CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.
Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen
2011-02-15
CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.
2014-01-01
Background The transcription factor Pax8 is expressed during thyroid development and is involved in the morphogenesis of the thyroid gland and maintenance of the differentiated phenotype. In particular, Pax8 has been shown to regulate genes that are considered markers of thyroid differentiation. Recently, the analysis of the gene expression profile of FRTL-5 differentiated thyroid cells after the silencing of Pax8 identified Wnt4 as a novel target. Like the other members of the Wnt family, Wnt4 has been implicated in several developmental processes including regulation of cell fate and patterning during embryogenesis. To date, the only evidence on Wnt4 in thyroid concerns its down-regulation necessary for the progression of thyroid epithelial tumors. Results Here we demonstrate that Pax8 is involved in the transcriptional modulation of Wnt4 gene expression directly binding to its 5’-flanking region, and that Wnt4 expression in FRTL-5 cells is TSH-dependent. Interestingly, we also show that in thyroid cells a reduced expression of Wnt4 correlates with the alteration of the epithelial phenotype and that the overexpression of Wnt4 in thyroid cancer cells is able to inhibit cellular migration. Conclusions We have identified and characterized a functional Pax8 binding site in the 5’-flanking region of the Wnt4 gene and we show that Pax8 modulates the expression of Wnt4 in thyroid cells. Taken together, our results suggest that in thyroid cells Wnt4 expression correlates with the integrity of the epithelial phenotype and is reduced when this integrity is perturbed. In the end, we would like to suggest that the overexpression of Wnt4 in thyroid cancer cells is able to revert the mesenchymal phenotype. PMID:25270402
Lemoine, N. R.; Mayall, E. S.; Jones, T.; Sheer, D.; McDermid, S.; Kendall-Taylor, P.; Wynford-Thomas, D.
1989-01-01
Human primary thyroid follicular epithelial cells were transfected with a plasmid containing an origin-defective SV40 genome (SVori-) to produce several immortal cell lines. Two of the 10 cell lines analysed expressed specific features of thyroid epithelial function (iodide-trapping and thyroglobulin production). These two lines were characterised in detail and found to be growth factor-independent, capable of anchorage-independent growth at low frequency but non-tumorigenic in nude mice. These differentiated, These differentiated, partially transformed cell lines were shown to be suitable for gene transfer at high frequency using simple coprecipitation techniques. Images Figure 2 Figure 3 Figure 4 PMID:2557880
Thyroid epithelial cell hyperplasia in IFN-gamma deficient NOD.H-2h4 mice.
Yu, Shiguang; Sharp, Gordon C; Braley-Mullen, Helen
2006-01-01
The role of inflammatory cells in thyroid epithelial cell (thyrocyte) hyperplasia is unknown. Here, we demonstrate that thyrocyte hyperplasia in IFN-gamma-/- NOD.H-2h4 mice has an autoimmune basis. After chronic exposure to increased dietary iodine, 60% of IFN-gamma-/- mice had severe thyrocyte hyperplasia with minimal or moderate lymphocyte infiltration, and thyroid dysfunction with reduced serum T4. All mice produced anti-thyroglobulin autoantibody. Some wild-type NOD.H-2h4 mice had isolated areas of thyrocyte hyperplasia with predominantly lymphocytic infiltration, whereas IL-4-/- and 50% of wild-type NOD.H-2h4 mice developed lymphocytic thyroiditis but no thyrocyte hyperplasia. Both thyroid infiltrating inflammatory cells and environmental factors (iodine) were required to induce thyrocyte hyperplasia. Splenocytes from IFN-gamma-/- mice with thyrocyte hyperplasia, but not splenocytes from naïve IFN-gamma-/- mice, induced hyperplasia in IFN-gamma-/- NOD.H-2h4.SCID mice. These results may provide clues for understanding the mechanisms underlying development of epithelial cell hyperplasia not only in thyroids but also in other tissues and organs.
Fine needle aspiration of secondary synovial sarcoma of the thyroid gland.
Murro, Diana; Slade, Jamie Macagba; Syed, Sahr; Gattuso, Paolo
2015-11-01
Synovial sarcomas (SS) of the head and neck region are extremely rare and arise in only 5% of cases. We present a case of secondary SS of the thyroid originally diagnosed as medullary carcinoma on fine needle aspiration (FNA). A 41-year-old man presented with several weeks of dysphonia and a left thyroid mass. FNA of the thyroid nodule showed a cellular smear composed of loosely cohesive oval to spindle-shaped cells with irregular nuclear borders, finely granular chromatin, and inconspicuous nucleoli. The patient was diagnosed with medullary carcinoma and underwent a total thyroidectomy. Intro-operatively, the mass was found to arise from the tracheoesophageal groove with spread to the left thyroid. Microscopic examination of the thyroid tumor revealed a dense spindle cell proliferation with abundant mitoses, scant cords and nests of epithelial cells and foci of necrosis. The spindle cells were positive for bcl2 and vimentin and the epithelial cells were positive for cytokeratin 8/18 and epithelial membrane antigen (EMA). Both spindle and epithelial cells were negative for thyroglobulin, calcitonin, synaptophysin and chromogranin. Fluorescence in situ hybridization (FISH) demonstrated translocation (X;18)(p11;q11), confirming the diagnosis of SS. The patient underwent a total laryngopharyngoesophagectomy with subsequent adjuvant therapy and is currently disease free. Only 6 cases of histologically confirmed primary SS of the thyroid have been reported. To the best of our knowledge, this is the first case of FISH-confirmed secondary SS of the thyroid and also the first case of SS arising from the tracheoesophageal groove. © 2015 Wiley Periodicals, Inc.
Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji
2009-07-01
It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low-dose irradiation enhanced and suppressed, respectively, the in vivo fibroblast-mediated growth promotion. This effect was, however, not observed in the in vitro experiment with conditioned medium or even that allowing cell-cell contact. The intrathyroidal stromal microenvironments, particularly fibroblasts, appear to enhance the growth of thyroid carcinomas through soluble factor(s), which is modulated differently by high- and low-dose irradiation. To our knowledge this is the first study to show epithelial-stromal interaction in thyroid carcinoma.
Wynford-Thomas, D; Bond, J A; Wyllie, F S; Burns, J S; Williams, E D; Jones, T; Sheer, D; Lemoine, N R
1990-01-01
To overcome the difficulty of assessing oncogene action in human epithelial cell types, such as thyroid, which have limited proliferative potential in culture, we have explored the use of temperature-sensitive (ts) mutants of simian virus 40 (SV40) early region to create conditionally immortalized epithelial cell lines. Normal primary cultures of human thyroid follicular cells were transfected with a plasmid containing the SV40 early region from mutant tsA58. Expanding epithelial colonies were observed after 2 to 3 months, all of which grew to greater than 200 population doublings without crisis. All showed tight temperature dependence for growth. After switch-up to the restrictive temperature (40.5 degrees C), no further increase in cell number was seen after 1 to 2 days. However, DNA synthesis declined much more slowly; the dissociation from cell division led to marked polyploidy. Viability was maintained for up to 2 weeks. Introduction of an inducible mutant ras gene into ts thyroid cells led, as expected, to morphological transformation at the permissive temperature when ras was induced. Interestingly, this was associated with a marked reduction in net growth rate. At the restrictive temperature, induction of mutant ras caused rapid cell death. These results demonstrate the utility of a ts SV40 mutant to permit the study of oncogene action in an otherwise nonproliferative target cell and reveal important differences in the interaction between ras and SV40 T in these epithelial cells compared with previously studied cell types. Images PMID:1697930
Abols, A; Ducena, K; Andrejeva, D; Sadovska, L; Zandberga, E; Vilmanis, J; Narbuts, Z; Tars, J; Eglitis, J; Pirags, V; Line, A
2015-01-01
Trefoil factor 3 (TFF3) is overexpressed in a variety of solid epithelial cancers, where it has been shown to promote migration, invasion, proliferation, survival and angiogenesis. On the contrary, in the majority of thyroid tumors, it is downregulated, yet its role in the development of thyroid cancer remains unknown. Here we show that TFF3 exhibits strong cytoplasmic staining of normal thyroid follicular cells and colloid and the staining is increased in hyperfunctioning thyroid nodules, while it is decreased in all thyroid cancers of follicular cell origin. By meta-analysis of gene expression datasets, we found that in the thyroid cancer, conversely to the breast cancer, the expression of TFF3 mRNA was downregulated by estrogen signaling and confirmed this by treating thyroid cancer cells with estradiol. Forced expression of TFF3 in anaplastic thyroid cancer cells resulted in decreased cell proliferation, clonal spheroid formation and entry into the S phase. Furthermore, it induced acquisition of epithelial-like cell morphology and expression of the differentiation markers of thyroid follicular cells and transcription factors implicated in the thyroid morphogenesis and function. Taken together, this study provides the first evidence that TFF3 may act as a tumor suppressor or an oncogene depending on the cellular context.
Wang, Lu; Zhang, Wei-Ping; Yao, Li; Zhang, Wei; Zhu, Jin; Zhang, Wei-Chen; Zhang, Yue-Hua; Wang, Zhe; Yan, Qing-Guo; Guo, Ying; Fan, Lin-Ni; Liu, Yi-Xiong; Huang, Gao-Sheng
2015-12-01
Ectopic lymphoid follicle infiltration is a key event in Hashimoto thyroiditis (HT). Positive regulatory domain zinc finger protein 1 (PRDM1), which is induced by antigen stimulation, can regulate all lymphocyte lineages. Several groups independently demonstrated that human parvovirus B19 (PVB19) is closely associated with HT. Hence, we determined whether PRDM1 is expressed in HT thyroid tissue and whether there is any correlation between PRDM1 expression and PVB19 in the pathogenesis of HT. We detected PRDM1 expression in HT (n = 86), normal thyroid tissue (n = 30), and nontoxic nodular goiter (n = 20) samples using immunohistochemistry. We also detected PVB19 protein in HT samples in a double-blind manner and analyzed the correlation between the 2 proteins using immunofluorescence confocal detection and coimmunoprecipitation. Furthermore, we detected changes of the expression levels of PRDM1 and PVB19 in transfected primary thyroid follicular epithelial cells using real-time quantitative polymerase chain reaction. We found that PRDM1 protein is significantly highly expressed in the injured follicular epithelial cells in HT (83/86 cases) than in normal thyroid cells (0/30 cases) or in nontoxic nodular goiter cells (0/20 cases) (P < .001). In HT, the PRDM1 expression pattern was the same as that of PVB19, whereas PRDM1 and PVB19 were coexistent in the involved epithelial cells. Statistical analysis showed a significant correlation between PRDM1 and PVB19 (P < .001). In addition, primary thyroid epithelial cells also showed PRDM1 up-regulation after PVB19 NS1 transfection. Our findings suggest a previously unrecognized role of PRDM1 and PVB19 in the pathogenesis of HT. Copyright © 2015 Elsevier Inc. All rights reserved.
Smith, T J; Sciaky, D; Phipps, R P; Jennings, T A
1999-08-01
CD40, a member of the tumor necrosis factor-alpha (TNF-alpha) receptor family of surface molecules, is expressed by a variety of cell types. It is a crucial activational molecule displayed by lymphocytes and other bone marrow-derived cells and recently has also been found on nonlymphoid cells such as fibroblasts, endothelia, and epithelial cells in culture. While its role in lymphocyte signaling and activation has been examined in great detail, the function of CD40 expression on nonlymphoid cells, especially in vivo, is not yet understood. Most of the studies thus far have been conducted in cell culture. In this article, we report that several cell types resident in thyroid tissue in vivo can display CD40 under pathological conditions. Sections from a total of 46 different cases were examined immunohistochemically and included nodular hyperplasia, chronic lymphocytic thyroiditis, diffuse hyperplasia, follicular neoplasia, papillary carcinoma, and medullary carcinoma. Thyroid epithelial cells, lymphocytes, macrophages, endothelial cells, and spindle-shape fibroblast-like cells were found to stain positively in the context of inflammation. The staining pattern observed in all cell types was entirely membranous. In general, epithelial staining was limited to that adjacent to lymphocytic infiltration except in 5 of 17 cases of neoplasia and in diffuse hyperplasia. Moreover, we were able to detect CD40 mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) in human thyroid tissue. These results constitute convincing evidence for expression of CD40 in nonlymphocytic elements of the human thyroid gland. Our findings suggest a potentially important pathway that might be of relevance to the pathogenesis of thyroid diseases. They imply the potential participation of the CD40/CD40 ligand bridge in the cross-talk between resident thyroid cells and bone marrow-derived cells recruited to the thyroid.
Portella, G; Vitagliano, D; Li, Z; Sferratore, F; Santoro, M; Vecchio, G; Fusco, A
1998-01-01
The PC Cl 3 cell line is a well-characterized epithelial cell line of rat thyroid origin. This cell line retains in vitro the typical markers of thyroid differentiation: thyroglobulin (TG) synthesis and secretion, iodide uptake, thyroperoxidase (TPO) expression, and dependency on TSH for growth. Although the differentiated phenotype of thyroid cells has been relatively well described, the molecular mechanisms that regulate both differentiation and neoplastic transformation of thyroid cells still need to be investigated in detail. Protein kinase C (PKC), the target of tetradecanoylphorbol acetate (TPA), regulates growth and differentiation of several cell types. Here we show that treatment of PC Cl 3 cells with TPA induces an acute block of thyroid differentiation. TPA-treated PC Cl 3 cells are unable to trap iodide and the expression levels of thyroglobulin, TSH receptor, and TPO genes are drastically reduced by TPA treatment. This differentiation block is not caused by a reduced expression of one of the master genes of thyroid differentiation, the thyroid transcription factor 1 (TTF-1). TPA-treated PC Cl 3 cells display an increased growth rate indicating that, in addition to the differentiation block, TPA also significantly affects the growth regulation of thyroid cells. Finally, TPA treatment dramatically increases the number of transformation foci induced in PC Cl 3 cells by retroviruses carrying v-Ki-ras, v-Ha-ras, and v-mos oncogenes. These findings support the notion that the PKC pathway can influence proliferation, differentiation, and neoplastic transformation of thyroid cells in culture.
Meng, X; Kong, D-H; Li, N; Zong, Z-H; Liu, B-Q; Du, Z-X; Guan, Y; Cao, L; Wang, H-Q
2014-02-27
The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial-mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis.
Neoplastic transformation of human thyroid epithelial cells by ionizing radiation
NASA Astrophysics Data System (ADS)
Herceg, Zdenko
Neoplastic transformation of human thyroid epithelial cells has been investigated following exposure to ionizing radiation in vitro. The effects of radiation type, irradiation regime, and postirradiation passaging were examined using a human thyroid epithelial cell line, designated HToriS, which was previously immortalized with SV40 genome. Exponentially growing HToriS cells were irradiated with graded doses of 137 Cs gamma- and 238pu alpha-irradiation. Cells were irradiated with either a single or multiple doses of 0.5, 1, 2, 3, or 4 Gy gamma-radiation, or single doses of 0.125, 0.25, 0.5, 1, or 1.5 Gy gamma-radiation. Following passaging, the cells were transplanted into the athymic nude mice, and the animals were screened for tumour formation. Statistically significant increases in tumour incidence were obtained with both gamma- and alpha-irradiation and with both single and multiple irradiation regimes as compared with the un-irradiated group. Regardless of radiation type and or radiation regime there appears to be a trend, with increasing doses of radiation, in which tumour incidence increases and reaches a maximum, after which the tumour incidence decreases. Tumours were characterized by histopathological examination as undifferentiated carcinomas. Investigation of expression time following irradiation demonstrated that post-irradiation passaging, generally regarded as a critical step for expression of radiation-induced DNA damage, was not a prerequisite for the neoplastic conversion of irradiated cells with this system. Cell lines were established from the tumours and their identification and characterization carried out. All cell lines established were determined to be derived from the parent HTori3 cells by DNA fingerprinting, karyotype analysis, cytokeratin staining, and SV40 large T-antigen staining. Tumorigenicity of the cell lines was confirmed by retransplantation. Comparison of the morphology in vitro showed that the tumour cell lines retained the basic epithelial morphology of the parent HToriS cells. Investigation of radiosensitivity showed that none of the 6 tumour cell lines examined had a higher radiosensitivity compared to the parent HToriS cells. This excludes the possibility that the observed transformation was the result of the selection of a pre-existing transformed subpopulation of the parent cells but that radiation-induced transformants were being induced de novo. The tumour cell lines were screened for mutations in H- and K-ras oncogenes using restriction enzyme analysis of PCR amplified DNA. No mutations were detected in 26 tumour cell lines suggesting that mutations in these two genes do not appear to be involved in radiation- induced neoplastic transformation in human thyroid epithelial cells. Screening for mutations in p53 protein using immunoprecipitation method detected no mutations in 6 tumour cell lines. This human thyroid epithelial cell line may thus be useful for the in vitro study of cellular and molecular mechanisms that are involved in human epithelial cell carcinogenesis.
Spindle epithelial tumor with thymus-like differentiation: a case report and review of literature.
Misra, R K; Mitra, Shaila; Yadav, Rajesh; Bundela, Alpana
2013-01-01
Spindle epithelial tumor with thymus-like differentiation (SETTLE) is an extremely rare type of thyroid tumor with fewer than 35 reported cases available in the literature so far, most of them having been diagnosed histologically after resection. The tumor is believed to be derived from branchial-pouch or thymic remnants, occurring in young adults, predominantly in males, with a male:female ratio 1.8:1. A 14-year-old girl presented with a nodular mass in her right thyroid that had been present for 1 year. Ultrasonological study revealed a heterogeneous solid mass (2.5 × 1.5 × 1.5 cm) in the right lobe of the thyroid. Fine-needle aspiration (FNA) smears were highly cellular and comprised of predominantly dissociated uniform spindle cells with naked oval nuclei along with some aggregates and groups. Occasional islands of epithelial cells were also present. Cytologically, the spindle cells had bland nuclear chromatin, with very scanty mitotic figures. Upon examination of the FNA smears, a provisional diagnosis of SETTLE was suggested along with a request for an incisional biopsy to rule out another differential diagnosis of medullary carcinoma thyroid. On the resected tissue specimen, diagnosis was histologically confirmed to be SETTLE. Immunohistochemical study revealed a strong and diffuse positivity for high-molecular-weight keratin and vimentin, and negativity for thyroglobulin, calcitonin, S-100 protein, desmin, chromogranin and synaptophysin. Cytologically, SETTLE can safely be considered, especially if spindle elements are observed along with the occasional group of epithelial cells in FNA smears from the thyroid of young adults. It can help in the preoperative recognition of lesions based on distinctive cytomorphological features and immunohistochemical characteristics, allowing a more sound therapeutic approach because these patients can present with delayed metastasis. Copyright © 2013 S. Karger AG, Basel.
Su, Yuan; Shi, Yufang; Stolow, Melissa A.; Shi, Yun-Bo
1997-01-01
Thyroid hormone (T3 or 3,5,3′-triiodothyronine) plays a causative role during amphibian metamorphosis. To investigate how T3 induces some cells to die and others to proliferate and differentiate during this process, we have chosen the model system of intestinal remodeling, which involves apoptotic degeneration of larval epithelial cells and proliferation and differentiation of other cells, such as the fibroblasts and adult epithelial cells, to form the adult intestine. We have established in vitro culture conditions for intestinal epithelial cells and fibroblasts. With this system, we show that T3 can enhance the proliferation of both cell types. However, T3 also concurrently induces larval epithelial apoptosis, which can be inhibited by the extracellular matrix (ECM). Our studies with known inhibitors of mammalian cell death reveal both similarities and differences between amphibian and mammalian cell death. These, together with gene expression analysis, reveal that T3 appears to simultaneously induce different pathways that lead to specific gene regulation, proliferation, and apoptotic degeneration of the epithelial cells. Thus, our data provide an important molecular and cellular basis for the differential responses of different cell types to the endogenous T3 during metamorphosis and support a role of ECM during frog metamorphosis. PMID:9396758
Sakai, Y; Yamashina, S; Furudate, S I
2000-05-01
Previous studies on the rdw rat have suggested that its dwarfism is caused primarily by dysfunction of the thyroid gland. In this study, rat thyroid glands were analyzed endocrinologically and morphologically to clarify the primary cause of dwarfism in the rdw rat. The rdw rat showed lowered thyroid hormone (T4 and T3) levels but elevated TSH in serum. The rdw thyroid gland was almost proportional in size and it was not goiter in gross inspection. Our histological investigation produced three results that may lend important evidence in understanding the problem in the thyroid gland of rdw rats. First of all, secretory granules could not be detected in the follicular epithelial cells of the rdw. Secondly, thyroglobulin was found at very low levels in the follicular lumen by immunohistochemical analysis. In contrast, it could be detected in a substantial quantity inside the dilated rER and in the huge vacuoles that are formed by swelling of the rough endoplasmic reticulum (rER) at the basal side of the follicular epithelial cells. Additionally, the nucleus of the follicular epithelial cells was pressed to the luminal side by the enlarged rER. These morphological changes would indicate that the transport of thyroglobulin is stopped at or before the formation of the secretory granules and thyroglobulin is not secreted into the follicular lumen. The rdw characterization strongly supports that rdw dwarfism is induced by hypothyroidism due to some defect(s) in the thyroid gland. Copyright 2000 Wiley-Liss, Inc.
Ciornei, Radu Tudor; Hong, So-Hee; Fang, Yujiang; Zhu, Ziwen; Braley-Mullen, Helen
2016-01-01
IFN-γ(-/-) NOD.H-2h4 mice develop autoimmune disease with extensive hyperplasia and proliferation of thyroid epithelial cells (TEC H/P) and fibrosis. Splenic T cells from donors with severe TEC H/P transfer TEC H/P to SCID recipients. The goal of this study was to determine what factors control TEC H/P development/progression by examining T cells, markers of apoptosis, senescence and proliferation in thyroids of SCID recipients over time. At 28days, T cell infiltration was maximal, thyrocytes were proliferating, and fibrosis was moderate. At days 60 and 90, thyroids were larger with more fibrosis. T cells, cytokines and thyrocyte proliferation decreased, and cell cycle inhibitor proteins, and anti-apoptotic molecules increased. T cells and thyrocytes had foci of phosphorylated histone protein H2A.X, indicative of cellular senescence, when TEC H/P progressed and thyrocyte proliferation declined. Some thyrocytes were regenerating at day 90, with irregularly shaped empty follicles and ciliated epithelium. Proliferating thyrocytes were thyroid transcription factor (TTF1)-positive, suggesting they derived from epithelial cells and not brachial cleft remnants. Copyright © 2016 Elsevier Inc. All rights reserved.
Differential expression of connexin 43 in human autoimmune thyroid disease.
Jiang, Xiao-Yan; Feng, Xiao-Hong; Li, Guo-Yan; Zhao, Qian; Yin, Hui-Qing
2010-05-01
Gap junctions provide a pathway for cell-to-cell communication. Reduced thyroid epithelial cell-cell communication has been reported in some animal models of autoimmune thyroid disease. In order to assess whether this change was similar to human autoimmune thyroid disease, we identified some connexin proteins and their corresponding mRNA in human thyroid gland. The aim of our study was to explore the expression of connexin 43 (Cx43) in the thyroid gland from normal and diseased human thyroid tissue by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). The expression levels of Cx43 in Grave's disease were significantly increased in comparison with those of normal thyroid tissue. There was a significant decrease in expression of Cx43 in Hashimoto's thyroiditis, compared with normal thyroid tissue. These data indicate that changes of Cx43 expression in human autoimmune thyroid disease were associated with variations in thyroid function and hormone secretion. 2009 Elsevier GmbH. All rights reserved.
Phase I/II Study of IMMU-132 in Patients With Epithelial Cancers
2018-04-23
Colorectal Cancer; Gastric Adenocarcinoma; Esophageal Cancer; Hepatocellular Carcinoma; Non-small Cell Lung Cancer; Small Cell Lung Cancer; Ovarian Epithelial Cancer; Carcinoma Breast Stage IV; Hormone-refractory Prostate Cancer; Pancreatic Ductal Adenocarcinoma; Head and Neck Cancers- Squamous Cell; Renal Cell Cancer; Urinary Bladder Neoplasms; Cervical Cancer; Endometrial Cancer; Follicular Thyroid Cancer; Glioblastoma Multiforme; Triple Negative Breast Cancer
Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea.
Sharlin, David S; Visser, Theo J; Forrest, Douglas
2011-12-01
Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr(-/-) mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development.
SASH1 inhibits proliferation and invasion of thyroid cancer cells through PI3K/Akt signaling pathway
Sun, Dawei; Zhou, Rui; Liu, Huamin; Sun, Wenhai; Dong, Anbing; Zhang, Hongmei
2015-01-01
The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY-family of signal adapter proteins, has an important regulatory role in tumorigenesis, but its implication in thyroid carcinoma has not been yet investigated. In this study, we investigated the role of SASH1 in proliferation and invasion of thyroid cancer cells and the underlying mechanism. Our results demonstrated that SASH1 is down-regulated in thyroid cancer cells. Overexpression of SASH1 inhibits thyroid cancer cell proliferation, migration and invasion with decreased epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of SASH1 inhibits thyroid cancer cell proliferation and invasion through down-regulation of PI3K and Akt phosphorylation. Taken together, the present study showed that the loss or inhibition of SASH1 expression may play an important role in thyroid cancer development, invasion, and metastasis and that SASH1 may be a potential therapeutic target for the treatment of thyroid cancer. PMID:26722413
Sun, Dawei; Zhou, Rui; Liu, Huamin; Sun, Wenhai; Dong, Anbing; Zhang, Hongmei
2015-01-01
The SASH1 (SAM- and SH3-domain containing 1) gene, a member of the SLY-family of signal adapter proteins, has an important regulatory role in tumorigenesis, but its implication in thyroid carcinoma has not been yet investigated. In this study, we investigated the role of SASH1 in proliferation and invasion of thyroid cancer cells and the underlying mechanism. Our results demonstrated that SASH1 is down-regulated in thyroid cancer cells. Overexpression of SASH1 inhibits thyroid cancer cell proliferation, migration and invasion with decreased epithelial-mesenchymal transition (EMT). Mechanistically, overexpression of SASH1 inhibits thyroid cancer cell proliferation and invasion through down-regulation of PI3K and Akt phosphorylation. Taken together, the present study showed that the loss or inhibition of SASH1 expression may play an important role in thyroid cancer development, invasion, and metastasis and that SASH1 may be a potential therapeutic target for the treatment of thyroid cancer.
Mamaev, N N; Grynyeva, E N; Blagosklonnaya, Y V
1996-01-01
Aim—To evaluate the expression of ribosomal cistrons in human thyroid epithelial cells (TECs) of patients with Grave's disease, Hashimoto's thyroiditis and benign and malignant tumours of the thyroid gland. Methods—TEC nucleoli were investigated in fine needle biopsy specimens from 10 controls, 39 patients with Grave's disease, 15 with Hashimoto's thyroiditis, 56 with benign, and 15 with malignant tumours of the thyroid. A one step silver staining method was applied. In most cases serum concentrations of thyroxine and triiodothyronine as well as goitre size were determined. In every case 100 TECs were evaluated for the mean numbers of nucleoli and for the average number of argyrophilic nucleolar organiser regions (AgNORs) per nucleus. Results—NORs were activated in all patients, but not in controls. The numbers of AgNORs in patients with Grave's disease were closely correlated with thyroxine or triiodothyronine, or both, concentrations and with the size of the thyroid. In patients with Hashimoto's thyroiditis about 30% of TECs nucleoli did not contain AgNORs, whereas others were heavily impregnated with silver. Compared with controls and benign tumours, the nucleoli of carcinomatous TECs were larger and irregular in shape. The mean number of AgNORs per nucleus in malignant cells was higher than that in their benign counterparts. Conclusions—The mechanism by which NORs are activated in TECs varies depending on the type of lesion. The higher AgNOR score in TECs from malignant tumours can be used to distinguish them from their benign counterparts. Images PMID:16696083
Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells
NASA Astrophysics Data System (ADS)
Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc
1985-04-01
The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.
Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier
2013-05-01
PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.
Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier
2013-01-01
SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917
Developmental and Cell-Specific Expression of Thyroid Hormone Transporters in the Mouse Cochlea
Sharlin, David S.; Visser, Theo J.
2011-01-01
Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr−/− mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development. PMID:21878515
A Case of Painful Hashimoto Thyroiditis that Mimicked Subacute Thyroiditis
Seo, Hye Mi; Kim, Miyeon; Bae, Jaeseok; Kim, Jo-Heon; Lee, Jeong Won; Lee, Sang Ah; Koh, Gwanpyo
2012-01-01
Hashimoto thyroiditis (HT) is an autoimmune thyroid disorder that usually presents as a diffuse, nontender goiter, whereas subacute thyroiditis (SAT) is an uncommon disease that is characterized by tender thyroid enlargement, transient thyrotoxicosis, and an elevated erythrocyte sedimentation rate (ESR). Very rarely, patients with HT can present with painful, tender goiter or fever, a mimic of SAT. We report a case of painful HT in a 68-year-old woman who presented with pain and tenderness in a chronic goiter. Her ESR was definitely elevated and her thyroid laboratory tests suggested subclinical hypothyroidism of autoimmune origin. 99mTc pertechnetate uptake was markedly decreased. Fine needle aspiration biopsy revealed reactive and polymorphous lymphoid cells and occasional epithelial cells with Hürthle cell changes. Her clinical symptoms showed a dramatic response to glucocorticoid treatment. She became hypothyroid finally and is now on levothyroxine therapy. PMID:22570820
Nilsson, M; Husmark, J; Nilsson, B; Tisell, L E; Ericson, L E
1996-10-01
Epithelial properties of thyrocytes are difficult to maintain in conventional cell culture systems. We used bicameral chambers (Transwell) in attempts to establish a functional epithelium of thyrocytes of human origin. Thyroid follicle segments were isolated by collagenase digestion of paradenomatous tissue obtained at surgery for follicular adenoma and of tissue from glands with Graves' disease. After careful separation from connective tissue and single cells by centrifugation, the follicles were plated at high density on the collagen-coated filter of the chambers and cultured in Eagle's essential medium (EMEM) containing 10% fetal calf serum (FCS) or Coon's modified Hams medium enriched with five or six factors (5H, 6H); the latter media contained 5% FCS without (5H) or with (6H) thyrotropin (TSH). The follicles were converted into a confluent cell layer, which had similar DNA content irrespective of type of medium, after 4-6 days. Cells grown in EMEM or 5H established a transepithelial electrical resistance (R) of 200-500 omega.cm2 and was impermeable to [3H]inulin, indicating the formation of epithelial junctions. Addition of 6H to confluent cells initially cultured in EMEM or 5H caused a further increase of R, maximally to 1500 omega.cm2, along with a rise of the transepithelial potential difference; 6H promoted the monolayer formation of cells, increased the number of apical microvilli and reinforced the junctional distribution of actin, cadherin and ZO-1; 6H also enhanced the polarized secretion of [3H]leucine-labeled thyroglobulin into the apical medium. Cells from Graves' thyroid tissue established an epithelium on the filter with similar characteristics to that of normal thyrocytes; some platings contained in addition large numbers of HLA-DR positive cells with a dendritic shape. HLA-DR expression was generally absent in EMEM-or 5H-grown thyrocytes, but appeared in limited areas of the cell layer after 6H and was expressed by all epithelial cells after interferon-gamma stimulation for 48 h. We conclude that human thyrocytes form a tight and polarized epithelium when cultured on permeable filters. The polarized structure and function of the cells are positively regulated by TSH. The culture system may be useful in studies addressing the role of the epithelial phenotype (cell polarity and tight barrier) in normal thyroid function as well as in pathological processes in the thyroid, such as autoimmunity, cell transformation and tumor progression.
Arauchi, Ayumi; Shimizu, Tatsuya; Yamato, Masayuki; Obara, Takao; Okano, Teruo
2009-12-01
For hormonal deficiency caused by endocrine organ diseases, continuous oral hormone administration is indispensable to supplement the shortage of hormones. In this study, as a more effective therapy, we have tried to reconstruct the three-dimensional thyroid tissue by the cell sheet technology, a novel tissue engineering approach. The cell suspension obtained from rat thyroid gland was cultured on temperature-responsive culture dishes, from which confluent cells detach as a cell sheet simply by reducing temperature without any enzymatic treatment. The 8-week-old Lewis rats were exposed to total thyroidectomy as hypothyroidism models and received thyroid cell sheet transplantation 1 week after total thyroidectomy. Serum levels of free triiodothyronine (fT(3)) and free thyroxine (fT(4)) significantly decreased 1 week after total thyroidectomy. On the other hand, transplantation of the thyroid cell sheets was able to restore the thyroid function 1 week after the cell sheet transplantation, and improvement was maintained for 4 weeks. Moreover, morphological analyses showed typical thyroid follicle organization, and anti-thyroid-transcription-factor-1 antibody staining demonstrated the presence of follicle epithelial cells. The presence of functional microvessels was also detected within the engineered thyroid tissues. In conclusion, our results indicate that thyroid cell sheets transplanted in a model of total thyroidectomy can reorganize histologically to resemble a typical thyroid gland and restore thyroid function in vivo. In this study, we are the first to confirm that engineered thyroid tissue can repair hypothyroidism models in rats and, therefore, cell sheet transplantation of endocrine organs may be suitable for the therapy of hormonal deficiency.
Kayes, Timothy D; Braley-Mullen, Helen
2013-01-01
IFN-γ(-/-) NOD.H-2h4 mice develop a spontaneous autoimmune thyroid disease, thyroid epithelial cell hyperplasia and proliferation (TEC H/P) when given NaI in their water for 7+ mo. TEC H/P can be transferred to IFN-γ(-/-) SCID mice by splenocytes from mice with severe (4-5+) disease, and transfer of TEC H/P is improved when splenocytes are cultured prior to transfer. Older (9+ mo) IFN-γ(-/-) NOD.H-2h4 mice have elevated numbers of FoxP3(+) T reg cells, up to 2-fold greater than younger (2 mo) mice. During culture, the number of T reg decreases and this allows the improved transfer of TEC H/P. Co-culture with IL-2 prior to transfer prevents the decrease of T reg and improves their in vitro suppressive ability resulting in reduced TEC H/P in recipient mice. Therefore, culturing splenocytes improves transfer of TEC H/P by reducing the number of T reg and IL-2 inhibits transfer by preserving T reg number and function. Copyright © 2013 Elsevier Inc. All rights reserved.
What is your diagnosis? Ventral neck mass in a dog.
Fernandez, Nicole J; Clark, Edward G; Larson, Victoria S
2008-12-01
: A 14-year-old male Labrador Retriever was presented for lethargy and collapse. On physical examination, numerous abnormalities were found, including a large ventral neck mass (100 cm(3)) in the area of the thyroid gland. Fine-needle aspirates revealed 2 apparent populations of cells: one suspected to be a well-differentiated thyroid carcinoma, and the other consisting of large pleomorphic to spindloid cells suggestive of sarcoma. Two days later, the dog died at home. A full necropsy was not performed, but examination of the head and neck revealed a well-encapsulated mass adjacent to the cranial trachea and larynx. A section of the mass was evaluated histologically and a diagnosis of anaplastic thyroid carcinoma was made. Immunohistochemical evaluation with antibodies to thyroglobulin, cytokeratin, and vimentin confirmed distinct populations of malignant epithelial and malignant mesenchymal cells, and the diagnosis was amended to thyroid carcinosarcoma. Thyroid carcinosarcoma is a rare neoplasm in dogs in which the cell type comprising the mesenchymal component can vary. Immunochemistry to demonstrate the 2 cell types may be necessary to differentiate thyroid carcinosarcoma from anaplastic thyroid carcinoma.
Jiang, Xuechao; Zha, Bingbing; Liu, Xiaoming; Liu, Ronghua; Liu, Jun; Huang, Enyu; Qian, Tingting; Liu, Jiajing; Wang, Zhiming; Zhang, Dan; Wang, Luman; Chu, Yiwei
2016-12-01
Signal transducer and activator of transcription 6 (STAT6) is involved in epithelial cell growth. However, little is known regarding the STAT6 phosphorylation status in Graves' disease (GD) and its role in thyroid epithelial cells (TECs). In this study, we found that STAT6 phosphorylation (p-STAT6) was significantly increased in TECs from both GD patients and experimental autoimmune Graves' disease mice and that STAT6 deficiency ameliorated GD symptoms. Autocrine IL-4 signalling in TECs activated the phosphorylation of STAT6 via IL-4 R engagement, and the downstream targets of STAT6 were Bcl-xL and cyclin D1. Thus, the IL-4-STAT6-Bcl-xL/cyclin D1 pathway is crucial for TEC hyperplasia, which aggravates GD. More importantly, in vitro and in vivo experiments demonstrated that STAT6 phosphorylation inhibited by AS1517499 decreased TEC hyperplasia, thereby reducing serum T3 and T4 and ameliorating GD. Thus, our study reveals that in addition to the traditional pathogenesis of GD, in which autoantibody TRAb stimulates thyroid-stimulating hormone receptors and consequently produces T3, T4, TRAb could also trigger TECs producing IL-4, and IL-4 then acts in an autocrine manner to activate p-STAT6 signalling and stimulate unrestricted cell growth, thus aggravating GD. These findings suggest that STAT6 inhibitors could be potent therapeutics for treating GD.
Jiang, Xuechao; Zha, Bingbing; Liu, Xiaoming; Liu, Ronghua; Liu, Jun; Huang, Enyu; Qian, Tingting; Liu, Jiajing; Wang, Zhiming; Zhang, Dan; Wang, Luman; Chu, Yiwei
2016-01-01
Signal transducer and activator of transcription 6 (STAT6) is involved in epithelial cell growth. However, little is known regarding the STAT6 phosphorylation status in Graves' disease (GD) and its role in thyroid epithelial cells (TECs). In this study, we found that STAT6 phosphorylation (p-STAT6) was significantly increased in TECs from both GD patients and experimental autoimmune Graves' disease mice and that STAT6 deficiency ameliorated GD symptoms. Autocrine IL-4 signalling in TECs activated the phosphorylation of STAT6 via IL-4 R engagement, and the downstream targets of STAT6 were Bcl-xL and cyclin D1. Thus, the IL-4-STAT6-Bcl-xL/cyclin D1 pathway is crucial for TEC hyperplasia, which aggravates GD. More importantly, in vitro and in vivo experiments demonstrated that STAT6 phosphorylation inhibited by AS1517499 decreased TEC hyperplasia, thereby reducing serum T3 and T4 and ameliorating GD. Thus, our study reveals that in addition to the traditional pathogenesis of GD, in which autoantibody TRAb stimulates thyroid-stimulating hormone receptors and consequently produces T3, T4, TRAb could also trigger TECs producing IL-4, and IL-4 then acts in an autocrine manner to activate p-STAT6 signalling and stimulate unrestricted cell growth, thus aggravating GD. These findings suggest that STAT6 inhibitors could be potent therapeutics for treating GD. PMID:27906181
[Characterization of a human cell line from an anaplastic carcinoma of the thyroid gland].
Gioanni, J; Zanghellini, E; Mazeau, C; Zhang, D; Courdi, A; Farges, M; Lambert, J C; Duplay, H; Schneider, M
1991-11-01
A new cell line derived from a thyroid anaplastic carcinoma, CAL 62, has been established in culture. This line is constituted by highly tumorigenic cells. Their epithelial phenotype is stable in culture. Immunochemical staining for human thyroglobulin is negative. Cytogenetic analysis showed a gain of chromosome 20, the translocation i (14q), and breakpoints of centrometric chromatine. These results are similar to those previously reported by other investigators. CAL 62 radiosensibility has been studied. The survival curve of the in vitro irradiated cells has been adjusted with a linear-quadratic model. This cell line is thus showed to be radioresistant. Cell line CAL 62 constitutes an appropriate model for in vitro studies of thyroid anaplastic carcinoma.
[Anaplastic carcinoma of the thyroid at the Instituto Nacional de la Nutrición Salvador Zubirán].
Sierra, M; Gamboa-Domínguez, A; Herrera, M F; Barredo-Prieto, B; Alvarado de la Barrera, C; Llorente, L; Pérez-Enriquez, B; Rivera, R; González, O; Rull, J A
1997-01-01
Anaplastic thyroid carcinoma (ATC) is a highly aggressive tumor with a median survival rate of 6 months. To analyze presentation, treatment, morphology, immunohistochemistry, and nuclear DNA analysis of a cohort of patients with ATC. Twelve patients with ATC (11 female) with a mean age of 65 years were seen at our hospital from 1970-1995. The data were obtained from the clinical records and the morphology, immunohistochemic studies and DNA pattern were performed in slides obtained from archival specimens. Previous or coexisting thyroide disease was documented in 10 patients (9 multinodular goiters and one Grave's). The most frequent presentation was a rapidly growing tumor associated with dysphagia, cervical pain, hoarseness and dyspnea. A cold thyroid nodule was detected by thyroid scan in 10 patients. The most frequent subtype was the spindle cell variety. Papillary thyroid carcinoma coexisted in eight cases, two of them corresponded to the tall cell variant. Reactivity for S-100 protein and vimentin was studied in six patients: all were positive for S-100 protein and vimentin, 5/6 for epithelial membrane antigen, half for carcinoembriogenic antigen, 2/6 for thyroglobulin and calcitonin, and one for neuronal specific enolase. These six tumors showed a diploid DNA pattern. Tumor resection was achieved in 2/11 and none survived six years after diagnosis. ATC is a highly aggressive tumor coexisting with thyroid pathologies. Spindle cell variant is the most frequent with positive reactivity for S-100 protein, vimentin and epithelial membrane antigen. Most tumors have a diploid DNA content.
Cold thyroid nodules show a marked increase in proliferation markers.
Krohn, Knut; Stricker, Ingo; Emmrich, Peter; Paschke, Ralf
2003-06-01
Thyroid follicular adenomas and adenomatous thyroid nodules are a frequent finding in geographical areas with iodine deficiency. They occur as hypofunctioning (scintigraphically cold) or hyperfunctioning (scintigraphically hot) nodules. Their predominant clonal origin suggests that they result from clonal expansion of a single cell, which is very likely the result of a prolonged increase in proliferation compared with non-affected surrounding cells. To test whether increased cell proliferation is detectable in cold thyroid nodules, we studied paraffin-embedded tissue from 40 cold thyroid nodules and their surrounding normal thyroid tissue for the occurrence of the proliferating cell nuclear antigen (PCNA) and Ki-67 (MIB-1 antibody) epitopes as markers for cell proliferation. All 40 thyroid nodules were histologically well characterized and have been studied for molecular characteristics before. The labeling index (number of labeled cells versus total cell number) for nodular and surrounding tissue was calculated. In 33 cold thyroid nodules a significant (p < or = 0.05) increase in the labeling index for PCNA was detectable. In 19 cold thyroid nodules a significant (p < or = 0.05) increase in the labeling index for Ki-67 was detectable. Moreover, surrounding tissues with lymphocyte infiltration showed a significantly higher labeling index for both PCNA and Ki-67 compared with normal surrounding tissue. These findings are first evidence that an increased thyroid epithelial cell proliferation is a uniform feature common to most cold nodules. However, the increase of proliferation markers shows a heterogeneity that is not correlated with histopathologic, molecular, or clinical characteristics.
Iodide handling by the thyroid epithelial cell.
Nilsson, M
2001-01-01
Iodination of thyroglobulin, the key event in the synthesis of thyroid hormone, is an extracellular process that takes place inside the thyroid follicles at the apical membrane surface that faces the follicular lumen. The supply of iodide involves two steps of TSH-regulated transport, basolateral uptake and apical efflux, that imprint the polarized phenotype of the thyroid cell. Iodide uptake is generated by the sodium/iodide symporter present in the basolateral plasma membrane. A candidate for the apical iodide-permeating mechanism is pendrin, a chloride/iodide transporting protein recently identified in the apical membrane. In physiological conditions, transepithelial iodide transport occurs without intracellular iodination, despite the presence of large amounts of thyroglobulin and thyroperoxidase inside the cells. The reason is that hydrogen peroxide, serving as electron acceptor in iodide-protein binding and normally produced at the apical cell surface, is rapidly degraded by cytosolic glutathione peroxidase once it enters the cells. Iodinated thyroglobulin in the lumen stores not only thyroid hormone but iodine incorporated in iodotyrosine residues as well. After endocytic uptake and degradation of thyroglobulin, intracellular deiodination provides a mechanism for recycling of iodide to participate in the synthesis of new thyroid hormone at the apical cell surface.
Effects of Excess Fluoride and Iodide on Thyroid Function and Morphology.
Jiang, Yaqiu; Guo, Xiujuan; Sun, Qiuyan; Shan, Zhongyan; Teng, Weiping
2016-04-01
Exposure to high levels of iodide in Cangzhou, Shandong Province, China has been associated with increased incidence of thyroid disease; however, whether fluoride can affect the thyroid remains controversial. To investigate the effects of excess fluoride, we evaluated thyroid gland structure and function in rats exposed to fluoride and iodide, either alone or in combination. Five-week-old Wistar rats (n = 160 total) were randomly divided into eight groups: three groups that were given excess fluoride (15, 30, or 60 ppm F); one group given excess iodide (1200 μg/L I); three groups given excess iodide plus fluoride (1200 μg/L I plus 15, 30, or 60 ppm F); and one control group. The serum concentrations of the thyroid hormones TT3 and TT4 on day 150 were significantly reduced for certain fluoride groups; however, no significant differences were observed in concentrations for the pituitary hormone TSH among any groups. Hematoxylin and eosin staining revealed that iodide causes an increase in the areas of the colloid lumens and a decrease in the diameters of epithelial cells and nuclei; however, fluoride causes an increase in nuclear diameters. The damage to follicular epithelial cells upon fluoride or iodide treatment was easily observed by transmission electron microscopy, but the effects were most dramatic upon treatment with both fluoride and iodide. These results suggest that iodide causes the most damage but that fluoride can promote specific changes in the function and morphology of the thyroid, either alone or in combination with iodide.
Molecular pathobiology of thyroid neoplasms.
Tallini, Giovanni
2002-01-01
Tumors of thyroid follicular cells provide a very interesting model to understand the development of human cancer. It is becoming apparent that distinct molecular events are associated with specific stages in a multistep tumorigenic process with good genotype/ phenotype correlation. For instance, mutations of the gsp and thyroid-stimulating hormone receptor genes are associated with benign hyperfunctioning thyroid nodules and adenomas while alterations of other specific genes, such as oncogenic tyrosine kinase alterations (RET/PTC, TRK) in papillary carcinoma and the newly discovered PAX8/peroxisome proliferator-activated receptor gamma rearrangement, are distinctive features of cancer. Although activating RAS mutations occur at all stages of thyroid tumorigenesis, evidence is accumulating that they may also play an important role in tumor progression, a role that is well documented for p53. Environmental factors (iodine deficiency, ionizing radiations) have been shown to play a crucial role in promoting the development of thyroid cancer, influencing both its genotypic and phenotypic features. It is possible that the follicular thyroid cell has unique ways to respond to DNA damage. Similarly to leukemia or sarcomas (and unlike most epithelial cancers), numerous specific rearrangements are being discovered in thyroid cancer suggesting preferential activation of DNA repair instead of cell death programs after environmentally induced genetic alterations.
Herrmann, F; Hambsch, K; Wolf, T; Rother, P; Müller, P
1989-01-01
There exist some histometric methods for the morphological quantification of different strongly stimulating effects on the thyroid gland induced by drugs and/or other chemical substances in dependence upon dose and duration of application. But in respect of technical and temporal expense and also diagnostic statement, there are considerable differences between these recording procedures. Therefore we examined the 3 mostly used methods synchronously (i.e. determination of thyroid epithelial cell height, nuclear volume in thyrocytes, and estimation of relative volume parts in the thyroid gland by the point counting method) by investigating the thyroid glands of methylthiouracil-(MTU)-stimulated rats and corresponding controls in order to compare the diagnostic value and temporal expense. The largest temporal expense was required in the nuclear volume determination, the smallest in the point-counting method. On principle, all 3 procedures allow the determination of hypertrophic alterations but only by help of the point-counting method, also hyperplastic changes are recognizable. By nuclear volume determination, we found significant differences between central and peripheral parts of the thyroid gland. Therefore, to avoid the subjective error, it will be necessary to measure a large number of nuclei in many planes of the gland. Also the determination of epithelial cell high reinforces the subjective error because of the heterological structure especially in unstimulated thyroid gland. If the number of counting points is exactly determined and, full of sense, limited, the point-counting method allows a nearly complete measuring of the whole object to be tested within an acceptable investigation time. In this way, the heterological structure of thyroid gland will be regarded, and comparability and reproducibility are guaranteed on an high level.
Park, Bradley J; Palace, Vince; Wautier, Kerry; Gemmill, Bonnie; Tomy, Gregg
2011-09-15
Tetrabromoethylcyclohexane (TBECH) is an additive brominated flame retardant used in domestic and industrial applications. It has been detected in wildlife, and there is early evidence that it is an endocrine disruptor. Whereas other brominated flame retardants with similar physicochemical properties have been shown to disrupt the thyroid axis, no such evaluation has been conducted for TBECH. To elucidate this, juvenile brown trout (Salmo trutta) were fed either a control diet or diets containing low, medium, or high doses of β-TBECH, the isomer most frequently detected in wildlife, for 56 days (uptake phase) followed by a control diet for an additional 77 days (depuration phase). Eight fish per treatment were lethally sampled on uptake days 7, 14, 21, 35, 49, and 56 and on depuration days 7, 21, 35, 49, and 77 to assess fish condition, circulating free and total triiodothyronine and thyroxine, and thyroid epithelial cell height. Although there was no effect on condition factor, there was a significant reduction in total plasma thyroxine in the high dose group and a significant increase in mean thyroid epithelial cell height in the low, medium, and high dose groups during the uptake phase, whereas there were no differences in the depuration phase. These results indicate that β-TBECH may modulate the thyroid axis in fish at environmentally relevant concentrations.
Ocular surface changes in thyroid eye disease.
Ismailova, Dilyara S; Fedorov, Anatoly A; Grusha, Yaroslav O
2013-04-01
To study the incidence and risk factors of ocular surface damage in thyroid eye disease (TED) and to determine histological changes underlying positive vital staining in this condition. Forty-six patients (92 eyes) with TED were included in this study. Routine ophthalmologic examination, Schirmer test I, vital staining and corneal sensitivity were performed. Fifteen patients with positive vital staining underwent impression cytology and incisional biopsy. Positive vital staining with lissamine green was observed in 56 eyes (60.9%), 30 patients (65.2%). The average degree of staining was 4.57 ± 0.44 (National Eye Institute Workshop grading system). Severe dry eye syndrome was found in 16%. The following histological changes of conjunctiva were revealed: significant epithelial dystrophy with cell polymorphism, goblet cells loss, excessive desquamation and epithelial keratinization with local leukocytic infiltration of substantia propria. According to our results dry eye syndrome is present in 65.2% of patients (60.9% eyes) with TED. Significant risk factors of ocular surface damage in TED were exophthalmos, lagophthalmos, palpebral fissure height and lower lid retraction. Positive conjunctival staining results from punctuate epithelial erosions and excessive desquamation of superficial cells. Histopathologic changes detected in conjunctiva consistent with dry eye and are not specific for TED.
Bardosi, Sebastian; Bardosi, Attila; Nagy, Zsuzsanna; Reglodi, Dora
2016-10-01
Pituitary adenylate cyclase activating polypeptide (PACAP) belongs to the vasoactive intestinal peptide-secretin-glucagon peptide family, isolated first from ovine hypothalamus. The diverse physiological effects of PACAP are known mainly from animal experiments, including several actions in endocrine glands. Alteration of PACAP expression has been shown in several tumors, but changes in expression of PACAP and its specific PAC1 receptor in human thyroid gland pathologies have not yet been investigated. Therefore, the aim of the present study was to investigate expression of PACAP and its PAC1 receptor in human thyroid papillary carcinoma, the most common endocrine malignant tumor. PACAP and PAC1 receptor expressions were investigated from thyroid gland samples of patients with papillary carcinomas. The staining intensity of follicular epithelial cells and thyroid colloid of tumor tissue was compared to that of tumor-free tissue in the same thyroid glands in a semi-quantitative way. Our results reveal that both PACAP(-like) and PAC1 receptor(-like) immunoreactivities are altered in papillary carcinoma. Stronger PACAP immunoreactivity was observed in active follicles. Colloidal PACAP immunostaining was either lacking or very weak, and more tumorous cells displayed strong apical immunoreactivity. Regarding PAC1 receptor, cells of the normal thyroid tissue showed strong granular expression, which was lacking in the tumor cells. The cytoplasm of tumor cells displayed weak, minimal staining, while in a few tumor cells we observed strong PAC1 receptor expression. This pattern was similar to that observed in the PACAP expression, but fewer in number. In summary, we showed alteration of PACAP and PAC1 receptor expression in human thyroid papillary carcinoma, indicating that PACAP regulation is disturbed in tumorous tissue of the thyroid gland. The exact role of PACAP in thyroid tumor growth should be further explored.
Kanzawa, Maki; Hara, Shigeo; Semba, Shuho; Yokozaki, Hiroshi; Hirokawa, Mitsuyoshi; Itoh, Tomoo
2014-04-01
Sorting nexins (SNXs) are a large, diverse group of cytoplasmic and membrane-associated proteins that function in a variety of cellular processes, including endocytosis, protein trafficking, and the retrieval of transmembrane proteins. In this study, we demonstrated that SNX2 is expressed in columnar and active thyroid follicular cells but not in flattened inactive thyrocytes. Morphometric analysis revealed a significant correlation between SNX2 positivity and columnar cell morphology. Immunohistochemical staining of serial sections of the thyroid tissue indicated that SNX2 localization was similar to sortilin, a protein expressed by active thyrocytes. Expression of SNX2 in thyrocytes is particularly marked and extensive in most hyperstimulated thyroid disorders, including Graves disease (diffusely SNX2 positive in 73.3% patients) and functioning nodules (93.8% patients). SNX2 immunolocalization in hyperstimulated follicular epithelial cells was specific among the SNXs family members examined. These results support the utility of SNX2 as a novel marker of active thyrocytes and reflect the endosomal trafficking activity in these cells.
My approach to oncocytic tumours of the thyroid
Asa, S L
2004-01-01
The traditional approach to oncocytic thyroid lesions classified these as a separate entity, and applied criteria that are somewhat similar to those used for follicular lesions of the thyroid. In general, the guidelines to distinguish hyperplasia from neoplasia, and benign from malignant were crude and unsubstantiated by scientific evidence. In fact, there is no basis to separate oncocytic lesions from other classifications of thyroid pathology. The factors that result in mitochondrial accumulation are largely unrelated to the genetic events that result in proliferation and neoplastic transformation of thyroid follicular epithelial cells. The concept of classifying oncocytic lesions, including follicular variant papillary carcinomas, based on nuclear morphology, immunohistochemical profiles, and molecular markers may pave the way for a better understanding of the biology of oncocytic lesions of the thyroid. PMID:14990587
Zhang, Guanjun; Liu, Xi; Huang, Wei; Li, Xiaofeng; Johnstone, Marianne; Deng, Yuan; Ke, Yongqiang; Nunes, Quentin M; Wang, Hongyan; Wang, Yili; Zhang, Xuebin
2015-01-01
Carcinoma showing thymus-like elements (CASTLE) is a rare malignant tumor of the thyroid or adjacent neck soft tissues, whose histogenesis is still debated. It may resemble other primary or metastatic poorly differentiated tumors histologically and the differential diagnosis is crucial for CASTLE has a better prognosis. However, CASTLE as a second primary tumor has not been reported in the literature. We report three cases of thyroid CASTLE, including a unique tumor following breast-conserving surgery for early-stage breast invasive carcinoma. There were two female and one male. All three tumors were located in the right lobe of the thyroid, and one tumor showed extension into the surrounding soft tissue. Histologically, all tumors showed expansive growth and consisted of cords, nests or sheets of epithelial cells divided into irregularly shaped lobules by fibrous connective tissue with lymphoplasmacytic infiltration. Focal squamous differentiation resembling Hassall's corpuscles were observed. All cases stained positively for CD5, CD117, high molecular weight cytokeratin, cytokeratin, P63, carcinoembryonic antigen and epithelial membrane antigen. Positive staining for Bcl-2 in two cases and chromogranin A in one case was noted. Ki-67 expression ranged from 15 to 25%. Thyroid transcription factor and CD3 were negative. There was no evidence of recurrent or metastatic disease at following surgery. These features demonstrated CASTLE may arise from branchial pouch remnants, the thyroid solid cell nests. CASTLE is a rare entity, awareness of its occurrence as a second primary tumor is important to avoid overtreatment because it is associated with a favorable prognosis.
Casalino, Laura; Bakiri, Latifa; Talotta, Francesco; Weitzman, Jonathan B; Fusco, Alfredo; Yaniv, Moshe; Verde, Pasquale
2007-01-01
Fra-1 is frequently overexpressed in epithelial cancers and implicated in invasiveness. We previously showed that Fra-1 plays crucial roles in RAS transformation in rat thyroid cells and mouse fibroblasts. Here, we report a novel role for Fra-1 as a regulator of mitotic progression in RAS-transformed thyroid cells. Fra-1 expression and phosphorylation are regulated during the cell cycle, peaking at G2/M. Knockdown of Fra-1 caused a proliferative block and apoptosis. Although most Fra-1-knockdown cells accumulated in G2, a fraction of cells entering M-phase underwent abortive cell division and exhibited hallmarks of genomic instability (micronuclei, lagging chromosomes and anaphase bridges). Furthermore, we established a link between Fra-1 and the cell-cycle machinery by identifying cyclin A as a novel transcriptional target of Fra-1. During the cell cycle, Fra-1 was recruited to the cyclin A gene (ccna2) promoter, binding to previously unidentified AP-1 sites and the CRE. Fra-1 also induced the expression of JunB, which in turn interacts with the cyclin A promoter. Hence, Fra-1 induction is important in thyroid tumorigenesis, critically regulating cyclin expression and cell-cycle progression. PMID:17347653
[Follicular thyroid tumor as a diagnostic and therapeutic problem].
Król, Robert; Heitzman, Marek; Pawlicki, Jacek; Ziaja, Jacek; Cierpka, Lech
2004-01-01
Although the appearance of follicular thyroid tumors in the population is high, only a small part of them are malignant. Follicular tumors are built of follicular epithelial cells and are encapsulated. Cell atypia differentiates follicular adenoma from cancer. Follicular cancer is characterized by vascular invasion and causes metastases through blood vessels, mainly to lungs and bones. In the diagnosis of follicular thyroid neoplasm, pathological examination of postoperative material plays a leading role. In diagnosis before surgical treatment, physical examination, ultrasound (USG), and fine needle aspiration biopsy (FNAB) are of great importance. The choice of treatment in patients in which follicular neoplasm has been diagnosed by FNAB awakes controversies. In practice it is impossible to determine reliably before surgery whether the lesion is malignant or not. Because of the rare incidence of thyroid cancer in the general population, more and more authors tend to decide on partial resection of the thyroid gland and possible radicalization if cancer is diagnosed on paraffin specimen examination.
Martinez-Marin, David; Sreedhar, Hari; Varma, Vishal K; Eloy, Catarina; Sobrinho-Simões, Manuel; Kajdacsy-Balla, André; Walsh, Michael J
2017-07-01
Fourier transform infrared (FT-IR) microscopy was used to image tissue samples from twenty patients diagnosed with thyroid carcinoma. The spectral data were then used to differentiate between follicular thyroid carcinoma and follicular variant of papillary thyroid carcinoma using principle component analysis coupled with linear discriminant analysis and a Naïve Bayesian classifier operating on a set of computed spectral metrics. Classification of patients' disease type was accomplished by using average spectra from a wide region containing follicular cells, colloid, and fibrosis; however, classification of disease state at the pixel level was only possible when the extracted spectra were limited to follicular epithelial cells in the samples, excluding the relatively uninformative areas of fibrosis. The results demonstrate the potential of FT-IR microscopy as a tool to assist in the difficult diagnosis of these subtypes of thyroid cancer, and also highlights the importance of selectively and separately analyzing spectral information from different features of a tissue of interest.
Han, Fei; Zhang, Long; Zhang, Suxia; Zhou, Hong; Yi, Xianghua
2015-01-01
Warthin-Like tumor of the thyroid is a recently described rare variant of papillary thyroid cancer. The distinct histological feature of this variant is papillary architecture lining oncocytic epithelial cells with nuclear characteristics of papillary carcinoma, accompanied by prominent lymphocytic infiltration in the papillary stalks. Here, we present a case of occult Warthin-like papillary thyroid carcinoma, 0.5-cm in maximum dimension, underwent left thyroid lobectomy in a 65 years old Chinese woman. In this case, there was no extrathyroid extension, vascular invasion and lymphatic metastasis, as well as no complication of lymphocytic thyroiditis. Immunohistochemistry staining revealed that the tumor cells were positive for Leu-M1, HBME-1, 34βE12, and MIB-1 labeling index was low. RET/PTC expression was absent in tumor cells. Furthermore, activated point mutations of BRAF V600E and V600K were concurrently detected by DNA sequencing. Further studies are needed to elucidate the prevalence and role of BRAF(V600K) mutation in papillary thyroid carcinoma, and long-term follow-up for the patient is needed to clarify the biological behavior of this variant with dual BRAF mutations.
Han, Fei; Zhang, Long; Zhang, Suxia; Zhou, Hong; Yi, Xianghua
2015-01-01
Warthin-Like tumor of the thyroid is a recently described rare variant of papillary thyroid cancer. The distinct histological feature of this variant is papillary architecture lining oncocytic epithelial cells with nuclear characteristics of papillary carcinoma, accompanied by prominent lymphocytic infiltration in the papillary stalks. Here, we present a case of occult Warthin-like papillary thyroid carcinoma, 0.5-cm in maximum dimension, underwent left thyroid lobectomy in a 65 years old Chinese woman. In this case, there was no extrathyroid extension, vascular invasion and lymphatic metastasis, as well as no complication of lymphocytic thyroiditis. Immunohistochemistry staining revealed that the tumor cells were positive for Leu-M1, HBME-1, 34βE12, and MIB-1 labeling index was low. RET/PTC expression was absent in tumor cells. Furthermore, activated point mutations of BRAF V600E and V600K were concurrently detected by DNA sequencing. Further studies are needed to elucidate the prevalence and role of BRAFV600K mutation in papillary thyroid carcinoma, and long-term follow-up for the patient is needed to clarify the biological behavior of this variant with dual BRAF mutations. PMID:26191315
IgG4-Related Disease of the Thyroid Gland Requiring Emergent Total Thyroidectomy: A Case Report.
Zhao, Zitong; Lee, Yu Jin; Zheng, Shuwei; Khor, Li Yan; Lim, Kok Hing
2018-05-31
IgG4-related disease of the thyroid gland is a recently recognized subtype of thyroiditis, often with rapid progression requiring surgical treatment. It is considered as a spectrum of disease varying from early IgG4-related Hashimoto's thyroiditis (HT) pattern to late fibrosing HT or Riedel's thyroiditis patterns. Here, we report a 47-year-old Malay woman presenting with progressively painless neck swelling over 3 years and subclinical hypothyroidism. Computed tomography (CT) scan revealed diffuse thyroid enlargement (up to 13 cm) with retrosternal extension and without regional lymphadenopathy. Fine needle aspiration of the thyroid showed a limited number of follicular epithelial cell groups with widespread Hurthle cell change and scanty background colloid, but no evidence of lymphocytosis. The cytologic features fell into the category of 'atypia of undetermined significance'. Subsequently, the patient developed hypercapnic respiratory failure secondary to extrinsic upper airway compression by the thyroid mass and underwent emergent total thyroidectomy. Histology of the thyroid showed diffuse dense lymphoplasmacytic infiltrate and fibrosis. Follicular cells exhibited reactive nuclear features and some Hurthle cell change. IgG4+ plasma cells were over 40/high power field while overall IgG4/IgG ratio was above 50%. The overall features suggest the diagnosis of IgG4-related disease of the thyroid gland in the form of IgG4-related HT. Post-surgery, the patient was found to have markedly elevated serum IgG4 concentration but PET/CT did not show significant increased fludeoxyglucose uptake in other areas. Her recovery was complicated by a ventilator-associated pneumonia with empyema, limiting early use of corticosteroids for treatment of IgG4-related disease.
Knecht, H; Hedinger, C E
1982-09-01
Ultrastructural findings in two cases of Hashimoto's disease and two cases of focal lymphocytic thyroiditis are reported. Stimulated thyrocytes, oncocytes and degenerating thyrocytes were observed in all cases. Multinucleated thyrocytes and epithelial pseudogiant cells were identified in Hashimoto's disease only. Infiltrating lymphocytes, plasma cells, monocytes and macrophages were present in all cases. The ultrastructure of germinal centres was similar to that seen in lymphatic organs. Giant cells of both intra- and extrafollicular localization were seen in Hashimoto's disease. Most of the giant cells were macrophage-derived. Two different ways of giant cell formation were identified: besides the familiar dissolution of plasma membranes of adjacent macrophages, another mechanism of fusion was observed. At sites of contact, peculiar membrane structures were developed and disintegration of plasma membranes occurred in parts adjacent to these structures. These are not identical to desmosomes and are different from Langerhans' granules. They probably represent special organelles for the initiation of cellular fusion.
Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu
2013-02-27
Advanced Adult Primary Liver Cancer; Anaplastic Thyroid Cancer; Bone Metastases; Carcinoma of the Appendix; Distal Urethral Cancer; Fallopian Tube Cancer; Gastrinoma; Glucagonoma; Inflammatory Breast Cancer; Insulinoma; Liver Metastases; Localized Unresectable Adult Primary Liver Cancer; Lung Metastases; Male Breast Cancer; Malignant Pericardial Effusion; Malignant Pleural Effusion; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Parathyroid Cancer; Metastatic Transitional Cell Cancer of the Renal Pelvis and Ureter; Newly Diagnosed Carcinoma of Unknown Primary; Occult Non-small Cell Lung Cancer; Pancreatic Polypeptide Tumor; Primary Peritoneal Cavity Cancer; Proximal Urethral Cancer; Pulmonary Carcinoid Tumor; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adrenocortical Carcinoma; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Bladder Cancer; Recurrent Breast Cancer; Recurrent Carcinoma of Unknown Primary; Recurrent Cervical Cancer; Recurrent Colon Cancer; Recurrent Endometrial Carcinoma; Recurrent Esophageal Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Pancreatic Cancer; Recurrent Parathyroid Cancer; Recurrent Prostate Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Thyroid Cancer; Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter; Recurrent Urethral Cancer; Recurrent Vaginal Cancer; Recurrent Vulvar Cancer; Skin Metastases; Small Intestine Adenocarcinoma; Somatostatinoma; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Adrenocortical Carcinoma; Stage III Bladder Cancer; Stage III Cervical Cancer; Stage III Colon Cancer; Stage III Endometrial Carcinoma; Stage III Esophageal Cancer; Stage III Follicular Thyroid Cancer; Stage III Gastric Cancer; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mucoepidermoid Carcinoma of the Oral Cavity; Stage III Ovarian Epithelial Cancer; Stage III Pancreatic Cancer; Stage III Papillary Thyroid Cancer; Stage III Prostate Cancer; Stage III Rectal Cancer; Stage III Renal Cell Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Anal Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Anal Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Adrenocortical Carcinoma; Stage IV Anal Cancer; Stage IV Bladder Cancer; Stage IV Breast Cancer; Stage IV Colon Cancer; Stage IV Endometrial Carcinoma; Stage IV Esophageal Cancer; Stage IV Follicular Thyroid Cancer; Stage IV Gastric Cancer; Stage IV Mucoepidermoid Carcinoma of the Oral Cavity; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Pancreatic Cancer; Stage IV Papillary Thyroid Cancer; Stage IV Prostate Cancer; Stage IV Rectal Cancer; Stage IV Renal Cell Cancer; Stage IV Salivary Gland Cancer; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IVA Cervical Cancer; Stage IVA Vaginal Cancer; Stage IVB Cervical Cancer; Stage IVB Vaginal Cancer; Stage IVB Vulvar Cancer; Thyroid Gland Medullary Carcinoma; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer; Urethral Cancer Associated With Invasive Bladder Cancer; WDHA Syndrome
Xu, Chengcheng; Wu, Fei; Mao, Chaoming; Wang, Xuefeng; Zheng, Tingting; Bu, Ling; Mou, Xiao; Zhou, Yuepeng; Yuan, Guoyue; Wang, Shengjun; Xiao, Yichuan
2016-12-01
The incidence of the autoimmune thyroid disease Hashimoto thyroiditis (HT) has increased in recent years, and increasing evidence supports the contribution of excess iodine intake to thyroid disease. In this study, we examined the status of autophagy and apoptosis in thyroid tissues obtained from patients with HT, and we determined the effects of excessive iodine on the autophagy and apoptosis of thyroid follicular cells (TFCs) in an attempt to elucidate the effects of excess iodine on HT development. Our results showed decreases in the autophagy-related protein LC3B-II, and increases in caspase-3 were observed in thyroid tissues from HT patients. Interestingly, the suppression of autophagy activity in TFCs was induced by excess iodine in vitro, and this process is mediated through transforming growth factor-β1 downregulation and activation of the Akt/mTOR signaling pathway. In addition, excess iodine induced autophagy suppression and enhanced reactive oxygen species (ROS) production and apoptosis of TFCs, which could be rescued by the activation of autophagy. Taken together, our results demonstrated that excess iodine contributed to autophagy suppression and apoptosis of TFCs, which could be important factors predisposing to increased risk of HT development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioprinting of a functional vascularized mouse thyroid gland construct.
Bulanova, Elena A; Koudan, Elizaveta V; Degosserie, Jonathan; Heymans, Charlotte; Pereira, Frederico DAS; Parfenov, Vladislav A; Sun, Yi; Wang, Qi; Akhmedova, Suraya A; Sviridova, Irina K; Sergeeva, Natalia S; Frank, Georgy A; Khesuani, Yusef D; Pierreux, Christophe E; Mironov, Vladimir A
2017-08-18
Bioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS) as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modeling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within a collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, EC from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of a capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of the thyroid gland construct, we depleted endogenous EC from TS before bioprinting. EC from AS completely revascularized depleted thyroid tissue. The cultured bioprinted construct was functional as it could normalize blood thyroxine levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents a further advance in bioprinting technology, exploring the self-assembling properties of tissue spheroids.
Cytological Diagnosis of an Uncommon High Grade Malignant Thyroid Tumour: A Case Report.
Nagpal, Ruchi; Kaushal, Manju; Kumar, Sawan
2017-07-01
Anaplastic Thyroid Carcinoma (ATC) is a relatively uncommon highly malignant tumour originating from the follicular cells of thyroid gland having poor prognosis. It accounts for 2% to 5% of all thyroid carcinomas and patients typically present with a rapidly growing anterior neck mass with aggressive symptoms. A 53-year-old male presented with diffuse neck swelling measuring 8x6 cm and right cervical lymph node measuring 2x2 cm since one month which was associated with dyspepsia and dyspnoea. Ultrasound and Contrast Enhanced Computed Tomography (CECT) neck revealed enlarged right lobe of thyroid and multiple enlarged cervical lymph nodes with soft tissue density nodules in bilateral lungs. Fine Needle Aspiration (FNA) from the swelling revealed giant cell, spindle cell and squamoid pattern. Focal areas showed follicular epithelial cells arranged in repeated microfollicular pattern suggesting an underlying follicular neoplasm. FNAC smears from the lymph node also revealed similar findings. Based on the cytomorphological and radiological findings, final diagnosis of ATC probably arising from underlying follicular carcinoma with cervical lymph node and lung metastasis was given. FNAC leads to prompt and definitive diagnosis, so that therapy can be initiated as soon as possible for better outcome. Multimodality therapy (surgery, external beam radiation, and chemotherapy) is the mainstay of treatment.
Cytological Diagnosis of an Uncommon High Grade Malignant Thyroid Tumour: A Case Report
Kaushal, Manju; Kumar, Sawan
2017-01-01
Anaplastic Thyroid Carcinoma (ATC) is a relatively uncommon highly malignant tumour originating from the follicular cells of thyroid gland having poor prognosis. It accounts for 2% to 5% of all thyroid carcinomas and patients typically present with a rapidly growing anterior neck mass with aggressive symptoms. A 53-year-old male presented with diffuse neck swelling measuring 8x6 cm and right cervical lymph node measuring 2x2 cm since one month which was associated with dyspepsia and dyspnoea. Ultrasound and Contrast Enhanced Computed Tomography (CECT) neck revealed enlarged right lobe of thyroid and multiple enlarged cervical lymph nodes with soft tissue density nodules in bilateral lungs. Fine Needle Aspiration (FNA) from the swelling revealed giant cell, spindle cell and squamoid pattern. Focal areas showed follicular epithelial cells arranged in repeated microfollicular pattern suggesting an underlying follicular neoplasm. FNAC smears from the lymph node also revealed similar findings. Based on the cytomorphological and radiological findings, final diagnosis of ATC probably arising from underlying follicular carcinoma with cervical lymph node and lung metastasis was given. FNAC leads to prompt and definitive diagnosis, so that therapy can be initiated as soon as possible for better outcome. Multimodality therapy (surgery, external beam radiation, and chemotherapy) is the mainstay of treatment. PMID:28892908
Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development.
Kero, Jukka; Ahmed, Kashan; Wettschureck, Nina; Tunaru, Sorin; Wintermantel, Tim; Greiner, Erich; Schütz, Günther; Offermanns, Stefan
2007-09-01
The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The Gs-mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the Gq/G11-mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the alpha subunits of Gq and G11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Galphaq/Galpha11-deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that Gq/G11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth.
Alpha-mannosidosis in goats caused by the swainsonine-containing plant Ipomoea verbascoidea
USDA-ARS?s Scientific Manuscript database
A disease of the nervous system is reported in goats in the semiarid region of northeastern Brazil. Histological examination showed diffuse vacuolation of neurons and epithelial cells of the pancreas, thyroid, renal tubules, and liver. The swainsonine-containing plant Ipomoea verbascoidea was found ...
1991-01-01
We have studied concurrent apical/basolateral and regulated/constitutive secretory targeting in filter-grown thyroid epithelial monolayers in vitro, by following the exocytotic routes of two newly synthesized endogenous secretory proteins, thyroglobulin (Tg) and p500. Tg is a regulated secretory protein as indicated by its acute secretory response to secretagogues. Without stimulation, pulse-labeled Tg exhibits primarily two kinetically distinct routes: less than or equal to 80% is released in an apical secretory phase which is largely complete by 6-10 h, with most of the remaining Tg retained in intracellular storage from which delayed apical discharge is seen. The rapid export observed for most Tg is unlikely to be because of default secretion, since its apical polarity is preserved even during the period (less than or equal to 10 h) when p500 is released basolaterally by a constitutive pathway unresponsive to secretagogues. p500 also exhibits a second, kinetically distinct secretory route: at chase times greater than 10 h, a residual fraction (less than or equal to 8%) of p500 is secreted with an apical preponderance similar to that of Tg. It appears that this fraction of p500 has failed to be excluded from the regulated pathway, which has a predetermined apical polarity. From these data we hypothesize that a targeting hierarchy may exist in thyroid epithelial cells such that initial sorting to the regulated pathway may be a way of insuring apical surface delivery from one of two possible exocytotic routes originating in the immature storage compartment. PMID:1991788
Nasreldin, Magda H A; Ibrahim, Eman A; Saad El-Din, Somaia A
2016-01-01
Branchial pouch-derived anomalies may arise from remnants of the first, second, or third/fourth branchial arches. Branchial pouch-related structures are found within the thyroid gland in the form of solid cell rests, epithelial lined cyst with or without an associated lymphoid component, thymic and/or parathyroid tissue, and less commonly in the form of heterotopic cartilage. We present a rare case of left solid thyroid swelling nearby two cervical nodules in a seven-year-old female with a clinical diagnosis suggestive of malignant thyroid tumor with metastasis to the cervical lymph nodes. Histopathological examination revealed that it was compatible with third/fourth branchial pouch-derived anomaly composed of mature cartilage and thymic and parathyroid tissues for clinical and radiological correlations.
Nasreldin, Magda H. A.; Ibrahim, Eman A.; Saad El-Din, Somaia A.
2016-01-01
Branchial pouch-derived anomalies may arise from remnants of the first, second, or third/fourth branchial arches. Branchial pouch-related structures are found within the thyroid gland in the form of solid cell rests, epithelial lined cyst with or without an associated lymphoid component, thymic and/or parathyroid tissue, and less commonly in the form of heterotopic cartilage. We present a rare case of left solid thyroid swelling nearby two cervical nodules in a seven-year-old female with a clinical diagnosis suggestive of malignant thyroid tumor with metastasis to the cervical lymph nodes. Histopathological examination revealed that it was compatible with third/fourth branchial pouch-derived anomaly composed of mature cartilage and thymic and parathyroid tissues for clinical and radiological correlations. PMID:26819565
Meng, X; Kong, D-H; Li, N; Zong, Z-H; Liu, B-Q; Du, Z-X; Guan, Y; Cao, L; Wang, H-Q
2014-01-01
The process by which epithelial features are lost in favor of a mesenchymal phenotype is referred to as epithelial–mesenchymal transition (EMT). Most carcinomas use this mechanism to evade into neighboring tissues. Reduction or a loss of E-cadherin expression is a well-established hallmark of EMT. As a potent suppressor of E-cadherin, transcription factor ZEB1 is one of the key inducers of EMT, whose expression promotes tumorigenesis and metastasis of carcinomas. Bcl-2-associated athanogene 3 (BAG3) affects multifaceted cellular functions, including proliferation, apoptosis, cell adhesion and invasion, viral infection, and autophagy. Recently, we have reported a novel role of BAG3 implicated in EMT, while the mechanisms are poorly elucidated. The current study demonstrated that knockdown of BAG3 induced EMT, and increased cell migratory and invasiveness in thyroid cancer cells via transcriptional activation of ZEB1. We also found that BAG3 knockdown led to nuclear accumulation of β-catenin, which was responsible for the transcriptional activation of ZEB1. These results indicate BAG3 as a regulator of ZEB1 expression in EMT and as a regulator of metastasis in thyroid cancer cells, providing potential targets to prevent and/or treat thyroid cancer cell invasion and metastasis. PMID:24577090
Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.
Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana
2014-01-01
Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.
Hasebe, Takashi; Fu, Liezhen; Heimeier, Rachel A.; Das, Biswajit; Ishizuya-Oka, Atsuko; Shi, Yun-Bo
2013-01-01
Background Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. Methodology/Principal Findings The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. Conclusions/Significance Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells. PMID:23383234
Novel Cause of 'Black Thyroid': Intraoperative Use of Indocyanine Green.
Chernock, Rebecca D; Jackson, Ryan S
2017-09-01
The antibiotic minocycline is virtually pathognomonic for brown-black discoloration of the thyroid gland referred to as 'black thyroid'. Black thyroid' is an incidental finding in patients taking the drug who undergo thyroid surgery for another indication and is not of known clinical significance. However, its recognition is important so as not to raise concern for a disease process. Here, we present the first case of 'black thyroid' attributable to the iodine-containing compound indocyanine green. Intraoperative indocyanine green was administered as part of a research protocol transoral robotic-assisted surgery for a base of tongue cancer in a 44-year-old man. Hemithyroidectomy was subsequently performed during the same operation for further evaluation of an indeterminate thyroid nodule. The resected thyroid lobe was dark, nearly black in color, and histologically showed extensive brown pigment deposition in the follicular epithelial cells and colloid, mimicking minocycline-induced 'black thyroid'. In this case, however, the patient was not taking minocycline; instead the 'black thyroid' was attributed to the iodine-containing compound indocyanine green. Indocyanine green is a hereto unreported cause of 'black thyroid' with histopathologic features that are remarkably similar to that induced by minocycline. Indocyanine green should be included the differential diagnosis of 'black thyroid'. Clinical history is important so as not to raise concern for a disease process.
Khalaf, Hanaa A; Arafat, Eetmad A
2015-01-01
Monosodium glutamate (MSG) is a major flavor enhancer used as a food additive. The present study investigates the effects of different doses of MSG on the morphometric and histological changes of the thyroid gland. 28 male albino rats were used. The rats were divided into four groups: group I control, group II, III and IV treated with MSG (0.25 g/kg, 3 g/kg, 6 g/kg daily for one month) respectively. The thyroid glands were dissected out and prepared for light and electron microscopic examination. Light microscopic examination of thyroid gland of group II revealed increase in follicular epithelial height. Groups III & IV showed decrease in the follicular diameter and irregularity in the shape of some follicles with discontinuity of basement membrane. Follicular hyperplasia was detected in some follicles with appearance of multiple pyknotic nuclei in follicular and interfollicular cells and multiple exfoliated cells in the colloid. In addition, areas of loss of follicular pattern were appeared in group IV. Immunohistochemical examination of BCL2 immunoexpression of the thyroid glands of groups III & IV reveals weak positive reaction in the follicular cells cytoplasm. Ultrathin sections examination of groups III & IV revealed follicular cells with irregular hyperchromatic nuclei, marked dilatation of rER and increased lysosomes with areas of short or lost apical microvilli. In addition, vacuolation of mitochondria was detected in group IV. The results displayed that MSG even at low doses is capable of producing alterations in the body weights and thyroid tissue function and histology. PMID:26884820
Bravo, Susana B; Pampín, Sandra; Cameselle-Teijeiro, José; Carneiro, Carmen; Domínguez, Fernando; Barreiro, Francisco; Alvarez, Clara V
2003-10-30
Millions of people worldwide suffer goiter, a proliferative disease of the follicular cells of the thyroid that may become neoplastic. Thyroid neoplasms have low proliferative index, low apoptotic index and a high incidence of metastasis. TGF-beta is overexpressed in thyroid follicular tumor cells. To investigate the role of TGF-beta in thyroid tumor progression, we established cultures of human thyrocytes from different proliferative pathologies (Grave's disease, multinodular goiter, follicular adenoma, papillary carcinoma), lymph node metastasis, and a normal thyroid sample. All cultures maintained the thyrocyte phenotype. TGF-beta induced cell-cycle arrest in all cultures, in contrast with results reported for other epithelial tumors. In deprived medium, TGF-beta induced apoptosis in normal thyrocyte cultures and all neoplastic cultures except the metastatic cultures. This apoptosis was mediated by a reduction in p27kip1 levels, inducing cell-cycle initiation. Antisense p27 expression induced apoptosis in the absence of TGF-beta. By contrast, in cells in which p27 was overexpressed, TGF-beta had a survival effect. In growth medium, a net survival effect occurs in neoplastic thyrocytes only, not normal thyrocytes, due to activation of the NF-kappaB survival program. Together, these findings suggest that (a) thyroid neoplasms are due to reduced apoptosis, not increased division, in line with the low proliferative index of these pathologies, and (b) TGF-beta induces apoptosis in normal thyrocytes via p27 reduction, but that in neoplastic thyrocytes this effect is overridden by activation of the NF-kappaB program.
Electric and magnetic fields do not modify the biochemical properties of FRTL-5 cells.
Dimida, A; Ferrarini, E; Agretti, P; De Marco, G; Grasso, L; Martinelli, M; Longo, I; Giulietti, D; Ricci, A; Galimberti, M; Siervo, B; Licitra, G; Francia, F; Pinchera, A; Vitti, P; Tonacchera, M
2011-03-01
Electric and magnetic fields (EMF) might be involved in human disease and numerous research and scientific reviews have been conducted to address this question. In particular thyroid structural and functional alterations caused by various forms of non-ionizing radiation have been described. The aim of this study was to analyze the possible effects of EMF on thyroid, in particular we analyzed the effects caused by a GSM (Global System for Mobile Communications) signal (900 MHz) on cultured thyroid cells (FRTL- 5). The experimental setup was designed in order to expose samples to a radiofrequency wave in well-controlled conditions. We used the FRTL-5 cell line, an epithelial monoclonal continuous cell line derived from Fisher rat thyroid tissue growing as monolayer, expressing the TSH receptor and the sodium-iodide symporter (NIS). FRTL-5 were subsequently irradiate for 24, 48, and 96 h with EMF (800-900 MHz, power-frequency of mobile communication systems) and iodide uptake and cAMP production were measured. The irradiation of cells with EMF at 900 Mhz for 24, 48, and 96 h did not influence the level of cAMP production and was not able to modify iodide accumulation in FRTL- 5 cells with respect to basal conditions. In conclusion, EMF do not seem to be able to interfere with the biochemical properties of FRTL-5 cells in vitro.
Inhibition of STAT3 activity delays obesity-induced thyroid carcinogenesis in a mouse model
Park, Jeong Won; Han, Cho Rong; Zhao, Li; Willingham, Mark C.; Cheng, Sheue-yann
2015-01-01
Compelling epidemiologic studies indicate that obesity is a risk factor for many human cancers, including thyroid cancer. In recent decades, the incidence of thyroid cancer has dramatically increased along with a marked rise in obesity prevalence. We previously demonstrated that a high fat diet (HFD) effectively induced the obese phenotype in a mouse model of thyroid cancer (ThrbPV/PVPten+/− mice). Moreover, HFD activates the STAT3 signal pathway to promote more aggressive tumor phenotypes. The aim of the present study was to evaluate the effect of S3I-201, a specific inhibitor of STAT3 activity, on HFD-induced aggressive cancer progression in the mouse model of thyroid cancer. Wild type and ThrbPV/PVPten+/− mice were treated with HFD together with S3I-201 or vehicle-only as controls. We assessed the effects of S3I-201 on HFD-induced thyroid cancer progression, the leptin-JAK2-STAT3 signaling pathway, and key regulators of epithelial-mesenchymal transition. S3I-201 effectively inhibited HFD-induced aberrant activation of STAT3 and its downstream targets to markedly inhibit thyroid tumor growth and to prolong survival. Decreased protein levels of cyclins D1 and B1, cyclin dependent kinase (CDK) 4, CDK 6, and phosphorylated retinoblastoma protein led to the inhibition of tumor cell proliferation in S3I-201-treated ThrbPV/PVPten+/− mice. Reduced occurrence of vascular invasion and blocking of anaplasia and lung metastasis in thyroid tumors of S3I-201-treated ThrbPV/PVPten+/− mice were mediated via decreased expression of vimentin and matrix metalloproteinases, two key effectors of epithelial-mesenchymal transition. The present findings suggest that inhibition of the STAT3 activity would be a novel treatment strategy for obesity-induced thyroid cancer. PMID:26552408
Jour, George; Liu, Yajuan; Ricciotti, Robert; Pritchard, Colin; Hoch, Benjamin L
2015-09-01
Epithelial glandular differentiation in dedifferentiated chondrosarcoma has not been described. Our patient was a 64-year-old man with a history of prostate cancer status post-radiation and hormonal therapy. On screening bone scan, he was found to have increased uptake in his right femoral shaft. Biopsy revealed intermediate-grade conventional chondrosarcoma. Subsequent femoral resection was remarkable for an intermediate-grade chondrosarcomatous component juxtaposed to an area composed of anastomosing nests and cords of malignant epithelial cells showing nuclear atypia and increased mitotic activity. A fibroblastic-appearing spindle cell population was intimately associated with the epithelial cells. The epithelial cells labeled with 34bE12, AE1/AE3, EMA, and Vimentin (both spindled and epithelial components) while being negative for prostate-specific antigen, prostate specific acid phosphatase, cytokeratin 20, thyroid transcription factor-1, and CDX2. The patient developed local recurrence 9 months after the initial resection but has had no metastatic disease and consistently undetectable prostate-specific antigen levels. Deep parallel sequencing of the dedifferentiated component showed a nonsynonymous mutation at exon 4 of IDH1 gene at codon R132 leading to a substitution of arginine, with serine confirming glandular differentiation in dedifferentiated chondrosarcoma. Copyright © 2015 Elsevier Inc. All rights reserved.
The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I− uptake
Purtell, Kerry; Paroder-Belenitsky, Monika; Reyna-Neyra, Andrea; Nicola, Juan P.; Koba, Wade; Fine, Eugene; Carrasco, Nancy; Abbott, Geoffrey W.
2012-01-01
The KCNQ1 α subunit and the KCNE2 β subunit form a potassium channel in thyroid epithelial cells. Genetic disruption of KCNQ1-KCNE2 causes hypothyroidism in mice, resulting in cardiac hypertrophy, dwarfism, alopecia, and prenatal mortality. Here, we investigated the mechanistic requirement for KCNQ1-KCNE2 in thyroid hormone biosynthesis, utilizing whole-animal dynamic positron emission tomography. The KCNQ1-specific antagonist (−)-[3R,4S]-chromanol 293B (C293B) significantly impaired thyroid cell I− uptake, which is mediated by the Na+/I− symporter (NIS), in vivo (dSUV/dt: vehicle, 0.028±0.004 min−1; 10 mg/kg C293B, 0.009±0.006 min−1) and in vitro (EC50: 99±10 μM C293B). Na+-dependent nicotinate uptake by SMCT, however, was unaffected. Kcne2 deletion did not alter the balance of free vs. thyroglobulin-bound I− in the thyroid (distinguished using ClO4−, a competitive inhibitor of NIS), indicating that KCNQ1-KCNE2 is not required for Duox/TPO-mediated I− organification. However, Kcne2 deletion doubled the rate of free I− efflux from the thyroid following ClO4− injection, a NIS-independent process. Thus, KCNQ1-KCNE2 is necessary for adequate thyroid cell I− uptake, the most likely explanation being that it is prerequisite for adequate NIS activity.—Purtell, K., Paroder-Belenitsky, M., Reyna-Neyra, A., Nicola, J. P., Koba, W., Fine, E., Carrasco, N., Abbott, G. W. The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I− uptake. PMID:22549510
Revising the embryonic origin of thyroid C cells in mice and humans
Johansson, Ellen; Andersson, Louise; Örnros, Jessica; Carlsson, Therese; Ingeson-Carlsson, Camilla; Liang, Shawn; Dahlberg, Jakob; Jansson, Svante; Parrillo, Luca; Zoppoli, Pietro; Barila, Guillermo O.; Altschuler, Daniel L.; Padula, Daniela; Lickert, Heiko; Fagman, Henrik; Nilsson, Mikael
2015-01-01
Current understanding infers a neural crest origin of thyroid C cells, the major source of calcitonin in mammals and ancestors to neuroendocrine thyroid tumors. The concept is primarily based on investigations in quail–chick chimeras involving fate mapping of neural crest cells to the ultimobranchial glands that regulate Ca2+ homeostasis in birds, reptiles, amphibians and fishes, but whether mammalian C cell development involves a homologous ontogenetic trajectory has not been experimentally verified. With lineage tracing, we now provide direct evidence that Sox17+ anterior endoderm is the only source of differentiated C cells and their progenitors in mice. Like many gut endoderm derivatives, embryonic C cells were found to coexpress pioneer factors forkhead box (Fox) a1 and Foxa2 before neuroendocrine differentiation takes place. In the ultimobranchial body epithelium emerging from pharyngeal pouch endoderm in early organogenesis, differential Foxa1/Foxa2 expression distinguished two spatially separated pools of C cell precursors with different growth properties. A similar expression pattern was recapitulated in medullary thyroid carcinoma cells in vivo, consistent with a growth-promoting role of Foxa1. In contrast to embryonic precursor cells, C cell-derived tumor cells invading the stromal compartment downregulated Foxa2, foregoing epithelial-to-mesenchymal transition designated by loss of E-cadherin; both Foxa2 and E-cadherin were re-expressed at metastatic sites. These findings revise mammalian C cell ontogeny, expand the neuroendocrine repertoire of endoderm and redefine the boundaries of neural crest diversification. The data further underpin distinct functions of Foxa1 and Foxa2 in both embryonic and tumor development. PMID:26395490
Xu, X. C.; el-Naggar, A. K.; Lotan, R.
1995-01-01
Carcinoma of the thyroid gland, the most frequently diagnosed endocrine malignancy, is often associated with early regional metastases. With the exception of papillary carcinoma, distinguishing benign from malignant thyroid neoplasms in the absence of metastatic disease is difficult. Recently, the vertebrate lectins galectin-1 and galectin-3 have been implicated in the regulation of cellular growth, differentiation, and malignant transformation of a variety of tissues. To determine whether these galectins have a role in thyroid neoplasia, we analyzed 32 specimens from thyroid malignancies (16 papillary, 7 follicular, 8 medullary carcinomas, and 1 metastasis to lymph node), 10 benign thyroid adenomas, 1 nodular goiter, and 33 specimens from adjacent normal thyroid tissue for the expression of galectin-1 and galectin-3 with immunohistochemical and immunoblotting techniques utilizing anti-galectin antibodies. All thyroid malignancies of epithelial origin (ie, papillary and follicular carcinomas) and a metastatic lymph node from a papillary carcinoma expressed high levels of both galectin-1 and galectin-3. The medullary thyroid carcinomas, which are of parafollicular C cell origin, showed a weaker and variable expression of these galectins. In contrast, neither benign thyroid adenomas nor adjacent normal thyroid tissue expressed galectin-1 or galectin-3. These results suggest that galectin-1 and galectin-3 may be associated with malignant transformation of thyroid epithelium and may potentially serve as markers for distinguishing benign thyroid adenomas from differentiated thyroid carcinomas. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7677193
2016-06-09
Extensive Stage Small Cell Lung Cancer; Hereditary Paraganglioma; Male Breast Cancer; Malignant Paraganglioma; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Pheochromocytoma; Pancreatic Polypeptide Tumor; Recurrent Breast Cancer; Recurrent Cervical Cancer; Recurrent Endometrial Carcinoma; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Islet Cell Carcinoma; Recurrent Neuroendocrine Carcinoma of the Skin; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pheochromocytoma; Recurrent Prostate Cancer; Recurrent Renal Cell Cancer; Recurrent Small Cell Lung Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Regional Pheochromocytoma; Stage III Cervical Cancer; Stage III Endometrial Carcinoma; Stage III Neuroendocrine Carcinoma of the Skin; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Prostate Cancer; Stage III Renal Cell Cancer; Stage III Uterine Sarcoma; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Endometrial Carcinoma; Stage IV Neuroendocrine Carcinoma of the Skin; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Prostate Cancer; Stage IV Renal Cell Cancer; Stage IV Uterine Sarcoma; Stage IVA Cervical Cancer; Stage IVB Cervical Cancer; Thyroid Gland Medullary Carcinoma
NASA Astrophysics Data System (ADS)
Zitzelsberger, Horst; Fung, Jingly; Janish, C.; McNamara, George; Bryant, P. E.; Riches, A. C.; Weier, Heinz-Ulli G.
1999-05-01
Radiocarcinogenesis is widely recognized as occupational, environmental and therapeutical hazard, but the underlying mechanisms and cellular targets have not yet been identified. We applied SKY to study chromosomal rearrangements leading to malignant transformation of irradiated thyroid epithelial cells. SKY is a recently developed technique to detect translocations involving non-homologous based on unique staining of all 24 human chromosomes by hybridization with a mixture of whole chromosome painting probes. A tuneable interferometer mounted on a fluorescence microscope in front of a CCD camera allows to record the 400 nm - 1000 nm fluorescence spectrum for each pixel in the image. After background correction, spectra recorded for each pixel are compared to reference spectra stored previously for each chromosome-specific probe. Thus, pixel spectra can be associated with specific chromosomes and displayed in 'classification' colors, which are defined so that even small translocations become readily discernible. SKY analysis was performed on several radiation-transformed cell lines. Line S48T was generated from a primary tumor of a child exposed to elevated levels of radiation following the Chernobyl nuclear accident. Subclones were generated from the human thyroid epithelial cell line (HTori-3) by exposure to gamma or alpha irradiation. SKY analysis revealed multiple translocations and, combined with G-banding, allowed the definition of targets for positional cloning of tumor related genes.
γ-Aminobutyric acid ameliorates fluoride-induced hypothyroidism in male Kunming mice.
Yang, Haoyue; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Pengcheng
2016-02-01
This study evaluated the protective effects of γ-aminobutyric acid (GABA), a non-protein amino acid and anti-oxidant, against fluoride-induced hypothyroidism in mice. Light microscope sample preparation technique and TEM sample preparation technique were used to assay thyroid microstructure and ultrastructure; enzyme immunoassay method was used to assay hormone and protein levels; immunohistochemical staining method was used to assay apoptosis of thyroid follicular epithelium cells. Subacute injection of sodium fluoride (NaF) decreased blood T4, T3 and thyroid hormone-binding globulin (TBG) levels to 33.98 μg/l, 3 2.8 ng/ml and 11.67 ng/ml, respectively. In addition, fluoride intoxication induced structural abnormalities in thyroid follicles. Our results showed that treatment of fluoride-exposed mice with GABA appreciably decreased metabolic toxicity induced by fluoride and restored the microstructural and ultrastructural organisation of the thyroid gland towards normalcy. Compared with the negative control group, GABA treatment groups showed significantly upregulated T4, T3 and TBG levels (42.34 μg/l, 6.54 ng/ml and 18.78 ng/ml, respectively; P<0.05), properly increased TSH level and apoptosis inhibition in thyroid follicular epithelial cells. To the best of our knowledge, this is the first study to establish the therapeutic efficacy of GABA as a natural antioxidant in inducing thyroprotection against fluoride-induced toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
Peckova, Kvetoslava; Daum, Ondrej; Michal, Michael; Curcikova, Radmila; Michal, Michal
2016-09-01
We report on an exceedingly rare lesion of the thyroid probably of a branchial cleft origin, which was not published in the world literature before. A 58-year-old woman underwent a total thyroidectomy for bilateral goiter. Grossly, there was one yellowish nodule sized 15 mm in the largest dimension found in the right lobe. Microscopically, the thyroid parenchyma showed signs of Hashimoto thyroiditis. The nodule in the right lobe was composed of a part of solid cell nests appearance, another part resembling a branchial cleft cyst, and a part resembling Warthin tumor. This lesion may belong to the histogenetically similar group of entities in the head and neck region which are derived from branchial cleft derivatives and which, under the inflammatory influence, have the ability to a cystic dilatation and proliferation of the epithelial component. The epithelium can afterwards become papillary and may undergo oncocytic transformation, thus gaining features that impart the resemblance of a Warthin tumor. Club members generally agreed with a submitted diagnosis of benign Warthin tumor of the thyroid.
Liu, Hongliang; Zeng, Qiang; Cui, Yushan; Zhao, Liang; Zhang, Lei; Fu, Gang; Hou, Changchun; Zhang, Shun; Yu, Linyu; Jiang, Chunyang; Wang, Zhenglun; Chen, Xuemin; Wang, Aiguo
2014-01-30
Excessive iodide and fluoride coexist in the groundwater in many regions, causing a potential risk to the human thyroid. To investigate the mechanism of iodide- and fluoride-induced thyroid cytotoxicity, human thyroid follicular epithelial cells (Nthy-ori 3-1) were treated with different concentrations of potassium iodide (KI), with or without sodium fluoride (NaF). Cell morphology, viability, lactate dehydrogenase (LDH) leakage, apoptosis, and expression of inositol-requiring enzyme 1 (IRE1) pathway-related molecules were assessed. Results showed 50 mM of KI, 1 mM of NaF, and 50 mM of KI +1 mM of NaF changed cellular morphology, decreased viability, and increased LDH leakage and apoptosis. Elevated expression of binding protein (BiP), IRE1, and C/EBP homologous protein (CHOP) mRNA and protein, as well as spliced X-box-binding protein-1 (sXBP-1) mRNA, were observed in the 1 mM NaF and 50 mM KI +1 mM NaF groups. Collectively, excessive iodide and/or fluoride is cytotoxic to the human thyroid. Although these data do not manifest iodide could induce the IRE1 pathway, the cytotoxicity followed by exposure to fluoride alone or in combination with iodide may be related to IRE1 pathway-induced apoptosis. Furthermore, exposure to the combination of excessive iodide and fluoride may cause interactive effects on thyroid cytotoxicity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun-Bo; Ishizuya-Oka, Atsuko
2017-04-01
In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real-time reverse transcription-polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up-regulated during both natural and TH-induced metamorphosis in a tissue-specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up-regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ-secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH-induced up-regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028-1039. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Fujimoto, Kenta; Kajita, Mitsuko; Fu, Liezhen; Shi, Yun‐Bo; Ishizuya‐Oka, Atsuko
2016-01-01
Abstract In Xenopus laevis intestine during metamorphosis, the larval epithelial cells are removed by apoptosis, and the adult epithelial stem (AE) cells appear concomitantly. They proliferate and differentiate to form the adult epithelium (Ep). Thyroid hormone (TH) is well established to trigger this remodeling by regulating the expression of various genes including Notch receptor. To study the role of Notch signaling, we have analyzed the expression of its components, including the ligands (DLL and Jag), receptor (Notch), and targets (Hairy), in the metamorphosing intestine by real‐time reverse transcription‐polymerase chain reaction and in situ hybridization or immunohistochemistry. We show that they are up‐regulated during both natural and TH‐induced metamorphosis in a tissue‐specific manner. Particularly, Hairy1 is specifically expressed in the AE cells. Moreover, up‐regulation of Hairy1 and Hairy2b by TH was prevented by treating tadpoles with a γ‐secretase inhibitor (GSI), which inhibits Notch signaling. More importantly, TH‐induced up‐regulation of LGR5, an adult intestinal stem cell marker, was suppressed by GSI treatment. Our results suggest that Notch signaling plays a role in stem cell development by regulating the expression of Hairy genes during intestinal remodeling. Furthermore, we show with organ culture experiments that prolonged exposure of tadpole intestine to TH plus GSI leads to hyperplasia of secretory cells and reduction of absorptive cells. Our findings here thus provide evidence for evolutionarily conserved role of Notch signaling in intestinal cell fate determination but more importantly reveal, for the first time, an important role of Notch pathway in the formation of adult intestinal stem cells during vertebrate development. Stem Cells 2017;35:1028–1039 PMID:27870267
Perona, M; Rodríguez, C; Carpano, M; Thomasz, L; Nievas, S; Olivera, M; Thorp, S; Curotto, P; Pozzi, E; Kahl, S; Pisarev, M; Juvenal, G; Dagrosa, A
2013-08-01
We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated thyroid carcinoma (PDTC). Histone deacetylase inhibitors (HDACI) like sodium butyrate (NaB) cause hyperacetylation of histone proteins and show capacity to increase the gamma irradiation effect. The purpose of these studies was to investigate the use of the NaB as a radiosensitizer of the BNCT for PDTC. Follicular thyroid carcinoma cells (WRO) and rat thyroid epithelial cells (FRTL-5) were incubated with 1 mM NaB and then treated with boronophenylalanine ¹⁰BPA (10 μg ¹⁰B ml⁻¹) + neutrons, or with 2, 4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ¹⁰BOPP (10 μg ¹⁰B ml⁻¹) + neutrons, or with a neutron beam alone. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux = (1.0 ± 0.1) × 10¹⁰ n cm⁻² s⁻¹). Cell survival decreased as a function of the physical absorbed dose in both cell lines. Moreover, the addition of NaB decreased cell survival (p < 0.05) in WRO cells incubated with both boron compounds. NaB increased the percentage of necrotic and apoptotic cells in both BNCT groups (p < 0.05). An accumulation of cells in G2/M phase at 24 h was observed for all the irradiated groups and the addition of NaB increased this percentage. Biodistribution studies of BPA (350 mg kg⁻¹ body weight) 24 h after NaB injection were performed. The in vivo studies showed that NaB treatment increases the amount of boron in the tumor at 2-h post-BPA injection (p < 0.01). We conclude that NaB could be used as a radiosensitizer for the treatment of thyroid carcinoma by BNCT.
Branchial cleft-like cysts in Hashimoto's thyroiditis: A case report and literature review.
Miyazaki, Masaya; Kiuchi, Shizuka; Fujioka, Yasunori
2016-05-01
We report an extremely rare case of branchial cleft-like cysts in Hashimoto's thyroiditis. The patient was a 77-year-old man with a growing mass in the anterior neck. Ultrasonography and computed tomography revealed a cystic lesion with septum in the left thyroid and multiple small cystic lesions in the right thyroid. Lymph node swelling of the cervical region, supraclavicular fossa and submandibular region was also observed. Left thyroidectomy and lymph node dissection were performed. Histologically, cysts were lined by stratified squamous epithelium and dense lymphoid tissue having conspicuous follicle formation surrounded the epithelial lining. Solid cell nest (SCN)-like aggregations were seen in the thyroid parenchyma adjacent to the cyst walls and a small number of thyroid follicles were observed in the fibrous wall. Immunohistochemically, it is suggested that both the cyst lining and SCN-like aggregations are originally from thyroid follicles. Although, the exact histogenesis of branchial cleft-like cysts remains unclear, there are probably two different processes for its development, one is of branchial cleft origin and the other is mere squamous metaplasia, while in our case the latter is suggested. Herein, we report our new case and update information about branchial cleft-like cysts that appears in the literature. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Gasparre, Giuseppe; Porcelli, Anna Maria; Bonora, Elena; Pennisi, Lucia Fiammetta; Toller, Matteo; Iommarini, Luisa; Ghelli, Anna; Moretti, Massimo; Betts, Christine M; Martinelli, Giuseppe Nicola; Ceroni, Alberto Rinaldi; Curcio, Francesco; Carelli, Valerio; Rugolo, Michela; Tallini, Giovanni; Romeo, Giovanni
2007-05-22
Oncocytic tumors are a distinctive class of proliferative lesions composed of cells with a striking degree of mitochondrial hyperplasia that are particularly frequent in the thyroid gland. To understand whether specific mitochondrial DNA (mtDNA) mutations are associated with the accumulation of mitochondria, we sequenced the entire mtDNA in 50 oncocytic lesions (45 thyroid tumors of epithelial cell derivation and 5 mitochondrion-rich breast tumors) and 52 control cases (21 nononcocytic thyroid tumors, 15 breast carcinomas, and 16 gliomas) by using recently developed technology that allows specific and reliable amplification of the whole mtDNA with quick mutation scanning. Thirteen oncocytic lesions (26%) presented disruptive mutations (nonsense or frameshift), whereas only two samples (3.8%) presented such mutations in the nononcocytic control group. In one case with multiple thyroid nodules analyzed separately, a disruptive mutation was found in the only nodule with oncocytic features. In one of the five mitochondrion-rich breast tumors, a disruptive mutation was identified. All disruptive mutations were found in complex I subunit genes, and the association between these mutations and the oncocytic phenotype was statistically significant (P=0.001). To study the pathogenicity of these mitochondrial mutations, primary cultures from oncocytic tumors and corresponding normal tissues were established. Electron microscopy and biochemical and molecular analyses showed that primary cultures derived from tumors bearing disruptive mutations failed to maintain the mutations and the oncocytic phenotype. We conclude that disruptive mutations in complex I subunits are markers of thyroid oncocytic tumors.
Qureshi, Irfan Zia; Mahmood, Tariq
2010-07-01
Occupational exposure to toxic heavy metals may render industrial workers with thyroid-related problems. Here, we examined the role of ascorbic acid (vitamin C) against hexavalent chromium Cr (VI)-induced damage in rat thyroid gland. Potassium dichromate (K2Cr2O7) and ascorbic acid doses were 60 microg and 120 mg kg(-1) body wt (intraperitoneally [i.p.]) respectively. Treatment regimens were group I rats, saline treated control; group II, only K2Cr2O7; group III, ascorbic acid 1 hour prior K2Cr2O7; group IV, simultaneous doses of ascorbic acid and K2Cr2O7, and group V, a combined premix dose of ascorbic acid and K2 Cr2O7 (2:1 ratio). Blood samples were taken before dosing the animals and 48 hours post exposure to determine the serum thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) concentrations. Toward end of experiment, rats were sacrificed and thyroid glands were processed to evaluate the extent of cellular insult. Results showed significantly increased TSH and decreased FT3 and FT4 concentrations in groups II, III and IV rats as compared to control levels (p < 0.05). In contrast, in group V rats, serum TSH, FT3 and FT4 concentrations neared control concentrations. Histopathologically, protective effect of ascorbic acid was found in group V rats only, where thyroid gland structure neared control thyroid except the follicular size that was decreased (p < 0.05). Follicular density was no different from control. Basal laminae were intact, interfollicular spaces were normal. Colloid retraction and/or reabsorption were reduced maximally. Epithelial cell height was no different from control; epithelial follicular index increased only 1.3 fold, whereas nuclear-cytoplasmic (N/C) ratio was decreased by 14% only. The study indicates that the ascorbic acid may have the potential to protect thyroid gland from chromium toxicity; however, the study warrants further in-depth experimentation to precisely elucidate this role.
Seow, Ying-ying T; Tan, Michelle G K; Woo, Keng Thye
2002-07-01
The asialoglycoprotein receptor (ASGPR) is a C lectin which binds and endocytoses serum glycoproteins. In humans, the ASGPR is shown mainly to occur in hepatocytes, but does occur extrahepatically in thyroid, in small and large intestines, and in the testis. In the kidney, there has been evidence both for and against its existence in mesangial cells. Standard light microscopy examination of renal tissue stained with an antibody against the ASGPR was performed. The mRNA expression for the ASGPR H1 and H2 subunits in primary human renal proximal tubular epithelial cells (RPTEC), in the human proximal tubular epithelial cell line HK2, and in human renal cortex was investigated using reverse-transcribed nested polymerase chain reaction. ASGPR protein expression as well as ligand binding and uptake were also examined using confocal microscopy and flow cytometry (fluorescence-activated cell sorting). Light microscopy of paraffin renal biopsy sections stained with a polyclonal antibody against the ASGPR showed proximal tubular epithelial cell staining of the cytoplasm and particularly in the basolateral region. Renal cortex and RPTEC specifically have mRNA for both H1 and H2 subunits of the ASGPR, but HK2 only expresses mRNA for H1. Using a monoclonal antibody, the presence of the ASGPR in RPTEC was shown by fluorescence-activated cell sorting and immunofluorescent staining. Specific binding and uptake of fluorescein isothiocyanate labelled asialofetuin which is a specific ASGPR ligand was also demonstrated in RPTEC. Primary renal proximal tubular epithelial cells have a functional ASGPR, consisting of the H1 and H2 subunits, that is capable of specific ligand binding and uptake. Copyright 2002 S. Karger AG, Basel
Water quality and amphibian health in the Big Bend region of the Rio Grande Basin
Sharma, Bibek; Hu, F.; Carr, J.A.; Patino, Reynaldo
2011-01-01
Male and female Rio Grande leopard frogs (Rana berlandieri) were collected in May 2005 from the main stem and tributaries of the Rio Grande in the Big Bend region of Texas. Frogs were examined for (1) incidence of testicular ovarian follicles in males; (2) thyroid epithelial cell height, a potential index of exposure to thyroid-disrupting contaminants; and (3) incidence of liver melanomacrophage aggregates, a general index of exposure to contaminants. Standard parameters of surface water quality and concentrations of selected elements, including heavy metals, were determined at each frog collection site. Heavy metals also were measured in whole-frog composite extracts. Water cadmium concentrations in most sites and chloride concentrations in the main stem exceeded federal criteria for freshwater aquatic life. Mercury was detected in frogs from the two collection sites in Terlingua Creek. There was a seventeen percent incidence of testicular ovarian follicles in male frogs. Mean thyroid epithelial cell height was greater in frogs from one of the Terlingua Creek sites (Terlingua Abajo). No differences were observed in the incidence of hepatic macrophage aggregates among sites. In conclusion, although potential cause-effect relationships between indices of habitat quality and amphibian health could not be established, the results of this study raise concerns about the general quality of the aquatic habitat and the potential long-term consequences to the aquatic biota of the Big Bend region. The presence of ovarian follicles in male frogs is noteworthy but further study is necessary to determine whether this phenomenon is natural or anthropogenically induced.
Dong, Liang; Huang, Jiayu; Huang, Luke; Shi, Oumin; Liu, Qiang; Chen, Haige; Xue, Wei; Huang, Yiran
2016-04-01
Thyroid-like follicular carcinoma of the kidney (TLFCK) is an extremely rare subtype of renal cell carcinoma with close resemblance to the well-differentiated thyroid follicular neoplasms. TLFCK has not been included in the 2004 World Health Organization (WHO) classification due to the limited data available. Only 27 cases have been reported in the literature to date. Herein, we report a unique case of TLFCK that presented as a striking skull and meningeal metastasis 5 years after the initial diagnosis; this is the first case of TLFCK with such a novel metastasis pattern. A 68-year-old woman was found to have a right renal lesion using computed tomography (CT) during her regular clinical follow-up visit for bladder cancer, but she exhibited no obvious clinical symptoms. The CT scan showed a 4.4-cm diameter, slightly lobulated soft tissue mass in the right lower kidney, the pathological findings of which showed a TLFCK. Five years later, the patient had progressed to skull and meningeal metastasis. Both the renal tumor and the metastasis lesion were composed almost entirely of follicles with a dense, colloid-like material that resembled thyroid follicular carcinoma. However, no lesion was found in the thyroid gland. The neoplastic epithelial cells were strongly immunoreactive for cytokeratin 7 (and vimentin but negative for thyroid transcription factor-1 and thyroglobulin. This is the first reported case of TLFCK to consist of widespread metastases to the skull and meninges and provides evidence that this rare variant of renal cell carcinoma has uncertain malignant potential and can be more clinically aggressive than previously believed.
Li, N; Du, Z-X; Zong, Z-H; Liu, B-Q; Li, C; Zhang, Q; Wang, H-Q
2013-09-19
Protein kinase C delta (PKCδ) is a serine (Ser)/threonine kinase, which regulates numerous cellular processes, including proliferation, differentiation, migration and apoptosis. In the current study, Chinese hamster ovary cells were transfected with either a constitutively activated PKCδ or a dominant negative PKCδ, phosphoprotein enrichment, two-dimensional difference gel electrophoresis and mass spectrometry was combined to globally identified candidates of PKCδ cascade. We found that Bcl-2 associated athanogene 3 (BAG3) was one of the targets of PKCδ cascade, and BAG3 interacted with PKCδ in vivo. In addition, we clarified that BAG3 was phosphorylate at Ser187 site in a PKCδ-dependent manner in vivo. BAG3 has been implicated in multiple cellular functions, including proliferation, differentiation, apoptosis, migration, invasion, macroautophagy and so on. We generated wild-type (WT)-, Ser187Ala (S187A)- or Ser187Asp (S187D)-BAG3 stably expressing FRO cells, and noticed that phosphorylation state of BAG3 influenced FRO morphology. Finally, for the first time, we showed that BAG3 was implicated in epithelial-mesenchymal transition (EMT) procedure, and phosphorylation state at Ser187 site had a critical role in EMT regulation by BAG3. Collectively, the current study indicates that BAG3 is a novel substrate of PKCδ, and PKCδ-mediated phosphorylation of BAG3 is implicated in EMT and invasiveness of thyroid cancer cells.
Lipid peroxidation and antioxidants status in human malignant and non-malignant thyroid tumours.
Stanley, J A; Neelamohan, R; Suthagar, E; Vengatesh, G; Jayakumar, J; Chandrasekaran, M; Banu, S K; Aruldhas, M M
2016-06-01
Thyroid epithelial cells produce moderate amounts of reactive oxygen species that are physiologically required for thyroid hormone synthesis. Nevertheless, when they are produced in excessive amounts, they may become toxic. The present study is aimed to compare the lipid peroxidation (LPO), antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and non-protein thiols (reduced glutathione (GSH)) in human thyroid tissues with malignant and non-malignant disorders. The study used human thyroid tissues and blood samples from 157 women (147 diseased and 10 normal). Thyroid hormones, oxidative stress markers and antioxidants were estimated by standard methods. LPO significantly increased in most of the papillary thyroid carcinoma (PTC: 82.9%) and follicular thyroid adenoma (FTA: 72.9%) tissues, whilst in a majority of nodular goitre (69.2%) and Hashimoto's thyroiditis (HT: 73.7%) thyroid tissues, it remained unaltered. GSH increased in PTC (55.3%), remained unaltered in FTA (97.3%) and all other goiter samples studied. SOD increased in PTC (51.1%) and all other malignant thyroid tissues studied. CAT remained unaltered in PTC (95.7%), FTA (97.3%) and all other non-malignant samples (HT, MNG, TMNG) studied. GPx increased in PTC (63.8%), all other malignant thyroid tissues and remained unaltered in many of the FTA (91.9%) tissues and all other non-malignant samples (HT, MNG, TMNG) studied. In the case of non-malignant thyroid tumours, the oxidant-antioxidant balance was undisturbed, whilst in malignant tumours the balance was altered, and the change in r value observed in the LPO and SOD pairs between normal and PTC tissues and also in many pairs with multi-nodular goitre (MNG)/toxic MNG tissues may be used as a marker to differentiate/detect different malignant/non-malignant thyroid tumours. © The Author(s) 2015.
Srbecka, Kristyna; Michalova, Kvetoslava; Curcikova, Radmila; Michal, Michael; Dubova, Magdalena; Svajdler, Marian; Michal, Michal; Daum, Ondrej
2017-09-01
There is a group of lesions in the head and neck region derived from branchial arches and related structures which, when inflamed, are characterized by the formation of cysts lined by squamous or glandular epithelium and surrounded by a heavy inflammatory infiltrate rich in germinal centers. In the thyroid, the main source of various structures which may cause diagnostic dilemma is the ultimobranchial body. To investigate the spectrum of such thyroid lesions, the consultation files were reviewed for thyroid samples containing pathological structures regarded to arise from the ultimobranchial body. Positive reaction with antibodies against CK5/6, p63, galectin 3, and CEA, and negative reaction with antibodies against thyroglobulin, TTF-1, and calcitonin were used to confirm the diagnosis. The specific subtype of the ultimobranchial body-derived lesion was then determined based on histological examination of H&E-stained slides. Twenty-one cases of ultimobranchial body-derived lesions were retrieved from the consultation files, 20 of them along with clinical information (M/F = 6/14, mean age 55 years, range 36-68 years). Lesions derived from the ultimobranchial body were classified as follows: (hyperplastic) solid cell nests (nine cases), solid cell nests with focal cystic change (five cases), cystic solid cell nests (two cases), branchial cleft-like cyst (four cases), and finally a peculiar Warthin tumor-like lesion (one case). We suggest that the common denominator of these structures is that they all arise due to activation of inflammatory cells around the vestigial structures, which leads to cystic dilatation and proliferation of the epithelial component.
SPDEF regulates goblet cell hyperplasia in the airway epithelium
Park, Kwon-Sik; Korfhagen, Thomas R.; Bruno, Michael D.; Kitzmiller, Joseph A.; Wan, Huajing; Wert, Susan E.; Khurana Hershey, Gurjit K.; Chen, Gang; Whitsett, Jeffrey A.
2007-01-01
Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In the present work, mouse SAM pointed domain-containing ETS transcription factor (SPDEF) mRNA and protein were detected in subsets of epithelial cells lining the trachea, bronchi, and tracheal glands. SPDEF interacted with the C-terminal domain of thyroid transcription factor 1, activating transcription of genes expressed selectively in airway epithelial cells, including Sftpa, Scgb1a1, Foxj1, and Sox17. Expression of Spdef in the respiratory epithelium of adult transgenic mice caused goblet cell hyperplasia, inducing both acidic and neutral mucins in vivo, and stainined for both acidic and neutral mucins in vivo. SPDEF expression was increased at sites of goblet cell hyperplasia caused by IL-13 and dust mite allergen in a process that was dependent upon STAT-6. SPDEF was induced following intratracheal allergen exposure and after Th2 cytokine stimulation and was sufficient to cause goblet cell differentiation of Clara cells in vivo. PMID:17347682
mRNA-Seq Reveals Novel Molecular Mechanisms and a Robust Fingerprint in Graves' Disease
Sachidanandam, Ravi; Morshed, Syed; Latif, Rauf; Shi, Ruijin; Davies, Terry F.
2014-01-01
Context: The immune response in autoimmune thyroid disease has been shown to occur primarily within the thyroid gland in which the most abundant antigens can be found. A variety of capture molecules are known to be expressed by thyroid epithelial cells and serve to attract and help retain an intrathyroidal immune infiltrate. Objective: To explore the entire repertoire of expressed genes in human thyroid tissue, we have deep sequenced the transcriptome (referred to as mRNA-Seq). Design and Patients: We applied mRNA-Seq to thyroid tissue from nine patients with Graves' disease subjected to total thyroidectomy and compared the data with 12 samples of normal thyroid tissue obtained from patients having a thyroid nodule removed. The expression for each gene was calculated from the sequencing data by taking the median of the coverage across the length of the gene. The expression levels were quantile normalized and a gene signature was derived from these. Results: On comparison of expression levels in tissues derived from Graves' patients and controls, there was clear evidence for overexpression of the antigen presentation pathway consisting of HLA and associated genes. We also found a robust disease signature and discovered active innate and adaptive immune signaling networks. Conclusions: These data reveal an active immune defense system in Graves' disease, which involves novel molecular mechanisms in its pathogenesis and development. PMID:24971664
Plant and Animal Gravitational Biology. Part 1
NASA Technical Reports Server (NTRS)
1997-01-01
Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.
Dietary high-fat lard intake induces thyroid dysfunction and abnormal morphology in rats.
Shao, Shan-shan; Zhao, Yuan-fei; Song, Yong-feng; Xu, Chao; Yang, Jian-mei; Xuan, Shi-meng; Yan, Hui-li; Yu, Chun-xiao; Zhao, Meng; Xu, Jin; Zhao, Jia-jun
2014-11-01
Excess dietary fat intake can induce lipotoxicity in non-adipose tissues. The aim of this study was to observe the effects of dietary high-fat lard intake on thyroid in rats. Male Sprague-Dawley rats were fed a high-fat lard diet for 24 weeks, and then the rats were fed a normal control diet (acute dietary modification) or the high-fat lard diet for another 6 weeks. The serum lipid profile, total thyroxine (TT4), free thyroxine (FT4) and thyrotropin (TSH) levels were determined at the 12, 18, 24 and 30 weeks. High-frequency ultrasound scanning of the thyroid glands was performed at the 24 or 30 weeks. After the rats were sacrificed, the thyroid glands were collected for histological and immunohistochemical analyses. The high-fat lard diet significantly increased triglyceride levels in both the serum and thyroid, and decreased serum TT4 and FT4 levels in parallel with elevated serum TSH levels. Ultrasonic imaging revealed enlarged thyroid glands with lowered echotexture and relatively heterogeneous features in the high-fat lard fed rats. The thyroid glands from the high-fat lard fed rats exhibited enlarged follicle cavities and flattened follicular epithelial cells under light microscopy, and dilated endoplasmic reticulum cisternae, twisted nuclei, fewer microvilli and secretory vesicles under transmission electron microscopy. Furthermore, the thyroid glands from the high-fat lard fed rats showed markedly low levels of thyroid hormone synthesis-related proteins TTF-1 and NIS. Acute dietary modification by withdrawal of the high-fat lard diet for 6 weeks failed to ameliorate the high-fat lard diet-induced thyroid changes. Dietary high-fat lard intake induces significant thyroid dysfunction and abnormal morphology in rats, which can not be corrected by short-term dietary modification.
The role of Epstein-Barr virus infection in the development of autoimmune thyroid diseases.
Janegova, Andrea; Janega, Pavol; Rychly, Boris; Kuracinova, Kristina; Babal, Pavel
2015-01-01
Autoimmune thyroid diseases, including Graves' and Hashimoto's thyroiditis, are the most frequent autoimmune disorders. Viral infection, including Epstein-Barr virus (EBV), is one of the most frequently considered environmental factors involved in autoimmunity. Its role in the development of AITD has not been confirmed so far. Surgical specimens of Graves' and Hashimoto's diseases and nodular goitres were included in the study. The expression of EBV latent membrane protein 1 (LMP1) was analysed by immunohistochemistry, with the parallel detection of virus-encoded small nuclear non-polyadenylated RNAs (EBER) by in situ hybridisation. In none of the Graves' disease specimens but in 34.5% of Hashimoto's thyroiditis cases the cytoplasmic expression of LMP1 was detected in follicular epithelial cells and in infiltrating lymphocytes. EBER nuclear expression was detected in 80.7% of Hashimoto's thyroiditis cases and 62.5% of Graves' disease cases, with positive correlation between LMP1 and EBER positivity in all Hashimoto's thyroiditis LMP1-positive cases. We assume that high prevalence of EBV infection in cases of Hashimoto's and Graves' diseases imply a potential aetiological role of EBV in autoimmune thyroiditis. The initiation of autoimmune thyroiditis could start with EBV latency type III infection of follicular epithelium characterised by LMP1 expression involving the production of inflammatory mediators leading to recruitment of lymphocytes. The EBV positivity of the infiltrating lymphocytes could be only the presentation of a carrier state, but in cases with EBER+/ LMP1+ lymphocytes (transforming latent infection) it could represent a negative prognostic marker pointing to a higher risk of primary thyroid lymphoma development.
Peeters, R P; Ng, L; Ma, M; Forrest, D
2015-05-15
Apoptosis underlies various forms of tissue remodeling during development. Prior to the onset of hearing, thyroid hormone (T3) promotes cochlear remodeling, which involves regression of the greater epithelial ridge (GER), a transient structure of columnar cells adjacent to the mechanosensory hair cells. We investigated the timecourse of apoptosis in the GER and the influence of ectopic T3 on apoptosis. In saline-treated mice, activated caspase 3-positive cells were detected in the GER between postnatal days 7 and 13 and appeared progressively along the cochlear duct from base to apex over developmental time. T3 given on P0 and P1 advanced the overall program of apoptosis and remodeling by ~4 days. Thyroid hormone receptor β was required for these actions, suggesting a receptor-mediated process of initiation of apoptosis. Finally, T3 given only at P0 or P1 resulted in deafness in adult mice, thus revealing a transient period of susceptibility to long-term damage in the neonatal auditory system. Published by Elsevier Ireland Ltd.
Hirokawa, Mitsuyoshi; Miyauchi, Akira; Minato, Hiroshi; Yokoyama, Shigeo; Kuma, Seiji; Kojima, Masaru
2013-06-01
The purpose of our article is to describe the immunohistochemical findings of intrathyroidal epithelial thymoma/carcinoma showing thymus-like differentiation (ITET/CASTLE) of the thyroid in detail, to clarify the difference between ITET/CASTLE and thymic lymphoepithelioma-like carcinoma (LELC), and to discuss the pathogenesis of ITET/CASTLE. We immunohistochemically examined five ITET/CASTLE and eight LELC cases. All of ITET/CASTLE cases were strongly positive for CD5, P63, high-molecular-weight cytokeratin and B-cell CLL/lymphoma-2. Carcinoembryonic antigen-positive carcinoma cells were found in four ITET/CASTLE cases. Neuroendocrine marker-positive carcinoma cells were scattered in all cases. Immunohistochemical findings in thymic LELC were essentially similar to those in ITET/CASTLE, but the sensitivity was different. There is a possibility that ITET/CASTLE and thymic LELC are not the quite same disease entity. We think that ITET/CASTLE is derived from ectopic thymus, but not related to solid cell nests. © 2012 APMIS Published by John Wiley & Sons Ltd.
Li, Hui; Ganta, Suhasini; Fong, Peying
2010-01-01
Subclinical hypothyroidism has been linked to Cystic Fibrosis (CF), and the cystic fibrosis transmembrane conductance regulator (CFTR) shown to be expressed in the thyroid. The thyroid epithelium secretes Cl− and absorbs Na+ in response to cAMP. Chloride secretion may provide a counter-ion for the SLC26A4 (Pendrin)-mediated I− secretion which is required for the first step of thyroid hormonogenesis, thyroglobulin iodination. In contrast, few models exist to explain a role for Na+ absorption. Whether CFTR mediates the secretory Cl− current in thyroid epithelium has not been directly addressed. We used thyroids from a novel pig CFTR−/− model, generated primary pig thyroid epithelial cell cultures (pThECs), analyzed these cultures for preservation of thyroid-specific transcripts and proteins, and monitored 1) the Cl− secretory response to the cAMP agonist, isoproterenol and 2) the amiloride-sensitive Na+ current. Baseline short-circuit current (Isc) did not differ between CFTR+/+ and CFTR−/− cultures. Serosal isoproterenol increased Isc in CFTR+/+, but not CFTR−/−, monolayers. Compared to CFTR+/+ thyroid cultures, amiloride-sensitive Na+ absorption measured in CFTR−/− pThECs represented a greater fraction of the resting Isc. However, levels of transcripts encoding ENaC subunits did not differ between CFTR+/+ and CFTR−/− pThECs. Immunoblot analysis verified ENaC subunit protein expression, but quantification indicated no difference in expression levels. Our studies definitively demonstrate that CFTR mediates cAMP-stimulated Cl− secretion in a well-differentiated thyroid culture model, and that knockout of CFTR promotes increased Na+ absorption by a mechanism other than increased ENaC expression. These findings suggest several models for the mechanism of CF-associated hypothyroidism. PMID:20729267
Palma, Giuseppe; Vitiello, Michela; Capiluongo, Anna; D’Andrea, Barbara; Vuttariello, Emilia; Luciano, Antonio; Cerchia, Laura; Chiappetta, Gennaro; Arra, Claudio; Fusco, Alfredo
2018-01-01
POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) is an emerging cancer-related gene that is downregulated in different human malignancies, including thyroid cancer, where its levels gradually decrease going from papillary thyroid carcinomas (PTC) to poorly differentiated and undifferentiated highly aggressive anaplastic carcinomas (ATC). The restoration of PATZ1 expression in thyroid cancer cells reverted their malignant phenotype by inducing mesenchymal-to-epithelial transition, thus validating a tumor suppressor role for PATZ1 and suggesting its involvement in thyroid cancer progression. Here, we investigated the consequences of the homozygous and heterozygous loss of PATZ1 in the context of a mouse modeling of PTC, represented by mice carrying the RET/PTC1 oncogene under the thyroid specific control of the thyroglobulin promoter RET/PTC1 (RET/PTC1TG). The phenotypic analysis of RET/PTC1TG mice intercrossed with Patz1-knockout mice revealed that deficiency of both Patz1 alleles enhanced thyroid cancer incidence in RET/PTC1TG mice, but not the heterozygous knockout of the Patz1 gene. However, both RET/PTC1TG;Patz1+/− and RET/PTC1TG;Patz1−/− mice developed a more aggressive thyroid cancer phenotype—characterized by higher Ki-67 expression, presence of ATCs, and increased incidence of solid variants of PTC—than that shown by RET/PTC1TG; Patz1+/+ compound mice. These results confirm that PATZ1 downregulation has a critical role in thyroid carcinogenesis, showing that it cooperates with RET/PTC1 in thyroid cancer progression. PMID:29584698
Metastases of breast cancer to the thyroid gland in two patients - a case report.
Skowrońska-Jóźwiak, Elżbieta; Krawczyk-Rusiecka, Kinga; Adamczewski, Zbigniew; Sporny, Stanisław; Zadrożny, Marek; Dedecjus, Marek; Brzeziński, Jan; Lewiński, Andrzej
2010-01-01
Metastatic cancer is rarely found in the thyroid (only 2-3% of malignant tumours found in that gland); primary sources usually including breast, kidney, and lung tumours. Two cases of advanced breast cancer with thyroid metastases in female patients are presented. The similarities between these two cases included: 1) postmenopausal age; 2) diagnosis based on result of FNAB (numerous groups of cells with epithelial phenotype strongly implying metastatic breast cancer); 3) thyroid function - overt hyperthyroidism in the first woman and subclinical hyperthyroidism in the second one; 4) the presence of nodular goitre in clinical examination, the occurrence of many nodular solid normoechogenic lesions with calcifications in both thyroid lobes in US; and 5) negative antithyroid antibodies. The main difference was the time of establishing diagnosis; in the first woman - before mammectomy, parallel to diagnostics of breast tumour, and in the second woman four years after mammectomy, during cancer dissemination (with right pleural effusion and lung metastasis). In the first case, mammectomy was followed two weeks later by thyroidectomy. The second patient was disqualified from thyroid surgery due to systemic metastatic disease. 1. Fine needle aspiration biopsy of the thyroid gland should obligatorily be performed in patients with breast cancer and nodular goitre, even without any clinical data of metastatic disease. 2. The clinical context of cytological findings is of critical value. 3. In patients with breast cancer accompanied by multinodular goitre, we recommend that more punctures be performed during FNAB than is routinely done. (
Escobar, F A; Pantanowitz, L; Picarsic, J L; Craig, F E; Simons, J P; Viswanathan, P A; Yilmaz, S; Monaco, S E
2018-03-26
Ectopic thymic tissue can arise as an asymptomatic neck mass, which may be detected on imaging studies. The aim of this study was to determine the incidence of ectopic thymic tissue in paediatric FNAs and to the correlate clinical, radiological and cytomorphological findings. FNAs in children with neck and mediastinal lesions performed between January 2012 and July 2016 were reviewed for cases of ectopic thymus. These were then evaluated and correlated with the cytology findings. Of 739 FNAs, 13 (1.8%) cases from 11 patients showed ectopic thymic tissue. The targeted lesions were in the thyroid (n = 7), submandibular region (n = 1), superior mediastinum (n = 1) and paratracheal region (n = 1). The most common indication was for microcalcifications concerning for papillary thyroid carcinoma on ultrasound (n = 6). Imaging findings included fusiform lesions with linear and punctuate bright echoes. The cytology evaluation showed small lymphocytes with discohesive epithelioid cells in most cases, and proteinaceous fluid in the cystic case. There were rare macrophages and Hassall's corpuscles. Flow cytometry and/or immunostains were performed in all cases, supporting thymic origin. Ectopic thymic tissue is rarely present as a neck mass or thyroid nodule on FNA biopsy. The ultrasound imaging findings reveal a well-defined fusiform lesion with punctate bright echoes that could be misinterpreted as papillary thyroid carcinoma. The aspirates show a small lymphoid population, immunophenotypically compatible with thymic T-cells, in addition to scattered epithelial cells. Therefore, knowledge of the typical ultrasonographic and cytopathological features can help make a definitive diagnosis and avoid more invasive procedures in paediatric patients. © 2018 John Wiley & Sons Ltd.
Badr El Dine, Fatma M M; Nabil, Iman M; Dwedar, Fatma I
2017-01-01
Tributyltin is one of the important and wide-spread persistent organic contaminants that accumulate in the food chain. It is suspected to cause endocrine-disrupting effects in mammals, due in part to its possible transfer through marine food chains and to the consumption of contaminated seafood. Was to study the possible toxic effect of Tributyltin on thyroid follicular cells of adult male albino rats and to evaluate the possible protective role of green tea. Forty-five adult male albino rats were included and randomly divided into 3 equal groups: a control group (Group I); Group II: received tributyltin chloride (TBT) dissolved in corn oil orally in a dose of 5 mg/kg for 30 days. Group III: received tributyltin chloride in the same dose with concomitant oral administration of green tea extract for 30 days. At the end of the experiment, the animals were sacrificed and blood samples were subjected to hormonal assay for T3, T4 and TSH levels. Malondialdehyde and reduced glutathione were assessed. The thyroid tissue was processed for histological and ultrastructure examination. The colloid area of thyroid follicles was evaluated morphometrically and statistically analyzed. A significant decrease in T3 and T4 levels and serum reduced glutathione in the group II when compared with the other groups. Furthermore, a significant increase in serum Malondialdehyde and TSH levels was recorded in group II treated group by comparison to the other two groups. Histopathological and ultrastructural changes of thyroid gland follicles were detected in tributyltin treated rats; the follicular cells appeared swollen and vacuolated. Epithelial stratification was noticed in some foci with excessive vacuolation of the colloid. Dilated rough endoplasmic reticulum filled with flocculent material and increased number of lysosomes were also detected together with variation in shape and size of the nuclei. A marked improvement in the histological features of thyroid follicles was noticed in group III. Tributyltin induces oxidative stress in rats as well as anti-thyroid effect. The green tea extract is useful in combating tissue injury that is a result of tributyltin toxicity.
Spindle epithelial tumor with thymus-like differentiation of the thyroid in a 70-year-old man.
Lee, Sunhye; Kim, Yon Seon; Lee, Jeong Hyeon; Hwang, Sung Ho; Oh, Yu-Hwan; Ko, Byung Kyun; Ham, Soo-Youn
2018-06-01
Spindle epithelial tumor with thymus-like differentiation (SETTLE) is a very rare tumor of the thyroid gland mostly occurring in young patients. The imaging findings of SETTLE tumors are yet to be defined. However, they are usually described as well-defined heterogeneously enhanced masses on CT scan. The current case has the potential growth as compared with a 2009 chest radiography. We took into account the possibility of SETTLE in the case of a bulky mass in patients over 70 years old, particularly in the lower neck. Herein, we report a case of the oldest patient so far. The patient underwent a right lobectomy of the thyroid and mass excision. Follow-up CT scans after 6 months revealed no local recurrence. Surgery is the gold standard treatment for SETTLE. Chemotherapy and radiotherapy could be another possible option for patients with advanced stage SETTLE.
Cho, Sun Wook; Kim, Young A; Sun, Hyun Jin; Ahn, Hwa Young; Lee, Eun Kyung; Yi, Ka Hee; Oh, Byung-Chul; Park, Do Joon; Cho, Bo Youn; Park, Young Joo
2014-09-01
Aberrant activation of the Wnt/β-catenin pathway is a common pathogenesis of various human cancers. We investigated the role of the Wnt inhibitor, Dkk-1, in papillary thyroid cancer (PTC). Immunohistochemical β-catenin staining was performed in tissue microarray containing 148 PTCs and five normal thyroid tissues. In vivo effects of Dkk-1 were explored using ectopic tumors with BHP10-3SC cells. In 27 PTC patients, 60% of patients showed β-catenin up-regulation and Dkk-1 down-regulation in tumor vs normal tissues. Tissue microarray analysis showed that 14 of 148 PTC samples exhibited cytoplasmic-dominant β-catenin expression compared to membranous-dominant expression in normal tissues. Aberrant β-catenin expression was significantly correlated with higher rates of the loss of membranous E-cadherin expression and poor disease-free survival than that in the normal membranous expression group over a median follow-up period of 14 years. Implantation of Dkk-1-overexpressing BHP10-3SC cells revealed delayed tumor growth, resulting from the rescue of membranous β-catenin and E-cadherin expressions. Furthermore, tissue microarray analysis demonstrated that BRAF(WT) patients had higher rates of aberrant expressions of β-catenin and E-cadherin than BRAF(V600E) patients. Indeed, the inhibitory effects of Dkk-1 on cell survival were more sensitive in BRAF(WT) (BHP10-3SC and TPC-1) than in BRAF(V600E) (SNU-790 and BCPAP) cells. Overexpression of BRAF(V600E) in normal thyroid epithelial (H tori) cells also reduced the effects of Dkk-1 on cell survival. A subset of PTC patients showed aberrant expression of β-catenin/E-cadherin signaling and poor disease-free survival. Dkk-1 might have a therapeutic role, particularly in BRAF(WT) patients.
Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo
2017-05-11
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.
Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo
2017-01-01
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development. PMID:28492553
Meng, Xiaomei; Zhu, Peng; Li, Ning; Hu, Jinchen; Wang, Shaoguang; Pang, Shuguang; Wang, Jiahui
2017-04-01
Bone morphogenetic protein 4 (BMP-4) is a member of the BMP protein family. BMP-4 was reported to induce epithelial-mesenchymal transition (EMT) and promote tumor cell immigration and invasion. This study aimed to investigate the expression of BMP-4 in papillary thyroid carcinoma (PTC) and its correlation with the patients' clinicophathological features and with tumor invasion and metastasis. Surgically resected PTC specimens from 82 patients admitted to the Department of Thyroid Surgery of Yantai Yuhuangding Hospital between Feb 1st and May 31st, 2016 were collected. The expression level of BMP-4 in PTC tissues was examined by immunohistochemical staining. The full clinical records of all patients were collected to analyze the relevance between BMP-4 expression and the clinical pathological features of PTC. Our result showed that BMP-4-positive cell rate and staining intensity were positively correlated with the patient's age (P=0.031, 0.037), tumor size (P=0.033, 0.019), capsular invasion (P=0.001, 0.002) and TNM stage (P=0.001, 0.004), while not correlated with gender, multicentricity of tumor or lymphatic metastasis. In conclusion, this study identified BMP-4 as a potential molecular marker for predicting the invasion and progression of PTC. Copyright © 2017 Elsevier GmbH. All rights reserved.
Sun, Guihong; Fu, Liezhen; Wen, Luan
2014-01-01
The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587
The Impact of Hypergravity and Vibration on Gene and Protein Expression of Thyroid Cells
NASA Astrophysics Data System (ADS)
Wehland, Markus; Warnke, Elisabeth; Frett, Timo; Hemmersbach, Ruth; Hauslage, Jens; Ma, Xiao; Aleshcheva, Ganna; Pietsch, Jessica; Bauer, Johann; Grimm, Daniela
2016-06-01
Experiments in space either on orbital missions on-board the ISS, or in suborbital missions using sounding rockets, like TEXUS as well as parabolic flight campaigns are still the gold standard to achieve real microgravity conditions in the field of gravitational biology and medicine. However, during launch, and in flight, hypergravity and vibrations occur which might interfere with the effects of microgravity. It is therefore important to know these effects and discriminate them from the microgravity effects. This can be achieved by ground-based facilities like centrifuges or vibration platforms. Recently, we have conducted several experiments with different thyroid cancer cell lines. This study, as part of the ESA-CORA-GBF 2010-203 project, focused on the influence of vibration and hypergravity on benign human thyroid follicular epithelial cells (Nthy-ori 3-1 cell line). Gene and in part protein expression regulation under both conditions were analyzed for VCAN, ITGA10, ITGB1, OPN, ADAM19, ANXA1, TNFA, ABL2, ACTB, PFN2, TLN1, EZR, RDX, MSN, CTGF, PRKCA, and PRKAA1 using quantitative real-time PCR and Western Blot. We found that hypergravity and vibration affected genes and proteins involved in the extracellular matrix, the cytoskeleton, apoptosis, cell growth and signaling. Vibration always led to a down-regulation, whereas hypergravity resulted in a more heterogeneous expression pattern. Overall we conclude that both conditions can influence gene regulation and production of various genes and proteins. As a consequence, it is important to perform control experiments on hypergravity and vibration facilities in parallel to flight experiments.
Roles and potential mechanisms of selenium in countering thyrotoxicity of DEHP.
Zhang, Pei; Guan, Xie; Yang, Min; Zeng, Li; Liu, Changjiang
2018-04-01
Di-(2-ethylhexyl) phthalate (DEHP) as a ubiquitous environmental contaminant could disturb thyroid hormone (TH) homeostasis. Selenium as an essential trace element has protective effects on thyroids. To verify roles of selenium in countering thyrotoxicity of DEHP and elucidate potential mechanisms, Sprague-Dawley rats and Nthy-ori 3-1 cells were treated with DEHP or/and selenomethionine (SeMet). Results showed that selenium supplementation elevated plasma free thyroxine (FT4) that was decreased by DEHP, and free triiodothyronine (FT3) and thyroid stimulating hormone (TSH) levels were also partially recovered. DEHP-caused histopathologic changes were ameliorated after selenium supplementation, as indicated by recovered thyroid follicular epithelial cell numbers and cavity diameters. DEHP disrupted the redox equilibrium, causing depletions of SOD, GPx1, GPx3, and TxnRd, and accumulations of MDA. Nevertheless, selenium supplementation effectively improved the redox status. DEHP affected biosynthesis, biotransformation, biotransport, and metabolism of THs, as well as thyrotropin releasing hormone receptor (TRHr) levels. Plasma selenium, thyroid peroxidase (TPO), deiodinase 1 (Dio1), and transthyretin (TTR) were downregulated, while Dio3, Ugt1a1, Sult1e1, CYP2b1, CYP3a1, and TRHr were upregulated by DEHP. However, selenium supplementation led to elevations of selenium, Dio1 and TTR, and reductions of Ugt1a1, Sult1e1, CYP2b1, and TRHr. TPO, Dio3, and CYP3a1 were not significantly affected by selenium supplementation. Taken together, selenium could ameliorate DEHP-caused TH dyshomeostasis via modulations of the redox status, Dio1, TTR, TRHr, and hepatic enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.
Anaya-Hernández, A; Rodríguez-Castelán, J; Nicolás, L; Martínez-Gómez, M; Jiménez-Estrada, I; Castelán, F; Cuevas, E
2015-02-01
Oviductal regions show particular histological characteristics and functions. Tubal pathologies and hypothyroidism are related to primary and secondary infertility. The impact of hypothyroidism on the histological characteristics of oviductal regions has been scarcely studied. Our aim was to analyse the histological characteristics of oviductal regions in control and hypothyroid rabbits. Hypothyroidism was induced by oral administration of methimazole (MMI) for 30 days. For both groups, serum concentrations of thyroid and gonadal hormones were determined. Sections of oviductal regions were stained with the Masson's trichrome technique to analyse both epithelial and smooth muscle layers. The percentage of proliferative epithelial cells (anti-Ki67) in diverse oviductal regions was also quantified. Data were compared with Student t-test, Mann-Whitney U-test, or Fischer's test. In comparison with the control group, the hypothyroid group showed: (i) a low concentration of T3 and T4, but a high level of TSH; (ii) similar values of serum estradiol, progesterone and testosterone; (iii) a large size of ciliated cells in the ampulla (AMP), isthmus (IST) and utero-tubal junction (UTJ); (iv) a large size of secretory cells in the IST region; (v) a low percentage of proliferative secretory cells in the fimbria-infundibulum (FIM-INF) region; and (vi) a similar thickness of the smooth muscle layer and the cross-sectional area in the AMP and IST regions. Modifications in the size of the oviductal epithelium in hypothyroid rabbits could be related to changes in the cell metabolism that may impact on the reproductive functions achieved by oviduct. © 2014 Blackwell Verlag GmbH.
Urra, Soledad; Fischer, Martin C.; Martínez, José R.; Véliz, Loreto; Orellana, Paulina; Solar, Antonieta; Bohmwald, Karen; Kalergis, Alexis; Riedel, Claudia; Corvalán, Alejandro H.; Roa, Juan C.; Fuentealba, Rodrigo; Cáceres, C. Joaquin; López-Lastra, Marcelo; León, Augusto; Droppelmann, Nicolás; González, Hernán E.
2018-01-01
Papillary thyroid cancer (PTC) is the most prevalent endocrine neoplasia. The increased incidence of PTC in patients with thyroiditis and the frequent immune infiltrate found in PTC suggest that inflammation might be a risk factor for PTC development. The CXCR3-ligand system is involved in thyroid inflammation and CXCR3 has been found upregulated in many tumors, suggesting its pro-tumorigenic role under the inflammatory microenvironment. CXCR3 ligands (CXCL4, CXCL9, CXCL10 and CXCL11) trigger antagonistic responses partly due to the presence of two splice variants, CXCR3A and CXCR3B. Whereas CXCR3A promotes cell proliferation, CXCR3B induces apoptosis. However, the relation between CXCR3 variant expression with chronic inflammation and PTC development remains unknown. Here, we characterized the expression pattern of CXCR3 variants and their ligands in benign tumors and PTC. We found that CXCR3A and CXCL10 mRNA levels were increased in non-metastatic PTC when compared to non-neoplastic tissue. This increment was also observed in a PTC epithelial cell line (TPC-1). Although elevated protein levels of both isoforms were detected in benign and malignant tumors, the CXCR3A expression remained greater than CXCR3B and promoted proliferation in Nthy-ori-3-1 cells. In non-metastatic PTC, inflammation was conditioning for the CXCR3 ligands increased availability. Consistently, CXCL10 was strongly induced by interferon gamma in normal and tumor thyrocytes. Our results suggest that persistent inflammation upregulates CXCL10 expression favoring tumor development via enhanced CXCR3A-CXCL10 signaling. These findings may help to further understand the contribution of inflammation as a risk factor in PTC development and set the basis for potential therapeutic studies. PMID:29416784
Kim, J Y; Lim, S-C; Kim, G; Yun, H J; Ahn, S-G; Choi, H S
2015-09-17
Cytokines of the interleukin-1 (IL-1) family, such as IL-1α/β and IL-18, have pleiotropic activities in innate and adaptive immune responses in host defense and diseases. Insight into their biological functions helped develop novel therapeutic approaches to treat human inflammatory diseases. IL-33 is an important member of the IL-1 family of cytokines and is a ligand of the ST2 receptor, a member of the IL-1 receptor family. However, the role of the IL-33/ST2 axis in tumor growth and metastasis of breast cancer remains unclear. Here, we demonstrate that IL-33 is a critical tumor promoter during epithelial cell proliferation and tumorigenesis in the breast. IL-33 dose- and time-dependently increased Cancer Osaka Thyroid (COT) phosphorylation via ST2-COT interaction in normal epithelial and breast cancer cells. The IL-33/ST2/COT cascade induced the activation of the MEK-ERK (MEK-extracellular signal-regulated kinase), JNK-cJun (cJun N-terminal kinase-cJun) and STAT3 (signal transducer and activator of transcription 3) signaling pathways, followed by increased AP-1 and stat3 transcriptional activity. When small interfering RNAs of ST2 and COT were introduced into cells, IL-33-induced AP-1 and stat3 activity were significantly decreased, unlike that in the control cells. The inhibition of COT activity resulted in decreased IL-33-induced epithelial cell transformation, and knockdown of IL-33, ST2 and COT in breast cancer cells attenuated tumorigenicity of breast cancer cells. Consistent with these observations, ST2 levels were positively correlated with COT expression in human breast cancer. These findings provide a novel perspective on the role of the IL-33/ST2/COT signaling pathway in supporting cancer-associated inflammation in the tumor microenvironment. Therapeutic approaches that target this pathway may, therefore, effectively inhibit carcinogenesis in the breast.
Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells.
Luxen, Sylvia; Noack, Deborah; Frausto, Monika; Davanture, Suzel; Torbett, Bruce E; Knaus, Ulla G
2009-04-15
Duox NADPH oxidases generate hydrogen peroxide at the air-liquid interface of the respiratory tract and at apical membranes of thyroid follicular cells. Inactivating mutations of Duox2 have been linked to congenital hypothyroidism, and epigenetic silencing of Duox is frequently observed in lung cancer. To study Duox regulation by maturation factors in detail, its association with these factors, differential use of subunits and localization was analyzed in a lung cancer cell line and undifferentiated or polarized lung epithelial cells. We show here that Duox proteins form functional heterodimers with their respective DuoxA subunits, in close analogy to the phagocyte NADPH oxidase. Characterization of novel DuoxA1 isoforms and mispaired Duox-DuoxA complexes revealed that heterodimerization is a prerequisite for reactive oxygen species production. Functional Duox1 and Duox2 localize to the leading edge of migrating cells, augmenting motility and wound healing. DuoxA subunits are responsible for targeting functional oxidases to distinct cellular compartments in lung epithelial cells, including Duox2 expression in ciliated cells in an ex vivo differentiated lung epithelium. As these locations probably define signaling specificity of Duox1 versus Duox2, these findings will facilitate monitoring Duox isoform expression in lung disease, a first step for early screening procedures and rational drug development.
Wen, G; Pachner, L I; Gessner, D K; Eder, K; Ringseis, R
2016-11-01
The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the mutated SRE at -38 of the NIS 5'-flanking region showed that in vitro-translated nSREBP-1c and nSREBP-2 bind only the wild-type but not the mutated SRE at -38 of NIS. Collectively, the present results from cell culture experiments with human mammary epithelial MCF-7 cells and from genetic studies show for the first time that the NIS gene and iodide uptake are regulated by SREBP in cultured human mammary epithelial cells. Future studies are necessary to clarify if the regulation of NIS expression and iodide uptake by SREBP also applies to the lactating bovine mammary epithelium. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Immunohistochemical distribution of chromogranin A in medicolegal autopsy materials.
Yoshida, Chiemi; Ishikawa, Takaki; Michiue, Tomomi; Zhao, Dong; Komatsu, Ayumi; Quan, Li; Maeda, Hitoshi
2009-04-01
Chromogranin A (CgA) was recently reported as a marker of various stress responses. The aim of this study was to investigate the immunohistochemical distribution of CgA in human tissues in medicolegal autopsy cases as a basis for postmortem investigation of stress responses. The autopsy cases (n=30, within 48 h postmortem) comprised cases of mechanical asphyxia (n=15: strangulation, n=8; hanging, n=7) and acute myocardial infarction/ischemia (AMI, n=15). Routinely formalin-fixed paraffin-embedded tissue sections, including those of the hypothalamus, pituitary gland, cardiac muscle, lungs, liver, kidneys, spleen, skeletal muscle, skin, thyroid gland, submandibular gland, pancreas, and adrenal gland, were stained with polyclonal anti-human CgA antibodies and CgA positivity was quantitatively examined. Localization of CgA immunopositivity was clearly demonstrated in specific cell components in all tissue sections. CgA was mainly observed in the anterior lobe of the pituitary, adrenal medulla, neurons and some gliocytes in the hypothalamus, submandibular gland, follicular epithelial cells and connective tissue in the thyroid gland and pancreatic islet cells. CgA immunopositivity showed no significant difference between mechanical asphyxia and AMI cases. Positivity was slightly higher in adenohypophysis, adrenal medullar, and pancreatic islet cells (approximately 50-80%) than in the thyroid and submandibular glands (approximately 30-60%); however, a large case difference was observed in hypothalamic CgA immunopositivity (0-100%). These findings suggest that hypothalamic CgA immunopositivity can be used as a marker for investigating individual differences in stress responses during the death process. Further investigation of other causes of death is needed.
Thyroid cell lines in research on goitrogenesis.
Gerber, H; Peter, H J; Asmis, L; Studer, H
1991-12-01
Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.
Lidral, Andrew C.; Liu, Huan; Bullard, Steven A.; Bonde, Greg; Machida, Junichiro; Visel, Axel; Uribe, Lina M. Moreno; Li, Xiao; Amendt, Brad; Cornell, Robert A.
2015-01-01
Three common diseases, isolated cleft lip and cleft palate (CLP), hypothyroidism and thyroid cancer all map to the FOXE1 locus, but causative variants have yet to be identified. In patients with CLP, the frequency of coding mutations in FOXE1 fails to account for the risk attributable to this locus, suggesting that the common risk alleles reside in nearby regulatory elements. Using a combination of zebrafish and mouse transgenesis, we screened 15 conserved non-coding sequences for enhancer activity, identifying three that regulate expression in a tissue specific pattern consistent with endogenous foxe1 expression. These three, located −82.4, −67.7 and +22.6 kb from the FOXE1 start codon, are all active in the oral epithelium or branchial arches. The −67.7 and +22.6 kb elements are also active in the developing heart, and the −67.7 kb element uniquely directs expression in the developing thyroid. Within the −67.7 kb element is the SNP rs7850258 that is associated with all three diseases. Quantitative reporter assays in oral epithelial and thyroid cell lines show that the rs7850258 allele (G) associated with CLP and hypothyroidism has significantly greater enhancer activity than the allele associated with thyroid cancer (A). Moreover, consistent with predicted transcription factor binding differences, the −67.7 kb element containing rs7850258 allele G is significantly more responsive to both MYC and ARNT than allele A. By demonstrating that this common non-coding variant alters FOXE1 expression, we have identified at least in part the functional basis for the genetic risk of these seemingly disparate disorders. PMID:25652407
Andrade, Marcelle Novaes; Santos-Silva, Ana Paula; Rodrigues-Pereira, Paula; Paiva-Melo, Francisca Diana; de Lima Junior, Niedson Correa; Teixeira, Mariana Pires; Soares, Paula; Dias, Glaecir Roseni Munstock; Graceli, Jones Bernardes; de Carvalho, Denise Pires; Ferreira, Andrea Claudia Freitas; Miranda-Alves, Leandro
2018-06-11
Tributyltin is a biocide used in nautical paints, aiming to reduce fouling of barnacles in ships. Despite the fact that many effects of TBT on marine species are known, studies in mammals have been limited, especially those evaluating its effect on the function of the hypothalamus-pituitary-thyroid (HPT) axis. The aim of this study was to investigate the effects of subchronic exposure to TBT on the HPT axis in female rats. Female Wistar rats received vehicle, TBT 200 ng kg -1 BW d -1 or 1000 ng kg -1 BW d -1 orally by gavage for 40 d. Hypothalamus, pituitary, thyroid, liver and blood samples were collected. TBT200 and TBT1000 thyroids showed vacuolated follicular cells, with follicular hypertrophy and hyperplasia. An increase in epithelial height and a decrease in the thyroid follicle and colloid area were observed in TBT1000 rats. Moreover, an increase in the epithelium/colloid area ratio was observed in both TBT groups. Lower TRH mRNA expression was observed in the hypothalami of TBT200 and TBT1000 rats. An increase in Dio1 mRNA levels was observed in the hypothalamus and thyroid in TBT1000 rats only. TSH serum levels were increased in TBT200 rats. In TBT1000 rats, there was a decrease in total T4 serum levels compared to control rats, whereas T3 serum levels did not show significant alterations. We conclude that TBT exposure can promote critical abnormalities in the HPT axis, including changes in TRH mRNA expression and serum TSH and T4 levels, in addition to affecting thyroid morphology. These findings demonstrate that TBT disrupts the HPT axis. Additionally, the changes found in thyroid hormones suggest that TBT may interfere with the peripheral metabolism of these hormones, an idea corroborated by the observed changes in Dio1 mRNA levels. Therefore, TBT exposition might interfere not only with the thyroid axis but also with thyroid hormone metabolism. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kanojia, Deepika; Okamoto, Ryoko; Jain, Saket; Madan, Vikas; Chien, Wenwen; Sampath, Abhishek; Ding, Ling-Wen; Xuan, Meng; Said, Jonathan W.; Doan, Ngan B.; Liu, Li-Zhen; Yang, Henry; Gery, Sigal; Braunstein, Glenn D.; Koeffler, H. Phillip
2014-01-01
Context: Anaplastic thyroid carcinoma (ATC) is an aggressive malignancy having no effective treatment. Laminin subunit-γ-2 (LAMC2) is an epithelial basement membrane protein involved in cell migration and tumor invasion and might represent an ideal target for the development of novel therapeutic approaches for ATC. Objective: The objective of the investigation was to study the role of LAMC2 in ATC tumorigenesis. Design: LAMC2 expression was evaluated by RT-PCR, Western blotting, and immunohistochemistry in tumor specimens, adjacent noncancerous tissues, and cell lines. The short hairpin RNA (shRNA) approach was used to investigate the effect of LAMC2 knockdown on the tumorigenesis of ATC. Results: LAMC2 was highly expressed in ATC samples and cell lines compared with normal thyroid tissues. Silencing LAMC2 by shRNA in ATC cells moderately inhibited cell growth in liquid culture and dramatically decreased growth in soft agar and in xenografts growing in immunodeficient mice. Silencing LAMC2 caused cell cycle arrest and significantly suppressed the migration, invasion, and wound healing of ATC cells. Rescue experiments by overexpressing LAMC2 in LAMC2 knockdown cells reversed the inhibitory effects as shown by increased cell proliferation and colony formation. Microarray data demonstrated that LAMC2 shRNA significantly altered the expression of genes associated with migration, invasion, proliferation, and survival. Immunoprecipitation studies showed that LAMC2 bound to epidermal growth factor receptor (EGFR) in the ATC cells. Silencing LAMC2 partially blocked epidermal growth factor-mediated activation of EGFR and its downstream pathway. Interestingly, cetuximab (an EGFR blocking antibody) or EGFR small interfering RNA additively enhanced the antiproliferative activity of the LAMC2 knockdown ATC cells compared with the control cells. Conclusions: To our knowledge, this is the first report investigating the effect of LAMC2 on cell growth, cell cycle, migration, invasion, and EGFR signaling in ATC cells, suggesting that LAMC2 may be a potential therapeutic target for the treatment of ATC. PMID:24170107
Chen, Yuan; Pacyna-Gengelbach, Manuela; Deutschmann, Nicole; Ye, Fei; Petersen, Iver
2007-02-16
Small cell lung cancer (SCLC) appears to arise from neuroendocrine cells with the potential to differentiate into a variety of lung epithelial cell lineages. In order to investigate molecular events underlying the cell type transition in SCLC, we treated a SCLC cell line H526 with a differentiation inducing agent 5-bromodeoxyuridine (BrdU). The treatment led to a dramatic conversion from suspension cells to adherent cells exhibiting an epithelioid phenotype, which remarkably reduced the ability of colony formation in soft agar and suppressed the tumor growth rate in nude mice. The phenotypic transition was consistent with upregulation of surfactant protein C (SFTPC), thyroid transcription factor 1 (TTF-1), Connexin 26 (Cx26), insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1), as well as homeobox genes LAGY, PITX1, and HOXB2. Our data suggest that BrdU induced cell differentiation could be linked to the development of a less aggressively phenotype in small cell lung cancer.
The Emerging Cell Biology of Thyroid Stem Cells
Latif, Rauf; Minsky, Noga C.; Ma, Risheng
2011-01-01
Context: Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. Evidence Acquisition: This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990–2011) and discusses the remaining problems encountered in their differentiation. Evidence Synthesis: Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. Conclusions: Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy. PMID:21778219
Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells.
Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S; Hewitt, Stephen M; Ward, Jerrold M; Kimura, Shioko
2015-04-01
Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma-derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer.
Expression of Stanniocalcin 1 in Thyroid Side Population Cells and Thyroid Cancer Cells
Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S.; Hewitt, Stephen M.; Ward, Jerrold M.
2015-01-01
Background: Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Method: Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Results: Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma–derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. Conclusion: These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer. PMID:25647164
Crane, Helen M.; Pickford, Daniel B.; Hutchinson, Thomas H.; Brown, J. Anne
2005-01-01
Perchlorate is a known environmental contaminant, largely due to widespread military use as a propellant. Perchlorate acts pharmacologically as a competitive inhibitor of thyroidal iodide uptake in mammals, but the impacts of perchlorate contamination in aquatic ecosystems and, in particular, the effects on fish are unclear. Our studies aimed to investigate the effects of concentrations of ammonium perchlorate that can occur in the environment (1, 10, and 100 mg/L) on the development of fathead minnows, Pimephales promelas. For these studies, exposures started with embryos of < 24-hr postfertilization and were terminated after 28 days. Serial sectioning of thyroid follicles showed thyroid hyperplasia with increased follicular epithelial cell height and reduced colloid in all groups of fish that had been exposed to perchlorate for 28 days, compared with control fish. Whole-body thyroxine (T4) content (a measure of total circulating T4) in fish exposed to 100 mg/L perchlorate was elevated compared with the T4 content of control fish, but 3,5,3′-triiodothyronine (T3) content was not significantly affected in any exposure group. Despite the apparent regulation of T3, after 28 days of exposure to ammonium perchlorate, fish exposed to the two higher levels (10 and 100 mg/L) were developmentally retarded, with a lack of scales and poor pigmentation, and significantly lower wet weight and standard length than were control fish. Our study indicates that environmental levels of ammonium perchlorate affect thyroid function in fish and that in the early life stages these effects may be associated with developmental retardation. PMID:15811828
Liberman, U A; Asano, Y; Lo, C S; Edelman, I S
1979-01-01
Administration of three successive doses of triiodothyronine (T3) (50 micrograms/100 g body wt), given on alternate days to thyroidectomized and euthyroid rats, stimulated oxygen consumption (QO2) and Na+ transport-dependent respiration (QO2 [5]) in the stripped jejunal mucosa, a preparation that consisted mostly of epithelial cells. The increase in QO2(t) accounted for 57% of the increment in QO2 in the transition from the hypothyroid to the euthyroid state and for 29% of the increment in the transition from the euthyroid to the hyperthyroid state. Administration of T3 to hypothyroid rats also increased the yield of epithelial cells. Injection of T3 into thyroidectomized and euthyroid rats increased the specific activity (at Vmax) of the (Na+ + K+)-dependent adenosine triphosphatase (NaK-ATPase) in jejunal crude membrane preparations. No significant change was recorded in the activity of Mg-ATPase in the same preparation. The ratio of QO2/NaK-ATPase and QO2(t)/NaK-ATPase in the various thyroid states remained constant, indicating proportionate increased in the respiratory and enzymatic indices. The effect of administration of T3 to thyroidectomized rats on the number of NaK-ATPase units (recovered in the crude membrane preparation) was estimated by: (a) Na+ + Mg++ + ATP-dependent binding of [3H]-ouabain to crude membrane fractions, and (b) the amount of the phosphorylated intermediate formed in the NaK-ATPase reaction from AT32P(gamma). Estimates were obtained of the maximal number of [3H]ouabain binding sites (Nm) and dissociation constants (Kd). Nm for [3H]ouabain and Nak-ATPase specific activity increased to about the same extent after T3 administration to thyroidectomized rats, with no change in the apparent Kd values. The amount of phosphorylated intermediate formed in jejunal crude membrane preparations also increased significantly. Thus, thyroid hormone administration may increase the number of active Na+pump sites in the plasma membrane. The apparent increase in the number of Na+ pump sites also correlated with the hormone dependent increases in QO2 and QO2(t). Images FIGURE 1 PMID:233567
Liberman, U A; Asano, Y; Lo, C S; Edelman, I S
1979-07-01
Administration of three successive doses of triiodothyronine (T3) (50 micrograms/100 g body wt), given on alternate days to thyroidectomized and euthyroid rats, stimulated oxygen consumption (QO2) and Na+ transport-dependent respiration (QO2 [5]) in the stripped jejunal mucosa, a preparation that consisted mostly of epithelial cells. The increase in QO2(t) accounted for 57% of the increment in QO2 in the transition from the hypothyroid to the euthyroid state and for 29% of the increment in the transition from the euthyroid to the hyperthyroid state. Administration of T3 to hypothyroid rats also increased the yield of epithelial cells. Injection of T3 into thyroidectomized and euthyroid rats increased the specific activity (at Vmax) of the (Na+ + K+)-dependent adenosine triphosphatase (NaK-ATPase) in jejunal crude membrane preparations. No significant change was recorded in the activity of Mg-ATPase in the same preparation. The ratio of QO2/NaK-ATPase and QO2(t)/NaK-ATPase in the various thyroid states remained constant, indicating proportionate increased in the respiratory and enzymatic indices. The effect of administration of T3 to thyroidectomized rats on the number of NaK-ATPase units (recovered in the crude membrane preparation) was estimated by: (a) Na+ + Mg++ + ATP-dependent binding of [3H]-ouabain to crude membrane fractions, and (b) the amount of the phosphorylated intermediate formed in the NaK-ATPase reaction from AT32P(gamma). Estimates were obtained of the maximal number of [3H]ouabain binding sites (Nm) and dissociation constants (Kd). Nm for [3H]ouabain and Nak-ATPase specific activity increased to about the same extent after T3 administration to thyroidectomized rats, with no change in the apparent Kd values. The amount of phosphorylated intermediate formed in jejunal crude membrane preparations also increased significantly. Thus, thyroid hormone administration may increase the number of active Na+pump sites in the plasma membrane. The apparent increase in the number of Na+ pump sites also correlated with the hormone dependent increases in QO2 and QO2(t).
Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland
Gier, Belinda; Butler, Peter C.; Lai, Chi K.; Kirakossian, David; DeNicola, Matthew M.
2012-01-01
Background: Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Methods: Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Results: Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. Conclusions: In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted. PMID:22031513
Kaczmarek-Ryś, Marta; Ziemnicka, Katarzyna; Hryhorowicz, Szymon T; Górczak, Katarzyna; Hoppe-Gołębiewska, Justyna; Skrzypczak-Zielińska, Marzena; Tomys, Michalina; Gołąb, Monika; Szkudlarek, Malgorzata; Budny, Bartłomiej; Siatkowski, Idzi; Gut, Paweł; Ruchała, Marek; Słomski, Ryszard; Pławski, Andrzej
2015-01-01
Differentiated thyroid carcinoma (DTC) originates from thyroid follicular epithelial cells and belongs to a group of slowly progressing tumors with a relatively good prognosis. However, recurrences and metastases are a serious problem in advanced stages. Furthermore, progression from a well differentiated thyroid carcinoma to an aggressive anaplastic one is possible. The majority of differentiated thyroid carcinomas are sporadic but a few alleles increasing the cancer risk are known. One of them is the c.470 T > C (p.I157T, rs17879961) missense substitution in the CHEK2 gene. The aim of this study was to investigate whether this specific CHEK2 alteration, c.470 T > C, predisposes the Great Poland (Wielkopolska) population to thyroid cancer. 602 differentiated thyroid carcinoma patients and 829 controls randomly selected from population were genotyped for the presence of the c.470C allele using pyrosequencing. Hardy-Weinberg Equilibrium (HWE) was tested for both groups by chi-square distribution and Fisher's exact test. The odds ratios (ORs), 95% confidence intervals (CIs), and p-values were calculated using the R software. The results of genotyping showed the presence of the c.470C allele in 51 patients with a frequency of 4.49%, while in a controls in 42 patients with a frequency of 2.53%. We demonstrated that in the Great Poland population the c.470C CHEK2 variant increases the risk of developing differentiated thyroid cancer almost twice (OR = 1.81, p = 0.004). The risk of papillary thyroid carcinoma in female patients homozygous for the c.470C allele was shown to increase almost 13-fold (OR = 12.81, p = 0.019). Identification of c.470C CHEK2 gene variant ought to be taken into account by healthcare policymakers. Future well-designed and larger population studies are of great value in confirming these findings. Moreover, a combination of genetic factors together with environmental exposures should also be considered.
Ciliated muconodular papillary tumour of the lung: a newly defined low-grade malignant tumour.
Sato, Shuichi; Koike, Teruaki; Homma, Keiichi; Yokoyama, Akira
2010-11-01
We present two cases of ciliated muconodular papillary tumour (CMPT) in this report. CMPT is a newly defined low-grade malignant tumour with ciliated columnar epithelial cells, occurring in the peripheral lung. Both patients underwent pulmonary resection due to an enlarged solitary pulmonary nodule. Pathological findings in both cases confirmed a papillary tumour with a mixture of ciliated columnar and goblet cells. The tumours were rich in mucous and had spread along the alveolar walls, as observed in bronchioloalveolar carcinoma. Nuclear atypia was mild, and no mitotic activity was observed. Immunohistochemically, tumour cells stained positive for carcinoembryonic antigen, thyroid transcription factor-1 and cytokeratin 7 but not for cytokeratin 20. The immunohistochemical staining patterns were almost identical to those of pulmonary adenocarcinoma. We definitively diagnosed as CMPT. Both patients remained relapse-free.
2014-01-01
Introduction Clear cell carcinomas of the thyroid gland with normal thyroid-stimulating hormone value are very rare, but clear cell changes are described in most reported cases of thyroidal lesions. Case presentation In this report, we describe the case of a 50-year-old Caucasian woman with a normal thyroid-stimulating hormone level who underwent surgery to treat a multi-nodular goiter. The pathology was a clear cell variant of follicular thyroid carcinoma. The tumor was 1cm in diameter and consisted of pure clear cells. Conclusion Clear cell variants of follicular thyroid carcinoma are rarely seen, especially it is misdiagnosed with metastatic renal cell carcinoma. In this report, we describe the case of a patient with a clear cell variant of follicular thyroid carcinoma with an interesting pathology. PMID:24884725
NASA Astrophysics Data System (ADS)
Armitage, Mark
Ionizing radiation can have several different effects on cells, some are almost instantaneous such as the generation of DNA damage, other cellular responses take a matter of minutes or hours - DNA repair protein induction/activation, and others may take months or even years to be manifested - carcinogenesis. Human epithelial cell lines derived from both normal, non-neoplastic tissues and from a malignant source were cultured in order to examine several effects of ionizing radiation on such cell types. Cells not from a malignant source were previously immortalized by viral infection or by transfection with viral sequences. Simian virus 40 immortalised uroepithelial cells (SV-HUC) were found to be approximately a factor of two fold more radioresistant than cells of malignant origin (T24) in terms of unrepaired clastogenic damage i.e. assessment of micronuclei levels following irradiation. SV-HUC lines unlike T24 cells are non-tumourigenic when inoculated into nude athymic mice. SV-HUC lines proved very resistant to full oncogenic transformation using radiation and chemical carcinogens. However, morphological alterations and decreased anchorage dependant growth was observed in post carcinogen treated cells after appropriate cell culture conditions were utilized. The progression from this phenotype to a fully tumourigenic one was not recorded in this study. The ability of ionizing radiation to induce increased levels of the nuclear phosphoprotein p53 was also assessed using several different cell lines. SV- HUC and T24 cell lines failed to exhibit any increased p53 stabilization following irradiation. One cell line, a human papilloma virus transformed line (HPV) did show an approximate two fold increase of the wild type p53 protein after treatment with radiation. Only the cell line HPV showed any cell cycle delay, resulting in accumulation of cells in the G2/M compartment in post irradiation cell cycle analysis. The status of p53 was also assessed i.e. wild type or mutant conformation in all the above cells lines and two other control lines HOS (a human osteosarcoma cell line) and H Tori-3 (SV40 immortalised thyroid epithelial cells).
Al-Ansari, Farah; Lahooti, Hooshang; Stokes, Leanne; Edirimanne, Senarath; Wall, Jack
2018-05-22
Purpose/aim of the study: Graves' ophthalmopathy (GO) is closely related to the thyroid autoimmune disorder Graves' disease. Previous studies have suggested roles for thyroidal CD8 + T cells and autoimmunity against calsequestrin-1 (CASQ)-1 in the link between thyroidal and orbital autoimmune reactions in GO. A role for autoimmunity against CollXIII has also been suggested. In this study, we aimed to investigate correlations between some thyroidal and peripheral blood T-cell subsets and thyroidal T-cell reactivity against CASQ1 and CollXIII in patients with GO. Fresh thyroid tissues were processed by enzyme digestion and density gradient to isolate mononuclear cells (MNCs). Peripheral blood MNCs were also isolated using density gradient. Flow-cytometric analysis was used to identify the various T-cell subsets. T -cell reactivity to CASQ1 and CollXIII was measured by a 5-day culture of the MNCs and BrdU uptake method. We found a positive correlation between thyroidal CD8 + T cells and CD8 + T-regulatory (T-reg) cells in patients with GO. Thyroidal T cells from two out of the three patients with GO tested (66.7%) showed a positive response to CASQ1, while thyroidal T cells from none of the six Graves' Disease patients without ophthalmopathy (GD) tested showed a positive response to this antigen. Thyroidal T cells from these patient groups however, showed no significant differences in their response to CollXIII. Our observations provide further evidence for a possible role of thyroidal CD8 + T cells, CD8 + T-reg cells and the autoantigen CASQ1 in the link between thyroidal and orbital autoimmune reactions of GO.
Hamasaki, K.; Landes, R. D.; Noda, A.; ...
2016-10-01
While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The implications of these results in interpreting cancer risks after fetal irradiation are also discussed.« less
Murata, Tsubasa; Iwadate, Manabu; Takizawa, Yoshinori; Miyakoshi, Masaaki; Hayase, Suguru; Yang, Wenjing; Cai, Yan; Yokoyama, Shigetoshi; Nagashima, Kunio; Wakabayashi, Yoshiyuki; Zhu, Jun
2017-01-01
Background: Studies of thyroid stem/progenitor cells have been hampered due to the small organ size and lack of tissue, which limits the yield of these cells. A continuous source that allows the study and characterization of thyroid stem/progenitor cells is desired to push the field forward. Method: A cell line was established from Hoechst-resistant side population cells derived from mouse thyroid that were previously shown to contain stem/progenitor-like cells. Characterization of these cells were carried out by using in vitro two- and three-dimensional cultures and in vivo reconstitution of mice after orthotopic or intravenous injection, in conjunction with quantitative reverse transcription polymerase chain reaction, Western blotting, immunohisto(cyto)chemistry/immunofluorescence, and RNA seq analysis. Results: These cells were named SPTL (side population cell-derived thyroid cell line). Under low serum culturing conditions, SPTL cells expressed the thyroid differentiation marker NKX2-1, a transcription factor critical for thyroid differentiation and function, while no expression of other thyroid differentiation marker genes were observed. SPTL cells formed follicle-like structures in Matrigel® cultures, which did not express thyroid differentiation marker genes. In mouse models of orthotopic and intravenous injection, the latter following partial thyroidectomy, a few SPTL cells were found in part of the follicles, most of which expressed NKX2-1. SPTL cells highly express genes involved in epithelial–mesenchymal transition, as demonstrated by RNA seq analysis, and exhibit a gene-expression pattern similar to anaplastic thyroid carcinoma. Conclusion: These results demonstrate that SPTL cells have the capacity to differentiate into thyroid to a limited degree. SPTL cells may provide an excellent tool to study stem cells, including cancer stem cells of the thyroid. PMID:28125936
Tiozzo, Caterina; Danopoulos, Soula; Lavarreda-Pearce, Maria; Baptista, Sheryl; Varimezova, Radka; Al Alam, Denise; Warburton, David; Virender, Rehan; De Langhe, Stijn; Di Cristofano, Antonio
2014-01-01
Even though the role of the tyrosine phosphatase Pten as a tumor suppressor gene has been well established in thyroid cancer, its role during thyroid development is still elusive. We therefore targeted Pten deletion in the thyroid epithelium by crossing Ptenflox/flox with a newly developed Nkx2.1-cre driver line in the BALB/c and C57BL/6 genetic backgrounds. C57BL/6 homozygous Pten mutant mice died around 2 weeks of age due to tracheal and esophageal compression by a hyperplasic thyroid. By contrast, BALB/c homozygous Pten mutant mice survived up to 2 years, but with a slightly increased thyroid volume. Characterization of the thyroid glands from C57BL/6 homozygous Pten mutant mice at postnatal day 14 (PN14) showed abnormally enlarged tissue with areas of cellular hyperplasia, disruption of the normal architecture, and follicular degeneration. In addition, differing degrees of hypothyroidism, thyroxine (T4) decrease, and thyroid-stimulating hormone elevation between the strains in the mutants and the heterozygous mutant were detected at PN14. Finally, C57BL/6 heterozygous Pten mutant mice developed thyroid tumors after 2 years of age. Our results indicate that Pten has a pivotal role in thyroid development and its deletion results in thyroid tumor formation, with the timing and severity of the tumor depending on the particular genetic background. PMID:22167068
Cot kinase plays a critical role in Helicobacter pylori-induced IL-8 expression.
Jang, Sungil; Kim, Jinmoon; Cha, Jeong-Heon
2017-04-01
Helicobacter pylori is a major pathogen causing various gastric diseases including gastric cancer. Infection of H. pylori induces pro-inflammatory cytokine IL-8 expression in gastric epithelial cells in the initial inflammatory process. It has been known that H. pylori can modulate Ras-Raf-Mek-Erk signal pathway for IL-8 induction. Recently, it has been shown that another signal molecule, cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, activates Mek and Erk and plays a role in the Erk pathway, similar to MAP3K signal molecule Raf kinase. Therefore, the objective of this study was to determine whether Cot kinase might be involved in IL-8 induction caused by H. pylori infection. AGS gastric epithelial cells were infected by H. pylori strain G27 or its isogenic mutants lacking cagA or type IV secretion system followed by treatment with Cot kinase inhibitor (KI) or siRNA specific for Cot kinase. Activation of Erk was assessed by Western blot analysis and expression of IL-8 was measured by ELISA. Treatment with Cot KI reduced both transient and sustained Erk activation. It also reduced early and late IL-8 secretion in the gastric epithelial cell line. Furthermore, siRNA knockdown of Cot inhibited early and late IL-8 secretion induced by H. pylori infection. Taken together, these results suggest that Cot kinase might play a critical role in H. pylori type IV secretion apparatus-dependent early IL-8 secretion and CagA-dependent late IL-8 secretion as an alternative signaling molecule in the Erk pathway.
Brown, Scott B; Evans, Robert E; Vandenbyllardt, Lenore; Finnson, Ken W; Palace, Vince P; Kane, Andrew S; Yarechewski, Alvin Y; Muir, Derek C G
2004-03-30
Recent studies indicate that co-planar 3,3',4,4',5-pentachlorobiphenyl (PCB) congeners or their metabolites may disrupt thyroid function in fishes. Although co-planar PCB have been detected at microgram per kilogram levels in fish from contaminated areas, few studies have examined mechanisms whereby, co-planar PCBs may alter thyroid function in fish. We treated immature lake trout by intraperitoneal (i.p.)-injection or dietary gavage with vehicle containing 0, 0.7, 1.2, 25 or 40 microg 3,3',4,4',5-pentachlorobiphenyl (PCB 126) per kgBW. Blood and tissue samples were collected at various times up to 61 weeks following exposure. The treatments produced sustained dose-dependent elevations of tissue (PCB 126) concentrations. Thyroid epithelial cell height (TECH), plasma thyroxine (T4) and 3,3',5-triiodo-l-thyronine (T3) concentrations, hepatic 5'-monodeiodinase, hepatic glucuronidation of T4 and T3, as well as plasma T4 kinetics and fish growth were analyzed. Exposure to the highest doses of PCB 126 caused increased TECH, plasma T4 dynamics and T4-glucuronidation (T4-G). PCB 126 did not affect 5'-monodeiodinase and T3-glucuronidation (T3-G) and there were no effects on fish growth or condition. Because T3 status and growth were unaffected, the thyroid system was able to compensate for the alterations caused by the PCB 126 exposure. It is clear that concentrations of co-planar PCBs similar to those found in predatory fish from contaminated areas in the Great Lakes are capable of enhancing metabolism of T4. These changes may be of significance when T4 requirements are high for other reasons (e.g. periods of rapid growth, warm temperatures, metamorphosis, and parr-smolt transformation).
A rare case of thyroid haemangiosarcoma.
Del Rio, Paolo; Cataldo, Simona; Sommaruga, Lucia; Corcione, Luigi; Guazzi, Anna; Sianesi, Mario
2007-01-01
The incidence of haemangiosarcoma in the literature is variable especially in the Alpine region and in Austria, ranging from 2 to 10% of all thyroid neoplastic lesions. This thyroid disease is characterised by positive endothelial markers (CD 31, CD 34 and FVIII), and co-positive markers for cytokeratins, epithelial membrane antigen and a loss of thyroglobulin can sometimes be found. Immunochemistry does not help the physician to classify the neoplasia as a variant of anaplastic carcinoma or sarcoma of endothelial origin. We present a case of epithelioid haemangiosarcoma in an elderly woman from outside the Alpine region with a contralateral papillary cancer treated by total thyroidectomy. The prognosis is poor and case reports are rare.
Srigley, John R; Delahunt, Brett; Eble, John N; Egevad, Lars; Epstein, Jonathan I; Grignon, David; Hes, Ondrej; Moch, Holger; Montironi, Rodolfo; Tickoo, Satish K; Zhou, Ming; Argani, Pedram
2013-10-01
The classification working group of the International Society of Urological Pathology consensus conference on renal neoplasia was in charge of making recommendations regarding additions and changes to the current World Health Organization Classification of Renal Tumors (2004). Members of the group performed an exhaustive literature review, assessed the results of the preconference survey and participated in the consensus conference discussion and polling activities. On the basis of the above inputs, there was consensus that 5 entities should be recognized as new distinct epithelial tumors within the classification system: tubulocystic renal cell carcinoma (RCC), acquired cystic disease-associated RCC, clear cell (tubulo) papillary RCC, the MiT family translocation RCCs (in particular t(6;11) RCC), and hereditary leiomyomatosis RCC syndrome-associated RCC. In addition, there are 3 rare carcinomas that were considered as emerging or provisional new entities: thyroid-like follicular RCC; succinate dehydrogenase B deficiency-associated RCC; and ALK translocation RCC. Further reports of these entities are required to better understand the nature and behavior of these highly unusual tumors. There were a number of new concepts and suggested modifications to the existing World Health Organization 2004 categories. Within the clear cell RCC group, it was agreed upon that multicystic clear cell RCC is best considered as a neoplasm of low malignant potential. There was agreement that subtyping of papillary RCC is of value and that the oncocytic variant of papillary RCC should not be considered as a distinct entity. The hybrid oncocytic chromophobe tumor, which is an indolent tumor that occurs in 3 settings, namely Birt-Hogg-Dubé Syndrome, renal oncocytosis, and as a sporadic neoplasm, was placed, for the time being, within the chromophobe RCC category. Recent advances related to collecting duct carcinoma, renal medullary carcinoma, and mucinous spindle cell and tubular RCC were elucidated. Outside of the epithelial category, advances in our understanding of angiomyolipoma, including the epithelioid and epithelial cystic variants, were considered. In addition, the apparent relationship between cystic nephroma and mixed epithelial and stromal tumor was discussed, with the consensus that these tumors form a spectrum of neoplasia. Finally, it was thought that the synovial sarcoma should be removed from the mixed epithelial and mesenchymal category and placed within the sarcoma group. The new classification is to be referred to as the International Society of Urological Pathology Vancouver Classification of Renal Neoplasia.
Lakshmanan, Aparna; Doseff, Andrea I.; Ringel, Matthew D.; Saji, Motoyasu; Rousset, Bernard; Zhang, Xiaoli
2014-01-01
Background: Selectively increased radioiodine accumulation in thyroid cells by thyrotropin (TSH) allows targeted treatment of thyroid cancer. However, the extent of TSH-stimulated radioiodine accumulation in some thyroid tumors is not sufficient to confer therapeutic efficacy. Hence, it is of clinical importance to identify novel strategies to selectively further enhance TSH-stimulated thyroidal radioiodine accumulation. Methods: PCCl3 rat thyroid cells, PCCl3 cells overexpressing BRAFV600E, or primary cultured tumor cells from a thyroid cancer mouse model, under TSH stimulation were treated with various reagents for 24 hours. Cells were then subjected to radioactive iodide uptake, kinetics, efflux assays, and protein extraction followed by Western blotting against selected antibodies. Results: We previously reported that Akt inhibition increased radioiodine accumulation in thyroid cells under chronic TSH stimulation. Here, we identified Apigenin, a plant-derived flavonoid, as a reagent to further enhance the iodide influx rate increased by Akt inhibition in thyroid cells under acute TSH stimulation. Akt inhibition is permissive for Apigenin's action, as Apigenin alone had little effect. This action of Apigenin requires p38 MAPK activity but not PKC-δ. The increase in radioiodide accumulation by Apigenin with Akt inhibition was also observed in thyroid cells expressing BRAFV600E and in primary cultured thyroid tumor cells from TRβPV/PV mice. Conclusion: Taken together, Apigenin may serve as a dietary supplement in combination with Akt inhibitors to enhance therapeutic efficacy of radioiodine for thyroid cancer. PMID:24400871
Ultrasound guided fine needle aspiration biopsy of parathyroid gland and lesions.
Dimashkieh, Haytham; Krishnamurthy, Savitri
2006-03-28
Parathyroid gland and their tumors comprise a small proportion of non-palpable neck masses that are investigated by ultrasound (US) guided fine needle aspiration biopsy. We reviewed our institution's cases of US guided FNAB of parathyroid gland and their lesions to determine the role of cytology for the preoperative diagnosis of parathyroid gland and their lesions. All cases of FNAB of parathyroid gland and lesions in the last 10 years were reviewed in detail with respect to clinical history and correlated with the histopathologic findings in available cases. The cytologic parameters that were evaluated included cellularity assessed semiquantitatively as scant, intermediate or abundant (<50, 51-500 or >500 cells), cellular distribution (loose clusters, single cells/naked nuclei, rounded clusters, two- and three-dimensional clusters, and presence of prominent vascular proliferation), cellular characteristics (cell size, nuclear shape, presence/absence of a nucleolus, degree of mitosis, amount of cytoplasm, and appearance of nuclear chromatin), and background (colloid-like material and macrophages). Immunostaining for parathyroid hormone (PTH) was performed on selected cases using either destained Pap smears or cell block sections. Twenty cases of US-guided FNAB of parathyroid glands and their lesions including 13 in the expected locations in the neck, 3 in intrathyroid region, 3 in thyroid bed, and 1 metastatic to liver were studied. Majority of the cases showed intermediate cellularity (51-500 cells) with round to oval cells that exhibited a stippled nuclear chromatin, without significant pleomorphism or mitotic activity. The cells were arranged in loose two dimensional groups with many single cells/naked nuclei around the groups. Occasionally macrophages and colloid like material was also encountered. There was no significant difference in the cytomorphologic features between normal gland, hyperplasia adenoma, or carcinoma. Immunocytochemical analysis for PHT was performed for 14 cases (6 destained smears and 8 cell blocks) which showed distinct cytoplasmic positivity. US-guided FNAB is a useful test for confirming the diagnosis of not only clinically suspected parathyroid gland and lesions but also for detecting parathyroid glands in unexpected locations such as in thyroid bed or within the thyroid gland. Although there is significant overlap in the cytomorphologic features of cells derived from parathyroid and thyroid gland, the presence of stippled nuclear chromatin, prominent vascular proliferation with attached epithelial cells, and frequent occurrence of single cells/naked nuclei are useful clues that favor parathyroid origin. Distinction of the different parathyroid lesions including hyperplasia, adenoma, and carcinoma cannot be made solely on cytology. Immunostaining for PTH can be performed on destained Pap smears and cell block sections which can be valuable for confirming parathyroid origin of the cells.
Sarcoma of the thyroid region mimicking Riedel's thyroiditis
Torres-Montaner, A; Beltran, M; d Romero; Oliva, H
2001-01-01
Because sarcomas of the anterior lower neck region occur so infrequently, they are not usually considered in the differential diagnosis of Riedel's thyroiditis. Riedel's thyroiditis itself may be confused on clinical grounds alone with malignant neoplasms because of its invasive features. Sarcomatoid carcinoma is the main entity to be discarded in this regard. This is accomplished through histological examination by the finding of carcinomatous areas and/or reactivity with epithelial markers. These features also set apart sarcomatoid carcinoma from true sarcomas. This report concerns a patient with a sarcoma of the anterior lower neck region which was initially suspected to be Riedel's thyroiditis or sarcomatoid carcinoma on clinical and radiological grounds. A peroperative biopsy was interpreted by two independent pathologists as consistent with Riedel's thyroiditis. The subsequent clinical course and postmortem examination demonstrated a high grade sarcoma with metastasis to both lungs and the pleura, and invasion of adjacent neck structures. Nevertheless, some areas of the postmortem material showed a microscopic pattern similar to mediastinal fibrosis, raising the possibility of the malignant transformation of a fibrosclerotic lesion. Key Words: Riedel's thyroiditis • sarcomatoid carcinoma • fibrous histiocytoma • differential diagnosis PMID:11429435
The cytology of a thyroid granular cell tumor.
Chang, Shu-Mei; Wei, Chang-Kuo; Tseng, Chih-En
2009-01-01
Granular cell tumor (GCT) of the thyroid is rare. Before this report, only four cases of thyroid GCT have been reported, none of which presented a cytopathological examination. In this paper, we report the fine needle aspiration cytology and pathological analysis of a thyroid GCT from a 12-year-old girl who presented with a painless neck mass. The tumor cells were single, in syncytial clusters, or pseudofollicles, contained small round, oval, or spindle nuclei, indistinct nucleoli, and a large amount of grayish, granular fragile cytoplasm. The background contained granular debris and naked nuclei. A differential diagnosis of thyroid GCT with more frequent thyroid lesions containing cytoplasmic granules, including Hurthle cells, macrophages, follicular cells, and cells of black thyroid syndrome, was also performed.
[Comparison of paired box genes 8 and 2 expression in epithelium tissues and the related tumors].
Song, Y; Huang, X; Shen, G H; Liu, X Y; Zhang, X
2017-06-23
Objective: To explore the expressional differences between paired box genes 2(Pax2) and 8 (Pax8) protein in different kinds of epitheliums and tumors, and to investigate the clinicopathologic significance. Methods: Expression levels of Pax2 and Pax8 protein were detected in 75 cases of different human epithelium tissues and 255 cases of different tumors on tissue microarray by immunohistochemistry. Results: Pax2 and Pax8 selectively expressed in different tissues. The positive rates of Pax8 protein expressed in the normal epithelium of the thyroid, urinary system and female reproductive system were 100% (2/2), 60.0% (3/5) and 76.9% (10/13), respectively. The positive rates of Pax2 expressed in the epithelium tissues of urinary system and the female reproductive system were 40.0% (2/5) and 38.5% (5/13) respectively. However, the expression of Pax2 protein was not detected in the normal thyroid epithelium. The positive rate of Pax8 protein expressing in the epithelium of reproductive system was significantly higher than that of Pax2 protein ( P <0.05). The tumors derived from different tissues also expressed different levels of protein Pax2 and Pax8. The positive rates of Pax8 in renal cell carcinoma, thyroid carcinoma and endometrial adenocarcinoma were 65.2% (15/23), 66.7% (10/15) and 80.0% (4/5), respectively. The positive rates of Pax2 in renal cell carcinoma, thyroid carcinoma and endometrial adenocarcinoma were 34.8% (8/23), 13.3% (2/15) and 20.0% (1/5), respectively. The positive rates of Pax8 protein expressed in renal cell carcinoma, thyroid carcinoma and endometrial adenocarcinoma were significantly higher than those of Pax2 protein ( P <0.05). The positive rates of Pax8 in ovarian serous carcinoma, endometrial carcinoma and clear cell carcinoma were 92.9% (26/28), 81.8% (9/11) and 82.4% (14/17), respectively. The positive rates of Pax2 in ovarian serous carcinoma, endometrial carcinoma and clear cell carcinoma were 28.6% (8/28), 9.1% (1/11) and 17.6% (3/17), respectively. The positive rates of Pax8 protein expressed in ovarian serous carcinoma, endometrial carcinoma and clear cell carcinomawere significantly higher than those of Pax2 protein ( P <0.05). Conclusions: Pax2 and Pax8 are specifically expressed in female reproductive system and uritany system. However, the positive expression of Pax8 is superior to that of Pax2. The combined expression of Pax8 and Pax2 can be used in the differential diagnosis of epithelial tumors derived from different origins.
Role of Dicer1 in thyroid cell proliferation and differentiation.
Penha, Ricardo Cortez Cardoso; Sepe, Romina; De Martino, Marco; Esposito, Francesco; Pellecchia, Simona; Raia, Maddalena; Del Vecchio, Luigi; Decaussin-Petrucci, Myriam; De Vita, Gabriella; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo
2017-01-01
DICER1 plays a central role in the biogenesis of microRNAs and it is important for normal development. Altered microRNA expression and DICER1 dysregulation have been described in several types of tumors, including thyroid carcinomas. Recently, our group identified a new somatic mutation (c.5438A>G; E1813G) within DICER1 gene of an unknown function. Herein, we show that DICER1 is overexpressed, at mRNA level, in a significant-relative number of papillary (70%) and anaplastic (42%) thyroid carcinoma samples, whereas is drastically downregulated in all the analyzed human thyroid carcinoma cell lines (TPC-1, BCPAP, FRO and 8505c) in comparison with normal thyroid tissue samples. Conversely, DICER1 is downregulated, at protein level, in PTC in comparison with normal thyroid tissues. Our data also reveals that DICER1 overexpression positively regulates thyroid cell proliferation, whereas its silencing impairs thyroid cell differentiation. The expression of DICER1 gene mutation (c.5438A>G; E1813G) negatively affects the microRNA machinery and cell proliferation as well as upregulates DICER1 protein levels of thyroid cells but has no impact on thyroid differentiation. In conclusion, DICER1 protein is downregulated in papillary thyroid carcinomas and affects thyroid proliferation and differentiation, while DICER1 gene mutation (c.5438A>G; E1813G) compromises the DICER1 wild-type-mediated microRNA processing and cell proliferation.
CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Li; Liu, Lianyong; Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125
The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Ourmore » findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, L.R.; Moreno, A.J.; Pittman, D.L.
1986-05-01
A 52-year-old woman presented with fever, goiter, and no evidence of pain or tenderness in the thyroid. A diagnosis of silent thyroiditis was made after obtaining evidence of biochemical thyrotoxicosis, intense gallium-67 citrate thyroidal localization, and cytologic thyroiditis. Fine needle aspiration biopsy of the thyroid revealed numerous giant cells in all areas of the thyroid, typical of subacute thyroiditis. This is believed to be the first time painless thyroiditis is reported with the classic cytologic feature of painful subacute thyroiditis.
Development of a functional thyroid model based on an organoid culture system.
Saito, Yoshiyuki; Onishi, Nobuyuki; Takami, Hiroshi; Seishima, Ryo; Inoue, Hiroyoshi; Hirata, Yuki; Kameyama, Kaori; Tsuchihashi, Kenji; Sugihara, Eiji; Uchino, Shinya; Ito, Koichi; Kawakubo, Hirofumi; Takeuchi, Hiroya; Kitagawa, Yuko; Saya, Hideyuki; Nagano, Osamu
2018-03-04
The low turnover rate of thyroid follicular cells and the lack of a long-term thyroid cell culture system have hampered studies of thyroid carcinogenesis. We have now established a thyroid organoid culture system that supports thyroid cell proliferation in vitro. The established mouse thyroid organoids performed thyroid functions including thyroglobulin synthesis, iodide uptake, and the production and release of thyroid hormone. Furthermore, transplantation of the organoids into recipient mice resulted in the formation of normal thyroid-like tissue capable of iodide uptake and thyroglobulin production in vivo. Finally, forced expression of oncogenic NRAS (NRAS Q61R ) in thyroid organoids established from p53 knockout mice and transplantation of the manipulated organoids into mouse recipients generated a model of poorly differentiated thyroid cancer. Our findings suggest that this newly developed thyroid organoid culture system is a potential research tool for the study of thyroid physiology and pathology including thyroid cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
[Poorly differentiated thyroid carcinomas: new therapeutic considerations].
Graf, Hans
2005-10-01
For most differentiated thyroid carcinomas, as papillary and follicular carcinomas, following total thyroidectomy and 131I therapy for thyroid remnant ablation, treatment with thyroid hormones to suppress TSH levels will reduce the growth of any remaining thyroid cancer cells, and thyroid cell-specific radiation therapy will either cure or control the disease. Thyroid carcinomas are considered poorly differentiated when they start to lose such functions as iodine uptake and thyrotropin-dependence for growth and production of thyroid proteins like NIS, thyroglobulin and desiodases. One of the greatest challenges in the management of patients with follicular cell-derived thyroid cancer is the treatment of tumors that progressed despite surgery, (131)I and T4 suppression of TSH. With the better knowledge of the abnormal molecular signaling in thyroid cancer cells, actually known targeted cancer therapies, directed against molecules involved in neoplastic transformation, are being used. As the critical molecular requirements for tumor initiation, maintenance and progression are identified, combination therapies with targeted agents acting on each of them will improve the treatment of poorly differentiated thyroid carcinoma.
Identification of thyroid tumor cell vulnerabilities through a siRNA-based functional screening.
Anania, Maria; Gasparri, Fabio; Cetti, Elena; Fraietta, Ivan; Todoerti, Katia; Miranda, Claudia; Mazzoni, Mara; Re, Claudia; Colombo, Riccardo; Ukmar, Giorgio; Camisasca, Stefano; Pagliardini, Sonia; Pierotti, Marco; Neri, Antonino; Galvani, Arturo; Greco, Angela
2015-10-27
The incidence of thyroid carcinoma is rapidly increasing. Although generally associated with good prognosis, a fraction of thyroid tumors are not cured by standard therapy and progress to aggressive forms for which no effective treatments are currently available. In order to identify novel therapeutic targets for thyroid carcinoma, we focused on the discovery of genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same degree for the viability of normal cells (non-oncogene addiction paradigm). We screened a siRNA oligonucleotide library targeting the human druggable genome in thyroid cancer BCPAP cell line in comparison with immortalized normal human thyrocytes (Nthy-ori 3-1). We identified a panel of hit genes whose silencing interferes with the growth of tumor cells, while sparing that of normal ones. Further analysis of three selected hit genes, namely Cyclin D1, MASTL and COPZ1, showed that they represent common vulnerabilities for thyroid tumor cells, as their inhibition reduced the viability of several thyroid tumor cell lines, regardless the histotype or oncogenic lesion. This work identified non-oncogenes essential for sustaining the phenotype of thyroid tumor cells, but not of normal cells, thus suggesting that they might represent promising targets for new therapeutic strategies.
Heiden, Katherine B; Williamson, Ashley J; Doscas, Michelle E; Ye, Jin; Wang, Yimin; Liu, Dingxie; Xing, Mingzhao; Prinz, Richard A; Xu, Xiulong
2014-11-01
Cancer stem cells (CSCs) have been recently identified in thyroid neoplasm. Anaplastic thyroid cancer (ATC) contains a higher percentage of CSCs than well-differentiated thyroid cancer. The signaling pathways and the transcription factors that regulate thyroid CSC self-renewal remain poorly understood. The objective of this study is to use two ATC cell lines (KAT-18 and SW1736) as a model to study the role of the sonic hedgehog (Shh) pathway in maintaining thyroid CSC self-renewal and to understand its underlying molecular mechanisms. The expression and activity of aldehyde dehydrogenase (ALDH), a marker for thyroid CSCs, was analyzed by Western blot and ALDEFLUOR assay, respectively. The effect of three Shh pathway inhibitors (cyclopamine, HhAntag, GANT61), Shh, Gli1, Snail knockdown, and Gli1 overexpression on thyroid CSC self-renewal was analyzed by ALDEFLUOR assay and thyrosphere formation. The sensitivity of transfected KAT-18 cells to radiation was evaluated by a colony survival assay. Western blot analysis revealed that ALDH protein levels in five thyroid cancer cell lines (WRO82, a follicular thyroid cancer cell line; BCPAP and TPC1, two papillary thyroid cancer cell lines; KAT-18 and SW1736, two ATC cell lines) correlated with the percentage of the ALDH(High) cells as well as Gli1 and Snail expression. The Shh pathway inhibitors, Shh and Gli1 knockdown, in KAT-18 cells decreased thyroid CSC self-renewal and increased radiation sensitivity. In contrast, Gli1 overexpression led to increased thyrosphere formation, an increased percentage of ALDH(High) cells, and increased radiation resistance in KAT-18 cells. Inhibition of the Shh pathway by three specific inhibitors led to decreased Snail expression and a decreased number of ALDH(High) cells in KAT-18 and SW1736. Snail gene knockdown decreased the number of ALDH(High) cells in KAT-18 and SW1736 cells. The Shh pathway promotes the CSC self-renewal in ATC cell lines by Gli1-induced Snail expression.
Basolo, Fulvio; Giannini, Riccardo; Toniolo, Antonio; Casalone, Rosario; Nikiforova, Marina; Pacini, Furio; Elisei, Rossella; Miccoli, Paolo; Berti, Piero; Faviana, Pinuccia; Fiore, Lisa; Monaco, Carmen; Pierantoni, Giovanna Maria; Fedele, Monica; Nikiforov, Yuri E; Santoro, Massimo; Fusco, Alfredo
2002-02-10
A novel human thyroid papillary carcinoma cell line (FB-2) has been established and characterized. FB-2 cells harbor the RET/PTC1 chimeric oncogene in which the RET kinase domain is fused to the H4 gene. FB-2 cells neither formed colonies in semisolid media nor induced tumors after heterotransplant into severe combined immunodeficient mice. However, HMGI(Y), HMGI-C and c-myc genes, which are associated to thyroid cell transformation, were abundantly expressed in FB-2 cells but not in normal thyroid cells. FB-2 cells only partially retained the differentiated thyroid phenotype. In fact, the PAX-8 gene, which codes for a transcriptional factor required for thyroid cell differentiation, was expressed, while thyroglobulin, TSH-receptor and thyroperoxidase genes were not. Moreover, FB-2 cells produced high levels of interleukin (IL)-6 and IL-8. Copyright 2001 Wiley-Liss, Inc.
Aghwan, Zeiad Amjad; Sazili, Awis Qurni; Kadhim, Khalid Kamil; Alimon, Abdul Razak; Goh, Yong Meng; Adeyemi, Kazeem Dauda
2016-05-01
This study assessed the effects of dietary selenium (Se), iodine (I) and a combination of both on growth performance, thyroid gland activity, carcass characteristics and the concentration of iodine and selenium in Longissimus lumborum (LL) muscle in goats. Twenty-four bucks were randomly assigned to four dietary treatments: control (CON), basal diet without supplementation, basal diet + 0.6 mg Se/kg dry matter (DM) (SS), 0.6 mg I/kg DM (IP), or combination of 0.6 mg/kg DM Se and 0.6 mg/kg DM I (SSIP) and fed for 100 days. Animals fed diet SSIP exhibited higher (P < 0.05) body weight and better feed conversion ratio (FCR) than those fed other diets. Dressing percentage of goats fed the supplemented diets was higher (P < 0.05) than that of the control. Carcasses from the IP group had higher (P < 0.05) total fat proportion than the SSIP group. The levels of both elements were significantly elevated (P < 0.05) in LL muscle in supplemented goats. Thyroid follicular epithelial cells of IP and SSIP animals were significantly higher than those of CON and SS groups. The study demonstrated that the combined Se and I dietary supplementation improves growth performance, carcass dressing percentage and increases the retention of Se and I in goat meat. © 2015 Japanese Society of Animal Science.
Okada, Morihiro; Miller, Thomas C.; Fu, Liezhen
2015-01-01
The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis. PMID:26086244
Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo
2015-09-01
The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer
2012-01-01
Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253
Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.
Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M
2012-12-28
G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.
Hexamethylenebisacetamide (HMBA) is a growth factor for human, ovine and porcine thyroid cells.
Fayet, G; Amphoux-Fazekas, T; Aouani, A; Hovsépian, S
1996-03-01
Hexamethylenebisacetamide (HMBA) provokes in murine erythroleukemia cells (MELC) a commitment to terminal differentiation leading to the activation of the expression of hemoglobin. HMBA has been tested also in other cells from colon cancer, melanoma or lung cancer. However it has not yet been tested in the thyroid. We demonstrate in this paper that HMBA in kinetics and concentration-response experiments increases the proliferation of human thyroid cells isolated from Graves'-Basedow patients. It also acts like a growth factor for ovine and porcine thyroid cells, respectively, from the OVNIS line and the ATHOS line. This molecule which is a differentiating factor in the MELC system and a growth factor in human thyroid cell cultures represents a potential to get human thyroid cell lines expressing specialized functions.
Development of the thyroid gland.
Nilsson, Mikael; Fagman, Henrik
2017-06-15
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed. © 2017. Published by The Company of Biologists Ltd.
Thyroid dysfunction: an autoimmune aspect.
Khan, Farah Aziz; Al-Jameil, Noura; Khan, Mohammad Fareed; Al-Rashid, May; Tabassum, Hajera
2015-01-01
Auto immune thyroid disease (AITD) is the common organ specific autoimmune disorder, Hashimoto thyroiditis (HT) and Grave's disease (GD) are its well-known sequelae. It occurs due to loss of tolerance to autoantigens thyroid peroxidase (TPO), thyroglobulin (Tg), thyroid stimulating hormone receptor (TSH-R) which leads to the infiltration of the gland. T cells in chronic autoimmune thyroiditis (cAIT) induce apoptosis in thyroid follicular cells and cause destruction of the gland. Presences of TPO antibodies are common in HT and GD, while Tg has been reported as an independent predictor of thyroid malignancy. Cytokines are small proteins play an important role in autoimmunity, by stimulating B and T cells. Various cytokines IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-14, TNF-α and IFN-γ are found in thyroid follicular cells which enhance inflammatory response with nitric oxide (NO) and prostaglandins.
Cytomorphological Spectrum of Thyroiditis: A Review of 110 Cases
Nair, Rahul; Gambhir, Anushree; Kaur, Supreet; Pandey, Aditi; Shetty, Abhinav; Naragude, Piyusha
2018-01-01
Introduction Different types of thyroiditis may share some parallel clinical and biochemical features. Timely intervention can significantly reduce morbidity and mortality. Aim Aim of this study is to find the frequency of various thyroiditis, study the cytomorphological features and correlate with clinical findings including radiological findings, thyroid function test, and anti-thyroid peroxidase antibodies (Anti-TPO antibodies). Materials and Methods The study included consecutive 110 cases of thyroiditis. Detailed cytomorphological features were studied and correlated with ultrasonography findings, thyroid function test, anti-thyroid peroxidase antibodies (anti-TPO) and histopathological features where thyroidectomy specimens were received for histopathological examination. Results The majority were Hashimoto's thyroiditis (n = 100) and females (n = 103). Other forms of thyroiditis were Hashimoto's thyroiditis with colloid goiter (n = 5), De Quervain's thyroiditis (n = 3), and one case each of postpartum thyroiditis and Hashimoto's thyroiditis with associated malignancy. The majority of patients were in the age group of 21–40 (n = 70) and the majority (n = 73) had diffuse enlargement of thyroid. The majority of patients were hypothyroid (n = 52). The serum anti-TPO antibodies were elevated in 47 patients out of 71 patients. In the 48 patients who underwent ultrasonography, 38 were diagnosed as having thyroiditis. The most consistent cytomorphological features seen in fine-needle aspiration smears of Hashimoto's thyroiditis were increased background lymphocytes, lymphocytic infiltration of thyroid follicular cell clusters, and Hurthle cells. Conclusion The diagnostic cytological features in Hashimoto's thyroiditis are increased background lymphocytes, lymphocytic infiltration of thyroid follicular cell clusters, and Hurthle cells. FNAC remains the “Gold Standard” for diagnosing Hashimoto's thyroiditis. Clinical history, thyroid function, and biochemical parameters are the key for diagnosis of other forms of thyroiditis. PMID:29686830
Teshima, Jin; Doi, Hideyuki; Fujimori, Keisei; Watanabe, Michio; Nakajima, Noriaki; Nakano, Tomoyuki; Takahashi, Yoshio; Ohuchi, Noriaki; Satomi, Susumu
2013-06-01
Poorly differentiated thyroid carcinoma (PDTC) is a newly recognized histological type of malignant thyroid tumor, accounting for about 2 - 13% of all thyroid carcinomas. PDTC is considered as a morphologically and biologically intermediate stage between well-differentiated thyroid carcinoma and anaplastic thyroid carcinoma. PDTC preferentially manifests bone metastases. We here established a cell line from a resected tumor specimen from a 70-year-old male patient with PDTC who presented with multiple bone metastases. This new thyroid tumor cell line was designated as DH-14-3 and was subsequently grown in culture for several years. DH-14-3 cells express thyroglobulin in the cytoplasm and thyroid transcription factor-1 in the nuclei, both proteins of which are specific markers for the thyroid gland. Importantly, triiodothyronine (T3) was detected in the cultured medium of DH-14-3 cells, in which, however, thyroxine (T4) was undetectable. Moreover, DH-14-3 cells secreted interleukin-8, transforming growth factor-β1, vascular endothelial growth factor, matrix metalloproteinase-1 and parathyroid hormone-related protein, all of which may be responsible for the aggressiveness or bone metastasis of PDTC. Thus, the production of these proteins may reflect the metastatic potential of this cell line. DH-14-3 cells also express CXC chemokine receptor-4 and epidermal growth factor receptor, and carry a missense mutation in the p53 tumor suppressor gene. In fact, transplantation of DH-14-3 cells into the back of nude mice resulted in the formation of tumors, thereby confirming the capability of tumorigenesis. DH-14-3 cells may be useful for investigating the biological features of PDTC and will contribute to the therapeutic study of thyroid cancer.
Frank, Renee; Baloch, Zubair W; Gentile, Caren; Watt, Christopher D; LiVolsi, Virginia A
2014-09-01
Multifocal fibrosing thyroiditis (MFT) is characterized by numerous foci of fibrosis in a stellate configuration with fibroelastotic and fibroblastic centers entrapping epithelial structures. MFT has been proposed as a risk factor for papillary thyroid carcinoma (PTC) development. We attempted to identify whether MFT showed such molecular changes and could possibly be related to PTC. We identified seven cases of PTC with MFT in our institutional pathology database and personal consult service of one of the authors (VAL) for the years 1999 to 2012. Areas of PTC, MFT, and normal tissue were selected for BRAF analysis. Macro-dissection, DNA extraction and PCR amplification, and pyrosequencing were performed to detect BRAF mutations in codon 600. All of the MFT lesions and normal thyroid tissue were negative for BRAF mutations. Of the seven PTCs analyzed, five (71 %) were negative for BRAF mutations, while two cases were positive. In our study, none of the MFT lesions harbored BRAF mutations, whereas 29 % (two of seven) PTCs in the same gland were positive. Hence, in this small study, we found no evidence that the MFT lesion is a direct precursor to PTC. It is likely an incidental bystander in the process and a reflection of the background thyroiditis.
Thyrotoxicosis: a rare presenting symptom of Hurthle cell carcinoma of the thyroid.
Wong, C P; AuYong, T K; Tong, C M
2003-10-01
Hurthle cell carcinoma of the thyroid is a rare type of thyroid neoplasm. The most common clinical presentation is a single palpable thyroid nodule. The neoplasm typically presents as a nonfunctioning or cold nodule on a Tc-99m sodium pertechnetate or radioiodine thyroid scan. We report a case of Hurthle cell carcinoma of the thyroid in a woman presenting with thyrotoxicosis. The Tc-99m thyroid scan was also interesting in that the nodule was a hot or hyperfunctioning area, resulting in a rare scintigraphic finding in a rare tumor. Clinicopathologic aspects and related issues are further discussed.
Lenvatinib and Pembrolizumab in DTC
2018-05-21
Columnar Cell Variant Thyroid Gland Papillary Carcinoma; Follicular Variant Thyroid Gland Papillary Carcinoma; Poorly Differentiated Thyroid Gland Carcinoma; Recurrent Thyroid Gland Carcinoma; Stage III Differentiated Thyroid Gland Carcinoma AJCC v7; Stage III Thyroid Gland Follicular Carcinoma AJCC v7; Stage III Thyroid Gland Papillary Carcinoma AJCC v7; Stage IV Thyroid Gland Follicular Carcinoma AJCC v7; Stage IV Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVA Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVA Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVA Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVB Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVB Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVB Thyroid Gland Papillary Carcinoma AJCC v7; Stage IVC Differentiated Thyroid Gland Carcinoma AJCC v7; Stage IVC Thyroid Gland Follicular Carcinoma AJCC v7; Stage IVC Thyroid Gland Papillary Carcinoma AJCC v7; Tall Cell Variant Thyroid Gland Papillary Carcinoma; Thyroid Gland Oncocytic Follicular Carcinoma
Human herpes simplex viruses in benign and malignant thyroid tumours.
Jensen, Kirk; Patel, Aneeta; Larin, Alexander; Hoperia, Victoria; Saji, Motoyasu; Bauer, Andrew; Yim, Kevin; Hemming, Val; Vasko, Vasyl
2010-06-01
To test the hypothesis that herpes viruses may have a role in thyroid neoplasia, we analysed thyroid tissues from patients with benign (44) and malignant (65) lesions for HSV1 and HSV2 DNA. Confirmatory studies included direct sequencing, analysis of viral gene expression, and activation of viral-inducible signalling pathways. Expression of viral entry receptor nectin-1 was examined in human samples and in cancer cell lines. In vitro experiments were performed to explore the molecular mechanisms underlying thyroid cancer cell susceptibility to HSV. HSV DNA was detected in 43/109 (39.4%) examined samples. HSV capsid protein expression correlated with HSV DNA status. HSV-positive tumours were characterized by activation of virus-inducible signalling such as interferon-beta expression and nuclear NFkappaB expression. Lymphocyte infiltration and oncocytic cellular features were common in HSV-positive tumours. HSV1 was detected with the same frequency in benign and malignant thyroid tumours. HSV2 was significantly associated with papillary thyroid cancer and the presence of lymph node metastases. The expression of HSV entry receptor nectin-1 was increased in thyroid tumours compared to normal thyroid tissue and further increased in papillary thyroid cancer. Nectin-1 expression was detected in all examined thyroid cancer cell lines. Nectin-1 expression in cancer cells correlated with their susceptibility to HSV. Inhibition of PI3K/AKT or MAPK/ERK signalling did not affect the level of nectin-1 expression but decreased thyroid cancer cell susceptibility to HSV. These findings showed that HSV is frequently detected in thyroid cancer. During tumour progression, thyroid cells acquire increased susceptibility to HSV due to increased expression of viral entry mediator nectin-1 and activation of mitogenic signalling in cancer cells.
Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi
2011-01-01
While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376
Song, Hai; Lin, Chuwen; Yao, Erica; Zhang, Kuan; Li, Xiaoling; Wu, Qingzhe; Chuang, Pao-Tien
2017-03-03
Among the four different types of thyroid cancer, treatment of medullary thyroid carcinoma poses a major challenge because of its propensity of early metastasis. To further investigate the molecular mechanisms of medullary thyroid carcinoma and discover candidates for targeted therapies, we developed a new mouse model of medullary thyroid carcinoma based on our CGRP CreER mouse line. This system enables gene manipulation in parafollicular C cells in the thyroid, the purported cells of origin of medullary thyroid carcinoma. Selective inactivation of tumor suppressors, such as p53 , Rb , and Pten , in mature parafollicular C cells via an inducible Cre recombinase from CGRP CreER led to development of murine medullary thyroid carcinoma. Loss of Pten accelerated p53 / Rb -induced medullary thyroid carcinoma, indicating interactions between pathways controlled by tumor suppressors. Moreover, labeling differentiated parafollicular C cells by CGRP CreER allows us to follow their fate during malignant transformation to medullary thyroid tumor. Our findings support a model in which mutational events in differentiated parafollicular C cells result in medullary thyroid carcinoma. Through expression analysis including RNA-Seq, we uncovered major signaling pathways and networks that are perturbed following the removal of tumor suppressors. Taken together, these studies not only increase our molecular understanding of medullary thyroid carcinoma but also offer new candidates for designing targeted therapies or other treatment modalities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Lipardi, Concetta; Mora, Rosalia; Colomer, Veronica; Paladino, Simona; Nitsch, Lucio; Rodriguez-Boulan, Enrique; Zurzolo, Chiara
1998-01-01
Most epithelial cells sort glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface. The “raft” hypothesis, based on data mainly obtained in the prototype cell line MDCK, postulates that apical sorting depends on the incorporation of apical proteins into cholesterol/glycosphingolipid (GSL) rafts, rich in the cholesterol binding protein caveolin/VIP21, in the Golgi apparatus. Fischer rat thyroid (FRT) cells constitute an ideal model to test this hypothesis, since they missort both endogenous and transfected GPI- anchored proteins to the basolateral plasma membrane and fail to incorporate them into cholesterol/glycosphingolipid clusters. Because FRT cells lack caveolin, a major component of the caveolar coat that has been proposed to have a role in apical sorting of GPI- anchored proteins (Zurzolo, C., W. Van't Hoff, G. van Meer, and E. Rodriguez-Boulan. 1994. EMBO [Eur. Mol. Biol. Organ.] J. 13:42–53.), we carried out experiments to determine whether the lack of caveolin accounted for the sorting/clustering defect of GPI- anchored proteins. We report here that FRT cells lack morphological caveolae, but, upon stable transfection of the caveolin1 gene (cav1), form typical flask-shaped caveolae. However, cav1 expression did not redistribute GPI-anchored proteins to the apical surface, nor promote their inclusion into cholesterol/GSL rafts. Our results demonstrate that the absence of caveolin1 and morphologically identifiable caveolae cannot explain the inability of FRT cells to sort GPI-anchored proteins to the apical domain. Thus, FRT cells may lack additional factors required for apical sorting or for the clustering with GSLs of GPI-anchored proteins, or express factors that inhibit these events. Alternatively, cav1 and caveolae may not be directly involved in these processes. PMID:9456321
Abduvaliev, A A; Gil'dieva, M S; Khidirov, B N; Saĭdalieva, M; Khasanov, A A; Musaeva, Sh N; Saatov, T S
2012-04-01
The article deals with the results of computational experiments in research of dynamics of proliferation of cells of thyroid gland follicle in normal condition and in the case of malignant neoplasm. The model studies demonstrated that the chronic increase of parameter of proliferation of cells of thyroid gland follicle results in abnormal behavior of numbers of cell cenosis of thyroid gland follicle. The stationary state interrupts, the auto-oscillations occur with transition to irregular oscillations with unpredictable cell proliferation and further to the "black hole" effect. It is demonstrated that the present medical biologic experimental data and theory propositions concerning the structural functional organization of thyroid gland on cell level permit to develop mathematical models for quantitative analysis of numbers of cell cenosis of thyroid gland follicle in normal conditions. The technique of modeling of regulative mechanisms of living systems and equations of cell cenosis regulations was used
Fetal cell carcinogenesis of the thyroid: a modified theory based on recent evidence.
Takano, Toru
2014-01-01
Thyroid cancer cells were believed to be generated by multi-step carcinogenesis, in which cancer cells are derived from thyrocytes, via multiple incidences of damage to their genome, especially in oncogenes or anti-oncogenes that accelerate proliferation or foster malignant phenotypes, such as the ability to invade the surrounding tissue or metastasize to distant organs, until a new hypothesis, fetal cell carcinogenesis, was presented. In fetal cell carcinogenesis, thyroid tumor cells are assumed to be derived from three types of fetal thyroid cell which only exist in fetuses or young children, namely, thyroid stem cells (TSCs), thyroblasts and prothyrocytes, by proliferation without differentiation. Genomic alternations, such as RET/PTC and PAX8-PPARγ1 rearrangements and a mutation in the BRAF gene, play an oncogenic role by preventing thyroid fetal cells from differentiating. Fetal cell carcinogenesis effectively explains recent molecular and clinical evidence regarding thyroid cancer, including thyroid cancer initiating cells (TCICs), and it underscores the importance of identifying a stem cells and clarifying the molecular mechanism of organ development in cancer research. It introduces three important concepts, the reverse approach, stem cell crisis and mature and immature cancers. Further, it implies that analysis of a small population of cells in a cancer tissue will be a key technique in establishing future laboratory tests. In the contrary, mass analysis such as gene expression profiling, whole genomic scan, and proteomics analysis may have definite limitations since they can only provide information based on many cells.
The transcriptional repressor DREAM is involved in thyroid gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Andrea, Barbara; Di Palma, Tina; Mascia, Anna
2005-04-15
Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds tomore » DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca{sup 2+} interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function.« less
Altorjay, Áron; Dohán, Orsolya; Szilágyi, Anna; Paroder, Monika; Wapnir, Irene L; Carrasco, Nancy
2007-01-01
Background The sodium/iodide symporter (NIS) is a plasma membrane glycoprotein that mediates iodide (I-) transport in the thyroid, lactating breast, salivary glands, and stomach. Whereas NIS expression and regulation have been extensively investigated in healthy and neoplastic thyroid and breast tissues, little is known about NIS expression and function along the healthy and diseased gastrointestinal tract. Methods Thus, we investigated NIS expression by immunohistochemical analysis in 155 gastrointestinal tissue samples and by immunoblot analysis in 17 gastric tumors from 83 patients. Results Regarding the healthy Gl tract, we observed NIS expression exclusively in the basolateral region of the gastric mucin-producing epithelial cells. In gastritis, positive NIS staining was observed in these cells both in the presence and absence of Helicobacter pylori. Significantly, NIS expression was absent in gastric cancer, independently of its histological type. Only focal faint NIS expression was detected in the direct vicinity of gastric tumors, i.e., in the histologically intact mucosa, the expression becoming gradually stronger and linear farther away from the tumor. Barrett mucosa with junctional and fundic-type columnar metaplasia displayed positive NIS staining, whereas Barrett mucosa with intestinal metaplasia was negative. NIS staining was also absent in intestinalized gastric polyps. Conclusion That NIS expression is markedly decreased or absent in case of intestinalization or malignant transformation of the gastric mucosa suggests that NIS may prove to be a significant tumor marker in the diagnosis and prognosis of gastric malignancies and also precancerous lesions such as Barrett mucosa, thus extending the medical significance of NIS beyond thyroid disease. PMID:17214887
Immune Response in Thyroid Cancer: Widening the Boundaries
Ward, Laura Sterian
2014-01-01
The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756
Effect of cell phone-like electromagnetic radiation on primary human thyroid cells.
Silva, Veronica; Hilly, Ohad; Strenov, Yulia; Tzabari, Cochava; Hauptman, Yirmi; Feinmesser, Raphael
2016-01-01
To evaluate the potential carcinogenic effects of radiofrequency energy (RFE) emitted by cell phones on human thyroid primary cells. Primary thyroid cell culture was prepared from normal thyroid tissue obtained from patients who underwent surgery at our department. Subconfluent thyroid cells were irradiated under different conditions inside a cell incubator using a device that simulates cell phone-RFE. Proliferation of control and irradiated cells was assessed by the immunohistochemical staining of antigen Kiel clone-67 (Ki-67) and tumor suppressor p53 (p53) expression. DNA ploidy and the stress biomarkers heat shock protein 70 (HSP70) and reactive oxygen species (ROS) was evaluated by fluorescence-activated cell sorting (FACS). Our cells highly expressed thyroglobulin (Tg) and sodium-iodide symporter (NIS) confirming the origin of the tissue. None of the irradiation conditions evaluated here had an effect neither on the proliferation marker Ki-67 nor on p53 expression. DNA ploidy was also not affected by RFE, as well as the expression of the biomarkers HSP70 and ROS. Our conditions of RFE exposure seem to have no potential carcinogenic effect on human thyroid cells. Moreover, common biomarkers usually associated to environmental stress also remained unchanged. We failed to find an association between cell phone-RFE and thyroid cancer. Additional studies are recommended.
Törnquist, Kid; Sukumaran, Pramod; Kemppainen, Kati; Löf, Christoffer; Viitanen, Tero
2014-11-01
In addition to the TSH-cyclic AMP signalling pathway, calcium signalling is of crucial importance in thyroid cells. Although the importance of calcium signalling has been thoroughly investigated for several decades, the nature of the calcium channels involved in signalling is unknown. In a recent series of investigations using the well-studied rat thyroid FRTL-5 cell line, we showed that these cells exclusively express the transient receptor potential canonical 2 (TRPC2) channel. Our results suggested that the TRPC2 channel is of significant importance in regulating thyroid cell function. These investigations were the first to show that thyroid cells express a member of the TRPC family of ion channels. In this review, we will describe the importance of the TRPC2 channel in regulating TSH receptor expression, thyroglobulin maturation, intracellular calcium and iodide homeostasis and that the channel also regulates thyroid cell proliferation.
Pessina, P; Castillo, V; Sartore, I; Borrego, J; Meikle, A
2016-09-01
Immunoreactive proteins in follicular cells, fibroblasts and endothelial cells were assessed in canine thyroid carcinomas and healthy thyroid glands. No differences were detected in thyrotropin receptor and thyroglobulin staining between cancer and normal tissues, but expression was higher in follicular cells than in fibroblasts. Fibroblast growth factor-2 staining was more intense in healthy follicular cells than in those of carcinomas. Follicular cells in carcinomas presented two- to three-fold greater staining intensity of thyroid transcription factor-1 and proliferating cell nuclear antigen, respectively, than healthy cells, and a similar trend was found for the latter antigen in fibroblasts. Vascular endothelial growth factor staining was more intense in the endothelial cells of tumours than in those of normal tissues. In conclusion, greater expression of factors related to proliferation and angiogenesis was demonstrated in several cell types within thyroid carcinomas compared to healthy tissues, which may represent mechanisms of tumour progression in this disease. © 2014 John Wiley & Sons Ltd.
Frittitta, L; Sciacca, L; Catalfamo, R; Ippolito, A; Gangemi, P; Pezzino, V; Filetti, S; Vigneri, R
1999-01-15
Insulin receptor (IR), a member of the receptor tyrosine kinase family, is expressed in normal thyroid cells and affects thyroid cell proliferation and differentiation. The authors measured IR content in benign and malignant thyroid tumors by three independent methods: a specific radioimmunoassay, 125I-insulin binding studies, and immunohistochemistry. The results obtained were compared with the IR content in paired, adjacent, normal thyroid tissue. To assess IR function in thyroid carcinoma cells, glucose uptake responsiveness to insulin was also studied in a human transformed thyroid cell line (B-CPAP) and in follicular carcinoma cells in primary culture. In 9 toxic adenomas, the average IR content was similar to that observed in the 9 paired normal thyroid tissue specimens from the same patients (2.2+/-0.3 vs. 2.1+/-0.3). In 13 benign nonfunctioning, or "cold," adenomas, the average IR content was significantly higher (P < 0.001) than in paired normal tissue specimens (4.3+/-0.5 vs. 1.8+/-0.1). In 12 papillary and 10 follicular carcinomas, IR content was significantly higher (P < 0.001) than in the adjacent normal thyroid tissue (4.0+/-0.4 vs. 1.6+/-0.2 and 5.6+/-1.0 vs. 1.8+/-0.2, respectively). The finding of a higher IR content in benign "cold" adenomas and in thyroid carcinomas was confirmed by both binding and immunostaining studies. The current studies indicate that 1) IR content is elevated in most follicular and papillary differentiated thyroid carcinomas, and 2) IR content is also elevated in most benign follicular adenomas ("cold" nodules) but not in highly differentiated, hyperfunctioning follicular adenomas ("hot" nodules), which very rarely become malignant. This observation suggests that increased IR expression is not restricted to the thyroid malignant phenotype but is already present in the premalignant "cold" adenomas. It may contribute, therefore, to thyroid tumorigenesis and/or represent an early event that gives a selective growth advantage to transformed thyroid cells.
Aloe vera gel and thyroid hormone cream may improve wound healing in Wistar rats
Norouzian, Mohsen; Zarein-Dolab, Saeed; Dadpay, Masoomeh; Mohsenifar, Jaleh; Gazor, Roohollah
2012-01-01
Therapeutic effects of various treatment options in wound healing have been one of the most controversial issues in surgical science. The present study was carried out to examine and compare the effects of Aloe vera gel, thyroid hormone cream and silver sulfadiazine cream onsutured incisions in Wistar rats. In a randomized controlled trial, thirty-six Wistar male rats, 250 to 300 g, received surgical incisions followed by topical application of Aloe vera gel, thyroid hormone cream and silver sulfadiazine 1%. To assess the efficacy of each treatment technique, a histological approach was used to evaluate the mean number of fibroblasts, macrophages, neutrophils, blood vessel sections and thickness of the regenerating epithelium and dermis on days 4, 7 and 14. Re-epithelialization and angiogenesis were significantly improved in Aloe vera gel group compared with the other treatments while thyroid hormone cream had positive effects on day 4 (P≤0.05). Topical administration of Aloe vera gel is recommended as the treatment of choice for surgical incisions. PMID:23094205
Thyroid cancer in a patient with Lynch syndrome - case report and literature review.
Fazekas-Lavu, Monika; Parker, Andrew; Spigelman, Allan D; Scott, Rodney J; Epstein, Richard J; Jensen, Michael; Samaras, Katherine
2017-01-01
Lynch syndrome describes a familial cancer syndrome comprising germline mutations in one of four DNA mismatch repair genes, MLH1 , MSH2 , MSH6 , and PMS2 and is characterized by colorectal, endometrial, and other epithelial malignancies. Thyroid cancer is not usually considered to be part of the constellation of Lynch syndrome cancers nor have Lynch syndrome tumor gene mutations been reported in thyroid malignancies. This study reports a woman with Lynch syndrome (colonic cancer and a DNA mismatch repair mutation in the MSH2 gene) with a synchronous papillary thyroid cancer. Six years later, she developed metachronous breast cancer. Metastatic bone disease developed after 3 years, and the disease burden was due to both breast and thyroid diseases. Despite multiple interventions for both metastatic breast and thyroid diseases, the patient's metastatic burden progressed and she died of leptomeningeal metastatic disease. Two prior case reports suggested thyroid cancer may be an extraintestinal malignancy of the Lynch syndrome cancer group. Hence, this study examined the genetic relationship between the patient's known Lynch syndrome and her thyroid cancer. The thyroid cancer tissue showed normal expression of MSH2 , suggesting that the tumor was not due to the oncogenic mutation of Lynch syndrome, and molecular analysis confirmed BRAF V600E mutation. Although in this case the thyroid cancer was sporadic, it raises the importance of considering cancer genetics in familial cancer syndromes when other cancers do not fit the criteria of the syndrome. Careful documentation of other malignancies in patients with thyroid cancer and their families would assist in better understanding of any potential association. Appropriate genetic testing will clarify whether a common pathogenic mechanism links seemingly unrelated cancers.
Nucleophosmin is overexpressed in thyroid tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra
2010-07-02
Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed inmore » tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.« less
Wang, Jian; Guli, Qie-Re; Ming, Xiao-Cui; Zhou, Hai-Tao; Cui, Yong-Jie; Jiang, Yue-Feng; Zhang, Di; Liu, Yang
2018-01-01
This study reports a case of primary mucinous carcinoma of the thyroid gland with signet-ring-cell differentiation, and reviews the literature to evaluate its real incidence and the prognosis of these patients. A 74-year-old Chinese woman, presenting with a mass in the right lobe of thyroid gland, came to the hospital. Computed tomography revealed a mass in the right lobe of the thyroid gland, accompanied with right neck lymphadenectasis and airway deviation caused by tumor compression. Thyroid imaging suggested a thyroid malignant tumor and suspicious lymph node metastasis. Histologically, the tumor was characterized by the tumor cells arranged in small nests or trabeculae with an abundant extracellular mucoid matrix. The tumor cells formed diffuse invasion among thyroid follicles. In the peripheral regions, prominent signet-ring-cells formed a sheet-like structure and extended into the extrathyroidal fat tissue. The tumor cells were diffusely positive for thyroid transcription factor-1 (TTF-1) and PAX8, while they were focally positive for pan-cytokeratin (AE1/AE3) and weakly expressed thyroglobulin. Based on the histological features and immunohistochemical profile, a diagnosis of primary mucinous carcinoma of the thyroid gland with signet-ring-cell differentiation was rendered. Using a panel of immunohistochemical markers may be helpful for differential diagnosis and for determining whether the tumor is primary or not.
Zebrafish bcl2l is a survival factor in thyroid development.
Porreca, Immacolata; De Felice, Elena; Fagman, Henrik; Di Lauro, Roberto; Sordino, Paolo
2012-06-15
Regulated cell death, defined in morphological terms as apoptosis, is crucial for organ morphogenesis. While differentiation of the thyroid gland has been extensively studied, nothing is yet known about the survival mechanisms involved in the development of this endocrine gland. Using the zebrafish model system, we aim to understand whether genes belonging to the Bcl-2 family that control apoptosis are implicated in regulation of cell survival during thyroid development. Evidence of strong Bcl-2 gene expression in mouse thyroid precursors prompted us to investigate the functions played by its zebrafish homologs during thyroid development. We show that the bcl2-like (bcl2l) gene is expressed in the zebrafish thyroid primordium. Morpholino-mediated knockdown and mutant analyses revealed that bcl2l is crucial for thyroid cell survival and that this function is tightly modulated by the transcription factors pax2a, nk2.1a and hhex. Also, the bcl2l gene appears to control a caspase-3-dependent apoptotic mechanism during thyroid development. Thyroid precursor cells require an actively maintained survival mechanism to properly proceed through development. The bcl2l gene operates in the inhibition of cell death under direct regulation of a thyroid specific set of transcription factors. This is the first demonstration of an active mechanism to ensure survival of the thyroid primordium during morphogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Dong, Su; Song, Xue-Song; Chen, Guang; Liu, Jia
2016-08-01
Primary squamous cell carcinoma of the thyroid gland is rare, and mixed squamous cell and follicular carcinoma is even rarer still, with only a few cases reported in the literature. The simultaneous presentation of three primary cancers of the thyroid has not been reported previously. Here we report a case of primary squamous cell carcinoma of the thyroid, follicular thyroid carcinoma, and micropapillary thyroid carcinoma. A 62-year-old female patient presented with complaints of pain and a 2-month history of progressively increased swelling in the anterior region of the neck. Fine-needle-aspiration cytology of both lobes indicated the possibility of the presence of a follicular neoplasm. Total thyroidectomy with left-sided modified radical neck dissection was performed. Postoperative pathological examination confirmed the diagnosis of thyroid follicular carcinoma with squamous cell carcinoma and micropapillary carcinoma of the thyroid. Thyroid-stimulating hormone suppressive therapy with l-thyroxine was administered. Radioiodine and radiotherapy also were recommended, but the patient did not complete treatment as scheduled. The patient remained alive more than 9 months after operation. The present case report provides an example of the coexistence of multiple distinct malignancies in the thyroid. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Primary mucinous carcinoma with rhabdoid cells of the thyroid gland: a case report.
Matsuo, Mioko; Tuneyoshi, Masazumi; Mine, Mari
2016-06-10
Primary mucinous carcinoma of the thyroid gland is a rare disease; only 6 cases of primary mucinous carcinoma of the thyroid have been previously reported. Primary mucinous carcinoma of the thyroid gland with incomplete tumor resection tends to be associated with a poor prognosis, resulting in death within a few months. An early and appropriate diagnosis may contribute to improvement in patient prognosis; however, it is extremely difficult to diagnose primary mucinous carcinoma of the thyroid. We present the seventh reported case of primary mucinous carcinoma in the thyroid gland; moreover, rhabdoid cells were detected, which, to our knowledge, is a novel finding. An 81-year-old Japanese woman was initially diagnosed with a poorly differentiated thyroid carcinoma, and she underwent a hemithyroidectomy. Pathological examination revealed the presence of abundant mucus and agglomeration of large atypical cells. Rhabdoid cells were also seen scattered among the tumor cells. Immunostaining was performed for various markers, and on the basis of these results, we diagnosed the lesion as primary mucinous carcinoma with rhabdoid cells in the thyroid gland. Ten months after surgery, recurrence was noted in the paratracheal lymph nodes; therefore, total resection of the residual thyroid gland and paratracheal lymphadenectomy with thyroid-stimulating hormone suppression were performed. The patient is currently alive and disease-free. The current case is of interest not only because of the rare histological findings, but also because the patient achieved long-term survival following diagnosis of a mucinous carcinoma. We believe this report will be helpful for diagnosing future cases of mucinous carcinoma of the thyroid.
Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine
Nagarajah, James; Le, Mina; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Larson, Steven M.; Ho, Alan L.; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A.; Fagin, James A.
2016-01-01
Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer. PMID:27669459
Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine.
Nagarajah, James; Le, Mina; Knauf, Jeffrey A; Ferrandino, Giuseppe; Montero-Conde, Cristina; Pillarsetty, Nagavarakishore; Bolaender, Alexander; Irwin, Christopher; Krishnamoorthy, Gnana Prakasam; Saqcena, Mahesh; Larson, Steven M; Ho, Alan L; Seshan, Venkatraman; Ishii, Nobuya; Carrasco, Nancy; Rosen, Neal; Weber, Wolfgang A; Fagin, James A
2016-11-01
Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer.
Linkov, Faina; Ferris, Robert L.; Yurkovetsky, Zoya; Marrangoni, Adele; Velikokhatnaya, Lyudmila; Gooding, William; Nolan, Brian; Winans, Matthew; Siegel, Eric R.; Lokshin, Anna; Stack, Brendan C.
2008-01-01
Thyroid cancer incidence is increasing, and its diagnosis can be challenging. Fine needle biopsy, the principal clinical tool to make a tissue diagnosis, leads to inconclusive diagnoses in up to 30% of the cases, leading to surgery. Advances in proteomics are improving abilities to diagnose malignant conditions using small samples of tissue or body fluids. We hypothesized that analysis of serum growth factors would uncover diagnostically informative differences between benign and malignant thyroid conditions. Using xMAP profiling, we evaluated concentrations of 19 cytokines, chemokines, and growth factors. We used sera from 23 patients with cancer (Malignant group), 24 patients with benign nodular thyroid disease (Benign group), and 23 healthy subjects (Normal group). In univariate analysis, five factors (epithelial growth factor, hepatocyte growth factor, Interleukins-5 and -8, and regulated upon activation, normally T-expressed and presumably secreted (RANTES) distinguished subjects with thyroid disease from the Normal group. In multivariate analysis, the set {Interleukin-8, hepatocyte growth factor, monocyte-induced γ interferon, interleukin-12 p40} achieved noteworthy discrimination between Benign and Malignant groups (area under the receiver operating characteristics curve was 0.81 (95% confidence interval: 0.65–0.90)). Multiplex panels of serum biomarkers may be promising tools to diagnose cancer in patients presenting with evidence of nodular thyroid disease. PMID:19234619
Morillo-Bernal, Jesús; Fernández-Santos, José M; Utrilla, José C; de Miguel, Manuel; García-Marín, Rocío; Martín-Lacave, Inés
2009-01-01
Thyroid C cells, or parafollicular cells, are mainly known for producing calcitonin, a hormone involved in calcium homeostasis with hypocalcemic and hypophosphatemic effects. Classically, the main endocrine activity of this cell population has been believed to be restricted to its roles in serum calcium and bone metabolism. Nonetheless, in the last few years evidence has been accumulating in the literature with regard to local regulatory peptides secreted by C cells, such as somatostatin, ghrelin, thyrotropin releasing hormone or the recently described cocaine- and amphetamine-related transcript, which could modify thyroid function. As thyrotropin is the main hormone controlling the hypothalamic-pituitary-thyroid axis and, accordingly, thyroid function, we have examined the functional expression of the thyrotropin receptor in C-cell lines and in thyroid tissues. We have found that rat and human C-cell lines express the thyrotropin receptor at both mRNA and protein levels. Furthermore, incubation of C cells with thyrotropin resulted in a 10-fold inhibition of thyrotropin-receptor expression, and a concomitant decrease of the steady-state mRNA levels for calcitonin and calcitonin gene-related peptide determined by quantitative real-time PCR was found. Finally, thyrotropin receptor expression by C cells was confirmed at protein level in both normal and pathological thyroid tissues by immunohistochemistry and immunofluorescence. These results confirm that C cells, under regulation by thyrotropin, are involved in the hypothalamic-pituitary-thyroid axis and suggest a putative role in local fine-tuning of follicular cell activity. PMID:19493188
Arnaldi, L A T; Borra, R C; Maciel, R M B; Cerutti, J M
2005-03-01
To investigate the molecular events involved in the pathogenesis and/or progression of thyroid tumors, we compared the gene expression profiles of three thyroid carcinoma cell lines, which represent major tumor subtypes of thyroid cancer and normal thyroid tissue. Using cDNA array methodology, we investigated the expression of 1807 open reading frame expressed sequence tags (ORESTES), selected from head and neck tumor libraries generated through the Brazilian Human Cancer Project-LICR/FAPESP. We found that 505 transcripts were differentially expressed in the thyroid carcinoma cell lines. Using a more stringent criterion, transcripts underexpressed or overexpressed more than fivefold in 1 of 3 or 3 of 3 carcinoma cell lines, a list of 55 ESTs were detected. Five candidate genes were further validated by quantitative polymerase chain reaction (qPCR) in an independent set of 52 thyroid tumors and 22 matched normal thyroid tissues. DCN was found underexpressed in a high percentage of the follicular thyroid adenomas, follicular thyroid carcinomas, and follicular variant of papillary thyroid carcinomas. DIO1 and DIO2 were underexpressed in nearly all papillary thyroid carcinomas. These genes not only could help to better define a tumor signature for thyroid tumors, but may, in part, also become useful as potential targets for thyroid tumor treatment.
2013-01-01
Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties. PMID:23394545
Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.
Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua
2017-05-01
Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.
Pax2.1 is required for the development of thyroid follicles in zebrafish.
Wendl, Thomas; Lun, Klaus; Mione, Marina; Favor, Jack; Brand, Michael; Wilson, Stephen W; Rohr, Klaus B
2002-08-01
The thyroid gland is an organ primarily composed of endoderm-derived follicular cells. Although disturbed embryonic development of the thyroid gland leads to congenital hypothyroidism in humans and mammals, the underlying principles of thyroid organogenesis are largely unknown. In this study, we introduce zebrafish as a model to investigate the molecular and genetic mechanisms that control thyroid development. Marker gene expression suggests that the molecular pathways of early thyroid development are essentially conserved between fish and mammals. However during larval stages, we find both conserved and divergent features of development compared with mammals. A major difference is that in fish, we find evidence for hormone production not only in thyroid follicular cells, but also in an anterior non-follicular group of cells. We show that pax2.1 and pax8, members of the zebrafish pax2/5/8 paralogue group, are expressed in the thyroid primordium. Whereas in mice, only Pax8 has a function during thyroid development, analysis of the zebrafish pax2.1 mutant no isthmus (noi(-/-)) demonstrates that pax2.1 has a role comparable with mouse Pax8 in differentiation of the thyroid follicular cells. Early steps of thyroid development are normal in noi(-/-), but later expression of molecular markers is lost and the formation of follicles fails. Interestingly, the anterior non-follicular site of thyroid hormone production is not affected in noi(-/-). Thus, in zebrafish, some remaining thyroid hormone synthesis takes place independent of the pathway leading to thyroid follicle formation. We suggest that the noi(-/-) mutant serves as a new zebrafish model for hypothyroidism.
Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William
2002-01-01
The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275
Beyer, Sasha; Lakshmanan, Aparna; Liu, Yu-Yu; Zhang, Xiaoli; Wapnir, Irene; Smolenski, Albert
2011-01-01
Na+/I− symporter (NIS)-mediated iodide uptake into thyroid follicular cells serves as the basis of radioiodine therapy for thyroid cancer. NIS protein is also expressed in the majority of breast tumors, raising potential for radionuclide therapy of breast cancer. KT5823, a staurosporine-related protein kinase inhibitor, has been shown to increase thyroid-stimulating hormone-induced NIS expression, and thus iodide uptake, in thyroid cells. In this study, we found that KT5823 does not increase but decreases iodide uptake within 0.5 h of treatment in trans-retinoic acid and hydrocortisone-treated MCF-7 breast cancer cells. Moreover, KT5823 accumulates hypoglycosylated NIS, and this effect is much more evident in breast cancer cells than thyroid cells. The hypoglycosylated NIS is core glycosylated, has not been processed through the Golgi apparatus, but is capable of trafficking to the cell surface. KT5823 impedes complex NIS glycosylation at a regulatory point similar to brefeldin A along the N-linked glycosylation pathway, rather than targeting a specific N-glycosylated site of NIS. KT5823-mediated effects on NIS activity and glycosylation are also observed in other breast cancer cells as well as human embryonic kidney cells expressing exogenous NIS. Taken together, KT5823 will serve as a valuable pharmacological reagent to uncover mechanisms underlying differential NIS regulation between thyroid and breast cancer cells at multiple levels. PMID:21209020
Funk, Juergen; Ebeling, Martin; Singer, Thomas; Landes, Christian
2017-10-01
The goal of this in situ hybridization and image analysis technique is to study the effects of new pharmacological/chemical entities on the thyroid and pituitary gland in rats, reveal the pathogenesis of thyroid follicular cell hypertrophy and to retrospectively exclude the risk of thyroid tumor development in humans. In the present study, we describe the increase of thyroid-stimulating hormone- (TSH-) beta subunit mRNA in the pars distalis of the pituitary gland and the quantitative measurement of TSH mRNA positive cells from rats of three 4-week toxicity studies treated with three different test compounds inducing thyroid follicular cell and hepatocellular hypertrophy in rats. Compared to immunohistochemistry (IHC), in situ hybridization (ISH) for TSH was found to be more sensitive. With this technique we are able to exclude a direct effect of the test compound on the thyroid gland by showing the activation of thyrotrope cells from the pituitary gland and therefore this technique retrospectively enables us to exclude a possible risk for humans at an early stage of drug development. Also in case blood serum samples for evaluation of TSH are not available anymore or hepatocellular hypertrophy is not present (close metabolic relationship between thyroid gland and liver in rodents), the described method allows retrospective investigations on thyroid follicular cell hypertrophy or hyperplasia. This can be of high relevance in human safety assessment for certain drugs in order to exclude a primary effect on the thyroid gland especially when it comes to thyroid neoplasia in rodents as previously described. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Warnke, Elisabeth; Kopp, Sascha; Wehland, Markus; Hemmersbach, Ruth; Bauer, Johann; Pietsch, Jessica; Infanger, Manfred; Grimm, Daniela
2016-06-01
The ground-based facilities 2D clinostat (CN) and Random Positioning Machine (RPM) were designed to simulate microgravity conditions on Earth. With support of the CORA-ESA-GBF program we could use both facilities to investigate the impact of simulated microgravity on normal and malignant thyroid cells. In this review we report about the current knowledge of thyroid cancer cells and normal thyrocytes grown under altered gravity conditions with a special focus on growth behaviour, changes in the gene expression pattern and protein content, as well as on altered secretion behaviour of the cells. We reviewed data obtained from normal thyrocytes and cell lines (two poorly differentiated follicular thyroid cancer cell lines FTC-133 and ML-1, as well as the normal thyroid cell lines Nthy-ori 3-1 and HTU-5). Thyroid cells cultured under conditions of simulated microgravity (RPM and CN) and in Space showed similar changes with respect to spheroid formation. In static 1 g control cultures no spheroids were detectable. Changes in the regulation of cytokines are discussed to be involved in MCS (multicellular spheroids) formation. The ESA-GBF program helps the scientists to prepare future spaceflight experiments and furthermore, it might help to identify targets for drug therapy against thyroid cancer.
Bertoni, Ana Paula Santin; de Campos, Rafael Paschoal; Tsao, Marisa; Braganhol, Elizandra; Furlanetto, Tania Weber; Wink, Márcia Rosângela
2018-02-17
The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.
Accidental finding of Hashimoto-like thyroiditis in male B.U.T. 6 turkeys at slaughter.
Plesch, P; Schade, B; Breithaupt, A; Bellof, G; Kienzle, E
2014-10-01
In the context of a study on the tolerance of rapeseed meal in B.U.T. 6 turkeys, thyroid glands were histologically and immunohistochemically examined because of potential thyreostatic effects. In all groups including the controls with no rapeseed meal in their food, there was a high incidence of lymphocytic infiltration and thyroiditis (14% of thyroids with moderate to severe lymphocytic thyroiditis). Thirty per cent of mononuclear inflammatory cells were immunohistochemically identified as T cells. There were occasional accumulations of PAX-5 labelled cells, indicating germinal centre development. These lesions resemble Hashimoto's disease in humans. The effect on thyroid function is unknown. Mild hypothyreosis might enhance productivity but also explain dispositions towards diseases seen in context with thyroid dysfunction such as skin diseases (foot pad disease?) and cardiovascular problems. Further studies on thyroid function in these turkeys are needed. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
Surface-modified gold nanorods for specific cell targeting
NASA Astrophysics Data System (ADS)
Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun
2012-05-01
Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.
Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina
2017-01-01
Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60–70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1 of lymphocytes was important for inducing the release of sequestered HIV-1 from epithelial cells and facilitating cell-to-cell spread of virus from epithelial cells to lymphocytes. This mechanism may serve as a pathway of HIV-1 mucosal transmission. PMID:28241053
Patel, Bidish K; Roy, Arun; Badhe, Bhawana A; Siddaraju, Neelaiah
2016-01-01
Among primary thyroid neoplasms, papillary thyroid carcinoma (PTC) and primary thyroid lymphoma (PTL) are known to coexist and are pathogenetically linked with Hashimoto's thyroiditis (HT). However, HT occurring in association with medullary thyroid carcinoma (MTC) is rarely documented. We report here an interesting case. A 34-year-old female with a solitary thyroid nodule underwent fine needle aspiration cytology (FNAC) that was interpreted as "MTC with admixed reactive lymphoid cells, derived possibly from a pretracheal lymph node." Total thyroidectomy specimen showed "MTC with coexisting HT." At a later stage, a follow-up FNAC from the recurrent thyroid swelling showed features consistent with HT. As an academic exercise, the initial smears on which a diagnosis of MTC was offered were reviewed to look for evidence of coexisting HT that showed scanty and patchy aggregates of reactive lymphoid cells without Hürthle cells. Our case highlights an unusual instance of MTC in concurrence with HT that can create a tricky situation for cytopathologists.
Kuhn, Elisabetta; Ragazzi, Moira; Zini, Michele; Giordano, Davide; Nicoli, Davide; Piana, Simonetta
2016-09-01
Thyroid fine-needle aspiration (FNA) cytology is the primary tool for the diagnostic evaluation of thyroid nodules. BRAF mutation analysis is employed as an ancillary tool in indeterminate cases, as recommended by the American Thyroid Association management guidelines. Hereby, we report the case of a 73-year-old woman who presented an 8-mm-size, ill-defined, left thyroid nodule. FNA resulted "suspicious for papillary thyroid carcinoma". BRAF mutation status was analyzed, and somatic BRAF (V600E) mutation identified. The patient underwent a total thyroidectomy. At histological examination, the nodule was composed of Langerhans cells, admixed with many eosinophils. A final diagnosis of Langerhans cell histiocytosis of the thyroid was made. Our case emphasizes the critical diagnostic pitfalls due to the use of BRAF (V600E) mutation analysis in thyroid FNA. Notably, BRAF (V600E) mutation is common in melanoma, colorectal carcinoma, lung carcinoma, ovarian carcinoma, brain tumors, hairy cell leukemia, multiple myeloma, and histiocytoses. Therefore, in cases of indeterminate FNA with unclassifiable atypical cells BRAF (V600E) mutated, the possibility of a localization of hystiocytosis or a secondary thyroid malignancy should be taken into account.
Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity
Rapoport, Basil
2014-01-01
Thyroid autoimmunity involves loss of tolerance to thyroid proteins in genetically susceptible individuals in association with environmental factors. In central tolerance, intrathymic autoantigen presentation deletes immature T cells with high affinity for autoantigen-derived peptides. Regulatory T cells provide an alternative mechanism to silence autoimmune T cells in the periphery. The TSH receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (Tg) have unusual properties (“immunogenicity”) that contribute to breaking tolerance, including size, abundance, membrane association, glycosylation, and polymorphisms. Insight into loss of tolerance to thyroid proteins comes from spontaneous and induced animal models: 1) intrathymic expression controls self-tolerance to the TSHR, not TPO or Tg; 2) regulatory T cells are not involved in TSHR self-tolerance and instead control the balance between Graves' disease and thyroiditis; 3) breaking TSHR tolerance involves contributions from major histocompatibility complex molecules (humans and induced mouse models), TSHR polymorphism(s) (humans), and alternative splicing (mice); 4) loss of tolerance to Tg before TPO indicates that greater Tg immunogenicity vs TPO dominates central tolerance expectations; 5) tolerance is induced by thyroid autoantigen administration before autoimmunity is established; 6) interferon-α therapy for hepatitis C infection enhances thyroid autoimmunity in patients with intact immunity; Graves' disease developing after T-cell depletion reflects reconstitution autoimmunity; and 7) most environmental factors (including excess iodine) “reveal,” but do not induce, thyroid autoimmunity. Micro-organisms likely exert their effects via bystander stimulation. Finally, no single mechanism explains the loss of tolerance to thyroid proteins. The goal of inducing self-tolerance to prevent autoimmune thyroid disease will require accurate prediction of at-risk individuals together with an antigen-specific, not blanket, therapeutic approach. PMID:24091783
MicroRNAs in thyroid development, function and tumorigenesis.
Fuziwara, Cesar Seigi; Kimura, Edna Teruko
2017-11-15
MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that modulate the vast majority of cellular processes. During development, the correct timing and expression of miRNAs in the tissue differentiation is essential for organogenesis and functionality. In thyroid gland, DICER and miRNAs are necessary for accurately establishing thyroid follicles and hormone synthesis. Moreover, DICER1 mutations and miRNA deregulation observed in human goiter influence thyroid tumorigenesis. The thyroid malignant transformation by MAPK oncogenes is accompanied by global miRNA changes, with a marked reduction of "tumor-suppressor" miRNAs and activation of oncogenic miRNAs. Loss of thyroid cell differentiation/function, and consequently iodine trapping impairment, is an important clinical characteristic of radioiodine-refractory thyroid cancer. However, few studies have addressed the direct role of miRNAs in thyroid gland physiology. Here, we focus on what we have learned in the thyroid follicular cell differentiation and function as revealed by cell and animal models and miRNA modulation in thyroid tumorigenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Loss of c-KIT expression in thyroid cancer cells.
Franceschi, Sara; Lessi, Francesca; Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria
2017-01-01
Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression.
Loss of c-KIT expression in thyroid cancer cells
Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria
2017-01-01
Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression. PMID:28301608
Nasr, Michel R; Mukhopadhyay, Sanjay; Zhang, Shengle; Katzenstein, Anna-Luise A
2009-12-01
An association between Hashimoto thyroiditis and papillary thyroid carcinoma has been postulated for decades. We undertook this study to identify potential precursors of papillary thyroid carcinoma in Hashimoto thyroiditis using a combination of morphologic, immunohistochemical, and molecular techniques. For the study, samples from 59 cases of Hashimoto thyroiditis were stained with antibodies to HBME1 and cytokeratin (CK)19. Tiny HBME1+ and CK19+ atypical cell clusters were identified and analyzed for the BRAF mutation by the colorimetric Mutector assay and allele-specific polymerase chain reaction. HBME1+ and CK19+ atypical cell clusters were identified in 12 (20%) of 59 cases. The minute size (<1 mm) of the clusters and the incomplete nuclear changes precluded a diagnosis of papillary microcarcinoma. The atypical cell clusters from all 12 cases were negative for BRAF. The absence of the BRAF mutation in these atypical cell clusters suggests that they may not be preneoplastic. Caution should be exercised in interpreting positive HBME1 or CK19 staining in Hashimoto thyroiditis.
Hammerstad, Sara Salehi; Stefan, Mihaela; Blackard, Jason; Owen, Randall P; Lee, Hanna J; Concepcion, Erlinda; Yi, Zhengzi; Zhang, Weijia; Tomer, Yaron
2017-02-01
Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms. Copyright © 2017 by the Endocrine Society
TMPRSS4 induces cancer cell invasion through pro-uPA processing.
Min, Hye-Jin; Lee, Myung Kyu; Lee, Jung Weon; Kim, Semi
2014-03-28
TMPRSS4 is a novel type II transmembrane serine protease that is highly expressed on the cell surface in pancreatic, thyroid, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates cancer cell invasion, epithelial-mesenchymal transition, and metastasis and that increased TMPRSS4 expression correlates with colorectal cancer progression. We also demonstrated that TMPRSS4 upregulates urokinase-type plasminogen activator (uPA) gene expression to induce cancer cell invasion. However, it remains unknown how proteolytic activity of TMPRSS4 contributes to invasion. In this study, we report that TMPRSS4 directly converted inactive pro-uPA into the active form through its proteolytic activity. Analysis of conditioned medium from cells overexpressing TMPRSS4 demonstrated that the active TMPRSS4 protease domain is released from the cells and is associated with the plasma membrane. Furthermore, TMPRSS4 could increase pro-uPA-mediated invasion in a serine proteolytic activity-dependent manner. These observations suggest that TMPRSS4 is an upstream regulator of pro-uPA activation. This study provides valuable insights into the proteolytic function of TMPRSS4 as well as mechanisms for the control of invasion. Copyright © 2014 Elsevier Inc. All rights reserved.
Triggianese, P; Perricone, C; Conigliaro, P; Chimenti, MS; Perricone, R; De Carolis, C
2015-01-01
Abnormalities in peripheral blood natural killer (NK) cells have been reported in women with primary infertility and recurrent spontaneous abortion (RSA) and several studies have been presented to define cutoff values for abnormal peripheral blood NK cell levels in this context. Elevated levels of NK cells were observed in infertile/RSA women in the presence of thyroid autoimmunity (TAI), while no studies have been carried out, to date, on NK cells in infertile/RSA women with non-autoimmune thyroid diseases. The contribution of this study is two-fold: (1) the evaluation of peripheral blood NK cell levels in a cohort of infertile/RSA women, in order to confirm related data from the literature; and (2) the assessment of NK cell levels in the presence of both TAI and subclinical hypothyroidism (SCH) in order to explore the possibility that the association between NK cells and thyroid function is not only restricted to TAI but also to SCH. In a retrospective study, 259 age-matched women (primary infertility [n = 49], primary RSA [n = 145], and secondary RSA [n = 65]) were evaluated for CD56+CD16+NK cells by flow cytometry. Women were stratified according to thyroid status: TAI, SCH, and without thyroid diseases (ET). Fertile women (n = 45) were used as controls. Infertile/RSA women showed higher mean NK cell levels than controls. The cutoff value determining the abnormal NK cell levels resulted ⩾15% in all the groups of women. Among the infertile/RSA women, SCH resulted the most frequently associated thyroid disorder while no difference resulted in the prevalence of TAI and ET women between patients and controls. A higher prevalence of women with NK cell levels ⩾15% was observed in infertile/RSA women with SCH when compared to TAI/ET women. According to our data, NK cell assessment could be used as a diagnostic tool in women with reproductive failure and we suggest that the possible association between NK cell levels and thyroid function can be described not only in the presence of TAI but also in the presence of non-autoimmune thyroid disorders. PMID:26657164
Human a-L-fucosidase-1 attenuates the invasive properties of thyroid cancer.
Vecchio, Giancarlo; Parascandolo, Alessia; Allocca, Chiara; Ugolini, Clara; Basolo, Fulvio; Moracci, Marco; Strazzulli, Andrea; Cobucci-Ponzano, Beatrice; Laukkanen, Mikko O; Castellone, Maria Domenica; Tsuchida, Nobuo
2017-04-18
Glycans containing α-L-fucose participate in diverse interactions between cells and extracellular matrix. High glycan expression on cell surface is often associated with neoplastic progression. The lysosomal exoenzyme, α-L-fucosidase-1 (FUCA-1) removes fucose residues from glycans. The FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors. However, the role of FUCA-1 in tumor progression remains unclear. It is speculated that its inactivation perturbs glycosylation of proteins involved in cell adhesion and promotes cancer. FUCA-1 expression of various thyroid normal and cancer tissues assayed by immunohistochemical (IHC) staining was high in normal thyroids and papillary thyroid carcinomas (PTC), whereas it progressively decreased in poorly differentiated, metastatic and anaplastic thyroid carcinomas (ATC). FUCA-1 mRNA expression from tissue samples and cell lines and protein expression levels and enzyme activity in thyroid cancer cell lines paralleled those of IHC staining. Furthermore, ATC-derived 8505C cells adhesion to human E-selectin and HUVEC cells was inhibited by bovine α-L-fucosidase or Lewis antigens, thus pointing to an essential role of fucose residues in the adhesive phenotype of this cancer cell line. Finally, 8505C cells transfected with a FUCA-1 containing plasmid displayed a less invasive phenotype versus the parental 8505C. These results demonstrate that FUCA-1 is down-regulated in ATC compared to PTC and normal thyroid tissues and cell lines. As shown for other human cancers, the down-regulation of FUCA-1 correlates with increased aggressiveness of the cancer type. This is the first report indicating that the down-regulation of FUCA-1 is related to the increased aggressiveness of thyroid cancer.
Mazzaferri, Ernest L.; Verburg, Frederik A.; Reiners, Christoph; Luster, Markus; Breuer, Christopher K.; Dinauer, Catherine A.; Udelsman, Robert
2011-01-01
Pediatric thyroid cancer is a rare disease with an excellent prognosis. Compared with adults, epithelial-derived differentiated thyroid cancer (DTC), which includes papillary and follicular thyroid cancer, presents at more advanced stages in children and is associated with higher rates of recurrence. Because of its uncommon occurrence, randomized trials have not been applied to test best-care options in children. Even in adults that have a 10-fold or higher incidence of thyroid cancer than children, few prospective trials have been executed to compare treatment approaches. We recognize that treatment recommendations have changed over the past few decades and will continue to do so. Respecting the aggressiveness of pediatric thyroid cancer, high recurrence rates, and the problems associated with decades of long-term follow-up, a premium should be placed on treatments that minimize risk of recurrence and the adverse effects of treatments and facilitate follow-up. We recommend that total thyroidectomy and central compartment lymph node dissection is the surgical procedure of choice for children with DTC if it can be performed by a high-volume thyroid surgeon. We recommend radioactive iodine therapy for remnant ablation or residual disease for most children with DTC. We recommend long-term follow-up because disease can recur decades after initial diagnosis and therapy. Considering the complexity of DTC management and the potential complications associated with therapy, it is essential that pediatric DTC be managed by physicians with expertise in this area. PMID:21880704
Comparative study of the primary cilia in thyrocytes of adult mammals
Utrilla, J C; Gordillo-Martínez, F; Gómez-Pascual, A; Fernández-Santos, J M; Garnacho, C; Vázquez-Román, V; Morillo-Bernal, J; García-Marín, R; Jiménez-García, A; Martín-Lacave, I
2015-01-01
Since their discovery in different human tissues by Zimmermann in 1898, primary cilia have been found in the vast majority of cell types in vertebrates. Primary cilia are considered to be cellular antennae that occupy an ideal cellular location for the interpretation of information both from the environment and from other cells. To date, in mammalian thyroid gland, primary cilia have been found in the thyrocytes of humans and dogs (fetuses and adults) and in rat embryos. The present study investigated whether the existence of this organelle in follicular cells is a general event in the postnatal thyroid gland of different mammals, using both immunolabeling by immunofluorescence and electron microscopy. Furthermore, we aimed to analyse the presence of primary cilia in various thyroid cell lines. According to our results, primary cilia are present in the adult thyroid gland of most mammal species we studied (human, pig, guinea pig and rabbit), usually as a single copy per follicular cell. Strikingly, they were not found in rat or mouse thyroid tissues. Similarly, cilia were also observed in all human thyroid cell lines tested, both normal and neoplastic follicular cells, but not in cultured thyrocytes of rat origin. We hypothesize that primary cilia could be involved in the regulation of normal thyroid function through specific signaling pathways. Nevertheless, further studies are needed to shed light on the permanence of these organelles in the thyroid gland of most species during postnatal life. PMID:26228270
Xue, Haibo; Yu, Xiurong; Ma, Lei; Song, Shoujun; Li, Yuanbin; Zhang, Li; Yang, Tingting; Liu, Huan
2015-12-01
Hashimoto thyroiditis (HT) is a prototypic organ-specific autoimmune thyroid disease, for which the exact etiology remains unclear. The aim of this study was to investigate dynamic changes in regulatory T cell (Treg) and T helper 17 cell (Th17) populations in patients with HT at different stages of thyroid dysfunction, as well as to analyze the possible correlation between the Treg/Th17 cell axis and autoimmune status in HT. We assessed thyroid function and autoantibody serology both in HT patients and in healthy controls (HCs) and divided HT patients into three subgroups according to thyroid function. We then determined the percentages of Treg and Th17 cells in peripheral blood mononuclear cells and analyzed mRNA expression of the Treg and Th17 cell-defining transcription factors Foxp3 and RORγt. In addition, serum levels of TGF-β and IL-17A were assessed. We found that the percentage of Treg cells, Foxp3 mRNA levels, and the ratio of Treg/Th17 cells were all significantly lower in HT patients, while Th17 cell percentages and RORγt mRNA levels were significantly higher. Interestingly, we also observed significant differences in these measurements between HT patient subgroups. Serum IL-17A levels were markedly increased in HT patients, while serum concentrations of TGF-β were lower, compared to HCs. The ratio of Treg/Th17 cells was negatively correlated with the levels of serum thyroperoxidase antibody, thyroglobulin antibody, and thyrotropin (TSH) in HT patients. Taken together, our data suggest that the balance between Treg and Th17 cells shifts in favor of Th17 cells during clinical progression of HT, which is negatively correlated with levels of thyroid-specific autoantibodies and TSH, implying that Treg/Th17 cell imbalance may contribute to thyroid damage in HT.
Dahlgren, Mollie; Khosroshahi, Arezou; Nielsen, G Petur; Deshpande, Vikram; Stone, John H
2010-09-01
Riedel's thyroiditis is a chronic fibrosing disorder of unknown etiology often associated with "multifocal fibrosclerosis." IgG4-related systemic disease is characterized by IgG4+ plasma cell infiltration and fibrosis throughout many organs. We hypothesized that Riedel's thyroiditis is part of the IgG4-related systemic disease spectrum. We searched our institution's pathology database using the terms "Riedel's," "struma," "thyroid," and "fibrosis," and identified 3 cases of Riedel's thyroiditis. Riedel's thyroiditis was diagnosed if there was a fibroinflammatory process involving all or a portion of the thyroid gland, with evidence of extension of the process into surrounding tissues. Immunohistochemical stains for IgG4 and IgG were performed. The histopathologic and immunohistochemical features of each involved organ were evaluated. The clinical features of one patient with multiple organ system disease were described. All 3 thyroidectomy samples stained positively for IgG4-bearing plasma cells. One patient had extensive extrathyroidal involvement diagnostic of IgG4-related systemic disease, including cholangitis, pseudotumors of both the lung and lacrimal gland, and a lymph node contiguous to the thyroid that stained intensely for IgG4+ plasma cells. The histologic features of all organs involved were consistent with IgG4-related systemic disease. Patient 3 had 10 IgG4+ plasma cells per high-power field initially, but rebiopsy 2 years later demonstrated no IgG4+ plasma cells. That patient's second biopsy, characterized by fibrosis and minimal residual inflammation, further solidifies the link between IgG4-bearing plasma cells in tissue and the histologic evolution to Riedel's thyroiditis. Riedel's thyroiditis is part of the IgG4-related systemic disease spectrum. In many cases, multifocal fibrosclerosis and IgG4-related systemic disease are probably the same entity.
The role of prospero homeobox 1 (PROX1) expression in follicular thyroid carcinoma cells
Rudzinska, Magdalena; Ledwon, Joanna K.; Gawel, Damian; Sikorska, Justyna; Czarnocka, Barbara
2017-01-01
The prospero homeobox 1 (Prox1) transcription factor is a key player during embryogenesis and lymphangiogenesis. Altered Prox1 expression has been found in a variety of human cancers, including papillary thyroid carcinoma (PTC). Interestingly, Prox1 may exert tumor suppressive or tumor promoting effect, depending on the tissue context. In this study, we have analyzed Prox1 expression in normal and malignant human thyroid carcinoma cell lines. Moreover, we determined the effect of Prox1 silencing and overexpression on the cellular processes associated with the metastatic potential of tumor cells: proliferation, migration, invasion, apoptosis and anchorage-independent growth, in the follicular thyroid carcinoma (FTC) FTC-133 cell line. We found that Prox1 expression was significantly higher in FTC-derived cells than in PTC-derived cells and normal thyroid, and it was associated with the PI3K/Akt signaling pathway. In the FTC-133 cells, it was associated with cell invasive potential, motility and wound closure capacities, but not with proliferation or apoptosis. Modifying Prox1 expression also induced substantial changes in the cytoskeleton structure and cell morphology. In conclusion, we have shown that Prox1 plays an important role in the development of FTC and that its suppression prevents, whereas its overexpression promotes, the malignant behavior of thyroid follicular cancer cells. PMID:29371975
Morrison, Jennifer A; Pike, Laura A; Lund, Greg; Zhou, Qiong; Kessler, Brittelle E; Bauerle, Kevin T; Sams, Sharon B; Haugen, Bryan R; Schweppe, Rebecca E
2015-06-01
Thyroid cancer incidence has been increasing over time, and it is estimated that ∼1950 advanced thyroid cancer patients will die of their disease in 2015. To combat this disease, an enhanced understanding of thyroid cancer development and progression as well as the development of efficacious, targeted therapies are needed. In vitro and in vivo studies utilizing thyroid cancer cell lines and animal models are critically important to these research efforts. In this report, we detail our studies with a panel of authenticated human anaplastic and papillary thyroid cancer (ATC and PTC) cell lines engineered to express firefly luciferase in two in vivo murine cancer models-an orthotopic thyroid cancer model as well as an intracardiac injection metastasis model. In these models, primary tumor growth in the orthotopic model and the establishment and growth of metastases in the intracardiac injection model are followed in vivo using an IVIS imaging system. In the orthotopic model, the ATC cell lines 8505C and T238 and the PTC cell lines K1/GLAG-66 and BCPAP had take rates >90 % with final tumor volumes ranging 84-214 mm(3) over 4-5 weeks. In the intracardiac model, metastasis establishment was successful in the ATC cell lines HTh74, HTh7, 8505C, THJ-16T, and Cal62 with take rates ≥70 %. Only one of the PTC cell lines tested (BCPAP) was successful in the intracardiac model with a take rate of 30 %. These data will be beneficial to inform the choice of cell line and model system for the design of future thyroid cancer studies.
Defective ciliogenesis in thyroid hürthle cell tumors is associated with increased autophagy
Lee, Junguee; Yi, Shinae; Kang, Yea Eun; Chang, Joon Young; Kim, Jung Tae; Sul, Hae Joung; Kim, Jong Ok; Kim, Jin Man; Kim, Joon; Porcelli, Anna Maria; Kim, Koon Soon; Shong, Minho
2016-01-01
Primary cilia are found in the apical membrane of thyrocytes, where they may play a role in the maintenance of follicular homeostasis. In this study, we examined the distribution of primary cilia in the human thyroid cancer to address the involvement of abnormal ciliogenesis in different thyroid cancers. We examined 92 human thyroid tissues, including nodular hyperplasia, Hashimoto's thyroiditis, follicular tumor, Hürthle cell tumor, and papillary carcinoma to observe the distribution of primary cilia. The distribution and length of primary cilia facing the follicular lumen were uniform across variable-sized follicles in the normal thyroid gland. However, most Hürthle cells found in benign and malignant thyroid diseases were devoid of primary cilia. Conventional variant of papillary carcinoma (PTC) displayed longer primary cilia than those of healthy tissue, whereas both the frequency and length of primary cilia were decreased in oncocytic variant of PTC. In addition, ciliogenesis was markedly defective in primary Hürthle cell tumors, including Hürthle cell adenomas and carcinomas, which showed higher level of autophagosome biogenesis. Remarkably, inhibition of autophagosome formation by Atg5 silencing or treatment with pharmacological inhibitors of autophagosome formation restored ciliogenesis in the Hürthle cell carcinoma cell line XTC.UC1 which exhibits a high basal autophagic flux. Moreover, the inhibition of autophagy promoted the accumulation of two factors critical for ciliogenesis, IFT88 and ARL13B. These results suggest that abnormal ciliogenesis, a common feature of Hürthle cells in diseased thyroid glands, is associated with increased basal autophagy. PMID:27816963
Culture Models for Studying Thyroid Biology and Disorders
Toda, Shuji; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Matsunobu, Aki; Yamamoto, Mihoko; Ootani, Akifumi; Yamasaki, Fumio; Koike, Eisuke; Sugihara, Hajime
2011-01-01
The thyroid is composed of thyroid follicles supported by extracellular matrix, capillary network, and stromal cell types such as fibroblasts. The follicles consist of thyrocytes and C cells. In this microenvironment, thyrocytes are highly integrated in their specific structural and functional polarization, but monolayer and floating cultures cannot allow thyrocytes to organize the follicles with such polarity. In contrast, three-dimensional (3-D) collagen gel culture enables thyrocytes to form 3-D follicles with normal polarity. However, these systems never reconstruct the follicles consisting of both thyrocytes and C cells. Thyroid tissue-organotypic culture retains 3-D follicles with both thyrocytes and C cells. To create more appropriate experimental models, we here characterize four culture systems above and then introduce the models for studying thyroid biology and disorders. Finally, we propose a new approach to the cell type-specific culture systems on the basis of in vivo microenvironments of various cell types. PMID:22363871
A taxonomy of epithelial human cancer and their metastases
2009-01-01
Background Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination. Methods We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures. Results Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the remaining tumors cluster with the tissue of destination. Conclusion Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific profile. PMID:20017941
TSH Receptor Function Is Required for Normal Thyroid Differentiation in Zebrafish
Opitz, Robert; Maquet, Emilie; Zoenen, Maxime; Dadhich, Rajesh
2011-01-01
TSH is the primary physiological regulator of thyroid gland function. The effects of TSH on thyroid cells are mediated via activation of its membrane receptor [TSH receptor (TSHR)]. In this study, we examined functional thyroid differentiation in zebrafish and characterized the role of TSHR signaling during thyroid organogenesis. Cloning of a cDNA encoding zebrafish Tshr showed conservation of primary structure and functional properties between zebrafish and mammalian TSHR. In situ hybridization confirmed that the thyroid is the major site of tshr expression during zebrafish development. In addition, we identified tpo, iyd, duox, and duoxa as novel thyroid differentiation markers in zebrafish. Temporal analyses of differentiation marker expression demonstrated the induction of an early thyroid differentiation program along with thyroid budding, followed by a delayed onset of duox and duoxa expression coincident with thyroid hormone synthesis. Furthermore, comparative analyses in mouse and zebrafish revealed for the first time a thyroid-enriched expression of cell death regulators of the B-cell lymphoma 2 family during early thyroid morphogenesis. Knockdown of tshr function by morpholino microinjection into embryos did not affect early thyroid morphogenesis but caused defects in later functional differentiation. The thyroid phenotype observed in tshr morphants at later stages comprised a reduction in number and size of functional follicles, down-regulation of differentiation markers, as well as reduced thyroid transcription factor expression. A comparison of our results with phenotypes observed in mouse models of defective TSHR and cAMP signaling highlights the value of zebrafish as a model to enhance the understanding of functional differentiation in the vertebrate thyroid. PMID:21737742
Neurotrophin Receptors TrkA, p75NTR, and Sortilin Are Increased and Targetable in Thyroid Cancer.
Faulkner, Sam; Jobling, Philip; Rowe, Christopher W; Rodrigues Oliveira, S M; Roselli, Severine; Thorne, Rick F; Oldmeadow, Christopher; Attia, John; Jiang, Chen Chen; Zhang, Xu Dong; Walker, Marjorie M; Hondermarck, Hubert
2018-01-01
Neurotrophin receptors are emerging targets in oncology, but their clinicopathologic significance in thyroid cancer is unclear. In this study, the neurotrophin tyrosine receptor kinase TrkA (also called NTRK1), the common neurotrophin receptor p75 NTR , and the proneurotrophin receptor sortilin were analyzed with immunohistochemistry in a cohort of thyroid cancers (n = 128) and compared with adenomas and normal thyroid tissues (n = 62). TrkA was detected in 20% of thyroid cancers, compared with none of the benign samples (P = 0.0007). TrkA expression was independent of histologic subtypes but associated with lymph node metastasis (P = 0.0148), suggesting the involvement of TrkA in tumor invasiveness. Nerves in the tumor microenvironment were positive for TrkA. p75 NTR was overexpressed in anaplastic thyroid cancers compared with papillary and follicular subtypes (P < 0.0001). Sortilin was overexpressed in thyroid cancers compared with benign thyroid tissues (P < 0.0001). Neurotrophin receptor expression was confirmed in a panel of thyroid cancer cell lines at the mRNA and protein levels. Functional investigations using the anaplastic thyroid cancer cell line CAL-62 found that siRNA against TrkA, p75 NTR , and sortilin decreased cell survival and cell migration through decreased SRC and ERK activation. Together, these data reveal TrkA, p75 NTR , and sortilin as potential therapeutic targets in thyroid cancer. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Di Palma, Tina; Conti, Anna; de Cristofaro, Tiziana; Scala, Serena; Nitsch, Lucio; Zannini, Mariastella
2011-01-01
Background The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown. Methodology/Principal Findings To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation. Conclusions/Significance This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies. PMID:21966443
2013-01-01
Abstract Lymphomas account for less than 5% of thyroid malignant lesions. Vast majority of them are B-cell non-Hodgkin lymphomas (NHL), while Hodgkin lymphoma (HL) is extremely rare. Here we present two cases of HL, at baseline manifesting as a thyroid lesion. First patient, 29-year-old pregnant female, initially suspected for metastatic medullary thyroid cancer, was eventually diagnosed with mixed cellularity type of thyroid HL. Second patient, 22-year-old woman with suspicion of advanced thyroid cancer, was in the end diagnosed with an extra-lymphatic classical HL of the thyroid. In both cases, despite repeated fine-needle aspiration biopsy, cytological examination gave inconclusive or misleading results. On histopathological examination, thyroid tumor cells were positive for CD15 and CD30 antigen, which is typical for Reed-Sternberg cells. In the report authors also discuss difficulties in management as well as potential importance of novel methods such as FISH, PCR and other molecular techniques in diagnostics of thyroid lymphomas. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2896947559559648 PMID:23856094
Kang, Hong Soon; Kumar, Dhirendra; Liao, Grace; Lichti-Kaiser, Kristin; Gerrish, Kevin; Liao, Xiao-Hui; Refetoff, Samuel; Jothi, Raja; Jetten, Anton M.
2017-01-01
Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division–related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development. PMID:29083325
Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi
2017-07-01
The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.
Mixed germ cells tumour primarily located in the thyroid -- a case report.
Wierzbicka-Chmiel, Joanna; Chrószcz, Małgorzata; Słomian, Grzegorz; Kajdaniuk, Dariusz; Zajęcki, Wojciech; Borgiel-Marek, Halina; Marek, Bogdan
2012-01-01
Germ cells tumours most frequently occur in the gonads. Extragonadal localisation is rare and concerns mainly the mediastinum, retroperitoneum and pineal. We present the first description of a patient with a mixed germ cells tumour located primarily in the thyroid. A 35-year-old man in a good clinical condition was admitted to diagnose metastasis revealed in an X-ray of his lungs. Abnormal laboratory tests showed high concentrations of beta-HCG and LDH. Ultrasound examination revealed: hypoechogenic area 8 × 4 × 5 mm in the left testicle, and enlarged left thyroid lobe with echogenically heterogenous mass. In cytological examination of the thyroid, carcinomatous cells were found, which suggested metastasis. A diagnosis of cancerous spread of testicular cancer to the lungs and thyroid was made. The left testicle, with spermatic cord, was removed, yet in the histopathological examination no carcinomatous cells were found. Rescue chemotherapy, according to the BEP scheme (bleomycin, etoposide, cisplatin) was started, but during its course the patient died. Histopathology disclosed primary mixed germ cells tumour in the thyroid, predominantly with carcinoma embryonale and focuses of choriocarcinoma. Extragonadal germ cells tumours rarely occur in the thyroid. In medical literature, some cases of teratomas and a single case of yolk sac tumour in the thyroid have been described. The presence of choriocarcinoma was responsible for the high serum concentration of beta-HCG. Surgery of germ cells tumours proves insufficient. The conventional chemotherapy is based on cisplatin. In conclusion, extragonadal germ cells tumours are rare, but should be considered while co-existing with elevated markers such as: AFP, beta-HCG and lack of abnormalities in the gonads.
Preoperative Cytologic Diagnosis of Warthin-like Variant of Papillary Thyroid Carcinoma.
Kim, Jisup; Lim, Beom Jin; Hong, Soon Won; Pyo, Ju Yeon
2018-03-01
Warthin-like variant of papillary thyroid carcinoma (WLV-PTC) is a relatively rare variant of papillary thyroid carcinoma with favorable prognosis. However, preoperative diagnosis using fine-needle aspiration (FNA) specimens is challenging especially with lymphocytic thyroiditis characterized by Hürthle cells and lymphocytic background. To determine a helpful cytological differential point, we compared WLV-PTC FNA findings with conventional papillary thyroid carcinoma with lymphocytic thyroiditis (PTC-LT) and conventional papillary thyroid carcinoma without lymphocytic thyroiditis (PTC) regarding infiltrating inflammatory cells and their distribution. Preoperative diagnosis or potential for WLV-PTC will be helpful for surgeons to decide the scope of operation. Of the 8,179 patients treated for papillary thyroid carcinoma between January 2007 and December 2012, 16 patients (0.2%) were pathologically confirmed as WLV-PTC and four cases were available for cytologic review. For comparison, we randomly selected six PTC-LT cases and five PTC cases during the same period. The number of intratumoral and background lymphocytes, histiocytes, neutrophils, and the presence of giant cells were evaluated and compared using conventional smear and ThinPrep preparations. WLV-PTC showed extensive lymphocytic smear with incorporation of thyroid follicular tumor cell clusters and frequent histiocytes. WLV-PTC was associated with higher intratumoral and background lymphocytes and histiocytes compared with PTC-LT or PTC. The difference was more distinct in liquid-based cytology. The lymphocytic smear pattern and the number of inflammatory cells of WLV-PTC are different from those of PTC-LT or PTC and will be helpful for the differential diagnosis of WLV-PTC in preoperative FNA.
Preoperative Cytologic Diagnosis of Warthin-like Variant of Papillary Thyroid Carcinoma
Kim, Jisup; Lim, Beom Jin; Hong, Soon Won; Pyo, Ju Yeon
2018-01-01
Background Warthin-like variant of papillary thyroid carcinoma (WLV-PTC) is a relatively rare variant of papillary thyroid carcinoma with favorable prognosis. However, preoperative diagnosis using fine-needle aspiration (FNA) specimens is challenging especially with lymphocytic thyroiditis characterized by Hürthle cells and lymphocytic background. To determine a helpful cytological differential point, we compared WLV-PTC FNA findings with conventional papillary thyroid carcinoma with lymphocytic thyroiditis (PTC-LT) and conventional papillary thyroid carcinoma without lymphocytic thyroiditis (PTC) regarding infiltrating inflammatory cells and their distribution. Preoperative diagnosis or potential for WLV-PTC will be helpful for surgeons to decide the scope of operation. Methods Of the 8,179 patients treated for papillary thyroid carcinoma between January 2007 and December 2012, 16 patients (0.2%) were pathologically confirmed as WLV-PTC and four cases were available for cytologic review. For comparison, we randomly selected six PTC-LT cases and five PTC cases during the same period. The number of intratumoral and background lymphocytes, histiocytes, neutrophils, and the presence of giant cells were evaluated and compared using conventional smear and ThinPrep preparations. Results WLV-PTC showed extensive lymphocytic smear with incorporation of thyroid follicular tumor cell clusters and frequent histiocytes. WLV-PTC was associated with higher intratumoral and background lymphocytes and histiocytes compared with PTC-LT or PTC. The difference was more distinct in liquid-based cytology. Conclusions The lymphocytic smear pattern and the number of inflammatory cells of WLV-PTC are different from those of PTC-LT or PTC and will be helpful for the differential diagnosis of WLV-PTC in preoperative FNA. PMID:29429327
Hayashida, C Y; Alves, V A; Kanamura, C T; Ezabella, M C; Abelin, N M; Nicolau, W; Bisi, H; Toledo, S P
1993-08-15
The diagnosis of medullary thyroid carcinoma (MTC) depends on the calcitonin immunohistochemistry. Familial MTC is associated with C-cell hyperplasia (CCH), whereas sporadic MTC is not. A specific and sensitive calcitonin immunohistochemistry is necessary for the diagnosis of MTC and CCH. An affinity-purified anti-calcitonin antiserum (APxCT) was used for immunohistochemistry of the thyroids of 15 patients with MTC. The thyroids of five patients with familial MTC were studied in detail, with each gland sectioned in 48 areas. Between three and ten independent MTC were found in each thyroid, and CCH was found in all five patients (24.2%, varying from 8.4-56.3% of the 48 areas from each thyroid). MTC and CCH were localized mainly in the middle third and in the central axis of the thyroid lobes. They often were found together in the same area (in a total of 21 areas for the five thyroids sectioned in 48 areas) but ten areas with MTC did not have CCH, and 37 areas with CCH did not have MTC. In ten thyroids partially studied, CCH was indicated in three patients thought to have sporadic MTC. In two thyroids, with follicular and papillary carcinoma, a higher density of C-cells was found around the tumors, but disease was not characterized as CCH. APxCT antiserum increased the immunohistochemical specificity and sensitivity. The distinction of the familial from the sporadic MTC requires a careful and extensive search of CCH. C-cells in high density may be found around follicular cell carcinomas, being a potential source of diagnostic error.
Management of thyroid gland invasion in laryngeal and hypopharyngeal squamous cell carcinoma.
Arslanoğlu, Seçil; Eren, Erdem; Özkul, Yılmaz; Ciğer, Ejder; Kopar, Aylin; Önal, Kazım; Etit, Demet; Tütüncü, G Yazgı
2016-02-01
The objective of this study was to determine the incidence of thyroid gland invasion in laryngeal and hypopharyngeal squamous cell carcinoma; and the association between clinicopathological parameters and thyroid gland invasion. Medical records of 75 patients with laryngeal and hypopharyngeal squamous cell carcinoma who underwent total laryngectomy with thyroidectomy were reviewed, retrospectively. Preoperative computed tomography scans, clinical and operative findings, and histopathological data of the specimens were evaluated. There were 73 male and two female patients with an age range of 41-88 years (mean 60.4 years). Hemithyroidectomy was performed in 62 (82.7 %) and total thyroidectomy was performed in 13 patients (17.3 %). Four patients had histopathologically proven thyroid gland invasion (5.3 %). In three patients, thyroid gland involvement was by means of direct invasion. Thyroid gland invasion was significantly correlated with thyroid cartilage invasion. Therefore, prophylactic thyroidectomy should not be a part of the treatment policy for these tumors.
Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun
2015-01-01
A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma. PMID:25755717
Wang, Yuanyuan; Lin, Xiangde; Fu, Xinghao; Yan, Wei; Lin, Fusheng; Kuang, Penghao; Luo, Yezhe; Lin, Ende; Hong, Xiaoquan; Wu, Guoyang
2018-06-18
Thyroid cancer is one of the most common malignant tumors of the endocrine system. Among all thyroid cancers, papillary thyroid carcinoma (PTC) is the most common type. The BRAF-activated non-coding RNA (BANCR) is a 693-bp nucleotide transcript which was first identified in melanoma. However, the role of BANCR in the development of thyroid cancer remains unclear. Therefore, the present study investigated the potential involvement of BANCR in the development of thyroid cancer in vitro using patient tissue samples and a panel of thyroid cancer cell lines, and in vivo using a xenograft mouse model. We observed that BANCR was expressed at a higher level in human thyroid tumor tissues than that noted in the adjacent normal tissues. The expression level of BANCR differed between cultured thyroid cancer cell lines; BANCR expression was lower in the BCPAP cell line than that observed in the CAL-62, WRO and FTC-133 cell lines. Western blot analysis and flow cytometry revealed that overexpression of BANCR in the BCPAP cell line resulted in increased expression of the cancer stem cell markers, LGR5 and EpCAM. Single-clone formation experiments showed that upregulated expression of BANCR in the BCPAP cell line promoted an increase in the number of clones formed. Similarly, in microsphere formation experiments, overexpression of BANCR resulted in increased number and size of microspheres compared with the control cell line. Western blotting experiments showed that BANCR overexpression in BCPAP upregulated the expression of phosphorylated c-Raf, MEK1/2 and ERK1/2. Inhibition of c-Raf via U0126 decreased the expression of LGR5 and EpCAM, as well as phosphorylated levels of c-Raf, MEK1/2 and ERK1/2 in the BCPAP cells, compared to levels in the DMSO controls. In the xenograft mouse model, BANCR overexpression in the thyroid cancer cells significantly increased tumor growth. Taken together, these results suggest that BANCR plays a role in PTC development by regulating the expression of cancer stem cell markers LGR5 and EpCAM via the c-Raf/MEK/ERK signaling pathway. Therefore, BANCR may be used as a novel prognostic marker for PTC.
[Analysis of thyroid lesions in childhood recipients after hematopoietic stem cell transplantation].
Maeda, Naoko; Hamajima, Takashi; Yambe, Yuko; Sekimizu, Masahiro; Horibe, Keizo
2013-03-01
We performed a physical examination and ultrasonography of the thyroid gland in 24 patients who had received hematopoietic stem cell transplantation with a total-body irradiation (TBI)-containing regimen during childhood. When ultrasonography revealed thyroid nodules larger than 1 cm in diameter, fine-needle aspiration biopsies were performed. Of 5 patients with palpable masses and thyroid nodules larger than 1 cm, adenomatous goiter was diagnosed in 4 cases and thyroid cancer in 1. Of the remaining 19 patients in whom no palpable mass was detected in the physical examination, 5 had thyroid nodules (including 1 adenomatous goiter), 6 had cystic lesions, and 8 exhibited no abnormalities on ultrasonography. No significant differences in sex, age at transplantation, interval between transplantation and evaluation, primary disease, preconditioning regimen, status at transplantation, stem cell source, chronic graft-versus-host disease, hypogonadism, or hypothyroidism were observed between patients with and without nodules. Individuals who received hematopoietic stem cell transplantation with a TBI-containing regimen are at risk of secondary thyroid cancer due to radiotherapy and require regular clinical evaluations of the thyroid gland by palpation, and ultrasonography should be incorporated into these checkups.
Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G
2018-07-01
Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Carre, Aurore; Rachdi, Latif; Tron, Elodie; Richard, Bénédicte; Castanet, Mireille; Schlumberger, Martin; Bidart, Jean-Michel
2011-01-01
Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis). To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1 −/− mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p<0.05) at E9.5 and at E11.5. Moreover, Hes1 −/− mouse embryos showed a significantly smaller total thyroid surface area (−40 to −60%) compared to wild type mice at all study time points (E9.5−E16.5). In both Hes1 −/− and wild type mouse embryos, most Nkx2-1-positive thyroid cells expressed the cell cycle inhibitor p57 at E9.5 in correlation with low proliferation index. In Hes1 −/− mouse embryos, fusion of the median anlage with the ultimobranchial bodies was delayed by 3 days (E16.5 vs. E13.5 in wild type mice). After fusion of thyroid anlages, hypoplastic Hes1 −/− thyroids revealed a significantly decreased labelling area for T4 (−78%) and calcitonin (−65%) normalized to Nkx2-1 positive cells. Decreased T4-synthesis might be due to reduced Nis labelling area (−69%). These findings suggest a dual role of Hes1 during thyroid development: first, control of the number of both thyrocyte and C-cell progenitors, via a p57-independent mechanism; second, adequate differentiation and endocrine function of thyrocytes and C-cells. PMID:21364918
Mutant HABP2 Causes Non-Medullary Thyroid Cancer | Center for Cancer Research
The thyroid is a butterfly-shaped gland that lies at the base of the throat in front of the windpipe. A member of the endocrine system, the thyroid secretes hormones to regulate heart rate, blood pressure, temperature, and metabolism. Cancer of the thyroid is the most common endocrine cancer and the eighth most common cancer in the U.S. An estimated 63,450 Americans will be diagnosed with thyroid cancer this year. The vast majority is of follicular cell origin, and the remaining cancer originates from parafollicular cells, so called medullary thyroid cancer.
Rosa, M; Toronczyk, K
2012-02-01
Primary squamous cell carcinomas of the thyroid gland are extremely rare, comprising about 1% of thyroid malignancies. Although squamous cell carcinomas are readily identified as such on aspiration cytology in the majority of cases, the differentiation of primary versus metastatic tumour might not always be easy. Herein, we report three cases of squamous cell carcinomas involving the thyroid gland. Fine needle aspiration cytology (FNAC) was performed in three patients with a thyroid mass using standard guidelines. Smears were stained with Diff-Quik and Papanicolaou stains. Two patients were male and one was female, aged 59, 45 and 35 years, respectively. In all three patients a thyroid mass was present. FNAC smears in all cases showed cytological features of squamous cell carcinoma including keratinization and necrosis. After clinical and cytological correlation, one case appeared to be primary, one case metastatic, and in the third case no additional clinical information or biopsy follow-up was available for further characterization. Because primary squamous cell carcinoma of the thyroid is a rare finding, metastatic squamous cell carcinoma should always be excluded first. Metastatic disease usually presents in the setting of widespread malignancy, therefore a dedicated clinical and radiological investigation is necessary in these cases. In both clinical scenarios the patient's prognosis is poor. © 2010 Blackwell Publishing Ltd.
Ha, Tae Kwun; Jung, Inae; Kim, Mi Eun; Bae, Sung Kwon; Lee, Jun Sik
2017-07-01
Thyroid cancer is the most common endocrine malignancy and can range in severity from relatively slow-growing occult differentiated thyroid cancer to uniformly aggressive and fatal anaplastic thyroid cancer. A subset of patients with papillary thyroid cancer present with aggressive disease that is refractory to conventional treatment. Myricetin is a flavonol compound found in a variety of berries as well as walnuts and herbs. Previous studies have demonstrated that myricetin exhibits anti-cancer activity against several tumor types. However, an anti-cancer effect of myricetin against human papillary thyroid cancer (HPTC) cells has not been established. The present investigation was undertaken to gain insights into the molecular mechanism of the anti-cancer activity of myricetin against HPTC cells. We examined the cytotoxicity, DNA damaging, and cell cycle arresting activities of myricetin using SNU-790 HPTC cells. We found that myricetin exhibited cytotoxicity and induced DNA condensation in SNU-790 HPTC cells in a dose-dependent manner. Moreover, myricetin up-regulated the activation of caspase cascades and the Bax:Bcl-2 expression ratio. In addition, myricetin induced the release of apoptosis-inducing factor (AIF) and altered the mitochondrial membrane potential. Our results suggest that myricetin induces the death of SNU-790 HPTC cells and thus may prove useful in the development of therapeutic agents for human thyroid cancers. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lai, Chi-Yun; Chao, Tzu-Chieh; Lin, Jen-Der; Hsueh, Chuen
2015-01-01
Sclerosing mucoepidermoid carcinoma with eosinophilia (SMECE) was first described by Chan et al in 1991. It is characterized by nest or strands of epidermoid tumor cells with squamous differentiation, rare mucous cells, prominent sclerotic stroma, eosinophilic and lymphoplasmacytic infiltration, and a background of chronic lymphocytic thyroiditis in the non-neoplastic thyroid gland. It is important to recognize SMECE of thyroid and differentiate it from squamous cell carcinoma or other neoplasms with squamous differentiation/metaplasia. In published cases, the SMECE of thyroid gland predominantly occurs in women. We report a case of SMECE of thyroid in a 45-year-old male patient. All cases in male patients were Caucasian described in English literature, and our case is the first one in Asian.
Leveraging the immune system to treat advanced thyroid cancers.
French, Jena D; Bible, Keith; Spitzweg, Christine; Haugen, Bryan R; Ryder, Mabel
2017-06-01
Inflammation has long been associated with the thyroid and with thyroid cancers, raising seminal questions about the role of the immune system in the pathogenesis of advanced thyroid cancers. With a growing understanding of dynamic tumour-immune cell interactions and the mechanisms by which tumour cells evade antitumour immunity, the field of cancer immunotherapy has been revolutionised. In this Review, we provide evidence to support the presence of an antitumour immune response in advanced thyroid cancers linked to cytotoxic T cells and NK cells. This antitumour response, however, is likely blunted by the presence of immunosuppressive pathways within the microenvironment, facilitated by tumour-associated macrophages or increased expression of negative regulators of cytotoxic T-cell function. Current and future efforts to incorporate immune-based therapies into existing tumour cell or endothelial-derived therapies-eg, with kinase inhibitors targeting tumour-associated macrophages or antibodies blocking negative regulators on T cells-could provide improved and durable responses for patients with disease that is otherwise refractory to treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents.
Hurley, P M
1998-08-01
Of 240 pesticides screened for carcinogenicity by the U.S. Environmental Protection Agency Office of Pesticide Programs, at least 24 (10%) produce thyroid follicular cell tumors in rodents. Thirteen of the thyroid carcinogens also induce liver tumors, mainly in mice, and 9 chemicals produce tumors at other sites. Some mutagenic data are available on all 24 pesticides producing thyroid tumors. Mutagenicity does not seem to be a major determinant in thyroid carcinogenicity, except for possibly acetochlor; evidence is less convincing for ethylene thiourea and etridiazole. Studies on thyroid-pituitary functioning, including indications of thyroid cell growth and/or changes in thyroxine, triiodothyronine, or thyroid-stimulating hormone levels, are available on 19 pesticides. No such antithyroid information is available for etridiazole, N-octyl bicycloheptene dicarboximide, terbutryn, triadimefon, and trifluralin. Of the studied chemicals, only bromacil lacks antithyroid activity under study conditions. Intrathyroidal and extrathyroidal sites of action are found: amitrole, ethylene thiourea, and mancozeb are thyroid peroxidase inhibitors; and acetochlor, clofentezine, fenbuconazole, fipronil, pendimethalin, pentachloronitrobenzene, prodiamine, pyrimethanil, and thiazopyr seem to enhance the hepatic metabolism and excretion of thyroid hormone. Thus, with 12 pesticides that mode of action judgments can be made, 11 disrupt thyroid-pituitary homeostasis only; no chemical is mutagenic only; and acetochlor may have both antithyroid and some mutagenic activity. More information is needed to identify other potential antithyroid modes of thyroid carcinogenic action.
Loginov, V I
1993-01-01
Immunocytochemical analysis of thyroid gland C-cells of the rats exposed to a 14-day space flight revealed a decrease in the number of C-cells, volume of their nuclei and a declined percentage of active secretory C-cells, which point to a decline of calcitonin proactive and calcitonin secretory hypofunction of the thyroid C-cells system in flown rats. Tail suspension as a microgravity model caused similar changes in C-cells.
SUZUKI, SHINICHI; SHIBATA, MASAHIKO; GONDA, KENJI; KANKE, YASUYUKI; ASHIZAWA, MAI; UJIIE, DAISUKE; SUZUSHINO, SEIKO; NAKANO, KEIICHI; FUKUSHIMA, TOSHIHIKO; SAKURAI, KENICHI; TOMITA, RYOUICHI; KUMAMOTO, KENSUKE; TAKENOSHITA, SEIICHI
2013-01-01
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive neoplasms in humans and myeloid-derived suppressor cells (MDSCs) contribute to the negative regulation of immune responses in the context of cancer and inflammation. In order to investigate the pathophysiology of thyroid cancer, peripheral blood mononuclear cells (PBMCs) were obtained from 49 patients with thyroid cancer, 18 patients with non-cancerous thyroid diseases and 22 healthy volunteers. The MDSC levels were found to be higher in patients with any type of thyroid cancer (P<0.05), patients with ATC (P<0.001) and patients with medullary thyroid carcinoma (P<0.05), when compared to patients with non-cancerous thyroid diseases. The MDSC levels were also higher in patients with stage III–IV thyroid cancer compared to those in patients with non-cancerous thyroid diseases (P<0.05). The stimulation index (SI) of phytohemagglutinin (PHA)-induced lymphocyte blastogenesis was significantly lower, the C-reactive protein (CRP) levels were significantly higher and the serum albumin levels were significantly lower in patients with ATC compared to those in patients with non-cancerous thyroid diseases. The SI was significantly lower in stage III and IV thyroid cancer compared to that in non-cancerous thyroid disease (P<0.05). Furthermore, the CRP levels were higher and the concentration of albumin was lower in stage IV thyroid cancer compared to those in non-cancerous thyroid disease (P<0.05). Patients with thyroid carcinoma were then classified into one of two groups according to a %PBMC of MDSC cut-off level of 1.578, which was the average %PBMC of MDSC of patients with any type of thyroid carcinoma. In patients with higher MDSC levels, the production of CRP and interleukin (IL)-10 was significantly higher (P<0.05) and the albumin levels were significantly lower (P<0.05) compared to those in patients with lower MDSC levels. These data indicate that MDSCs are increased in patients with ATC. Furthermore, these patients exhibited suppression of cell-mediated immune responses, chronic inflammation and nutritional impairment. PMID:24649277
Marina, Michela; Ceda, Gian Paolo; Corcione, Luigi; Sgargi, Paolo; Michiara, Maria; Silini, Enrico Maria; Ceresini, Graziano
2017-10-01
Data relating the size of thyroid cancer with histological types and variants are scarce. All incident thyroid cancer diagnosed between 2003 and 2012 in a mildly iodine-deficient area were derived from a population-based tumor registry. Undifferentiated/anaplastic thyroid cancer and incidental cases were excluded. Major diameter of thyroid cancer, as assessed by pathological examination, was stratified in classes: ≤10 mm; 11-20 mm; 21-40 mm; and >40 mm. For each class, absolute and relative frequencies of histological types were calculated. Tumors >20 mm were more frequent among follicular thyroid carcinoma (FTC) and Hürthle cell carcinoma than in other histotypes, with median size of 22.50 mm (95% confidence interval [CI] 16.71-28.29) and 25.00 mm (95% CI 17.04-32.96) in FTC and Hürthle cell carcinoma, respectively. Odds ratio for tumors >20 mm was significant for FTC and Hürthle cell carcinoma only (P < .0001). Among the histotypes and variants of differentiated thyroid cancer, FTC and Hürthle cell carcinoma are characterized by the largest size. © 2017 Wiley Periodicals, Inc.
Kameishi, Sumako; Umemoto, Terumasa; Matsuzaki, Yu; Fujita, Masako; Okano, Teruo; Kato, Takashi; Yamato, Masayuki
2016-05-06
Corneal epithelial stem cells reside in the limbus, a transitional zone between the cornea and conjunctiva, and are essential for maintaining homeostasis in the corneal epithelium. Although our previous studies demonstrated that rabbit limbal epithelial side population (SP) cells exhibit stem cell-like phenotypes with Hoechst 33342 staining, the different characteristics and/or populations of these cells remain unclear. Therefore, in this study, we determined the gene expression profiles of limbal epithelial SP cells by RNA sequencing using not only present public databases but also contigs that were created by de novo transcriptome assembly as references for mapping. Our transcriptome data indicated that limbal epithelial SP cells exhibited a stem cell-like phenotype compared with non-SP cells. Importantly, gene ontology analysis following RNA sequencing demonstrated that limbal epithelial SP cells exhibited significantly enhanced expression of mesenchymal/endothelial cell markers rather than epithelial cell markers. Furthermore, single-cell quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that the limbal epithelial SP population consisted of at least two immature cell populations with endothelial- or mesenchymal-like phenotypes. Therefore, our present results may propose the presence of a novel population of corneal epithelial stem cells distinct from conventional epithelial stem cells. Copyright © 2015 Elsevier Inc. All rights reserved.
mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib.
Hanly, Elyse K; Bednarczyk, Robert B; Tuli, Neha Y; Moscatello, Augustine L; Halicka, H Dorota; Li, Jiangwei; Geliebter, Jan; Darzynkiewicz, Zbigniew; Tiwari, Raj K
2015-11-24
Treatment options for advanced metastatic thyroid cancer patients are limited. Vemurafenib, a BRAFV600E inhibitor, has shown promise in clinical trials although cellular resistance occurs. Combination therapy that includes BRAFV600E inhibition and avoids resistance is a clinical need. We used an in vitro model to examine combination treatment with vemurafenib and mammalian target of rapamycin (mTOR) inhibitors, metformin and rapamycin. Cellular viability and apoptosis were analyzed in thyroid cell lines by trypan blue exclusion and TUNEL assays. Combination of vemurafenib and metformin decreased cell viability and increased apoptosis in both BCPAP papillary thyroid cancer cells and 8505c anaplastic thyroid cancer cells. This combination was also found to be active in vemurafenib-resistant BCPAP cells. Changes in expression of signaling molecules such as decreased mTOR expression in BCPAP and enhanced inhibition of phospho-MAPK in resistant BCPAP and 8505c were observed. The second combination of vemurafenib and rapamycin amplified cell death in BCPAP cells. We conclude that combination of BRAFV600E and mTOR inhibition forms the basis of a treatment regimen that should be further investigated in in vivo model systems. Metformin or rapamycin adjuvant treatment may provide clinical benefits with minimal side effects to BRAFV600E-positive advanced thyroid cancer patients treated with vemurafenib.
mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib
Hanly, Elyse K.; Bednarczyk, Robert B.; Tuli, Neha Y.; Moscatello, Augustine L.; Halicka, H. Dorota; Li, Jiangwei; Geliebter, Jan; Darzynkiewicz, Zbigniew; Tiwari, Raj K.
2015-01-01
Treatment options for advanced metastatic thyroid cancer patients are limited. Vemurafenib, a BRAFV600E inhibitor, has shown promise in clinical trials although cellular resistance occurs. Combination therapy that includes BRAFV600E inhibition and avoids resistance is a clinical need. We used an in vitro model to examine combination treatment with vemurafenib and mammalian target of rapamycin (mTOR) inhibitors, metformin and rapamycin. Cellular viability and apoptosis were analyzed in thyroid cell lines by trypan blue exclusion and TUNEL assays. Combination of vemurafenib and metformin decreased cell viability and increased apoptosis in both BCPAP papillary thyroid cancer cells and 8505c anaplastic thyroid cancer cells. This combination was also found to be active in vemurafenib-resistant BCPAP cells. Changes in expression of signaling molecules such as decreased mTOR expression in BCPAP and enhanced inhibition of phospho-MAPK in resistant BCPAP and 8505c were observed. The second combination of vemurafenib and rapamycin amplified cell death in BCPAP cells. We conclude that combination of BRAFV600E and mTOR inhibition forms the basis of a treatment regimen that should be further investigated in in vivo model systems. Metformin or rapamycin adjuvant treatment may provide clinical benefits with minimal side effects to BRAFV600E-positive advanced thyroid cancer patients treated with vemurafenib. PMID:26284586
Research activities at the Loma Linda University and Proton Treatment Facility--an overview
NASA Technical Reports Server (NTRS)
Nelson, G. A.; Green, L. M.; Gridley, D. S.; Archambeau, J. O.; Slater, J. M.
2001-01-01
The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural research projects supported by the program. These include space craft electronic parts and shielding testing as well as tumorigenesis and animal behavior experiments. An overview of research projects currently underway at LLU is also described. These include: 1) acute responses of the C57Bl/6 mouse immune system, 2) modulation of gene expression in the nematode C. elegans and rat thyroid cells, 3) quantitation of dose tolerance in rat CNS microvasculature, 4) behavioral screening of whole body proton and iron ion-irradiated C57Bl/6 mice, and 5) investigation of the role of cell integration into epithelial structures on responses to radiation.
Postotic and preotic cranial neural crest cells differently contribute to thyroid development.
Maeda, Kazuhiro; Asai, Rieko; Maruyama, Kazuaki; Kurihara, Yukiko; Nakanishi, Toshio; Kurihara, Hiroki; Miyagawa-Tomita, Sachiko
2016-01-01
Thyroid development and formation vary among species, but in most species the thyroid morphogenesis consists of five stages: specification, budding, descent, bilobation and folliculogenesis. The detailed mechanisms of these stages have not been fully clarified. During early development, the cranial neural crest (CNC) contributes to the thyroid gland. The removal of the postotic CNC (corresponding to rhombomeres 6, 7 and 8, also known as the cardiac neural crest) results in abnormalities of the cardiovascular system, thymus, parathyroid glands, and thyroid gland. To investigate the influence of the CNC on thyroid bilobation process, we divided the CNC into two regions, the postotic CNC and the preotic CNC (from the mesencephalon to rhombomere 5) regions and examined. We found that preotic CNC-ablated embryos had a unilateral thyroid lobe, and confirmed the presence of a single lobe or the absence of lobes in postotic CNC-ablated chick embryos. The thyroid anlage in each region-ablated embryos was of a normal size at the descent stage, but at a later stage, the thyroid in preotic CNC-ablated embryos was of a normal size, conflicting with a previous report in which the thyroid was reduced in size in the postotic CNC-ablated embryos. The postotic CNC cells differentiated into connective tissues of the thyroid in quail-to-chick chimeras. In contrast, the preotic CNC cells did not differentiate into connective tissues of the thyroid. We found that preotic CNC cells encompassed the thyroid anlage from the specification stage to the descent stage. Finally, we found that endothelin-1 and endothelin type A receptor-knockout mice and bosentan (endothelin receptor antagonist)-treated chick embryos showed bilobation anomalies that included single-lobe formation. Therefore, not only the postotic CNC, but also the preotic CNC plays an important role in thyroid morphogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Bagué, Sílvia; Rodríguez, Ingrid M; Prat, Jaime
2002-11-01
Ten mucinous cystic ovarian tumors that contained sarcoma-like mural nodules are described. The nodules were studied by conventional and immunohistochemical methods. The sarcoma-like mural nodules occurred predominantly in middle-aged women, were multiple and sharply demarcated from the adjacent mucinous tumor, had small size, and exhibited a heterogeneous cell population. Distinction of these lesions from true sarcomatous nodules and foci of anaplastic carcinoma is important because of the worse prognosis of the two latter tumors compared with the favorable behavior of the sarcoma-like mural nodules. Six of the eight patients with follow-up information were alive and clinically free of recurrence at a mean follow-up interval of 12 years. Two patients died of other causes (thyroid and breast carcinomas). The nature of the nodules is not clear. Sarcoma-like mural nodules probably represent a reactive and self-limited phenomenon within a neoplasia. Their coexpression of vimentin and cytokeratins is consistent with an origin from submesothelial mesenchymal cells, which undergo partial transformation into epithelial cells.
2014-01-01
Background BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. Methods A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. Results Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. Conclusions Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice. PMID:24957380
Thyroid Regeneration: Characterization of Clear Cells After Partial Thyroidectomy
Ozaki, Takashi; Matsubara, Tsutomu; Seo, Daekwan; Okamoto, Minoru; Nagashima, Kunio; Sasaki, Yoshihito; Hayase, Suguru; Murata, Tsubasa; Liao, Xiao-Hui; Hanson, Jeffrey; Rodriguez-Canales, Jaime; Thorgeirsson, Snorri S.; Kakudo, Kennichi; Refetoff, Samuel
2012-01-01
Although having the capacity to grow in response to a stimulus that perturbs the pituitary-thyroid axis, the thyroid gland is considered not a regenerative organ. In this study, partial thyroidectomy (PTx) was used to produce a condition for thyroid regeneration. In the intact thyroid gland, the central areas of both lobes served as the proliferative centers where microfollicles, and bromodeoxyuridine (BrdU)-positive and/or C cells, were localized. Two weeks after PTx, the number of BrdU-positive cells and cells with clear or faintly eosinophilic cytoplasm were markedly increased in the central area and continuous to the cut edge. Clear cells were scant in the cytoplasm, as determined by electron microscopy; some retained the characteristics of calcitonin-producing C cells by having neuroendocrine granules, whereas others retained follicular cell-specific features, such as the juxtaposition to a lumen with microvilli. Some cells were BrdU-positive and expressed Foxa2, the definitive endoderm lineage marker. Serum TSH levels drastically changed due to the thyroidectomy-induced acute reduction in T4-generating tissue, resulting in a goitrogenesis setting. Microarray followed by pathway analysis revealed that the expression of genes involved in embryonic development and cancer was affected by PTx. The results suggest that both C cells and follicular cells may be altered by PTx to become immature cells or immature cells that might be derived from stem/progenitor cells on their way to differentiation into C cells or follicular cells. These immature clear cells may participate in the repair and/or regeneration of the thyroid gland. PMID:22454152
Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells
NASA Astrophysics Data System (ADS)
Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa
2014-11-01
Polycyclic aromatic hydrocarbons (PAHs) are found in ambient aerosols and particulate matter. Experimental studies have shown that PAHs and related chemicals can induce toxicological effects. The present study aimed to investigate the effects of PAHs and their derivatives on the respiratory and immune systems and the underlying mechanisms. The human bronchial epithelial cell line BEAS-2B was exposed to PAHs and their derivatives, and the cytotoxicity and proinflammatory protein expression were then investigated. A cytotoxic effect was observed in BEAS-2B exposed to PAH derivatives such as naphthoquinone (NQ), phenanthrenequinone (PQ), 1-nitropyrene (1-NP), and 1-aminopyrene (1-AP). In addition, 1,2-NQ and 9,10-PQ showed more effective cytotoxicity than 1,4-NQ and 1,4-PQ, respectively. Pyrene showed a weak cytotoxic effect. On the other hand, naphthalene and phenanthrene showed no significant effects. Pyrene, 1-NP, and 1-AP also increased intercellular adhesion molecule-1 expression and interleukin-6 production in BEAS-2B. The increase was partly suppressed by protein kinase inhibitors such as the epidermal growth factor receptor-selective tyrosine kinase inhibitor and nuclear receptor antagonists such as the thyroid hormone receptor antagonist. The present study suggests that the toxicological effects of chemicals may be related to the different activities resulting from their structures, such as numbers of benzene rings and functional groups. Furthermore, the chemical-induced increase in proinflammatory protein expression in bronchial epithelial cells was possibly a result of the activation of protein kinase pathways and nuclear receptors. The increase may partly contribute to the adverse health effects of atmospheric PAHs.
Metabolic Reprogramming in Thyroid Carcinoma
Coelho, Raquel Guimaraes; Fortunato, Rodrigo S.; Carvalho, Denise P.
2018-01-01
Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer. PMID:29629339
Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter
2013-01-01
Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD.
Small cell lung cancer with metastasis to the thyroid in a patient with toxic multinodular goiter.
Ozgu, Eylem Sercan; Gen, Ramazan; Ilvan, Ahmet; Ozge, Cengiz; Polat, Ayşe; Vayisoglu, Yusuf
2012-11-01
Thyroid metastasis of lung cancer is rarely observed in clinical practice. The primary cancers which metastasize to the thyroid gland are mostly renal cell carcinoma, lung cancer, and breast cancer. Transient destructive thyrotoxicosis is caused by massive metastasis of extrathyroid tumors. We herein present a case report of a patient with small cell carcinoma of lung with metastasis to the thyroid and thyrotoxicosis due to toxic multinodular goiter. A 66-year-old man complained of swelling around the right side of the neck, dyspnea, progressive weight loss, and palpitation starting since 3 months before his admission. The patient was diagnosed with small cell carcinoma of lung with metastasis to the thyroid and thyrotoxicosis due to toxic multinodular goiter. The case report presented here illustrates the challenge of making a definitive and adequate diagnosis, particularly if the patient presents with 2 potential causes of thyrotoxicosis. Thyroid scintigraphy is an important tool for differential diagnosis of thyrotoxicosis.
A branching morphogenesis program governs embryonic growth of the thyroid gland
Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L.; Fagman, Henrik
2018-01-01
ABSTRACT The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1+ cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. PMID:29361553
A branching morphogenesis program governs embryonic growth of the thyroid gland.
Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L; Fagman, Henrik; Nilsson, Mikael
2018-01-25
The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1 + cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. © 2018. Published by The Company of Biologists Ltd.
Morita, Koji; Sakamoto, Takahiko; Ota, Shuji; Masugi, Hideo; Chikuta, Ikumi; Mashimo, Yamato; Edo, Naoki; Tokairin, Takuo; Seki, Nobuhiko; Ishikawa, Toshio
2017-01-01
It has been shown that metastases to the thyroid from extrathyroidal malignancies occur as solitary or multiple nodules, or may involve the whole thyroid gland diffusely. However, diffuse metastasis of gastric cancer to the thyroid is extremely rare. Here, we report a case of a 74-year-old woman with diffuse infiltration of gastric adenocarcinoma (signet-ring-cell carcinoma/poorly differentiated adenocarcinoma) cells in the thyroid. The pathological diagnosis was made based on upper gastrointestinal endoscopy with biopsy and fine-needle aspiration cytology of the thyroid. An 18F-FDG PET/CT revealed multiple lesions with increased uptake, including the bilateral thyroid gland. On thyroid ultrasound examination, diffuse enlargement with internal heterogeneity and hypoechoic reticular lines was observed. On color Doppler imaging, a blood-flow signal was not detected in these hypoechoic lines. These findings were similar to those of diffuse metastases caused by other primary cancers, such as lung cancer, as reported earlier. Therefore, the presence of hypoechoic reticular lines without blood-flow signals is probably common to diffuse thyroid metastasis from any origin and an important diagnostic finding. This is the first report to show detailed ultrasound findings of diffuse gastric cancer metastasis to the thyroid gland using color Doppler.
NEW DEVELOPMENTS IN THE DIAGNOSIS AND TREATMENT OF THYROID CANCER
Schneider, David F.; Chen, Herbert
2013-01-01
Thyroid cancer exists in several forms. Differentiated thyroid cancers include papillary and follicular histologies. These tumors exist along a spectrum of differentiation, and their incidence continues to climb. A number of advances in the diagnosis and treatment of differentiated thyroid cancers now exist. These include molecular diagnostics and more advanced strategies for risk stratification. Medullary cancer arises from the parafollicular cells and not the follicular cells. Therefore, diagnosis and treatment differs from differentiated thyroid tumors. Genetic testing and newer adjuvant therapies has changed the diagnosis and treatment of medullary thyroid cancer. This review will focus on the epidemiology, diagnosis, work-up, and treatment of both differentiated and medullary thyroid cancers, focusing specifically on newer developments in the field. PMID:23797834
Arriagada, Alejandro A.; Albornoz, Eduardo; Opazo, Ma. Cecilia; Becerra, Alvaro; Vidal, Gonzalo; Fardella, Carlos; Michea, Luis; Carrasco, Nancy; Simon, Felipe; Elorza, Alvaro A.; Bueno, Susan M.; Kalergis, Alexis M.
2015-01-01
Na+/I− symporter (NIS) mediates iodide (I−) uptake in the thyroid gland, the first and rate-limiting step in the biosynthesis of the thyroid hormones. The expression and function of NIS in thyroid cells is mainly regulated by TSH and by the intracellular concentration of I−. High doses of I− for 1 or 2 days inhibit the synthesis of thyroid hormones, a process known as the Wolff-Chaikoff effect. The cellular mechanisms responsible for this physiological response are mediated in part by the inhibition of I− uptake through a reduction of NIS expression. Here we show that inhibition of I− uptake occurs as early as 2 hours or 5 hours after exposure to excess I− in FRTL-5 cells and the rat thyroid gland, respectively. Inhibition of I− uptake was not due to reduced NIS expression or altered localization in thyroid cells. We observed that incubation of FRTL-5 cells with excess I− for 2 hours increased H2O2 generation. Furthermore, the inhibitory effect of excess I− on NIS-mediated I− transport could be recapitulated by H2O2 and reverted by reactive derived oxygen species scavengers. The data shown here support the notion that excess I− inhibits NIS at the cell surface at early times by means of a posttranslational mechanism that involves reactive derived oxygen species. PMID:25594695
Huang, Chunyu; Liang, Peiyan; Diao, Lianghui; Liu, Cuicui; Chen, Xian; Li, Guangui; Chen, Cong; Zeng, Yong
2015-01-01
Thyroid autoimmunity (TAI), which is defined as the presence of autoantibodies against thyroid peroxidase (TPO) and/or thyroglobulin (TG), is related to repeated implantation failure (RIF). It is reported that TAI was involved in reproductive failure not only through leading thyroid function abnormality, but it can also be accompanied with immune imbalance. Therefore, this study was designed to investigate the association of thyroid function, immune status and TAI in women with RIF. Blood samples were drawn from 72 women with RIF to evaluate the prevalence of TAI, the thyroid function, the absolute numbers and percentages of lymphocytes. The prevalence of thyroid function abnormality in RIF women with TAI was not significantly different from that in RIF women without TAI (χ2 = 0.484, p > 0.05). The absolute number and percentage of T cells, T helper (Th) cells, B cells and natural killer (NK) cells were not significantly different in RIF women with TAI compared to those without TAI (all p > 0.05). The percentage of T cytotoxicity (Tc) cells was significantly decreased in RIF women with TAI compared to those without TAI (p < 0.05). Meanwhile, Th/Tc ratio was significantly increased (p < 0.05). These results indicated that the decreased Tc percentage and increased Th/Tc ratio may be another influential factor of adverse pregnancy outcomes in RIF women with TAI. PMID:26308040
Differential expression of glucose transporters in normal and pathologic thyroid tissue.
Matsuzu, Kenichi; Segade, Fernando; Matsuzu, Utako; Carter, Aaron; Bowden, Donald W; Perrier, Nancy D
2004-10-01
Malignant cells demonstrate increased glucose uptake and utilization. Immunohistochemical studies have suggested that enhanced glucose uptake in cancer cells may be caused by the overexpression of glucose transporters (GLUTs), in most cases GLUT1 and/or GLUT3. The aim of this study was to examine in detail the expression pattern and levels of GLUT genes in normal and pathologic thyroid tissues and to evaluate the clinical significance of GLUT mRNA levels. One hundred fifty-two surgically resected thyroid tissue samples from 103 patients were evaluated. Samples included: normal thyroid tissue (n = 58), benign thyroid disease (n = 61), and thyroid carcinoma (n = 33). Expression of the GLUT1, GLUT2, GLUT3, GLUT4, and GLUT10 genes were examined by reverse transcription-polymerase chain reaction (RT-PCR) and mRNA levels were quantitated by real-time RT-PCR. All thyroid parenchymal cells expressed GLUT1, GLUT3, GLUT4, and GLUT10. GLUT1 showed increased expression in carcinoma cases (p < 0.0001) and also in comparison with paired normal tissue samples from the same patient (p < 0.0001). Other GLUTs were statistically unchanged in pathologic tissues. These results are consistent with the theory that GLUT1 is upregulated during carcinogenesis and may play a major role in enhanced glucose uptake in thyroid cancer cells.
Thyroid-like follicular carcinoma of the kidney: A report of two cases and literature review
LIN, YUN-ZHI; WEI, YONG; XU, NING; LI, XIAO-DONG; XUE, XUE-YI; ZHENG, QING-SHUI; JIANG, TAO; HUANG, JIN-BEI
2014-01-01
There have only been a few reports of thyroid-like follicular carcinoma of the kidney (TLFCK) to date. In the present study, two patients with TLFCK are reported. Patient 1 was a 65-year-old male exhibiting repeated hematuria and right back pain. No tumors were located in the patient’s thyroid or lungs. The physical examination revealed percussion tenderness over the right kidney region was noticed. Enhanced computed tomography (CT) indicated a right renal pelvic carcinoma, for which the patient underwent a radical right nephrectomy. Patient 2 was a 59-year-old male with a mass in the right kidney, located during a health examination and who exhibited no obvious clinical symptoms. The patient was clinically diagnosed with right renal carcinoma, confirmed by an enhanced CT. The patient underwent a radical right nephrectomy. The clinical features, imaging results, pathology, immune phenotypes, treatment and prognosis were analyzed. The associated literature was also reviewed. The cut surface of each tumor showed gray-white material with a central solid area, including scattered gray-brown necrotic and gray hemorrhagic areas and small cystic cavities. Microscopically, the arrangement of the tumor cells mimicked thyroid follicles with red-stained colloid-like material in the lumen. No renal hilar lymph node involvement was noted. The tumor tissue of patient 1 was immunohistochemically positive for vimentin, epithelial membrane antigen (EMA), cytokeratin (CK), CK7, and neuron specific enolase; and negative for CK34BE12, synapsin (Syn), CK20, cluster of differentiation 56 (CD56), CD10, Wilm’s tumor-1 (WT-1), CD34, CD57, P53, CD99, thyroid transcription factor-1 (TTF-1), CD15 and thyroglobulin (TG); with a Ki-67 labeling index (LI) of 30%. The tumor tissue of patient 2 was immunohistochemically positive for vimentin, EMA, CK7 and CK20; and negative for CD56, CD10, WT-1, CD34, CD57, P53, CD117, TTF-1, CD15, CD99, TG, chromogranin A and Syn; with a Ki-67 LI of 20%. TLFCK is a rare renal tumor with low malignancy but medium invasiveness. It morphologically resembles thyroid follicular carcinoma but does not express TTF-1 or TG. Radical nephrectomy can achieve good patient outcomes. PMID:24932236
Thyroid-like follicular carcinoma of the kidney: A report of two cases and literature review.
Lin, Yun-Zhi; Wei, Yong; Xu, Ning; Li, Xiao-Dong; Xue, Xue-Yi; Zheng, Qing-Shui; Jiang, Tao; Huang, Jin-Bei
2014-06-01
There have only been a few reports of thyroid-like follicular carcinoma of the kidney (TLFCK) to date. In the present study, two patients with TLFCK are reported. Patient 1 was a 65-year-old male exhibiting repeated hematuria and right back pain. No tumors were located in the patient's thyroid or lungs. The physical examination revealed percussion tenderness over the right kidney region was noticed. Enhanced computed tomography (CT) indicated a right renal pelvic carcinoma, for which the patient underwent a radical right nephrectomy. Patient 2 was a 59-year-old male with a mass in the right kidney, located during a health examination and who exhibited no obvious clinical symptoms. The patient was clinically diagnosed with right renal carcinoma, confirmed by an enhanced CT. The patient underwent a radical right nephrectomy. The clinical features, imaging results, pathology, immune phenotypes, treatment and prognosis were analyzed. The associated literature was also reviewed. The cut surface of each tumor showed gray-white material with a central solid area, including scattered gray-brown necrotic and gray hemorrhagic areas and small cystic cavities. Microscopically, the arrangement of the tumor cells mimicked thyroid follicles with red-stained colloid-like material in the lumen. No renal hilar lymph node involvement was noted. The tumor tissue of patient 1 was immunohistochemically positive for vimentin, epithelial membrane antigen (EMA), cytokeratin (CK), CK7, and neuron specific enolase; and negative for CK34BE12, synapsin (Syn), CK20, cluster of differentiation 56 (CD56), CD10, Wilm's tumor-1 (WT-1), CD34, CD57, P53, CD99, thyroid transcription factor-1 (TTF-1), CD15 and thyroglobulin (TG); with a Ki-67 labeling index (LI) of 30%. The tumor tissue of patient 2 was immunohistochemically positive for vimentin, EMA, CK7 and CK20; and negative for CD56, CD10, WT-1, CD34, CD57, P53, CD117, TTF-1, CD15, CD99, TG, chromogranin A and Syn; with a Ki-67 LI of 20%. TLFCK is a rare renal tumor with low malignancy but medium invasiveness. It morphologically resembles thyroid follicular carcinoma but does not express TTF-1 or TG. Radical nephrectomy can achieve good patient outcomes.
Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone
The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...
Shirogane, Yuta; Takeda, Makoto; Tahara, Maino; Ikegame, Satoshi; Nakamura, Takanori; Yanagi, Yusuke
2010-07-02
Measles virus (MV), an enveloped negative-strand RNA virus, remains a major cause of morbidity and mortality in developing countries. MV predominantly infects immune cells by using signaling lymphocyte activation molecule (SLAM; also called CD150) as a receptor, but it also infects polarized epithelial cells, forming tight junctions in a SLAM-independent manner. Although the ability of MV to infect polarized epithelial cells is thought to be important for its transmission, the epithelial cell receptor for MV has not been identified. A transcriptional repressor, Snail, induces epithelial-mesenchymal transition (EMT), in which epithelial cells lose epithelial cell phenotypes, such as adherens and tight junctions. In this study, EMT was induced by expressing Snail in a lung adenocarcinoma cell line, II-18, which is highly susceptible to wild-type MV. Snail-expressing II-18 cells lost adherens and tight junctions. Microarray analysis confirmed the induction of EMT in II-18 cells and suggested a novel function of Snail in protein degradation and distribution. Importantly, wild-type MV no longer entered EMT-induced II-18 cells, suggesting that the epithelial cell receptor is down-regulated by the induction of EMT. Other polarized cell lines, NCI-H358 and HT-29, also lost susceptibility to wild-type MV when EMT was induced. However, the complete formation of tight junctions rather reduced MV entry into HT-29 cells. Taken together, these data suggest that the unidentified epithelial cell receptor for MV is involved in the formation of epithelial intercellular junctions.
2013-01-11
Anaplastic Thyroid Cancer; Insular Thyroid Cancer; Metastatic Parathyroid Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Parathyroid Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Thyroid Cancer; Recurrent Verrucous Carcinoma of the Larynx; Stage III Follicular Thyroid Cancer; Stage III Papillary Thyroid Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Larynx; Stage IIIB Non-small Cell Lung Cancer; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVA Basal Cell Carcinoma of the Lip; Stage IVA Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Follicular Thyroid Cancer; Stage IVA Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Lymphoepithelioma of the Oropharynx; Stage IVA Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVA Papillary Thyroid Cancer; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVB Basal Cell Carcinoma of the Lip; Stage IVB Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Follicular Thyroid Cancer; Stage IVB Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVB Lymphoepithelioma of the Oropharynx; Stage IVB Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVB Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVB Papillary Thyroid Cancer; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVC Basal Cell Carcinoma of the Lip; Stage IVC Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Follicular Thyroid Cancer; Stage IVC Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVC Lymphoepithelioma of the Oropharynx; Stage IVC Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Stage IVC Mucoepidermoid Carcinoma of the Oral Cavity; Stage IVC Papillary Thyroid Cancer; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Thryoid Gland Nonmedullary Carcinoma; Thyroid Gland Medullary Carcinoma; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary
Zn(II)-curc targets p53 in thyroid cancer cells.
Garufi, Alessia; D'Orazi, Valerio; Crispini, Alessandra; D'Orazi, Gabriella
2015-10-01
TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.
Vattimo, A; Bertelli, P; Cintorino, M; Burroni, L; Volterrani, D; Vella, A; Lazzi, S
1998-05-01
Single injection dual-phase scintigraphy (early and late acquisitions) with 99mTc-MIBI was used to differentiate benign and malignant hot thyroid nodules. Thirteen euthyroid and two hyperthyroid patients displaying a hot thyroid nodule on the 99mTc scan due to an autonomously functioning thyroid nodule (AFTN) underwent early (15-30 min) and late (3-4 hr) thyroid scintigraphy after the administration of 740-1000 MBq 99mTc-MIBI. Visual scoring was done to assess nodular tracer uptake and retention. In addition, the nodular-to-thyroid (N/T) uptake ratio in the early and late image and the washout rates (WO) from the nodule and thyroidal tissue were measured. All patients underwent thyroid surgery. Histopathology revealed a Hürthle cell tumor in three nodules, a benign adenoma with oxyphilic metaplasia in two nodules and a benign adenoma without oxyphilic cells in the remaining 10 nodules. The Hürthle cell tumor nodules displayed intense and persistent uptake of 99mTc-MIBI (N/T was 2.81 +/- 0.52 and 5.53 +/- 1.06 in early and late images, respectively; WO from the nodule was 12.33 +/- 0.47, WO from the thyroidal tissue was 22.00 +/- 3.56). The benign nodules showed intense uptake in the early image and intense uptake to absent retention in the late image (N/T was 2.94 +/- 1.31 and 1.62 +/- 0.50 in the early and late images, respectively; WO from the nodule was 20.25 +/- 2.92, WO from the thyroidal tissue was 20.33 +/- 2.92). Single injection dual-phase 99mTc-MIBI scintigraphy of the thyroid with AFTN can identify nodules as a result of the activity of a Hürthle cell tumor, since these tumors cause intense and persistent tracer uptake in contrast with a benign AFTN.
Vanden Borre, Pierre; McFadden, David G.; Gunda, Viswanath; Sadow, Peter M.; Varmeh, Shohreh; Bernasconi, Maria; Jacks, Tyler
2014-01-01
Background: While the development of new treatments for aggressive thyroid cancer has advanced in the last 10 years, progress has trailed headways made with other malignancies. A lack of reliable authenticated human cell lines and reproducible animal models is one major roadblock to preclinical testing of novel therapeutics. Existing xenograft and orthotopic mouse models of aggressive thyroid cancer rely on the implantation of highly passaged human thyroid carcinoma lines in immunodeficient mice. Genetically engineered models of papillary and undifferentiated (anaplastic) thyroid carcinoma (PTC and ATC) are immunocompetent; however, slow and stochastic tumor development hinders high-throughput testing. Novel models of PTC and ATC in which tumors arise rapidly and synchronously in immunocompetent mice would facilitate the investigation of novel therapeutics and approaches. Methods: We characterized and utilized mouse cell lines derived from PTC and ATC tumors arising in genetically engineered mice with thyroid-specific expression of endogenous BrafV600E/WT and deletion of either Trp53 (p53) or Pten. These murine thyroid cancer cells were transduced with luciferase- and GFP-expressing lentivirus and implanted into the thyroid glands of immunocompetent syngeneic B6129SF1/J mice in which the growth characteristics were assessed. Results: Large locally aggressive thyroid tumors form within one week of implantation. Tumors recapitulate their histologic subtype, including well-differentiated PTC and ATC, and exhibit CD3+, CD8+, B220+, and CD163+ immune cell infiltration. Tumor progression can be followed in vivo using luciferase and ex vivo using GFP. Metastatic spread is not detected at early time points. Conclusions: We describe the development of the next generation of murine orthotopic thyroid cancer models. The implantation of genetically defined murine BRAF-mutated PTC and ATC cell lines into syngeneic mice results in rapid and synchronous tumor formation. This model allows for preclinical investigation of novel therapeutics and/or therapeutic combinations in the context of a functional immune system. PMID:24295207
Schlemmer, Scott R; Kaufman, David G
2012-12-01
Reduced intercellular communication via gap junctions is correlated with carcinogenesis. Gap junctional intercellular communication (GJIC), between normal human endometrial epithelial cells is enhanced when endometrial stromal cells were present in culture. This enhancement of GJIC between normal epithelial cells also occurs when they are cultured in medium conditioned by stromal cells. This observation indicated that a soluble compound (or compounds) produced and secreted by stromal cells mediates GJIC in epithelial cells. Previous studies have shown that endometrial stromal cells release prostaglandin E(2) (PGE(2)) and prostaglandin F(2α) (PGF(2α)) under physiological conditions. When we evaluated the response of normal endometrial epithelial cells to various concentrations of PGE(2,) we found enhanced GJIC with 1nM PGE(2). This is a smaller increase in GJIC than that induced by medium conditioned by stromal cells. When the extracellular concentration of PGE(2) was measured after incubation with stromal cells, it was found to be similar to the concentrations showing maximal GJIC between the normal epithelial cells. When indomethacin was used to inhibit prostaglandin synthesis by stromal cells, GJIC was reduced but not eliminated between normal endometrial epithelial cells. These observations suggest that although PGE(2) secreted by stromal cells is an important mediator of GJIC between the epithelial cells, it is not the sole mediator. Transformed endometrial epithelial cells did not demonstrate GJIC even in the presence of stromal cells. However, we were able to re-establish GJIC in transformed epithelial cells when we added PGE(2) to the cells. Our findings show that PGE(2) may serve as an intercellular mediator between stromal and epithelial cells that regulates GJIC in normal and malignant epithelial cells. This suggests that maintenance of GJIC by preserving or replacing PGE(2) secretion by endometrial stromal cells may have the potential to suppress carcinogenesis in endometrial epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Multiple squamous cells in thyroid fine needle aspiration: Friends or foes?
Gage, Heather; Hubbard, Elizabeth; Nodit, Laurentia
2016-08-01
Abundant squamous cells are rarely encountered in thyroid FNA with only few case reports noted in the literature. Their presence and cytologic features may pose a diagnostic dilemma and challenges for proper classification and follow-up. We intend to gain more insight into the frequency of this finding and its clinical significance. Our electronic records were searched over 16 years to reveal 15 thyroid FNAs with abundant squamous cells. The available cytology and surgical resection slides were reviewed and radiologic records and clinical follow-up was documented. Only 15 out of 8811 thyroid FNAs from our department contained predominantly squamous cells (0.17%) of which two were interpreted as nondiagnostic, four as atypical, eight as benign, and one malignant. Surgical follow-up was available in eight cases only with benign lesions representing the majority of the cases (squamous metaplasia in Hashimoto thyroiditis, benign epidermoid/branchial cleft or thyroglossal duct cysts, and one case squamous cell carcinoma). The cases without surgical resection were stable on subsequent ultrasound studies. Thyroid aspirates with predominance of squamous cells cannot be classified in the current Bethesda categories. Even when interpreted as atypical or equivocal, the squamous cells present in our small case series were mostly benign. The only malignant case was easily identified cytologically because of its higher degree of differentiation. The most common pitfall for atypical squamous cells in these aspirates was squamous metaplasia in the setting of Hashimoto thyroiditis and degenerative changes. Diagn. Cytopathol. 2016;44:676-681. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V
2013-06-01
Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.
MicroRNA-142-5p contributes to Hashimoto's thyroiditis by targeting CLDN1.
Zhu, Jin; Zhang, Yuehua; Zhang, Weichen; Zhang, Wei; Fan, Linni; Wang, Lu; Liu, Yixiong; Liu, Shasha; Guo, Ying; Wang, Yingmei; Yi, Jun; Yan, Qingguo; Wang, Zhe; Huang, Gaosheng
2016-06-08
MicroRNAs have the potential as diagnostic biomarkers and therapeutic targets in autoimmune diseases. However, very limited studies have evaluated the expression of microRNA profile in thyroid gland related to Hashimoto's thyroiditis (HT). MicroRNA microarray expression profiling was performed and validated by quantitative RT-PCR. The expression pattern of miR-142-5p was detected using locked nucleic acid-in situ hybridization. The target gene was predicted and validated using miRNA targets prediction database, gene expression analysis, quantitative RT-PCR, western blot, and luciferase assay. The potential mechanisms of miR-142-5p were studied using immunohistochemistry, immunofluorescence, and quantitative assay of thyrocyte permeability. Thirty-nine microRNAs were differentially expressed in HT (Fold change ≥2, P < 0.05) and miR-142-5p, miR-142-3p, and miR-146a were only high expression in HT thyroid gland (P < 0.001). miR-142-5p, which was expressed at high levels in injured follicular epithelial cells, was also detected in HT patient serum and positively correlated with thyroglobulin antibody (r ≥ 0.6, P < 0.05). Furthermore, luciferase assay demonstrated CLDN1 was the direct target gene of miR-142-5p (P < 0.05), and Immunohistochemical staining showed a reverse expression patterns with miR-142-5p and CLDN1. Overexpression of miR-142-5p in thyrocytes resulted in reducing of the expression of claudin-1 both in mRNA and protein level (P = 0.032 and P = 0.009 respectively) and increasing the permeability of thyrocytes monolayer (P < 0.01). Our findings indicate a previously unrecognized mechanism that miR-142-5p, targeting CLDN1, plays an important role in HT pathogenesis.
Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells
Suhane, Sonal; Ramanujan, V Krishnan
2011-01-01
Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435
What Does the Thyroid Gland Do?
... it helps other cells do their job. hypothyroidism (hi-poh-THY-royd-izm): when your thyroid gland ... thyroid hormone (“hypo” means ‘under’ or ‘below’). hyperthyroidism (hi-purr-THY-royd-izm): when your thyroid gland ...
Igala, Marielle; Nsame, Daniela; Ova, Jennie Dorothée Guelongo Okouango; Cherkaoui, Siham; Oukkach, Bouchra; Quessar, Asmae
2015-01-01
Sickle cell anemia results from a single amino acid substitution in the gene encoding the β-globin subunit. Polymerization of deoxygenated sickle hemoglobin leads to decreased deformability of red blood cells. Hashimoto's thyroiditis is a common thyroid disease now recognized as an auto-immune thyroid disorder, it is usually thought to be haemolytic autoimmune anemia. We report the case of a 32 years old women admitted for chest pain and haemolysis anemia in which Hashimoto's thyroiditis and sickle cell anemia were found. In our observation the patient is a young woman whose examination did not show signs of goitre but the analysis of thyroid function tests performed before an auto-immune hemolytic anemia (confirmed by a high level of unconjugated bilirubin and a Coombs test positive for IgG) has found thyroid stimulating hormone (TSH) and positive thyroid antibody at rates in excess of 4.5 times their normal value. In the same period, as the hemolytic anemia, and before the atypical chest pain and anguish they generated in the patient, the search for hemoglobinopathies was made despite the absence of a family history of haematological disease or painful attacks in childhood. Patient electrophoresis's led to research similar cases in the family. The mother was the first to be analyzed with ultimately diagnosed with sickle cell trait have previously been ignored. This case would be a form with few symptoms because the patient does not describe painful crises in childhood or adolescence.
Delivanis, Danae A; Gustafson, Michael P; Bornschlegl, Svetlana; Merten, Michele M; Kottschade, Lisa; Withers, Sarah; Dietz, Allan B; Ryder, Mabel
2017-08-01
Thyroid immune-related adverse events (irAEs) in patients treated with programmed death receptor-1 (PD-1) blockade are increasingly recognized as one of the most common adverse effects. Our aim was to determine the incidence and examine the potential mechanisms of anti-PD-1-induced thyroid irAEs. Single-center, retrospective cohort study. We studied 93 patients with advanced cancer (ages 24 to 82 years; 60% males) who received at least one infusion of pembrolizumab. Thyroid test results and thyroid imaging modalities were reviewed. Comprehensive 10-color flow cytometry of peripheral blood was performed. Thirteen (14%) thyroid irAEs were observed. Thyroiditis occurred in seven patients (54%), from which four recovered. New onset of hypothyroidism overt/subclinical developed in three patients. Levothyroxine dosing required doubling in three patients with a known history of hypothyroidism. Thyroperoxidase antibodies were positive in the minority of the patients [4/13 (31%)] and diffuse increased 18fludeoxyglucose uptake of the thyroid gland was observed in the majority [7/11 (64%)] of patients. We observed more circulating CD56+CD16+ natural killer (NK) cells and an elevated HLA-DR surface expression in the inflammatory intermediate CD14+CD16+ monocytes in anti-PD-1-treated patients. Thyroid dysfunction is common in cancer patients treated with pembrolizumab. Reversible destructive thyroiditis and overt hypothyroidism are the most common clinical presentations. The mechanism of thyroid destruction appears independent of thyroid autoantibodies and may include T cell, NK cell, and/or monocyte-mediated pathways. Because the thyroid is a frequent target of anti-PD-1 therapies, patients with therapeutically refractory thyroid cancer may be ideal candidates for this treatment. Copyright © 2017 Endocrine Society
Badziong, Julia; Ting, Saskia; Synoracki, Sarah; Tiedje, Vera; Brix, Klaudia; Brabant, Georg; Moeller, Lars Christian; Schmid, Kurt Werner; Fuhrer, Dagmar; Zwanziger, Denise
2017-09-01
Thyroid hormone (TH) transporters are expressed in thyrocytes and most play a role in TH release. We asked whether expression of the monocarboxylate transporter 8 (MCT8) and the L-type amino acid transporters LAT2 and LAT4 is changed with thyrocyte dedifferentiation and in hyperfunctioning thyroid tissues. Protein expression and localization of transporters was determined by immunohistochemistry in human thyroid specimen including normal thyroid tissue (NT, n = 19), follicular adenoma (FA, n = 44), follicular thyroid carcinoma (FTC, n = 45), papillary thyroid carcinoma (PTC, n = 40), anaplastic thyroid carcinoma (ATC, n = 40) and Graves' disease (GD, n = 50) by calculating the 'hybrid' (H) score. Regulation of transporter expression was investigated in the rat follicular thyroid cell line PCCL3 under basal and thyroid stimulating hormone (TSH) conditions. MCT8 and LAT4 were localized at the plasma membrane, while LAT2 transporter showed cytoplasmic localization. MCT8 expression was downregulated in benign and malignant thyroid tumours as compared to NT. In contrast, significant upregulation of MCT8, LAT2 and LAT4 was found in GD. Furthermore, a stronger expression of MCT8 was demonstrated in PCCL3 cells after TSH stimulation. Downregulation of MCT8 in thyroid cancers qualifies MCT8 as a marker of thyroid differentiation. The more variable expression of LATs in distinct thyroid malignancies may be linked with other transporter properties relevant to altered metabolism in cancer cells, i.e. amino acid transport. Consistent upregulation of MCT8 in GD is in line with increased TH release in hyperthyroidism, an assumption supported by our in vitro results showing TSH-dependent upregulation of MCT8. © 2017 European Society of Endocrinology.
Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A.; Zabinski, Mary C.; Yuen, Constance K.; Lung, Wing Yi; Gower, Adam C.; Belkina, Anna C.; Ramirez, Maria I.; Deng, Jane C.; Quinton, Lee J.; Jones, Matthew R.
2016-01-01
Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia. PMID:27064756
Hertwig's Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars.
Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio
2015-06-29
To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis.
Hertwig’s Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars
Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio
2015-01-01
To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis. PMID:26160988
Multiple Cellular Responses to Serotonin Contribute to Epithelial Homeostasis
Pai, Vaibhav P.; Horseman, Nelson D.
2011-01-01
Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined. Serotonin is emerging as a common autocrine-paracine regulator in epithelia of multiple organs, including the breast. Here we address whether serotonin affects epithelial turnover. Specifically, serotonin's roles in regulating cell shedding, apoptosis and barrier function of the epithelium. Using in vivo studies in mouse and a robust model of differentiated human mammary duct epithelium (MCF10A), we show that serotonin induces mammary epithelial cell shedding and disrupts tight junctions in a reversible manner. However, upon sustained exposure, serotonin induces apoptosis in the replenishing cell population, causing irreversible changes to the epithelial membrane. The staggered nature of these events induced by serotonin slowly shifts the balance in the epithelium from reversible to irreversible. These finding have very important implications towards our ability to control epithelial regeneration and thus address pathologies of aberrant epithelial turnover, which range from degenerative disorders (e.g.; pancreatitis and thyrioditis) to proliferative disorders (e.g.; mastitis, ductal ectasia, cholangiopathies and epithelial cancers). PMID:21390323
Epithelial Cells in Urine: MedlinePlus Lab Test Information
... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...
Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.
Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi
2016-08-01
The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.
2013-01-01
Background Thyroid hormones have been shown to regulate breast cancer cells growth, the absence or reduction of thyroid hormones in cells could provoke a proliferation arrest in G0-G1 or weak mitochondrial activity, which makes cells insensitive to therapies for cancers through transforming into low metabolism status. This biological phenomenon may help explain why treatment efficacy and prognosis vary among breast cancer patients having hypothyroid, hyperthyroid and normal function. Nevertheless, the abnormal thyroid function in breast cancer patients has been considered being mainly caused by thyroid diseases, few studied influence of chemotherapy on thyroid function and whether its alteration during chemotherapy can influence the respose to chemotherapy is still unclear. So, we aimed to find the alterations of thyroid function and non-thyroidal illness syndrome (NTIS) prevalence druing chemotherapy in breast cancer patients, and investigate the influence of thyroid hormones on chemotherapeutic efficacy. Methods Thyroid hormones and NTIS prevalence at initial diagnosis and during chemotherapy were analyzed in 685 breast diseases patients (369 breast cancer, 316 breast benign lesions). The influence of thyroid hormones on chemotherapeutic efficacy was evaluated by chemosensitization test, to compare chemotherapeutic efficacy between breast cancer cells with chemotherapeutics plus triiodothyronine (T3) and chemotherapeutics only. Results In breast cancer, NTIS prevalence at the initial diagnosis was higher and increased during chemotherapy, but declined before the next chemotherapeutic course. Thyroid hormones decreased signigicantly during chemotherapy. T3 can enhance the chemosensitivity of MCF-7 to 5-Fu and taxol, with progression from G0-G1 phase to S phase. The similar chemosensitization role of T3 were found in MDA-MB-231. We compared chemotherapeutic efficacy among groups with different usage modes of T3, finding pretreatment with lower dose of T3, using higher dose of T3 together with 5-Fu or during chemotherapy with 5-Fu were all available to achieve chemosensitization, but pretreatment with lower dose of T3 until the end of chemotherapy may be a safer and more efficient therapy. Conclusions Taken together, thyroid hormones decreasing during chemotherapy was found in lots of breast cancer patients. On the other hand, thyroid hormones can enhance the chemotherapeutic efficacy through gatherring tumor cells in actively proliferating stage, which may provide a new adjuvant therapy for breast cancer in furture, especially for those have hypothyroidism during chemotherapy. PMID:23829347
Ziros, Panos G; Habeos, Ioannis G; Chartoumpekis, Dionysios V; Ntalampyra, Eleni; Somm, Emmanuel; Renaud, Cédric O; Bongiovanni, Massimo; Trougakos, Ioannis P; Yamamoto, Masayuki; Kensler, Thomas W; Santisteban, Pilar; Carrasco, Nancy; Ris-Stalpers, Carrie; Amendola, Elena; Liao, Xiao-Hui; Rossich, Luciano; Thomasz, Lisa; Juvenal, Guillermo J; Refetoff, Samuel; Sykiotis, Gerasimos P
2018-06-01
The thyroid gland has a special relationship with oxidative stress. While generation of oxidative substances is part of normal iodide metabolism during thyroid hormone synthesis, the gland must also defend itself against excessive oxidation in order to maintain normal function. Antioxidant and detoxification enzymes aid thyroid cells to maintain homeostasis by ameliorating oxidative insults, including during exposure to excess iodide, but the factors that coordinate their expression with the cellular redox status are not known. The antioxidant response system comprising the ubiquitously expressed NFE2-related transcription factor 2 (Nrf2) and its redox-sensitive cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1) defends tissues against oxidative stress, thereby protecting against pathologies that relate to DNA, protein, and/or lipid oxidative damage. Thus, it was hypothesized that Nrf2 should also have important roles in maintaining thyroid homeostasis. Ubiquitous and thyroid-specific male C57BL6J Nrf2 knockout (Nrf2-KO) mice were studied. Plasma and thyroids were harvested for evaluation of thyroid function tests by radioimmunoassays and of gene and protein expression by real-time polymerase chain reaction and immunoblotting, respectively. Nrf2-KO and Keap1-KO clones of the PCCL3 rat thyroid follicular cell line were generated using CRISPR/Cas9 technology and were used for gene and protein expression studies. Software-predicted Nrf2 binding sites on the thyroglobulin enhancer were validated by site-directed in vitro mutagenesis and chromatin immunoprecipitation. The study shows that Nrf2 mediates antioxidant transcriptional responses in thyroid cells and protects the thyroid from oxidation induced by iodide overload. Surprisingly, it was also found that Nrf2 has a dramatic impact on both the basal abundance and the thyrotropin-inducible intrathyroidal abundance of thyroglobulin (Tg), the precursor protein of thyroid hormones. This effect is mediated by cell-autonomous regulation of Tg gene expression by Nrf2 via its direct binding to two evolutionarily conserved antioxidant response elements in an upstream enhancer. Yet, despite upregulating Tg levels, Nrf2 limits Tg iodination both under basal conditions and in response to excess iodide. Nrf2 exerts pleiotropic roles in the thyroid gland to couple cell stress defense mechanisms to iodide metabolism and the thyroid hormone synthesis machinery, both under basal conditions and in response to excess iodide.
Morita, Maresuke; Fujita, Naoki; Abe, Momoko; Hayashimoto, Koji; Nakagawa, Takayuki; Nishimura, Ryohei; Tsuzuki, Keiko
2018-06-01
We have previously reported characteristics of canine corneal epithelial cells in vitro and found that canine corneal epithelial cells could maintain their proliferative capacity even after continuous culture without the use of feeder cells and growth promoting additives. The objective of this study was to elucidate proliferative characteristics of canine corneal epithelial cells independent of feeder cells and growth promoting additives, with the aim of developing a spontaneously derived corneal epithelial cell line. Canine and rabbit corneal epithelial cells were harvested from the limbus and cultured with, or without, feeder cells and growth promoting additives, and both were passaged continuously until growth arrest. Canine corneal epithelial cells could proliferate independently, and could be passaged more times than rabbit cells. A canine corneal epithelial cell line, cCEpi, which could be passaged more than 100 times without using feeder cells and growth promoting additives, was established. cCEpi cells maintained a cell morphology close to the primary culture and expressed p63, cytokeratin 15 (K15), and K3. Although changes in colony morphology, shortening of the population doubling time and a heteroploid karyotype were observed, cCEpi was not tumorigenic. Stratified cell sheets cultured from cCEpi were morphologically and immunohistologically similar to sheets cultivated from early passage cells. In conclusion, canine corneal epithelial cells can proliferate independent of feeder cells and growth promoting additives. cCEpi maintains properties similar to normal corneal epithelial cells and could be a useful source for studies in cellular biology and for developing novel therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hashimoto thyroiditis: clinical and diagnostic criteria.
Caturegli, P; De Remigis, A; Rose, N R
2014-01-01
Hashimoto thyroiditis (HT), now considered the most common autoimmune disease, was described over a century ago as a pronounced lymphoid goiter affecting predominantly women. In addition to this classic form, several other clinico-pathologic entities are now included under the term HT: fibrous variant, IgG4-related variant, juvenile form, Hashitoxicosis, and painless thyroiditis (sporadic or post-partum). All forms are characterized pathologically by the infiltration of hematopoietic mononuclear cells, mainly lymphocytes, in the interstitium among the thyroid follicles, although specific features can be recognized in each variant. Thyroid cells undergo atrophy or transform into a bolder type of follicular cell rich in mitochondria called Hürthle cell. Most HT forms ultimately evolve into hypothyroidism, although at presentation patients can be euthyroid or even hyperthyroid. The diagnosis of HT relies on the demonstration of circulating antibodies to thyroid antigens (mainly thyroperoxidase and thyroglobulin) and reduced echogenicity on thyroid sonogram in a patient with proper clinical features. The treatment remains symptomatic and based on the administration of synthetic thyroid hormones to correct the hypothyroidism as needed. Surgery is performed when the goiter is large enough to cause significant compression of the surrounding cervical structures, or when some areas of the thyroid gland mimic the features of a nodule whose cytology cannot be ascertained as benign. HT remains a complex and ever expanding disease of unknown pathogenesis that awaits prevention or novel forms of treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming
2014-01-01
True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804
Huang, Hui; Wang, Zhen-Hua; Cheng, Rui; Cai, Wei-Bin
2013-01-01
The placental hormone leptin has important functions in fetal and neonatal growth, and prevents depressed respiration in leptin-deficient mice. The effect of leptin on respiratory distress suffered by low birth weight and premature infants has been studied. However, it is unclear how leptin enhances lung maturity in the fetus and ameliorates neonatal respiratory distress. In the present study, we found that antenatal treatment with leptin for 2 d significantly enhanced the relative alveolus area and improved the maturity of fetal lungs in a rat model of fetal growth restriction (FGR). Mean birth weight and lung wet weight were higher in the leptin-treated group than in the PBS-treated group, indicating promotion of fetal growth. Leptin upregulated the intracellular expression and extracellular secretion of surfactant protein (SP) A in type-II alveolar epithelial cells (AECs) in vivo and in vitro. Dual positive effects of leptin were found on protein expression and transcriptional activity of thyroid transcription factor-1 (TTF-1), a nuclear transcription essential for branching morphogenesis of the lung and expression of SP-A in type-II AECs. Knockdown of TTF-1 by RNA interference indicated that TTF-1 may play a vital role in leptin-induced SP-A expression. These results suggest that leptin may have great therapeutic potential for the treatment of FGR, and leptin-mediated SP-A induction and lung maturity of the fetus are TTF-1 dependent. PMID:23894445
CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways.
Zhang, Li; Liu, Lianyong; He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang; Tian, Jianqing
2016-08-26
The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Sharma, Rajni; Di Dalmazi, Giulia; Caturegli, Patrizio
2016-08-01
Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2(h4) mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade.
Jomaa, Barae; Aarts, Jac M M J G; de Haan, Laura H J; Peijnenburg, Ad A C M; Bovee, Toine F H; Murk, Albertinka J; Rietjens, Ivonne M C M
2013-01-01
This study investigates the in vitro effect of eleven thyroid-active compounds known to affect pituitary and/or thyroid weights in vivo, using the proliferation of GH3 rat pituitary cells in the so-called "T-screen," and of FRTL-5 rat thyroid cells in a newly developed test denoted "TSH-screen" to gain insight into the relative value of these in vitro proliferation tests for an integrated testing strategy (ITS) for thyroid activity. Pituitary cell proliferation in the T-screen was stimulated by three out of eleven tested compounds, namely thyrotropin releasing hormone (TRH), triiodothyronine (T3) and thyroxine (T4). Of these three compounds, only T4 causes an increase in relative pituitary weight, and thus T4 was the only compound for which the effect in the in vitro assay correlated with a reported in vivo effect. As to the newly developed TSH-screen, two compounds had an effect, namely, thyroid-stimulating hormone (TSH) induced and T4 antagonized FRTL-5 cell proliferation. These effects correlated with in vivo changes induced by these compounds on thyroid weight. Altogether, the results indicate that most of the selected compounds affect pituitary and thyroid weights by modes of action different from a direct thyroid hormone receptor (THR) or TSH receptor (TSHR)-mediated effect, and point to the need for additional in vitro tests for an ITS. Additional analysis of the T-screen revealed a positive correlation between the THR-mediated effects of the tested compounds in vitro and their effects on relative heart weight in vivo, suggesting that the T-screen may directly predict this THR-mediated in vivo adverse effect.
NASA Astrophysics Data System (ADS)
Kim, Edward; Baloch, Zubair; Kim, Caroline
2015-03-01
The number of new cases of thyroid cancer are dramatically increasing as incidences of this cancer have more than doubled since the early 1970s. Tall cell variant (TCV-PTC) papillary thyroid carcinoma is one type of thyroid cancer that is more aggressive and usually associated with higher local recurrence and distant metastasis. This variant can be identified through visual characteristics of cells in histological images. Thus, we created a fully automatic algorithm that is able to segment cells using a multi-stage approach. Our method learns the statistical characteristics of nuclei and cells during the segmentation process and utilizes this information for a more accurate result. Furthermore, we are able to analyze the detected regions and extract characteristic cell data that can be used to assist in clinical diagnosis.
Thyroid Dysfunction Associated With Follicular Cell Steatosis in Obese Male Mice and Humans
Lee, Min Hee; Lee, Jung Uee; Joung, Kyong Hye; Kim, Yong Kyung; Ryu, Min Jeong; Lee, Seong Eun; Kim, Soung Jung; Chung, Hyo Kyun; Choi, Min Jeong; Chang, Joon Young; Lee, Sang-Hee; Kweon, Gi Ryang; Kim, Hyun Jin; Kim, Koon Soon; Kim, Seong-Min; Jo, Young Suk; Park, Jeongwon; Cheng, Sheue-Yann
2015-01-01
Adult thyroid dysfunction is a common endocrine disorder associated with an increased risk of cardiovascular disease and mortality. A recent epidemiologic study revealed a link between obesity and increased prevalence of hypothyroidism. It is conceivable that excessive adiposity in obesity might lead to expansion of the interfollicular adipose (IFA) depot or steatosis in thyroid follicular cells (thyroid steatosis, TS). In this study, we investigated the morphological and functional changes in thyroid glands of obese humans and animal models, diet-induced obese (DIO), ob/ob, and db/db mice. Expanded IFA depot and TS were observed in obese patients. Furthermore, DIO mice showed increased expression of lipogenesis-regulation genes, such as sterol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor γ (PPARγ), acetyl coenzyme A carboxylase (ACC), and fatty acid synthetase (FASN) in the thyroid gland. Steatosis and ultrastructural changes, including distension of the endoplasmic reticulum (ER) and mitochondrial distortion in thyroid follicular cells, were uniformly observed in DIO mice and genetically obese mouse models, ob/ob and db/db mice. Obese mice displayed a variable degree of primary thyroid hypofunction, which was not corrected by PPARγ agonist administration. We propose that systemically increased adiposity is associated with characteristic IFA depots and TS and may cause or influence the development of primary thyroid failure. PMID:25555091
Infiltration of the thyroid gland by T-cell prolymphocytic leukemia.
Fujiwara, Kazunori; Fukuhara, Takahiro; Kitano, Hiroya; Okazaki, Toshiro
2014-08-01
T-cell prolymphocytic leukemia (T-PLL) is rare, accounting for only 0.06% of all malignant lymphomas, and is classified as a T-cell mature lymphoma. The disease affects mainly elderly patients and is characterized by splenomegaly, lymphadenopathy, skin infiltration, and a high leukocyte count, but thyroid filtration has never been detected as far as we could determine. We report here a case of infiltration of the thyroid gland by T-PLL. An 89-year-old woman who had been treated for Hashimoto's thyroiditis for 20 years presented with a progressively enlarging thyroid mass accompanied by dyspnea and dysphasia. Atypical lymphocytes with irregular nuclei were observed in the peripheral blood. An open biopsy of the thyroid provided pathological evidence of T-PLL, and bone marrow examination showed infiltration by T-PLL. The diagnosis was therefore infiltration of the thyroid gland by T-PLL. Chemotherapy was initiated, but six months after termination, recurrence of neck swelling was observed. The patient was then treated with radiotherapy, but she died of a major stroke 15 months after onset. This is the first report of T-PLL infiltration of the thyroid gland, reminding physicians to keep in mind a broad differential diagnosis when encountering a patient with diffuse thyroid lesions and abnormal lymphocytes in the peripheral blood.
Daneshbod, Yahya; Omidvari, Shapour; Daneshbod, Khosrow; Negahban, Shahrzad; Dehghani, Mehdi
2006-10-19
Both thyroid lymphoma and anaplastic carcinoma of thyroid present with rapidly growing mass in eldery patients. Anaplastic carcinoma has high mortality rate and combination of surgery, radiation therapy and multidrug chemotherapy are the best chance for cure. Prognosis of thyroid lymphoma is excellent and chemotherapy for widespred lymphoms and radiotherapy with or without adjuvant chemotherapy for tumors localized to the gland, are the treatment of choice. This article reports a 70 year old man presenting with diffuse neck swelling and hoarseness of few weeks duration. Fine needle aspiration was done and reported as anaplastic carcinoma of thyroid which thyroidectomy was planned. The slides were sent for second opinion. After review, with initial diagnosis of anaplastic carcinoma versus lymphoma, immunocytochemical study was performed. Smears were positive for B cell markers and negative for cytokeratin, so with the impression of diffuse large B cell lymphoma, the patient received two courses of chemotherapy by which the tumor disappeared during two weaks. Despite previous reports, stating easy diagnosis of high-grade thyroid lymphoma on the grounds of cytomorphological features we like to emphasize, overlapping cytologic features of the curable high grade thyroid lymphoma form noncurable anaplastic thyroid carcinoma and usefulness of immunocytochemistry to differentiate these two disease.
Daneshbod, Yahya; Omidvari, Shapour; Daneshbod, Khosrow; Negahban, Shahrzad; Dehghani, Mehdi
2006-01-01
Background Both thyroid lymphoma and anaplastic carcinoma of thyroid present with rapidly growing mass in eldery patients. Anaplastic carcinoma has high mortality rate and combination of surgery, radiation therapy and multidrug chemotherapy are the best chance for cure. Prognosis of thyroid lymphoma is excellent and chemotherapy for widespred lymphoms and radiotherapy with or without adjuvant chemotherapy for tumors localized to the gland, are the treatment of choice. Case report This article reports a 70 year old man presenting with diffuse neck swelling and hoarseness of few weeks duration. Fine needle aspiration was done and reported as anaplastic carcinoma of thyroid which thyroidectomy was planned. The slides were sent for second opinion. After review, with initial diagnosis of anaplastic carcinoma versus lymphoma, immunocytochemical study was performed. Smears were positive for B cell markers and negative for cytokeratin, so with the impression of diffuse large B cell lymphoma, the patient received two courses of chemotherapy by which the tumor disappeared during two weaks. Conclusion Despite previous reports, stating easy diagnosis of high-grade thyroid lymphoma on the grounds of cytomorphological features we like to emphasize, overlapping cytologic features of the curable high grade thyroid lymphoma form noncurable anaplastic thyroid carcinoma and usefulness of immunocytochemistry to differentiate these two disease. PMID:17052355
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamasaki, K.; Landes, R. D.; Noda, A.
While it is generally believed that fetuses are at high risk of developing cancers, including leukemia, after low doses of radiation, it has been reported that atomic bomb survivors exposed in utero did not show a dose response for translocations in blood T lymphocytes when they were examined at approximately 40 years of age. Subsequent mouse studies confirmed that animals irradiated during the fetal stage did not show evidence of radiation effects in lymphocytes and bone marrow cells when they were examined after reaching adulthood. However, in a study of rat mammary epithelial cells, radiation effects were clearly observed aftermore » fetal irradiation. These results indicate that the fate of chromosome aberrations induced in a fetus could vary among different tissues. Here we report on translocation frequencies in mouse thyroid cells, which were irradiated at different stages of fetal development. Cytogenetic examination was then conducted using fluorescence in situ hybridization (FISH) painting of chromosomes 1 and 3. Adult mice, 2 Gy X-ray irradiated at 15.5-day-old fetuses (E15.5), showed a higher translocation frequency (30/1,155 or 25.3 x 10 -3) than nonirradiated adult controls (0/1,007 or 0.1 x 10 -3), and was near that experienced by irradiated mothers and non-pregnant adult females (43/1,244 or 33.7 x 10 -3). These results are consistent with those seen in rat mammary cells. However, when fetuses were irradiated at an earlier stage of development (E6.5) before thyroid organogenesis, the resulting observed translocation frequency was much lower (3/502 or 5.8 x 10 -3) than that in E15.5 mice. These results suggest that after fetal irradiation, tissue stem cells record radiation effects primarily when the exposure occurs in cells that have been integrated into tissue. Embryonic stem cells that have been damaged prior to integration into the niche may undergo negative selection due to apoptosis, mitotic death or stem cell-niche cell interactions. The implications of these results in interpreting cancer risks after fetal irradiation are also discussed.« less
Estrogen-Related Receptor Alpha Modulates Lactate Dehydrogenase Activity in Thyroid Tumors
Mirebeau-Prunier, Delphine; Le Pennec, Soazig; Jacques, Caroline; Fontaine, Jean-Fred; Gueguen, Naig; Boutet-Bouzamondo, Nathalie; Donnart, Audrey; Malthièry, Yves; Savagner, Frédérique
2013-01-01
Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis. PMID:23516535
Grassi, Elisa Stellaria; Vezzoli, Valeria; Negri, Irene; Lábadi, Árpád; Fugazzola, Laura; Vitale, Giovanni; Persani, Luca
2015-11-03
Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide.The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, metastatization and refractoriness even to the most recently developed therapies.In this study we show for the first time a significant hyperactivation of ROCK/HDAC6 pathway in thyroid cancer tissues, and its negative correlation with p53 DNA binding ability.We demonstrate that a small compound, SP600125 (SP), is able to induce cell death selectively in undifferentiated thyroid cancer cell lines by specifically acting on the pathogenic pathways of cancer development. In detail, SP acts on the ROCK/HDAC6 pathway involved in dedifferentiation and invasiveness of undifferentiated human cancers, by restoring its physiological activity level. As main consequence, cancer cell migration is inhibited and, at the same time, cell death is induced through the mitotic catastrophe. Moreover, SP exerts a preferential action on the mutant p53 by increasing its DNA binding ability. In TP53-mutant cells that survive mitotic catastrophe this process results in p21 induction and eventually lead to premature senescence. In conclusion, SP has been proved to be able to simultaneously block cell replication and migration, the two main processes involved in cancer development and dissemination, making it an ideal candidate for developing new drugs against anaplastic thyroid cancer.
Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.
Li, Ying; Bentzley, Catherine M; Tarloff, Joan B
2005-04-01
Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations of reduced NPSH in renal epithelial cells than in hepatocytes.
Potential Role for a Carbohydrate Moiety in Anti-Candida Activity of Human Oral Epithelial Cells
Steele, Chad; Leigh, Janet; Swoboda, Rolf; Ozenci, Hatice; Fidel, Paul L.
2001-01-01
Candida albicans is both a commensal and a pathogen at the oral mucosa. Although an intricate network of host defense mechanisms are expected for protection against oropharyngeal candidiasis, anti-Candida host defense mechanisms at the oral mucosa are poorly understood. Our laboratory recently showed that primary epithelial cells from human oral mucosa, as well as an oral epithelial cell line, inhibit the growth of blastoconidia and/or hyphal phases of several Candida species in vitro with a requirement for cell contact and with no demonstrable role for soluble factors. In the present study, we show that oral epithelial cell-mediated anti-Candida activity is resistant to gamma-irradiation and is not mediated by phagocytosis, nitric oxide, hydrogen peroxide, and superoxide oxidative inhibitory pathways or by nonoxidative components such as soluble defensin and calprotectin peptides. In contrast, epithelial cell-mediated anti-Candida activity was sensitive to heat, paraformaldehyde fixation, and detergents, but these treatments were accompanied by a significant loss in epithelial cell viability. Treatments that removed existing membrane protein or lipid moieties in the presence or absence of protein synthesis inhibitors had no effect on epithelial cell inhibitory activity. In contrast, the epithelial cell-mediated anti-Candida activity was abrogated after treatment of the epithelial cells with periodic acid, suggesting a role for carbohydrates. Adherence of C. albicans to oral epithelial cells was unaffected, indicating that the carbohydrate moiety is exclusively associated with the growth inhibition activity. Subsequent studies that evaluated specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose- and mannose-containing carbohydrates. These results suggest that oral epithelial cell-mediated anti-Candida activity occurs exclusively with viable epithelial cells through contact with C. albicans by an as-yet-undefined carbohydrate moiety. PMID:11598085
Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing
2016-11-15
Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.
Mourad, Moustafa; Saman, Masoud; Sawhney, Raja; Ducic, Yadranko
2015-08-01
The goal of the study was to determine the role of routine total thyroidectomy and hemithyroidectomy in patients undergoing total laryngectomy for laryngeal squamous cell carcinoma. The study group consisted of 343 patients who underwent total laryngectomy (98 treated with surgery alone, 136 treated following radiation failure, and 109 following chemoradiation failure). Total thyroidectomy was performed in all obstructing and bilateral lesions or if there was suspicion of contralateral lobe involvement. Hemithyroidectomy was performed in all lateralized lesions. Retrospective histopathologic analysis of thyroid specimens was subsequently performed. In all, 262 patients underwent total thyroidectomy during total laryngectomy, six of which demonstrated squamous cell carcinoma evident within the thyroid gland (4 from transglottic lesions, 2 from subglottic lesions). Hemithyroidectomy was performed in 81 patients, with only one patient demonstrating evidence of squamous cell carcinoma within the thyroid gland. Hypothyroidism was observed in 88% (n = 61) of patients who underwent thyroid lobectomy alone, requiring hormone supplementation. Routine surgical management of the thyroid gland should not be performed, except in cases of subglottic primary lesions, lesions with significant subglottic extension, or transglottic lesions. Despite efforts to preserve the contralateral thyroid lobe in cases of selective lobectomy, these patients often have a high rate of hypothyroidism, and a total thyroidectomy should be considered when involvement of the thyroid gland is suspected. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
2017-09-26
Functional Pancreatic Neuroendocrine Tumor; Malignant Somatostatinoma; Merkel Cell Carcinoma; Metastatic Adrenal Gland Pheochromocytoma; Metastatic Carcinoid Tumor; Multiple Endocrine Neoplasia Type 1; Multiple Endocrine Neoplasia Type 2A; Multiple Endocrine Neoplasia Type 2B; Neuroendocrine Neoplasm; Non-Functional Pancreatic Neuroendocrine Tumor; Pancreatic Glucagonoma; Pancreatic Insulinoma; Recurrent Adrenal Cortex Carcinoma; Recurrent Adrenal Gland Pheochromocytoma; Recurrent Merkel Cell Carcinoma; Somatostatin-Producing Neuroendocrine Tumor; Stage III Adrenal Cortex Carcinoma; Stage III Thyroid Gland Medullary Carcinoma; Stage IIIA Merkel Cell Carcinoma; Stage IIIB Merkel Cell Carcinoma; Stage IV Adrenal Cortex Carcinoma; Stage IV Merkel Cell Carcinoma; Stage IVA Thyroid Gland Medullary Carcinoma; Stage IVB Thyroid Gland Medullary Carcinoma; Stage IVC Thyroid Gland Medullary Carcinoma; Thymic Carcinoid Tumor; VIP-Producing Neuroendocrine Tumor; Well Differentiated Adrenal Cortex Carcinoma; Zollinger Ellison Syndrome
Iddah, M. A.; Macharia, B. N.
2013-01-01
Purpose of Review. Studies have been published in the field of autoimmune thyroid diseases since January 2005. The review is organized into areas of etiology, autoimmune features, autoantibodies, mechanism of thyroid cell injury, B-cell responses, and T-cell responses. Also it reviews the diagnosis and the relationship between autoimmune thyroid disease, neoplasm, and kidney disorders. Recent Findings. Autoimmune thyroid diseases have been reported in people living in different parts of the world including North America, Europe, Baalkans, Asia, Middle East, South America, and Africa though the reported figures do not fully reflect the number of people infected per year. Cases are unrecognized due to inaccurate diagnosis and hence are treated as other diseases. However, the most recent studies have shown that the human autoimmune thyroid diseases (AITDs) affect up to 5% of the general population and are seen mostly in women between 30 and 50 years. Summary. Autoimmune thyroid disease is the result of a complex interaction between genetic and environmental factors. Overall, this review has expanded our understanding of the mechanism involved in pathogenesis of AITD and the relationship between autoimmune thyroid disease, neoplasm, and kidney disease. It has opened new lines of investigations that will ultimately result in a better clinical practice. PMID:23878745
Intrinsic Regulation of Thyroid Function by Thyroglobulin
Sellitti, Donald F.
2014-01-01
Background: The established paradigm for thyroglobulin (Tg) function is that of a high molecular weight precursor of the much smaller thyroid hormones, triiodothyronine (T3) and thyroxine (T4). However, speculation regarding the cause of the functional and morphologic heterogeneity of the follicles that make up the thyroid gland has given rise to the proposition that Tg is not only a precursor of thyroid hormones, but that it also functions as an important signal molecule in regulating thyroid hormone biosynthesis. Summary: Evidence supporting this alternative paradigm of Tg function, including the up- or downregulation by colloidal Tg of the transcription of Tg, iodide transporters, and enzymes employed in Tg iodination, and also the effects of Tg on the proliferation of thyroid and nonthyroid cells, is examined in the present review. Also discussed in detail are potential mechanisms of Tg signaling in follicular cells. Conclusions: Finally, we propose a mechanism, based on experimental observations of Tg effects on thyroid cell behavior, that could account for the phenomenon of follicular heterogeneity as a highly regulated cycle of increasing and decreasing colloidal Tg concentration that functions to optimize thyroid hormone production through the transcriptional activation or suppression of specific genes. PMID:24251883
Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer.
Yu, Yang; Yu, Xiaohui; Fan, Chenling; Wang, Hong; Wang, Renee; Feng, Chen; Guan, Haixia
2018-06-25
Papillary thyroid cancer is a prevalent endocrine malignancy. Although alterations in glutamine metabolism have been reported in several types of hematological and solid tumors, little is known about the functions of glutamine and glutaminolysis-associated proteins in papillary thyroid cancer. Here, we demonstrated the glutamine dependence of papillary thyroid cancer cells, and with the use of RT 2 -PCR arrays, we screened for the aberrant overexpression of glutaminase in human papillary thyroid cancer tissues and cells. These results were later confirmed via real-time PCR, Western blots, and immunohistochemical staining. We found that the levels of glutaminase were significantly correlated with extrathyroidal extension. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. The proliferative, viable, migratory, and invasive abilities of papillary thyroid cancer cells were impaired by both the pharmacological inhibition and the genetic knockdown of glutaminase. Additionally, the inhibition of glutaminase deactivated the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, promoting autophagy and apoptosis. Collectively, these findings show that glutaminase-mediated glutamine dependence may be a potential therapeutic target for papillary thyroid cancer. PTC cells are glutamine-dependent, and GLS is aberrantly overexpressed in PTC. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. Inhibition of GLS impairs the viability of PTC cells. GLS blockade causes deactivation of mTORC1 and induction of autophagy and apoptosis. GLS may be a potential therapeutic target for PTC.
Functioning and nonfunctioning thyroid adenomas involve different molecular pathogenetic mechanisms.
Tonacchera, M; Vitti, P; Agretti, P; Ceccarini, G; Perri, A; Cavaliere, R; Mazzi, B; Naccarato, A G; Viacava, P; Miccoli, P; Pinchera, A; Chiovato, L
1999-11-01
The molecular biology of follicular cell growth in thyroid nodules is still poorly understood. Because gain-of-function (activating) mutations of the thyroid-stimulating hormone receptor (TShR) and/or Gs alpha genes may confer TSh-independent growth advantage to neoplastic thyroid cells, we searched for somatic mutations of these genes in a series of hyperfunctioning and nonfunctioning follicular thyroid adenomas specifically selected for their homogeneous gross anatomy (single nodule in an otherwise normal thyroid gland). TShR gene mutations were identified by direct sequencing of exons 9 and 10 of the TShR gene in genomic DNA obtained from surgical specimens. Codons 201 and 227 of the Gs alpha gene were also analyzed. At histology, all hyperfunctioning nodules and 13 of 15 nonfunctioning nodules were diagnosed as follicular adenomas. Two nonfunctioning thyroid nodules, although showing a prevalent microfollicular pattern of growth, had histological features indicating malignant transformation (a minimally invasive follicular carcinoma and a focal papillary carcinoma). Activating mutations of the TShR gene were found in 12 of 15 hyperfunctioning follicular thyroid adenomas. In one hyperfunctioning adenoma, which was negative for TShR mutations, a mutation in codon 227 of the Gs alpha gene was identified. At variance with hyperfunctioning thyroid adenomas, no mutation of the TShR or Gs alpha genes was detected in nonfunctioning thyroid nodules. In conclusion, our findings clearly define a different molecular pathogenetic mechanism in hyperfunctioning and nonfunctioning follicular thyroid adenomas. Activation of the cAMP cascade, which leads to proliferation but maintains differentiation of follicular thyroid cells, typically occurs in hyperfunctioning thyroid adenomas. Oncogenes other than the TShR and Gs alpha genes are probably involved in nonfunctioning follicular adenomas.
Vicente, A; Varas, A; Sacedón, R; Zapata, A G
1996-04-01
Despite the assumed importance of thymic cell microenvironments for governing T-cell maturation, little is known about the ontogeny of their cell components. A few studies have analyzed previously the ontogenetical development of rat thymic epithelium (Bogojevic et al. 1990. Period. Biol., 92:126; Kampinga and Aspinall 1990 Harwood Acad. Pub., London, pp. 149-186; Micic et al., 1991 Dev. Comp. Immunol., 15:443-450) and recently we have reported the development of both interdigitating/dendritic cells and macrophages (Vicente et al., 1994 Immunology, 82:75-81, 1995 Immunology, 85:99-105). In the present work we analyze in situ ultrastructural, immunohistochemical, and histoenzymatically the appearance and development of the thymic epithelial cell component in both embryonic and neonatal Wistar rats with special emphasis on the origin of the different epithelial cell types, the occurrence or absence of a common precursor for these, and the expression of MHC molecules. The thymic primordium of 13-day-old embryos is formed by a homogeneous population of primitive epithelial cells differentiating gradually into various epithelial cell subtypes of both the cortex and the medulla. In the cortex, subcapsular and stroma-supporting epithelial cells appear at days 14-15 as two structurally different cell entities. At the same time, stroma-supporting, keratinized, and vacuolated epithelial cells occur in the thymic medulla. These last two cell types differentiate subsequently into Hassall's bodies and hypertrophied cells. Lympho-epithelial cell complexes are identified in the deep cortex around birth, when the cortical parenchyma houses a transitional erythropoiesis. mAbs (His-39, RMC-20) which recognize medullary epithelial cells in the adult thymus stain positively cells of the thymic primordium as early as day 16 of embryonic life. Cortical epithelial cell markers (His-37, RMC-17) appear, however, slightly later and the subcapsulary region is not established until postnatal life. MHC class I and class II molecules can be identified on epithelial cells in the thymus of 15-day-old embryonic rats although they reach the highest expression around birth. Our results confirm the heterogeneity of the thymic epithelial component, the persistence of primitive, non-differentiated epithelial cells morphologically similar to those occurring in the early thymic primordium in adult thymus, and the mutual relevance of epithelial cells and thymocytes for an adequate development of rat thymus gland.
Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot
2012-01-01
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176
Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C
2012-02-01
Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.
Fetal microchimeric cells in autoimmune thyroid diseases
Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter
2013-01-01
Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD. PMID:23723083
Zeng, Lingchun; Geng, Yan; Tretiakova, Maria; Yu, Xuemei; Sicinski, Peter; Kroll, Todd G.
2008-01-01
Peroxisome proliferator-activated receptors (PPARs) are lipid sensing nuclear receptors that have been implicated in multiple physiologic processes including cancer. Here, we determine that PPARδ induces cell proliferation through a novel cyclin E1-dependent mechanism and is upregulated in many human thyroid tumors. The expression of PPARδ was induced coordinately with proliferation in primary human thyroid cells by activation of serum, TSH/cAMP/pKa or EGF/MEK/ERK mitogenic signaling pathways. Engineered overexpression of PPARδ increased thyroid cell number, the incorporation of BrdU and the phosphorylation of Rb 40–45% in just 2 days, one usual cell population doubling. The synthetic PPARδ agonist GW501516 augmented these PPARδ proliferation effects in a dose-dependent manner. Overexpression of PPARδ increased cyclin E1 protein 9-fold, whereas knock down of PPARδ by siRNA reduced both cyclin E1 protein and cell proliferation 2-fold. Induction of proliferation by PPARδ wasabrogated by knockdown of cyclin E1 by siRNA in primary thyroid cells and by knockout of cyclin E1 in mouse embryo fibroblasts, confirming a cyclin E1 dependence for this PPARδ pathway. In addition, the mean expression of native PPARδ was increased 2- to 5-fold (p<0.0001) and correlated with that of the in situ proliferation marker Ki67 (R=0.8571; p=0.02381) in six different classes of benign and malignant human thyroid tumors. Our experiments identify a PPARδ mechanism that induces cell proliferation through cyclin E1 and is regulated by growth factor and lipid signals. The data argue for systematic investigation of PPARδ antagonists as anti-neoplastic agents and implicate altered PPARδ-cyclin E1 signaling in thyroid and other carcinomas. PMID:18701481
A novel closed cell culture device for fabrication of corneal epithelial cell sheets.
Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu
2015-11-01
Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.
The world of epithelial sheets.
Honda, Hisao
2017-06-01
An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.
Shannon-Lowe, Claire; Rowe, Martin
2011-01-01
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo. PMID:21573183
Rajoria, Shilpi; Suriano, Robert; George, Andrea; Shanmugam, Arulkumaran; Schantz, Stimson P.; Geliebter, Jan; Tiwari, Raj K.
2011-01-01
Background Thyroid cancer is the most common endocrine related cancer with increasing incidences during the past five years. Current treatments for thyroid cancer, such as surgery or radioactive iodine therapy, often require patients to be on lifelong thyroid hormone replacement therapy and given the significant recurrence rates of thyroid cancer, new preventive modalities are needed. The present study investigates the property of a natural dietary compound found in cruciferous vegetables, 3,3′-diindolylmethane (DIM), to target the metastatic phenotype of thyroid cancer cells through a functional estrogen receptor. Methodology/Principal Findings Thyroid cancer cell lines were treated with estrogen and/or DIM and subjected to in vitro adhesion, migration and invasion assays to investigate the anti-metastatic and anti-estrogenic effects of DIM. We observed that DIM inhibits estrogen mediated increase in thyroid cell migration, adhesion and invasion, which is also supported by ER-α downregulation (siRNA) studies. Western blot and zymography analyses provided direct evidence for this DIM mediated inhibition of E2 enhanced metastasis associated events by virtue of targeting essential proteolytic enzymes, namely MMP-2 and MMP-9. Conclusion/Significance Our data reports for the first time that DIM displays anti-estrogenic like activity by inhibiting estradiol enhanced thyroid cancer cell proliferation and in vitro metastasis associated events, namely adhesion, migration and invasion. Most significantly, MMP-2 and MMP-9, which are known to promote and enhance metastasis, were determined to be targets of DIM. This anti-estrogen like property of DIM may lead to the development of a novel preventive and/or therapeutic dietary supplement for thyroid cancer patients by targeting progression of the disease. PMID:21267453
2014-12-18
Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer
Histopathologic and immunohistochemical features of Hashimoto thyroiditis.
Amani, H Kazem
2011-01-01
Intrathyroid lymphoid tissue is accrued in Hashimoto thyroiditis (HT). Histologically, this acquired lymphoid tissue bears a close resemblance to mucosa-associated lymphoid tissue (MALT) and can evolve to lymphoma. To demonstrate the morphological, and immunohistochemical profiles of Hashimoto thyroiditis and to ascertain the importance of light chain restriction in distinguishing HT with extensive lymphoplasmacytoid infiltrate from MALT lymphoma. We studied histopathologically and immunohistochemically (CD20, CD3, Igk, Igl and cytokeratin) 30 cases of HT for evaluation of the lymphoid infiltrate and the presence of lymphoepithelial lesions (LELs). Distinguishing between early thyroid lymphoma and HT was evaluated by light chain restriction. These findings were compared with two cases of primary thyroid lymphoma. The histopathological findings were characteristic of HT. Immunohistochemistry confirmed inconspicuous, rare B-cell LELs as well as a prominent T-lymphocyte population. Testing for light chain restriction showed polyclonal population of plasma cells. The cases of MALT lymphoma had distinct destructive lymphoepithelial lesions, B-cell immunophenotyping and showed kappa light chain restriction in the plasmacytoid population. Hashimoto thyroiditis differs both histopathologically and immunohistochemically from thyroid lymphoma. In suspicious cases, immunohistochemistry could be helpful in reaching a definitive diagnosis.
The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.
Mansourian, Azad Reza
2010-08-15
The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xuemei; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province; Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province
Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine {sup 131}I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from {sup 131}I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells bymore » JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced {sup 131}I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.« less
[Thyroid hormones and the development of the nervous system].
Mussa, G C; Zaffaroni, M; Mussa, F
1990-09-01
The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)
Efficient Immortalization of Primary Nasopharyngeal Epithelial Cells for EBV Infection Study
Yip, Yim Ling; Pang, Pei Shin; Deng, Wen; Tsang, Chi Man; Zeng, Musheng; Hau, Pok Man; Man, Cornelia; Jin, Yuesheng; Yuen, Anthony Po Wing; Tsao, Sai Wah
2013-01-01
Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma. PMID:24167620
Molecular Pathology of Anaplastic Thyroid Carcinomas: A Retrospective Study of 144 Cases.
Bonhomme, Benjamin; Godbert, Yann; Perot, Gaelle; Al Ghuzlan, Abir; Bardet, Stéphane; Belleannée, Geneviève; Crinière, Lise; Do Cao, Christine; Fouilloux, Geneviève; Guyetant, Serge; Kelly, Antony; Leboulleux, Sophie; Buffet, Camille; Leteurtre, Emmanuelle; Michels, Jean-Jacques; Tissier, Frédérique; Toubert, Marie-Elisabeth; Wassef, Michel; Pinard, Clémence; Hostein, Isabelle; Soubeyran, Isabelle
2017-05-01
Anaplastic thyroid carcinoma (ATC) is a rare tumor, with poorly defined oncogenic molecular mechanisms and limited therapeutic options contributing to its poor prognosis. The aims of this retrospective study were to determine the frequency of anaplastic lymphoma kinase (ALK) translocations and to identify the mutational profile of ATC including TERT promoter mutations. One hundred and forty-four ATC cases were collected from 10 centers that are a part of the national French network for management of refractory thyroid tumors. Fluorescence in situ hybridization analysis for ALK rearrangement was performed on tissue microarrays. A panel of 50 genes using next-generation sequencing and TERT promoter mutations using Sanger sequencing were also screened. Fluorescence in situ hybridization was interpretable for 90 (62.5%) cases. One (1.1%) case was positive for an ALK rearrangement with a borderline threshold (15% positive cells). Next-generation sequencing results were interpretable for 94 (65.3%) cases, and Sanger sequencing (TERT) for 98 (68.1%) cases. A total of 210 mutations (intronic and exonic) were identified. TP53 alterations were the most frequent (54.4%). Forty-three percent harbored a mutation in the (H-K-N)RAS genes, 13.8% a mutation in the BRAF gene (essentially p.V600E), 17% a PI3K-AKT pathway mutation, 6.4% both RAS and PI3K pathway mutations, and 4.3% both TP53 and PTEN mutations. Nearly 10% of the cases showed no mutations of the RAS, PI3K-AKT pathways, or TP53, with mutations of ALK, ATM, APC, CDKN2A, ERBB2, RET, or SMAD4, including mutations not yet described in thyroid tumors. Genes encoding potentially druggable targets included: mutations in the ATM gene in four (4.3%) cases, in ERBB2 in one (1.1%) case, in MET in one (1.1%) case, and in ALK in one (1.1%) case. A TERT promoter alteration was found in 53 (54.0%) cases, including 43 C228T and 10 C250T mutations. Three out of our cases did not harbor mutations in the panel of genes with therapeutic interest. This study confirms that ALK rearrangements in ATC are rare and that the mutational landscape of ATC is heterogeneous, with many genes implicated in the follicular epithelial cell dedifferentiation process. This may explain the limited effectiveness of targeted therapeutic options tested so far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Joanna; Liu, Ruixin; Xing, Mingzhao
2011-01-28
Research highlights: {yields} Exciting therapeutic potential has been recently reported for the BRAF{sup V600E} inhibitor PLX4032 in melanoma. {yields} We tested the effects of PLX4032 on the growth of thyroid cancer cells which often harbor the BRAF{sup V600E} mutation. {yields} We observed a potent BRAF{sup V600E}-dependent inhibition of thyroid cancer cells by PLX4032. {yields} We thus demonstrated an important therapeutic potential of PLX4032 for thyroid cancer. -- Abstract: Aberrant signaling of the Ras-Raf-MEK-ERK (MAP kinase) pathway driven by the mutant kinase BRAF{sup V600E}, as a result of the BRAF{sup T1799A} mutation, plays a fundamental role in thyroid tumorigenesis. This studymore » investigated the therapeutic potential of a BRAF{sup V600E}-selective inhibitor, PLX4032 (RG7204), for thyroid cancer by examining its effects on the MAP kinase signaling and proliferation of 10 thyroid cancer cell lines with wild-type BRAF or BRAF{sup T1799A} mutation. We found that PLX4032 could effectively inhibit the MAP kinase signaling, as reflected by the suppression of ERK phosphorylation, in cells harboring the BRAF{sup T1799A} mutation. PLX4032 also showed a potent and BRAF mutation-selective inhibition of cell proliferation in a concentration-dependent manner. PLX4032 displayed low IC{sub 50} values (0.115-1.156 {mu}M) in BRAF{sup V600E} mutant cells, in contrast with wild-type BRAF cells that showed resistance to the inhibitor with high IC{sub 50} values (56.674-1349.788 {mu}M). Interestingly, cells with Ras mutations were also sensitive to PLX4032, albeit moderately. Thus, this study has confirmed that the BRAF{sup T1799A} mutation confers cancer cells sensitivity to PLX4032 and demonstrated its specific potential as an effective and BRAF{sup T1799A} mutation-selective therapeutic agent for thyroid cancer.« less
Change in permeability of the plasma membrane of blood cells in irradiated animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, A.S.; Kobyalko, V.O.; Lazarev, N.M.
1994-11-01
The Chernobyl nuclear disaster showed the exposure of the thyroid gland to radioactive iodine is an important factor of radiation damage to animals. Examination of domestic animals showed a marked inhibition of thyroid hormone secretion and changes in red cell membrane permeability for calcium in the absence of marked hematological shifts. At the same time the disturbed thyroid statis is associated with changes in some structural and functional parameters of blood cells. This research on calves shows that radiation damage to the thyroid produces a modifying effect on blood cell membrane permeability for calcium during both the acute and latemore » periods following exposure to 131I. 15 refs., 2 figs., 1 tab.« less
Isolation, separation, and characterization of epithelial and connective cells from rat palate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, Victor Paul
1979-01-01
Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less
Feng, Kun; Liu, Yu; Xu, Li-Juan; Zhao, Ling-Fei; Jia, Chao-Wen; Xu, Ming-Yan
2018-08-01
Invasion and metastasis of papillary thyroid carcinoma (PTC) significantly affects prognosis and quality of life of patients. Herein, we explored the binding relationship of long noncoding RNA PVT1 as ceRNA to microRNA-30a (miR-30a), and their effect on the development of PTC through regulating insulin like growth factor 1 receptor (IGF1R). PTC and adjacent normal tissues were collected, where the qRT-PCR and western blot assay were employed to evaluate the expression levels of PVT1, miR-30a and IGF1R. The correlation between PVT1 expression and clinicopathological characteristics of PTC patients was observed. PTC cell lines with the most/least significant difference from normal thyroid cells were selected and treated with siRNA PVT1 or overexpression PVT1 plasmids, miR-30a mimics or miR-30a inhibitors. Nucleus and cytoplasm segmentation was used to identify subcellular fractionation of PVT1. The binding relationship of PVT1 to miR-30a and the targeting relationship of miR-30a to IGF1R were confirmed by using bioinformatic prediction program, dual-luciferase reporter gene assay and RNA-pull down. Cell viability, cell cycle and apoptosis, invasion and migration capacities were assessed by MTT, flow cytometry, Transwell assay and scratch test, respectively. Western blot assay was employed to examine protein expression of IGF1R, apoptosis-related factors (caspase-3, cleaved capase-3) and epithelial-mesenchymal transition (EMT)-related factors (E-cadherin, Vimentin). In the PTC tissues and cells, PVT1 and IGF1R were highly expressed and miR-30a was poorly expressed. PVT1 exerted its effects on PTC mainly in the cytoplasm. The PVT1 expression was correlated with TNM staging, LNM and tumor infiltration of PTC. The competitive binding of PVT1 to miR-30a enhanced expression of IGF1R. In the in vitro experiments, BCPAP and TPC-1 cells were selected. When subjected to siRNA PVT1 or miR-30a mimics, BCPAP and TPC-1 cells exhibited inhibited proliferation, cell cycle progression, invasion, migration, EMT (increased E-cadherin and reduced Vimentin) and promoted apoptosis (reduced caspase-3 and increased cleaved capase-3), and moreover, the expression of IGF1R was reduced. This study provides evidence that long noncoding RNA PVT1 enhances the expression of IGF1R through competitive binding to miR-30a, whereby PVT1 facilitates the development of PTC. Copyright © 2018. Published by Elsevier Masson SAS.
Boiko, O A; Lavrenchuk, H Yo; Lypska, A I; Talko, V V; Asmolkov, V S
2017-12-01
to investigate morphological changes in the primary thyroid cell culture of rat infants whose parents were prenatally exposed by radioisotope iodine 131. obtaining and culturing of thyroid tissue primary cell cultures of newborn rats, cytological (receipt and analysis of cell cultures agents for optical microscopy), biophysical (flow cytometry), statistics. It was shown that cells in thyroid primary culture of offspring rats prenatally exposed by radioisotopes of iodine 131 signs of destructive degenerative changes were observed mostly when animals of both sexes were irra diated. Increased number of two and three nuclear cells and induction of ring like cells is an evidence of signifi cant genotoxic violation and points to the genome instability in offspring of animals exposed by radioisotope iodine 131. Analysis and quantitative morphological parameters of cells in thyroid primary culture of newborn rats whose parents were exposed prenatally by radioisotopes of iodine 131 showed that upon exposure to radiation thy roid undergoes destructive changes at the cellular level and, even in the second generation of offspring, leads to disruption of its functions. O. A. Boiko, H. Yo. Lavrenchuk, A. I. Lypska, V. V. Talko, V. S. Asmolkov.
Mutual regulation of TGF-β1, TβRII and ErbB receptors expression in human thyroid carcinomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mincione, Gabriella, E-mail: g.mincione@unich.it; Center of Excellence on Aging, Ce.S.I., ‘G. d'Annunzio’ University Foundation, Chieti; Tarantelli, Chiara
2014-09-10
The role of EGF and TGF-β1 in thyroid cancer is still not clearly defined. TGF-β1 inhibited the cellular growth and migration of follicular (FTC-133) and papillary (B-CPAP) thyroid carcinoma cell lines. Co-treatments of TGF-β1 and EGF inhibited proliferation in both cell lines, but displayed opposite effect on their migratory capability, leading to inhibition in B-CPAP and promotion in FTC-133 cells, by a MAPK-dependent mechanism. TGF-β1, TβRII and EGFR expressions were evaluated in benign and malignant thyroid tumors. Both positivity (51.7% and 60.0% and 80.0% in FA and PTC and FTC) and overexpression (60.0%, 77.7% and 75.0% in FA, PTC andmore » FTC) of EGFR mRNA correlates with the aggressive tumor behavior. The moderate overexpression of TGF-β1 and TβRII mRNA in PTC tissues (61.5% and 62.5%, respectively), counteracted their high overexpression in FTC tissues (100% and 100%, respectively), while EGFR overexpression was similar in both carcinomas. Papillary carcinomas were positive to E-cadherin expression, while the follicular carcinomas lose E-cadherin staining. Our findings of TGF-β1/TβRII and EGFR overexpressions together with a loss of E-cadherin observed in human follicular thyroid carcinomas, and of increased migration ability MAPK-dependent after EGF/TGF-β1 treatments in the follicular thyroid carcinoma cell line, reinforced the hypothesis of a cross-talk between EGF and TGF-β1 systems in follicular thyroid carcinomas phenotype. - Highlights: • We reinforce the hypothesis of a cross talk between EGF and TGF-β1 in follicular thyroid carcinoma. • Increased migration MAPK-dependent is observed after EGF+TGF-β1 treatment in follicular thyroid carcinoma cells. • EGF and TGF-β1 caused opposite effect on the migratory ability in B-CPAP and in FTC-133 cells. • TGF-β1, TβRII and EGFR are overexpressed in follicular thyroid carcinoma.« less
Tan, Char-Loo; Ong, Yew-Kwang; Tan, Soo-Yong; Ng, Siok-Bian
2016-05-01
Hashimoto's thyroiditis was recently divided into IgG4-plasma cell-rich and IgG4-plasma cell-poor subtypes. The former, also known as IgG4 thyroiditis, is associated with clinical, serological, sonographic and morphological features that are distinctive from those of the non-IgG4 subgroup. We describe an interesting case of IgG4-positive mucosa-associated lymphoid tissue (MALT) lymphoma arising in a background of IgG4 thyroiditis. The thyroid gland showed typical features of IgG4 thyroiditis, including characteristic patterns of fibrosis. A dense lymphoplasmacytic infiltrate diffusely involved the entire gland without formation of a destructive tumour mass. Lymphoepithelial lesions were prominent. There were abundant IgG4-positive plasma cells, with the IgG4/IgG ratio exceeding 40%. The IgG4-positive plasma cells were monotypic for kappa light chain, and there was monoclonal IGH rearrangement. Fluorescence in-situ hybridization revealed IGH translocation without translocation of MALT1, bcl-10, or FOXP1. This represents the first case of IgG4-producing MALT lymphoma associated with IgG4 thyroiditis. IGH translocation with an unknown partner gene was identified. We suggest the performance of serum and immunohistochemical investigations for IgG and IgG4 in all cases of Hashimoto's thyroiditis to diagnose IgG4 thyroiditis. In addition, clonality assays and light chain studies are useful to exclude a low-grade lymphoma arising in this context. © 2015 John Wiley & Sons Ltd.
Cruickshank, S M; Southgate, J; Selby, P J; Trejdosiewicz, L K
1998-10-01
Biliary epithelial cells are targets of immune-mediated attack in conditions such as primary biliary cirrhosis and allograft rejection. This has been attributed to the ability of biliary epithelial cells to express ligands for T cell receptors. We aimed to investigate the expression of immune recognition elements and the effects of pro-inflammatory and anti-inflammatory cytokines on cell surface phenotypes of normal human biliary epithelial cells and established human liver-derived (PLC/PRF/5, HepG2, Hep3B and CC-SW) lines. Cells were cultured in the presence or absence of cytokines for 72 h, and expression of cell surface molecules was assessed by flow cytometry and immunofluorescence. All cell lines expressed MHC class I, ICAM-1 (CD54), LFA-3 (CD58) and EGF receptor, and all but Hep3B expressed Fas/Apo-1 (CD95). Unlike hepatocyte-derived cell lines, biliary epithelial cells and CC-SW expressed CD40 and CD44. As expected, IFNgamma and TNFalpha upregulated expression of ICAM-1, MHC class I and MHC class II, particularly in biliary epithelial cells. TGFbeta downregulated these molecules and downregulated CD95 on biliary epithelial cells, but upregulated LFA-3. The Th2 cytokines had little effect, although IL-4 upregulated CD95 expression on biliary epithelial cells. IFNgamma upregulated CD40 expression on biliary epithelial cells, CC-SW and HepG2. These findings imply that biliary epithelial cells may be capable of interacting with activated T lymphocytes via CD40 and LFA-3, which are thought to be important T cell accessory ligands for T cell activation in a B7-independent manner. Sensitivity to pro-inflammatory cytokines and expression of CD95 may explain why biliary epithelial cells are primary targets for autoimmune attack.
Burrows, Natalie; Babur, Muhammad; Resch, Julia; Ridsdale, Sophie; Mejin, Melissa; Rowling, Emily J; Brabant, Georg; Williams, Kaye J
2011-12-01
Phosphoinositide 3-kinase (PI3K) regulates the transcription factor hypoxia-inducible factor-1 (HIF-1) in thyroid carcinoma cells. Both pathways are associated with aggressive phenotype in thyroid carcinomas. Our objective was to assess the effects of the clinical PI3K inhibitor GDC-0941 and genetic inhibition of PI3K and HIF on metastatic behavior of thyroid carcinoma cells in vitro and in vivo. Vascular endothelial growth factor ELISA, HIF activity assays, proliferation studies, and scratch-wound migration and cell spreading assays were performed under various O(2) tensions [normoxia, hypoxia (1 and 0.1% O(2)), and anoxia] with or without GDC-0941 in a panel of four thyroid carcinoma cell lines (BcPAP, WRO, FTC133, and 8505c). Genetic inhibition was achieved by overexpressing phosphatase and tensin homolog (PTEN) into PTEN-null cells and by using a dominant-negative variant of HIF-1α (dnHIF). In vivo, human enhanced green fluorescence protein-expressing follicular thyroid carcinomas (FTC) were treated with GDC-0941 (orally). Spontaneous lung metastasis was confirmed by viewing enhanced green fluorescence protein-positive colonies cultured from lung tissue. GDC-0941 inhibited hypoxia/anoxia-induced HIF-1α and HIF-2α expression and HIF activity in thyroid carcinoma cells. Basal (three of four cell lines) and/or hypoxia-induced (four of four) secreted vascular endothelial growth factor was inhibited by GDC-0941, whereas selective HIF targeting predominantly affected hypoxia/anoxia-mediated secretion (P < 0.05-0.0001). Antiproliferative effects of GDC-0941 were more pronounced in PTEN mutant compared with PTEN-restored cells (P < 0.05). Hypoxia increased migration in papillary cells and cell spreading/migration in FTC cells (P < 0.01). GDC-0941 reduced spreading and migration in all O(2) conditions, whereas dnHIF had an impact only on hypoxia-induced migration (P < 0.001). In vivo, GDC-0941 reduced expression of HIF-1α, phospho-AKT, GLUT-1, and lactate dehydrogenase A in FTC xenografts. DnHIF expression and GDC-0941 reduced FTC tumor growth and metastatic lung colonization (P < 0.05). PI3K plays a prominent role in the metastatic behavior of thyroid carcinoma cells irrespective of O(2) tension and appears upstream of HIF activation. GDC-0941 significantly inhibited the metastatic phenotype, supporting the clinical development of PI3K inhibition in thyroid carcinomas.
Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies
McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.
2008-01-01
The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID:18483420
Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.
McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M
2008-11-01
The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation.
Thyroid tuberculosis: presenting symptom of mediastinal tuberculous lymphadenitis--an unusual case.
Chandanwale, Shirish S; Buch, Archana C; Vimal, Shruti S; Sachdeva, Punita
2014-01-01
Tuberculosis of thyroid gland is extremely rare. It spreads to thyroid by lymphogenous or heamatogenous route or from adjacent focus, either from larynx or cervical and mediastinal adenitis. We report an unusual case of a 33-year-old male with thyroid swelling. Fine needle aspiration (FNA) smears showed epithelioid cells without necrosis and acid fast bacilli (AFB). Subsequent investigation revealed mediastinal tuberculous lymphadenitis on Computerized Tomography (CT) scan. FNA confirmed the diagnosis of mediastinal tuberculous lymphadenitis. We conclude, when epithelioid cells are seen on FNA thyroid, tuberculosis must be ruled out especially in regions where there is high prevalence of tuberculosis.
Chu, Bing-Feng; Qin, Yi-Yu; Zhang, Sheng-Lai; Quan, Zhi-Wei; Zhang, Ming-Di; Bi, Jian-Wei
2016-07-05
The Notch-regulated ankyrin repeat protein (NRARP) is recently found to promote proliferation of breast cancer cells. The role of NRARP in carcinogenesis deserves extensive investigations. This study attempted to investigate the expression of NRARP in thyroid cancer tissues and assess the influence of NRARP on cell proliferation, apoptosis, cell cycle, and invasion in thyroid cancer. Thirty-four cases with thyroid cancer were collected from the Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine between 2011 and 2012. Immunohistochemistry was used to detect the level of NRARP in cancer tissues. Lentivirus carrying NRARP-shRNA (Lenti-NRARP-shRNA) was applied to down-regulate NRARP expression. Cell viability was tested after treatment with Lenti-NRARP-shRNA using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis and cell cycle distribution were determined by flow cytometry. Cell invasion was tested using Transwell invasion assay. In addition, expressions of several cell cycle-associated and apoptosis-associated proteins were examined using Western blotting after transfection. Student's t-test, one-way analysis of variance (ANOVA), or Kaplan-Meier were used to analyze the differences between two group or three groups. NRARP was highly expressed in thyroid cancer tissues. Lenti-NRARP-shRNA showed significantly inhibitory activities against cell growth at a multiplicity of infection of 10 or higher (P < 0.05). Lenti-NRARP-shRNA-induced G1 arrest (BHT101: 72.57% ± 5.32%; 8305C: 75.45% ± 5.26%) by promoting p21 expression, induced apoptosis by promoting bax expression and suppressing bcl-2 expression, and inhibited cell invasion by suppressing matrix metalloproteinase-9 expression. Downregulation of NRARP expression exerts significant antitumor activities against cell growth and invasion of thyroid cancer, that suggests a potential role of NRARP in thyroid cancer targeted therapy.
Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity
Kopp, Sascha; Warnke, Elisabeth; Wehland, Markus; Aleshcheva, Ganna; Magnusson, Nils E.; Hemmersbach, Ruth; Juhl Corydon, Thomas; Bauer, Johann; Infanger, Manfred; Grimm, Daniela
2015-01-01
Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3–1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture. The FTC-133 cancer cells formed larger and numerous MCS than the normal cells. In order to explain the different behaviour, we analyzed the gene expression of IL6, IL7, IL8, IL17, OPN, NGAL, VEGFA and enzymes associated cytoskeletal or membrane proteins (ACTB, TUBB, PFN1, CPNE1, TGM2, CD44, FLT1, FLK1, PKB, PKC, ERK1/2, Casp9, Col1A1) as well as the amount of secreted proteins (IL-6, IL-7, IL-8, IL-17, OPN, NGAL, VEGFA). Several of these components changed during RPM-exposure in each cell line. Striking differences between normal and malignant cells were observed in regards to the expression of genes of NGAL, VEGFA, OPN, IL6 and IL17 and to the secretion of VEGFA, IL-17, and IL-6. These results suggest several gravi-sensitive growth or angiogenesis factors being involved in 3D formation of thyroid cells cultured under simulated microgravity. PMID:26576504
Aggressive Variants of Papillary Thyroid Carcinoma: Hobnail, Tall Cell, Columnar, and Solid.
Nath, Meryl C; Erickson, Lori A
2018-05-01
Papillary thyroid carcinomas are the most common endocrine cancer and are usually associated with good survival. However, some variants of papillary thyroid carcinomas may behave more aggressively than classic papillary thyroid carcinomas. The tall cell variant of papillary thyroid carcinoma is the most common aggressive variant of papillary thyroid carcinoma. The aggressive behavior has been ascribed to the histologic subtype and/or to the clinicopathologic features, an issue that remains controversial. The columnar variant of papillary thyroid carcinoma can be aggressive, particularly in older patients, with larger tumors showing a diffusely infiltrative growth pattern and extrathyroidal extension. A papillary thyroid carcinoma is designated as solid/trabecular variant when all or nearly all of a tumor not belonging to any of the other variants has a solid, trabecular, or nested (insular) appearance. This tumor must be distinguished from poorly differentiated thyroid carcinoma which has the same growth pattern but lacks nuclear features of papillary thyroid carcinoma and may show tumor necrosis and high mitotic activity. New to the fourth edition of the WHO Classification of Tumours of Endocrine Organs, the hobnail variant of papillary thyroid carcinoma is a moderately differentiated papillary thyroid carcinoma variant with aggressive clinical behavior and significant mortality. All of these variants are histologically unique and important to recognize due to their aggressive behavior.
Shield, P W; Crouch, S J; Papadimos, D J; Walsh, M D
2018-06-01
We evaluated immunohistochemical staining for thyroid peroxidase (TPO), a glycoprotein found in the apical plasma membrane of thyroid follicular cells, as a marker for metastatic PTC in FNA samples and compared results with thyroglobulin (Tg) and thyroid transcription factor 1 (TTF1) staining. Cell block sections prepared from 100 FNA specimens were stained with a rabbit monoclonal antibody to TPO (EP159). The FNAs included 64 metastatic malignancies from non-thyroid primary sites, including 18 lung, and 36 cases of thyroid tumours (29 PTC, six cases of medullary thyroid carcinoma and one thyroid anaplastic carcinoma). Thyroid tumours were stained with TTF1 and Tg in addition to TPO. All cases of metastatic lung carcinoma also had TTF-1 staining results. TPO staining was negative in all non-thyroid malignancies. Ninety percent (26/29) of PTC were positive. All positive cases showed strong cytoplasmic staining, although 54% (14/26) showed positivity in less than half of the cells. By comparison, Tg staining of TPC cases was present in 62% and TTF-1 in 100%. In addition to showing higher sensitivity, interpretation of staining results with TPO was generally easier with than Tg. All metastatic lung adenocarcinomas were positive for TTF-1 and TPO negative. The six medullary cancers showed positivity in 17%, 0% and 83% with TPO, Tg and TTF-1, respectively. TPO (mAb EP159) may be a useful addition to immunohistochemical panels for FNA specimens where metastatic PTC is a consideration, particularly in cases where metastatic lung carcinoma features in the differential diagnosis. © 2018 John Wiley & Sons Ltd.
Graves' disease: diagnostic and therapeutic challenges (multimedia activity).
Kahaly, George J; Grebe, Stefan K G; Lupo, Mark A; McDonald, Nicole; Sipos, Jennifer A
2011-06-01
Graves' disease is the most common cause of hyperthyroidism in the United States. Graves' disease occurs more often in women with a female:male ratio of 5:1 and a population prevalence of 1% to 2%. A genetic determinant to the susceptibility to Graves' disease is suspected because of familial clustering of the disease, a high sibling recurrence risk, the familial occurrence of thyroid autoantibodies, and the 30% concordance in disease status between identical twins. Graves' disease is an autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid antigen-specific T cells into the thyroid and thyroid-stimulating hormone receptor expressing tissues, with the production of autoantibodies to well-defined thyroidal antigens, such as thyroid peroxidase, thyroglobulin, and the thyroid-stimulating hormone receptor. The thyroid-stimulating hormone receptor is central to the regulation of thyroid growth and function. Stimulatory autoantibodies in Graves' disease activate the thyroid-stimulating hormone receptor leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Below-normal levels of baseline serum thyroid-stimulating hormone receptor, normal to elevated serum levels of T4, elevated serum levels of T3 and thyroid-stimulating hormone receptor autoantibodies, and a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow) thyroid gland confirm diagnosis of Graves' disease (available at: http://supplements.amjmed.com/2010/hyperthyroid/faculty.php). This Resource Center is also available through the website of The American Journal of Medicine (www.amjmed.com). Click on the “Thyroid/Graves' Disease” link in the “Resource Centers” section, found on the right side of the Journal homepage. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Luchuan; Lv, Bin; Chen, Bo
2015-07-10
Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, wasmore » picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na{sup +}/I{sup −} symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC). - Highlights: • Significant upregulated miR-146b was picked up from thyroid relative miRNAs in DTC. • MiR-146b was negatively regulated by HDAC3 in normal thyroid carcinoma cells. • NIS activity and expression could be regulated by miR-146b in thyroid carcinoma. • MiR-146b inhibition could recover the decreased radioiodine-sensitivity of DTC cells.« less
Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna
2017-08-15
Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.
Mechanical stretch triggers rapid epithelial cell division through Piezo1.
Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J
2017-03-02
Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.
Radioiodide induces apoptosis in human thyroid tissue in culture.
Russo, Eleonora; Guerra, Anna; Marotta, Vincenzo; Faggiano, Antongiulio; Colao, Annamaria; Del Vecchio, Silvana; Tonacchera, Massimo; Vitale, Mario
2013-12-01
Radioiodide ((131)I) is routinely used for the treatment of toxic adenoma, Graves' disease, and for ablation of thyroid remnant after thyroidectomy in patients with thyroid cancer. The toxic effects of ionizing radiations on living cells can be mediated by a necrotic and/or apoptotic process. The involvement of apoptosis in radiation-induced cell death in the thyrocytes has been questioned. The knowledge of the mechanisms that underlie the thyrocyte death in response to radiations can help to achieve a successful treatment with the lowest (131)I dose. We developed a method to study the effects of (131)I in human thyroid tissue in culture, by which we demonstrated that (131)I induces thyroid cell apoptosis. Human thyroid tissues of about 1 mm(3) were cultured in vitro and cell viability was determined up to 3 weeks by the MTT assay. Radioiodide added to the culture medium was actively taken up by the tissues. The occurrence of apoptosis in the thyrocytes was assessed by measuring the production of a caspase-cleavage fragment of cytokeratin 18 (M30) by an enzyme-linked immunoassay. Neither variation of cell number nor spontaneous apoptosis was revealed after 1 week of culture. (131)I added to the culture medium induced a dose-dependent and a time-dependent generation of M30 fragment. The apoptotic process was confirmed by the generation of caspase-3 and PARP cleavage products. These results demonstrate that (131)I induces apoptosis in human thyrocytes. Human thyroid tissue cultures may be useful to investigate the cell death pathways induced by (131)I.
Godlewska, Marlena; Krasuska, Wanda
2018-01-01
Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes. PMID:29513734
Godlewska, Marlena; Krasuska, Wanda; Czarnocka, Barbara
2018-01-01
Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes.
Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells
Fu, Xing; Du, Min
2018-01-01
Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health. PMID:29643147
Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells
Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.
2015-01-01
The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387
Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu
2013-09-24
The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition. Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.
Grani, Giorgio; Lamartina, Livia; Durante, Cosimo; Filetti, Sebastiano; Cooper, David S
2018-06-01
Follicular thyroid cancer is the second most common differentiated thyroid cancer histological type and has been overshadowed by its more common counterpart-papillary thyroid cancer-despite its unique biological behaviour and less favourable outcomes. In this Review, we comprehensively review the literature on follicular thyroid cancer to provide an evidence-based guide to the management of these tumours, to highlight the lack of evidence behind guideline recommendations, and to identify changes and challenges over the past decades in diagnosis, prognosis, and treatment. We highlight that correct identification of cancer in indeterminate cytological samples is challenging and ultrasonographic features can be misleading. Despite certain unique aspects of follicular thyroid cancer presentation and prognosis, no specific recommendations exist for follicular thyroid cancer and Hürthle cell carcinoma in evidence-based guidelines. Efforts should be made to stimulate additional research in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.
Recent developments in the investigation of thyroid regulation and thyroid carcinogenesis.
Hard, G C
1998-01-01
This review covers new mechanistic information spanning the past 10 years relevant to normal and abnormal thyroid growth and function that may assist in the risk assessment of chemicals inducing thyroid follicular cell neoplasia. Recent studies have shown that thyroid regulation occurs via a complex interactive network mediated through several different messenger systems. Increased thyroid-stimulating hormone (TSH) levels activate the signal transduction pathways to stimulate growth and differentiation of the follicular cell. The important role of TSH in growth as well as in function helps to explain how disruptions in the thyroid-pituitary axis may influence thyroid neoplasia in rodents. New investigations that couple mechanistic studies with information from animal cancer bioassays (e. g., sulfamethazine studies) confirm the linkage between prolonged disruption of the thyroid-pituitary axis and thyroid neoplasia. New initiation/promotion studies in rodents also support the concept that chronic stimulation of the thyroid induced by goitrogens can result in thyroid tumors. Some of these studies confirm previous suggestions regarding the importance of chemically induced thyroid peroxidase inhibition and the inhibition of 3,3',5, 5'-tetraiodothyronine (T4, thyroxine) deiodinases on disruption of the thyroid-pituitary axis leading to thyroid neoplasia. Some comparative physiologic and mechanistic data highlight certain differences between rodents and humans that could be expected to confer an increased vulnerability of rodents to chronic hypersecretion of TSH. New data from epidemiologic and molecular genetic studies in humans contribute further to an understanding of thyroid neoplasia. Acute exposure to ionizing radiation, especially in childhood, remains the only verified cause of thyroid carcinogenesis in humans. Iodine deficiency studies as a whole remain inconclusive, even though several new studies in humans examine the role of dietary iodine deficiency in thyroid cancer. Specific alterations in gene expression have been identified in human thyroid neoplasia, linked to tumor phenotype, and thus oncogene activation and tumor-suppressor gene inactivation may also be factors in the development and progression of thyroid cancer in humans. An analysis by the U.S. EPA Risk Assessment Forum, prepared as a draft report in 1988 and completed in 1997, focused on the use of a threshold for risk assessment of thyroid follicular tumors. New studies, involving several chemicals, provide further support that there will be no antithyroid activity until critical intracellular concentrations are reached. Thus, for chemically induced thyroid neoplasia linked to disruptions in the thyroid-pituitary axis, a practical threshold for thyroid cancer would be expected. More information on thyroid autoregulation, the role of oncogene mutations and growth factors, and studies directly linking persistently high TSH levels with the sequential cellular development of thyroid follicular cell neoplasia would provide further confirmation. PMID:9681969
The epithelial-mesenchymal transition generates cells with properties of stem cells.
Mani, Sendurai A; Guo, Wenjun; Liao, Mai-Jing; Eaton, Elinor Ng; Ayyanan, Ayyakkannu; Zhou, Alicia Y; Brooks, Mary; Reinhard, Ferenc; Zhang, Cheng Cheng; Shipitsin, Michail; Campbell, Lauren L; Polyak, Kornelia; Brisken, Cathrin; Yang, Jing; Weinberg, Robert A
2008-05-16
The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.
Smith, I M; Baker, A; Arneborg, N; Jespersen, L
2015-11-01
The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.
Asik, Mehmet; Binnetoglu, Emine; Sen, Hacer; Gunes, Fahri; Muratli, Asli; Kankaya, Duygu; Uysal, Fatma; Sahin, Mustafa; Ukinc, Kubilay
2015-01-01
Primary squamous cell carcinoma (SCC) of the thyroid gland is extremely rare. Infrequently, primary SCC of the thyroid gland is accompanied by other thyroid diseases such as Hashimoto's thyroiditis (HT). Recently, studies have demonstrated that differentiated thyroid cancer with coexisting HT has a better prognosis. However, the prognosis of patients with primary SCC of the thyroid gland and coexistent HT has not been clearly identified. We compared the clinical characteristics and disease stages of patients with primary SCC with and without lymphocytic thyroiditis (LT). We reviewed reports of primary SCC of the thyroid gland published in the English literature. We identified 46 papers that included 17 cases of primary SCC of the thyroid gland with LT and 77 cases of primary SCC of the thyroid gland without LT. Lymph node metastasis and local invasion rates did not differ between these two groups. Distant metastases were absent in patients with LT, and were observed in 13 (16.9%) patients without LT. A greater proportion of patients without LT had advanced stage disease (stage IV A-B-C) than patients with LT (p < 0.05). Patients with primary SCC of the thyroid gland and coexisting LT had lower tumour-node-metastasis stage and frequency of distant metastasis than those without LT. Lymphocytic infiltration in patients with SCC appears to limit tumour growth and distant metastases.
Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.
Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su
2015-01-01
Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.
Influence of thyroid in nervous system growth.
Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L
2001-08-01
Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or are nervous cell specific, genes coding neurotropins or proteins involved in synaptic excitation. The use of new PMRS and MRI non-invasive techniques has enabled identification of metabolic and biochemical markers for alterations in the encephalon of untreated hypothyroid children. Even an excess of thyroid hormones during early nervous system development can cause permanent effects. Hyperthyroidism in fact initially induces accelerated maturation process including cell migration and differentiation, extension of dendritic processes and synaptogenesis but a later excess of thyroid hormones causes reduction of the total number of dendritic spikes, due to early interruption of neuron proliferation. Experimental studies and clinical research have clarified not only the correlation between nervous system maturation and thyroid function during early development stages and the certain finding from this research is that both excess and deficient thyroid hormones can cause permanent anatomo-functional alterations to the nervous system.
Autoimmune thyrotoxicosis: diagnostic challenges.
Ponto, Katharina A; Kahaly, George J
2012-09-01
Autoimmune thyrotoxicosis or Graves' disease (GD) is the most common cause of hyperthyroidism in the United States (full text available online: http://education.amjmed.com/pp1/249). GD occurs more often in women (ratio 5:1) and has a population prevalence of 1-2%. A genetic determinant to the susceptibility to GD is suspected because of familial clustering of the disease, a high sibling recurrence risk, and the familial occurrence of thyroid autoantibodies. GD is a systemic autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid-antigen-specific T cells into the thyroid and thyroid stimulating hormone receptor (TSHR) expressing tissues, i.e. orbit, skin, with the production of autoantibodies to well-defined thyroidal antigens. Stimulatory autoantibodies in GD activate the TSHR leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Diagnosis of GD is straightforward in a patient with a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow on neck ultrasound) thyroid gland, associated orbitopathy, biochemically confirmed thyrotoxicosis, positive TSHR autoantibodies, and often a family history of autoimmune disorders. Copyright © 2012. Published by Elsevier Inc.
Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.
Antonica, Francesco; Kasprzyk, Dominika Figini; Schiavo, Andrea Alex; Romitti, Mírian; Costagliola, Sabine
2017-01-01
During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.
Fine-needle aspiration study of cystic papillary thyroid carcinoma: Rare cytological findings
Mokhtari, Maral; Kumar, Perikala Vijayananda; Hayati, Kamran
2016-01-01
Background: Cystic papillary thyroid carcinoma (CPTC) is a variant of papillary carcinoma that has many mimickers in cytological grounds. Aim: To study the cytomorphologic features of CPTC and compare them to those of other cystic thyroid lesions using fine-needle aspiration cytology (FNAC). We also aimed to identify the cytomorphologic features that distinguish CPTC from other cystic thyroid lesions. Materials and Methods: Seventy-three cases of CPTC were included in the study. The cytomorphologic features of these cases were analyzed. The FNA smears of other thyroid lesions with cystic changes (300 colloid goiters, 290 adenomatoid nodules, 11 follicular neoplasms, and 9 hurtle cell neoplasm) were also studied. Results: The smears in CPTC revealed isolated follicular cells, small groups of cells with scalloped margins, cell swirls, small clusters with a cartwheel pattern, papillary clusters, intranuclear inclusions, nuclear grooves, sticky colloid, intracellular colloids, psammoma bodies, multinucleated giant cells, and foamy and hemosiderin laden macrophages. Small groups of cells with scalloped borders, cellular swirls, and small clusters with a cartwheel pattern were seen in CPTC, but not in other cystic lesions. Interestingly, mesothelial-like cells and hemophagocytic cells were seen in five and three cases of CPTC, respectively, but not in other cystic lesions. Conclusion: Mesothelial-like cells and hemophagocytic cells were observed in five and three cases of CPTC, respectively. Similar finding have not been previously reported in the literature. PMID:27756982
Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin
2015-05-01
Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.
Sharma, Rajni; Di Dalmazi, Giulia
2016-01-01
Background: Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2h4 mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. Methods: NOD-H2h4 mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. Results: CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. Conclusions: This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2h4 mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade. PMID:27296629
Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.
2017-01-01
The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987
Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95).
Chen, Qiwei; Pandi, Sudha Priya Soundara; Kerrigan, Lauren; McElvaney, Noel G; Greene, Catherine M; Elborn, J Stuart; Taggart, Clifford C; Weldon, Sinéad
2018-02-24
Previous work suggests that apoptosis is dysfunctional in cystic fibrosis (CF) airways with conflicting results. We evaluated the relationship between dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and apoptosis in CF airway epithelial cells. Apoptosis and associated caspase activity were analysed in non-CF and CF tracheal and bronchial epithelial cell lines. Basal levels of apoptosis and activity of caspase-3 and caspase-8 were significantly increased in CF epithelial cells compared to controls, suggesting involvement of extrinsic apoptosis signalling, which is mediated by the activation of death receptors, such as Fas (CD95). Increased levels of Fas were observed in CF epithelial cells and bronchial brushings from CF patients compared to non-CF controls. Neutralisation of Fas significantly inhibited caspase-3 activity in CF epithelial cells compared to untreated cells. In addition, activation of Fas significantly increased caspase-3 activity and apoptosis in CF epithelial cells compared to control cells. Overall, these results suggest that CF airway epithelial cells are more sensitive to apoptosis via increased levels of Fas and subsequent activation of the Fas death receptor pathway, which may be associated with dysfunctional CFTR. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.
Lin, Louis M; Huang, George T-J; Rosenberg, Paul A
2007-08-01
There is continuing controversy regarding the potential for inflammatory apical cysts to heal after nonsurgical endodontic therapy. Molecular cell biology may provide answers to a series of related questions. How are the epithelial cell rests of Malassez stimulated to proliferate? How are the apical cysts formed? How does the lining epithelium of apical cysts regress after endodontic therapy? Epithelial cell rests are induced to divide and proliferate by inflammatory mediators, proinflammatory cytokines, and growth factors released from host cells during periradicular inflammation. Quiescent epithelial cell rests can behave like restricted-potential stem cells if stimulated to proliferate. Formation of apical cysts is most likely caused by the merging of proliferating epithelial strands from all directions to form a three-dimensional ball mass. After endodontic therapy, epithelial cells in epithelial strands of periapical granulomas and the lining epithelium of apical cysts may stop proliferating because of a reduction in inflammatory mediators, proinflammatory cytokines, and growth factors. Epithelial cells will also regress because of activation of apoptosis or programmed cell death through deprivation of survival factors or by receiving death signals during periapical wound healing.
Matsuura, Kazuo; Shi, Yun-Bo
2012-01-01
Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence information and genetic advantages of X. tropicalis to dissect the pathways governing adult intestinal development. PMID:23071801
2014-01-01
Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766
Kido, Nobuhide; Itagaki, Iori; Ono, Kaori; Omiya, Tomoko; Matsumoto, Rei
2015-12-01
The clinical and histologic features of thyroid carcinoma in raccoon dogs have not been previously reported. Three of four raccoon dogs (Nyctereutes procyonoides) over 8 yr of age at the Nogeyama Zoological Gardens developed thyroid follicular cell carcinomas that were detected at necropsy. The affected raccoon dogs were rescued from the wild and were housed at the Nogeyama Zoological Gardens for 8 yr 8 mo, 8 yr 10 mo, and 10 yr 3 mo, respectively. Although all of them appeared lethargic and developed partial alopecia or desquamation of their skin, they did not display any other specific clinical signs associated with a thyroid lesion. Serum thyroid hormone values were examined in two of the affected raccoon dogs and the average and standard deviation values (free-thyroxin [FT4]: 0.078 ± 0.077 pM/L and 0.062 ± 0.0039 pM/L; free-triiodothyronine [FT3]: 3.261 ± 0.765 pM/L and 3.407 ± 0.919 pM/L) were lower than the reference range (FT4: 0.141 ± 0.117 pM/L; FT3: 5.139 ± 2.412 pM/L) derived from a clinically normal raccoon dog. On necropsy, the thyroid lobes were markedly enlarged bilaterally. Histopathologically, the neoplastic cells in the thyroid gland appeared round or oval and columnar or cuboidal with minimal heteromorphism. Moreover, mostly small (but occasionally large) follicles were identified, and the neoplastic cells had infiltrated into the surrounding capsule and blood vessels. The histopathologic features of the thyroid tumors in the raccoon dogs revealed that the tumors were derived from follicular cells.
Yu, Wanfeng; He, Xin; Ni, Ying; Ngeow, Joanne; Eng, Charis
2015-01-01
Germline mutations in the PTEN tumor-suppressor gene and germline variations in succinate dehydrogenase subunit D gene (SDHD-G12S, SDHD-H50R) are associated with a subset of Cowden syndrome and Cowden syndrome-like individuals (CS/CSL) and confer high risk of breast, thyroid and other cancers. However, very little is known about the underlying crosstalk between SDHD and PTEN in CS-associated thyroid cancer. Here, we show SDHD-G12S and SDHD-H50R lead to impaired PTEN function through alteration of its subcellular localization accompanied by resistance to apoptosis and induction of migration in both papillary and follicular thyroid carcinoma cell lines. Other studies have shown elevated proto-oncogene tyrosine kinase (SRC) activity in invasive thyroid cancer cells; so, we explore bosutinib, a specific inhibitor for SRC, to explore SRC as a mediator of SDH-PTEN crosstalk in this context. We show that SRC inhibition could rescue SDHD dysfunction-induced cellular phenotype and tumorigenesis only when wild-type PTEN is expressed, in thyroid cancer lines. Patient lymphoblast cells carrying either SDHD-G12S or SDHD-H50R also show increased nuclear PTEN and more oxidized PTEN after hydrogen peroxide treatment. Like in thyroid cells, bosutinib decreases oxidative PTEN in patient lymphoblast cells carrying SDHD variants, but not in patients carrying both SDHD variants and PTEN truncating mutations. In summary, our data suggest a novel mechanism whereby SDHD germline variants SDHD-G12S or SDHD-H50R induce thyroid tumorigenesis mediated by PTEN accumulation in the nucleus and may shed light on potential treatment with SRC inhibitors like bosutinib in PTEN-wild-type SDHD-variant/mutation positive CS/CSL patients and sporadic thyroid neoplasias. PMID:25149476
Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.
Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith
2002-10-01
To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.
Aouani, A; Samih, N; Amphoux-Fazekas, T; Hovsépian, S; Fayet, G
1999-04-01
Hexamethylenebisacetamide (HMBA) induces in murine erythroleukemia cells (MELC) the commitment to terminal differentiation leading to globin gene expression. In the thyroid, HMBA acts as a growth factor and also as a differentiating agent. In the present paper, we studied the effect of HMBA on the very specific thyroid marker thyroglobulin (Tg) in two different thyroid cell systems, i.e., porcine cells in primary culture and ovine cells in long term culture. Using wortmannin, a specific inhibitor of phosphatidylinositol-3-kinase, we investigated whether this enzyme is involved in HMBA mode of action. We found that HMBA is a positive modulator of Tg production in porcine cells, but a negative effector in the OVNIS cell line. As all HMBA effects studied in the present paper, i.e., Tg production and total protein levels, are not inhibited by wortmannin, we suggest the non-involvement of phosphatidylinositol-3-kinase in HMBA mode of action.
Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J
2017-06-01
Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Documentation of angiotensin II receptors in glomerular epithelial cells
NASA Technical Reports Server (NTRS)
Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)
1998-01-01
Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial cells participate in angiotensin II-mediated control of the glomerular filtration barrier.
Sodium/iodide symporter: a key transport system in thyroid cancer cell metabolism.
Filetti, S; Bidart, J M; Arturi, F; Caillou, B; Russo, D; Schlumberger, M
1999-11-01
The recent cloning of the gene encoding the sodium/iodide symporter (NIS) has enabled better characterization of the molecular mechanisms underlying iodide transport, thus opening the way to clarifying its role in thyroid diseases. Several studies, at both the mRNA and the protein expression levels, have demonstrated that TSH, the primary regulator of iodide uptake, upregulates NIS gene expression and NIS protein abundance, both in vitro and in vivo. However, other factors, including iodide, retinoic acid, transforming growth factor-beta, interleukin-1alpha and tumour necrosis factor alpha, may participate in the regulation of NIS expression. Investigation of NIS mRNA expression in different thyroid tissues has revealed increased levels of expression in Graves' disease and toxic adenomas, whereas a reduction or loss of NIS transcript was detected in differentiated thyroid carcinomas, despite the expression of other specific thyroid markers. NIS mRNA was also detected in non-thyroid tissues able to concentrate radioiodine, including salivary glands, stomach, thymus and breast. The production of specific antibodies against the NIS has facilitated study of the expression of the symporter protein. Despite of the presence of high levels of human (h)NIS mRNA, normal thyroid glands exhibit a heterogeneous expression of NIS protein, limited to the basolateral membrane of the thyrocytes. By immunohistochemistry, staining of hNIS protein was stronger in Graves' and toxic adenomas and reduced in thyroid carcinomas. Measurement of iodide uptake by thyroid cancer cells is the cornerstone of the follow-up and treatment of patients with thyroid cancer. However, radioiodide uptake is found only in about 67% of patients with persistent or recurrent disease. Several studies have demonstrated a decrease in or a loss of NIS expression in primary human thyroid carcinomas, and immunohistochemical studies have confirmed this considerably decreased expression of the NIS protein in thyroid cancer tissues, suggesting that the low expression of NIS may represent an early abnormality in the pathway of thyroid cell transformation, rather than being a consequence of cancer progression. The relationship between radioiodine uptake and NIS expression by thyroid cancer cells require further study. New strategies, based on manipulation of NIS expression, to obtain NIS gene reactivation or for use as NIS gene therapy in the treatment of radiosensitive cancer, are also being investigated.
Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.
2012-01-01
Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208
Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I
2004-06-01
This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.
Thyroid C-Cell Biology and Oncogenic Transformation
Cote, Gilbert J.; Grubbs, Elizabeth G.; Hofmann, Marie-Claude
2017-01-01
The thyroid parafollicular cell, or commonly named “C-cell,” functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that Multiple Endocrine Neoplasia, type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma. Thyroid C-cells are known to express RET at high levels relative to most cell types, therefore aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations has uncovered mutation of RAS family members and inactivation of Rb1 regulatory pathway as potential mediators of C-cell transformation. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation will help in the development of novel molecular targeted therapies. PMID:26494382
The effect of low level laser on anaplastic thyroid cancer
NASA Astrophysics Data System (ADS)
Rhee, Yun-Hee; Moon, Jeon-Hwan; Ahn, Jin-Chul; Chung, Phil-Sang
2015-02-01
Low-level laser therapy (LLLT) is a non-thermal phototherapy used in several medical applications, including wound healing, reduction of pain and amelioration of oral mucositis. Nevertheless, the effects of LLLT upon cancer or dysplastic cells have been so far poorly studied. Here we report that the effects of laser irradiation on anaplastic thyroid cancer cells leads to hyperplasia. 650nm of laser diode was performed with a different time interval (0, 15, 30, 60J/cm2 , 25mW) on anaplastic thyroid cancer cell line FRO in vivo. FRO was orthotopically injected into the thyroid gland of nude mice and the irradiation was performed with the same method described previously. After irradiation, the xenograft evaluation was followed for one month. The thyroid tissues from sacrificed mice were undergone to H&E staining and immunohistochemical staining with HIF-1α, Akt, TGF-β1. We found the aggressive proliferation of FRO on thyroid gland with dose dependent. In case of 60 J/ cm2 of energy density, the necrotic bodies were found in a center of the thyroid. The phosphorylation of HIF-1α and Akt was detected in the thyroid gland, which explained the survival signaling of anaplastic cancer cell was turned on the thyroid gland. Furthermore, TGF-β1 expression was decreased after irradiation. In this study, we demonstrated that insufficient energy density irradiation occurred the decreasing of TGF-β1 which corresponding to the phosphorylation of Akt/ HIF-1α. This aggressive proliferation resulted to the hypoxic condition of tissue for angiogenesis. We suggest that LLLT may influence to cancer aggressiveness associated with a decrease in TGF-β1 and increase in Akt/HIF-1α.
Characterization of newly established bovine intestinal epithelial cell line.
Miyazawa, Kohtaro; Hondo, Tetsuya; Kanaya, Takashi; Tanaka, Sachi; Takakura, Ikuro; Itani, Wataru; Rose, Michael T; Kitazawa, Haruki; Yamaguchi, Takahiro; Aso, Hisashi
2010-01-01
Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.
Epithelial-to-mesenchymal transition in penile squamous cell carcinoma.
Masferrer, Emili; Ferrándiz-Pulido, Carla; Masferrer-Niubò, Magalí; Rodríguez-Rodríguez, Alfredo; Gil, Inmaculada; Pont, Antoni; Servitje, Octavi; García de Herreros, Antonio; Lloveras, Belen; García-Patos, Vicenç; Pujol, Ramon M; Toll, Agustí; Hernández-Muñoz, Inmaculada
2015-02-01
Epithelial-to-mesenchymal transition is a phenomenon in epithelial tumors that involves loss of intercellular adhesion, mesenchymal phenotype acquisition and enhanced migratory potential. While the epithelial-to-mesenchymal transition process has been extensively linked to metastatic progression of squamous cell carcinoma, studies of the role of epithelial-to-mesenchymal transition in squamous cell carcinoma containing high risk human papillomaviruses are scarce. Moreover, to our knowledge epithelial-to-mesenchymal transition involvement in human penile squamous cell carcinoma, which can arise through transforming HPV infections or independently of HPV, has not been investigated. We evaluated the presence of epithelial-to-mesenchymal transition markers and their relationship to HPV in penile squamous cell carcinoma. We assessed the expression of E-cadherin, vimentin and the epithelial-to-mesenchymal transition related transcription factors Twist, Zeb1 and Snail by immunohistochemical staining in 64 penile squamous cell carcinoma cases. HPV was detected by polymerase chain reaction amplification. Simultaneous loss of membranous E-cadherin expression and vimentin over expression were noted in 43.5% of penile squamous cell carcinoma cases. HPV was significantly associated with loss of membranous E-cadherin but not with epithelial-to-mesenchymal transition. Recurrence and mortality rates were significantly higher in cases showing epithelial-to-mesenchymal transition. Our findings indicate that in penile squamous cell carcinoma epithelial-to-mesenchymal transition is associated with poor prognosis but not with the presence of HPV. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Nakajima, Ryota; Takeda, Shizu
2014-01-01
The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cozzolino, Immacolata; Malapelle, Umberto; Carlomagno, Chiara; Palombini, Lucio; Troncone, Giancarlo
2010-12-01
Fine-needle aspiration (FNA) with cytological evaluation reliably diagnoses primary and secondary thyroid neoplasms. However, identifying the primary origin of a metastatic process involving the thyroid gland is challenging. In particular, metastasis of colon cancer to the thyroid gland is very rare. In this case report, a right lobe solid thyroid nodule in a 66-year-old male was aspirated. FNA cytology showed necrosis and atypical tall columnar cells; since, the patient at age 60 had undergone surgery for a sigmoid-rectal cancer metastasizing to the liver and subsequently to the lung, a suspicion of metastasis from colon cancer was raised. This was corroborated by cell-block immunocytochemistry showing a cytokeratin (CK) 7 negative/CK20-positive staining pattern; thyreoglobulin and TTF-1 were both negative. Since KRAS codon 12/13 mutations frequently occur in colon cancer, whereas they are extremely uncommon in primary thyroid tumors, DNA was extracted from the aspirated cells, and KRAS mutational analysis was carried out. The codon 12 G12D mutation was found; the same mutation was evident in the primary cancer of the colon and in its liver and lung metastasis. Thus, a combined cytological, immunocytochemical and molecular approach unquestionably correlated metastatic adenocarcinoma cells aspirated from the thyroid to a colo-rectal origin. © 2010 Wiley-Liss, Inc.
Kainuma, Keigo; Kobayashi, Tetsu; D'Alessandro-Gabazza, Corina N; Toda, Masaaki; Yasuma, Taro; Nishihama, Kota; Fujimoto, Hajime; Kuwabara, Yu; Hosoki, Koa; Nagao, Mizuho; Fujisawa, Takao; Gabazza, Esteban C
2017-05-02
Epithelial-mesenchymal transition is currently recognized as an important mechanism for the increased number of myofibroblasts in cancer and fibrotic diseases. We have already reported that epithelial-mesenchymal transition is involved in airway remodeling induced by eosinophils. Procaterol is a selective and full β 2 adrenergic agonist that is used as a rescue of asthmatic attack inhaler form and orally as a controller. In this study, we evaluated whether procaterol can suppress epithelial-mesenchymal transition of airway epithelial cells induced by eosinophils. Epithelial-mesenchymal transition was assessed using a co-culture system of human bronchial epithelial cells and primary human eosinophils or an eosinophilic leukemia cell line. Procaterol significantly inhibited co-culture associated morphological changes of bronchial epithelial cells, decreased the expression of vimentin, and increased the expression of E-cadherin compared to control. Butoxamine, a specific β 2 -adrenergic antagonist, significantly blocked changes induced by procaterol. In addition, procaterol inhibited the expression of adhesion molecules induced during the interaction between eosinophils and bronchial epithelial cells, suggesting the involvement of adhesion molecules in the process of epithelial-mesenchymal transition. Forskolin, a cyclic adenosine monophosphate-promoting agent, exhibits similar inhibitory activity of procaterol. Overall, these observations support the beneficial effect of procaterol on airway remodeling frequently associated with chronic obstructive pulmonary diseases.
Ando, Seijitsu; Otani, Hitomi; Yagi, Yasuhiro; Kawai, Kenzo; Araki, Hiromasa; Fukuhara, Shirou; Inagaki, Chiyoko
2007-01-01
Background Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). Results Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation. PMID:17433115
Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A
2018-04-01
Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.
Sequestration of human cytomegalovirus by human renal and mammary epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twite, Nicolas; Andrei, Graciela; Kummert, Caroline
2014-07-15
Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMVmore » by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.« less
Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion
Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.
2017-01-01
The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643
Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells.
Pan, J-L; Yuan, D-Z; Zhao, Y-B; Nie, L; Lei, Y; Liu, M; Long, Y; Zhang, J-H; Blok, L J; Burger, C W; Yue, L-M
2017-03-01
This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G 1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Epithelial cells as alternative human biomatrices for comet assay.
Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara
2014-01-01
The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.
Epithelial cells as alternative human biomatrices for comet assay
Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara
2014-01-01
The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353
The radiation biology of the thyroid.
Malone, J F
1975-10-01
The structure and function of the thyroid gland are described. A detailed analysis of population kinetics in the gland suggests a method of measuring cell survival after irradiation that has many features in common with methods used in other mammalian cell systems. This method is used to obtain survival curves for thyroid cells afer irradiation. The effects on survival of splitting the radiation dose into two or multiple fractions, radiation type, and radioprotective agents are also examined. In the light of these data the tolerance of thyroid tissue to radiation exposure under various conditions is discussed. The dosimetry and biological effects of 125I and 131I are described in detail, and compared with X-rays. Radioiodine treatment of thyrotoxicosis is presented in relation to the known biological effects of the isotopes on the gland. Carcinogenic action of ionizing radiations in the thyroid are reviewed with particular reference to the clinical consequences of observations in this field.
Li, Hui; Dai, Lu; Frank, Jacqueline A.; Peng, Shaojun; Wang, Siying; Chen, Gang
2017-01-01
The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages. PMID:28423485
Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.
Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y
2017-11-01
Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.
... can be more aggressive than other types of thyroid cancer. Surgery to remove the thyroid gland is the ... factors Factors that increase the risk of developing thyroid cancer include: Being female Being older Having a history ...
Modulation of Sodium Iodide Symporter in Thyroid Cancer
Lakshmanan, Aparna; Scarberry, Daniel
2015-01-01
Radioactive iodine (RAI) is a key therapeutic modality for thyroid cancer. Loss of RAI uptake in thyroid cancer inversely correlates with patient’s survival. In this review, we focus on the challenges encountered in delivering sufficient doses of I-131 to eradicate metastatic lesions without increasing the risk of unwanted side effects. Sodium iodide symporter (NIS) mediates iodide influx, and NIS expression and function can be selectively enhanced in thyroid cells by thyroid-stimulating hormone. We summarize our current knowledge of NIS modulation in normal and cancer thyroid cells, and we propose that several reagents evaluated in clinical trials for other diseases can be used to restore or further increase RAI accumulation in thyroid cancer. Once validated in preclinical mouse models and clinical trials, these reagents, mostly small-molecule inhibitors, can be readily translated into clinical practice. We review available genetically engineered mouse models of thyroid cancer in terms of their tumor development and progression as well as their thyroid function. These mice will not only provide important insights into the mechanisms underlying the loss of RAI uptake in thyroid tumors but will also serve as preclinical animal models to evaluate the efficacy of candidate reagents to selectively increase RAI uptake in thyroid cancers. Taken together, we anticipate that the optimal use of RAI in the clinical management of thyroid cancer is yet to come in the near future. PMID:25234361
Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.
Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S
2016-01-01
Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.
YAN, FANG; CAO, HANWEI; COVER, TIMOTHY L.; WHITEHEAD, ROBERT; WASHINGTON, M. KAY; POLK, D. BRENT
2011-01-01
Background & Aims Increased inflammatory cytokine levels and intestinal epithelial cell apoptosis leading to disruption of epithelial integrity are major pathologic factors in inflammatory bowel diseases. The probiotic bacterium Lactobacillus rhamnosus GG (LGG) and factors recovered from LGG broth culture supernatant (LGG-s) prevent cytokine-induced apoptosis in human and mouse intestinal epithelial cells by regulating signaling pathways. Here, we purify and characterize 2 secreted LGG proteins that regulate intestinal epithelial cell antiapoptotic and proliferation responses. Methods LGG proteins were purified from LGG-s, analyzed, and used to generate polyclonal antibodies for immunodepletion of respective proteins from LGG-conditioned cell culture media (CM). Mouse colon epithelial cells and cultured colon explants were treated with purified proteins in the absence or presence of tumor necrosis factor (TNF). Akt activation, proliferation, tissue injury, apoptosis, and caspase-3 activation were determined. Results We purified 2 novel proteins, p75 (75 kilodaltons) and p40 (40 kilodaltons), from LGG-s. Each of these purified protein preparations activated Akt, inhibited cytokine-induced epithelial cell apoptosis, and promoted cell growth in human and mouse colon epithelial cells and cultured mouse colon explants. TNF-induced colon epithelial damage was significantly reduced by p75 and p40. Immunodepletion of p75 and p40 from LGG-CM reversed LGG-CM activation of Akt and its inhibitory effects on cytokine-induced apoptosis and loss of intestinal epithelial cells. Conclusions p75 and p40 are the first probiotic bacterial proteins demonstrated to promote intestinal epithelial homeostasis through specific signaling pathways. These findings suggest that probiotic bacterial components may be useful for preventing cytokine-mediated gastrointestinal diseases. PMID:17258729
Impaired airway epithelial cell responses from children with asthma to rhinoviral infection.
Kicic, A; Stevens, P T; Sutanto, E N; Kicic-Starcevich, E; Ling, K-M; Looi, K; Martinovich, K M; Garratt, L W; Iosifidis, T; Shaw, N C; Buckley, A G; Rigby, P J; Lannigan, F J; Knight, D A; Stick, S M
2016-11-01
The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β. © 2016 John Wiley & Sons Ltd.
Roy, M J
1987-06-01
Dome epithelium (DE), the tissue covering lymphoid domes of gut-associated lymphoid tissues, was examined in both adult and neonatal rabbit appendix or sacculus rotundus to determine if dome epithelial cells matured earlier than epithelial cells covering adjacent villi. The localization of well-differentiated epithelial cells in rabbit gut-associated lymphoid tissues (GALT) was accomplished histochemically by use of molecular probes: fluorescein isothiocyanate or horseradish peroxidase conjugates of Ulex europaeus agglutinin I (UEA), a lectin specific for terminal L-fucose molecules on certain glycoconjugates. The villus epithelial cells of newborn and 2-, 5-, or 10-day-old rabbits did not bind UEA, but between the twelfth and fifteenth days of postnatal life, UEA receptors were expressed by well-differentiated villus epithelial cells. In contrast to villus epithelium, DE in appendix and sacculus rotundus of neonatal rabbits expressed UEA receptors two days after birth, a feature that distinguished the DE of neonatal GALT for the next two weeks. In adult rabbits, UEA receptors were associated with dome epithelial cells extending from the mouths of glandular crypts to the upper domes; in contrast to the domes, UEA receptors were only present on well-differentiated epithelial cells at the villus tips. Results suggested that in neonatal rabbits most dome epithelial cells developed UEA receptors shortly after birth, reflecting precocious development of DE as compared to villus epithelium. In adult rabbit dome epithelium UEA receptors appeared on dome epithelial cells as they left the glandular crypts, representing accelerated epithelial maturation.
A small subgroup of Hashimoto's thyroiditis is associated with IgG4-related disease.
Jokisch, Friedrich; Kleinlein, Irene; Haller, Bernhard; Seehaus, Tanja; Fuerst, Heinrich; Kremer, Marcus
2016-03-01
IgG4-related disease is a newly identified syndrome characterized by high serum IgG4 levels and increased IgG4-positive plasma cells in involved organs. The incidence of IgG4-related thyroiditis in the Caucasian population of Europe is unknown. We investigated formalin-fixed thyroid gland samples of 216 patients (191 Hashimoto's thyroiditis, 5 Riedel's thyroiditis, and 20 goiters, as controls), morphologically, and immunohistochemically. Cases were divided into two groups: IgG4-related Hashimoto's thyroiditis (24 cases) together with Riedel thyroiditis (1 case) and 171 non-IgG4-related thyroiditis. Compared to the non-IgG4-related cases, IgG4-related thyroiditis showed a higher IgG4/IgG ratio (0.6 vs. 0.1, p < 0.0001), a higher median IgG4 count (45.2 vs. 6.2, p < 0.0001), an association with younger age (42.1 vs. 48.1 years, p = 0.036), and a lower female-to-male ratio (11:1 vs. 17.5:1). Fibrous variant of Hashimoto's thyroiditis was diagnosed in 23 of the 24 IgG4-related cases (96 %) and in 13 of 167 (18 %, p > 0.001) non-IgG4-related cases. The single case of IgG4-related Riedel's thyroiditis also showed a higher median IgG4 plasma cell count (56.3 vs. 14.3) and a higher IgG4/IgG ratio (0.5 vs. 0.2) than the four cases of non-IgG4-related Riedel's thyroiditis. Our data suggests the incidence of IgG4-related disease (IgG4-RD) of the thyroid gland in Europe is considerably lower than that observed in other studies. A significant elevation of IgG4-positive plasma cells was only found in a small group of Hashimoto's thyroiditis and then accompanied by intense fibrosis, indicating an association with IgG4-RD. Morphologically, IgG4-RD of the thyroid gland differs from that in other organ systems, exhibiting a dense fibrosis without intense eosinophilia or obliterative phlebitis.
Cras, Audrey; Politis, Béatrice; Balitrand, Nicole; Darsin-Bettinger, Diane; Boelle, Pierre Yves; Cassinat, Bruno; Toubert, Marie-Elisabeth; Chomienne, Christine
2012-01-15
Retinoic acid (RA) treatment has been used for redifferentiation of metastatic thyroid cancer with loss of radioiodine uptake. The aim of this study was to improve the understanding of RA resistance and investigate the role of bexarotene in thyroid cancer cells. A model of thyroid cancer cell lines with differential response to RA was used to evaluate the biological effects of retinoid and rexinoid and to correlate this with RA receptor levels. Subsequently, thyroid cancer patients were treated with 13-cis RA and bexarotene and response evaluated on radioiodine uptake reinduction on posttherapy scan and conventional imaging. In thyroid cancer patients, 13-cis RA resistance can be bypassed in some tumors by bexarotene. A decreased tumor growth without differentiation was observed confirming our in vitro data. Indeed, we show that ligands of RARs or RXRs exert different effects in thyroid cancer cell lines through either differentiation or inhibition of cell growth and invasion. These effects are associated with restoration of RARβ and RXRγ levels and downregulation of NF-κB targets genes. We show that bexarotene inhibits the transactivation potential of NF-κB in an RXR-dependent manner through decreased promoter permissiveness without interfering with NF-κB nuclear translocation and binding to its responsive elements. Inhibition of transcription results from the release of p300 coactivator from NF-κB target gene promoters and subsequent histone deacetylation. This study highlights dual mechanisms by which retinoids and rexinoids may target cell tumorigenicity, not only via RARs and RXRs, as expected, but also via NF-κB pathway. ©2011 AACR.
Sweat JMDunigan, D D; Wright, S D
2001-06-01
The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.
Surgical management of medullary thyroid cancer.
Mazeh, H; Sippel, R S
2012-12-01
Although thyroid cancer accounts for only 1.5% of all malignancies in the US it is the most rapidly increasing cancer in incidence and it is the most common endocrine malignancy that accounts for over 95% of the endocrine malignancies. Medullary thyroid cancer (MTC) originates from the parafollicular C cells and it represents 6-8% of all thyroid cancer cases. As many as 25% of the MTCs are familial and carry a specific germline mutation as compared to only than 10% familial inheritance in non-medullary thyroid cancers. While well-differentiated thyroid malignancies carry a very good prognosis, recurrence and survival rates of patients with MTC are significantly worse. The difference in cell origin and differentiation also results in different available adjunct therapy. The aim of this study is to review in detail the surgical management of patients with MTC.
Zhang, Lei; Masetti, Giulia; Colucci, Giuseppe; Salvi, Mario; Covelli, Danila; Eckstein, Anja; Kaiser, Ulrike; Draman, Mohd Shazli; Muller, Ilaria; Ludgate, Marian; Lucini, Luigi; Biscarini, Filippo
2018-05-30
Graves' Disease (GD) is an autoimmune condition in which thyroid-stimulating antibodies (TRAB) mimic thyroid-stimulating hormone function causing hyperthyroidism. 5% of GD patients develop inflammatory Graves' orbitopathy (GO) characterized by proptosis and attendant sight problems. A major challenge is to identify which GD patients are most likely to develop GO and has relied on TRAB measurement. We screened sera/plasma from 14 GD, 19 GO and 13 healthy controls using high-throughput proteomics and miRNA sequencing (Illumina's HiSeq2000 and Agilent-6550 Funnel quadrupole-time-of-flight mass spectrometry) to identify potential biomarkers for diagnosis or prognosis evaluation. Euclidean distances and differential expression (DE) based on miRNA and protein quantification were analysed by multidimensional scaling (MDS) and multinomial regression respectively. We detected 3025 miRNAs and 1886 proteins and MDS revealed good separation of the 3 groups. Biomarkers were identified by combined DE and Lasso-penalized predictive models; accuracy of predictions was 0.86 (±0:18), and 5 miRNA and 20 proteins were found including Zonulin, Alpha-2 macroglobulin, Beta-2 glycoprotein 1 and Fibronectin. Functional analysis identified relevant metabolic pathways, including hippo signaling, bacterial invasion of epithelial cells and mRNA surveillance. Proteomic and miRNA analyses, combined with robust bioinformatics, identified circulating biomarkers applicable to diagnose GD, predict GO disease status and optimize patient management.
Effect of protracted estrogen administration on the thyroid of Ames dwarf mice.
Vidal, S; Cameselle-Teijeiro, J; Horvath, E; Kovacs, K; Bartke, A
2001-04-01
The effect of protracted estrogen administration on estrogen receptor expression and cellular composition of the thyroid was examined in genetically thyrotropin (TSH)-deficient female Ames dwarf mice (df/df) to reveal whether estrogen might act independently from TSH. inducing changes in thyroid morphology and function. To evaluate such changes, the thyroid from four estrogen-implanted Ames dwarf mice, four sham-implanted Ames dwarf mice and four sham-implanted normal littermate mice were investigated histologically, immunohistochemically and morphometrically. Our morphologic study demonstrated significant differences in the colloid areas of normal and dwarf mice (P<0.001). The correlation observed between this parameter and body weights (r=0.610, P<0.05) and thyroid weights (r=0.729, P<0.01) suggests that the decrease in the colloid areas is not a result of abnormal folliculogenesis but is in direct correlation with the small thyroid and body size of dwarf mice. Although two types of estrogen receptors are known to exist in the present study, only the alpha (ERalpha) variant was found in the thyroid. ERalpha immunoreactivity was detected in the nuclei of parafollicular cells but not of the follicular epithelium. No significant differences were reported in ER expression between estrogen-implanted dwarf mice and sham-implanted dwarf mice, suggesting that estrogen receptor expression in the thyroid is independent of circulating estrogen levels. In spite of the absence of ERalpha in follicular cells, protracted estrogen administration affected mainly the follicular cells. Our results suggest that when TSH is absent estrogens may exert a negative feedback on the activity of follicular cells.
Alien/CSN2 gene expression is regulated by thyroid hormone in rat brain.
Tenbaum, Stephan P; Juenemann, Stefan; Schlitt, Thomas; Bernal, Juan; Renkawitz, Rainer; Muñoz, Alberto; Baniahmad, Aria
2003-02-01
Alien has been described as a corepressor for the thyroid hormone receptor (TR). Corepressors are coregulators that mediate gene silencing of DNA-bound transcriptional repressors. We describe here that Alien gene expression in vivo is regulated by thyroid hormone both in the rat brain and in cultured cells. In situ hybridization revealed that Alien is widely expressed in the mouse embryo and also throughout the rat brain. Hypothyroid animals exhibit lower expression of both Alien mRNAs and protein levels as compared with normal animals. Accordingly, we show that Alien gene is inducible after thyroid hormone treatment both in vivo and in cell culture. In cultured cells, the hormonal induction is mediated by either TRalpha or TRbeta, while cells lacking detectable amounts of functional TR lack hormonal induction of Alien. We have detected two Alien-specific mRNAs by Northern experiments and two Alien-specific proteins in vivo and in cell lines by Western analysis, one of the two forms representing the CSN2 subunit of the COP9 signalosome. Interestingly, both Alien mRNAs and both detected proteins are regulated by thyroid hormone in vivo and in cell lines. Furthermore, we provide evidence for the existence of at least two Alien genes in rodents. Taken together, we conclude that Alien gene expression is under control of TR and thyroid hormone. This suggests a negative feedback mechanism between TR and its own corepressor. Thus, the reduction of corepressor levels may represent a control mechanism of TR-mediated gene silencing.
Li, Yachai; Huang, Xianghua; Zhang, Mingle; Li, Yanan; Chen, Yexing; Jia, Jingfei
2015-09-01
To explore the biocompatibility of the poly-lactide-co-glycolide (PLGA)/collagen type I scaffold with rat vaginal epithelial cells, and the feasibility of using PLGA/collagen type I as scaffold to reconstruct vagina by the tissue engineering. PLGA/collagen type I scaffold was prepared with PLGA covered polylysine and collagen type I. The vaginal epithelial cells of Sprague Dawley rat of 10-12 weeks old were cultured by enzyme digestion method. The vaginal epithelial cells of passage 2 were cultured in the leaching liquor of scaffold for 48 hours to detect its cytotoxicity by MTT. The vaginal epithelial cells were inoculated on the PLGA/collagen type I scaffold (experimental group) and PLGA scaffold (control group) to calculate the cell adhesion rate. Epithelial cells-scaffold complexes were implanted subcutaneously on the rat back. At 2, 4, and 8 weeks after implantation, the epithelial cells-scaffold complexes were harvested to observe the cell growth by HE staining and immunohistochemical analysis. The epithelial cells-scaffold complexes were transplanted to reconstruct vagina in 6 rats with vaginal defect. After 3 and 6 months, the vaginal length was measured and the appearance was observed. The neovagina tissues were harvested for histological evaluation after 6 months. The epithelial cells grew and proliferated well in the leaching liquor of PLGA/collagen type I scaffold, and the cytotoxicity was at grade 1. The cell adhesion rate on the PLGA/collagen type I scaffold was 71.8%±9.2%, which significantly higher than that on the PLGA scaffold (63.4%±5.7%) (t=2.195, P=0.005). The epithelial cells could grow and adhere to the PLGA/collagen type I scaffolds. At 2 weeks after implanted subcutaneously, the epithelial cells grew and proliferated in the pores of scaffolds, and the fibroblasts were observed. At 4 weeks, 1-3 layers epithelium formed on the surface of scaffold. At 8 weeks, the epithelial cells increased and arranged regularly, which formed the membrane-like layer on the scaffold. The keratin expression of the epithelium was positive. At 3 months after transplantation in situ, the vaginal mucosa showed pink and lustrous epithelialization, and the majority of scaffold degraded. After 6 months, the neovagina length was 1.2 cm, without obvious stenosis; the vaginal mucosa had similar appearance and epithelial layer to normal vagina, but it had less duplicature; there were nail-like processes in the basal layer, but the number was less than that of normal vagina. The immunohistochemistry staining for keratin was positive. The PLGA/collagen type I scaffolds have good cytocompatibility with the epithelial cells, and can be used as the biodegradable polymer scaffold of the vaginal tissue engineering.
Stasiołek, Mariusz; Adamczewski, Zbigniew; Śliwka, Przemysław W; Puła, Bartosz; Karwowski, Bolesław; Merecz-Sadowska, Anna; Dedecjus, Marek; Lewiński, Andrzej
2017-06-15
Diagnostic whole-body scan is a standard procedure in patients with thyroid cancer prior to the application of a therapeutic dose of 131 I. Unfortunately, administration of the radioisotope in a diagnostic dose may decrease further radioiodine uptake-the phenomenon called "thyroid stunning". We estimated radiation absorbed dose-dependent changes in genetic material, in particular in the sodium iodide symporter (NIS) gene promoter, and the NIS protein level in a K1 cell line derived from the metastasis of a human papillary thyroid carcinoma exposed to 131 I in culture. The different activities applied were calculated to result in absorbed doses of 5, 10 and 20 Gy. Radioiodine did not affect the expression of the NIS gene at the mRNA level, however, we observed significant changes in the NIS protein level in K1 cells. The decrease of the NIS protein level observed in the cells subjected to the lowest absorbed dose was paralleled by a significant increase in 8-oxo-dG concentrations ( p < 0.01) and followed by late activation of the DNA repair pathways. Our findings suggest that the impact of 131 I radiation on thyroid cells, in the range compared to doses absorbed during diagnostic procedures, is not linear and depends on various factors including the cellular components of thyroid pathology.
Silk Film Topography Directs Collective Epithelial Cell Migration
Rosenblatt, Mark I.
2012-01-01
The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573
Jones, B A; Gores, G J
1997-12-01
Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.
CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing
USDA-ARS?s Scientific Manuscript database
After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...
Gunda, V; Bucur, O; Varnau, J; Vanden Borre, P; Bernasconi, M J; Khosravi-Far, R; Parangi, S
2014-03-06
Current treatment for recurrent and aggressive/anaplastic thyroid cancers is ineffective. Novel targeted therapies aimed at the inhibition of the mutated oncoprotein BRAF(V600E) have shown promise in vivo and in vitro but do not result in cellular apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in a tumor-selective manner by activating the extrinsic apoptotic pathway. Here, we show that a TRAIL-R2 agonist antibody, lexatumumab, induces apoptosis effectively in some thyroid cancer cell lines (HTh-7, TPC-1 and BCPAP), while more aggressive anaplastic cell lines (8505c and SW1736) show resistance. Treatment of the most resistant cell line, 8505c, using lexatumumab in combination with the BRAF(V600E) inhibitor, PLX4720, and the PI3K inhibitor, LY294002, (triple-drug combination) sensitizes the cells by triggering both the extrinsic and intrinsic apoptotic pathways in vitro as well as 8505c orthotopic thyroid tumors in vivo. A decrease in anti-apoptotic proteins, pAkt, Bcl-xL, Mcl-1 and c-FLIP, coupled with an increase in the activator proteins, Bax and Bim, results in an increase in the Bax to Bcl-xL ratio that appears to be critical for sensitization and subsequent apoptosis of these resistant cells. Our results suggest that targeting the death receptor pathway in thyroid cancer can be a promising strategy for inducing apoptosis in thyroid cancer cells, although combination with other kinase inhibitors may be needed in some of the more aggressive tumors initially resistant to apoptosis.
Thyroid sclerosing mucoepidermoid carcinoma with eosinophilia distinct from the salivary type.
Hirokawa, Mitsuyoshi; Takada, Nami; Abe, Hideyuki; Suzuki, Ayana; Higuchi, Miyoko; Miya, Akihiro; Hayashi, Toshitetsu; Fukushima, Mitsuhiro; Kawahara, Akihiko; Miyauchi, Akira
2018-04-26
We report three cases of thyroid sclerosing mucoepidermoid carcinoma with eosinophilia (SMECE), which is an extremely rare variant of mucoepidermoid carcinoma (MEC). The aims of this report were to describe the clinicopathological findings, including results from immunohistochemical and fluorescence in situ hybridization analysis of thyroid SMECE, as well as to discuss the distinction between thyroid SMECE and its salivary counterpart. The cases included a 63-year-old female, a 44-year-old male, and a 66-year-old female, with all patients presenting with Hashimoto's thyroiditis. Nodal metastasis was not found in any of the three cases. Neither regional recurrences nor distant metastases were found in any patient during the follow-up, which was 20 years, 3 years, and 18 months, respectively. Histologically, tumors were composed of epidermoid carcinoma cells, intermediate type carcinoma cells, and goblet cell-type mucus-secreting carcinoma cells, with all tumors displaying a sclerotic stroma with eosinophilic and lymphocytic infiltration. The formation of eosinophilic abscess in the tumor nests that might be a novel characteristic finding of SMECE was observed. Immunohistochemically, the carcinoma cells were positive for cytokeratin 34βE12, TTF-1, and PAX8, but negative for thyroglobulin. In two cases, increased IgG4-positive plasma cells were observed. Mastermind-like transcriptional coactivator 2 (MAML2), according to fluorescence in situ hybridization, was intact in all cases. In conclusion, thyroid SMECE has favorable outcomes and seems to be genetically different from salivary MEC. This is the first report to describe the presence of increased IgG4-positive plasma cells in the stroma of SMECE.
Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures
Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio
2013-01-01
The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiangjun; Yao, Qisheng, E-mail: yymcyqs@126.com; Sun, Xinbo
Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treatedmore » with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates fibrosis after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates inflammation and fibrosis after hypoxia-and LPS-induced renal epithelial cells injury via TLR4/NF-κB.« less
A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.
Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K
2014-01-01
The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.
Goitrous hypothyroidism associated with treatment with trimethoprim-sulfamethoxazole in a young dog.
Seelig, Davis M; Whittemore, Jacqueline C; Lappin, Michael R; Myers, Alan M; Avery, Paul R
2008-04-15
A 16-week-old female Boxer that had been treated for 5 weeks with trimethoprim-sulfamethoxazole and chloramphenicol because of aspiration pneumonia was evaluated for bilaterally symmetric masses in the subcutaneous tissues of the ventral neck, in the region of the larynx. Fine-needle aspirates were obtained from the neck masses; cytologic examination revealed well-differentiated thyroid epithelial tissue. A blood sample was collected for serum biochemical and thyroid function analyses. Mild hyperphosphatemia, severe hypercholesterolemia, mild hyperkalemia, and a mild increase in creatine kinase activity were identified. Serum concentration of total thyroxine was less than the lower reference limit, and that of thyroid-stimulating hormone was greater than the upper reference limit. Findings were consistent with a diagnosis of clinical hypothyroidism in a skeletally immature dog. Treatment with trimethoprim-sulfamethoxazole was discontinued. The dog was reevaluated 3 weeks later, at which time the neck masses were markedly decreased in size. Serum concentrations of cholesterol and potassium were lower; serum concentrations of total thyroxine and thyroid-stimulating hormone were near or within respective reference ranges. Age-appropriate increases in serum phosphorus concentration and serum alkaline phosphatase activity were also detected. To the authors' knowledge, this is the first report of antimicrobial-induced goiter in a dog. Cytologic examination of fine-needle aspirates and interpretation of data from serum biochemical and thyroid function analyses were needed to obtain a definitive diagnosis. Practitioners should include goiter among the differential diagnoses for ventral neck swellings in young dogs receiving potentiated sulfonamide antimicrobials.
Thyroid Hormone, Cancer, and Apoptosis.
Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J
2016-06-13
Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Yin, Gang; Alvero, Ayesha B.; Craveiro, Vinicius; Holmberg, Jennie C.; Fu, Han-Hsuan; Montagna, Michele K.; Yang, Yang; Chefetz-Menaker, Ilana; Nuti, Sudhakar; Rossi, Michael; Silasi, Dan-Arin; Rutherford, Thomas; Mor, Gil
2013-01-01
Epithelial-mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that Epithelial Ovarian Cancer Stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and Mesenchymal-Epithelial Transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected i.p in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to “home” to the ovaries and establish tumors. Most interestingly, we found that TWIST1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells. PMID:22349827
Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.
Morita, Maresuke; Fujita, Naoki; Takahashi, Ayaka; Nam, Eun Ryel; Yui, Sho; Chung, Cheng Shu; Kawahara, Naoya; Lin, Hsing Yi; Tsuzuki, Keiko; Nakagawa, Takayuki; Nishimura, Ryohei
2015-01-01
To examine the expressions of ABCG2 and p63 in canine corneal epithelia and to evaluate their significance in corneal regeneration. Canine corneal and limbal epithelial cells were obtained from five healthy beagle dogs. We analyzed the morphological properties of cultivated limbal and corneal epithelial cells. We compared the expressions of ABCG2 and p63 in the limbus and central cornea by immunohistochemistry and real-time quantitative PCR. We analyzed the expression of these markers in cultivated cells by immunocytochemistry and real-time quantitative PCR. The limbal epithelial cells were smaller and proliferated more rapidly than the corneal epithelial cells in primary cultures. The corneal cells failed to be subcultured, whereas the limbal cells could be subcultured with increasing cell size. ABCG2 was localized in the basal layer of the limbal epithelium, and p63 was widely detected in the entire corneal epithelia. ABCG2 expression was significantly higher, and p63 was slightly higher in the limbus compared with the central cornea. ABCG2 was detected only in limbal cells in primary culture, not in corneal cells or passaged limbal cells. p63 was detected in both limbal and corneal cells and decreased gradually in the limbal cells with the cell passages. ABCG2 was localized in canine limbal epithelial cells, and p63 was widely expressed in canine corneal epithelia. ABCG2 and p63 could prove to be useful markers in dogs for putative corneal epithelial stem cells and for corneal epithelial cell proliferation, respectively. © 2014 American College of Veterinary Ophthalmologists.
NASA Astrophysics Data System (ADS)
Chen, Kun; Qin, Yejun; Zheng, Feng; Sun, Menghong; Shi, Daren
2006-07-01
A single-cell diagnostic technique for epithelial cancers is developed by utilizing laser trapping and Raman spectroscopy to differentiate cancerous and normal epithelial cells. Single-cell suspensions were prepared from surgically removed human colorectal tissues following standard primary culture protocols and examined in a near-infrared laser-trapping Raman spectroscopy system, where living epithelial cells were investigated one by one. A diagnostic model was built on the spectral data obtained from 8 patients and validated by the data from 2 new patients. Our technique has potential applications from epithelial cancer diagnosis to the study of cell dynamics of carcinogenesis.
Liu, Hongliang; Hou, Changchun; Zeng, Qiang; Zhao, Liang; Cui, Yushan; Yu, Linyu; Wang, Lingzhi; Zhao, Yang; Nie, Junyan; Zhang, Bin; Wang, Aiguo
2016-09-01
Excess fluoride and iodide coexist in drinking water in many regions, but few studies have investigated the single or interactive effects on thyroid in vivo. In our study, Wistar rats were exposed to excess fluoride and/or iodide through drinking water for 2 or 8 months. The structure and function of the thyroid, cells apoptosis and the expression of inositol-requiring enzyme 1 (IRE1) pathway-related factors were analyzed. Results demonstrated that excess fluoride and/or iodide could change thyroid follicular morphology and alter thyroid hormone levels in rats. After 8 months treatment, both single and co-exposure of the two microelements could raise the thyroid cells apoptosis. However, the expressions of IRE1-related factors were only increased in fluoride-alone and the combined groups. In conclusion, thyroid structure and thyroid function were both affected by excess fluoride and/or iodide. IRE1-induced apoptosis were involved in this cytotoxic process caused by fluoride or the combination of two microelements. Copyright © 2016 Elsevier B.V. All rights reserved.
Hashimoto thyroiditis: a century later.
Ahmed, Rania; Al-Shaikh, Safa; Akhtar, Mohammed
2012-05-01
More than a century has passed since the first description of Hashimoto thyroiditis (HT) as a clinicopathologic entity. HT is an autoimmune disease in which a breakdown of immune tolerance is caused by interplay of a variety of immunologic, genetic, and environmental factors. Thyrocyte injury resulting from environmental factors results in expression of new or hidden epitopes that leads to proliferation of autoreactive T and B cells. Infiltration of thyroid by these cells results in HT. In addition to the usual type of HT, several variants such as the fibrous type and Riedal thyroiditis are also recognized. The most recently recognized variant is immunoglobulin G4(+) HT, which may occur as isolated thyroid limited disease or as part of a generalized Ig4-related sclerosing disease. The relationship between HT and Riedel thyroiditis remains unclear; however, recent evidence seems to suggest that it may also be part of the spectrum of Ig4-related sclerosing disease. HT is frequently associated with papillary thyroid carcinoma and may indeed be a risk factor for developing this type of cancer. The relationship between thyroid lymphoma and HT on the other hand appears well established.
Management of thyroid cytological material, pre-analytical procedures and bio-banking.
Bode-Lesniewska, Beata; Cochand-Priollet, Beatrix; Straccia, Patrizia; Fadda, Guido; Bongiovanni, Massimo
2018-06-09
Thyroid nodules are common and increasingly detected due to recent advances in imaging techniques. However, clinically relevant thyroid cancer is rare and the mortality from aggressive thyroid cancer remains constant. FNAC (Fine Needle Aspiration Cytology) is a standard method for diagnosing thyroid malignancy and the discrimination of malignant nodules from goiter. As the examined nodules on thyroid FNAC are often small incidental findings, it is important to maintain a low rate of undetermined diagnoses requiring further clinical work up or surgery. The most important factors determining the accuracy of the cytological diagnosis and suitability for biobanking of thyroid FNACs are the quality of the sample and availability of adequate tissue for auxiliary studies. This article analyses technical aspects (pre-analytics) of performing thyroid FNACs, including image guidance and rapid on slide evaluation (ROSE), sample collection methods (conventional slides, liquid based methods (LBC), cell blocks) and storage (bio-banking). The spectrum of the special studies (immunocytochemistry on direct slides or LBC, immunohistochemistry on cell blocks and molecular methods) required for improving the precision of the cytological diagnosis of the thyroid nodules is discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan
2014-12-01
Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.
Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu
2017-08-01
Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR inhibitors in epithelial-like cells. Furthermore, mesenchymal T-Epi cells showed resistance to EGFR inhibitors by circumventing the dephosphorylation of EGFR signaling. Cetuximab consistently showed antitumor effects, and increased involucrin expression in TE-11R (epithelial-like)-derived xenograft tumors but not TE-8 (mesenchymal-like)-derived xenograft tumors. The factor determining the therapeutic effects of EGFR inhibitors in ESCC cells is the phenotype representing the epithelial-like or mesenchymal-like cells. Mesenchymal-like ESCC cells are resistant to EGFR inhibitors because EGFR signaling is not blocked. EGFR inhibitors show antitumor effects on epithelial-like ESCC cells accompanied by promotion of squamous cell differentiation.
Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo
Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.
2015-01-01
Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721
Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells
Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro
2013-01-01
Purpose To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Methods Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5′-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT–PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Results Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Conclusions Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM. PMID:23378720
Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen
2015-08-01
Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kapferer, I; Schmidt, S; Gstir, R; Durstberger, G; Huber, L A; Vietor, I
2011-02-01
During surgical periodontal treatment, EMD is topically applied in order to facilitate regeneration of the periodontal ligament, acellular cementum and alveolar bone. Suppresion of epithelial down-growth is essential for successful periodontal regeneration; however, the underlying mechanisms of how EMD influences epithelial wound healing are poorly understood. In the present study, the effects of EMD on gene-expression profiling in an epithelial cell line (HSC-2) model were investigated. Gene-expression modifications, determined using a comparative genome-wide expression-profiling strategy, were independently validated by quantitative real-time RT-PCR. Additionally, cell cycle, cell growth and in vitro wound-healing assays were conducted. A set of 43 EMD-regulated genes was defined, which may be responsible for the reduced epithelial down-growth upon EMD application. Gene ontology analysis revealed genes that could be attributed to pathways of locomotion, developmental processes and associated processes such as regulation of cell size and cell growth. Additionally, eight regulated genes have previously been reported to take part in the process of epithelial-to-mesenchymal transition. Several independent experimental assays revealed significant inhibition of cell migration, growth and cell cycle by EMD. The set of EMD-regulated genes identified in this study offers the opportunity to clarify mechanisms underlying the effects of EMD on epithelial cells. Reduced epithelial repopulation of the dental root upon periodontal surgery may be the consequence of reduced migration and cell growth, as well as epithelial-to-mesenchymal transition. © 2010 John Wiley & Sons A/S.
Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model
Gao, Yang; Li, Shu; Li, Qinglei
2014-01-01
In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. PMID:24770950
Amico, Paolo; Lanzafame, Salvatore; Li Destri, Giovanni; Greco, Paolo; Caltabiano, Rosario; Vecchio, Giada Maria; Magro, Gaetano
2010-01-01
Warthin tumor-like papillary thyroid carcinoma is an uncommon variant of papillary thyroid carcinoma. We report a rare case of Warthin tumor-like variant of papillary thyroid carcinoma with a dedifferentiated component consisting of a solid tumor area composed of neoplastic cells with a spindle to tall cell morphology associated with marked nuclear pleomorphism, atypical mitoses, and foci of necrosis. Although our patient presented with a locally aggressive disease (T3 N1b Mo), she is disease-free without radioiodine therapy after a 23-month follow-up period. We emphasize that Warthin tumor-like papillary thyroid carcinoma, like other morphological variants of papillary carcinoma, may occasionally undergo dedifferentiation. As this component may be only focally detectable, we suggest an extensive sampling of all large-sized (>3 cm) papillary thyroid carcinoma. Recognition of any dedifferentiated component in a Warthin tumor-like papillary thyroid carcinoma should be reported, including its percentage, because it may reflect a more aggressive clinical course.
Amico, Paolo; Lanzafame, Salvatore; Li Destri, Giovanni; Greco, Paolo; Caltabiano, Rosario; Vecchio, Giada Maria; Magro, Gaetano
2010-01-01
Warthin tumor-like papillary thyroid carcinoma is an uncommon variant of papillary thyroid carcinoma. We report a rare case of Warthin tumor-like variant of papillary thyroid carcinoma with a dedifferentiated component consisting of a solid tumor area composed of neoplastic cells with a spindle to tall cell morphology associated with marked nuclear pleomorphism, atypical mitoses, and foci of necrosis. Although our patient presented with a locally aggressive disease (T3 N1b Mo), she is disease-free without radioiodine therapy after a 23-month follow-up period. We emphasize that Warthin tumor-like papillary thyroid carcinoma, like other morphological variants of papillary carcinoma, may occasionally undergo dedifferentiation. As this component may be only focally detectable, we suggest an extensive sampling of all large-sized (>3 cm) papillary thyroid carcinoma. Recognition of any dedifferentiated component in a Warthin tumor-like papillary thyroid carcinoma should be reported, including its percentage, because it may reflect a more aggressive clinical course. PMID:20593036
EphA2 and Src regulate equatorial cell morphogenesis during lens development
Cheng, Catherine; Ansari, Moham M.; Cooper, Jonathan A.; Gong, Xiaohua
2013-01-01
High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2-/- mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2-/- cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2-/- lenses. Src-/- equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice. PMID:24026120
In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.
Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin
2015-01-01
Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.
Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D
2016-01-01
This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.
Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana
2003-01-10
It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.
Catanese, Muriel; Popovici, Cornel; Proust, Hélène; Hoffart, Louis; Matonti, Frédéric; Cochereau, Isabelle; Conrath, John; Gabison, Eric E
2011-02-22
To assess corneal epithelial cell survival after keratoplasty. Corneal impression cytology (CIC) was performed on sex-mismatched corneal transplants. Fluorescent in situ hybridization (FISH) with sex chromosome-specific probes was performed to identify epithelial cell mosaicism and therefore allocate the donor or recipient origin of the cells. Twenty-four samples of corneal epithelial cells derived from 21 transplanted patients were analyzed. All patients received post-operative treatment using dexamethasone eye drops, with progressive tapering over 18 months, and nine patients also received 2% cyclosporine eye drops. Out of the 24 samples reaching quality criteria, sex mosaicism was found in 13, demonstrating the presence of donor-derived cells at the center of the graft for at least 211 days post keratoplasty. Kaplan-Meier analysis established a median survival of donor corneal epithelial cells of 385 days. Although not statistically significant, the disappearance of donor cells seemed to be delayed and the average number of persistent cells appeared to be greater when 2% cyclosporine was used topically as an additional immunosuppressive therapy. The combination of corneal impressions and FISH analysis is a valuable tool with negligible side effects to investigate the presence of epithelial cell mosaicism in sex-mismatched donor transplants. Epithelial cells survived at the center of the graft with a median survival of more than one year, suggesting slower epithelial turnover than previously described.
Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.
2012-01-01
GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenyao; Li, Xuezhong; Xu, Tong
Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less
Shuvy, Mony; Arbelle, Jonathan E; Grosbard, Aviva; Katz, Amos
2008-01-01
Heart rate variability is a sensitive marker of cardiac sympathetic activity. To determine whether long-term hyperthyroidism induced by thyroxine suppressive therapy affects HRV. Nineteen patients treated with suppressive doses of thyroxin for thyroid cancer and 19 age-matched controls were enrolled. Thyroid function tests and 1 minute HRV were performed on all subjects and the results were compared between the groups. The 1 minute HRV was analyzed during deep breathing and defined as the difference in beats/minute between the shortest and the longest heart rate interval measured by eletrocardiographic recording during six cycles of deep breathing. One minute HRV during deep breathing was significantly lower among thyroxine-treated patients compared to healthy controls (25.6 +/- 10.5 vs. 34.3 +/- 12.6 beats/min, P < 0.05). There were no significant differences in mean, maximal and minimal heart rate between the groups. Thyroxine therapy administered for epithelial thyroid cancer resulted in subclinical hyperthyroidism and significantly decreased HRV due to autonomic dysfunction rather than basic elevated heart rate.
NASA Technical Reports Server (NTRS)
Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.
2001-01-01
The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0.12 Gy(-1) for protons), which suggests that the higher level of survival of gamma-irradiated cells could be attributed to the persistence of nonlethally irradiated thyrocytes and/or the capacity to repair damage more effectively than cells exposed to equal physical doses of protons. The final assessment in this study was radiation-induced cell cycle phase redistribution. Gamma rays and protons produced a similar dose-dependent redistribution toward a predominantly G(2)-phase population. From our cumulative results, it seems likely that a majority of the proton-irradiated cells would not continue to divide. In conclusion, these findings suggest that there are quantitative and qualitative differences in the biological effects of proton beams and gamma rays. These differences could be due to structured energy deposition from the tracks of primary protons and the associated high-LET secondary particles produced in the targets. The results suggest that a simple dose-equivalent approach to dosimetry may be inadequate to compare the biological responses of cells to photons and protons.
Lukic, Ana; Ji, Jie; Idborg, Helena; Samuelsson, Bengt; Palmberg, Lena
2016-01-01
Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4. In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4. Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung. PMID:27436590
Coreceptors and Their Ligands in Epithelial γδ T Cell Biology
Witherden, Deborah A.; Johnson, Margarete D.; Havran, Wendy L.
2018-01-01
Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αβ T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor–ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes. PMID:29686687
Metastatic squamous cell carcinoma thyroid from functionally cured cancer cervix
Vamsy, Mohana; Dattatreya, Palanki Satya; Sarma, Lella Yugandhar; Dayal, Monal; Janardhan, Nandigam; Rao, Vatturi Venkata Satya Prabhakar
2013-01-01
The authors report a very unusual occurrence of a metastatic squamous carcinoma to thyroid gland from a treated squamous cell carcinoma cervix 12 years before with no recurrence at the primary site. The case also has an additional complexity of rapid progression of the metastatic thyroid carcinoma to wide spread dissemination to lungs and bones while on concurrent chemo radio therapy confirming the aggressiveness of the entity. PMID:24163519
Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and Apigenin.
Lakshmanan, Aparna; Scarberry, Daniel; Green, Jill A; Zhang, Xiaoli; Selmi-Ruby, Samia; Jhiang, Sissy M
2015-10-13
Targeted radioiodine therapy for thyroid cancer is based on selective stimulation of Na+/I- Symporter (NIS)-mediated radioactive iodide uptake (RAIU) in thyroid cells by thyrotropin. Patients with advanced thyroid cancer do not benefit from radioiodine therapy due to reduced or absent NIS expression. To identify inhibitors that can be readily translated into clinical care, we examined oncological pipeline inhibitors targeting Akt, MEK, PI3K, Hsp90 or BRAF in their ability to increase RAIU in thyroid cells expressing BRAFV600E or RET/PTC3 oncogene. Our data showed that (1) PI3K inhibitor GDC-0941 outperformed other inhibitors in RAIU increase mainly by decreasing iodide efflux rate to a great extent; (2) RAIU increase by all inhibitors was extensively reduced by TGF-β, a cytokine secreted in the invasive fronts of thyroid cancers; (3) RAIU reduction by TGF-β was mainly mediated by NIS reduction and could be reversed by Apigenin, a plant-derived flavonoid; and (4) In the presence of TGF-β, GDC-0941 with Apigenin co-treatment had the highest RAIU level in both BRAFV600E expressing cells and RET/PTC3 expressing cells. Taken together, Apigenin may serve as a dietary supplement along with small molecule inhibitors to improve radioiodine therapeutic efficacy on invasive tumor margins thereby minimizing future metastatic events.
Xu, Juan; Ke, Zhonghe; Xia, Jianhong; He, Fang; Bao, Baolong
2016-09-15
Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes. Copyright © 2016 Elsevier Inc. All rights reserved.
Ceresini, Graziano; Morganti, Simonetta; Graiani, Virna; Saccani, Maria; Milli, Bruna; Usberti, Elisa; Valenti, Giorgio; Ceda, Gian Paolo; Corcione, Luigi
2006-12-01
Estrogen receptors (ERs) have been demostrated in the vessel structures of several systems. Little is known on the presence of ERs in the thyroid vessels. We immunohistochemically evaluated both ER-alpha and ER-beta immunoreactivity (IR) in both vascular and follicular thyroid cells in tissue samples from 17 cases of multinodular goiter (MNG) and 17 cases of papillary thyroid carcinoma (PTC). ER-alpha IR was undetectable in either tissue examined. In 100% of MNG samples, nuclear ER-beta IR was detected in both endothelial and follicular cells. In PTC samples, endothelial nuclear ER-beta IR was found in 100% of cases, whereas the nuclear staining of follicular cells was found in 83% of cases. The intensity of staining of the endothelial ER-beta IR was comparable between MNG and PTC. However, when follicular cells were considered, a tendency toward a decrease in nuclear staining and a significant increase in cytoplasmic staining were found in PTC lesions as compared to MNG. This study demonstrated that ER-beta, but not ER-alpha, IR is present in the endothelium of thyroid vessels. Furthermore, although data need to be confirmed in larger observations, these results suggest the lack of differences in the pattern of vascular ER-beta IR between MNG and PTC.
Tanahashi, Toshihito; Kita, Masakazu; Kodama, Tadashi; Yamaoka, Yoshio; Sawai, Naoki; Ohno, Tomoyuki; Mitsufuji, Shoji; Wei, Ya-Ping; Kashima, Kei; Imanishi, Jiro
2000-01-01
Cytokines have been proposed to play an important role in Helicobacter pylori-associated gastroduodenal diseases, but the exact mechanism of the cytokine induction remains unclear. H. pylori urease, a major component of the soluble proteins extracted from bacterial cells, is considered to be one of the virulence factors for the inflammation in the gastric mucosa that is produced in H. pylori infection. However, the response of human gastric epithelial cells to the stimulation of urease has not been investigated. In the present study, we used human gastric epithelial cells in a primary culture system and examined whether H. pylori urease stimulates the gastric epithelial cells to induce proinflammatory cytokines by reverse transcription-PCR and enzyme-linked immunosorbent assay. First, by using peripheral blood mononuclear cells (PBMC) and a gastric cancer cell line (MKN-45 cells), we confirmed the ability of purified H. pylori urease to induce the production of proinflammatory cytokines. Furthermore, we demonstrated that the human gastric epithelial cells produced interleukin-6 (IL-6) and tumor necrosis factor alpha, but not IL-8, following stimulation with purified urease. The patterns of cytokine induction differed among human PBMC, MKN-45 cells, and human gastric epithelial cells. These results suggest that the human gastric epithelial cells contribute to the induction of proinflammatory cytokines by the stimulation of H. pylori urease, indicating that the epithelial cells were involved in the mucosal inflammation that accompanied H. pylori infection. PMID:10639431
The MEK1/2 Inhibitor AZD6244 Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib.
Song, Hao; Zhang, Jinna; Ning, Liang; Zhang, Honglai; Chen, Dong; Jiao, Xuelong; Zhang, Kejun
2018-05-08
BACKGROUND [i]BRAF[/i]V600E mutation occurs in approximately 45% of papillary thyroid cancer (PTC) cases, and 25% of anaplastic thyroid cancer (ATC) cases. Vemurafenib/PLX4032, a selective BRAF inhibitor, suppresses extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) signaling and shows beneficial effects in patients with metastatic melanoma harboring the [i]BRAFV600E[/i] mutation. However, the response to vemurafenib is limited in BRAF-mutant thyroid cancer. The present study evaluated the effect of vemurafenib in combination with the selective MEK1/2 inhibitor AZD6244 on cell survival and explored the mechanism underlying the combined effect of vemurafenib and AZD6244 on thyroid cancer cells harboring BRAFV600E. MATERIAL AND METHODS Thyroid cancer 8505C and BCPAP cells harboring the [i]BRAFV600E[/i] mutation were exposed to vemurafenib (0.01, 0.1, and 1 µM) and AZD6244 (0.01, 0.1, and 1 µM) alone or in the indicated combinations for the indicated times. Cell viability was detected by the MTT assay. Cell cycle distribution and induction of apoptosis were detected by flow cytometry. The expression of cyclin D1, P27, (P)-ERK1/2 was evaluated by Western blotting. The effect of vemurafenib or AZD6244 or their combination on the growth of 8505C cells was examined in orthotopic xenograft mouse models [i]in vivo[/i]. RESULTS Vemurafenib alone did not increase cell apoptosis, whereas it decreased cell viability by promoting cell cycle arrest in BCPAP and 8505C cells. AZD6244 alone increased cell apoptosis by inducing cell cycle arrest in BCPAP and 8505C cells. Combination treatment with AZD6244 and vemurafenib significantly decreased cell viability and increased apoptosis in both BCPAP and 8505C cells compared with the effects of each drug alone. AZD6244 alone abolished phospho-ERK1/2 (pERK1/2) expression at 48 h, whereas vemurafenib alone downregulated pERK1/2 at 4-6 h, with rapid recovery of expression, reaching the highest level at 24-48 h. Combined treatment for 48 h completely inhibited pERK1/2 expression. Combination treatment with vemurafenib and AZD6244 inhibited cell growth and induced apoptosis by causing cell-cycle arrest, with the corresponding changes in the expression of the cell cycle regulators p27Kip1 and cyclin D1. Co-administration of vemurafenib and AZD6244 [i]in vivo[/i] had a significant synergistic antitumor effect in a nude mouse model. CONCLUSIONS Vemurafenib activated pERK1/2 and induced vemurafenib resistance in thyroid cancer cells. Combination treatment with vemurafenib and AZD6244 inhibited ERK signaling and caused cell cycle arrest, resulting in cell growth inhibition. Combination treatment in patients with thyroid cancer harboring the [i]BRAFV600E[/i] mutation may overcome vemurafenib resistance and enhance the therapeutic effect.
Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.
2016-01-01
The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539
Wang, Jue
2014-01-01
Abstract Mouse utricle sensory epithelial cell–derived progenitor cells (MUCs), which have hair cell progenitor and mesenchymal features via epithelial-to-mesenchymal transition (EMT) as previously described, provide a potential approach for hair cell regeneration via cell transplantation. In this study, we treated MUCs with trichostatin A (TSA) to determine whether histone deacetylase inhibitor is able to stimulate the expression of epithelial genes in MUCs, an essential step for guiding mesenchymal-like MUCs to become sensory epithelial cells. After 72 h of TSA treatment, MUCs acquired epithelial-like features, which were indicated by increased expression of epithelial markers such as Cdh1, Krt18, and Dsp. Additionally, TSA decreased the expression of mesenchymal markers, including Zeb1, Zeb2, Snai1, and Snai2, and prosensory genes Lfng, Six1, and Dlx5. Moreover, the expression of the hair cell genes Atoh1 and Myo6 was increased in TSA-treated MUCs. We also observed significantly decreased expression of Hdac2 and Hdac3 in TSA-treated MUCs. However, no remarkable change was detected in protein expression using immunofluorescence, indicating that TSA-induced HDAC inhibition may contribute to the initial stage of the mesenchymal-to-epithelial phenotypic change. In the future, more work is needed to induce hair cell regeneration using inner ear tissue–derived progenitors to achieve an entire mesenchymal-to-epithelial transition. PMID:24945595
The Contribution of the Airway Epithelial Cell to Host Defense.
Stanke, Frauke
2015-01-01
In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.
Role of medullary progenitor cells in epithelial cell migration and proliferation
Chen, Dong; Chen, Zhiyong; Zhang, Yuning; Park, Chanyoung; Al-Omari, Ahmed
2014-01-01
This study is aimed at characterizing medullary interstitial progenitor cells and to examine their capacity to induce tubular epithelial cell migration and proliferation. We have isolated a progenitor cell side population from a primary medullary interstitial cell line. We show that the medullary progenitor cells (MPCs) express CD24, CD44, CXCR7, CXCR4, nestin, and PAX7. MPCs are CD34 negative, which indicates that they are not bone marrow-derived stem cells. MPCs survive >50 passages, and when grown in epithelial differentiation medium develop phenotypic characteristics of epithelial cells. Inner medulla collecting duct (IMCD3) cells treated with conditioned medium from MPCs show significantly accelerated cell proliferation and migration. Conditioned medium from PGE2-treated MPCs induce tubule formation in IMCD3 cells grown in 3D Matrigel. Moreover, most of the MPCs express the pericyte marker PDGFR-b. Our study shows that the medullary interstitium harbors a side population of progenitor cells that can differentiate to epithelial cells and can stimulate tubular epithelial cell migration and proliferation. The findings of this study suggest that medullary pericyte/progenitor cells may play a critical role in collecting duct cell injury repair. PMID:24808539
Machairas, Nikolaos; Kostakis, Ioannis D; Prodromidou, Anastasia; Stamopoulos, Paraskevas; Feretis, Themistoklis; Garoufalia, Zoe; Damaskos, Christos; Tsourouflis, Gerasimos; Kouraklis, Gregory
2017-11-01
Carcinogenesis has been related to systematic inflammatory response. Our aim was to study white blood cell and platelet indices as markers of this inflammatory response in thyroid cancer and to associate them with various clinicopathological parameters. We included 228 patients who underwent thyroidectomy within a period of 54 months, 89 with papillary thyroid carcinoma and 139 with multinodular hyperplasia. We examined potential links between white blood cell and platelet indices on the one hand and the type thyroid pathology and various clinicopathological parameters on the other. No significant differences were detected between thyroid cancer and multinodular hyperplasia and no significant associations were detected with regard to lymphovascular invasion and tumor size. However, the mean platelet volume was higher in multifocal tumors, while the platelet count, plateletcrit, and platelet-to-lymphocyte ratio were increased in cases with extrathyroidal extension and in T3 tumors. Additionally, T3 tumors had lower platelet distribution width. These associations demonstrated low accuracy in predicting these pathological features, but they were found to provide a satisfying negative predictive value, with the exception of the mean platelet volume. White blood cell and platelet indices cannot assist in distinguishing benign goiter from thyroid cancer. However, they can provide information about tumor multifocality, extrathyroidal extension, and presence of a T3 tumor, and they may be used as a means to exclude these pathological characteristics, especially the last two, in papillary thyroid carcinoma.
Targeting Autophagy Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib
Wang, Weibin; Kang, Helen; Zhao, Yinu; Min, Irene; Wyrwas, Brian; Moore, Maureen; Teng, Lisong; Zarnegar, Rasa; Jiang, Xuejun
2017-01-01
Context: The RAF inhibitor vemurafenib has provided a major advance for the treatment of patients with BRAF-mutant metastatic melanoma. However, BRAF-mutant thyroid cancer is relatively resistant to vemurafenib, and the reason for this disparity remains unclear. Anticancer therapy–induced autophagy can trigger adaptive drug resistance in a variety of cancer types and treatments. To date, role of autophagy during BRAF inhibition in thyroid cancer remains unknown. Objective: In this study, we investigate if autophagy is activated in vemurafenib-treated BRAF-mutant thyroid cancer cells, and whether autophagy inhibition improves or impairs the treatment efficacy of vemurafenib. Design: Autophagy level was determined by western blot assay and transmission electron microscopy. The combined effects of autophagy inhibitor and vemurafenib were assessed in terms of cell viability in vitro and tumor growth rate in vivo. Whether the endoplasmic reticulum (ER) stress was in response to vemurafenib-induced autophagy was also analyzed. Results: Vemurafenib induced a high level of autophagy in BRAF-mutant thyroid cancer cells. Inhibition of autophagy by either a pharmacological inhibitor or interfering RNA knockdown of essential autophagy genes augmented vemurafenib-induced cell death. Vemurafenib-induced autophagy was independent of MAPK signaling pathway and was mediated through the ER stress response. Finally, administration of vemurafenib with the autophagy inhibitor hydroxychloroquine promoted more pronounced tumor suppression in vivo. Conclusions: Our data demonstrate that vemurafenib induces ER stress response–mediated autophagy in thyroid cancer and autophagy inhibition may be a beneficial strategy to sensitize BRAF-mutant thyroid cancer to vemurafenib. PMID:27754804
Targeting Autophagy Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib.
Wang, Weibin; Kang, Helen; Zhao, Yinu; Min, Irene; Wyrwas, Brian; Moore, Maureen; Teng, Lisong; Zarnegar, Rasa; Jiang, Xuejun; Fahey, Thomas J
2017-02-01
The RAF inhibitor vemurafenib has provided a major advance for the treatment of patients with BRAF-mutant metastatic melanoma. However, BRAF-mutant thyroid cancer is relatively resistant to vemurafenib, and the reason for this disparity remains unclear. Anticancer therapy-induced autophagy can trigger adaptive drug resistance in a variety of cancer types and treatments. To date, role of autophagy during BRAF inhibition in thyroid cancer remains unknown. In this study, we investigate if autophagy is activated in vemurafenib-treated BRAF-mutant thyroid cancer cells, and whether autophagy inhibition improves or impairs the treatment efficacy of vemurafenib. Autophagy level was determined by western blot assay and transmission electron microscopy. The combined effects of autophagy inhibitor and vemurafenib were assessed in terms of cell viability in vitro and tumor growth rate in vivo. Whether the endoplasmic reticulum (ER) stress was in response to vemurafenib-induced autophagy was also analyzed. Vemurafenib induced a high level of autophagy in BRAF-mutant thyroid cancer cells. Inhibition of autophagy by either a pharmacological inhibitor or interfering RNA knockdown of essential autophagy genes augmented vemurafenib-induced cell death. Vemurafenib-induced autophagy was independent of MAPK signaling pathway and was mediated through the ER stress response. Finally, administration of vemurafenib with the autophagy inhibitor hydroxychloroquine promoted more pronounced tumor suppression in vivo. Our data demonstrate that vemurafenib induces ER stress response-mediated autophagy in thyroid cancer and autophagy inhibition may be a beneficial strategy to sensitize BRAF-mutant thyroid cancer to vemurafenib. Copyright © 2017 by the Endocrine Society
Wang, Peng; Xu, Weimin; Liu, Haixia; Bu, Qingao; Sun, Diwen
2017-01-01
Thyroid cancer is a common endocrine gland malignancy which exhibited rapid increased incidence worldwide in recent decades. This study was aimed to investigate the role of long noncoding RNA H19 in thyroid cancer. Long noncoding RNA H19 was overexpressed or knockdown in thyroid cancer cells SW579 and TPC-1, and the expression of long noncoding RNA H19 was detected by real-time polymerase chain reaction. The cell viability, migration, and invasion were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, Transwell assay, and wound healing assay, respectively. Furthermore, cell apoptosis was analyzed by flow cytometry, and expressions of some factors that were related to phosphatidyl inositide 3-kinases/protein kinase B and nuclear factor κB signal pathway were measured by Western blotting. This study revealed that cell viability and migration/invasion of SW579 and TPC-1 were significantly decreased by long noncoding RNA H19 overexpression compared with the control group (P < .05), whereas cell apoptosis was statistically increased (P < .001). Meanwhile, cell viability and migration/invasion were significantly increased after long noncoding RNA H19 knockdown (P < .05). Furthermore, long noncoding RNA H19 negatively regulated the expression of insulin receptor substrate 1 and thus effect on cell proliferation and apoptosis. Insulin receptor substrate 1 regulated the activation of phosphatidyl inositide 3-kinases/AKT and nuclear factor κB signal pathways. In conclusion, long noncoding RNA H19 could suppress cell viability, migration, and invasion via downregulation of insulin receptor substrate 1 in SW579 and TPC-1 cells. These results suggested the important role of long noncoding RNA H19 in thyroid cancer, and long noncoding RNA H19 might be a potential target of thyroid cancer treatment. PMID:29332545
Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L
2009-04-01
Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.
Yaglova, N V; Yaglov, V V
2017-03-01
Exposure to endocrine disruptors is considered as a risk factor thyroid gland diseases. We analyzed cytophysiological changes in rat thyroid follicular epithelium after long-term exposure to low doses of the most widespread disruptor DDT. Analysis of thyroid hormone production and light and electron microscopy of thyroid gland samples revealed cytophysiological changes in thyroid epithelium related to impaired transport through the apical membrane, suppressed Golgi complex activity, and impaired thyrotrophic hormone regulation of the secretory functions of thyroid cells, which led to compensatory transition from merocrine to microapocrine secret release.
Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.
Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina
2015-06-04
Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.
Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.
Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel
2015-11-01
Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions.
Selekman, Joshua A; Lian, Xiaojun; Palecek, Sean P
2016-01-01
Human pluripotent stem cells (hPSCs), under the right conditions, can be engineered to generate populations of any somatic cell type. Knowledge of what mechanisms govern differentiation towards a particular lineage is often quite useful for efficiently producing somatic cell populations from hPSCs. Here, we have outlined a strategy for deriving populations of simple epithelial cells, as well as more mature epidermal keratinocyte progenitors, from hPSCs by exploiting a mechanism previously shown to direct epithelial differentiation of hPSCs. Specifically, we describe how to direct epithelial differentiation of hPSCs using an Src family kinase inhibitor, SU6656, which has been shown to modulate β-catenin translocation to the cell membrane and thus promote epithelial differentiation. The differentiation platform outlined here produces cells with the ability to terminally differentiate to epidermal keratinocytes in culture through a stable simple epithelial cell intermediate that can be expanded in culture for numerous (>10) passages.
Xiong, Jimin; Gronthos, Stan; Bartold, P Mark
2013-10-01
Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal/stem cells, both functionally and phenotypically. Therefore, the epithelial cell rests of Malassez, rather than being 'cell rests', as indicated by their name, are an important source of stem cells that might play a pivotal role in periodontal regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Epithelial stem cells are formed by small-particles released from particle-producing cells
Kong, Wuyi; Zhu, Xiao Ping; Han, Xiu Juan; Nuo, Mu; Wang, Hong
2017-01-01
Recent spatiotemporal report demonstrated that epidermal stem cells have equal potential to divide or differentiate, with no asymmetric cell division observed. Therefore, how epithelial stem cells maintain lifelong stem-cell support still needs to be elucidated. In mouse blood and bone marrow, we found a group of large cells stained strongly for eosin and containing coiled-tubing-like structures. Many were tightly attached to each other to form large cellular clumps. After sectioning, these large cell-clumps were composed of not cells but numerous small particles, however with few small “naked” nuclei. The small particles were about 2 to 3 μm in diameter and stained dense red for eosin, so they may be rich in proteins. Besides the clumps composed of small particles, we identified clumps formed by fusion of the small particles and clumps of newly formed nucleated cells. These observations suggest that these small particles further fused and underwent cellularization. E-cadherin was expressed in particle-fusion areas, some “naked” nuclei and the newly formed nucleated cells, which suggests that these particles can form epithelial cells via fusion and nuclear remodeling. In addition, we observed similar-particle fusion before epithelial cellularization in mouse kidney ducts after kidney ischemia, which suggests that these particles can be released in the blood and carried to the target tissues for epithelial-cell regeneration. Oct4 and E-cadherin expressed in the cytoplasmic areas in cells that were rich in protein and mainly located in the center of the cellular clumps, suggesting that these newly formed cells have become tissue-specific epithelial stem cells. Our data provide evidence that these large particle-producing cells are the origin of epithelial stem cells. The epithelial stem cells are newly formed by particle fusion. PMID:28253358
[Pathological and immunohistochemical analysis of giant cells of pancreas].
Miyake, T; Suda, K; Yamamura, A; Tada, Y
1997-10-01
Multinucleated giant cells in the pancreas (five giant cell carcinomas, a mucinous cystadenocarcinoma attended with many osteoclast-like giant cells, 42 invasive ductal carcinomas and 29 chronic pancreatitises) were examined. Three types of multinucleated giant cell were identified: epithelial type, coexpressive type, mesenchymal type. Epithelial type expressed epithelial markers, such as keratin and EMA in 23 ductal carcinomas. Coexpressive type expressed both epithelial markers and mesenchymal marker vimentin was in four ductal carcinomas. Mesenchymal type expressed mesenchymal markers, vimentin and CD68 in four osteoclastoid type giant cell carcinomas, the mucinous cystadenocarcinoma, six ductal carcinomas and ten chronic pancreatitises. Epithelial and coexpressive type were considered to be epithelial neoplastic origin, those had bizarre appearance and transitional area from definite adenocarcinoma area. Vimentin expression is associated with sarcomatous proliferation. Mesenchymal type was considered to be nonneoplastic and a certain type of macrophage polykaryons.
2018-04-17
Brenner Tumor; Malignant Ascites; Malignant Pleural Effusion; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cavity Cancer
Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover
Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G
1998-01-01
Background—The functions of urokinase in intestinal epithelia are unknown. Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347
A solitary hyperfunctioning thyroid nodule harboring thyroid carcinoma: review of the literature.
Mirfakhraee, Sasan; Mathews, Dana; Peng, Lan; Woodruff, Stacey; Zigman, Jeffrey M
2013-05-04
Hyperfunctioning nodules of the thyroid are thought to only rarely harbor thyroid cancer, and thus are infrequently biopsied. Here, we present the case of a patient with a hyperfunctioning thyroid nodule harboring thyroid carcinoma and, using MEDLINE literature searches, set out to determine the prevalence of and characteristics of malignant "hot" nodules as a group. Historical, biochemical and radiologic characteristics of the case subjects and their nodules were compared to those in cases of benign hyperfunctioning nodules. A literature review of surgical patients with solitary hyperfunctioning thyroid nodules managed by thyroid resection revealed an estimated 3.1% prevalence of malignancy. A separate literature search uncovered 76 cases of reported malignant hot thyroid nodules, besides the present case. Of these, 78% were female and mean age at time of diagnosis was 47 years. Mean nodule size was 4.13 ± 1.68 cm. Laboratory assessment revealed T3 elevation in 76.5%, T4 elevation in 51.9%, and subclinical hyperthyroidism in 13% of patients. Histological diagnosis was papillary thyroid carcinoma (PTC) in 57.1%, follicular thyroid carcinoma (FTC) in 36.4%, and Hurthle cell carcinoma in 7.8% of patients. Thus, hot thyroid nodules harbor a low but non-trivial rate of malignancy. Compared to individuals with benign hyperfunctioning thyroid nodules, those with malignant hyperfunctioning nodules are younger and more predominantly female. Also, FTC and Hurthle cell carcinoma are found more frequently in hot nodules than in general. We were unable to find any specific characteristics that could be used to distinguish between malignant and benign hot nodules.
A solitary hyperfunctioning thyroid nodule harboring thyroid carcinoma: review of the literature
2013-01-01
Hyperfunctioning nodules of the thyroid are thought to only rarely harbor thyroid cancer, and thus are infrequently biopsied. Here, we present the case of a patient with a hyperfunctioning thyroid nodule harboring thyroid carcinoma and, using MEDLINE literature searches, set out to determine the prevalence of and characteristics of malignant “hot” nodules as a group. Historical, biochemical and radiologic characteristics of the case subjects and their nodules were compared to those in cases of benign hyperfunctioning nodules. A literature review of surgical patients with solitary hyperfunctioning thyroid nodules managed by thyroid resection revealed an estimated 3.1% prevalence of malignancy. A separate literature search uncovered 76 cases of reported malignant hot thyroid nodules, besides the present case. Of these, 78% were female and mean age at time of diagnosis was 47 years. Mean nodule size was 4.13 ± 1.68 cm. Laboratory assessment revealed T3 elevation in 76.5%, T4 elevation in 51.9%, and subclinical hyperthyroidism in 13% of patients. Histological diagnosis was papillary thyroid carcinoma (PTC) in 57.1%, follicular thyroid carcinoma (FTC) in 36.4%, and Hurthle cell carcinoma in 7.8% of patients. Thus, hot thyroid nodules harbor a low but non-trivial rate of malignancy. Compared to individuals with benign hyperfunctioning thyroid nodules, those with malignant hyperfunctioning nodules are younger and more predominantly female. Also, FTC and Hurthle cell carcinoma are found more frequently in hot nodules than in general. We were unable to find any specific characteristics that could be used to distinguish between malignant and benign hot nodules. PMID:23641736
Endoplasmic reticulum stress as a novel mechanism in amiodarone-induced destructive thyroiditis.
Lombardi, Angela; Inabnet, William Barlow; Owen, Randall; Farenholtz, Kaitlyn Ellen; Tomer, Yaron
2015-01-01
Amiodarone (AMIO) is one of the most effective antiarrhythmic drugs available; however, its use is limited by a serious side effect profile, including thyroiditis. The mechanisms underlying AMIO thyroid toxicity have been elusive; thus, identification of novel approaches in order to prevent thyroiditis is essential in patients treated with AMIO. Our aim was to evaluate whether AMIO treatment could induce endoplasmic reticulum (ER) stress in human thyroid cells and the possible implications of this effect in AMIO-induced destructive thyroiditis. Here we report that AMIO, but not iodine, significantly induced the expression of ER stress markers including Ig heavy chain-binding protein (BiP), phosphoeukaryotic translation initiation factor 2α (eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP) and spliced X-box binding protein-1 (XBP-1) in human thyroid ML-1 cells and human primary thyrocytes. In both experimental systems AMIO down-regulated thyroglobulin (Tg) protein but had little effect on Tg mRNA levels, suggesting a mechanism involving Tg protein degradation. Indeed, pretreatment with the specific proteasome inhibitor MG132 reversed AMIO-induced down-regulation of Tg protein levels, confirming a proteasome-dependent degradation of Tg protein. Corroborating our findings, pretreatment of ML-1 cells and human primary thyrocytes with the chemical chaperone 4-phenylbutyric acid completely prevented the effect of AMIO on both ER stress induction and Tg down-regulation. We identified ER stress as a novel mechanism contributing to AMIO-induced destructive thyroiditis. Our data establish that AMIO-induced ER stress impairs Tg expression via proteasome activation, providing a valuable therapeutic avenue for the treatment of AMIO-induced destructive thyroiditis.
Thyroid metastasis as initial presentation of clear cell renal carcinoma
Ramírez-Plaza, César Pablo; Domínguez-López, Marta Elena; Blanco-Reina, Francisco
2015-01-01
Introduction Metastatic tumors account for 1.4–2.5% of thyroid malignancies. About 25–30% of patients with clear cell renal carcinoma (CCRC) have distant metastasis at the time of diagnosis, being the thyroid gland a rare localization [5%]. Presentation of the case A 62-year woman who underwent a cervical ultrasonography and a PAAF biopsy reporting atypical follicular proliferation with a few intranuclear vacuoles “suggestive” of thyroid papillary cancer in the context of a multinodular goiter was reported. A total thyroidectomy was performed and the histology of a clear cell renal carcinoma (CCRC) was described in four nodules of the thyroid gland. A CT scan was performed and a renal giant right tumor was found. The patient underwent an eventful radical right nephrectomy and the diagnosis of CCRC was confirmed. Discussion Thyroid metastasis (TM) from CCRC are usually apparent in a metachronic context during the follow-up of a treated primary (even many years after) but may sometimes be present at the same time than the primary renal tumor. Our case is exceptional because the TM was the first evidence of the CCRC, which was subsequently diagnosed and treated. Conclusion The possibility of finding of an incidental metastatic tumor in the thyroid gland from a previous unknown and non-diganosed primary (as CCRC in our case was) is rare and account only for less than 1% of malignancies. Nonetheless, the thyroid gland is a frequent site of metastasis and the presence of “de novo” thyroid nodules in oncologic patients must be always considered and studied. PMID:25827295
Epithelial junctions, cytoskeleton, and polarity.
Pásti, Gabriella; Labouesse, Michel
2014-11-04
A distinctive feature of polarized epithelial cells is their specialized junctions, which contribute to cell integrity and provide platforms to orchestrate cell shape changes. This chapter discusses the composition, assembly and remodeling of C. elegans cell-cell (CeAJ) and hemidesmosome-like cell-extracellular matrix junctions (CeHD), proteins that anchor the cytoskeleton, and mechanisms involved in establishing epithelial polarity. Major recent progress in this area has come from the analysis of mechanisms that maintain cell polarity, which involve lipids and trafficking, and on the impact of mechanical forces on junction remodeling. This chapter focuses on cellular, rather than developmental, aspects of epithelial cells.
Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S
2008-09-01
We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.
Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.
2016-01-01
Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595
Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E
2003-09-01
Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the expression of caspase-1, caspase-3 and caspase-10, was inhibited. Inhibition of replication of intracellular bacteria resulted in an increase in apoptosis in both cell types. Our results showed that the differential induction of apoptosis between macrophages and alveolar epithelial cells represents specific strategies of M. tuberculosis for survival in the host.
Hyperthyroidism After Allogeneic Hematopoietic Stem Cell Transplantation: A Report of Four Cases
Sağ, Erdal; Gönç, Nazlı; Alikaşifoğlu, Ayfer; Kuşkonmaz, Barış; Uçkan, Duygu; Özön, Alev; Kandemir, Nurgün
2015-01-01
Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for many hematological disorders, primary immunodeficiencies, and metabolic disorders. Thyroid dysfunction is one of the frequently seen complications of HSCT. However, hyperthyroidism due to Graves’ disease, autoimmune thyroiditis, and thyrotoxicosis are rare. Herein, we report a series of 4 patients who were euthyroid before HSCT but developed hyperthyroidism (3 of them developed autoimmune thyroid disease) after transplantation. PMID:26777050
New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy.
Zhang, Lei; Liu, Wen; Wang, Qun; Li, Qinpei; Wang, Huijuan; Wang, Jun; Teng, Tieshan; Chen, Mingliang; Ji, Ailing; Li, Yanzhang
2018-03-02
Medullary thyroid cancer (MTC) is a relatively rare thyroid cancer responsible for a substantial fraction of thyroid cancer mortality. More effective therapeutic drugs with low toxicity for MTC are urgently needed. Orphan nuclear receptor 4A1 (NR4A1) plays a pivotal role in regulating the proliferation and apoptosis of a variety of tumor cells. Based on the NR4A1 protein structure, 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) was identified from the Specs compounds database using the protein structure-guided virtual screening approach. Computationally-based molecular modeling studies suggested that IMCA has a high affinity for the ligand binding pocket of NR4A1. MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide] and apoptosis assays demonstrated that IMCA resulted in significant thyroid cancer cell death. Immunofluorescence assays showed that IMCA induced NR4A1 translocation from the nucleus to the cytoplasm in thyroid cancer cell lines, which may be involved in the cell apoptotic process. In this study, the quantitative polymerase chain reaction results showed that the IMCA-induced upregulation of sestrin1 and sestrin2 was dose-dependent in thyroid cancer cell lines. Western blot showed that IMCA increased phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) and decreased phosphorylation of ribosomal protein S6 kinase (p70S6K), which is the key enzyme in the mammalian target of rapamycin (mTOR) pathway. The experimental results suggest that IMCA is a drug candidate for MTC therapy and may work by increasing the nuclear export of NR4A1 to the cytoplasm and the tumor protein 53 (p53)-sestrins-AMPK-mTOR signaling pathway.
USDA-ARS?s Scientific Manuscript database
Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...
Yeh, Michael W; Rougier, Jean-Philippe; Park, Jin-Woo; Duh, Quan-Yang; Wong, Mariwil; Werb, Zena; Clark, Orlo H
2008-01-01
Mechanisms of invasion in thyroid cancer remain poorly understood. We hypothesized that signaling via the epidermal growth factor receptor (EGFR) stimulates thyroid cancer cell invasion by altering the expression and cleavage of matrix metalloproteinases (MMPs). Papillary and follicular carcinoma cell lines were treated with EGF, the EGFR tyrosine kinase inhibitor AG1478, and the MMP inhibitors GM-6001 and Col-3. Flow cytometry was used to detect EGFR. In vitro invasion assays, gelatin zymography, and quantitative reverse transcription-PCR were used to assess the changes in invasive behavior and MMP expression and activation. All cell lines were found to overexpress functional EGFR. EGF stimulated invasion by thyroid cancer cells up to sevenfold (P<0.0001), a process that was antagonized completely by AG1478 and Col-3, partially by GM-6001, but not by the serine protease inhibitor aprotinin. EGF upregulated expression of MMP-9 (2.64– to 8.89-fold, P<0.0001) and membrane type-1 MMP (MT1-MMP, 1.97- to 2.67-fold, P<0.0001). This effect was blocked completely by AG1478 and partially by Col-3. The activation of MMP-2 paralleled MT1-MMP expression. We demonstrate that MMPs are critical effectors of invasion in the papillary and follicular thyroid cancer cell lines studied. Invasion is regulated by signaling through EGFR, an effect mediated by augmentation of gelatinase expression and activation. MMP inhibitors and growth factor antagonists may be effective tumoristatic agents for the treatment of aggressive thyroid carcinomas. PMID:17158762
Xiong, Jimin; Mrozik, Krzysztof; Gronthos, Stan
2012-01-01
The epithelial cell rests of Malassez (ERM) are odontogenic epithelial cells located within the periodontal ligament matrix. While their function is unknown, they may support tissue homeostasis and maintain periodontal ligament space or even contribute to periodontal regeneration. We investigated the notion that ERM contain a subpopulation of stem cells that could undergo epithelial–mesenchymal transition and differentiate into mesenchymal stem-like cells with multilineage potential. For this purpose, ERM collected from ovine incisors were subjected to different inductive conditions in vitro, previously developed for the characterization of bone marrow mesenchymal stromal/stem cells (BMSC). We found that ex vivo-expanded ERM expressed both epithelial (cytokeratin-8, E-cadherin, and epithelial membrane protein-1) and BMSC markers (CD44, CD29, and heat shock protein-90β). Integrin α6/CD49f could be used for the enrichment of clonogenic cell clusters [colony-forming units-epithelial cells (CFU-Epi)]. Integrin α6/CD49f-positive-selected epithelial cells demonstrated over 50- and 7-fold greater CFU-Epi than integrin α6/CD49f-negative cells and unfractionated cells, respectively. Importantly, ERM demonstrated stem cell-like properties in their differentiation capacity to form bone, fat, cartilage, and neural cells in vitro. When transplanted into immunocompromised mice, ERM generated bone, cementum-like and Sharpey's fiber-like structures. Additionally, gene expression studies showed that osteogenic induction of ERM triggered an epithelial–mesenchymal transition. In conclusion, ERM are unusual cells that display the morphological and phenotypic characteristics of ectoderm-derived epithelial cells; however, they also have the capacity to differentiate into a mesenchymal phenotype and thus represent a unique stem cell population within the periodontal ligament. PMID:22122577
Berghi, Nicolae Ovidiu
2017-08-01
Autoimmunity represents the attack of the immune system of an organism against its own cells and tissues. Autoimmune diseases may affect one organ (Hashimoto thyroiditis) or can be systemic (chronic urticaria). Many factors are implicated in the pathogenesis of autoimmunity (white cells, cytokines, chemokines). Hashimoto thyroiditis has been associated with chronic urticaria in the last 3 decades in a number of clinical studies. Anti-thyroid antibodies have been documented in a proportion ranging from 10% to 30% in chronic urticaria patients in different countries from 3 continents. Two of the factors involved in the mechanism of autoimmunity are present both in the pathophysiology of Hashimoto thyroiditis and chronic urticaria. According to recent studies, IL6 is implicated in the pathogenesis of both diseases. TregsCD4+CD25+Foxp3+ cells have also been implicated in the pathological mechanisms of these 2 entities. This review offers an explanation of the clinical and statistical association between these two diseases from the pathophysiological point of view.
Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.
Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun
2012-03-01
To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.
Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells
Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G.; Kuemmerle, John F.; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I.
2014-01-01
Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA–depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. PMID:25143399
Thyroxine differentially modulates the peripheral clock: lessons from the human hair follicle.
Hardman, Jonathan A; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Paus, Ralf
2015-01-01
The human hair follicle (HF) exhibits peripheral clock activity, with knock-down of clock genes (BMAL1 and PER1) prolonging active hair growth (anagen) and increasing pigmentation. Similarly, thyroid hormones prolong anagen and stimulate pigmentation in cultured human HFs. In addition they are recognized as key regulators of the central clock that controls circadian rhythmicity. Therefore, we asked whether thyroxine (T4) also influences peripheral clock activity in the human HF. Over 24 hours we found a significant reduction in protein levels of BMAL1 and PER1, with their transcript levels also decreasing significantly. Furthermore, while all clock genes maintained their rhythmicity in both the control and T4 treated HFs, there was a significant reduction in the amplitude of BMAL1 and PER1 in T4 (100 nM) treated HFs. Accompanying this, cell-cycle progression marker Cyclin D1 was also assessed appearing to show an induced circadian rhythmicity by T4 however, this was not significant. Contrary to short term cultures, after 6 days, transcript and/or protein levels of all core clock genes (BMAL1, PER1, clock, CRY1, CRY2) were up-regulated in T4 treated HFs. BMAL1 and PER1 mRNA was also up-regulated in the HF bulge, the location of HF epithelial stem cells. Together this provides the first direct evidence that T4 modulates the expression of the peripheral molecular clock. Thus, patients with thyroid dysfunction may also show a disordered peripheral clock, which raises the possibility that short term, pulsatile treatment with T4 might permit one to modulate circadian activity in peripheral tissues as a target to treat clock-related disease.
Sun, Dawei; Han, Shen; Liu, Chao; Zhou, Rui; Sun, Weihai; Zhang, Zhijun; Qu, Jianjun
2016-04-11
BACKGROUND The objective of this study was to explore the role of miR-199a-5p in the development of thyroid cancer, including its anti-proliferation effect and downstream signaling pathway. MATERIAL AND METHODS We conducted qRT-PCR analysis to detect the expressions of several microRNAs in 42 follicular thyroid carcinoma patients and 42 controls. We identified CTGF as target of miR-491, and viability and cell cycle status were determined in FTC-133 cells transfected with CTGF siRNA, miR-199a mimics, or inhibitors. RESULTS We identified an underexpression of miR-199a-5p in follicular thyroid carcinoma tissue samples compared with controls. Then we confirmed CTGF as a target of miR-199a-5p thyroid cells by using informatics analysis and luciferase reporter assay. Additionally, we found that mRNA and protein expression levels of CTGF were both clearly higher in malignant tissues than in benign tissues. miR-199a-5p mimics and CTGF siRNA similarly downregulated the expression of CTGF, and reduced the viability of FTC-133 cells by arresting the cell cycle in G0 phase. Transfection of miR-199a-5p inhibitors increased the expression of CTGF and promoted the viability of the cells by increasing the fraction of cells in G2/M and S phases. CONCLUSIONS Our study proves that the CTGF gene is a target of miR-199a-5p, demonstrating the negatively related association between CTGF and miR-199a. These findings suggest that miR-199a-5p might be a novel therapeutic target in the treatment of follicular thyroid carcinoma.
Jaeschke, Holger; Mueller, Sandra; Eszlinger, Markus; Paschke, Ralf
2010-12-01
Constitutively activating mutations (CAMs) of the TSHR are the major cause for nonautoimmune hyperthyroidism. Re-examination of constitutive activity previously determined in CHO cell lines recently demonstrated the caveats for the in vitro determination of constitutive TSHR activity, which leads to false positive conclusions regarding the molecular origin of hyperthyroidism or hot thyroid carcinomas. Mutations L677V and T620I identified in hot thyroid carcinomas were previously characterized in CHO and in 3T3-Vill cell lines, respectively, stably expressing the mutant without determination of TSHR expression. F666L identified in a patient with hot thyroid nodules, I691F in a family with nonautoimmune hyperthyroidism and F631I identified in a hot thyroid carcinoma were not characterized for their in vitro function. Therefore, we decided to (re)evaluate the in vitro function of these five TSHR variants by determination of cell surface expression, and intracellular cAMP and inositol phosphate levels and performed additionally linear regression analyses to determine basal activity independently from the mutant's cell surface expression in COS-7 and HEK(GT) cells. Only one (F631I) of the five investigated TSHR variants displayed constitutive activity for G(α) s signalling and showed correlation with the clinical phenotype. The previous false classification of T620I and L677V as CAMs is most likely related to the fact that both mutations were characterized in cell lines stably expressing the mutated receptor construct without assessing the respective receptor number per cell. Other molecular aetiologies for the nonautoimmune hyperthyroidism and/or hot thyroid carcinomas in these three patients and one family should be elucidated. © 2010 Blackwell Publishing Ltd.
Klaus, Aumayr; Fathi, Osmen; Tatjana, Traub-Weidinger; Bruno, Niederle; Oskar, Koperek
2018-04-01
Follicular thyroid carcinomas (FTCs) are the second most common malignant neoplasia of the thyroid and in general its prognosis is quite favorable. However, the occurrence of metastases or non-responsiveness to radioiodine therapy worsens the prognosis considerably. We evaluated immunohistochemically the expression of hypoxia-associated proteins by hypoxia-induced factor 1α (HIF-1α), the stroma-remodeling marker Tenascin C, as well as markers for the epithelial-mesenchymal transition (EMT), namely E-cadherin and slug in a series of 59 sporadic FTCs. In addition, various clinicopathologic parameters were assessed like TNM-staging, age, tumor size as well as tumor characteristics like desmoplasia, necrosis, and calcification. Overexpression of HIF-1α was seen in 29 of 59 tumors (49.2%) including 21 (35.6%) FTC with strong expression of tumor cell groups. HIF-1α correlated significantly with metastasis (p < 0.001; Mann-Whitney U test), degree of desmoplasia (p = 0.042, Kruskal-Wallis test), tenascin C expression (p = 0.042, Kruskal-Wallis test), calcification (p < 0.025, Kruskal-Wallis test), necrosis (p = 0.002), age (p = 0.011, Kruskal-Wallis test) and tumor stage UICC (p = 0.022, Kruskal-Wallis test). Furthermore, metastasis was associated with the degree of desmoplasia (p = 0.014; Fisher's exact test), calcification (p = 0.008, Fisher's exact test), necrosis (p = 0.042, Fisher's exact test), tumor size (p = 0.015, Mann-Whitney U test), and age (p = 0.001, Mann-Whitney U test). In a Cox proportional hazards model, only metastasis remained as an independent risk factor for overall survival (hazard rate: 10.2 [95% CI, 02.19 to 47.26]; p = 0.003). Our data suggest that HIF-1α plays a critical role in the remodeling of the extracellular matrix as well as metastasizing process of follicular thyroid carcinoma and targeting hypoxia-associated and -regulated proteins may be considered as potential targets for personalized medicine.
Huang, G T; Eckmann, L; Savidge, T C; Kagnoff, M F
1996-01-01
The acute host response to gastrointestinal infection with invasive bacteria is characterized by an accumulation of neutrophils in the lamina propria, and neutrophil transmigration to the luminal side of the crypts. Intestinal epithelial cells play an important role in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known regarding the expression, by epithelial cells, of molecules that are involved in interactions between the epithelium and neutrophils following bacterial invasion. We report herein that expression of ICAM-1 on human colon epithelial cell lines, and on human enterocytes in an in vivo model system, is upregulated following infection with invasive bacteria. Increased ICAM-1 expression in the early period (4-9 h) after infection appeared to result mainly from a direct interaction between invaded bacteria and host epithelial cells since it co-localized to cells invaded by bacteria, and the release of soluble factors by epithelial cells played only a minor role in mediating increased ICAM-1 expression. Furthermore, ICAM-1 was expressed on the apical side of polarized intestinal epithelial cells, and increased expression was accompanied by increased neutrophil adhesion to these cells. ICAM-1 expression by intestinal epithelial cells following infection with invasive bacteria may function to maintain neutrophils that have transmigrated through the epithelium in close contact with the intestinal epithelium, thereby reducing further invasion of the mucosa by invading pathogens. PMID:8755670
Zhao, L M; Pang, A X
2017-01-16
Iodine-131 (131I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following 131I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with 131I. They were then assessed for 131I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and 131I or with a NF-κB inhibitor of BMS-345541 and 131I, non-transfected SW579 cells were assessed in JNK/NFκB pathways. It was observed that 131I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G0/G1 phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and 131I, the non-transfected SW579 cell lines significantly inhibited JNK pathway, NF-κB pathway and the expression of BTG2. However, when treated with BMS-345541 and 131I, only the NF-κB pathway was suppressed. 131I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF-κB pathways.