neoplastic cells with a spindle to tall cell morphology associated with marked nuclear pleomorphism, atypical mitoses, and foci of necrosis. Although our patient presented with a locally aggressive disease (T3 N1b Mo), she is disease-free without radioiodine therapy after a 23-month follow-up period. We emphasize that Warthin tumor-like papillary thyroid carcinoma, like other morphological variants of papillary carcinoma, may occasionally undergo dedifferentiation. As this component may be only focally detectable, we suggest an extensive sampling of all large-sized (>3 cm) papillary thyroid carcinoma. Recognition of any dedifferentiated component in a Warthin tumor-like papillary thyroid carcinoma should be reported, including its percentage, because it may reflect a more aggressive clinical course. PMID:20593036

  8. Fra-1 promotes growth and survival in RAS-transformed thyroid cells by controlling cyclin A transcription

    PubMed Central

    Casalino, Laura; Bakiri, Latifa; Talotta, Francesco; Weitzman, Jonathan B; Fusco, Alfredo; Yaniv, Moshe; Verde, Pasquale

    2007-01-01

    Fra-1 is frequently overexpressed in epithelial cancers and implicated in invasiveness. We previously showed that Fra-1 plays crucial roles in RAS transformation in rat thyroid cells and mouse fibroblasts. Here, we report a novel role for Fra-1 as a regulator of mitotic progression in RAS-transformed thyroid cells. Fra-1 expression and phosphorylation are regulated during the cell cycle, peaking at G2/M. Knockdown of Fra-1 caused a proliferative block and apoptosis. Although most Fra-1-knockdown cells accumulated in G2, a fraction of cells entering M-phase underwent abortive cell division and exhibited hallmarks of genomic instability (micronuclei, lagging chromosomes and anaphase bridges). Furthermore, we established a link between Fra-1 and the cell-cycle machinery by identifying cyclin A as a novel transcriptional target of Fra-1. During the cell cycle, Fra-1 was recruited to the cyclin A gene (ccna2) promoter, binding to previously unidentified AP-1 sites and the CRE. Fra-1 also induced the expression of JunB, which in turn interacts with the cyclin A promoter. Hence, Fra-1 induction is important in thyroid tumorigenesis, critically regulating cyclin expression and cell-cycle progression. PMID:17347653

  9. Metastatic squamous cell carcinoma thyroid from functionally cured cancer cervix

    PubMed Central

    Vamsy, Mohana; Dattatreya, Palanki Satya; Sarma, Lella Yugandhar; Dayal, Monal; Janardhan, Nandigam; Rao, Vatturi Venkata Satya Prabhakar

    2013-01-01

    The authors report a very unusual occurrence of a metastatic squamous carcinoma to thyroid gland from a treated squamous cell carcinoma cervix 12 years before with no recurrence at the primary site. The case also has an additional complexity of rapid progression of the metastatic thyroid carcinoma to wide spread dissemination to lungs and bones while on concurrent chemo radio therapy confirming the aggressiveness of the entity. PMID:24163519

  10. Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and Apigenin.

    PubMed

    Lakshmanan, Aparna; Scarberry, Daniel; Green, Jill A; Zhang, Xiaoli; Selmi-Ruby, Samia; Jhiang, Sissy M

    2015-10-13

    Targeted radioiodine therapy for thyroid cancer is based on selective stimulation of Na+/I- Symporter (NIS)-mediated radioactive iodide uptake (RAIU) in thyroid cells by thyrotropin. Patients with advanced thyroid cancer do not benefit from radioiodine therapy due to reduced or absent NIS expression. To identify inhibitors that can be readily translated into clinical care, we examined oncological pipeline inhibitors targeting Akt, MEK, PI3K, Hsp90 or BRAF in their ability to increase RAIU in thyroid cells expressing BRAFV600E or RET/PTC3 oncogene. Our data showed that (1) PI3K inhibitor GDC-0941 outperformed other inhibitors in RAIU increase mainly by decreasing iodide efflux rate to a great extent; (2) RAIU increase by all inhibitors was extensively reduced by TGF-β, a cytokine secreted in the invasive fronts of thyroid cancers; (3) RAIU reduction by TGF-β was mainly mediated by NIS reduction and could be reversed by Apigenin, a plant-derived flavonoid; and (4) In the presence of TGF-β, GDC-0941 with Apigenin co-treatment had the highest RAIU level in both BRAFV600E expressing cells and RET/PTC3 expressing cells. Taken together, Apigenin may serve as a dietary supplement along with small molecule inhibitors to improve radioiodine therapeutic efficacy on invasive tumor margins thereby minimizing future metastatic events.

  11. Estrogen receptor (ER)-beta, but not ER-alpha, is present in thyroid vessels: immunohistochemical evaluations in multinodular goiter and papillary thyroid carcinoma.

    PubMed

    Ceresini, Graziano; Morganti, Simonetta; Graiani, Virna; Saccani, Maria; Milli, Bruna; Usberti, Elisa; Valenti, Giorgio; Ceda, Gian Paolo; Corcione, Luigi

    2006-12-01

    Estrogen receptors (ERs) have been demostrated in the vessel structures of several systems. Little is known on the presence of ERs in the thyroid vessels. We immunohistochemically evaluated both ER-alpha and ER-beta immunoreactivity (IR) in both vascular and follicular thyroid cells in tissue samples from 17 cases of multinodular goiter (MNG) and 17 cases of papillary thyroid carcinoma (PTC). ER-alpha IR was undetectable in either tissue examined. In 100% of MNG samples, nuclear ER-beta IR was detected in both endothelial and follicular cells. In PTC samples, endothelial nuclear ER-beta IR was found in 100% of cases, whereas the nuclear staining of follicular cells was found in 83% of cases. The intensity of staining of the endothelial ER-beta IR was comparable between MNG and PTC. However, when follicular cells were considered, a tendency toward a decrease in nuclear staining and a significant increase in cytoplasmic staining were found in PTC lesions as compared to MNG. This study demonstrated that ER-beta, but not ER-alpha, IR is present in the endothelium of thyroid vessels. Furthermore, although data need to be confirmed in larger observations, these results suggest the lack of differences in the pattern of vascular ER-beta IR between MNG and PTC.

  12. The MEK1/2 Inhibitor AZD6244 Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib.

    PubMed

    Song, Hao; Zhang, Jinna; Ning, Liang; Zhang, Honglai; Chen, Dong; Jiao, Xuelong; Zhang, Kejun

    2018-05-08

    BACKGROUND [i]BRAF[/i]V600E mutation occurs in approximately 45% of papillary thyroid cancer (PTC) cases, and 25% of anaplastic thyroid cancer (ATC) cases. Vemurafenib/PLX4032, a selective BRAF inhibitor, suppresses extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) signaling and shows beneficial effects in patients with metastatic melanoma harboring the [i]BRAFV600E[/i] mutation. However, the response to vemurafenib is limited in BRAF-mutant thyroid cancer. The present study evaluated the effect of vemurafenib in combination with the selective MEK1/2 inhibitor AZD6244 on cell survival and explored the mechanism underlying the combined effect of vemurafenib and AZD6244 on thyroid cancer cells harboring BRAFV600E. MATERIAL AND METHODS Thyroid cancer 8505C and BCPAP cells harboring the [i]BRAFV600E[/i] mutation were exposed to vemurafenib (0.01, 0.1, and 1 µM) and AZD6244 (0.01, 0.1, and 1 µM) alone or in the indicated combinations for the indicated times. Cell viability was detected by the MTT assay. Cell cycle distribution and induction of apoptosis were detected by flow cytometry. The expression of cyclin D1, P27, (P)-ERK1/2 was evaluated by Western blotting. The effect of vemurafenib or AZD6244 or their combination on the growth of 8505C cells was examined in orthotopic xenograft mouse models [i]in vivo[/i]. RESULTS Vemurafenib alone did not increase cell apoptosis, whereas it decreased cell viability by promoting cell cycle arrest in BCPAP and 8505C cells. AZD6244 alone increased cell apoptosis by inducing cell cycle arrest in BCPAP and 8505C cells. Combination treatment with AZD6244 and vemurafenib significantly decreased cell viability and increased apoptosis in both BCPAP and 8505C cells compared with the effects of each drug alone. AZD6244 alone abolished phospho-ERK1/2 (pERK1/2) expression at 48 h, whereas vemurafenib alone downregulated pERK1/2 at 4-6 h, with rapid recovery of expression, reaching the highest level at 24-48 h. Combined treatment for 48 h completely inhibited pERK1/2 expression. Combination treatment with vemurafenib and AZD6244 inhibited cell growth and induced apoptosis by causing cell-cycle arrest, with the corresponding changes in the expression of the cell cycle regulators p27Kip1 and cyclin D1. Co-administration of vemurafenib and AZD6244 [i]in vivo[/i] had a significant synergistic antitumor effect in a nude mouse model. CONCLUSIONS Vemurafenib activated pERK1/2 and induced vemurafenib resistance in thyroid cancer cells. Combination treatment with vemurafenib and AZD6244 inhibited ERK signaling and caused cell cycle arrest, resulting in cell growth inhibition. Combination treatment in patients with thyroid cancer harboring the [i]BRAFV600E[/i] mutation may overcome vemurafenib resistance and enhance the therapeutic effect.

  13. Trends in white blood cell and platelet indices in a comparison of patients with papillary thyroid carcinoma and multinodular goiter do not permit differentiation between the conditions.

    PubMed

    Machairas, Nikolaos; Kostakis, Ioannis D; Prodromidou, Anastasia; Stamopoulos, Paraskevas; Feretis, Themistoklis; Garoufalia, Zoe; Damaskos, Christos; Tsourouflis, Gerasimos; Kouraklis, Gregory

    2017-11-01

    Carcinogenesis has been related to systematic inflammatory response. Our aim was to study white blood cell and platelet indices as markers of this inflammatory response in thyroid cancer and to associate them with various clinicopathological parameters. We included 228 patients who underwent thyroidectomy within a period of 54 months, 89 with papillary thyroid carcinoma and 139 with multinodular hyperplasia. We examined potential links between white blood cell and platelet indices on the one hand and the type thyroid pathology and various clinicopathological parameters on the other. No significant differences were detected between thyroid cancer and multinodular hyperplasia and no significant associations were detected with regard to lymphovascular invasion and tumor size. However, the mean platelet volume was higher in multifocal tumors, while the platelet count, plateletcrit, and platelet-to-lymphocyte ratio were increased in cases with extrathyroidal extension and in T3 tumors. Additionally, T3 tumors had lower platelet distribution width. These associations demonstrated low accuracy in predicting these pathological features, but they were found to provide a satisfying negative predictive value, with the exception of the mean platelet volume. White blood cell and platelet indices cannot assist in distinguishing benign goiter from thyroid cancer. However, they can provide information about tumor multifocality, extrathyroidal extension, and presence of a T3 tumor, and they may be used as a means to exclude these pathological characteristics, especially the last two, in papillary thyroid carcinoma.

  14. Targeting Autophagy Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib

    PubMed Central

    Wang, Weibin; Kang, Helen; Zhao, Yinu; Min, Irene; Wyrwas, Brian; Moore, Maureen; Teng, Lisong; Zarnegar, Rasa; Jiang, Xuejun

    2017-01-01

    Context: The RAF inhibitor vemurafenib has provided a major advance for the treatment of patients with BRAF-mutant metastatic melanoma. However, BRAF-mutant thyroid cancer is relatively resistant to vemurafenib, and the reason for this disparity remains unclear. Anticancer therapy–induced autophagy can trigger adaptive drug resistance in a variety of cancer types and treatments. To date, role of autophagy during BRAF inhibition in thyroid cancer remains unknown. Objective: In this study, we investigate if autophagy is activated in vemurafenib-treated BRAF-mutant thyroid cancer cells, and whether autophagy inhibition improves or impairs the treatment efficacy of vemurafenib. Design: Autophagy level was determined by western blot assay and transmission electron microscopy. The combined effects of autophagy inhibitor and vemurafenib were assessed in terms of cell viability in vitro and tumor growth rate in vivo. Whether the endoplasmic reticulum (ER) stress was in response to vemurafenib-induced autophagy was also analyzed. Results: Vemurafenib induced a high level of autophagy in BRAF-mutant thyroid cancer cells. Inhibition of autophagy by either a pharmacological inhibitor or interfering RNA knockdown of essential autophagy genes augmented vemurafenib-induced cell death. Vemurafenib-induced autophagy was independent of MAPK signaling pathway and was mediated through the ER stress response. Finally, administration of vemurafenib with the autophagy inhibitor hydroxychloroquine promoted more pronounced tumor suppression in vivo. Conclusions: Our data demonstrate that vemurafenib induces ER stress response–mediated autophagy in thyroid cancer and autophagy inhibition may be a beneficial strategy to sensitize BRAF-mutant thyroid cancer to vemurafenib. PMID:27754804

  15. Targeting Autophagy Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib.

    PubMed

    Wang, Weibin; Kang, Helen; Zhao, Yinu; Min, Irene; Wyrwas, Brian; Moore, Maureen; Teng, Lisong; Zarnegar, Rasa; Jiang, Xuejun; Fahey, Thomas J

    2017-02-01

    The RAF inhibitor vemurafenib has provided a major advance for the treatment of patients with BRAF-mutant metastatic melanoma. However, BRAF-mutant thyroid cancer is relatively resistant to vemurafenib, and the reason for this disparity remains unclear. Anticancer therapy-induced autophagy can trigger adaptive drug resistance in a variety of cancer types and treatments. To date, role of autophagy during BRAF inhibition in thyroid cancer remains unknown. In this study, we investigate if autophagy is activated in vemurafenib-treated BRAF-mutant thyroid cancer cells, and whether autophagy inhibition improves or impairs the treatment efficacy of vemurafenib. Autophagy level was determined by western blot assay and transmission electron microscopy. The combined effects of autophagy inhibitor and vemurafenib were assessed in terms of cell viability in vitro and tumor growth rate in vivo. Whether the endoplasmic reticulum (ER) stress was in response to vemurafenib-induced autophagy was also analyzed. Vemurafenib induced a high level of autophagy in BRAF-mutant thyroid cancer cells. Inhibition of autophagy by either a pharmacological inhibitor or interfering RNA knockdown of essential autophagy genes augmented vemurafenib-induced cell death. Vemurafenib-induced autophagy was independent of MAPK signaling pathway and was mediated through the ER stress response. Finally, administration of vemurafenib with the autophagy inhibitor hydroxychloroquine promoted more pronounced tumor suppression in vivo. Our data demonstrate that vemurafenib induces ER stress response-mediated autophagy in thyroid cancer and autophagy inhibition may be a beneficial strategy to sensitize BRAF-mutant thyroid cancer to vemurafenib. Copyright © 2017 by the Endocrine Society

  16. Occult oncocytic papillary thyroid carcinoma with lymphoid stroma (Warthin-like tumor): report of a case with concomitant mutations of BRAF V600E and V600K.

    PubMed

    Han, Fei; Zhang, Long; Zhang, Suxia; Zhou, Hong; Yi, Xianghua

    2015-01-01

    Warthin-Like tumor of the thyroid is a recently described rare variant of papillary thyroid cancer. The distinct histological feature of this variant is papillary architecture lining oncocytic epithelial cells with nuclear characteristics of papillary carcinoma, accompanied by prominent lymphocytic infiltration in the papillary stalks. Here, we present a case of occult Warthin-like papillary thyroid carcinoma, 0.5-cm in maximum dimension, underwent left thyroid lobectomy in a 65 years old Chinese woman. In this case, there was no extrathyroid extension, vascular invasion and lymphatic metastasis, as well as no complication of lymphocytic thyroiditis. Immunohistochemistry staining revealed that the tumor cells were positive for Leu-M1, HBME-1, 34βE12, and MIB-1 labeling index was low. RET/PTC expression was absent in tumor cells. Furthermore, activated point mutations of BRAF V600E and V600K were concurrently detected by DNA sequencing. Further studies are needed to elucidate the prevalence and role of BRAF(V600K) mutation in papillary thyroid carcinoma, and long-term follow-up for the patient is needed to clarify the biological behavior of this variant with dual BRAF mutations.

  17. Occult oncocytic papillary thyroid carcinoma with lymphoid stroma (Warthin-like tumor): report of a case with concomitant mutations of BRAF V600E and V600K

    PubMed Central

    Han, Fei; Zhang, Long; Zhang, Suxia; Zhou, Hong; Yi, Xianghua

    2015-01-01

    Warthin-Like tumor of the thyroid is a recently described rare variant of papillary thyroid cancer. The distinct histological feature of this variant is papillary architecture lining oncocytic epithelial cells with nuclear characteristics of papillary carcinoma, accompanied by prominent lymphocytic infiltration in the papillary stalks. Here, we present a case of occult Warthin-like papillary thyroid carcinoma, 0.5-cm in maximum dimension, underwent left thyroid lobectomy in a 65 years old Chinese woman. In this case, there was no extrathyroid extension, vascular invasion and lymphatic metastasis, as well as no complication of lymphocytic thyroiditis. Immunohistochemistry staining revealed that the tumor cells were positive for Leu-M1, HBME-1, 34βE12, and MIB-1 labeling index was low. RET/PTC expression was absent in tumor cells. Furthermore, activated point mutations of BRAF V600E and V600K were concurrently detected by DNA sequencing. Further studies are needed to elucidate the prevalence and role of BRAFV600K mutation in papillary thyroid carcinoma, and long-term follow-up for the patient is needed to clarify the biological behavior of this variant with dual BRAF mutations. PMID:26191315

  18. Cytophysiological Changes in the Follicular Epithelium of the Thyroid Gland after Long-Term Exposure to Low Doses of Dichlorodiphenyltrichloroethane (DDT).

    PubMed

    Yaglova, N V; Yaglov, V V

    2017-03-01

    Exposure to endocrine disruptors is considered as a risk factor thyroid gland diseases. We analyzed cytophysiological changes in rat thyroid follicular epithelium after long-term exposure to low doses of the most widespread disruptor DDT. Analysis of thyroid hormone production and light and electron microscopy of thyroid gland samples revealed cytophysiological changes in thyroid epithelium related to impaired transport through the apical membrane, suppressed Golgi complex activity, and impaired thyrotrophic hormone regulation of the secretory functions of thyroid cells, which led to compensatory transition from merocrine to microapocrine secret release.

  19. [Characterization of a human cell line from an anaplastic carcinoma of the thyroid gland].

    PubMed

    Gioanni, J; Zanghellini, E; Mazeau, C; Zhang, D; Courdi, A; Farges, M; Lambert, J C; Duplay, H; Schneider, M

    1991-11-01

    A new cell line derived from a thyroid anaplastic carcinoma, CAL 62, has been established in culture. This line is constituted by highly tumorigenic cells. Their epithelial phenotype is stable in culture. Immunochemical staining for human thyroglobulin is negative. Cytogenetic analysis showed a gain of chromosome 20, the translocation i (14q), and breakpoints of centrometric chromatine. These results are similar to those previously reported by other investigators. CAL 62 radiosensibility has been studied. The survival curve of the in vitro irradiated cells has been adjusted with a linear-quadratic model. This cell line is thus showed to be radioresistant. Cell line CAL 62 constitutes an appropriate model for in vitro studies of thyroid anaplastic carcinoma.

  20. Overexpression of peptide deformylase in breast, colon, and lung cancers.

    PubMed

    Randhawa, Harsharan; Chikara, Shireen; Gehring, Drew; Yildirim, Tuba; Menon, Jyotsana; Reindl, Katie M

    2013-07-01

    Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation.

  1. Overexpression of peptide deformylase in breast, colon, and lung cancers

    PubMed Central

    2013-01-01

    Background Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. Methods The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. Results PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. Conclusions This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation. PMID:23815882

  2. A solitary hyperfunctioning thyroid nodule harboring thyroid carcinoma: review of the literature.

    PubMed

    Mirfakhraee, Sasan; Mathews, Dana; Peng, Lan; Woodruff, Stacey; Zigman, Jeffrey M

    2013-05-04

    Hyperfunctioning nodules of the thyroid are thought to only rarely harbor thyroid cancer, and thus are infrequently biopsied. Here, we present the case of a patient with a hyperfunctioning thyroid nodule harboring thyroid carcinoma and, using MEDLINE literature searches, set out to determine the prevalence of and characteristics of malignant "hot" nodules as a group. Historical, biochemical and radiologic characteristics of the case subjects and their nodules were compared to those in cases of benign hyperfunctioning nodules. A literature review of surgical patients with solitary hyperfunctioning thyroid nodules managed by thyroid resection revealed an estimated 3.1% prevalence of malignancy. A separate literature search uncovered 76 cases of reported malignant hot thyroid nodules, besides the present case. Of these, 78% were female and mean age at time of diagnosis was 47 years. Mean nodule size was 4.13 ± 1.68 cm. Laboratory assessment revealed T3 elevation in 76.5%, T4 elevation in 51.9%, and subclinical hyperthyroidism in 13% of patients. Histological diagnosis was papillary thyroid carcinoma (PTC) in 57.1%, follicular thyroid carcinoma (FTC) in 36.4%, and Hurthle cell carcinoma in 7.8% of patients. Thus, hot thyroid nodules harbor a low but non-trivial rate of malignancy. Compared to individuals with benign hyperfunctioning thyroid nodules, those with malignant hyperfunctioning nodules are younger and more predominantly female. Also, FTC and Hurthle cell carcinoma are found more frequently in hot nodules than in general. We were unable to find any specific characteristics that could be used to distinguish between malignant and benign hot nodules.

  3. A solitary hyperfunctioning thyroid nodule harboring thyroid carcinoma: review of the literature

    PubMed Central

    2013-01-01

    Hyperfunctioning nodules of the thyroid are thought to only rarely harbor thyroid cancer, and thus are infrequently biopsied. Here, we present the case of a patient with a hyperfunctioning thyroid nodule harboring thyroid carcinoma and, using MEDLINE literature searches, set out to determine the prevalence of and characteristics of malignant “hot” nodules as a group. Historical, biochemical and radiologic characteristics of the case subjects and their nodules were compared to those in cases of benign hyperfunctioning nodules. A literature review of surgical patients with solitary hyperfunctioning thyroid nodules managed by thyroid resection revealed an estimated 3.1% prevalence of malignancy. A separate literature search uncovered 76 cases of reported malignant hot thyroid nodules, besides the present case. Of these, 78% were female and mean age at time of diagnosis was 47 years. Mean nodule size was 4.13 ± 1.68 cm. Laboratory assessment revealed T3 elevation in 76.5%, T4 elevation in 51.9%, and subclinical hyperthyroidism in 13% of patients. Histological diagnosis was papillary thyroid carcinoma (PTC) in 57.1%, follicular thyroid carcinoma (FTC) in 36.4%, and Hurthle cell carcinoma in 7.8% of patients. Thus, hot thyroid nodules harbor a low but non-trivial rate of malignancy. Compared to individuals with benign hyperfunctioning thyroid nodules, those with malignant hyperfunctioning nodules are younger and more predominantly female. Also, FTC and Hurthle cell carcinoma are found more frequently in hot nodules than in general. We were unable to find any specific characteristics that could be used to distinguish between malignant and benign hot nodules. PMID:23641736

  4. Endoplasmic reticulum stress as a novel mechanism in amiodarone-induced destructive thyroiditis.

    PubMed

    Lombardi, Angela; Inabnet, William Barlow; Owen, Randall; Farenholtz, Kaitlyn Ellen; Tomer, Yaron

    2015-01-01

    Amiodarone (AMIO) is one of the most effective antiarrhythmic drugs available; however, its use is limited by a serious side effect profile, including thyroiditis. The mechanisms underlying AMIO thyroid toxicity have been elusive; thus, identification of novel approaches in order to prevent thyroiditis is essential in patients treated with AMIO. Our aim was to evaluate whether AMIO treatment could induce endoplasmic reticulum (ER) stress in human thyroid cells and the possible implications of this effect in AMIO-induced destructive thyroiditis. Here we report that AMIO, but not iodine, significantly induced the expression of ER stress markers including Ig heavy chain-binding protein (BiP), phosphoeukaryotic translation initiation factor 2α (eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP) and spliced X-box binding protein-1 (XBP-1) in human thyroid ML-1 cells and human primary thyrocytes. In both experimental systems AMIO down-regulated thyroglobulin (Tg) protein but had little effect on Tg mRNA levels, suggesting a mechanism involving Tg protein degradation. Indeed, pretreatment with the specific proteasome inhibitor MG132 reversed AMIO-induced down-regulation of Tg protein levels, confirming a proteasome-dependent degradation of Tg protein. Corroborating our findings, pretreatment of ML-1 cells and human primary thyrocytes with the chemical chaperone 4-phenylbutyric acid completely prevented the effect of AMIO on both ER stress induction and Tg down-regulation. We identified ER stress as a novel mechanism contributing to AMIO-induced destructive thyroiditis. Our data establish that AMIO-induced ER stress impairs Tg expression via proteasome activation, providing a valuable therapeutic avenue for the treatment of AMIO-induced destructive thyroiditis.

  5. RET/PTC Translocations and Clinico-Pathological Features in Human Papillary Thyroid Carcinoma

    PubMed Central

    Romei, Cristina; Elisei, Rossella

    2012-01-01

    Thyroid carcinoma is the most frequent endocrine cancer accounting for 5–10% of thyroid nodules. Papillary histotype (PTC) is the most prevalent form accounting for 80% of all thyroid carcinoma. Although much is known about its epidemiology, pathogenesis, clinical, and biological behavior, the only documented risk factor for PTC is the ionizing radiation exposure. Rearrangements of the Rearranged during Transfection (RET) proto-oncogene are found in PTC and have been shown to play a pathogenic role. The first RET rearrangement, named RET/PTC, was discovered in 1987. This rearrangement constitutively activates the transcription of the RET tyrosine-kinase domain in follicular cell, thus triggering the signaling along the MAPK pathway and an uncontrolled proliferation. Up to now, 13 different types of RET/PTC rearrangements have been reported but the two most common are RET/PTC1 and RET/PTC3. Ionizing radiations are responsible for the generation of RET/PTC rearrangements, as supported by in vitro studies and by the evidence that RET/PTC, and particularly RET/PTC3, are highly prevalent in radiation induced PTC. However, many thyroid tumors without any history of radiation exposure harbor similar RET rearrangements. The overall prevalence of RET/PTC rearrangements varies from 20 to 70% of PTCs and they are more frequent in childhood than in adulthood thyroid cancer. Controversial data have been reported on the relationship between RET/PTC rearrangements and the PTC prognosis. RET/PTC3 is usually associated with a more aggressive phenotype and in particular with a greater tumor size, the solid variant, and a more advanced stage at diagnosis which are all poor prognostic factors. In contrast, RET/PTC1 rearrangement does not correlate with any clinical–pathological characteristics of PTC. Moreover, the RET protein and mRNA expression level did not show any correlation with the outcome of patients with PTC and no correlation between RET/PTC rearrangements and the expression level of the thyroid differentiation genes was observed. Recently, a diagnostic role of RET/PTC rearrangements has been proposed. It can be searched for in the mRNA extracted from cytological sample especially in case with indeterminate cytology. However, both the fact that it can be present in a not negligible percentage of benign cases and the technical challenge in extracting mRNA from cytological material makes this procedure not applicable at routine level, at least for the moment. PMID:22654872

  6. COX-2 expression in papillary thyroid carcinoma (PTC) in cytological material obtained by fine needle aspiration biopsy (FNAB)

    PubMed Central

    2011-01-01

    Background COX-2 is an enzyme isoform that catalyses the formation of prostanoids from arachidonic acid. An increased COX-2 gene expression is believed to participate in carcinogenesis. Recent studies have shown that COX-2 up-regulation is associated with the development of numerous neoplasms, including skin, colorectal, breast, lung, stomach, pancreas and liver cancers. COX-2 products stimulate endothelial cell proliferation and their overexpression has been demonstrated to be involved in the mechanism of decreased resistance to apoptosis. Suppressed angiogenesis was found in experimental animal studies as a consequence of null mutation of COX-2 gene in mice. Despite the role of COX-2 expression remains a subject of numerous studies, its participation in carcinogenesis or the thyroid cancer progression remains unclear. Methods Twenty three (23) patients with cytological diagnosis of PTC were evaluated. After FNAB examination, the needle was washed out with a lysis buffer and the obtained material was used for COX-2 expression estimation. Total RNA was isolated (RNeasy Micro Kit), and RT reactions were performed. β-actin was used as endogenous control. Relative COX-2 expression was assessed in real-time PCR reactions by an ABI PRISM 7500 Sequence Detection System, using the ΔΔCT method. Results COX-2 gene expression was higher in patients with PTC, when compared to specimens from patients with non-toxic nodular goitre (NTG). Conclusions The preliminary results may indicate COX-2 role in thyroid cancer pathogenesis, however the observed variability in results among particular subjects requires additional clinical data and tumor progression analysis. PMID:21214962

  7. COX-2 expression in papillary thyroid carcinoma (PTC) in cytological material obtained by fine needle aspiration biopsy (FNAB).

    PubMed

    Krawczyk-Rusiecka, Kinga; Wojciechowska-Durczyńska, Katarzyna; Cyniak-Magierska, Anna; Adamczewski, Zbigniew; Gałecka, Elżbieta; Lewiński, Andrzej

    2011-01-10

    COX-2 is an enzyme isoform that catalyses the formation of prostanoids from arachidonic acid. An increased COX-2 gene expression is believed to participate in carcinogenesis. Recent studies have shown that COX-2 up-regulation is associated with the development of numerous neoplasms, including skin, colorectal, breast, lung, stomach, pancreas and liver cancers. COX-2 products stimulate endothelial cell proliferation and their overexpression has been demonstrated to be involved in the mechanism of decreased resistance to apoptosis. Suppressed angiogenesis was found in experimental animal studies as a consequence of null mutation of COX-2 gene in mice. Despite the role of COX-2 expression remains a subject of numerous studies, its participation in carcinogenesis or the thyroid cancer progression remains unclear. Twenty three (23) patients with cytological diagnosis of PTC were evaluated. After FNAB examination, the needle was washed out with a lysis buffer and the obtained material was used for COX-2 expression estimation. Total RNA was isolated (RNeasy Micro Kit), and RT reactions were performed. β-actin was used as endogenous control. Relative COX-2 expression was assessed in real-time PCR reactions by an ABI PRISM 7500 Sequence Detection System, using the ΔΔCT method. COX-2 gene expression was higher in patients with PTC, when compared to specimens from patients with non-toxic nodular goitre (NTG). The preliminary results may indicate COX-2 role in thyroid cancer pathogenesis, however the observed variability in results among particular subjects requires additional clinical data and tumor progression analysis.

  8. Hyperthyroidism After Allogeneic Hematopoietic Stem Cell Transplantation: A Report of Four Cases

    PubMed Central

    Sağ, Erdal; Gönç, Nazlı; Alikaşifoğlu, Ayfer; Kuşkonmaz, Barış; Uçkan, Duygu; Özön, Alev; Kandemir, Nurgün

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for many hematological disorders, primary immunodeficiencies, and metabolic disorders. Thyroid dysfunction is one of the frequently seen complications of HSCT. However, hyperthyroidism due to Graves’ disease, autoimmune thyroiditis, and thyrotoxicosis are rare. Herein, we report a series of 4 patients who were euthyroid before HSCT but developed hyperthyroidism (3 of them developed autoimmune thyroid disease) after transplantation. PMID:26777050

  9. Differentiated thyroid cancer cell invasion is regulated through epidermal growth factor receptor-dependent activation of matrix metalloproteinase (MMP)-2/gelatinase A

    PubMed Central

    Yeh, Michael W; Rougier, Jean-Philippe; Park, Jin-Woo; Duh, Quan-Yang; Wong, Mariwil; Werb, Zena; Clark, Orlo H

    2008-01-01

    Mechanisms of invasion in thyroid cancer remain poorly understood. We hypothesized that signaling via the epidermal growth factor receptor (EGFR) stimulates thyroid cancer cell invasion by altering the expression and cleavage of matrix metalloproteinases (MMPs). Papillary and follicular carcinoma cell lines were treated with EGF, the EGFR tyrosine kinase inhibitor AG1478, and the MMP inhibitors GM-6001 and Col-3. Flow cytometry was used to detect EGFR. In vitro invasion assays, gelatin zymography, and quantitative reverse transcription-PCR were used to assess the changes in invasive behavior and MMP expression and activation. All cell lines were found to overexpress functional EGFR. EGF stimulated invasion by thyroid cancer cells up to sevenfold (P<0.0001), a process that was antagonized completely by AG1478 and Col-3, partially by GM-6001, but not by the serine protease inhibitor aprotinin. EGF upregulated expression of MMP-9 (2.64– to 8.89-fold, P<0.0001) and membrane type-1 MMP (MT1-MMP, 1.97- to 2.67-fold, P<0.0001). This effect was blocked completely by AG1478 and partially by Col-3. The activation of MMP-2 paralleled MT1-MMP expression. We demonstrate that MMPs are critical effectors of invasion in the papillary and follicular thyroid cancer cell lines studied. Invasion is regulated by signaling through EGFR, an effect mediated by augmentation of gelatinase expression and activation. MMP inhibitors and growth factor antagonists may be effective tumoristatic agents for the treatment of aggressive thyroid carcinomas. PMID:17158762

  10. Developmental and Cell-Specific Expression of Thyroid Hormone Transporters in the Mouse Cochlea

    PubMed Central

    Sharlin, David S.; Visser, Theo J.

    2011-01-01

    Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr−/− mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development. PMID:21878515

  11. Thyroid hormones states and brain development interactions.

    PubMed

    Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G

    2008-04-01

    The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.

  12. c-KIT receptor expression is strictly associated with the biological behaviour of thyroid nodules

    PubMed Central

    2012-01-01

    Background A large amount of information has been collected on the molecular tumorigenesis of thyroid cancer. A low expression of c-KIT gene has been reported during the transformation of normal thyroid epithelium to papillary carcinoma suggesting a possible role of the gene in the differentiation of thyroid tissue rather than in the proliferation. The initial presentation of thyroid carcinoma is through a nodule and the best way nowadays to evaluate it is by fine-needle aspiration (FNA). However many thyroid FNAs are not definitively benign or malignant, yielding an indeterminate or suspicious diagnosis which ranges from 10 to 25% of FNAs. BRAF mutational analysis is commonly used to assess the malignancy of thyroid nodules but unfortunately it still leaves indeterminate diagnoses. The development of molecular initial diagnostic tests for evaluating a thyroid nodule is needed in order to define optimal surgical approach for patients with uncertain diagnosis pre- and intra-operatively. Methods In this study we extracted RNA from 82 FNA smears, 46 malignant and 36 benign at the histology, in order to evaluate by quantitative Real Time PCR the expression levels of c-KIT gene. Results We have found a highly preferential decrease rather than increase in transcript of c-KIT in malignant thyroid lesions compared to the benign ones. To explore the diagnostic utility of c-KIT expression in thyroid nodules, its expression values were divided in four arbitrarily defined classes, with class I characterized by the complete silencing of the gene. Class I and IV represented the two most informative groups, with 100% of the samples found malignant or benign respectively. The molecular analysis was proven by ROC (receiver operating characteristic) analysis to be highly specific and sensitive improving the cytological diagnostic accuracy of 15%. Conclusion We propose the use of BRAF test (after uncertain cytological diagnosis) to assess the malignancy of thyroid nodules at first, then the use of the c-KIT expression to ultimately assess the diagnosis of the nodules that otherwise would remain suspicious. The c-KIT expression-based classification is highly accurate and may provide a tool to overcome the difficulties in today's preoperative diagnosis of thyroid suspicious malignancies. PMID:22233760

  13. Immunological Mechanisms Implicated in the Pathogenesis of Chronic Urticaria and Hashimoto Thyroiditis.

    PubMed

    Berghi, Nicolae Ovidiu

    2017-08-01

    Autoimmunity represents the attack of the immune system of an organism against its own cells and tissues. Autoimmune diseases may affect one organ (Hashimoto thyroiditis) or can be systemic (chronic urticaria). Many factors are implicated in the pathogenesis of autoimmunity (white cells, cytokines, chemokines). Hashimoto thyroiditis has been associated with chronic urticaria in the last 3 decades in a number of clinical studies. Anti-thyroid antibodies have been documented in a proportion ranging from 10% to 30% in chronic urticaria patients in different countries from 3 continents. Two of the factors involved in the mechanism of autoimmunity are present both in the pathophysiology of Hashimoto thyroiditis and chronic urticaria. According to recent studies, IL6 is implicated in the pathogenesis of both diseases. TregsCD4+CD25+Foxp3+ cells have also been implicated in the pathological mechanisms of these 2 entities. This review offers an explanation of the clinical and statistical association between these two diseases from the pathophysiological point of view.

  14. Lack of in vitro constitutive activity for four previously reported TSH receptor mutations identified in patients with nonautoimmune hyperthyroidism and hot thyroid carcinomas.

    PubMed

    Jaeschke, Holger; Mueller, Sandra; Eszlinger, Markus; Paschke, Ralf

    2010-12-01

    Constitutively activating mutations (CAMs) of the TSHR are the major cause for nonautoimmune hyperthyroidism. Re-examination of constitutive activity previously determined in CHO cell lines recently demonstrated the caveats for the in vitro determination of constitutive TSHR activity, which leads to false positive conclusions regarding the molecular origin of hyperthyroidism or hot thyroid carcinomas. Mutations L677V and T620I identified in hot thyroid carcinomas were previously characterized in CHO and in 3T3-Vill cell lines, respectively, stably expressing the mutant without determination of TSHR expression. F666L identified in a patient with hot thyroid nodules, I691F in a family with nonautoimmune hyperthyroidism and F631I identified in a hot thyroid carcinoma were not characterized for their in vitro function. Therefore, we decided to (re)evaluate the in vitro function of these five TSHR variants by determination of cell surface expression, and intracellular cAMP and inositol phosphate levels and performed additionally linear regression analyses to determine basal activity independently from the mutant's cell surface expression in COS-7 and HEK(GT) cells. Only one (F631I) of the five investigated TSHR variants displayed constitutive activity for G(α) s signalling and showed correlation with the clinical phenotype. The previous false classification of T620I and L677V as CAMs is most likely related to the fact that both mutations were characterized in cell lines stably expressing the mutated receptor construct without assessing the respective receptor number per cell. Other molecular aetiologies for the nonautoimmune hyperthyroidism and/or hot thyroid carcinomas in these three patients and one family should be elucidated. © 2010 Blackwell Publishing Ltd.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xu-Qian; Liu, Xiang-Fan; Yao, Ling

    Highlights: •A novel FAK splicing mutation identified in breast tumor. •FAK-Del33 mutation promotes cell migration and invasion. •FAK-Del33 mutation regulates FAK/Src signal pathway. -- Abstract: Focal adhesion kinase (FAK) regulates cell adhesion, migration, proliferation, and survival. We identified a novel splicing mutant, FAK-Del33 (exon 33 deletion, KF437463), in both breast and thyroid cancers through colony sequencing. Considering the low proportion of mutant transcripts in samples, this mutation was detected by TaqMan-MGB probes based qPCR. In total, three in 21 paired breast tissues were identified with the FAK-Del33 mutation, and no mutations were found in the corresponding normal tissues. When introducedmore » into a breast cell line through lentivirus infection, FAK-Del33 regulated cell motility and migration based on a wound healing assay. We demonstrated that the expression of Tyr397 (main auto-phosphorylation of FAK) was strongly increased in FAK-Del33 overexpressed breast tumor cells compared to wild-type following FAK/Src RTK signaling activation. These results suggest a novel and unique role of the FAK-Del33 mutation in FAK/Src signaling in breast cancer with significant implications for metastatic potential.« less

  16. Incidentally Detected Thyroid Follicular Neoplasm on Somatostatin Receptor Imaging and Post-therapy Scan.

    PubMed

    Sood, Apurva; Singh, Harpreet; Sood, Ashwani; Basher, Rajender Kumar; Mittal, Bhagwant Rai

    2017-01-01

    Peptide receptor radionuclide therapy (PRRT) either using Lu-177 or Y-90 peptide radiopharmaceuticals has emerged as promising treatment modality in patients with inoperable metastatic neuroendocrine tumour (NET) including medullary thyroid cancer, because of overexpression of somatostatin receptor 2 (sstr-2) on these cells. The several investigators have used PRRT in non-iodine avid differentiated thyroid cancer patients with limited success, where other treatment modalities have failed, probably due to faint sstr-2 expression in these lesions. However Hurthle cell neoplasms being predominantly non-iodine avid lesions have shown sstr-2 over-expression. The present case of inoperable NET patient imaged and treated with radiolabelled somatostatin analogue showed incidentally detected thyroid lesion highlighting the its importance in imaging and treatment in these type of thyroid malignancies.

  17. Incidentally Detected Thyroid Follicular Neoplasm on Somatostatin Receptor Imaging and Post-therapy Scan

    PubMed Central

    Sood, Apurva; Singh, Harpreet; Sood, Ashwani; Basher, Rajender Kumar; Mittal, Bhagwant Rai

    2017-01-01

    Peptide receptor radionuclide therapy (PRRT) either using Lu-177 or Y-90 peptide radiopharmaceuticals has emerged as promising treatment modality in patients with inoperable metastatic neuroendocrine tumour (NET) including medullary thyroid cancer, because of overexpression of somatostatin receptor 2 (sstr-2) on these cells. The several investigators have used PRRT in non-iodine avid differentiated thyroid cancer patients with limited success, where other treatment modalities have failed, probably due to faint sstr-2 expression in these lesions. However Hurthle cell neoplasms being predominantly non-iodine avid lesions have shown sstr-2 over-expression. The present case of inoperable NET patient imaged and treated with radiolabelled somatostatin analogue showed incidentally detected thyroid lesion highlighting the its importance in imaging and treatment in these type of thyroid malignancies. PMID:28680210

  18. Long noncoding RNA AFAP1‑AS1 enhances cell proliferation and invasion in osteosarcoma through regulating miR‑4695‑5p/TCF4‑β‑catenin signaling.

    PubMed

    Li, Rongrui; Liu, Shichen; Li, Yao; Tang, Qingxi; Xie, Yunchuan; Zhai, Raosheng

    2018-06-05

    Long noncoding RNA AFAP1‑AS1 has been shown to promote tumor progression in several human cancer types, such as thyroid cancer, tongue squamous cell carcinoma and lung cancer. However, the role of AFAP1‑AS1 in osteosarcoma (OS) has not been investigated. In the present study, the expression of AFAP1‑AS1 was significantly upregulated in OS tissues and cell lines. Moreover, AFAP1‑AS1 expression was negatively correlated with OS patient prognosis. Besides, AFAP1‑AS1 knockdown significantly inhibited the proliferation and invasion of OS cells in vitro. Furthermore, in vivo xenograft experiments indicated that AFAP1‑AS1 depletion delayed tumor growth. Regarding the underlying mechanism, AFAP1‑AS1 served as a sponge to repress the level of microRNA (miR)‑4695‑5p, which targeted transcription factor (TCF)4, a pivot effector of Wnt/β‑catenin signaling pathway. It was demonstrated that overexpression of AFAP1‑AS1 inhibited the expression of miR‑4695‑5p, while miR‑4695‑5p overexpression decreased TCF4 expression and reduced activation of Wnt/β‑catenin pathway. Through rescue assays, it was demonstrated that restoration of TCF4 expression reversed the effects of AFAP1‑AS1 knockdown or miR‑4695‑5p overexpression on OS cells. Taken together, these findings demonstrated that the AFAP1‑AS1/miR‑4695‑5p/TCF4‑β‑catenin axis played an important role in OS progression.

  19. Metachronous solitary metastasis to the thyroid gland from squamous cell carcinoma of the lung: a case report and literature review.

    PubMed

    Gelsomino, Francesco; Lamberti, Giuseppe; Ambrosini, Valentina; Sperandi, Francesca; Agosti, Roberto; Morganti, Alessio G; Ardizzoni, Andrea

    2017-11-15

    Non-small cell lung cancer presents at an advanced stage at diagnosis in two-thirds of cases. The most frequent metastatic sites are the central nervous system, adrenal glands and bones. By contrast, the thyroid gland is an extremely rare site of dissemination. A 64-year-old Caucasian man previously treated with radiosurgery and brain metastasectomy followed by right middle lobectomy for a squamous cell lung carcinoma had a metachronous solitary metastasis to the thyroid gland, as confirmed by fine-needle aspiration cytology and open biopsy. He underwent curative radiotherapy, with an initial response. At 9 months' follow-up the tumor relapsed both in the thyroid and the lung. Review of the literature confirmed that thyroid metastasis from lung cancer is very uncommon in clinical practice. No data on the role of surgery or curative radiotherapy in thyroid metastasis are available because of the lack of prospective studies addressing the impact on survival of these treatment strategies either alone or in combination. In the case described here, radical treatment with radiotherapy allowed to obtain a modest benefit in terms of relapse-free survival. A diagnosis of metastasis to the thyroid gland should be suspected in patients who present a thyroid nodule or suggestive imaging findings when there is a history of malignancy, including lung cancer. Indeed, an early diagnosis allows to pursue radical treatment that, in selected patients, could lead to long-term survival.

  20. HURTLE CELLS IMMUNOHISTOCHEMICAL ACTIVITIES IN HASHIMOTO THYROIDITIS PARENCHYMA.

    PubMed

    Tsagareli, Z; Kvachadze, T; Melikadze, E; Metreveli, L; Nikobadze, E; Gogiashvili, L

    2016-11-01

    The present study was designed to evaluate the participation and utility of Hǘrtle cells morphological requirment and transformation under Hashimoto autoimmune thyroiditis versus Riedel´s struma. Several markers have been evaluated to detect induced activities of Hǘrtle cells. Study subject - specimens (tissue fragments) collected from TG surgery (thyroidectomy) for mollecular (receptor) diagnosis of Hǘrtle cells activities using routine histological and immunohistochemical samples. 89 cases were selected in Hashimoto thyroiditis diagnosis with Hǘrtle cells history (adenoma and adenomatous grouth of oncocytes). Markers as: TSH receptors, TTF-1, S-100 protein, also anti-TPO and anti-TG levels in blood plasm were detected. It was shown that solid cell claster-nests like agregation of oncocytes and adenomatous growth foci in parafollicular areas with anti-TPO and anti-TG antibodies levels arising while Riedel´s struma shown only large intra- and extra glandular inflammatory proliferative fibrosing process. Large positive expression of TTF-1 and S-100 protein and the negative reaction of TSH receptor factor suggest that Thyroid parenchyma disorganization and mollecular biological atypia with Hǘrtle cells are proceses due to hypothyreoidismus, as well as neuroectodermal cells prominent activities in 70% of Hashimoto cases.

  1. Enhanced Autoimmunity Associated with Induction of Tumor Immunity in Thyroiditis-Susceptible Mice

    PubMed Central

    Kari, Suresh; Flynn, Jeffrey C.; Zulfiqar, Muhammad; Snower, Daniel P.; Elliott, Bruce E.

    2013-01-01

    Background: Immunotherapeutic modalities to bolster tumor immunity by targeting specific sites of the immune network often result in immune dysregulation with adverse autoimmune sequelae. To understand the relative risk for opportunistic autoimmune disorders, we studied established breast cancer models in mice resistant to experimental autoimmune thyroiditis (EAT). EAT is a murine model of Hashimoto's thyroiditis, an autoimmune syndrome with established MHC class II control of susceptibility. The highly prevalent Hashimoto's thyroiditis is a prominent autoimmune sequela in immunotherapy, and its relative ease of diagnosis and treatment could serve as an early indicator of immune dysfunction. Here, we examined EAT-susceptible mice as a combined model for induction of tumor immunity and EAT under the umbrella of disrupted regulatory T cell (Treg) function. Methods: Tumor immunity was evaluated in female CBA/J mice after depleting Tregs by intravenous administration of CD25 monoclonal antibody and/or immunizing with irradiated mammary adenocarcinoma cell line A22E-j before challenge; the role of T cell subsets was determined by injecting CD4 and/or CD8 antibodies after tumor immunity induction. Tumor growth was monitored 3×/week by palpation. Subsequent EAT was induced by mouse thyroglobulin (mTg) injections (4 daily doses/week over 4 weeks). For some experiments, EAT was induced before establishing tumor immunity by injecting mTg+interleukin-1, 7 days apart. EAT was evaluated by mTg antibodies and thyroid infiltration. Results: Strong resistance to tumor challenge after Treg depletion and immunization with irradiated tumor cells required participation of both CD4+ and CD8+ T cells. This immunity was not altered by induction of mild thyroiditis with our protocol of Treg depletion and adjuvant-free, soluble mTg injections. However, the increased incidence of mild thyroiditis can be directly related to Treg depletion needed to achieve strong tumor immunity. Moreover, when a subclinical, mild thyroiditis was induced with soluble mTg and low doses of interleukin-1, to simulate pre-existing autoimmunity in patients subjected to cancer immunotherapy, mononuclear infiltration into the thyroid was enhanced. Conclusions: Our current findings indicate that genetic predisposition to autoimmune disease could enhance autoimmunity during induction of tumor immunity in thyroiditis-susceptible mice. Thus, HLA genotyping of cancer patients should be part of any risk assessment. PMID:23777580

  2. Clinical Characteristics of Patients With Renal Cell Carcinoma and Metastasis to the Thyroid Gland.

    PubMed

    Jackson, Gregory; Fino, Nora; Bitting, Rhonda L

    2017-01-01

    Renal cell carcinoma (RCC) is the most common malignancy to metastasize to the thyroid gland. The aims of this study are as follows: (1) to analyze the clinical characteristics of patients with thyroid involvement of RCC and (2) in patients with RCC thyroid metastasis, to determine whether RCC metastasis to glandular organs only portends a better prognosis compared with other patterns of RCC metastasis. Patients from Wake Forest Baptist Medical Center (WFBMC) diagnosed with thyroid metastasis from RCC were identified and medical records retrospectively examined. A systematic review of the literature for cases of RCC involving the thyroid gland was also performed. The clinical characteristics of the institutional cohort and the cases from the literature review were compared. Descriptive statistical analysis was performed, and overall survival (OS) was summarized using Kaplan-Meier methods. The median OS for the WFBMC cohort was 56.4 months. In the literature review cohort, OS of patients with RCC thyroid metastasis was 213.6 months, and there was no statistically significant survival difference based on the site of metastasis. Median survival after thyroid metastasis from RCC for the WFBMC and literature cohort was 21.6 and 45.6 months, respectively. Metastatic RCC should be included in the differential of a new thyroid mass. Treatment directed at the thyroid metastasis results in prolonged survival in some cases. Further analysis into the genomic differences and mechanisms of thyroid metastasis is warranted.

  3. Sorafenib induced thyroiditis in two patients with hepatocellular carcinoma.

    PubMed

    van Doorn, Leni; Eskens, Ferry A L M; Visser, Theo J; van der Lugt, Aad; Mathijssen, Ron H J; Peeters, Robin P

    2011-02-01

    Sorafenib is a multi-targeted tyrosine kinase inhibitor licensed for the treatment of hepatocellular carcinoma and renal cell carcinoma. Thyroid function test abnormalities have been reported for different tyrosine kinase inhibitors, but only limited data on thyroid function test abnormalities related to sorafenib are available, demonstrating the occurrence of hypothyroidism in patients treated with sorafenib. We describe two patients who developed temporary hyperthyroidism during the course of sorafenib treatment, which was followed by overt and subclinical hypothyroidism, respectively. Thyroid ultrasonography showed an atrophic thyroid gland in patient 1 , and signs of thyroiditis in patient 2 . Detailed reassessment of thyroid volumes on routinely performed computerized tomography scans showed a gradual decrease in thyroid volume during sorafenib treatment in one patient, suggesting progressive thyroid destruction. This case report describes in detail and for the first time two cases of sorafenib-induced thyroiditis. We assume that this sorafenib-induced destructive thyroiditis is an important cause of sorafenib-induced hypothyroidism.

  4. Hürthle cell carcinoma in a lingual thyroid.

    PubMed

    Thakur, Jagdeep; Verma, Naina; Singh, Riya

    2018-06-13

    To present a case of lingual thyroid Hürthle cell carcinoma. A 37-year old female presented with dysphagia and recurrent haemorrhage. Histopathology was suggestive of Hürthle cell carcinoma; the tumour was excised by the transglossal approach which provided adequate exposure and helped avoid external scar or mandibular osteoetomy. Histopathology showed tumour-positive right lateral resection margin. This prompted referral to nuclear medicine for radioablation. Lingual thyroid cases should be followed up closely and fine needle aspiration biopsy should be considered when in doubt. ©2018The Author(s). Published by S. Karger AG, Basel.

  5. Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research

    Cancer.gov

    Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is also essential for proper development and differentiation of all cells of the human body.

  6. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and Apigenin

    PubMed Central

    Lakshmanan, Aparna; Scarberry, Daniel; Green, Jill A.; Zhang, Xiaoli; Selmi-Ruby, Samia; Jhiang, Sissy M.

    2015-01-01

    Targeted radioiodine therapy for thyroid cancer is based on selective stimulation of Na+/I− Symporter (NIS)-mediated radioactive iodide uptake (RAIU) in thyroid cells by thyrotropin. Patients with advanced thyroid cancer do not benefit from radioiodine therapy due to reduced or absent NIS expression. To identify inhibitors that can be readily translated into clinical care, we examined oncological pipeline inhibitors targeting Akt, MEK, PI3K, Hsp90 or BRAF in their ability to increase RAIU in thyroid cells expressing BRAFV600E or RET/PTC3 oncogene. Our data showed that (1) PI3K inhibitor GDC-0941 outperformed other inhibitors in RAIU increase mainly by decreasing iodide efflux rate to a great extent; (2) RAIU increase by all inhibitors was extensively reduced by TGF-β, a cytokine secreted in the invasive fronts of thyroid cancers; (3) RAIU reduction by TGF-β was mainly mediated by NIS reduction and could be reversed by Apigenin, a plant-derived flavonoid; and (4) In the presence of TGF-β, GDC-0941 with Apigenin co-treatment had the highest RAIU level in both BRAFV600E expressing cells and RET/PTC3 expressing cells. Taken together, Apigenin may serve as a dietary supplement along with small molecule inhibitors to improve radioiodine therapeutic efficacy on invasive tumor margins thereby minimizing future metastatic events. PMID:26397139

  8. A case of Graves' ophthalmopathy associated with pembrolizumab (Keytruda) therapy.

    PubMed

    Park, Ella S Y; Rabinowits, Guilherme; Hamnvik, Ole-Petter R; Dagi, Linda R

    2018-04-04

    We present the first reported case of Graves' orbitopathy induced by pembrolizumab, a new FDA-approved drug used for the treatment of multiple refractory solid tumors and classic Hodgkin lymphoma. Pembrolizumab elicits T-lymphocyte proliferation; we suspect that thyroid eye disease may result in some cases. Copyright © 2018. Published by Elsevier Inc.

  9. Evaluating iodide recycling inhibition as a novel molecular initiating event for thyroid axis disruption

    EPA Science Inventory

    The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency...

  10. Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    PubMed Central

    Miccichè, Francesca; Da Riva, Luca; Fabbi, Marina; Pilotti, Silvana; Mondellini, Piera; Ferrini, Silvano; Canevari, Silvana; Pierotti, Marco A.; Bongarzone, Italia

    2011-01-01

    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology. PMID:21364949

  11. Altered balance between self-reactive T helper (Th)17 cells and Th10 cells and between full-length forkhead box protein 3 (FoxP3) and FoxP3 splice variants in Hashimoto's thyroiditis.

    PubMed

    Kristensen, B; Hegedüs, L; Madsen, H O; Smith, T J; Nielsen, C H

    2015-04-01

    T helper type 17 (Th17) cells play a pathogenic role in autoimmune disease, while interleukin (IL)-10-producing Th10 cells serve a protective role. The balance between the two subsets is regulated by the local cytokine milieu and by the relative expression of intact forkhead box protein 3 (FoxP3) compared to FoxP3Δ2, missing exon 2. Th17 and Th10 cell differentiation has usually been studied using polyclonal stimuli, and little is known about the ability of physiologically relevant self-antigens to induce Th17 or Th10 cell differentiation in autoimmune thyroid disease. We subjected mononuclear cells from healthy donors and patients with Hashimoto's thyroiditis (HT) or Graves' disease (GD) to polyclonal stimulation, or stimulation with human thyroglobulin (TG), human thyroid peroxidase (TPO), or Esherichia coli lipopolysaccharide (LPS). TPO and LPS induced increased differentiation of naive CD4(+) CD45RA(+) CD45R0(-) T cells from HT patients into Th17 cells. Th10 cell proportions were decreased in HT after polyclonal stimulation, but were comparable to those of healthy donors after antigen-specific stimulation. Taken together, our data show that an increased Th17 : Th10 ratio was found in HT patients after stimulation with thyroid-specific self-antigens. We also observed an elevated baseline production of IL-6 and transforming growth factor (TGF)-β1 and of mRNA encoding FoxP3Δ2 rather than intact FoxP3. This may contribute to the skewing towards Th17 cell responses in HT. © 2014 British Society for Immunology.

  12. Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients.

    PubMed

    Schlumberger, Martin; Lacroix, Ludovic; Russo, Diego; Filetti, Sebastiano; Bidart, Jean-Michel

    2007-03-01

    The two major steps of iodine metabolism--uptake and organification--are altered in thyroid cancer tissues. Organification defects result in a rapid discharge of radioiodine from thyroid cells, a short effective half-life of iodine, and a low rate of thyroid hormone synthesis. These defects are mainly due to decreased expression of functional genes encoding the sodium-iodide symporter and thyroid peroxidase and could result in a low radiation dose to thyroid cancer cells. TSH stimulation that is achieved with injections of recombinant human TSH, or long-term withdrawal of thyroid hormone treatment increases iodine-131 uptake in two-thirds of patients with metastatic disease and increases thyroglobulin production in all patients with metastases, even in the absence of detectable uptake. Serum thyroglobulin determination obtained following TSH stimulation and neck ultrasonography is the most sensitive combination for the detection of small tumor foci. Radioiodine treatment is effective when a high radiation dose can be delivered (in patients with high uptake and retention of radioiodine) and when tumor foci are sensitive to the effects of radiation therapy (younger patients, with a well-differentiated tumor and/or with small metastases). The other patients rarely respond to radioiodine treatment, and when progression occurs, other treatment modalities should be considered. Novel strategies are currently being explored to restore iodine uptake in cancer cells that are unable to concentrate radioiodine.

  13. Serum levels of IgG and IgG4 in Hashimoto thyroiditis.

    PubMed

    Kawashima, Sachiko-Tsukamoto; Tagami, Tetsuya; Nakao, Kanako; Nanba, Kazutaka; Tamanaha, Tamiko; Usui, Takeshi; Naruse, Mitsuhide; Minamiguchi, Sachiko; Mori, Yusuke; Tsuji, Jun; Tanaka, Issei; Shimatsu, Akira

    2014-03-01

    Although IgG4-related disease is characterized by extensive infiltration of IgG4-positive plasma cells and lymphocytes of various organs, the details of this systemic disease are still unclear. We screened serum total IgG levels in the patients with Hashimoto thyroiditis (HT) to illustrate the prevalence of IgG4-related thyroiditis in HT. Twenty-four of 94 patients with HT (25.5%) had elevated serum IgG levels and their serum IgG4 was measured. Five of the 24 cases had more than 135 mg/dL of IgG4, which is the serum criterion of IgG4-related disease. One was a female patient who was initially treated as Graves' disease and rapidly developed a firm goiter and hypothyroidism. The biopsy of her thyroid gland revealed that follicular cells were atrophic with squamous metaplasia, replaced with fibrosis, which was compatible with the fibrous variant of HT. Immunohistochemical examination revealed diffuse infiltration of IgG4-positive plasma cells, and the serum IgG4 level was 179 mg/dL. The levels of IgG and IgG4 were positively correlated with the titers of anti-thyroglobulin antibody or anti-thyroid peroxidase antibody. In conclusion, at least a small portion of patients with HT with high titers of anti-thyroid antibodies may overlap the IgG4-related thyroiditis.

  14. Long noncoding RNA PVT1 enhances the viability and invasion of papillary thyroid carcinoma cells by functioning as ceRNA of microRNA-30a through mediating expression of insulin like growth factor 1 receptor.

    PubMed

    Feng, Kun; Liu, Yu; Xu, Li-Juan; Zhao, Ling-Fei; Jia, Chao-Wen; Xu, Ming-Yan

    2018-08-01

    Invasion and metastasis of papillary thyroid carcinoma (PTC) significantly affects prognosis and quality of life of patients. Herein, we explored the binding relationship of long noncoding RNA PVT1 as ceRNA to microRNA-30a (miR-30a), and their effect on the development of PTC through regulating insulin like growth factor 1 receptor (IGF1R). PTC and adjacent normal tissues were collected, where the qRT-PCR and western blot assay were employed to evaluate the expression levels of PVT1, miR-30a and IGF1R. The correlation between PVT1 expression and clinicopathological characteristics of PTC patients was observed. PTC cell lines with the most/least significant difference from normal thyroid cells were selected and treated with siRNA PVT1 or overexpression PVT1 plasmids, miR-30a mimics or miR-30a inhibitors. Nucleus and cytoplasm segmentation was used to identify subcellular fractionation of PVT1. The binding relationship of PVT1 to miR-30a and the targeting relationship of miR-30a to IGF1R were confirmed by using bioinformatic prediction program, dual-luciferase reporter gene assay and RNA-pull down. Cell viability, cell cycle and apoptosis, invasion and migration capacities were assessed by MTT, flow cytometry, Transwell assay and scratch test, respectively. Western blot assay was employed to examine protein expression of IGF1R, apoptosis-related factors (caspase-3, cleaved capase-3) and epithelial-mesenchymal transition (EMT)-related factors (E-cadherin, Vimentin). In the PTC tissues and cells, PVT1 and IGF1R were highly expressed and miR-30a was poorly expressed. PVT1 exerted its effects on PTC mainly in the cytoplasm. The PVT1 expression was correlated with TNM staging, LNM and tumor infiltration of PTC. The competitive binding of PVT1 to miR-30a enhanced expression of IGF1R. In the in vitro experiments, BCPAP and TPC-1 cells were selected. When subjected to siRNA PVT1 or miR-30a mimics, BCPAP and TPC-1 cells exhibited inhibited proliferation, cell cycle progression, invasion, migration, EMT (increased E-cadherin and reduced Vimentin) and promoted apoptosis (reduced caspase-3 and increased cleaved capase-3), and moreover, the expression of IGF1R was reduced. This study provides evidence that long noncoding RNA PVT1 enhances the expression of IGF1R through competitive binding to miR-30a, whereby PVT1 facilitates the development of PTC. Copyright © 2018. Published by Elsevier Masson SAS.

  15. Regulation of microglial development: a novel role for thyroid hormone.

    PubMed

    Lima, F R; Gervais, A; Colin, C; Izembart, M; Neto, V M; Mallat, M

    2001-03-15

    The postnatal development of rat microglia is marked by an important increase in the number of microglial cells and the growth of their ramified processes. We studied the role of thyroid hormone in microglial development. The distribution and morphology of microglial cells stained with isolectin B4 or monoclonal antibody ED1 were analyzed in cortical and subcortical forebrain regions of developing rats rendered hypothyroid by prenatal and postnatal treatment with methyl-thiouracil. Microglial processes were markedly less abundant in hypothyroid pups than in age-matched normal animals, from postnatal day 4 up to the end of the third postnatal week of life. A delay in process extension and a decrease in the density of microglial cell bodies, as shown by cell counts in the developing cingulate cortex of normal and hypothyroid animals, were responsible for these differences. Conversely, neonatal rat hyperthyroidism, induced by daily injections of 3,5,3'-triiodothyronine (T3), accelerated the extension of microglial processes and increased the density of cortical microglial cell bodies above physiological levels during the first postnatal week of life. Reverse transcription-PCR and immunological analyses indicated that cultured cortical ameboid microglial cells expressed the alpha1 and beta1 isoforms of nuclear thyroid hormone receptors. Consistent with the trophic and morphogenetic effects of thyroid hormone observed in situ, T3 favored the survival of cultured purified microglial cells and the growth of their processes. These results demonstrate that thyroid hormone promotes the growth and morphological differentiation of microglia during development.

  16. The many faces and mimics of papillary thyroid carcinoma.

    PubMed

    Albores-Saavedra, Jorge; Wu, Jianhua

    2006-01-01

    This article provides an overview of the 15 histologic variants of papillary thyroid carcinoma listed by the 2004 World Health Organization (WHO) monograph on endocrine tumors. The histologic features, differential diagnosis, and clinical course of each variant are discussed in some detail. The follicular variants (conventional and macrofollicular) constitute a morphologic challenge because the majority of these tumors are encapsulated and, also, because, in many tumors, not all neoplastic cells show the nuclear features considered to be diagnostic of papillary carcinoma. As a result, most of these tumors are missed even by experienced pathologists. Moreover, hyperplastic thyroid lesions, follicular adenomas, and Hashimoto's thyroiditis may contain cells with clear nuclei resembling those of papillary carcinoma. Papillary carcinomas composed entirely of hyperchromatic cells have been overlooked. The WHO monograph defines papillary carcinoma with focal spindle and giant cell carcinoma components but its clinical behavior is unknown. Papillary carcinoma with an insular pattern that does not show the artifactual separation of the cell nests has been misinterpreted as the solid variant of papillary carcinoma. Papillary microcarcinomas include not only the conventional type and the follicular variants but also the tall cell and columnar cell variants.

  17. Follicular variant of papillary thyroid carcinoma: genome-wide appraisal of a controversial entity.

    PubMed

    Wreesmann, Volkert B; Ghossein, Ronald A; Hezel, Michael; Banerjee, Debenranrath; Shaha, Ashok R; Tuttle, R Michael; Shah, Jatin P; Rao, Pulivarthi H; Singh, Bhuvanesh

    2004-08-01

    The majority of thyroid tumors are classified as papillary (papillary thyroid carcinomas; PTCs) or follicular neoplasms (follicular thyroid adenomas and carcinomas; FTA/FTC) based on nuclear features and the cellular growth pattern. However, classification of the follicular variant of papillary thyroid carcinoma (FVPTC) remains an issue of debate. These tumors contain a predominantly follicular growth pattern but display nuclear features and overall clinical behavior consistent with PTC. In this study, we used comparative genomic hybridization (CGH) to compare the global chromosomal aberrations in FVPTC to the PTC of classical variant (classical PTC) and FTA/FTC. In addition, we assessed the presence of peroxisome proliferator-activated receptor-gamma (PPARG) alteration, a genetic event specific to FTA/FTC, using Southern blot and immunohistochemistry analyses. In sharp contrast to the findings in classical PTC (4% of cases), CGH analysis demonstrated that both FVPTC (59% of cases) and FTA/FTC (36% of cases) were commonly characterized by aneuploidy (P = 0.0002). Moreover, the pattern of chromosomal aberrations (gains at chromosome arms 2q, 4q, 5q, 6q, 8q, and 13q and deletions at 1p, 9q, 16q, 17q, 19q, and 22q) in the follicular variant of PTC closely resembled that of FTA/FTC. Aberrations in PPARG were uniquely detected in FVPTC and FTA/FTC. Our findings suggest a stronger relationship between the FVPTC and FTA/FTC than previously appreciated and support further consideration of the current classification of thyroid neoplasms. Copyright 2004 Wiley-Liss, Inc.

  18. Cytotoxic lymphocytes in Hashimoto thyroiditis: an in vitro assay system using 51Cr-labelled chicken red blood cells coated with thyroglobulin

    PubMed Central

    Calder, Elizabeth A.; Penhale, W. J.; Barnes, E. W.; Irvine, W. J.

    1973-01-01

    An in vitro method is described to detect lymphocytes in patients with Hashimoto thyroiditis that are cytotoxic to thyroglobulin-coated chicken red blood cells. Using this technique, the cytotoxic index of lymphocytes from patients with Hashimoto thyroiditis was 25·46±3·81 (SEM), which is significantly different from that obtained with lymphocytes from control subjects, 6·28±0·80. PMID:4740396

  19. American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models

    PubMed Central

    Anderson, Grant; Forrest, Douglas; Galton, Valerie Anne; Gereben, Balázs; Kim, Brian W.; Kopp, Peter A.; Liao, Xiao Hui; Obregon, Maria Jesus; Peeters, Robin P.; Refetoff, Samuel; Sharlin, David S.; Simonides, Warner S.; Weiss, Roy E.; Williams, Graham R.

    2014-01-01

    Background: An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. Summary: Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. Conclusions: It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes. PMID:24001133

  20. Localisation of the neuropeptide PACAP and its receptors in the rat parathyroid and thyroid glands.

    PubMed

    Fahrenkrug, Jan; Hannibal, Jens

    2011-03-01

    PACAP (pituitary adenylate cyclase activating polypeptide) is widely distributed neuropeptide acting via three subtypes of receptors, PAC(1), VPAC(1) and VPAC(2). Here we examined the localisation and nature of PACAP-immunoreactive nerves in the rat thyroid and parathyroid glands and defined the distribution of PAC(1), VPAC(1) and VPAC(2) receptor mRNA's. In the parathyroid gland a large number of nerve fibres displaying PACAP-immunoreactivity were distributed beneath the capsule, around blood vessels and close to glandular cells. Most of the PACAP-nerves were sensory, since they co-stored CGRP (calcitonin-gene-related peptide) and were sensitive to capsaicin-treatment. mRNA's for PAC(1) and VPAC(2) receptors occurred in the parathyroid gland, mainly located in the glandular cells. In the thyroid gland PACAP-immunoreactive nerve fibres were associated with blood vessels, thyroid follicles and parafollicular C-cells. A high degree of co-existence between PACAP and VIP (vasoactive intestinal polypeptide) was observed in the intrathyroid nerve fibres and cell bodies of the thyroid ganglion indicating a common origin for the two peptides. A minor population of PACAP-immunoreactive nerve fibres with relation to blood vessels co-stored NPY (neuropeptide Y), whereas only a few fibres co-stored CGRP. PAC(1) and VPAC(1) receptor mRNA's occurred in follicular cells and blood vessels, whereas the expression of the VPAC(2) receptor was low. The findings suggest that PACAP plays a role in the regulation of parathyroid and thyroid blood flow and hormone secretion. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Effect of different doses of monosodium glutamate on the thyroid follicular cells of adult male albino rats: a histological study

    PubMed Central

    Khalaf, Hanaa A; Arafat, Eetmad A

    2015-01-01

    Monosodium glutamate (MSG) is a major flavor enhancer used as a food additive. The present study investigates the effects of different doses of MSG on the morphometric and histological changes of the thyroid gland. 28 male albino rats were used. The rats were divided into four groups: group I control, group II, III and IV treated with MSG (0.25 g/kg, 3 g/kg, 6 g/kg daily for one month) respectively. The thyroid glands were dissected out and prepared for light and electron microscopic examination. Light microscopic examination of thyroid gland of group II revealed increase in follicular epithelial height. Groups III & IV showed decrease in the follicular diameter and irregularity in the shape of some follicles with discontinuity of basement membrane. Follicular hyperplasia was detected in some follicles with appearance of multiple pyknotic nuclei in follicular and interfollicular cells and multiple exfoliated cells in the colloid. In addition, areas of loss of follicular pattern were appeared in group IV. Immunohistochemical examination of BCL2 immunoexpression of the thyroid glands of groups III & IV reveals weak positive reaction in the follicular cells cytoplasm. Ultrathin sections examination of groups III & IV revealed follicular cells with irregular hyperchromatic nuclei, marked dilatation of rER and increased lysosomes with areas of short or lost apical microvilli. In addition, vacuolation of mitochondria was detected in group IV. The results displayed that MSG even at low doses is capable of producing alterations in the body weights and thyroid tissue function and histology. PMID:26884820

  2. TGF-beta-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation.

    PubMed

    Bravo, Susana B; Pampín, Sandra; Cameselle-Teijeiro, José; Carneiro, Carmen; Domínguez, Fernando; Barreiro, Francisco; Alvarez, Clara V

    2003-10-30

    Millions of people worldwide suffer goiter, a proliferative disease of the follicular cells of the thyroid that may become neoplastic. Thyroid neoplasms have low proliferative index, low apoptotic index and a high incidence of metastasis. TGF-beta is overexpressed in thyroid follicular tumor cells. To investigate the role of TGF-beta in thyroid tumor progression, we established cultures of human thyrocytes from different proliferative pathologies (Grave's disease, multinodular goiter, follicular adenoma, papillary carcinoma), lymph node metastasis, and a normal thyroid sample. All cultures maintained the thyrocyte phenotype. TGF-beta induced cell-cycle arrest in all cultures, in contrast with results reported for other epithelial tumors. In deprived medium, TGF-beta induced apoptosis in normal thyrocyte cultures and all neoplastic cultures except the metastatic cultures. This apoptosis was mediated by a reduction in p27kip1 levels, inducing cell-cycle initiation. Antisense p27 expression induced apoptosis in the absence of TGF-beta. By contrast, in cells in which p27 was overexpressed, TGF-beta had a survival effect. In growth medium, a net survival effect occurs in neoplastic thyrocytes only, not normal thyrocytes, due to activation of the NF-kappaB survival program. Together, these findings suggest that (a) thyroid neoplasms are due to reduced apoptosis, not increased division, in line with the low proliferative index of these pathologies, and (b) TGF-beta induces apoptosis in normal thyrocytes via p27 reduction, but that in neoplastic thyrocytes this effect is overridden by activation of the NF-kappaB program.

  3. [Thyroid C cells are decreased in experimental CDH].

    PubMed

    Martínez, L; De Ceano-Vivas, M; González-Reyes, S; Fernández-Dumont, V; Calonge, W M; Ruiz, E; Rodríguez, J I; Tovar, J A

    2006-04-01

    Experimental CDH is often associated with malformations of neural crest origin. Several of these features are present in human CDH and therefore likely similar pathogenic mechanisms should be explored. The aim of the present study is to examine whether thyroid C-cells, another neural crest derivative, are abnormal in this rat model. Pregnant rats were exposed either to 100 mg of 2-4-dichlorophenyl-p-nitrophenyl ether (nitrofén) or vehicle (controls) on 9.5 day of gestation. Fetuses were recovered on day 21st and the thyroids of those with CDH (68%) were immuno-histochemically stained with anti-calcitonin antibody. The number of positively stained cells per high power field were counted using a computer-assisted image analysis method in at least 5 sections per thyroid. The distribution of the cells within the gland was assessed as well. Comparisons between CDH and control rats were made by non-parametric tests with a significance threshold of p<0.05. The number of c-cells was dramatically reduced in CDH animals in comparison with controls (101.2 +/- 61.3 vs 23.1 +/- 37, p<0.0001). Histology of the thyroid was similar in both groups, but the distribution of positive C-cells within the gland followed an abnormal pattern in CDH rats with the cells tending to be located at the periphery rather than at the core of the lobes. Nitrofén induces a severe decrease in thyroid C cells accompanied by abnormal distribution patterns. These results add further evidence of the involvement of a neural crest dysregulation as a component of the pathogenesis of experimental CDH. Whether there is or not a clinical counterpart to these findings is still unknown, but the nature of the cardiovascular and craneo-facial malformations in some babies with CDH strongly support further research in this field.

  4. Sorting Nexin 2 (SNX2): a potential marker of active thyrocytes in normal and hyperfunctioning thyroid disorders.

    PubMed

    Kanzawa, Maki; Hara, Shigeo; Semba, Shuho; Yokozaki, Hiroshi; Hirokawa, Mitsuyoshi; Itoh, Tomoo

    2014-04-01

    Sorting nexins (SNXs) are a large, diverse group of cytoplasmic and membrane-associated proteins that function in a variety of cellular processes, including endocytosis, protein trafficking, and the retrieval of transmembrane proteins. In this study, we demonstrated that SNX2 is expressed in columnar and active thyroid follicular cells but not in flattened inactive thyrocytes. Morphometric analysis revealed a significant correlation between SNX2 positivity and columnar cell morphology. Immunohistochemical staining of serial sections of the thyroid tissue indicated that SNX2 localization was similar to sortilin, a protein expressed by active thyrocytes. Expression of SNX2 in thyrocytes is particularly marked and extensive in most hyperstimulated thyroid disorders, including Graves disease (diffusely SNX2 positive in 73.3% patients) and functioning nodules (93.8% patients). SNX2 immunolocalization in hyperstimulated follicular epithelial cells was specific among the SNXs family members examined. These results support the utility of SNX2 as a novel marker of active thyrocytes and reflect the endosomal trafficking activity in these cells.

  5. Mulberry cells in the thyroid: warthin-finkeldey-like cells in hashimoto thyroiditis-associated lymphoma.

    PubMed

    Lapadat, Razvan; Nam, Moon Woo; Mehrotra, Swati; Velankar, Milind; Pambuccian, Stefan E

    2017-03-01

    Warthin-Finkeldey type giant cells were first described in autopsies performed on young children who died during the highly lethal measles epidemic in Palermo during the winter of 1908. The cells had 8-15 nuclei without identifiable cytoplasm within the germinal centers of lymphoid organs resembling megakaryocytes. We describe a case of Hashimoto thyroiditis with an enlarging substernal throid mass. The resection specimen contained many Warthin-Finkeldey-Like Cells (WFLC) in an extranodal marginal zone lymphoma (MALT type) with focal transformation to diffuse large B-cell lymphoma. The WFLC showed nuclear features similar to those of neighboring follicular dendritic cells (FDCs), favoring the hypothesis that these cells might be the product of fusion of FDCs. This is supported by immunostaining results and the occurrence of similar cells in follicular dendritic cell sarcomas and in "dysplastic" FDCs in hyaline vascular type Castleman disease, a possible precursor of follicular dendritic cell tumors. Diagn. Cytopathol. 2017;45:212-216. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation

    PubMed Central

    Chakravarty, Debyani; Santos, Elmer; Ryder, Mabel; Knauf, Jeffrey A.; Liao, Xiao-Hui; West, Brian L.; Bollag, Gideon; Kolesnick, Richard; Thin, Tin Htwe; Rosen, Neal; Zanzonico, Pat; Larson, Steven M.; Refetoff, Samuel; Ghossein, Ronald; Fagin, James A.

    2011-01-01

    Advanced human thyroid cancers, particularly those that are refractory to treatment with radioiodine (RAI), have a high prevalence of BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutations. However, the degree to which these cancers are dependent on BRAF expression is still unclear. To address this question, we generated mice expressing one of the most commonly detected BRAF mutations in human papillary thyroid carcinomas (BRAFV600E) in thyroid follicular cells in a doxycycline-inducible (dox-inducible) manner. Upon dox induction of BRAFV600E, the mice developed highly penetrant and poorly differentiated thyroid tumors. Discontinuation of dox extinguished BRAFV600E expression and reestablished thyroid follicular architecture and normal thyroid histology. Switching on BRAFV600E rapidly induced hypothyroidism and virtually abolished thyroid-specific gene expression and RAI incorporation, all of which were restored to near basal levels upon discontinuation of dox. Treatment of mice with these cancers with small molecule inhibitors of either MEK or mutant BRAF reduced their proliferative index and partially restored thyroid-specific gene expression. Strikingly, treatment with the MAPK pathway inhibitors rendered the tumor cells susceptible to a therapeutic dose of RAI. Our data show that thyroid tumors carrying BRAFV600E mutations are exquisitely dependent on the oncoprotein for viability and that genetic or pharmacological inhibition of its expression or activity is associated with tumor regression and restoration of RAI uptake in vivo in mice. These findings have potentially significant clinical ramifications. PMID:22105174

  7. Flow cytometry in the differential diagnostics of Hashimoto's thyroiditis and MALT lymphoma of the thyroid.

    PubMed

    Adamczewski, Zbigniew; Stasiołek, Mariusz; Dedecjus, Marek; Smolewski, Piotr; Lewiński, Andrzej

    2015-01-01

    A combination of traditional cytology methods with fluorescence activated cell sorting (FACS) analysis of fine-needle aspiration biopsy (FNAB) material is considered a powerful diagnostic tool in the differential diagnosis of thyroid lesions suspected of mucosa-associated lymphoid tissue lymphoma (MALT-L). The aim of this study was to demonstrate the FACS-based diagnostic process of thyroid lesions in a clinical situation where ultrasound and cytological examinations did not allow differentiation between Hashimoto's thyroiditis (HT) and MALT-L. The patients analysed in this study presented significantly different clinical courses of thyroid disease: quickly enlarging painless tumour of the thyroid right lobe in the first case, and chronic HT with palpable tumour in the thyroid isthmus in the second patient. Due to the suspicion of MALT-L resulting from indeterminate ultrasound and FNAB-cytology results, FNAB material was obtained from all the previously examined thyroid lesions and directly subjected to FACS assessment, encompassing κ/λ light chain restriction analysis, as well as measurements of B and T cell surface antigens. The FACS analysis of FNAB material obtained from our patients did not show any definite signs of light chain restriction. Although one of the samples showed a borderline value of κ/λ ratio (κ/λ = 0.31), further immunophenotyping confirmed clonal expansion in none of the examined thyroid regions. Histopathological findings documented the diagnosis of HT in both clinical cases. We believe that FACS represents a useful and reliable complementary diagnostic measure in FNAB-based differential diagnosis of lymphoproliferative thyroid disorders.

  8. Analysis of orbital T cells in thyroid-associated ophthalmopathy

    PubMed Central

    Förster, G; Otto, E; Hansen, C; Ochs, K; Kahaly, G

    1998-01-01

    Thyroid-associated ophthalmopathy (TAO) has a major effect on the two compartments of the retro-orbital (RO) space, leading to enlargement of the extraocular muscles and other RO tissues. T lymphocyte infiltration of RO tissue is a characteristic feature of TAO and there is current interest in whether these T cells are specifically and selectively reactive to RO tissue itself. We recently established 18 T cell lines (TCL) from RO adipose/connective tissue of six patients with severe TAO by using IL-2, anti-CD3 antibodies and irradiated autologous peripheral blood mononuclear cells (PBMC) to maintain the growth of T cells reactive to autologous RO tissue protein fractions. Here we report on the phenotype characteristics and cytokine gene expression profiles of these orbital TCL and on their immunoreactivity to the organ-specific thyroid antigens thyrotropin receptor (TSH-R), thyroidal peroxidase (TPO) and thyroglobulin (TG). Flow cytometry revealed that 10 TCL were predominantly of CD4+ phenotype, three being mostly CD8+ and five neither CD4+ nor CD8+. Analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) of cytokine gene expression revealed both Th1- and Th2-like products in all TCL: IL-2 product (in 17 TCL), interferon-gamma (IFN-γ) (n = 10), tumour necrosis factor-beta (TNF-β) (n = 15), IL-4 (n = 12), IL-5 (n = 17), IL-6 (n = 13), TNF-α (n = 12) and IL-10 (n = 4). Reactivity to thyroid antigens was observed only in two TCL, the other 16 being uniformly unreactive. Although 10 out of 18 RO tissue-reactive TCL were predominantly CD4+ there were no significant relationships between TCL phenotype, cytokine gene profile, magnitude of reactivity to RO tissue protein or the (rare) occurrence of thyroid reactivity. The findings of both Th1- and Th2-like cytokine gene expression in all RO tissue-reactive TCL support the concept that TAO is a tissue-specific autoimmune disease, distinct immunologically from the thyroid, and involving both T cell and B cell autoimmune mechanisms in disease pathogenesis. PMID:9649211

  9. TRIADIMEFON INDUCES RAT THYROID TUMORS THROUGH A NON-TSH MEDIATED MODE OF ACTION

    EPA Science Inventory

    Conazoles are a class of fungicides used as agricultural and pharmaceutical products which inhibit ergosterol biosynthesis. Members of this class are hepatotoxic and cause mouse hepatocellular tumors and/or rat thyroid follicular cell tumors. Triadimefon-induced rat thyroid tumor...

  10. STUDIES INTO THE MECHANISMS OF POTASSIUM BROMATE INDUCED THYROID CARCINOGENESIS

    EPA Science Inventory

    Studies into the Mechanisms of Potassium Bromate Induced Thyroid Carcinogenesis.

    Potassium bromate (KBrO3) occurs in finished drinking water as a by-product of the ozonation disinfection process and has been found to induce thyroid follicular cell tumors in the rat after ...

  11. Studies on Changes of β-Adrenergic Receptors in Polymorphonuclear Cell and Mononuclear Cell with the Changes of Thyroid Function

    PubMed Central

    Lee, Jong Do; You, Myung Hee; Kim, Young Seol; Kim, Jin Woo; Kim, Kwang Won; Kim, Sun Woo; Choi, Young Kil

    1986-01-01

    Although it has been well established that thyroid hormones increase β-adrenergic receptors of various tissues in the animal studies, there are controversies about the β-adrenergic receptor changes of human mononuclear cells and polymorphonuclear cells. The present study was performed to analyze the change of β-adrenergic receptor of those cells according to the thyroid functional status and to evaluate their usefulness in assessment of sympathetic hyperactivity. We measured [3H]-dihydroalprenolol binding to circulating mononuclear and polymorphonuclear cells from 18 patients with hyperthyrodism, 7 with hypothyroidism, 8 with euthyroid goiter and 21 normal controls. Only with polymorphonuclear cells the receptor concentration was significantly higher (P<0.01) in hyperthyroidism (46.07±4.78 fmol/mg protein) than in the normal control (28.42±2.06 fmol/mg protein) and the affinity constants of both cells were comparable to normal control values. And serum concentrations of T3 were not correlated well with the changes of receptor concentrations in hyperthyroidism. The patients with hypothyroidism and euthyroid goiter showed no significant difference in the receptor concentration and the affinity constants with both cell binding assays. These results indicate that thyroid hormones increase the receptor concentration in polymorphonuclear cells which might be responsible for the symptoms of sympathetic hyperactivity and the polymorphornuclear cells are useful for β-adrenergic receptor assay. PMID:15759381

  12. A putative OTU domain-containing protein 1 deubiquitinating enzyme is differentially expressed in thyroid cancer and identifies less-aggressive tumours

    PubMed Central

    Carneiro, A P; Reis, C F; Morari, E C; Maia, Y C P; Nascimento, R; Bonatto, J M C; de Souza, M A; Goulart, L R; Ward, L S

    2014-01-01

    Background: This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. Methods: We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. Results: One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Conclusions: The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management. PMID:24937664

  13. Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2014-09-15

    Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hürthle cell carcinoma of the thyroid presenting as thyrotoxicosis.

    PubMed

    Karanchi, Harsha; Hamilton, Dale J; Robbins, Richard J

    2012-01-01

    To report a case of hyperthyroidism associated with Hürthle cell carcinoma and to review the literature regarding this relationship. We describe the clinical, biochemical, radiologic, and pathologic data of a patient with Hürthle cell carcinoma associated with thyrotoxicosis and reversible heart failure. We discuss the mechanistic aspects and review previously reported cases of functional Hürthle cell carcinomas. A 43-year-old woman presented with thyrotoxicosis and nonischemic cardiomyopathy. She had a "hot" nodule in the left lobe of the thyroid on sodium pertechnetate scan. She underwent a left hemithyroidectomy and isthmusectomy. Pathologic findings revealed a minimally invasive Hürthle cell carcinoma. On follow-up, the dilated cardiomyopathy had resolved. The association of thyroid carcinoma with thyrotoxicosis is rare. Some Hürthle cell carcinomas can be functional and lead to thyrotoxicosis. To our knowledge, we present the first case of reversible dilated cardiomyopathy due to thyrotoxicosis originating from Hürthle cell carcinoma.

  15. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.

    PubMed

    Wellberg, Elizabeth A; Rudolph, Michael C; Lewis, Andrew S; Padilla-Just, Nuria; Jedlicka, Paul; Anderson, Steven M

    2014-12-04

    Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation. This study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes.

  16. Luteal activity of pregnant rats with hypo-and hyperthyroidism.

    PubMed

    Silva, Juneo Freitas; Ocarino, Natália Melo; Serakides, Rogéria

    2014-07-12

    Luteal activity is dependent on the interaction of various growth factors, cytokines and hormones, including the thyroid hormones, being that hypo- and hyperthyroidism alter the gestational period and are also a cause of miscarriage and stillbirth. Because of that, we evaluated the proliferation, apoptosis and expression of angiogenic factors and COX-2 in the corpus luteum of hypo- and hyperthyroid pregnant rats. Seventy-two adult female rats were equally distributed into three groups: hypothyroid, hyperthyroid and control. Hypo- and hyperthyroidism were induced by the daily administration of propylthiouracil and L-thyroxine, respectively. The administration began five days before becoming pregnant and the animals were sacrificed at days 10, 14, and 19 of gestation. We performed an immunohistochemical analysis to evaluate the expression of CDC-47, VEGF, Flk-1 (VEGF receptor) and COX-2. Apoptosis was evaluated by the TUNEL assay. We assessed the gene expression of VEGF, Flk-1, caspase 3, COX-2 and PGF2α receptor using real time RT-PCR. The data were analyzed by SNK test. Hypothyroidism reduced COX-2 expression on day 10 and 19 (P < 0.05), endothelial/pericyte and luteal cell proliferation on day 10 and 14 (p < 0.05), apoptotic cell numbers on day 19 (p < 0.05) and the expression of Flk-1 and VEGF on day 14 and 19, respectively (p < 0.05). Hyperthyroidism increased the expression of COX-2 on day 19 (P < 0.05) and the proliferative activity of endothelial/pericytes cells on day 14 (p <0.05), as well as the expression of VEGF and Flk-1 on day 19 (P < 0.05). Hypothyroidism reduces the proliferation, apoptosis and expression of angiogenic factors and COX-2in the corpus luteum of pregnant rats, contrary to what is observed in hyperthyroid animals, being this effect dependent of the gestational period.

  17. Luteal activity of pregnant rats with hypo-and hyperthyroidism

    PubMed Central

    2014-01-01

    Background Luteal activity is dependent on the interaction of various growth factors, cytokines and hormones, including the thyroid hormones, being that hypo- and hyperthyroidism alter the gestational period and are also a cause of miscarriage and stillbirth. Because of that, we evaluated the proliferation, apoptosis and expression of angiogenic factors and COX-2 in the corpus luteum of hypo- and hyperthyroid pregnant rats. Methods Seventy-two adult female rats were equally distributed into three groups: hypothyroid, hyperthyroid and control. Hypo- and hyperthyroidism were induced by the daily administration of propylthiouracil and L-thyroxine, respectively. The administration began five days before becoming pregnant and the animals were sacrificed at days 10, 14, and 19 of gestation. We performed an immunohistochemical analysis to evaluate the expression of CDC-47, VEGF, Flk-1 (VEGF receptor) and COX-2. Apoptosis was evaluated by the TUNEL assay. We assessed the gene expression of VEGF, Flk-1, caspase 3, COX-2 and PGF2α receptor using real time RT-PCR. The data were analyzed by SNK test. Results Hypothyroidism reduced COX-2 expression on day 10 and 19 (P < 0.05), endothelial/pericyte and luteal cell proliferation on day 10 and 14 (p < 0.05), apoptotic cell numbers on day 19 (p < 0.05) and the expression of Flk-1 and VEGF on day 14 and 19, respectively (p < 0.05). Hyperthyroidism increased the expression of COX-2 on day 19 (P < 0.05) and the proliferative activity of endothelial/pericytes cells on day 14 (p <0.05), as well as the expression of VEGF and Flk-1 on day 19 (P < 0.05). Conclusions Hypothyroidism reduces the proliferation, apoptosis and expression of angiogenic factors and COX-2in the corpus luteum of pregnant rats, contrary to what is observed in hyperthyroid animals, being this effect dependent of the gestational period. PMID:25298361

  18. Why is the thyroid so prone to autoimmune disease?

    PubMed

    Saranac, L; Zivanovic, S; Bjelakovic, B; Stamenkovic, H; Novak, M; Kamenov, B

    2011-01-01

    The thyroid gland plays a major role in the human body; it produces the hormones necessary for appropriate energy levels and an active life. These hormones have a critical impact on early brain development and somatic growth. At the same time, the thyroid is highly vulnerable to autoimmune thyroid diseases (AITDs). They arise due to the complex interplay of genetic, environmental, and endogenous factors, and the specific combination is required to initiate thyroid autoimmunity. When the thyroid cell becomes the target of autoimmunity, it interacts with the immune system and appears to affect disease progression. It can produce different growth factors, adhesion molecules, and a large array of cytokines. Preventable environmental factors, including high iodine intake, selenium deficiency, and pollutants such as tobacco smoke, as well as infectious diseases and certain drugs, have been implicated in the development of AITDs in genetically predisposed individuals. The susceptibility of the thyroid to AITDs may come from the complexity of hormonal synthesis, peculiar oligoelement requirements, and specific capabilities of the thyroid cell's defense system. An improved understanding of this interplay could yield novel treatment pathways, some of which might be as simple as identifying the need to avoid smoking or to control the intake of some nutrients. Copyright © 2011 S. Karger AG, Basel.

  19. Excess iodine promotes apoptosis of thyroid follicular epithelial cells by inducing autophagy suppression and is associated with Hashimoto thyroiditis disease.

    PubMed

    Xu, Chengcheng; Wu, Fei; Mao, Chaoming; Wang, Xuefeng; Zheng, Tingting; Bu, Ling; Mou, Xiao; Zhou, Yuepeng; Yuan, Guoyue; Wang, Shengjun; Xiao, Yichuan

    2016-12-01

    The incidence of the autoimmune thyroid disease Hashimoto thyroiditis (HT) has increased in recent years, and increasing evidence supports the contribution of excess iodine intake to thyroid disease. In this study, we examined the status of autophagy and apoptosis in thyroid tissues obtained from patients with HT, and we determined the effects of excessive iodine on the autophagy and apoptosis of thyroid follicular cells (TFCs) in an attempt to elucidate the effects of excess iodine on HT development. Our results showed decreases in the autophagy-related protein LC3B-II, and increases in caspase-3 were observed in thyroid tissues from HT patients. Interestingly, the suppression of autophagy activity in TFCs was induced by excess iodine in vitro, and this process is mediated through transforming growth factor-β1 downregulation and activation of the Akt/mTOR signaling pathway. In addition, excess iodine induced autophagy suppression and enhanced reactive oxygen species (ROS) production and apoptosis of TFCs, which could be rescued by the activation of autophagy. Taken together, our results demonstrated that excess iodine contributed to autophagy suppression and apoptosis of TFCs, which could be important factors predisposing to increased risk of HT development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Resveratrol has anti-thyroid effects both in vitro and in vivo.

    PubMed

    Giuliani, Cesidio; Iezzi, Manuela; Ciolli, Laura; Hysi, Alba; Bucci, Ines; Di Santo, Serena; Rossi, Cosmo; Zucchelli, Mirco; Napolitano, Giorgio

    2017-09-01

    Resveratrol is a natural polyphenol with antioxidant, anti-inflammatory, and antiproliferative properties. We have shown previously that resveratrol decreases sodium/iodide symporter expression and iodide uptake in thyrocytes, both in vitro and in vivo. In the present study, we further investigated the effects of resveratrol, with evaluation of the expression of additional thyroid-specific genes in the FRTL-5 rat thyroid cell line: thyroglobulin, thyroid peroxidase, TSH receptor, Nkx2-1, Foxe1 and Pax8. We observed decreased expression of these genes in FRTL-5 cells treated with 10 μM resveratrol. The effects of resveratrol was further evaluated in vivo using Sprague-Dawley rats treated with resveratrol 25 mg/kg body weight intraperitoneally, for 60 days. No clinical signs of hypothyroidism were seen, although the treated rats showed significant increase in thyroid size. Serum TSH and thyroid hormone levels were in the normal range, with significantly higher TSH seen in resveratrol-treated rats, compared with control rats. Histological and immunohistochemical analyses confirmed increased proliferative activity in the thyroid from resveratrol-treated rats. These data suggest that resveratrol acts as a thyroid disruptor and a goitrogen, which indicates the need for caution as a supplement and for therapeutic uses. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top