Sample records for thyroid hormone level

  1. Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon.

    PubMed

    Liu, Shaoying; Chang, Juhua; Zhao, Ying; Zhu, Guonian

    2011-11-01

    In this study, zebrafish was exposed to triadimefon. Thyroid hormones levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSH-beta), deiodinases (dio1 and dio2) and the thyroid hormone receptor (thraa and thrb) were evaluated. After triadimefon exposure, increased T4 can be explained by increased thyroid-stimulating hormone (TSH-beta). The conversion of T4 to T3 (deiodinase type I-dio1) was decreased, which reduced the T3 level. Thyroid hormone receptor beta (thrb) mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  2. Synthetic gene network restoring endogenous pituitary–thyroid feedback control in experimental Graves’ disease

    PubMed Central

    Saxena, Pratik; Charpin-El Hamri, Ghislaine; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin

    2016-01-01

    Graves’ disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus–pituitary–thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus–pituitary–thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies. PMID:26787873

  3. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    PubMed Central

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems PMID:27420076

  4. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-07-12

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems.

  5. Withdrawal From Chronic Nicotine Reduces Thyroid Hormone Levels and Levothyroxine Treatment Ameliorates Nicotine Withdrawal-Induced Deficits in Hippocampus-Dependent Learning in C57BL/6J Mice

    PubMed Central

    Leach, Prescott T.; Holliday, Erica; Kutlu, Munir G.

    2015-01-01

    Introduction: Cigarette smoking alters a variety of endocrine systems including thyroid hormones. Altered thyroid hormone signaling may lead to a subclinical or overt hypothyroid condition that could contribute to nicotine withdrawal-related symptoms, such as cognitive deficits. Thus, normalizing thyroid hormone levels may represent a novel therapeutic target for ameliorating nicotine withdrawal-associated cognitive deficits. Methods: The current studies conducted an analysis of serum thyroid hormone levels after chronic and withdrawal from chronic nicotine treatment in C57BL/6J mice using an enzyme-linked immunosorbent assay. The present studies also evaluated the effect of synthetic thyroid hormone (levothyroxine) on contextual and cued memory. Results: The current studies found that nicotine withdrawal reduces secreted thyroid hormone levels by 9% in C57BL/6J mice. Further, supplemental thyroid hormone not only enhanced memory in naïve animals, but also ameliorated deficits in hippocampus-dependent learning associated with nicotine withdrawal. Conclusions: These results suggest that smokers attempting to quit should be monitored closely for changes in thyroid function. If successfully treated, normalization of thyroid hormone levels may ameliorate some deficits associated with nicotine withdrawal and this may lead to higher rates of successful abstinence. PMID:25358661

  6. Thyroid hormone and the central control of homeostasis.

    PubMed

    Warner, Amy; Mittag, Jens

    2012-08-01

    It has long been known that thyroid hormone has profound direct effects on metabolism and cardiovascular function. More recently, it was shown that the hormone also modulates these systems by actions on the central autonomic control. Recent studies that either manipulated thyroid hormone signalling in anatomical areas of the brain or analysed seasonal models with an endogenous fluctuation in hypothalamic thyroid hormone levels revealed that the hormone controls energy turnover. However, most of these studies did not progress beyond the level of anatomical nuclei; thus, the neuronal substrates as well as the molecular mechanisms remain largely enigmatic. This review summarises the evidence for a role of thyroid hormone in the central autonomic control of peripheral homeostasis and advocates novel strategies to address thyroid hormone action in the brain on a cellular level.

  7. Relationship between thyroid functions and urinary growth hormone secretion in patients with hyper- and hypothyroidism.

    PubMed

    Murao, K; Takahara, J; Sato, M; Tamaki, M; Niimi, M; Ishida, T

    1994-10-01

    Thyroid hormone plays an important role in growth hormone (GH) synthesis and secretion. To study the relationship between thyroid function and urinary GH secretion in the hyperthyroid and hypothyroid states, we measured thyroid hormones, simultaneously with serum and urinary GH levels, in 54 patients with thyroid diseases. GH-releasing hormone (GRH) test was performed in 18 patients in order to evaluate serum and urinary GH responses to GRH in hyper- and hypothyroid states. Serum thyroid hormone levels were strongly correlated with the urinary GH levels in the patients, and the correlation was greater than that between serum thyroid hormone and serum GH levels. Urinary GH levels were significantly higher in the hyperthyroid patients than in the euthyroid and hypothyroid patients, although serum GH levels were not significantly different among these three groups. Serum GH response to GRH was significantly decreased in hyperthyroid patients as compared to euthyroid patients. However, urinary GH levels after GRH administration were not decreased in the hyperthyroid patients. These results suggest that hyperthyroid states increase GH in urine and may accelerate the urinary clearance of GH.

  8. Neurodevelopmental Consequences of Low-Level Thyroid Hormone Disruption Induced by Environmental Contaminants

    EPA Science Inventory

    Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...

  9. Thyroiditis: an integrated approach.

    PubMed

    Sweeney, Lori B; Stewart, Christopher; Gaitonde, David Y

    2014-09-15

    Thyroiditis is a general term that encompasses several clinical disorders characterized by inflammation of the thyroid gland. The most common is Hashimoto thyroiditis; patients typically present with a nontender goiter, hypothyroidism, and an elevated thyroid peroxidase antibody level. Treatment with levothyroxine ameliorates the hypothyroidism and may reduce goiter size. Postpartum thyroiditis is transient or persistent thyroid dysfunction that occurs within one year of childbirth, miscarriage, or medical abortion. Release of preformed thyroid hormone into the bloodstream may result in hyperthyroidism. This may be followed by transient or permanent hypothyroidism as a result of depletion of thyroid hormone stores and destruction of thyroid hormone-producing cells. Patients should be monitored for changes in thyroid function. Beta blockers can treat symptoms in the initial hyperthyroid phase; in the subsequent hypothyroid phase, levothyroxine should be considered in women with a serum thyroid-stimulating hormone level greater than 10 mIU per L, or in women with a thyroid-stimulating hormone level of 4 to 10 mIU per L who are symptomatic or desire fertility. Subacute thyroiditis is a transient thyrotoxic state characterized by anterior neck pain, suppressed thyroid-stimulating hormone, and low radioactive iodine uptake on thyroid scanning. Many cases of subacute thyroiditis follow an upper respiratory viral illness, which is thought to trigger an inflammatory destruction of thyroid follicles. In most cases, the thyroid gland spontaneously resumes normal thyroid hormone production after several months. Treatment with high-dose acetylsalicylic acid or nonsteroidal anti-inflammatory drugs is directed toward relief of thyroid pain.

  10. Role of maternal thyroid hormones in the developing neocortex and during human evolution

    PubMed Central

    Stenzel, Denise; Huttner, Wieland B.

    2013-01-01

    The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187

  11. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata).

    PubMed

    Yamaguchi, Shinji; Hayase, Shin; Aoki, Naoya; Takehara, Akihiko; Ishigohoka, Jun; Matsushima, Toshiya; Wada, Kazuhiro; Homma, Koichi J

    2017-01-01

    Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3) peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4) in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.

  12. Generalized Resistance to Thyroid Hormone Associated with a Mutation in the Ligand-Binding Domain of the Human Thyroid Hormone Receptor β

    NASA Astrophysics Data System (ADS)

    Sakurai, Akihiro; Takeda, Kyoko; Ain, Kenneth; Ceccarelli, Paola; Nakai, Akira; Seino, Susumu; Bell, Graeme I.; Refetoff, Samuel; Degroot, Leslie J.

    1989-11-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. We have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine --> cytosine replacement in the codon for amino acid 340 resulted in a glycine --> arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.

  13. Direct effects of thyroid hormones on hepatic lipid metabolism.

    PubMed

    Sinha, Rohit A; Singh, Brijesh K; Yen, Paul M

    2018-05-01

    It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease (NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid metabolism at the molecular level. In this Review, we describe and summarize the key features of direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid hormone mediates these effects at the transcriptional and post-translational levels and via autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases involving the liver, such as hypercholesterolaemia and NAFLD.

  14. TSH increment and the risk of incident type 2 diabetes mellitus in euthyroid subjects.

    PubMed

    Jun, Ji Eun; Jin, Sang-Man; Jee, Jae Hwan; Bae, Ji Cheol; Hur, Kyu Yeon; Lee, Moon-Kyu; Kim, Sun Wook; Kim, Jae Hyeon

    2017-03-01

    Thyroid function is known to influence glucose metabolism, and thyroid-stimulating hormone is the most useful parameter in screening for thyroid dysfunction. Therefore, the aim of this study was to investigate the incidence of type 2 diabetes according to baseline thyroid-stimulating hormone level and thyroid-stimulating hormone change in euthyroid subjects. We identified and enrolled 17,061 euthyroid subjects without diabetes among participants who had undergone consecutive thyroid function tests between 2006 and 2012 as a part of yearly health check-up program. Thyroid-stimulating hormone changes were determined by subtracting baseline thyroid-stimulating hormone level from thyroid-stimulating hormone level at 1 year before diagnosis of diabetes or at the end of follow-up in subjects who did not develope diabetes. During 84,595 person-years of follow-up, there were 956 new cases of type 2 diabetes. Cox proportional hazards models showed the risk of incident type 2 diabetes was significantly increased with each 1 μIU/mL increment in TSH after adjustment for multiple confounding factors (hazard ratio = 1.13, 95% confidence interval: 1.07-1.20, P < 0.001). Compared with individuals in the lowest tertile (-4.08 to 0.34 μIU/mL), those in the highest thyroid-stimulating hormone change tertile (0.41-10.84 μIU/mL) were at greater risk for incident type 2 diabetes (hazard ratio = 1.25, 95% confidence interval: 1.05-1.48, P for trend = 0.011). However, baseline thyroid-stimulating hormone level and tertile were not associated with the risk for diabetes. Prominent increase in thyroid-stimulating hormone concentration can be an additional risk factor for the development of type 2 diabetes in euthyroid subjects.

  15. Thyroid-stimulation hormone-receptor antibodies as a predictor of thyrosuppressive drug therapy outcome in Graves' disease patients.

    PubMed

    Aleksić, Aleksandar Z; Aleksić, Željka; Manić, Saška; Mitov, Vladimir; Jolić, Aleksandar

    2014-01-01

    Graves' disease is autoimmune hyperthyroidism caused by pathological stimulation of thyroid-stimulation hormone-receptor antibodies. The decision on changing the therapy can be made on time by determining the prognostic factors of thyrosuppressive drug therapy outcome. The aim of the study was to determine the significance of thyroid-stimulation hormone-receptor antibodies level on the prediction of therapy outcome. The study was prospective and involved 106 drug-treated patients with newly diagnosed Graves' disease. Thyroid-stimulation hormone-receptor antibodies level was measured at the beginning of therapy, during therapy and 12 months after it had been introduced. No statistically significant difference in the level of thyroid-stimulation hormone-receptor antibodies was found at the beginning of disease and 12 months after the introduction of thyrosuppressive drug therapy among the patients who had been in remission and those who had not. Regardless of the outcome, thyroid-stimulation hormone-receptor antibodies level significantly decreased in all patients 12 months after the therapy had been introduced. The level of thyroid-stimulation hormone-receptor antibodies at the beginning of disease and 12 months after the introduction of therapy cannot predict the outcome of thyrosuppressive drug therapy.

  16. Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination.

    PubMed

    Köhrle, Josef

    2007-06-01

    Thyroid hormone metabolism by the three deiodinase selenoproteins -- DIO1, DIO2, and DIO3 -- regulates the local availability of various iodothyronine metabolites and thus mediates their effects on gene expression, thermoregulation, energy metabolism, and many key reactions during the development and maintenance of an adult organism. Circulating serum levels of thyroid hormone and thyroid-stimulating hormone, used as a combined indicator of thyroid hormone status, reflect a composite picture of: thyroid secretion; tissue-specific production of T(3) by DIO1 and DIO2 activity, which both contribute to circulating levels of T(3); and degradation of the prohormone T4, of the thyromimetically active T(3), of the inactive rT(3), of other iodothyronines metabolites with a lower iodine content and of thyroid hormone conjugates. Degradation reactions are catalyzed by either DIO1 or DIO3. Aberrant expression of individual deiodinases in disease, single nucleotide polymorphisms in their genes, and novel regulators of DIO gene expression (such as bile acids) provide a more complex picture of the fine tuning and the adaptation of systemic and local bioavailability of thyroid hormones.

  17. Graves' disease: diagnostic and therapeutic challenges (multimedia activity).

    PubMed

    Kahaly, George J; Grebe, Stefan K G; Lupo, Mark A; McDonald, Nicole; Sipos, Jennifer A

    2011-06-01

    Graves' disease is the most common cause of hyperthyroidism in the United States. Graves' disease occurs more often in women with a female:male ratio of 5:1 and a population prevalence of 1% to 2%. A genetic determinant to the susceptibility to Graves' disease is suspected because of familial clustering of the disease, a high sibling recurrence risk, the familial occurrence of thyroid autoantibodies, and the 30% concordance in disease status between identical twins. Graves' disease is an autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid antigen-specific T cells into the thyroid and thyroid-stimulating hormone receptor expressing tissues, with the production of autoantibodies to well-defined thyroidal antigens, such as thyroid peroxidase, thyroglobulin, and the thyroid-stimulating hormone receptor. The thyroid-stimulating hormone receptor is central to the regulation of thyroid growth and function. Stimulatory autoantibodies in Graves' disease activate the thyroid-stimulating hormone receptor leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Below-normal levels of baseline serum thyroid-stimulating hormone receptor, normal to elevated serum levels of T4, elevated serum levels of T3 and thyroid-stimulating hormone receptor autoantibodies, and a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow) thyroid gland confirm diagnosis of Graves' disease (available at: http://supplements.amjmed.com/2010/hyperthyroid/faculty.php). This Resource Center is also available through the website of The American Journal of Medicine (www.amjmed.com). Click on the “Thyroid/Graves' Disease” link in the “Resource Centers” section, found on the right side of the Journal homepage. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Regulation of fish growth hormone transcription.

    PubMed

    Farchi-Pisanty, O; Hackett, P B; Moav, B

    1995-09-01

    Regulation of endogenous fish growth hormone transcription was studied using carp pituitaries in vitro. It was demonstrated that thyroid hormone (T3) and 9-cis retinoic acid have increased the steady state levels of growth hormone messenger RNA in pituitary cells, as compared with beta-actin messenger RNA levels. In contrast, estrogen failed to increase growth hormone mRNA levels. The possible involvement of thyroid hormone receptor in pituitary gene expression was demonstrated by in situ localization of both growth hormone mRNA and thyroid hormone receptor mRNA in the pituitaries as early as 4 days after fertilization.

  19. [Painless thyroiditis].

    PubMed

    Okamura, Ken; Fujikawa, Megumi; Bandai, Sachiko

    2006-12-01

    Painless thyroiditis is characterized by painless low-uptake thyrotoxicosis (thyrotoxicosis without hyperthyroidism). Destructive damage of the thyroid has been thought to be the mechanism for self-limited thyrotoxicosis. However, hydrolysis of thyroglobulin must be responsible for the release of excessive thyroid hormone. Low-uptake of iodine and excessive release of thyroid hormone suggest the uncoupling of hormone synthesis and hormone secretion in the thyroid gland. Suppressed serum TSH level, various cytokines or growth factors including TGFbeta1, and thyroglobulin itself may be responsible for the suppressed hormone synthesis. The mechanism for persistent hormone release despite suppressed hormone synthesis should be clarified. Quantitative TSH binding inhibitor immunoglobulin assay is helpful for the differential diagnosis of painless thyroiditis and Graves' hyperthyroidism.

  20. Association between thyroid hormones and TRAIL.

    PubMed

    Bernardi, Stella; Bossi, Fleur; Toffoli, Barbara; Giudici, Fabiola; Bramante, Alessandra; Furlanis, Giulia; Stenner, Elisabetta; Secchiero, Paola; Zauli, Giorgio; Carretta, Renzo; Fabris, Bruno

    2017-11-01

    Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis-inducing ligand) might have a role in the regulation of body weight and metabolism. Interestingly, thyroid hormones seem to increase TRAIL tissue expression. This study aimed at evaluating whether overt thyroid disorders affected circulating TRAIL levels. TRAIL circulating levels were measured in euthyroid, hyperthyroid, and hypothyroid patients before and after thyroid function normalization. Univariate and multivariate analyses were performed to evaluate the correlation between thyroid hormones and TRAIL. Then, the stimulatory effect of both triiodothyronine (T3) and thyroxine (T4) on TRAIL was evaluated in vitro on peripheral blood mononuclear cells. Circulating levels of TRAIL significantly increased in hyperthyroid and decreased in hypothyroid patients as compared to controls. Once thyroid function was restored, TRAIL levels normalized. There was an independent association between TRAIL and both fT3 and fT4. Consistent with these findings, T3 and T4 stimulated TRAIL release in vitro. Here we show that thyroid hormones are associated with TRAIL expression in vivo and stimulate TRAIL expression in vitro. Given the overlap between the metabolic effects of thyroid hormones and TRAIL, this work sheds light on the possibility that TRAIL might be one of the molecules mediating thyroid hormones peripheral effects. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. The role of thyroid hormone in trophoblast function, early pregnancy maintenance, and fetal neurodevelopment.

    PubMed

    Ohara, Noriyuki; Tsujino, Taro; Maruo, Takeshi

    2004-11-01

    To review the literature on the roles of thyroid hormone in trophoblast function, early pregnancy maintenance, and fetal neurodevelopment. MEDLINE was searched for English-language papers published from 1971 to 2003, using the key words "brain," "hypothyroidism," "placenta," "pregnancy," "threatened abortion," "thyroid hormone," "thyroid hormone receptor," "thyroid hormone replacement therapy," "thyroid hormone-responsive gene," and "trophoblast." Transplacental transfer of thyroid hormone occurs before the onset of fetal thyroid hormone secretion. Thyroid hormone receptors and iodothyronine deiodinases are present in the placenta and the fetal central nervous system early in pregnancy, and thyroid hormone plays a crucial role both in trophoblast function and fetal neurodevelopment. Maternal hypothyroxinemia is associated with a high rate of spontaneous abortion and long-term neuropsychological deficits in children born of hypothyroid mothers. Maternal iodine deficiency also causes a wide spectrum of neuropsychological disorders in children, ranging from subclinical deficits in cognitive motor and auditory functions to hypothyroid-induced cognitive impairment in infants. However, these conditions are preventable when iodine supplementation is initiated before the second trimester. Although thyroid hormone replacement therapy is effective for reducing the adverse effects complicated by maternal hypothyroidism, the appropriate dose of thyroid hormone is mandatory in protecting the early stage of pregnancy. Close monitoring of maternal thyroid hormone status and ensuring adequate maternal thyroid hormone levels in early pregnancy are of great importance to prevent miscarriage and neuropsychological deficits in infants.

  2. Decreased alertness

    MedlinePlus

    ... involves the brain Liver failure Thyroid conditions that cause low thyroid hormone levels or very high thyroid hormone levels Brain disorders or injury, such as: Dementia or Alzheimer disease Head trauma Seizure Stroke Infections that affect ...

  3. Persistent Graves' hyperthyroidism despite rapid negative conversion of thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results: a case report.

    PubMed

    Ohara, Nobumasa; Kaneko, Masanori; Kitazawa, Masaru; Uemura, Yasuyuki; Minagawa, Shinichi; Miyakoshi, Masashi; Kaneko, Kenzo; Kamoi, Kyuzi

    2017-02-06

    Graves' disease is an autoimmune thyroid disorder characterized by hyperthyroidism, and patients exhibit thyroid-stimulating hormone receptor antibody. The major methods of measuring circulating thyroid-stimulating hormone receptor antibody include the thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Although the diagnostic accuracy of these assays has been improved, a minority of patients with Graves' disease test negative even on second-generation and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulins. We report a rare case of a thyroid-stimulating hormone-binding inhibitory immunoglobulin-positive patient with Graves' disease who showed rapid lowering of thyroid-stimulating hormone-binding inhibitory immunoglobulin levels following administration of the anti-thyroid drug thiamazole, but still experienced Graves' hyperthyroidism. A 45-year-old Japanese man presented with severe hyperthyroidism (serum free triiodothyronine >25.0 pg/mL; reference range 1.7 to 3.7 pg/mL) and tested weakly positive for thyroid-stimulating hormone-binding inhibitory immunoglobulins on second-generation tests (2.1 IU/L; reference range <1.0 IU/L). Within 9 months of treatment with oral thiamazole (30 mg/day), his thyroid-stimulating hormone-binding inhibitory immunoglobulin titers had normalized, but he experienced sustained hyperthyroidism for more than 8 years, requiring 15 mg/day of thiamazole to correct. During that period, he tested negative on all first-generation, second-generation, and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, but thyroid scintigraphy revealed diffuse and increased uptake, and thyroid ultrasound and color flow Doppler imaging showed typical findings of Graves' hyperthyroidism. The possible explanations for serial changes in the thyroid-stimulating hormone-binding inhibitory immunoglobulin results in our patient include the presence of thyroid-stimulating hormone receptor antibody, which is bioactive but less reactive on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, or the effect of reduced levels of circulating thyroid-stimulating hormone receptor antibody upon improvement of thyroid autoimmunity with thiamazole treatment. Physicians should keep in mind that patients with Graves' disease may show thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results that do not reflect the severity of Graves' disease or indicate the outcome of the disease, and that active Graves' disease may persist even after negative results on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Timely performance of thyroid function tests in combination with sensitive imaging tests, including thyroid ultrasound and scintigraphy, are necessary to evaluate the severity of Graves' disease and treatment efficacy.

  4. Endocrinology Update: Thyroid Disorders.

    PubMed

    Kelley, Scott

    2016-12-01

    Thyroid disease affects nearly every organ system in the body. Hypothyroidism is a state of thyroid hormone insufficiency that results in decreased metabolism and secondary effects including fatigue and weight gain. Primary hypothyroidism typically is a result of autoimmune thyroiditis or iodine deficiency and is assessed by measurement of the thyroid-stimulating hormone (TSH) level. This level usually is elevated in patients with hypothyroidism and low in patients with hyperthyroidism. Levothyroxine is the treatment of choice for hypothyroidism. Hyperthyroidism is a state of thyroid hormone excess, which increases the metabolic rate and causes symptoms including anxiety and tremor. Graves disease is the most common etiology in developed countries. Patients with hyperthyroidism are evaluated with measurement of TSH and free thyroxine levels. Management options include antithyroid drugs, radioactive iodine, and surgery. Thyroid nodules are detected commonly in family medicine, and may or may not be associated with thyroid hormone abnormalities. Patients with thyroid nodules should be evaluated with TSH level measurement and thyroid ultrasonography to guide further testing. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  5. Subclinical Hyperthyroidism: When to Consider Treatment.

    PubMed

    Donangelo, Ines; Suh, Se Young

    2017-06-01

    Subclinical hyperthyroidism is defined by a low or undetectable serum thyroid-stimulating hormone level, with normal free thyroxine and total or free triiodothyronine levels. It can be caused by increased endogenous production of thyroid hormone (e.g., in Graves disease, toxic nodular goiter, or transient thyroiditis), by administration of thyroid hormone to treat malignant thyroid disease, or by unintentional excessive replacement therapy. The prevalence of subclinical hyperthyroidism in the general population is about 1% to 2%; however, it may be higher in iodinedeficient areas. The rate of progression to overt hyperthyroidism is higher in persons with thyroid-stimulating hormone levels less than 0.1 mIU per L than in persons with low but detectable thyroid-stimulating hormone levels. Subclinical hyperthyroidism is associated with an increased risk of atrial fibrillation and heart failure in older adults, increased cardiovascular and all-cause mortality, and decreased bone mineral density and increased bone fracture risk in postmenopausal women. However, the effectiveness of treatment in preventing these conditions is unclear. A possible association between subclinical hyperthyroidism and quality-of-life parameters and cognition is controversial. The U.S. Preventive Services Task Force found insufficient evidence to assess the balance of benefits and harms of screening for thyroid dysfunction in asymptomatic persons. The American Thyroid Association and the American Association of Clinical Endocrinologists recommend treating patients with thyroid-stimulating hormone levels less than 0.1 mIU per L if they are older than 65 years or have comorbidities such as heart disease or osteoporosis.

  6. Thyroid hormone metabolism and environmental chemical exposure

    PubMed Central

    2012-01-01

    Background Polychlorinated dioxins and –furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to have a negative influence on thyroid hormone metabolism. The lower brominated flame retardants are now banned in the EU, however higher brominated decabromo-diphenyl ether (DBDE) and the brominated flame retardant hexabromocyclododecane (HBCD) are not yet banned. They too can negatively influence thyroid hormone metabolism. An additional brominated flame retardant that is still in use is tetrabromobisphenol-A (TBBPA), which has also been shown to influence thyroid hormone metabolism. Influences of brominated flame retardants, PCDD/F’s and dioxin like-PCBs (dl-PCB’s) on thyroid hormone metabolism in adolescence in the Netherlands will be presented in this study and determined if there are reasons for concern to human health for these toxins. In the period 1987-1991, a cohort of mother-baby pairs was formed in order to detect abnormalities in relation to dioxin levels in the perinatal period. The study demonstrated that PCDD/Fs were found around the time of birth, suggesting a modulation of the setpoint of thyroid hormone metabolism with a higher 3,3’, 5,5’tetrathyroxine (T4) levels and an increased thyroid stimulating hormone (TSH). While the same serum thyroid hormone tests (- TSH and T4) were again normal by 2 years of age and were still normal at 8-12 years, adolescence is a period with extra stress on thyroid hormone metabolism. Therefore we measured serum levels of TSH, T4, 3,3’,5- triiodothyronine (T3), free T4 (FT4), antibodies and thyroxine-binding globulin (TBG) in our adolescent cohort. Methods Vena puncture was performed to obtain samples for the measurement of thyroid hormone metabolism related parameters and the current serum dioxin (PCDD/Fs), PCB and PBDE levels. Results The current levels of T3 were positively correlated to BDE-99. A positive trend with FT4 and BDE-99 was also seen, while a positive correlation with T3 and dl-PCB was also seen. No correlation with TBG was seen for any of the contaminants. Neither the prenatal nor the current PCDD/F levels showed a relationship with the thyroid parameters in this relatively small group. Conclusion Once again the thyroid hormone metabolism (an increase in T3) seems to have been influenced by current background levels of common environmental contaminants: dl-PCBs and BDE-99. T3 is a product of target organs and abnormalities might indicate effects on hormone transporters and could cause pathology. While the influence on T3 levels may have been compensated, because the adolescents functioned normal at the time of the study period, it is questionable if this compensation is enough for all organs depending on thyroid hormones. PMID:22759492

  7. Selenium glutathione peroxidase activities and thyroid functions in human individuals

    NASA Astrophysics Data System (ADS)

    Bellisola, G.; Calza Contin, M.; Ceccato, D.; Cinque, G.; Francia, G.; Galassini, S.; Liu, N. Q.; Lo Cascio, C.; Moschini, G.; Sussi, P. L.

    1996-04-01

    At least two enzymes are involved in metabolism of thyroid hormones. GSHPx protects thyrocyte from high H 2O 2 levels that are required for iodination of prohormones to form T4 in thyroid cell. Type I iodothyronine 5'-deiodinase (5'-D) catalyzes the deiodination of L-thyroxin (T4) to the biologically active thyroid hormone 3,3'-5-triiodothyronine (T 3) in liver, in kidney and in thyroid tissues. Circulating thyroid hormones, plasma Se levels, GSHPx activities in platelets and in plasma were investigated in 29 human individuals with increased thyroid mass. PIXE was applied to measure Se in 1 ml of plasma because we supposed patients were in a marginal carential status for Se. Plasma Se concentrations were compared with those of normal individuals. Correlation studies between plasma Se level and both GSHPx activities were carried out as well as between platelets and plasma GSHPx activities to verify the hypothesis of a marginal Se deficiency in patients. Significance of circulating thyroid hormones levels will be discussed.

  8. Hypothyroidism: etiology, diagnosis, and management.

    PubMed

    Almandoz, Jaime P; Gharib, Hossein

    2012-03-01

    Hypothyroidism is the result of inadequate production of thyroid hormone or inadequate action of thyroid hormone in target tissues. Primary hypothyroidism is the principal manifestation of hypothyroidism, but other causes include central deficiency of thyrotropin-releasing hormone or thyroid-stimulating hormone (TSH), or consumptive hypothyroidism from excessive inactivation of thyroid hormone. Subclinical hypothyroidism is present when there is elevated TSH but a normal free thyroxine level. Treatment involves oral administration of exogenous synthetic thyroid hormone. This review presents an update on the etiology and types of hypothyroidism, including subclinical disease; drugs and thyroid function; and diagnosis and treatment of hypothyroidism. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Thyrotropin-producing pituitary adenoma simultaneously existing with Graves' disease: a case report.

    PubMed

    Arai, Nobuhiko; Inaba, Makoto; Ichijyo, Takamasa; Kagami, Hiroshi; Mine, Yutaka

    2017-01-06

    Thyrotropin-producing pituitary tumor is relatively rare. In particular, concurrent cases associated with Graves' disease are extremely rare and only nine cases have been reported so far. We describe a case of a thyrotropin-producing pituitary adenoma concomitant with Graves' disease, which was successfully treated. A 40-year-old Japanese woman presented with mild signs of hyperthyroidism. She had positive anti-thyroid-stimulating hormone receptor antibody, anti-thyroglobulin antibody, and anti-thyroid peroxidase antibody. Her levels of serum thyroid-stimulating hormone, which ranged from low to normal in the presence of high levels of serum free thyroid hormones, were considered to be close to a state of syndrome of inappropriate secretion of thyroid-stimulating hormone. Magnetic resonance imaging showed a macropituitary tumor. The coexistence of thyrotropin-producing pituitary adenoma and Graves' disease was suspected. Initial therapy included anti-thyroid medication, which was immediately discontinued due to worsening symptoms. Subsequently, surgical therapy for the pituitary tumor was conducted, and her levels of free thyroid hormones, including the thyroid-stimulating hormone, became normal. On postoperative examination, her anti-thyroid-stimulating hormone receptor antibody levels decreased, and the anti-thyroglobulin antibody became negative. The coexistence of thyrotropin-producing pituitary adenoma and Graves' disease is rarely reported. The diagnosis of this condition is complicated, and the appropriate treatment strategy has not been clearly established. This case suggests that physicians should consider the coexistence of thyrotropin-producing pituitary adenoma with Graves' disease in cases in which thyroid-stimulating hormone values range from low to normal in the presence of thyrotoxicosis, and the surgical treatment of thyrotropin-producing pituitary adenoma could be the first-line therapy in patients with both thyrotropin-producing pituitary adenoma and Graves' disease.

  10. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    PubMed

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism.

  11. Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue

    PubMed Central

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism. PMID:24465683

  12. Stimulation of thyroid hormone secretion by thyrotropin in beluga whales, Delphinapterus leucas.

    PubMed Central

    St Aubin, D J

    1987-01-01

    Bovine thyroid stimulating hormone administered to three beluga whales, Delphinapterus leucas, was effective in producing an increase in circulating levels of triiodothyronine and thyroxine. A single dose of 10 I.U. of thyroid stimulating hormone resulted in a 145% increase in triiodothyronine and a 35% increase in thyroxine after nine hours in a whale tested within two hours after capture. The response was less pronounced in an animal tested with the same does on two occasions after four and eight weeks in captivity. In the third whale, 10 I.U. of thyroid stimulating hormone given on each of three consecutive days produced a marked increase in triiodothyronine and thyroxine. The elevation of thyroxine concentration persisted for at least two days after the last injection of thyroid stimulating hormone. A subsequent decrease in thyroxine to levels below baseline signalled the suppression of endogenous thyroid stimulating hormone. This preliminary study helps to establish a protocol for testing thyroid function in cetaceans. PMID:3651900

  13. Thyroid hormones and coronary artery calcification in euthyroid men and women.

    PubMed

    Zhang, Yiyi; Kim, Bo-Kyoung; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Rampal, Sanjay; Zhao, Di; Pastor-Barriuso, Roberto; Lima, Joao A; Shin, Hocheol; Guallar, Eliseo

    2014-09-01

    Overt and subclinical hypothyroidism are risk factors for atherosclerosis. It is unclear whether thyroid hormone levels within the normal range are also associated with atherosclerosis measured by coronary artery calcium (CAC). We conducted a cross-sectional study of 41 403 apparently healthy young and middle-aged men and women with normal thyroid hormone levels. Free thyroxin, free triiodothyronine, and thyroid-stimulating hormone levels were measured by electrochemiluminescent immunoassay. CAC score was measured by multidetector computed tomography. The multivariable adjusted CAC ratios comparing the highest versus the lowest quartile of thyroid hormones were 0.74 (95% confidence interval, 0.60-0.91; P for trend <0.001) for free thyroxin, 0.81 (0.66-1.00; P for trend=0.05) for free triiodothyronine, and 0.78 (0.64-0.95; P for trend=0.01) for thyroid-stimulating hormone. Similarly, the odds ratios for detectable CAC (CAC >0) comparing the highest versus the lowest quartiles of thyroid hormones were 0.87 (0.79-0.96; P for linear trend <0.001) for free thyroxin, 0.90 (0.82-0.99; P for linear trend=0.02) for free triiodothyronine, and 0.91 (0.83-1.00; P for linear trend=0.03) for thyroid-stimulating hormone. In a large cohort of apparently healthy young and middle-aged euthyroid men and women, low-normal free thyroxin and thyroid-stimulating hormone were associated with a higher prevalence of subclinical coronary artery disease and with a greater degree of coronary calcification. © 2014 American Heart Association, Inc.

  14. Prenatal and Neonatal Thyroid Stimulating Hormone Levels and Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yau, Vincent M.; Lutsky, Marta; Yoshida, Cathleen K.; Lasley, Bill; Kharrazi, Martin; Windham, Gayle; Gee, Nancy; Croen, Lisa A.

    2015-01-01

    Thyroid hormones are critical for normal brain development. This study examined autism spectrum disorders (ASD) and thyroid stimulating hormone (TSH) levels measured in mid-pregnancy maternal serum and infant blood after birth. Three groups of children born in Orange County, CA in 2000-2001 were identified: ASD (n = 78), developmental delay…

  15. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients.

    PubMed

    Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya

    2017-12-01

    Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017, 10: 1919-1928. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  16. MODEST THYROID HORMONE INSUFFICIENCY DURING DEVELOPMENT INDUCES A CELLULAR MALFORMATION IN THE CORPUS CALLOSUM: A MODEL OF CORTICAL DYSPLASIA.

    EPA Science Inventory

    There is a growing body of evidence that subtle decreases in maternal thyroid hormone during gestation can impact fetal brain development. The present study examined the impact of graded levels of thyroid hormone insufficiency on brain development in rodents. Maternal thyroid ho...

  17. Pathogenesis of Hyperthyroidism.

    PubMed

    Singh, Ishita; Hershman, Jerome M

    2016-12-06

    Hyperthyroidism is a form of thyrotoxicosis in which there is excess thyroid hormone synthesis and secretion. Multiple etiologies can lead to a common clinical state of "thyrotoxicosis," which is a consequence of the high thyroid hormone levels and their action on different tissues of the body. The most common cause of thyrotoxicosis is Graves' disease, an autoimmune disorder in which stimulating thyrotropin receptor antibodies bind to thyroid stimulating hormone (TSH) receptors on thyroid cells and cause overproduction of thyroid hormones. Other etiologies include: forms of thyroiditis in which inflammation causes release of preformed hormone, following thyroid gland insult that is autoimmune, infectious, mechanical or medication induced; secretion of human chorionic gonadotropin in the setting of transient gestational thyrotoxicosis and trophoblastic tumors; pituitary thyrotropin release, and exposure to extra-thyroidal sources of thyroid hormone that may be endogenous or exogenous. © 2017 American Physiological Society. Compr Physiol 7:67-79, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  18. Maternal iron deficiency alters circulating thyroid hormone levels in developing neonatal rats

    EPA Science Inventory

    Thyroid hormone insufficiency and iron deficiency (FeD) during fetal and neonatal life are both similarly deleterious to mammalian development suggesting a possible linkage between iron and thyroid hormone insufficiencies. Recent published data from our laboratory demonstrate a r...

  19. [Rare differential diagnosis of hyperthyroidism].

    PubMed

    Besemer, Britta; Müssig, Karsten

    2016-06-01

    A 54-year-old female patient is admitted for evaluation of her thyroid function after two cycles of ipilimumab therapy. The decision for the anti-cytotoxic-T-lymphocyte-antigen-4-therapy (anti-CTLA-4) was made two months earlier because of malignant melanoma with pulmonary metastases. The patient was euthyroid before initiation of treatment and without known thyroid disease. The laboratory reveals thyrotoxicosis with elevated anti-thyroid peroxidase and anti-thyroglobulin antibody levels. The anti-thyroid stimulating hormone receptor antibody levels are within the normal range. Thyroid ultrasound shows a normal-sized, inhomogenous, hypoechogenic thyroid gland, consistent with autoimmune thyroiditis. Diagnosis of hyperthyroidism due to ipilimumab-induced autoimmune thyroiditis is made. The patient does not receive any thyroid-specific medication, with regular control of the thyroid hormone levels. When the patient becomes euthyroid, the ipilimumab therapy is continued. Three weeks later, the patient develops hypothyroidism and a supplementation with L-thyroxine is initiated. An anti-CTLA-4 therapy may cause thyroid dysfunction. Therefore, before initiation and in the course of the treatment, regular controls of the thyroid hormone levels are required. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Thyroid hormonal disturbances related to treatment of hepatitis C with interferon-alpha and ribavirin

    PubMed Central

    Danilovic, Debora Lucia Seguro; Mendes-Correa, Maria Cassia; Chammas, Maria Cristina; Zambrini, Heverton; Marui, Suemi

    2011-01-01

    OBJECTIVE: To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. INTRODUCTION: Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. METHODS: We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. RESULTS: Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH) levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. DISCUSSION: Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. CONCLUSION: Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels), which occur despite stable free T4 and TSH levels. A thyroid hormonal evaluation, including the analysis of the free T4, TSH, and antithyroid antibody levels, should be mandatory before therapy, and an early re-evaluation within three months of treatment is necessary as an appropriate follow-up. PMID:22012048

  1. Thyroid hormonal disturbances related to treatment of hepatitis C with interferon-alpha and ribavirin.

    PubMed

    Danilovic, Debora Lucia Seguro; Mendes-Correa, Maria Cassia; Chammas, Maria Cristina; Zambrini, Heverton; Marui, Suemi

    2011-01-01

    To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH) levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels), which occur despite stable free T4 and TSH levels. A thyroid hormonal evaluation, including the analysis of the free T4, TSH, and antithyroid antibody levels, should be mandatory before therapy, and an early re-evaluation within three months of treatment is necessary as an appropriate follow-up.

  2. Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: A targeted metabolomic approach.

    PubMed

    Yao, Xuan; Sa, Rina; Ye, Cheng; Zhang, Duo; Zhang, Shengjie; Xia, Hongfeng; Wang, Yu-cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao

    2015-01-01

    Symptoms of cardiovascular diseases are frequently found in patients with hypothyroidism and hyperthyroidism. However, it is unknown whether arachidonic acid metabolites, the potent mediators in cardiovascular system, are involved in cardiovascular disorders caused by hyperthyroidism and hypothyroidism. To answer this question, serum levels of arachidonic acid metabolites in human subjects with hypothyroidism, hyperthyroidism and mice with hypothyroidism or thyroid hormone treatment were determined by a mass spectrometry-based method. Over ten arachidonic acid metabolites belonging to three catalytic pathways: cyclooxygenases, lipoxygenases, and cytochrome P450, were quantified simultaneously and displayed characteristic profiles under different thyroid hormone status. The level of 20-hydroxyeicosatetraenoic acid, a cytochrome P450 metabolite, was positively correlated with thyroid hormone level and possibly contributed to the elevated blood pressured in hyperthyroidism. The increased prostanoid (PG) I2 and decreased PGE2 levels in hypothyroid patients might serve to alleviate atherosclerosis associated with dyslipidemia. The elevated level of thromboxane (TX) A2, as indicated by TXB2, in hyperthyroid patients and mice treated with thyroid hormone might bring about pulmonary hypertension frequently found in hyperthyroid patients. In conclusion, our prospective study revealed that arachidonic acid metabolites were differentially affected by thyroid hormone status. Certain metabolites may be involved in cardiovascular disorders associated with thyroid diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. [Effect of aceclofenac on thyroid hormone binding and thyroid function].

    PubMed

    Nadler, K; Buchinger, W; Semlitsch, G; Pongratz, R; Rainer, F

    2000-01-01

    Influences of non-steroidal anti-inflammatory drugs (NSAID) on concentrations of thyroid hormones are known for a long time. These effects could be explained with interference between NSAIDs and thyroid hormone binding. We investigated the effects of a single dose of aceclofenac on thyroid function and thyroid hormone binding in 18 healthy volunteers. Serum levels of free thyroid hormones (FT3, FT4) and thyrotropin (TSH) were measured with commercial available kids and thyroid hormone binding was estimated with a specially modified horizontal argarose-gel-electrophoresis prior to and 2 hours after receiving a single dose of aceclofenac. We found a significant decrease in T3 binding on TBG and a significant increase of albumin-bound T3. All other investigated thyroid hormone binding parameters, FT3 and FT4, showed no significant changes. We conclude that aceclofenac leads to a significant redistribution of T3 protein binding. These effects seem to be explained by T3 displacement from TBG induced by aceclofenac.

  4. Update on subclinical hyperthyroidism.

    PubMed

    Donangelo, Ines; Braunstein, Glenn D

    2011-04-15

    Subclinical hyperthyroidism is defined by low or undetectable serum thyroid-stimulating hormone levels, with normal free thyroxine and total or free triiodothyronine levels. It can be caused by increased endogenous production of thyroid hormone (as in Graves disease or toxic nodular goiter), administration of thyroid hormone for treatment of malignant thyroid disease, or unintentional excessive thyroid hormone therapy. The rate of progression to overt hyperthyroidism is higher in persons who have suppressed thyroid-stimulating hormone levels compared with those who have low but detectable levels. Subclinical hyperthyroidism is associated with an increased risk of atrial fibrillation in older adults, and with decreased bone mineral density in postmenopausal women; however, the effectiveness of treatment in preventing these conditions is unknown. There is lesser-quality evidence suggesting an association between subclinical hyperthyroidism and other cardiovascular effects, including increased heart rate and left ventricular mass, and increased bone turnover markers. Possible associations between subclinical hyperthyroidism and quality of life parameters, cognition, and increased mortality rates are controversial. Prospective randomized controlled trials are needed to address the effects of early treatment on potential morbidities to help determine whether screening should be recommended in the asymptomatic general population.

  5. A case of thyroid storm with multiple organ failure effectively treated with plasma exchange.

    PubMed

    Sasaki, Kazuki; Yoshida, Akira; Nakata, Yukiko; Mizote, Isamu; Sakata, Yasushi; Komuro, Issei

    2011-01-01

    We describe a 48-year-old man with thyroid storm presenting with heart failure. He presented severely impaired left ventricular wall motion and a marked increase in the liver enzymes. He developed disseminated intravascular coagulation on day 2. Due to elevated serum thyroid hormone level, anti-thyroid hormone receptor antibody positivity, and his clinical symptoms, he was diagnosed as thyroid storm due to untreated Graves' disease. His condition did not improve even after 6 days of conventional therapy including steroids. After therapeutic plasma exchange was carried out, his thyroid hormone level decreased markedly. Consequently, his condition recovered gradually, and he was discharged at day 43.

  6. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015. Published by Elsevier B.V.

  7. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  8. A review on hyperthyroidism: thyrotoxicosis under surveillance.

    PubMed

    Mansourian, Azad Reza

    2010-11-15

    Thyrotoxicosis exhibit collective clinical manifestation, caused by excessive serum thyroid hormones particularity thyroxin. The clinical signs and symptoms included general alteration of metabolic process leading to weight loss fatigue and weakness and some specific disorders such as cardiovascular, neuromuscular reproductive gastrointestinal dermatological and bone disorders. The diagnosis of thyrotoxicosis relay on the thyroid function test carried out by the laboratory serum measurement of thyroxin, triiodothyronine and thyroid stimulating hormones accompanied by other para-medical examinations suggested by clinicians and endociologicst. In thyrotoxicosis serum level of thyroid hormones and thyroxin in particular elevated accompanied by pituitary thyroid stimulating hormone suppression reaching to undetectable level in sever thyrotoxicosis. Among the most common cause of thyrotoxicosis are, thyroid autoimmunity diseases thyroid toxic, adenoma toxic nodular and multinodular hyperthyroidism. The main aim behind this review is to explore the clinical manifestation, the causative factors, diagnosis, metabolic disorder occur due to thyrotoxicosis.

  9. Prolonged weightlessness effect on postflight plasma thyroid hormones

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Driscoll, T. B.

    1977-01-01

    Blood drawn before and after spaceflight from the nine Skylab astronauts showed a statistically significant increase in mean plasma thyroxine (T-4) of 1.4 micro g/dl and in thyroid-stimulating hormone (TSH) of 4 microunits ml. Concurrent triiodothyronine (T-3) levels decreased 27 ng/dl indicating inhibited conversion of T-4 to T-3. The T-3 decrease is postulated to be a result of the increased cortisol levels noted during and following each mission. These results confirm the thyroidal changes noted after the shorter Apollo flights and show that thyroid hormone levels change during spaceflight.

  10. Quantitative Adverse Outcome Pathway for Neurodevelopmental Effects of Thyroid Peroxidase-Induced Thyroid Hormone Synthesis Inhibition

    EPA Science Inventory

    Adequate levels of thyroid hormones (TH) are needed for proper brain development and deficiencies lead to adverse neurological outcomes in humans and in animal models. Environmental chemicals have been shown to disrupt TH levels, yet the relationship between developmental exposur...

  11. Polybrominated Diphenyl Ether (DE-71)Interferes with Thyroid Hormone Action Independent Of Effects On Circulating Levels of Thyroid Hormone in Male Rats

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological stud...

  12. Associations between Repeated Measures of Maternal Urinary Phthalate Metabolites and Thyroid Hormone Parameters during Pregnancy

    PubMed Central

    Johns, Lauren E.; Ferguson, Kelly K.; McElrath, Thomas F.; Mukherjee, Bhramar; Meeker, John D.

    2016-01-01

    Background: Maintaining thyroid homeostasis during pregnancy is essential for normal fetal growth and development. Growing evidence suggests that phthalates interfere with normal thyroid function. Few human studies have investigated the degree to which phthalates may affect thyroid hormone levels in particularly susceptible populations such as pregnant women. Objectives: We examined the associations between repeated measures of urinary phthalate metabolites and plasma thyroid hormone levels in samples collected at up to four time points per subject in pregnancy. Additionally, we investigated the potential windows of susceptibility to thyroid hormone disturbances related to study visit of sample collection. Methods: Data were obtained from pregnant women (n = 439) participating in a nested case–control study of preterm birth with 116 cases and 323 controls. We measured 9 phthalate metabolite concentrations in urine samples collected at up to four study visits per subject during pregnancy (median = 10, 18, 26, and 35 weeks of gestation, respectively). We also measured a panel of thyroid function markers in plasma collected at the same four time points per subject during pregnancy. Results: Although our results were generally null, in repeated measures analyses we observed that phthalate metabolites were largely inversely associated with thyrotropin and positively associated with free and total thyroid hormones. Cross-sectional analyses by study visit revealed that the magnitude and/or direction of these relationships varied by timing of exposure during gestation. Conclusions: These results support previous reports showing the potential for environmental phthalate exposure to alter circulating levels of thyroid hormones in pregnant women. Citation: Johns LE, Ferguson KK, McElrath TF, Mukherjee B, Meeker JD. 2016. Associations between repeated measures of maternal urinary phthalate metabolites and thyroid hormone parameters during pregnancy. Environ Health Perspect 124:1808–1815; http://dx.doi.org/10.1289/EHP170 PMID:27152641

  13. Effect of zinc supplementation on the status of thyroid hormones and Na, K, And Ca levels in blood following ethanol feeding.

    PubMed

    Pathak, R; Dhawan, D; Pathak, A

    2011-05-01

    The influence of zinc (Zn) on the serum levels of triiodothyronine (T(3)), thyroxine (T(4)), thyroid-stimulating hormone (TSH) and sodium (Na), potassium (K), and calcium (Ca) was evaluated following ethanol toxicity to the rats. To achieve this, male Wistar rats (150-195 g) were given 3 ml of 30% ethanol orally, and zinc was given in the form of zinc sulfate (227 mg/l) in their drinking water daily for 8 weeks. Ethanol feeding resulted in a slight decrease in T(3) and T(4) levels and a significant increase in thyroid-stimulating hormone concentration, which may be due to the direct stimulatory effect of ethanol on thyroid. Interestingly, when zinc was given to these rats, all the above levels were brought quite close to their normal levels, thus indicating the positive role of zinc in thyroid hormone metabolism. Serum Zn and Ca levels were found to be reduced, but Na levels were raised upon ethanol feeding. Restoration of normal levels of these metals upon zinc supplementation to ethanol fed rats confirms that zinc has potential in alleviating some of the altered thyroid functions following ethanol administration.

  14. The assessment of thyroid autoantibody levels in euthyroid polycystic ovary syndrome patients.

    PubMed

    Hepşen, Sema; Karaköse, Melia; Çakal, Erman; Öztekin, Sanem; Ünsal, İlknur; Akhanlı, Pınar; Uçan, Bekir; Özbek, Mustafa

    2018-04-27

    Thyroid hormone abnormalities are commonly seen in polycystic ovary syndrome (PCOS) and have considerable effects on comorbidities. The association with PCOS and thyroid autoimmunity which lead to thyroid pathologies are not revealed clearly. We targeted to commentate anti-thyroid peroxidase (anti-TPO), anti-thyroglobulin (anti-TG) antibody levels and thyroid autoimmunity in PCOS. 184 patients who got the diagnosis of PCOS regard to the revised 2003 Rotterdam criteria were embodied in this study. 106 age-matched female volunteers were included in the control group. Characteristics, biochemical parameters, thyroid hormone and autoantibody levels of groups were investigated. Although; we did not find out a statistically significant difference in TSH and sT4 levels between two groups (p>0.05), anti-TPO and anti-TG antibody levels were determined higher in PCOS group significantly (p<0.001). Anti-TPO Ab and anti-TG Ab positivity prevalence of PCOS patients were significantly higher as against to controls (p<0.001; p=0.01). Not only thyroid hormone levels but also thyroid autoantibody levels should be screened during the investigation of PCOS and the patients with positive results need to be followed up carefully in the long run.

  15. The role of thyroid hormone signaling in the prevention of digestive system cancers.

    PubMed

    Brown, Adam R; Simmen, Rosalia C M; Simmen, Frank A

    2013-08-06

    Thyroid hormones play a critical role in the growth and development of the alimentary tract in vertebrates. Their effects are mediated by nuclear receptors as well as the cell surface receptor integrin αVβ3. Systemic thyroid hormone levels are controlled via activation and deactivation by iodothyronine deiodinases in the liver and other tissues. Given that thyroid hormone signaling has been characterized as a major effector of digestive system growth and homeostasis, numerous investigations have examined its role in the occurrence and progression of cancers in various tissues of this organ system. The present review summarizes current findings regarding the effects of thyroid hormone signaling on cancers of the esophagus, stomach, liver, pancreas, and colon. Particular attention is given to the roles of different thyroid hormone receptor isoforms, the novel integrin αVβ3 receptor, and thyroid hormone-related nutrients as possible protective agents and therapeutic targets. Future investigations geared towards a better understanding of thyroid hormone signaling in digestive system cancers may provide preventive or therapeutic strategies to diminish risk, improve outcome and avert recurrence in afflicted individuals.

  16. The Role of Thyroid Hormone Signaling in the Prevention of Digestive System Cancers

    PubMed Central

    Brown, Adam R.; Simmen, Rosalia C. M.; Simmen, Frank A.

    2013-01-01

    Thyroid hormones play a critical role in the growth and development of the alimentary tract in vertebrates. Their effects are mediated by nuclear receptors as well as the cell surface receptor integrin αVβ3. Systemic thyroid hormone levels are controlled via activation and deactivation by iodothyronine deiodinases in the liver and other tissues. Given that thyroid hormone signaling has been characterized as a major effector of digestive system growth and homeostasis, numerous investigations have examined its role in the occurrence and progression of cancers in various tissues of this organ system. The present review summarizes current findings regarding the effects of thyroid hormone signaling on cancers of the esophagus, stomach, liver, pancreas, and colon. Particular attention is given to the roles of different thyroid hormone receptor isoforms, the novel integrin αVβ3 receptor, and thyroid hormone-related nutrients as possible protective agents and therapeutic targets. Future investigations geared towards a better understanding of thyroid hormone signaling in digestive system cancers may provide preventive or therapeutic strategies to diminish risk, improve outcome and avert recurrence in afflicted individuals. PMID:23924944

  17. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    PubMed

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  18. [Study of serum thrombomodulin(TM) levels in patients with hyper- or hypo- thyroidism].

    PubMed

    Soma, M; Maeda, Y; Matsuura, R; Sasaki, I; Kasakura, S; Saeki, Y; Ikekubo, K; Ishihara, T; Kurahachi, H; Sasaki, S; Tagami, T; Nakao, K

    1997-01-01

    We studies a relationship between the serum levels of thrombomodulin(TM) and the thyroid functions. Serum TM levels were measured in 48 patients with Graves' disease, 17 patients with primary hypothyroidism, 7 patients with subacute thyroiditis, 5 patients with painless thyroiditis and 2 patients with systematic Refetoff syndrome. These patients did not have malignant tumor, kidney failure, or blood vessel injury. Control sera were obtained from 42 healthy subjects. Serum levels of TM in patients with untreated Graves' disease were significantly higher(p < 0.001) compared with those in controls. Serum levels of TM in patients with hypothyroidism were not significantly changed as compared with those of controls. There were a positive correlation between the serum levels of TM and FT3 as well as FT4. Serial determinations of the serum levels of TM and thyroid function(FT3, FT4 and TH) in patients with Graves' disease during treatment showed that both the serum levels of TM and thyroid hormones (FT3 and FT4) lowered progressively during treatment. After normalization of serum FT3 and FT4, the serum TM levels returned to normal. However, the serum levels of TM in patients with destructive thyroiditis and Refetoff syndrome were normal in spite of high serum levels of thyroid hormones. These data suggest that an increase in serum levels of TM is not the direct result of thyroid hormones themselves but is the result of the prolonged hypermetabolic state induced by their peripheral activities. Thyroid hormones may stimulate the synthesis or metabolism of TM on the surface of vascular endothelial cells in the patients with Graves' disease.

  19. Peripheral thyroid hormone levels and hepatic thyroid hormone deiodinase gene expression in dairy heifers on the day of ovulation and during the early peri-implantation period.

    PubMed

    Meyerholz, Marie Margarete; Mense, Kirsten; Linden, Matthias; Raliou, Mariam; Sandra, Olivier; Schuberth, Hans-Joachim; Hoedemaker, Martina; Schmicke, Marion

    2016-09-08

    Before the onset of fetal thyroid hormone production, the transplacental delivery of maternal thyroid hormones is necessary for embryonic and fetal development. Therefore, the adaptation of maternal thyroid hormone metabolism may be important for pregnancy success and embryo survival. The aims of this study were to determine the thyroid hormone levels during the early peri-implantation period until day 18 and on the day of ovulation, to determine whether pregnancy success is dependent on a "normothyroid status" and to determine whether physiological adaptations in maternal thyroid hormone metabolism occur, which may be necessary to provide sufficient amounts of biologically active T3 to support early pregnancy. Therefore, blood samples obtained on the day of ovulation (day 0) and days 14 and 18 of the Holstein-Friesian heifers (n = 10) during the respective pregnant, non-pregnant and negative control cycles were analyzed for thyroid-stimulating-hormone (TSH), thyroxine (T4) and triiodothyronine (T3). Liver biopsies (day 18) from pregnant and respective non-pregnant heifers were analyzed for mRNA expression of the most abundant hepatic thyroid hormone deiodinase (DIO1) by real time qPCR. Although liver DIO1 mRNA expression did not differ between the pregnant and non-pregnant heifers on day 18, the serum concentrations of TSH and T3 on day 18 were higher in non-pregnant heifers compared to pregnant heifers (P < 0.05). Moreover, T3 decreased between day 0 and 18 in pregnant heifers (P < 0.001). In conclusion, no associations between thyroid hormone patterns on day 18 and pregnancy success were detected. During the early peri-implantation period, TSH and T3 may be affected by the pregnancy status because both TSH and T3 were lower on day 18 in pregnant heifers compared to non-pregnant dairy heifers. In further studies, the thyroid hormone axis should be evaluated throughout the entire gestation to confirm these data and identify other possible effects of pregnancy on the thyroid hormone axis in cattle.

  20. Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids.

    PubMed

    Lin, Shi-lei; Wang, Cong-wu; Tan, Si-ran; Liang, Yang; Yao, Hai-dong; Zhang, Zi-wei; Xu, Shi-wen

    2014-12-01

    Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.

  1. Potential protective effect of Pistacia lentiscus oil against chlorpyrifos-induced hormonal changes and oxidative damage in ovaries and thyroid of female rats.

    PubMed

    Chebab, Samira; Mekircha, Fatiha; Leghouchi, Essaid

    2017-12-01

    The purpose of this study was to evaluate the protective effect of Pistacia lentiscus oil (PLO), known for its antioxidant properties, on chlorpyrifos (CPF)-induced alterations in the thyroid, reproductive hormone levels, and oxidative damage in the ovaries and thyroid of adult Wistar rats. The animals were treated with orally administered PLO (2 mL/kg), CPF (6.75 mg/kg), and a combination of CPF and PLO for 30 days. Serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (Pg), estradiol (E 2 ), triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) were assessed using chemiluminescence assay. Malondialdehyde (MDA), protein carbonyl (PC), and reduced glutathione (GSH) levels were examined in the ovaries and thyroid glands. The oil principal volatile compounds detected by gas chromatography analysis were: myrcene, α-pinene and limonene (26.21, 22.66 and 10.33%, respectively). No significant differences were observed between serum concentrations of TSH and FSH in the examined experimental groups. However, serum concentrations of LH, E 2 , Pg, T3, and T4 decreased significantly in CPF-treated rats in comparison with the controls. The body weight and relative weight of ovaries and thyroids in this group were also significantly reduced. The MDA and PC content increased significantly, while the GSH content was markedly depressed in the thyroid and ovaries of rats treated with CPF. Co-administration of PLO and CPF effectively ameliorated the adverse effects; the oxidative damage was reduced and the levels of thyroid and reproductive hormones restored to a normal range. In conclusion, it appears that PLO substantially alleviates the CPF-induced oxidative damage and hormonal alterations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study.

    PubMed

    Zhang, Qiongyue; Miao, Qing; Ye, Hongying; Zhang, Zhaoyun; Zuo, Chuantao; Hua, Fengchun; Guan, Yihui; Li, Yiming

    2014-09-01

    Brown adipose tissue (BAT) is important for energy expenditure through thermogenesis, although its regulatory factors are not well known in humans. There is evidence suggesting that thyroid hormones affect BAT functions in some mammals, but the effects of thyroid hormones on BAT activity in humans are still unclear. The aim of this study was to investigate the effects of thyroid hormones on glucose metabolism of BAT and other organs in humans. Nine Graves' disease-caused hyperthyroid patients who were newly diagnosed and untreated were studied. Putative brown adipose tissue activity was determined by the integrated ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron-emission tomography and computed tomography (PET-CT). All hyperthyroid patients were treated with methimazole and had been monitored until their symptoms disappeared and thyroid hormone levels returned to normal. At the end, a second PET-CT scan was performed. The average follow-up period was 77 days. Meanwhile, compared with a group of seventy-five brown adipose tissue-negative controls, thyroid hormones of seventy-five BAT-positive healthy subjects were measured. Active brown adipose tissue was not present in any of the hyperthyroid patients. However, one patient with normalized thyroid function showed active BAT after therapy. The free T3 levels and free T4 levels were significantly lower in the 75 BAT-positive subjects than in the BAT-negative subjects. All hyperthyroid patients showed symmetrically increased uptake of fluorodeoxyglucose in skeletal muscles before treatment, whereas, the standardized uptake value was substantially decreased after treatment. Abnormally high circulating thyroid hormone levels may not increase brown adipose tissue activity, which may be limited by the increased obligatory thermogenesis of muscle in adult humans. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Maternal thyroid hormone trajectories during pregnancy and child behavioral problems.

    PubMed

    Endendijk, Joyce J; Wijnen, Hennie A A; Pop, Victor J M; van Baar, Anneloes L

    2017-08-01

    There is ample evidence demonstrating the importance of maternal thyroid hormones, assessed at single trimesters in pregnancy, for child cognition. Less is known, however, about the course of maternal thyroid hormone concentrations during pregnancy in relation to child behavioral development. Child sex might be an important moderator, because there are sex differences in externalizing and internalizing behavioral problems. The current study examined the associations between maternal thyroid hormone trajectories versus thyroid assessments at separate trimesters of pregnancy and child behavioral problems, as well as sex differences in these associations. In 442 pregnant mothers, serum levels of TSH and free T4 (fT4) were measured at 12, 24, and 36weeks gestation. Both mothers and fathers reported on their children's behavioral problems, between 23 and 60months of age. Latent growth mixture modeling was used to determine the number of different thyroid hormone trajectories. Three trajectory groups were discerned: 1) highest and non-increasing TSH with lowest fT4 that decreased least of the three trajectories; 2) increasing TSH and decreasing fT4 at intermediate levels; 3) lowest and increasing TSH with highest and decreasing fT4. Children of mothers with the most flattened thyroid hormone trajectories (trajectory 1) showed the most anxiety/depression symptoms. The following trimester-specific associations were found: 1) lower first-trimester fT4 was associated with more child anxiety/depression, 2) higher first-trimester TSH levels were related to more attention problems in boys only. A flattened course of maternal thyroid hormone concentrations during pregnancy was a better predictor of child anxiety/depression than first-trimester fT4 levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  5. High T3, Low T4 Serum Levels in Mct8 Deficiency Are Not Caused by Increased Hepatic Conversion through Type I Deiodinase

    PubMed Central

    Wirth, Eva K.; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich

    2015-01-01

    Background The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). Objective: To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). Methods We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Results Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Conclusions Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated. PMID:26601078

  6. High T3, Low T4 Serum Levels in Mct8 Deficiency Are Not Caused by Increased Hepatic Conversion through Type I Deiodinase.

    PubMed

    Wirth, Eva K; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich

    2015-09-01

    The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated.

  7. Developmental toxicity and thyroid hormone-disrupting effects of 2,4-dichloro-6-nitrophenol in Chinese rare minnow (Gobiocypris rarus).

    PubMed

    Chen, Rui; Yuan, Lilai; Zha, Jinmiao; Wang, Zijian

    2017-04-01

    In the present study, to evaluate embryonic toxicity and the thyroid-disrupting effects of 2,4-dichloro-6-nitrophenol (DCNP), embryos and adults of Chinese rare minnow (Gobiocypris rarus) were exposed to 2, 20, and 200μg/L DCNP. In the embryo-larval assay, increased percentages of mortality and occurrence of malformations, decreased percentage of hatching, and decreased body length and body weight were observed after DCNP treatment. Moreover, the whole-body T3 levels were significantly increased at 20 and 200μg/L treatments, whereas the T4 levels were markedly decreased significantly (p<0.05) for all DCNP concentrations. In the adult fish assay, plasma T3 levels were significantly increased whereas plasma T4 levels were significantly reduced in the fish treated with 20 and 200μg/L (p<0.05). In addition, DCNP exposure significantly changed the transcription levels of thyroid system related genes, including dio1, dio2, me, nis, tr, and ttr. The increased responsiveness of thyroid hormone and mRNA expression levels of thyroid system related genes suggested that DCNP could disrupt the thyroid hormone synthesis and transport pathways. Therefore, our findings provide new insights of DCNP as a thyroid hormone-disrupting chemical. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hyperthyroidism.

    PubMed

    Maji, D

    2006-10-01

    Hyperthyroidism is a clinical situation where there is excess thyroid hormones in the circulation due to increased synthesis of hormone from a hyperactive thyroid gland. Common causes are Graves' disease, toxic multinodular goitre and toxic solitary nodule. Excess thyroid hormones in the circulation are also found in thyroiditis (hormone leakage) and excess exogenous thyroxine intake. Thyrotoxicosis is the term applied when there is excess thyroid hormone in the circulation due to any cause. Thyrotoxicosis can be easily diagnosed by high serum level of thyroxine (T4) and triiodothyronine (T3) and low serum level of thyroid stimulating hormone (TSH). Hyperthyroidism is confirmed by high isotope (I 131 or Tc99) uptake by the thyroid gland, while in thyroiditis it will be low. Treatment of hyperthyroidism depends on the underlying cause. Antithyroid drugs, 1131 therapy and surgery are the options of treatment of hyperthyroidism. Surgery is the preferred treatment for toxic adenoma and toxic multinodular goitre, while 1131 therapy may be suitable in some cases. Antithyroid drugs and 1131 therapy are mostly preferred for Graves' disease. Beta-adrenergic blockers are used for symptomatic relief in most patients of thyrotoxicosis due to any cause. Other rare causes of hyperthyroidism like, amiodarone induced thyrotoxicosis, choriocarcinoma, thyrotropin secreting pituitary tumour are difficult to diagnose as well as to treat.

  9. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  10. Lipid profile and thyroid hormone status in the last trimester of pregnancy in single-humped camels (Camelus dromedarius).

    PubMed

    Omidi, Arash; Sajedi, Zhila; Montazer Torbati, Mohammad Bagher; Ansari Nik, Hossein

    2014-04-01

    Changes in lipid metabolism have been shown to occur during pregnancy. The thyroid hormones affect lipid metabolism. The present study was carried out to find out whether the last trimester of pregnancy affects thyroid hormones, thyroid-stimulating hormone (TSH), lipid, and lipoprotein profile in healthy dromedary camels. Twenty clinical healthy dromedary camels aged between 4-5 years were divided into two equal groups: (1) pregnant camels in their last trimester of pregnancy and (2) non-pregnant age-matched controls. Thyroid function tests were carried out by measuring serum levels of TSH, free thyroxin (fT4), total thyroxin (T4), free triiodothyronine (fT3), and total triiodothyronine (T3) by commercially available radio immunoassay kits. Total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL) cholesterol were analyzed using enzymatic/spectrophotometric methods while low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL), and total lipid (TL) were calculated using Friedewald's and Raylander's formula, respectively. Serum levels of TSH and thyroid hormones except fT4 did not show any significant difference between pregnant and non-pregnant camels. fT4 level was lower in the pregnant camels (P < 0.05). Serum levels of total cholesterol, triglyceride, total lipid, LDL cholesterol, HDL cholesterol, and VLDL did not show significant difference between pregnant and non-pregnant camels. All of these variables in pregnant camels were higher than non-pregnant. Based on the results of this study, the fetus load may not alter the thyroid status of the camel and the concentrations of thyroid hormones were not correlated with TSH and lipid profile levels in the healthy pregnant camels.

  11. Influence of obesity and surgical weight loss on thyroid hormone levels.

    PubMed

    Chikunguwo, Silas; Brethauer, Stacy; Nirujogi, Vijaya; Pitt, Tracy; Udomsawaengsup, Suthep; Chand, Bipan; Schauer, Philip

    2007-01-01

    The pathophysiologic relationship between morbid obesity and thyroid hormones is not well understood. The goal of this study was to evaluate the influence of obesity and weight reduction after bariatric surgery on thyroid hormone levels. Patients who underwent gastric bypass or adjustable gastric banding at our institution, had no previous diagnosis of thyroid disorder, were not taking medication that could affect the thyroid function evaluation, and who were nonsmokers were included in this retrospective evaluation. The association between the thyroid-stimulating hormone (TSH) and free thyroxine (T(4)) levels and body mass index (BMI), and the influence of weight loss after bariatric surgery on these hormones were investigated at different points (preoperatively and 6 and 12 months after bariatric surgery). A total of 86 patients met the study criteria. The TSH levels correlated positively with BMI (P <.001, r = .91) within the BMI range of 30-67 kg/m(2). The mean BMI change from 49 to 32 kg/m(2) after bariatric surgery was associated with a mean reduction in the TSH level from 4.5 to 1.9 microU/mL. Free T(4) showed no association with BMI and was not significantly influenced by weight loss. Before bariatric surgery, 10.5% of the subjects had laboratory values consistent with subclinical hypothyroidism. After bariatric surgery, 100% of these patients experienced significant weight reduction with simultaneous resolution of their subclinical hypothyroidism. The results of our study have demonstrated a statistically significant positive association between serum TSH within the normal range and BMI. No association was found between BMI and free T(4) serum levels. The prevalence of subclinical hypothyroidism in study group was 10.5%. Weight loss after bariatric surgery improved or normalized thyroid hormone levels.

  12. [Thyroid function in patients with anorexia nervosa and depression].

    PubMed

    Natori, Y; Yamaguchi, N; Koike, S; Aoyama, A; Tsuchibuchi, S; Kojyo, K; Demura, R

    1994-12-01

    Thyroid hormone levels were measured in 21 patients with anorexia nervosa, 15 patients with depression and 16 patients with severe depression and were compared with those in 53 normal subjects. In anorexia nervosa and severe depressed patients, serum T3, T4, fT3, fT4 and T3/T4 ratio showed significantly lower values than those in normal subjects. However there was no difference between depressed patients and normal subjects. The serum TSH levels were within normal range in all of the studied subjects. Thus, thyroid hormone levels in severe depressed patients were similar to those in anorexia nervosa and the changes were inversely related to disease conditions. The supplementation of thyroid hormones to antidepressant relieved clinical symptoms in some of the severe depressed patients. These results suggested that the changes in thyroid hormone levels in anorexia nervosa and severe depression were mainly due to impaired conversion of T4 to T3 by increased cortisol secretion through emotional stress.

  13. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus-pituitary-thyroid axis of male Fischer 344 rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.

    Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that ismore » neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor {alpha} and {beta}, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk assessments for AA.« less

  14. Serum human chorionic gonadotropin levels and thyroid hormone levels in gestational transient thyrotoxicosis: Is the serum hCG level useful for differentiating between active Graves' disease and GTT?

    PubMed

    Yoshihara, Ai; Noh, Jaeduk Yoshimura; Mukasa, Koji; Suzuki, Miho; Ohye, Hidemi; Matsumoto, Masako; Kunii, Yo; Watanabe, Natsuko; Suzuki, Nami; Kameda, Toshiaki; Sugino, Kiminori; Ito, Koichi

    2015-01-01

    Gestational transient thyrotoxicosis (GTT) is defined as transient thyrotoxicosis caused by the stimulating effect of human chorionic gonadotropin (hCG) during pregnancy. We attempted to identify the serum hCG level that causes GTT, and we compared the serum hCG levels and thyroid hormone levels of GTT patients according to whether they had a background of thyroid disease. We also evaluated serum hCG as a parameter for differentiating between active Graves' disease (GD) and GTT. We reviewed the 135 cases of pregnant women who came to our hospital to be evaluated for thyrotoxicosis during their 7th to 14th week of pregnancy, and their serum hCG level was measured at that time. Among the 135 pregnant women with thyrotoxicosis; 103 of the women had GTT, and the other 32 women had active GD. There were no correlations between their serum hCG levels and free thyroid hormone levels. There were no significant differences in thyroid hormone levels or hCG levels among the GTT groups with different thyroid disease backgrounds; i.e., the GTT group without thyroid disease, GTT group with chronic thyroiditis, GTT group with non-functioning thyroid nodules, and GTT group with GD in remission. The serum hCG level of the GTT group was significantly higher than in the active GD group, but it was not a good parameter for differentiating between the two groups. The FT3/FT4 ratio of the active GD was significantly higher than in GTT group, and was a better parameter for differentiation.

  15. Cord Blood Bisphenol A Levels and Reproductive and Thyroid Hormone Levels of Neonates: The Hokkaido Study on Environment and Children's Health.

    PubMed

    Minatoya, Machiko; Sasaki, Seiko; Araki, Atsuko; Miyashita, Chihiro; Itoh, Sachiko; Yamamoto, Jun; Matsumura, Toru; Mitsui, Takahiko; Moriya, Kimihiko; Cho, Kazutoshi; Morioka, Keita; Minakami, Hisanori; Shinohara, Nobuo; Kishi, Reiko

    2017-10-01

    Bisphenol A (BPA) is widely used and BPA exposure is nearly ubiquitous in developed countries. While animal studies have indicated adverse health effects of prenatal BPA exposure including reproductive dysfunction and thyroid function disruption possibly in a sex-specific manner, findings from epidemiologic studies have not been enough to prove these adverse effects. Given very limited research on human, the aim of this study was to investigate associations between cord blood BPA levels and reproductive and thyroid hormone levels of neonates and whether associations differed by neonate sex. The study population included 514 participants of the Hokkaido study recruited from 2002 to 2005 at one hospital in Sapporo, Japan. The BPA level in cord blood was determined by ID-LC/MS/MS, and the limit of quantification was 0.040 ng/ml. We measured nine types of reproductive hormone levels in cord blood, and thyroid hormone levels were obtained from neonate mass screening test data. There were 283 subjects, who had both BPA and hormone levels measurements, included for the final analyses. The geometric mean of cord blood BPA was 0.051 ng/ml. After adjustment, BPA level was negatively associated with prolactin (PRL) (β = -0.38). There was an interaction between infant sex and BPA levels on PRL; a weak negative association was found in boys (β = -0.12), whereas a weak positive association was found in girls (β = 0.14). BPA level showed weak positive association with testosterone, estradiol, and progesterone levels in boys. No association was found between BPA and thyroid hormone levels. Our findings suggested that fetal BPA levels might be associated with changes in certain reproductive hormone levels of neonates in a sex-specific manner, though further investigations are necessary.

  16. Effects of enteral different-dose levothyroxine-sodium pretreatment on serum thyroid hormone levels and myocardial ischemia-reperfusion injury.

    PubMed

    Yang, Gui-Zhen; Xue, Fu-Shan; Liu, Ya-Yang; Li, Hui-Xian; Liu, Qing; Liao, Xu

    2018-04-01

    The available evidence shows that perioperative oral thyroid hormone can significantly attenuate the postoperative decline in the serum hormone level and improve postoperative hemodynamic and prognostic parameters. However, there has been no study assessing the effects of preoperative oral different-dose thyroid hormone on serum hormone levels and myocardial ischemia-reperfusion injury (IRI) after cardiac surgery. Forty-eight healthy Wistar rats, aged 35 days, were randomly allocated into six groups: Group BC, Group C and four pretreatment groups in which the rats were given levothyroxine-sodium of 10 μg, 20 μg, 40 μg and 80 μg/100 g. On the eighth day, the serum thyroid hormone levels were determined and then an isolated heart ischemia-reperfusion model was established with a Langendorff apparatus. Compared with Groups BC and C, serum thyroid hormone levels on the eighth day did not significantly change in Group 10 μg, but were significantly increased in Groups 20 μg, 40 μg and 80 μg. The cardiac enzyme myocardial-bound creatine kinase levels in the coronary effluent during reperfusion were significantly lower in Groups 10 μg and 20 μg and 40 μg than in Group C. The recovery rates of + dp/dt max and - dp/dt max at 30 min during reperfusion were significantly lower in Groups 40 μg and 80 μg than in Groups 10 μg and 20 μg. Compared with Group C, myocardial expressions of heat shock protein 70 and myosin heavy chain α were increased in the four experiment groups and myocardial expression of thyroid hormone receptor α1 was significantly increased in Groups 20 μg, 40 μg and 80 μg. The pretreatment with enterally smaller doses levothyroxine-sodium does not significantly affect serum thyroid hormone levels and produces protection against myocardial IRI, whereas pretreatment with enterally larger doses of levothyroxine-sodium can only provide an attenuated or insignificant cardioprotection because of hyperthyroxinemia. Cardioprotection by levothyroxine-sodium pretreatment is probably attributable to increased myocardial expression of heat shock protein 70 and myosin heavy chain α.

  17. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  18. Effects of methimazole treatment on growth hormone (GH) response to GH-releasing hormone in patients with hyperthyroidism.

    PubMed

    Giustina, A; Ferrari, C; Bodini, C; Buffoli, M G; Legati, F; Schettino, M; Zuccato, F; Wehrenberg, W B

    1990-12-01

    In vitro studies have demonstrated that thyroid hormones can enhance basal and stimulated growth hormone secretion by cultured pituitary cells. However, both in man and in the rat the effects of high thyroid hormone levels on GH secretion are unclear. The aim of our study was to test the GH response to human GHRH in hyperthyroid patients and to evaluate the effects on GH secretion of short- and long-term pharmacological decrease of circulating thyroid hormones. We examined 10 hyperthyroid patients with recent diagnosis of Graves' disease. Twelve healthy volunteers served as controls. All subjects received a bolus iv injection of GHRH(1-29)NH2, 100 micrograms. Hyperthyroid patients underwent a GHRH test one and three months after starting antithyroid therapy with methimazole, 10 mg/day po. GH levels at 15, 30, 45, 60 min and GH peak after stimulus were significantly lower in hyperthyroid patients than in normal subjects. The GH peak was also delayed in hyperthyroid patients. After one month of methimazole therapy, most of the hyperthyroid patients had thyroid hormone levels in the normal range, but they did not show significant changes in GH levels after GHRH, and the GH peak was again delayed. After three months of therapy with methimazole, the hyperthyroid patients did not show a further significant decrease in serum thyroid hormone levels. However, mean GH levels from 15 to 60 min were significantly increased compared with the control study. The GH peak after GHRH was also earlier than in the pre-treatment study.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Thyroid disease and the cardiovascular system.

    PubMed

    Danzi, Sara; Klein, Irwin

    2014-06-01

    Thyroid hormones, specifically triiodothyronine (T3), have significant effects on the heart and cardiovascular system. Hypothyroidism, hyperthyroidism, subclinical thyroid disease, and low T3 syndrome each cause cardiac and cardiovascular abnormalities through both genomic and nongenomic effects on cardiac myocytes and vascular smooth muscle cells. In compromised health, such as occurs in heart disease, alterations in thyroid hormone metabolism may further impair cardiac and cardiovascular function. Diagnosis and treatment of cardiac disease may benefit from including analysis of thyroid hormone status, including serum total T3 levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Thyroid hormone action on intermediary metabolism. Part I: respiration, thermogenesis and carbohydrate metabolism.

    PubMed

    Müller, M J; Seitz, H J

    1984-01-02

    The effect of thyroid hormones on mitochondrial respiration are summarized: T3 directly stimulates mitochondrial respiration and the synthesis of adenosine 5'-triphosphate (ATP). Cytosolic ATP availability is increased by a thyroid hormone-induced increase in adenine nucleotide translocation across the mitochondrial membrane; the steady state ATP concentration and the cytosolic ATP/adenosine 5'-diphosphate (ADP) ratio is even decreased in hyperthyroid tissues because of the simultaneous stimulation of the synthesis and consumption of ATP. With regard to the thyroid hormone-induced energy wasting processes, heart work, intra- and interorgan futile cycling and Na+/K+-ATPase are involved to varying degrees. As a consequence of the thyroid hormone-induced hydrolysis of ATP, thermogenesis is increased in hyper- and decreased in hypothyroidism. Despite an increased rate of glucose utilization, clinical and experimental hyperthyroidism is often characterized by an abnormal oral glucose tolerance test. This finding is due to the thyroid hormone-induced increase in intestinal glucose absorption as well as the still enhanced endogenous glucose production in the liver. Hypothyroid patients show a reduced glucose tolerance test because of a decrease in intestinal glucose absorption and a sometimes reduced glucose turnover. The thyroid hormone-induced alterations in glucose metabolism are most probably not due to alterations in serum insulin levels and/or to a peripheral insulin resistance at the receptor level.

  1. The −258 A/G (SNP rs12885300) polymorphism of the human type-2 deiodinase gene is associated with a shift in the pattern of secretion of thyroid hormones following a TRH-induced acute rise in TSH

    PubMed Central

    Peltsverger, Maya Y.; Butler, Peter W.; Alberobello, Anna Teresa; Smith, Sheila; Guevara, Yanina; Dubaz, Ornella M.; Luzon, Javier A.; Linderman, Joyce; Celi, Francesco S.

    2012-01-01

    Objective Type-2 deiodinase gene (DIO2) polymorphisms have been associated with changes in pituitary-thyroid axis homeostasis. The −258 A/G (SNP rs12885300) polymorphism has been associated with increased enzymatic activity, but data are conflicting. To characterize the effects of the −258 A/G polymorphism on intra-thyroidal T4 to T3 conversion and thyroid hormone secretion pattern we studied the effects of acute, TRH-mediated, TSH stimulation of the thyroid gland. Design Retrospective analysis. Methods The thyroid hormone secretion in response to 500 mcg iv TRH injection was studied in 45 healthy volunteers. Results Twenty-six subjects (16 females, 10 males, 32.8±10.4 years) were homozygous for the ancestral (−258 A/A) allele, 19 (11 females, 8 males, 31.1±10.9 years) were carrier of the (−258 G/x) variant. While no differences in the peak TSH and T3 levels were observed, carriers of the −258G/x allele showed a blunted rise in free T4 (p<0.01). The −258G/x 92Thr/Thr haplotype, compared to the other groups, had lower TSH values at 60' (p<0.03). No differences were observed between genotypes in baseline thyroid hormone levels. Conclusions The −258G/x DIO2 polymorphism variant is associated with a decreased rate of acute TSH-stimulated free T4 secretion with a normal T3 release from the thyroid consistent with a shift in the reaction equilibrium toward the product. These data indicate that the −258G DIO2 polymorphism cause changes in the pattern of hormonal secretion. These findings are a proof-of-concept that common polymorphisms in the DIO2 can subtly affect the circulating levels of thyroid hormone and might modulate the thyroid hormone homeostasis. PMID:22307573

  2. Hypercalcemia in hyperthyroidism: patterns of serum calcium, parathyroid hormone, and 1,25-dihydroxyvitamin D3 levels during management of thyrotoxicosis.

    PubMed

    Iqbal, Ayesha A; Burgess, Elizabeth H; Gallina, Daniel L; Nanes, Mark S; Cook, Curtiss B

    2003-01-01

    To present two cases of hypercalcemia associated with thyrotoxicosis and to describe serial biochemical findings during the course of treatment of hyperthyroidism. We report two cases, illustrate the changes in serum calcium, parathyroid hormone, and 1,25-dihydroxyvitamin D3 levels during management of thyrotoxicosis, and compare our findings with those in previous studies. Hypercalcemia attributable to thyrotoxicosis is well documented, but the mechanism for the hypercalcemia is incompletely understood. Our first patient had a complicated medical history and several potential causes of hypercalcemia, including recurrent hyperparathyroidism, metastatic breast cancer, and relapse of previously treated thyrotoxicosis. A suppressed parathyroid hormone level and negative bone and computed tomographic scans excluded the first two factors. After thyroid ablation with 131I, the serum calcium and thyroxine levels decreased, and the parathyroid hormone and 1,25-dihydroxyvitamin D3 levels normalized. Our second patient, who was referred to our institution with a preliminary diagnosis of hypercalcemia associated with malignant disease and who had no symptoms of hyperthyroidism, was found to have a high free thyroxine level, diffuse enlargement of the thyroid, and high uptake (58%) of 123I on a thyroid scan. After thyroid ablation, the serum calcium, 1,25-dihydroxyvitamin D3, and intact parathyroid hormone levels normalized, and the free thyroxine level declined. The probable pathogenesis of hypercalcemia in thyrotoxicosis is reviewed with respect to thyroid hormone and its effect on bone turnover. Physicians should consider thyrotoxicosis in the differential diagnosis of hypercalcemia.

  3. Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2014-09-15

    Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population - Korean National Environmental Health Survey (KoNEHS) 2012-2014.

    PubMed

    Park, Choonghee; Choi, Wookhee; Hwang, Moonyoung; Lee, Youngmee; Kim, Suejin; Yu, Seungdo; Lee, Inae; Paek, Domyung; Choi, Kyungho

    2017-04-15

    Phthalates and bisphenol A (BPA) have been used extensively in many consumer products, resulting in widespread exposure in the general population. Studies have suggested associations between exposure to phthalates and BPA, and serum thyroid hormone levels, but confirmation on larger human populations is warranted. Data obtained from nationally representative Korean adults (n=6003) recruited for the second round of the Korean National Environmental Health Survey (KoNEHS), 2012-2014, were employed. Three di-(2-ethylhexyl) phthalate (DEHP) metabolites, along with benzyl-butyl phthalate (BBzP) and di-butyl phthalate (DBP) metabolites, and BPA were measured in subjects' urine. Thyroxine (T4), total triiodothyronine (T3), and thyroid-stimulating hormone (TSH) were measured in serum. The associations between urinary phthalates or BPA and thyroid hormone levels were determined. Urinary phthalate metabolites were generally associated with lowered total T4 or T3, or increased TSH levels in serum. Interquartile range (IQR) increases of mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) were associated with a 3.7% increase of TSH, and a 1.7% decrease of total T4 levels, respectively. When grouped by sex, urinary MEHHP levels were inversely associated with T4 only among males. Among females, mono-benzyl phthalate (MBzP) and mono-n-butyl phthalate (MnBP) levels were inversely associated with TSH and T3, respectively. In addition, negative association between BPA and TSH was observed. Several phthalates and BPA exposures were associated with altered circulatory thyroid hormone levels among general Korean adult population. Considering the importance of thyroid hormones, public health implications of such alteration warrant further studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-06-13

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  6. Weight-of-evidence analysis of human exposures to dioxins and dioxin-like compounds and associations with thyroid hormone levels during early development.

    PubMed

    Goodman, Julie E; Kerper, Laura E; Boyce, Catherine Petito; Prueitt, Robyn L; Rhomberg, Lorenz R

    2010-10-01

    Thyroid hormones play a critical role in the proper development of brain function and cell growth. Several epidemiological studies have been conducted to assess potential associations between pre- and post-natal exposure to dioxins or dioxin-like compounds (DLCs) and the levels of circulating thyroid hormones during early development. Dioxins and DLCs include chlorinated dibenzo-p-dioxins, chlorinated dibenzofurans, and mono- and non-ortho polychlorinated biphenyls (PCBs). We identified a total of 23 relevant epidemiological studies (21 cohort studies and 1 case-control study) that measured exposures to various types of dioxins and DLCs as well as markers of thyroid function, such as thyroid stimulating hormone (TSH), total thyroxine (T4), free T4, total triiodothyroxine (T3), free T3, and thyroid-binding globulin concentrations in cord blood or circulation. While some of the studies reported associations between concentrations of dioxins and/or DLCs and some biomarkers of thyroid function, the majority of the observed associations were not statistically significant. Moreover, there were no clear and consistent effects across studies for any of the hormone levels examined, and while a number of studies showed a statistically significant association with exposure for a given marker of thyroid function, other studies showed either no change or changes in the opposite direction for the same thyroid function marker. Similarly, when the results were analyzed considering developmental stage, there generally were no clear and consistent effects at any age from birth through 12 years of age. The absence of a clear correlation between background exposures to dioxins and DLCs and thyroid function biomarkers during development is not consistent with the hypothesis that background exposures to these chemicals cause effects on thyroid function during development. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. [Thyroid emergencies : Thyroid storm and myxedema coma].

    PubMed

    Spitzweg, C; Reincke, M; Gärtner, R

    2017-10-01

    Thyroid emergencies are rare life-threatening endocrine conditions resulting from either decompensated thyrotoxicosis (thyroid storm) or severe thyroid hormone deficiency (myxedema coma). Both conditions develop out of a long-standing undiagnosed or untreated hyper- or hypothyroidism, respectively, precipitated by an acute stress-associated event, such as infection, trauma, or surgery. Cardinal features of thyroid storm are myasthenia, cardiovascular symptoms, in particular tachycardia, as well as hyperthermia and central nervous system dysfunction. The diagnosis is made based on clinical criteria only as thyroid hormone measurements do not differentiate between thyroid storm and uncomplicated hyperthyroidism. In addition to critical care measures therapy focusses on inhibition of thyroid hormone synthesis and secretion (antithyroid drugs, perchlorate, Lugol's solution, cholestyramine, thyroidectomy) as well as inhibition of thyroid hormone effects in the periphery (β-blocker, glucocorticoids).Cardinal symptoms of myxedema coma are hypothermia, decreased mental status, and hypoventilation with risk of pneumonia and hyponatremia. The diagnosis is also purely based on clinical criteria as measurements of thyroid hormone levels do not differ between uncomplicated severe hypothyroidism and myxedema coma. In addition to substitution of thyroid hormones and glucocorticoids, therapy focusses on critical care measures to treat hypoventilation and hypercapnia, correction of hyponatremia and hypothermia.Survival of both thyroid emergencies can only be optimized by early diagnosis based on clinical criteria and prompt initiation of multimodal therapy including supportive measures and treatment of the precipitating event.

  8. Higher Thyroid-Stimulating Hormone, Triiodothyronine and Thyroxine Values Are Associated with Better Outcome in Acute Liver Failure

    PubMed Central

    Sowa, Jan-Peter; Manka, Paul; Katsounas, Antonios; Syn, Wing-Kin; Führer, Dagmar; Gieseler, Robert K.; Bechmann, Lars P.; Gerken, Guido; Moeller, Lars C.; Canbay, Ali

    2015-01-01

    Introduction Changes in thyroid hormone levels, mostly as non-thyroidal illness syndrome (NTIS), have been described in many diseases. However, the relationship between acute liver failure (ALF) and thyroid hormone levels has not yet been clarified. The present study evaluates potential correlations of select thyroid functional parameters with ALF. Methods 84 consecutively recruited ALF patients were grouped according to the outcome of ALF (spontaneous recovery: SR; transplantation or death: NSR). TSH, free thyroxine (fT4), free triiodothyronine (fT3), T4, and T3 were determined. Results More than 50% of patients with ALF presented with abnormal thyroid parameters. These patients had greater risk for an adverse outcome than euthyroid patients. SR patients had significantly higher TSH, T4, and T3 concentrations than NSR patients. Albumin concentrations were significantly higher in SR than in NSR. In vitro T3 treatment was not able to rescue primary human hepatocytes from acetaminophen induced changes in mRNA expression. Conclusions In patients with ALF, TSH and total thyroid hormone levels differed significantly between SR patients and NSR patients. This might be related to diminished liver-derived transport proteins, such as albumin, in more severe forms of ALF. Thyroid parameters may serve as additional indicators of ALF severity. PMID:26147961

  9. Higher Thyroid-Stimulating Hormone, Triiodothyronine and Thyroxine Values Are Associated with Better Outcome in Acute Liver Failure.

    PubMed

    Anastasiou, Olympia; Sydor, Svenja; Sowa, Jan-Peter; Manka, Paul; Katsounas, Antonios; Syn, Wing-Kin; Führer, Dagmar; Gieseler, Robert K; Bechmann, Lars P; Gerken, Guido; Moeller, Lars C; Canbay, Ali

    2015-01-01

    Changes in thyroid hormone levels, mostly as non-thyroidal illness syndrome (NTIS), have been described in many diseases. However, the relationship between acute liver failure (ALF) and thyroid hormone levels has not yet been clarified. The present study evaluates potential correlations of select thyroid functional parameters with ALF. 84 consecutively recruited ALF patients were grouped according to the outcome of ALF (spontaneous recovery: SR; transplantation or death: NSR). TSH, free thyroxine (fT4), free triiodothyronine (fT3), T4, and T3 were determined. More than 50% of patients with ALF presented with abnormal thyroid parameters. These patients had greater risk for an adverse outcome than euthyroid patients. SR patients had significantly higher TSH, T4, and T3 concentrations than NSR patients. Albumin concentrations were significantly higher in SR than in NSR. In vitro T3 treatment was not able to rescue primary human hepatocytes from acetaminophen induced changes in mRNA expression. In patients with ALF, TSH and total thyroid hormone levels differed significantly between SR patients and NSR patients. This might be related to diminished liver-derived transport proteins, such as albumin, in more severe forms of ALF. Thyroid parameters may serve as additional indicators of ALF severity.

  10. IN VITRO METABOLISM OF THYROID HORMONES BY RECOMBINANT HUMAN UDP-GLUCORONOSYLTRANSFERASES AND SULFOTRANSFERASES

    EPA Science Inventory

    Endocrine disruptors can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferases (UGTs) and sulfotransferases (SULTs). Due to their ability to catalyze glucuronidation and sulfation of hormones and xenobiotics, UGTs and SULTs play ...

  11. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes

    2012-04-01

    Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.

  12. IL-1β a potential factor for discriminating between thyroid carcinoma and atrophic thyroiditis.

    PubMed

    Kammoun-Krichen, Maha; Bougacha-Elleuch, Noura; Mnif, Mouna; Bougacha, Fadia; Charffedine, Ilhem; Rebuffat, Sandra; Rebai, Ahmed; Glasson, Emilie; Abid, Mohamed; Ayadi, Fatma; Péraldi-Roux, Sylvie; Ayadi, Hammadi

    2012-01-01

    Interactions between cytokines and others soluble factors (hormones, antibodies...) can play an important role in the development of thyroid pathogenesis. The purpose of the present study was to examine the possible correlation between serum cytokine concentrations, thyroid hormones (FT4 and TSH) and auto-antibodies (Tg and TPO), and their usefulness in discriminating between different thyroid conditions. In this study, we investigated serum from 115 patients affected with a variety of thyroid conditions (44 Graves' disease, 17 Hashimoto's thyroiditis, 11 atrophic thyroiditis, 28 thyroid nodular goitre and 15 papillary thyroid cancer), and 30 controls. Levels of 17 cytokines in serum samples were measured simultaneously using a multiplexed human cytokine assay. Thyroid hormones and auto-antibodies were measured using ELISA. Our study showed that IL-1β serum concentrations allow the discrimination between atrophic thyroiditis and papillary thyroid cancer groups (p = 0.027).

  13. Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions?

    PubMed

    Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert

    2016-03-01

    Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. PCBs Alter Dopamine Mediated Function in Aging Workers

    DTIC Science & Technology

    2007-01-01

    Thyroid Hormone Function Analysis of serum samples collected for thyroid hormone function (T3, T4, free T3, free T4, and TSH levels) has been conducted by...Thyroid Hormone Measure Mean sem Mean sem TSH 2.06 0.13 2.55 0.36 T4 7.94 0.18 8.72 0.22 Free T4 1.23 0.02 1.22 0.03 T3 133 3.05 122 2.74...FreeT3 5.31 0.08 4.56 0.08 TSH = Thyroid Stimulating Hormone T4 = Thyroxine T3 = 3,5,3-Triidothyronine Investigators Meetings and

  15. THYROID HORMONE RECEPTOR BETA GENE MUTATION (P453A) IN A TURKISH FAMILY PRODUCING RESISTANCE TO THYROID HORMONE

    PubMed Central

    Bayraktaroglu, Taner; Noel, Janet; Mukaddes, Nahit Motavalli; Refetoff, Samuel

    2018-01-01

    Two members of a Turkish family, a mother and son, had thyroid function tests suggestive of resistance to thyroid hormone (RTH). The clinical presentation was, however, different. The mother (proposita) had palpitation, weakness, tiredness, nervousness, dry mouth and was misdiagnosed as having multinodular toxic goiter which was treated with antithyroid drugs and partial thyroidectomy. Her younger son had attention deficit hyperactivity disorder and primary encopresis, but normal intellectual quotient. Both had elevated serum iodothyronine levels with nonsuppressed thyrotropin. A mutation in one allele of the thyroid hormone receptor beta gene (P453A) was identified, providing a genetic confirmation for the diagnosis of RTH. PMID:18561095

  16. No obvious sympathetic excitation after massive levothyroxine overdose: A case report.

    PubMed

    Xue, Jianxin; Zhang, Lei; Qin, Zhiqiang; Li, Ran; Wang, Yi; Zhu, Kai; Li, Xiao; Gao, Xian; Zhang, Jianzhong

    2018-06-01

    Thyrotoxicosis from an overdose of medicinal thyroid hormone is a condition that may be associated with a significant delay in onset of toxicity. However, limited literature is available regarding thyrotoxicosis attributed to excessive ingestion of exogenous thyroid hormone and most cases described were pediatric clinical researches. Herein, we presented the course of a patient who ingested a massive amount of levothyroxine with no obvious sympathetic excited symptoms exhibited and reviewed feasible treatment options for such overdoses. A 41-year-old woman patient with ureteral calculus ingested a massive amount of levothyroxine (120 tablets, equal to 6 mg in total) during her hospitalization. Her transient vital signs were unremarkable after ingestion except for significantly accelerated breathing rate of 45 times per minute. Initial laboratory findings revealed evidently elevated serum levels of thyroxine (T4) >320 nmol/L, free triiodothyronine (fT3) 10.44 pmol/L, and free thyroxine (fT4) >100 pmol/L. The patient had a history of hypothyroidism, which was managed with thyroid hormone replacement (levothyroxine 100 μg per day). Besides, she also suffered from systemic lupus erythematosus and chronic pancreatitis. This is a case of excessive ingestion of exogenous thyroid hormone in an adult. The interventions included use propranolol to prevent heart failure; utilize hemodialysis to remove redundant thyroid hormone from blood; closely monitor the vital signs, basal metabolic rate, blood biochemical indicators, and serum levels of thyroid hormone. The woman had no obvious symptoms of thyrotoxicosis. After 4 weeks, the results of thyroid function indicated that serum thyroid hormone levels were completely recovered to pre-ingestion levels. Accordingly, the levothyroxine was used again as before. Adults often exhibit more severe symptoms after intaking overdose levothyroxine due to their complex medical history and comorbidities than children. As for them, hemodialysis should be considered as soon as possible. Besides, diverse treatments according to specific symptoms and continuously monitoring were indispensable.

  17. [Pediatric reference intervals : retrospective study on thyroid hormone levels].

    PubMed

    Ladang, A; Vranken, L; Luyckx, F; Lebrethon, M-C; Cavalier, E

    2017-01-01

    Defining reference range is an essential tool for diagnostic. Age and sexe influences on thyroid hormone levels have been already discussed. In this study, we are defining a new pediatric reference range for TSH, FT3 and FT4 for Cobas C6000 analyzer. To do so, we have taken in account 0 to 18 year old outclinic patients. During the first year of life, thyroid hormone levels change dramatically before getting stabilized around 3 years old. We also compared our results to those obtained in a Canadian large-scale prospective study (the CALIPER initiative).

  18. Hyperthyroidism Improves the Pathological Condition of Nonalcoholic Steatohepatitis: A Case of Nonalcoholic Steatohepatitis with Graves' Disease.

    PubMed

    Miyake, Teruki; Matsuura, Bunzo; Furukawa, Shinya; Todo, Yasuhiko; Yamamoto, Shin; Yoshida, Osamu; Imai, Yusuke; Watanabe, Takao; Yamamoto, Yasunori; Hirooka, Masashi; Tokumoto, Yoshio; Kumagi, Teru; Abe, Masanori; Seike, Hirotaka; Miyauchi, Shozo; Hiasa, Yoichi

    2016-01-01

    3,5,3'-triiodo-L-thyronine regulates the glucose metabolism, lipid metabolism, and hepatic steatosis. Several groups have shown the relationships between hypothyroidism and nonalcoholic fatty liver and hypothyroidism and nonalcoholic steatohepatitis (NASH). However, the effect of hyperthyroidism on NASH has not yet been investigated. We herein report effects of thyroid hormone on the pathological condition of NASH in a patient with NASH complicated by Graves' disease. In our case, the liver enzyme level improved with the increasing thyroid hormone level; however, the liver enzyme level was aggravated with the improving thyroid hormone level. Therefore, hyperthyroidism may improve the pathological condition of NASH.

  19. Changes in the role of the thyroid axis during metamorphosis of the Japanese eel, Anguilla japonica.

    PubMed

    Sudo, Ryusuke; Okamura, Akihiro; Kuroki, Mari; Tsukamoto, Katsumi

    2014-08-01

    To clarify the role of thyroid function during metamorphosis from leptocephalus to glass eel in the Japanese eel, we examined the histology of the thyroid gland and measured whole-body concentrations of thyroid hormones, thyroxine (T4) and triiodothyronine (T3), and thyroid stimulating hormone β-subunit TSH (TSHβ) mRNA expression levels in five stages of artificially hatched eels (leptocephalus, early-metamorphosis, late-metamorphosis, glass eel, and elver). During metamorphosis, the inner colloid of thyroid follicles showed positive immunoreactivity for T4, and both T4 and T3 levels were significantly increased, whereas a small peak of TSHβ mRNA level was observed at the early-metamorphosis stage. Similarly, TSHβ mRNA levels were highest in the glass eel stage, and then decreased markedly in the elver stage. In contrast to TSHβ mRNA expression, thyroid hormones (both T4 and T3) increased further from the glass eel to elver stages. These results indicated that thyroid function in the Japanese eel was active both during and after metamorphosis. Therefore, the thyrotropic axis may play important roles not only in metamorphosis but also in subsequent inshore or upstream migrations. © 2014 Wiley Periodicals, Inc.

  20. Homozygous Resistance to Thyroid Hormone β: Can Combined Antithyroid Drug and Triiodothyroacetic Acid Treatment Prevent Cardiac Failure?

    PubMed

    Moran, Carla; Habeb, Abdelhadi M; Kahaly, George J; Kampmann, Christoph; Hughes, Marina; Marek, Jan; Rajanayagam, Odelia; Kuczynski, Adam; Vargha-Khadem, Faraneh; Morsy, Mofeed; Offiah, Amaka C; Poole, Ken; Ward, Kate; Lyons, Greta; Halsall, David; Berman, Lol; Watson, Laura; Baguley, David; Mollon, John; Moore, Anthony T; Holder, Graham E; Dattani, Mehul; Chatterjee, Krishna

    2017-09-01

    Resistance to thyroid hormone β (RTH β ) due to homozygous THRB defects is exceptionally rare, with only five kindreds reported worldwide. Cardiac dysfunction, which can be life-threatening, is recognized in the disorder. Here we describe the clinical, metabolic, ophthalmic, and cardiac findings in a 9-year-old boy harboring a biallelic THRB mutation (R243Q), along with biochemical, physiologic, and cardiac responses to carbimazole and triiodothyroacetic acid (TRIAC) therapy. The patient exhibits recognized features (goiter, nonsuppressed thyroid-stimulating hormone levels, upper respiratory tract infections, hyperactivity, low body mass index) of heterozygous RTH β , with additional characteristics (dysmorphic facies, winging of scapulae) and more markedly elevated thyroid hormone levels, associated with the homozygous form of the disorder. Notably, an older sibling with similar clinical features and probable homozygous RTH β had died of cardiac failure at age 13 years. Features of early dilated cardiomyopathy in our patient prompted combination treatment with carbimazole and TRIAC. Careful titration of therapy limited elevation in TSH levels and associated increase in thyroid volume. Subsequently, sustained reduction in thyroid hormones with normal TSH levels was reflected in lower basal metabolic rate, gain of lean body mass, and improved growth and cardiac function. A combination of antithyroid drug and TRIAC therapy may prevent thyrotoxic cardiomyopathy and its decompensation in homozygous or even heterozygous RTH β in which life-threatening hyperthyroid features predominate.

  1. Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri).

    PubMed

    Johnson, Kaitlin M; Lema, Sean C

    2011-07-01

    In fish as in other vertebrates, the diverse functions of thyroid hormones are mediated at the peripheral tissue level through iodothyronine deiodinase (dio) enzymes and thyroid hormone receptor (tr) proteins. In this study, we examined thyroid hormone regulation of mRNAs encoding the three deiodinases dio1, dio2 and dio3 - as well as three thyroid hormone receptors trαA, trαB and trβ - in initial phase striped parrotfish (Scarus iseri). Parrotfish were treated with dissolved phase T(3) (20 nM) or methimazole (3 mM) for 3 days. Treatment with exogenous T(3) elevated circulating T(3), while the methimazole treatment depressed plasma T(4). Experimentally-induced hyperthyroidism increased the relative abundance of transcripts encoding trαA and trβ in the liver and brain, but did not affect trαB mRNA levels in either tissue. In both sexes, methimazole-treated fish exhibited elevated dio2 transcripts in the liver and brain, suggesting enhanced outer-ring deiodination activity in these tissues. Accordingly, systemic hyperthyroidism elevated relative dio3 transcript levels in these same tissues. In the gonad, however, patterns of transcript regulation were distinctly different with elevated T(3) increasing mRNAs encoding dio2 in testicular and ovarian tissues and dio3, trαA and trαB in the testes only. Thyroid hormone status did not affect dio1 transcript abundance in the liver, brain or gonads. Taken as a whole, these results demonstrate that thyroidal status influences relative transcript abundance for dio2 and dio3 in the liver, provide new evidence for similar patterns of dio2 and dio3 mRNA regulation in the brain, and make evident that fish exhibit tr subtype-specific transcript abundance changes to altered thyroid status. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Stereoselective degradation and thyroid endocrine disruption of lambda-cyhalothrin in lizards (Eremias argus) following oral exposure.

    PubMed

    Chang, Jing; Hao, Weiyu; Xu, Yuanyuan; Xu, Peng; Li, Wei; Li, Jianzhong; Wang, Huili

    2018-01-01

    The disturbance of the thyroid system and elimination of chiral pyrethroid pesticides with respect to enantioselectivity in reptiles have so far received limited attention by research. In this study, bioaccumulation, thyroid gland lesions, thyroid hormone levels, and hypothalamus-pituitary-thyroid axis-related gene expression in male Eremias argus were investigated after three weeks oral administration of lambda-cyhalothrin (LCT) enantiomers. In the lizard liver, the concentration of LCT was negatively correlated with the metabolite-3-phenoxybenzoic acid (PBA) level during 21 days of exposure. (+)-LCT exposure induced a higher thyroid follicular epithelium height than (-)-LCT exposure. The thyroxine levels were increased in both treated groups while only (+)-LCT exposure induced a significant change in the triiodothyronine (T3) level. In addition, the expressions of hypothalamus-pituitary-thyroid axis-related genes including thyroid hormone receptors (trs), deiodinases (dios), uridinediphosphate glucuronosyltransferase (udp), and sulfotransferase (sult) were up-regulated after exposure to the two enantiomers. (+)-LCT treatment resulted in higher expression of trs and (-)-LCT exposure led to greater stimulation of dios in the liver, which indicated PBA-induced antagonism on thyroid hormone receptors and LCT-induced disruption of thyroxine (T4) deiodination. The results suggest the (-)-LCT exposure causes higher residual level in lizard liver while induces less disruption on lizard thyroid activity than (+)-LCT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Thyroid profiles in a patient with resistance to thyroid hormone and episodes of thyrotoxicosis, including repeated painless thyroiditis.

    PubMed

    Taniyama, Matsuo; Otsuka, Fumiko; Tozaki, Teruaki; Ban, Yoshiyuki

    2013-07-01

    Thyrotoxic disease can be difficult to recognize in patients with resistance to thyroid hormone (RTH) because the clinical symptoms of thyrotoxicosis cannot be observed, and thyrotropin (TSH) may not be suppressed because of hormone resistance. Painless thyroiditis is a relatively common cause of thyrotoxicosis, but its occurrence in RTH has not been reported. We assessed the thyroid profile in a patient with RTH and episodes of thyrotoxicosis who experienced repeated painless thyroiditis. A 44-year-old Japanese woman with RTH, which was confirmed by the presence of a P453A mutation in the thyroid hormone receptor β (TRβ) gene, showed a slight elevation of the basal levels of thyroid hormones, which indicated that her pituitary RTH was mild. She experienced a slight exacerbation of hyperthyroxinemia concomitant with TSH suppression. A diagnosis of painless thyroiditis was made because of the absence of TSH receptor antibodies, low Tc-99m pertechnetate uptake by the thyroid gland, and transient suppression followed by a slight elevation of TSH following the elevation of thyroid hormones. The patient's complaints of general malaise and occasional palpitations did not change throughout the course of painless thyroiditis. Three years later, painless thyroiditis occurred again without any deterioration of the clinical manifestations. Mild pituitary RTH can be overcome by slight exacerbation of hyperthyroxinemia during mild thyrotoxicosis. When pituitary resistance is severe and TSH is not suppressed, thyrotoxicosis may be overlooked.

  4. New approaches to thyroid hormones and purinergic signaling.

    PubMed

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.

  5. New Approaches to Thyroid Hormones and Purinergic Signaling

    PubMed Central

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  6. Gene Expression in Developing Brain is Altered by Modest Reductions in Circulating Levels of Thyroid Hormone.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...

  7. Hypothalamic-Pituitary-Thyroid Axis Perturbations in Male Mice by CNS-Penetrating Thyromimetics.

    PubMed

    Ferrara, Skylar J; Bourdette, Dennis; Scanlan, Thomas S

    2018-07-01

    Thyromimetics represent a class of experimental drugs that can stimulate tissue-selective thyroid hormone action. As such, thyromimetics should have effects on the hypothalamic-pituitary-thyroid (HPT) axis, but details of this action and the subsequent effects on systemic thyroid hormone levels have not been reported to date. Here, we compare the HPT-axis effects of sobetirome, a well-studied thyromimetic, with Sob-AM2, a newly developed prodrug of sobetirome that targets sobetirome distribution to the central nervous system (CNS). Similar to endogenous thyroid hormone, administration of sobetirome and Sob-AM2 suppress HPT-axis gene transcript levels in a manner that correlates to their specific tissue distribution properties (periphery vs CNS, respectively). Dosing male C57BL/6 mice with sobetirome and Sob-AM2 at concentrations ≥10 μg/kg/d for 29 days induces a state similar to central hypothyroidism characterized by depleted circulating T4 and T3 and normal TSH levels. However, despite the systemic T4 and T3 depletion, the sobetirome- and Sob-AM2-treated mice do not show signs of hypothyroidism, which may result from the presence of the thyromimetic in the thyroid hormone-depleted background.

  8. Age impact on autoimmune thyroid disease in females

    NASA Astrophysics Data System (ADS)

    Stoian, Dana; Craciunescu, Mihalea; Timar, Romulus; Schiller, Adalbert; Pater, Liana; Craina, Marius

    2013-10-01

    Thyroid autoimmune disease, a widespread phenomenon in female population, impairs thyroid function during pregnancy. Identifying cases, which will develop hypothyroidism during pregnancy, is crucial in the follow-up process. The study group comprised 108 females, with ages between 20-40 years; with known inactive autoimmune thyroid disease, before pregnancy that became pregnant in the study follow-up period. They were monitored by means of clinical, hormonal and immunological assays. Supplemental therapy with thyroid hormones was used, where needed. Maternal age and level of anti-thyroid antibodies were used to predict thyroid functional impairment.

  9. Endocrine System (For Parents)

    MedlinePlus

    ... the thyroid gland through surgery or radiation treatments. Hypothyroidism. Hypothyroidism is when the levels of thyroid hormones in ... hormone production, is the most common cause of hypothyroidism in kids. Infants can also be born with ...

  10. Clear cell variant of follicular thyroid carcinoma with normal thyroid-stimulating hormone value: a case report

    PubMed Central

    2014-01-01

    Introduction Clear cell carcinomas of the thyroid gland with normal thyroid-stimulating hormone value are very rare, but clear cell changes are described in most reported cases of thyroidal lesions. Case presentation In this report, we describe the case of a 50-year-old Caucasian woman with a normal thyroid-stimulating hormone level who underwent surgery to treat a multi-nodular goiter. The pathology was a clear cell variant of follicular thyroid carcinoma. The tumor was 1cm in diameter and consisted of pure clear cells. Conclusion Clear cell variants of follicular thyroid carcinoma are rarely seen, especially it is misdiagnosed with metastatic renal cell carcinoma. In this report, we describe the case of a patient with a clear cell variant of follicular thyroid carcinoma with an interesting pathology. PMID:24884725

  11. Unusual Ratio between Free Thyroxine and Free Triiodothyronine in a Long-Lived Mole-Rat Species with Bimodal Ageing

    PubMed Central

    Henning, Yoshiyuki; Vole, Christiane; Begall, Sabine; Bens, Martin; Broecker-Preuss, Martina; Sahm, Arne; Szafranski, Karol; Burda, Hynek; Dammann, Philip

    2014-01-01

    Ansell's mole-rats (Fukomys anselli) are subterranean, long-lived rodents, which live in eusocial families, where the maximum lifespan of breeders is twice as long as that of non-breeders. Their metabolic rate is significantly lower than expected based on allometry, and their retinae show a high density of S-cone opsins. Both features may indicate naturally low thyroid hormone levels. In the present study, we sequenced several major components of the thyroid hormone pathways and analyzed free and total thyroxine and triiodothyronine in serum samples of breeding and non-breeding F. anselli to examine whether a) their thyroid hormone system shows any peculiarities on the genetic level, b) these animals have lower hormone levels compared to euthyroid rodents (rats and guinea pigs), and c) reproductive status, lifespan and free hormone levels are correlated. Genetic analyses confirmed that Ansell's mole-rats have a conserved thyroid hormone system as known from other mammalian species. Interspecific comparisons revealed that free thyroxine levels of F. anselli were about ten times lower than of guinea pigs and rats, whereas the free triiodothyronine levels, the main biologically active form, did not differ significantly amongst species. The resulting fT4:fT3 ratio is unusual for a mammal and potentially represents a case of natural hypothyroxinemia. Comparisons with total thyroxine levels suggest that mole-rats seem to possess two distinct mechanisms that work hand in hand to downregulate fT4 levels reliably. We could not find any correlation between free hormone levels and reproductive status, gender or weight. Free thyroxine may slightly increase with age, based on sub-significant evidence. Hence, thyroid hormones do not seem to explain the different ageing rates of breeders and non-breeders. Further research is required to investigate the regulatory mechanisms responsible for the unusual proportion of free thyroxine and free triiodothyronine. PMID:25409169

  12. Unusual ratio between free thyroxine and free triiodothyronine in a long-lived mole-rat species with bimodal ageing.

    PubMed

    Henning, Yoshiyuki; Vole, Christiane; Begall, Sabine; Bens, Martin; Broecker-Preuss, Martina; Sahm, Arne; Szafranski, Karol; Burda, Hynek; Dammann, Philip

    2014-01-01

    Ansell's mole-rats (Fukomys anselli) are subterranean, long-lived rodents, which live in eusocial families, where the maximum lifespan of breeders is twice as long as that of non-breeders. Their metabolic rate is significantly lower than expected based on allometry, and their retinae show a high density of S-cone opsins. Both features may indicate naturally low thyroid hormone levels. In the present study, we sequenced several major components of the thyroid hormone pathways and analyzed free and total thyroxine and triiodothyronine in serum samples of breeding and non-breeding F. anselli to examine whether a) their thyroid hormone system shows any peculiarities on the genetic level, b) these animals have lower hormone levels compared to euthyroid rodents (rats and guinea pigs), and c) reproductive status, lifespan and free hormone levels are correlated. Genetic analyses confirmed that Ansell's mole-rats have a conserved thyroid hormone system as known from other mammalian species. Interspecific comparisons revealed that free thyroxine levels of F. anselli were about ten times lower than of guinea pigs and rats, whereas the free triiodothyronine levels, the main biologically active form, did not differ significantly amongst species. The resulting fT4:fT3 ratio is unusual for a mammal and potentially represents a case of natural hypothyroxinemia. Comparisons with total thyroxine levels suggest that mole-rats seem to possess two distinct mechanisms that work hand in hand to downregulate fT4 levels reliably. We could not find any correlation between free hormone levels and reproductive status, gender or weight. Free thyroxine may slightly increase with age, based on sub-significant evidence. Hence, thyroid hormones do not seem to explain the different ageing rates of breeders and non-breeders. Further research is required to investigate the regulatory mechanisms responsible for the unusual proportion of free thyroxine and free triiodothyronine.

  13. Alien/CSN2 gene expression is regulated by thyroid hormone in rat brain.

    PubMed

    Tenbaum, Stephan P; Juenemann, Stefan; Schlitt, Thomas; Bernal, Juan; Renkawitz, Rainer; Muñoz, Alberto; Baniahmad, Aria

    2003-02-01

    Alien has been described as a corepressor for the thyroid hormone receptor (TR). Corepressors are coregulators that mediate gene silencing of DNA-bound transcriptional repressors. We describe here that Alien gene expression in vivo is regulated by thyroid hormone both in the rat brain and in cultured cells. In situ hybridization revealed that Alien is widely expressed in the mouse embryo and also throughout the rat brain. Hypothyroid animals exhibit lower expression of both Alien mRNAs and protein levels as compared with normal animals. Accordingly, we show that Alien gene is inducible after thyroid hormone treatment both in vivo and in cell culture. In cultured cells, the hormonal induction is mediated by either TRalpha or TRbeta, while cells lacking detectable amounts of functional TR lack hormonal induction of Alien. We have detected two Alien-specific mRNAs by Northern experiments and two Alien-specific proteins in vivo and in cell lines by Western analysis, one of the two forms representing the CSN2 subunit of the COP9 signalosome. Interestingly, both Alien mRNAs and both detected proteins are regulated by thyroid hormone in vivo and in cell lines. Furthermore, we provide evidence for the existence of at least two Alien genes in rodents. Taken together, we conclude that Alien gene expression is under control of TR and thyroid hormone. This suggests a negative feedback mechanism between TR and its own corepressor. Thus, the reduction of corepressor levels may represent a control mechanism of TR-mediated gene silencing.

  14. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of "inappropriate secretion of TSH".

    PubMed Central

    Gershengorn, M C; Weintraub, B D

    1975-01-01

    An 18-yr-old woman with clinical and laboratory features of hyperthyroidism had persistently elevated serum levels of immunoreative thyrotropin (TSH). During 11 yr of follow-up there had been no evidence of a pituitary tumor. After thyrotropin-releasing hormone (TRH), there was a marked increase in TSH and secondarily in triiodothyronine (T3), the latter observation confirming the biologic activity of the TSH. Exogenous T3 raised serum T3 and several measurements of peripheral thyroid hormone effect, while decreasing serum TSH, thyroxine (T4), and thyroidal radioiodine uptake. After T3, the TRH-stimulated TSH response was decreased but was still inappropriate for the elevated serum T3 levels. Dexamethasone reduced serum TSH but did not inhibit TRH stimulation of TSH. Propylthiouracil reduced serum T4 and T3 and raised TSH. This patient represents a new syndrome of TSH-induced hyperthyroidism, differing from previous reports in the absence of an obvious pituitary tumor and in the responsiveness of the TSH to TRH stimulation and thyroid hormone suppression. This syndrome appears to be caused by a selective, partial resistance of the pituitary to the action of thyroid hormone. This case is also compared with previous reports in the literature of patients with elevated serum levels of immunoreactive TSH in the presence of elevated total and free thyroid hormones. A classification of these cases, termed "inappropriate secretion of TSH," is proposed. PMID:1159077

  15. Impact of light exposure on thyroid-stimulating hormone results using the Siemens Advia Centaur TSH-3Ultra assay.

    PubMed

    Armer, Jane; Giles, Diane; Lancaster, Ian; Brownbill, Kathryn

    2017-09-01

    Background Thyroid-stimulating hormone (TSH) is used as the first-line test of thyroid function. Siemens Healthcare Diagnostics recommend that Siemens Centaur reagents must be protected from light in the assay information and on reagent packaging. We have compared the effect of light exposure on results using Siemens TSH-3Ultra and follicle-stimulating hormone reagents. The thyroid-stimulating hormone reagent includes fluoroscein thiocyanate whereas the follicle-stimulating hormone reagent does not. Methods Three levels of quality controls were analysed using SiemensTSH-3Ultra and follicle-stimulating hormone reagent packs that had been kept protected from light or exposed to light at 6-h intervals for 48 h and then at 96 h. Results Thyroid-stimulating hormone results were significantly lower after exposure of TSH-3Ultra reagent packs to light. Results were >15% lower at all three levels of quality control following 18 h of light exposure and continued to decrease until 96 h. There was no significant difference in follicle-stimulating hormone results whether reagents had been exposed to or protected from light. Conclusions Thyroid-stimulating hormone results but not follicle-stimulating hormone results are lowered after exposure of reagent packs to light. Laboratories must ensure that TSH-3Ultra reagents are not exposed to light and analyse quality control samples on every reagent pack to check that there has not been light exposure prior to delivery. The labelling on TSH-3Ultra reagent packs should reflect the significant effect of light exposure compared with the follicle-stimulating hormone reagent. We propose that the effect of light exposure on binding of fluoroscein thiocyanate to the solid phase antibody causes the falsely low results.

  16. Structural Abnormalities and Learning Impairments Induced by Low Level Thyroid Hormone Insufficiency: A Cross-Fostering Study

    EPA Science Inventory

    Severe reductions in thyroid hormones (TH) during development alter brain structure and impair learning. Uncertainty surrounds both the impact oflower levels of TH disruption and the sensitivity of available metrics to detect neurodevelopmental deficits of this disruption. We ha...

  17. Graves' disease: an analysis of thyroid hormone levels and hyperthyroid signs and symptoms.

    PubMed

    Trzepacz, P T; Klein, I; Roberts, M; Greenhouse, J; Levey, G S

    1989-11-01

    Assessment of disease severity for patients with hyperthyroidism involves clinical evaluation and laboratory testing. To determine if there is a correlation between symptoms and thyroid function test results, we prospectively studied hyperthyroid patients using a standardized symptom rating scale and serum thyroid function parameters. We examined 25 patients with untreated, newly diagnosed Graves' disease using the Hyperthyroid Symptom Scale (HSS) and serum levels of thyroxine (T4), triiodothyronine (T3) relative insulin area (RIA), and estimates of free thyroxine index (FTI). In addition, we compared thyroid hormone levels with standard measures of depression and anxiety in these patients. When regression analyses controlling for age were performed, none of these symptom ratings were associated with FTI or T3 RIA. The HSS was correlated with goiter size and anxiety ratings and was inversely correlated with age. The present study suggests that there is no relationship between the clinical assessment of disease severity and serum levels of thyroid hormone in untreated Graves' disease.

  18. Rationalization of the Irrational Neuropathologic Basis of Hypothyroidism-Olfaction Disorders Paradox: Experimental Study.

    PubMed

    Aydin, Nazan; Ramazanoglu, Leyla; Onen, Mehmet Resid; Yilmaz, Ilhan; Aydin, Mehmet Dumlu; Altinkaynak, Konca; Calik, Muhammet; Kanat, Ayhan

    2017-11-01

    Hypothyroidism is defined as an underactive thyroid gland and one of the reasons for inadequate stimulation of thyroid is dysfunction of the hormone regulating brain centers. Olfaction disorders have been considered as a problem in hypothyroidism. It has been hypothesized that olfaction disorders reduce olfactory stimulation and diminished olfactory stimulus may trigger hypothyroidism. In this study, an examination was made of the thyroid hormone levels, histologic features of thyroid glands, and vagal nerve network degradation in an experimental animal model of olfactory bulbectomy (OBX). A total of 25 rats were divided into control (n = 5), SHAM (n = 5), and OBX (n = 15) groups and were followed up for 8 weeks. Thyroid hormone levels were measured before (1 time), during the experiment (1 time/month) and the animals were decapitated. The olfactory bulbs, dorsal motor nucleus of the vagal nerves, and thyroid gland sections were stained with hematoxylin-eosin and tunnel dye to determine OBX-related damage. Specimens were analyzed stereologically to evaluate neuron density of the vagal nucleus and hormone-filled total follicle volume (TFV) per cubic centimeter, and these were statistically compared with thyroid hormone levels. The mean degenerated neuron density of the vagal nucleus was 21 ± 8/mm 3 . TFV and triiodothyronine (T 3 )-thyroxine (T 4 ) levels were measured as TFV, (312 ± 91) × 10 6 μm 3 /cm 3 ; T 3 , 105 μg/dl; T 4 , 1.89 μg/dl in control (group I). Mean degenerated neuron density, 56 ± 12/mm 3 ; TFV, (284 ± 69) × 10 6 μm 3 /cm 3 ; T 3 , 103 μg/dl; T 4 , 1.85 μg/dl in SHAM (group II). Mean degenerated neuron density, 235 ± 64/mm 3 ; TFV, (193 ± 34) × 10 6 μm 3 /cm 3 ; T 3 , 86 μg/dl; T 4 , 1.37 μg/dl in the OBX group (group III). The TFV were significantly diminished because of apoptotic degradation in olfactory bulbs and thyroid gland with decreased T 3 - T 4 levels with increased thyroid-stimulating hormone levels in OBX-applied animals of subarachnoid hemorrhage (P < 0.005). The results suggested that diminished hormone secretion as a result of thyroid gland degradation results in both olfaction loss and vagal complex degeneration in OBX animals, contrary to the common belief that anosmia results from hypothyroidism. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The effect of growth hormone replacement on the thyroid axis in patients with hypopituitarism: in vivo and ex vivo studies.

    PubMed

    Glynn, Nigel; Kenny, Helena; Quisenberry, Leah; Halsall, David J; Cook, Paul; Kyaw Tun, Tommy; McDermott, John H; Smith, Diarmuid; Thompson, Christopher J; O'Gorman, Donal J; Boelen, Anita; Lado-Abeal, Joaquin; Agha, Amar

    2017-05-01

    Alterations in the hypothalamic-pituitary-thyroid axis have been reported following growth hormone (GH) replacement. The aim was to examine the relationship between changes in serum concentration of thyroid hormones and deiodinase activity in subcutaneous adipose tissue, before and after GH replacement. A prospective, observational study of patients receiving GH replacement as part of routine clinical care. Twenty adult hypopituitary men. Serum TSH, thyroid hormones - free and total thyroxine (T4) and triiodothyronine (T3) and reverse T3, thyroglobulin and thyroid-binding globulin (TBG) levels were measured before and after GH substitution. Changes in serum hormone levels were compared to the activity of deiodinase isoenzymes (DIO1, DIO2 and DIO3) in subcutaneous adipose tissue. The mean daily dose of growth hormone (GH) was 0·34 ± 0·11 mg (range 0·15-0·5 mg). Following GH replacement, mean free T4 levels declined (-1·09 ± 1·99 pmol/l, P = 0·02). Reverse T3 levels also fell (-3·44 ± 1·42 ng/dl, P = 0·03) and free T3 levels increased significantly (+0·34 ± 0·15 pmol/l, P = 0·03). In subcutaneous fat, DIO2 enzyme activity declined; DIO1 and DIO3 activities remained unchanged following GH substitution. Serum TSH, thyroglobulin and TBG levels were unaltered by GH therapy. In vitro analysis of subcutaneous adipose tissue from hypopituitary human subjects demonstrates that GH replacement is associated with significant changes in deiodinase isoenzyme activity. However, the observed variation in enzyme activity does not explain the changes in the circulating concentration of thyroid hormones induced by GH replacement. It is possible that deiodinase isoenzymes are differentially regulated by GH in other tissues including liver and muscle. © 2016 John Wiley & Sons Ltd.

  20. Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway.

    PubMed

    Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus

    2009-10-01

    Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.

  1. Thyroid hormone levels in the acquired immunodeficiency syndrome (AIDS) or AIDS-related complex.

    PubMed Central

    Tang, W W; Kaptein, E M

    1989-01-01

    Hypothalamic-pituitary dysfunction and thyroid gland cytomegalovirus inclusions have been described in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex (ARC). We evaluated 80 patients with AIDS or ARC for the frequency of hypothalamic-pituitary or thyroid gland failure and altered serum thyroid hormone levels due to nonthyroidal disorders. One patient had subclinical hypothyroidism. Of these patients, 60% had low free triiodothyronine (T3) index values and 4% had low free thyroxine (T4) indexes; none of the latter had hypothalamic-pituitary or thyroid gland failure, since all serum cortisol values were greater than or equal to 552 nmol per liter (greater than or equal to 20 micrograms per dl) and all thyrotropin levels were less than or equal to 3 mU per liter (less than or equal to 3 microU per ml), respectively. Those who died had lower total T4 and T3, free T3 index, and albumin levels than those discharged from hospital. Serum total T4 and T3 levels correlated with albumin levels and total T3 with serum sodium levels. Serum total T3 levels best predicted the outcome of the hospital stay (accuracy = 82%). Thus, abnormal serum thyroid hormone levels in AIDS or ARC patients are most frequently due to nonthyroidal disorders, but hypothalamic-pituitary or thyroid gland failure may occur. PMID:2618039

  2. THYROID HORMONE INSUFFICIENCY AND BRAIN DEVELOPMENT -- DETERMINATION OF NEUROTOXICITY AT LOW LEVELS OF HORMONE DISRUPTION.

    EPA Science Inventory

    Thyroid hormone (TH) deficiencies during development produce deleterious effects on brain structure and function. The degree to which TH must be perturbed to induce neurotoxicity remains unclear. The present study was conducted as part of a Cooperative Agreement between US EPA, U...

  3. Baseline Levels and Trimestral Variation of Triiodothyronine and Thyroxine and Their Association with Mortality in Maintenance Hemodialysis Patients

    PubMed Central

    Meuwese, Christiaan L.; Dekker, Friedo W.; Lindholm, Bengt; Qureshi, Abdul R.; Heimburger, Olof; Barany, Peter; Stenvinkel, Peter; Carrero, Juan J.

    2012-01-01

    Summary Background and objectives Conflicting evidence exists with regard to the association of thyroid hormones and mortality in dialysis patients. This study assesses the association between basal and trimestral variation of thyroid stimulating hormone, triiodothyronine, and thyroxine and mortality. Design, setting, participants, & measurements In 210 prevalent hemodialysis patients, serum triiodothyronine, thyroxine, thyroid stimulating hormone, and interleukin-6 were measured 3 months apart. Cardiovascular and non-cardiovascular deaths were registered during follow-up. Based on fluctuations along tertiles of distribution, four trimestral patterns were defined for each thyroid hormone: persistently low, decrease, increase, and persistently high. The association of baseline levels and trimestral variation with mortality was investigated with Kaplan–Meier curves and Cox proportional hazard models. Results During follow-up, 103 deaths occurred. Thyroid stimulating hormone levels did not associate with mortality. Patients with relatively low basal triiodothyronine concentrations had higher hazards of dying than patients with high levels. Longitudinally, patients with persistently low levels of triiodothyronine during the 3-month period had higher mortality hazards than those having persistently high levels. These associations were mainly attributable to cardiovascular-related mortality. The association between thyroxine and mortality was not altered after adjustment for triiodothyronine. Conclusions Hemodialysis patients with reduced triiodothyronine or thyroxine levels bear an increased mortality risk, especially due to cardiovascular causes. This was true when considering both baseline measurements and trimestral variation patterns. Our longitudinal design adds observational evidence supporting the hypothesis that the link may underlie a causal effect. PMID:22246282

  4. Baseline levels and trimestral variation of triiodothyronine and thyroxine and their association with mortality in maintenance hemodialysis patients.

    PubMed

    Meuwese, Christiaan L; Dekker, Friedo W; Lindholm, Bengt; Qureshi, Abdul R; Heimburger, Olof; Barany, Peter; Stenvinkel, Peter; Carrero, Juan J

    2012-01-01

    Conflicting evidence exists with regard to the association of thyroid hormones and mortality in dialysis patients. This study assesses the association between basal and trimestral variation of thyroid stimulating hormone, triiodothyronine, and thyroxine and mortality. In 210 prevalent hemodialysis patients, serum triiodothyronine, thyroxine, thyroid stimulating hormone, and interleukin-6 were measured 3 months apart. Cardiovascular and non-cardiovascular deaths were registered during follow-up. Based on fluctuations along tertiles of distribution, four trimestral patterns were defined for each thyroid hormone: persistently low, decrease, increase, and persistently high. The association of baseline levels and trimestral variation with mortality was investigated with Kaplan-Meier curves and Cox proportional hazard models. During follow-up, 103 deaths occurred. Thyroid stimulating hormone levels did not associate with mortality. Patients with relatively low basal triiodothyronine concentrations had higher hazards of dying than patients with high levels. Longitudinally, patients with persistently low levels of triiodothyronine during the 3-month period had higher mortality hazards than those having persistently high levels. These associations were mainly attributable to cardiovascular-related mortality. The association between thyroxine and mortality was not altered after adjustment for triiodothyronine. Hemodialysis patients with reduced triiodothyronine or thyroxine levels bear an increased mortality risk, especially due to cardiovascular causes. This was true when considering both baseline measurements and trimestral variation patterns. Our longitudinal design adds observational evidence supporting the hypothesis that the link may underlie a causal effect.

  5. Thyroid function testing in elephant seals in health and disease.

    PubMed

    Yochem, Pamela K; Gulland, Frances M D; Stewart, Brent S; Haulena, Martin; Mazet, Jonna A K; Boyce, Walter M

    2008-02-01

    Northern Elephant Seal Skin Disease (NESSD) is a severe, ulcerative, skin condition of unknown cause affecting primarily yearling northern elephant seals (Mirounga angustirostris); it has been associated with decreased levels of circulating thyroxine (T4) and triiodothyronine (T3). Abnormalities of the thyroid gland that result in decreased hormone levels (hypothyroidism) can result in hair loss, scaling and secondary skin infections. However, concurrent illness (including skin ailments) can suppress basal levels of thyroid hormones and mimic hypothyroidism; when this occurs in animals with normal thyroid glands it is called "sick euthyroid syndrome". The two conditions (true hypothyroidism vs. "sick euthyroid") can be distinguished in dogs by testing the response of the thyroid gland to exogenous thyrotropin (Thyroid Stimulating Hormone, TSH). To determine whether hypothyroidism is involved in the etiology of NESSD, we tested thyroid function of stranded yearling elephant seals in the following categories: healthy seals (rehabilitated and ready for release; N=9), seals suffering from NESSD (N=16) and seals with other illnesses (e.g., lungworm pneumonia; N=10). Levels of T4 increased significantly for all three categories of elephant seals following TSH stimulation, suggesting that seals with NESSD are "sick euthyroid" and that the disease is not associated with abnormal thyroid gland function.

  6. Diagnosis and management of congenital hypothyroidism.

    PubMed

    Harrell, G B; Murray, P D

    1998-03-01

    Thyroid hormones are integral to the development and maturation of the central nervous system as well as normal growth and development. Comprehensive knowledge of the maturation and function of the thyroid gland is essential to understanding the pathophysiology of thyroid dysfunction. Early diagnosis and appropriate treatment in thyroid disease are imperative for normalization of thyroid hormone ratios. Optimal management includes early introduction and strict adherence to a regimen of L-thyroxine and routine monitoring of thyroid levels throughout life. Parents need to understand the importance of consistent medication administration and daily assessment of well-being because these actions are crucial to the attainment of an optimal level of development for infants with congenital hypothyroidism.

  7. A structural abnormality associated with graded levels of thyroid hormone insufficiency: Dose dependent increases in heterotopia volume

    EPA Science Inventory

    A large number of environmental contaminants reduce circulating levels of thyroid hormone (TH), but clear markers of neurological insult associated with modest TH insufficiency are lacking. We have previously identified the presence of an abnormal cluster of misplaced neurons in ...

  8. Considering common sources of exposure in association studies - Urinary benzophenone-3 and DEHP metabolites are associated with altered thyroid hormone balance in the NHANES 2007-2008.

    PubMed

    Kim, Sujin; Kim, Sunmi; Won, Sungho; Choi, Kyungho

    2017-10-01

    Epidemiological studies have shown that thyroid hormone balances can be disrupted by chemical exposure. However, many association studies have often failed to consider multiple chemicals with possible common sources of exposure, rendering their conclusions less reliable. In the 2007-2008 National Health and Nutrition Examination Survey (NHANES) from the U.S.A., urinary levels of environmental phenols, parabens, and phthalate metabolites as well as serum thyroid hormones were measured in a general U.S. population (≥12years old, n=1829). Employing these data, first, the chemicals or their metabolites associated with thyroid hormone measures were identified. Then, the chemicals/metabolites with possible common exposure sources were included in the analytical model to test the sensitivities of their association with thyroid hormone levels. Benzophenone-3 (BP-3), bisphenol A (BPA), and a metabolite of di(2-ethylhexyl) phthalate (DEHP) were identified as significant determinants of decreased serum thyroid hormones. However, significant positive correlations were detected (p-value<0.05, r=0.23 to 0.45) between these chemicals/metabolites, which suggests that they might share similar exposure sources. In the subsequent sensitivity analysis, which included the chemicals/metabolite with potentially similar exposure sources in the model, we found that urinary BP-3 and DEHP exposure were associated with decreased thyroid hormones among the general population but BPA exposure was not. In association studies, the presence of possible common exposure sources should be considered to circumvent possible false-positive conclusions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae.

    PubMed

    Zhang, Shengnan; Guo, Xiaochun; Lu, Shaoyong; Sang, Nan; Li, Guangyu; Xie, Ping; Liu, Chunsheng; Zhang, Liguo; Xing, Yi

    2018-04-01

    Perfluorododecanoic acid (PFDoA), a kind of perfluorinated carboxylic acid (PFCA) with 12 carbon atoms, has an extensive industrial utilization and is widespread in both wildlife and the water environment, and was reported to have the potential to cause a disruption in the thyroid hormone system homeostasis. In this study, zebrafish embryos/larvae were exposed to different concentrations of PFDoA (0, 0.24, 1.2, 6 mg/L) for 96 h post-fertilization (hpf). PFDoA exposure caused obvious growth restriction connected with the reduced thyroid hormones (THs) contents in zebrafish larvae, strengthening the interference effect on the growth of fish larvae. The transcriptional level of genes within the hypothalamic-pituitary-thyroid (HPT) axis was analyzed. The gene expression levels of thyrotropin-releasing hormone (trh) and corticotrophin-releasing hormone (crh) were upregulated upon exposure to 6 mg/L of PFDoA, and iodothyronine deiodinases (dio2) was upregulated in the 1.2 mg/L PFDoA group. The transcription of thyroglobulin (tg) and thyroid receptor (trβ) were significantly downregulated upon exposure to 1.2 mg/L and 6 mg/L of PFDoA. PFDoA could also decrease the levels of sodium/iodide symporter (nis) and transthyretin (ttr) gene expression in a concentration-dependent manner after exposure. A significant decrease in thyroid-stimulating hormoneβ (tshβ), uridinediphosphate-glucuronosyltransferase (ugt1ab) and thyroid receptor (trα) gene expression were observed at 6 mg/L PFDoA exposure. Upregulation and downregulation of iodothyronine deiodinases (dio1) gene expression were observed upon the treatment of 1.2 mg/L and 6 mg/L PFDoA, respectively. All the data demonstrated that gene expression in the HPT axis altered after different PFDoA treatment and the potential mechanisms of the disruption of thyroid status could occur at several steps in the process of synthesis, regulation, and action of thyroid hormones. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California.

    PubMed

    Steinmaus, Craig; Pearl, Michelle; Kharrazi, Martin; Blount, Benjamin C; Miller, Mark D; Pearce, Elizabeth N; Valentin-Blasini, Liza; DeLorenze, Gerald; Hoofnagle, Andrew N; Liaw, Jane

    2016-06-01

    Findings from national surveys suggest that everyone in the United States is exposed to perchlorate. At high doses, perchlorate, thiocyanate, and nitrate inhibit iodide uptake into the thyroid and decrease thyroid hormone production. Small changes in thyroid hormones during pregnancy, including changes within normal reference ranges, have been linked to cognitive function declines in the offspring. We evaluated the potential effects of low environmental exposures to perchlorate on thyroid function. Serum thyroid hormones and anti-thyroid antibodies and urinary perchlorate, thiocyanate, nitrate, and iodide concentrations were measured in 1,880 pregnant women from San Diego County, California, during 2000-2003, a period when much of the area's water supply was contaminated from an industrial plant with perchlorate at levels near the 2007 California regulatory standard of 6 μg/L. Linear regression was used to evaluate associations between urinary perchlorate and serum thyroid hormone concentrations in models adjusted for urinary creatinine and thiocyanate, maternal age and education, ethnicity, and gestational age at serum collection. The median urinary perchlorate concentration was 6.5 μg/L, about two times higher than in the general U.S. Adjusted associations were identified between increasing log10 perchlorate and decreasing total thyroxine (T4) [regression coefficient (β) = -0.70; 95% CI: -1.06, -0.34], decreasing free thyroxine (fT4) (β = -0.053; 95% CI: -0.092, -0.013), and increasing log10 thyroid-stimulating hormone (β = 0.071; 95% CI: 0.008, 0.133). These results suggest that environmental perchlorate exposures may affect thyroid hormone production during pregnancy. This could have implications for public health given widespread perchlorate exposure and the importance of thyroid hormone in fetal neurodevelopment. Steinmaus C, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini L, DeLorenze G, Hoofnagle AN, Liaw J. 2016. Thyroid hormones and moderate exposure to perchlorate during pregnancy in women in Southern California. Environ Health Perspect 124:861-867; http://dx.doi.org/10.1289/ehp.1409614.

  11. Assessment of hormonal activity in patients with premature ejaculation

    PubMed Central

    Canat, Lütfi; Erbin, Akif; Canat, Masum; Dinek, Mehmet; Çaşkurlu, Turhan

    2017-01-01

    ABSTRACT Purpose Premature ejaculation is considered the most common type of male sexual dysfunction. Hormonal controls of ejaculation have not been exactly elucidated. The aim of our study is to investigate the role of hormonal factors in patients with premature ejaculation. Materials and Methods Sixty-three participants who consulted our outpatient clinics with complaints of premature ejaculation and 39 healthy men as a control group selected from volunteers were included in the study. A total of 102 sexual active men aged between 21 and 76 years were included. Premature ejaculation diagnostic tool questionnaires were used to assessment of premature ejaculation. Serum levels of follicle stimulating hormone, luteinizing hormone, prolactin, total and free testosterone, thyroid-stimulating hormone, free triiodothyronine and thyroxine were measured. Results Thyroid-stimulating hormone, luteinizing hormone, and prolactin levels were significantly lower in men with premature ejaculation according to premature ejaculation diagnostic tool (p=0.017, 0.007 and 0.007, respectively). Luteinizing hormone level (OR, 1.293; p=0.014) was found to be an independent risk factor for premature ejaculation. Conclusions Luteinizing hormone, prolactin, and thyroid-stimulating hormone levels are associated with premature ejaculation which was diagnosed by premature ejaculation diagnostic tool questionnaires. The relationship between these findings have to be determined by more extensive studies. PMID:27619666

  12. The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic-pituitary-thyroid axis.

    PubMed

    Astapova, Inna; Vella, Kristen R; Ramadoss, Preeti; Holtz, Kaila A; Rodwin, Benjamin A; Liao, Xiao-Hui; Weiss, Roy E; Rosenberg, Michael A; Rosenzweig, Anthony; Hollenberg, Anthony N

    2011-02-01

    The role of nuclear receptor corepressor (NCoR) in thyroid hormone (TH) action has been difficult to discern because global deletion of NCoR is embryonic lethal. To circumvent this, we developed mice that globally express a modified NCoR protein (NCoRΔID) that cannot be recruited to the thyroid hormone receptor (TR). These mice present with low serum T(4) and T(3) concentrations accompanied by normal TSH levels, suggesting central hypothyroidism. However, they grow normally and have increased energy expenditure and normal or elevated TR-target gene expression across multiple tissues, which is not consistent with hypothyroidism. Although these findings imply an increased peripheral sensitivity to TH, the hypothalamic-pituitary-thyroid axis is not more sensitive to acute changes in TH concentrations but appears to be reset to recognize the reduced TH levels as normal. Furthermore, the thyroid gland itself, although normal in size, has reduced levels of nonthyroglobulin-bound T(4) and T(3) and demonstrates decreased responsiveness to TSH. Thus, the TR-NCoR interaction controls systemic TH sensitivity as well as the set point at all levels of the hypothalamic-pituitary-thyroid axis. These findings suggest that NCoR levels could alter cell-specific TH action that would not be reflected by the serum TSH.

  13. D2-Thr92Ala, thyroid hormone levels and biochemical hypothyroidism in preeclampsia.

    PubMed

    Procopciuc, Lucia Maria; Caracostea, Gabriela; Hazi, Georgeta; Nemeti, Georgiana; Stamatian, Florin

    2017-02-01

    To identify if there is a relationship between the deiodinase D2-Thr92Ala genetic variant, thyroid hormone levels and biochemical hypothyroidism in preeclampsia. We genotyped 125 women with preeclampsia and 131 normal pregnant women using PCR-RFLP. Serum thyroid hormone levels were determined using ELISA. Our study showed higher TSH and FT4 levels and lower FT3 levels in women with preeclampsia compared to normal pregnant women, with statistical significance for women with mild and severe preeclampsia. The risk to develop pregnancy-induced hypertension (PIH), mild or severe preeclampsia was increased in carriers of at least one D2-Ala92 allele. TSH and FT4 levels were significantly higher and FT3 levels were significantly lower in preeclamptic women with severe preeclampsia if they carried the D2-Ala92 allele compared to non-carriers. Pregnant women with PIH and mild preeclampsia, carriers of at least one D2-Ala92 allele, delivered at lower gestational age neonates with a lower birth weight compared to non-carriers, but the results were statistically significant only in severe preeclampsia. The D2-Thr92Ala genetic variant is associated with the severity and the obstetric outcome of preeclampsia, and it also influences thyroid hormone levels. The study demonstrates non-thyroidal biochemical hypothyroidism - as a result of deiodination effects due to D2 genotypes.

  14. Decreased expression of thyroid receptor-associated protein 220 in temporal lobe tissue of patients with refractory epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Jinmei; Wang Xuefeng; Xi Zhiqin

    2006-10-06

    Purpose: TRAP220 (thyroid hormone receptor-associated protein) functions as a coactivator for nuclear receptors and stimulates transcription by recruiting the TRAP mediator complex to hormone responsive promoter regions. Thus, TRAP220 enhances the function of thyroid/steroid hormone receptors such as thyroid hormone and oestrogen receptors. This study investigated the expression of TRAP220 mRNA and protein level in epileptic brains comparing with human control. Methods: We examined the expression of TRAP220 mRNA and protein levels in temporal lobes from patients with chronic pharmacoresistant epilepsy who have undergone surgery. Results: Expression of TRAP220 mRNA and protein was shown to be decreased significantly in themore » temporal cortex of the patients with epilepsy. Conclusions: Our work showed that a decrease in TRAP220 mRNA and protein levels may be involved in the pathophysiology of epilepsy and may be associated with impairment of the brain caused by frequent seizures.« less

  15. Thyroid hormone fluctuations indicate a thermoregulatory function in both a tropical (Alouatta palliata) and seasonally cold-habitat (Macaca fuscata) primate.

    PubMed

    Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher J

    2017-11-01

    Thyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT 3 ). For both species, fT 3 levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT 3 levels with decreasing recently experienced maximum temperatures, but no relationship between fT 3 and recently experienced minimum temperatures. Howlers increased fT 3 levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns. © 2017 Wiley Periodicals, Inc.

  16. Effect of propranolol on thyroid homeostasis of healthy volunteers.

    PubMed Central

    Wilkins, M. R.; Franklyn, J. A.; Woods, K. L.; Kendall, M. J.

    1985-01-01

    The effect of propranolol on thyroid status was investigated by administering the drug in 2 therapeutic doses (80 mg b.d. and 120 mg b.d.) to 8 healthy volunteers and serially measuring total and free thyroid hormones and their major binding protein. Mean free T3 fell by 1.2 pmol/l (P less than 0.05) whilst mean free T4 and mean rT3 rose by 3.3 pmol/l (P less than 0.01) and 0.16 nmol/l (P less than 0.01) respectively. Mean thyroxine binding globulin (TBG) fell by 1.2 mg/l (P less than 0.001). Despite the change in free hormone levels there was no significant change in TSH. For the first time the effect of propranolol on circulating thyroid hormones and binding proteins in healthy subjects is apparent within one study. The biological significance of the change in free hormone levels is discussed. PMID:3927277

  17. Evidence of chemical stimulation of hepatic metabolism by an experimental acetanilide (FOE 5043) indirectly mediating reductions in circulating thyroid hormone levels in the male rat.

    PubMed

    Christenson, W R; Becker, B D; Wahle, B S; Moore, K D; Dass, P D; Lake, S G; Van Goethem, D L; Stuart, B P; Sangha, G K; Thyssen, J H

    1996-02-01

    N-(4-Fluorophenyl)-N-(1-methylethyl)-2-[[5-(trifluoromethyl)-1,3, 4-thiadiazol-2-yl]oxy]acetamide (FOE 5043) is a new acetanilide-type herbicide undergoing regulatory testing. Previous work in this laboratory suggested that FOE 5043-induced reductions in serum thyroxine (T4) levels were mediated via an extrathyroidal site of action. The possibility that the alterations in circulating T4 levels were due to chemical induction of hepatic thyroid hormone metabolism was investigated. Treatment with FOE 5043 at a rate of 1000 ppm as a dietary admixture was found to significantly increase the clearance of [125I]T4 from the serum, suggesting an enhanced excretion of the hormone. In the liver, the activity of hepatic uridine glucuronosyl transferase, a major pathway of thyroid hormone biotransformation in the rat, increased in a statistically significant and dose-dependent manner; conversely, hepatic 5'-monodeiodinase activity trended downward with dose. Bile flow as well as the hepatic uptake and biliary excretion of [125I]T4 were increased following exposure to FOE 5043. Thyroidal function, as measured by the discharge of iodide ion in response to perchlorate, and pituitary function, as measured by the capacity of the pituitary to secrete thyrotropin in response to an exogenous challenge by hypothalamic thyrotropin releasing hormone, were both unchanged from the controlled response. These data suggest that the functional status of the thyroid and pituitary glands has not been altered by treatment with FOE 5043 and that reductions in circulating levels of T4 are being mediated indirectly through an increase in the biotransformation and excretion of thyroid hormone in the liver.

  18. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan Environmental Survey for Toxicants (TEST) 2013.

    PubMed

    Huang, Han-Bin; Pan, Wen-Harn; Chang, Jung-Wei; Chiang, Hung-Che; Guo, Yue Leon; Jaakkola, Jouni J K; Huang, Po-Chin

    2017-02-01

    Previous epidemiologic and toxicological studies provide some inconsistent evidence that exposure to phthalates may affect thyroid function and growth hormone homeostasis. To assess the relations between exposure to phthalates and indicators of thyroid function and growth hormone homeostasis disturbances both among adults and minors. We conducted a population-based cross-sectional study of 279 Taiwanese adults (≥18 years old) and 79 minors (<18 years old) in 2013. Exposure assessment was based on urinary biomarkers, 11 phthalate metabolites measured by using online liquid chromatography/tandem mass spectrometry. Indicators of thyroid function included serum levels of thyroxine (T 4 ), free T 4 , triiodothyronine, thyroid-stimulating hormone, and thyroxine-binding globulin (TBG). Growth hormone homeostasis was measured as the serum levels of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP3). We applied multivariate linear regression models to examine these associations after adjusting for covariates. Among adults, serum T 4 levels were negatively associated with urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate (β=-0.028, P=0.043) and the sum of urinary di-(2-ethylhexyl) phthalate (DEHP) metabolite (β=-0.045, P=0.017) levels. Free T 4 levels were negatively associated with urinary mono-ethylhexyl phthalate (MEHP) (β=-0.013, P=0.042) and mono-(2-ethyl-5-oxohexyl) phthalate (β=-0.030, P=0.003) levels, but positively associated with urinary monoethyl phthalate (β=0.014, P=0.037) after adjustment for age, BMI, gender, urinary creatinine levels, and TBG levels. Postive associations between urinary MEHP levels and IGF-1 levels (β=0.033, P=0.006) were observed. Among minors, free T 4 was positively associated with urinary mono benzyl phthalate levels (β=0.044, P=0.001), and IGF-1 levels were negatively associated with the sum of urinary DEHP metabolite levels (β=-0.166, P=0.041) after adjustment for significant covariance and IGFBP3. Our results are consistent with the hypothesis that exposure to phthalates influences thyroid function and growth hormone homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hormonal disturbances in visceral leishmaniasis (kala-azar).

    PubMed

    Verde, Frederico Araujo Lima; Verde, Francisco Agenor Araujo Lima; Neto, Augusto Saboia; Almeida, Paulo César; Verde, Emir Mendonça Lima

    2011-05-01

    This study presents a cross-sectional analysis of the hormonal alterations of patients with visceral leishmaniasis. The diagnosis was established by the bone marrow aspiration and polymerase chain reaction test. Primary adrenal insufficiency was observed in 45.8% of patients; low aldosterone/renin plasma ratio in 69.4%; low daily urinary aldosterone excretion in 61.1%; and low transtubular potassium gradient in 68.0%. All patients had normal plasma antidiuretic hormone (ADH) concentrations, hyponatremia, and high urinary osmolality. Plasma parathyroid hormone was low in 63%; hypomagnesemia was present in 46.4%, and increased Mg(++)(EF) in 100%. Primary thyroid insufficiency was observed in 24.6%, and secondary thyroid insufficiency in 14.1%. Normal follicle-stimulating hormone plasma levels were present in 81.4%; high luteinizing hormone and low testosterone plasma levels in 58.2% of men. There are evidences of hypothalamus-pituitary-adrenal axis abnormalities, inappropriate aldosterone and ADH secretions, and presence of hypoparathyroidism, magnesium depletion, thyroid and testicular insufficiencies.

  20. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland.

    PubMed

    Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej

    2015-03-01

    The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Thyroid hormone elevations during acute psychiatric illness: relationship to severity and distinction from hyperthyroidism.

    PubMed

    Roca, R P; Blackman, M R; Ackerley, M B; Harman, S M; Gregerman, R I

    1990-01-01

    Acute psychiatric illness may be accompanied by transient hyperthyroxinemia. The mechanism of this phenomenon was examined by determining the role of thyrotropin (TSH) in the genesis of this state. Serial measurements of TSH, thyroxine (T4), free T4 index (FT4I), triiodothyronine (T3), and free T3 index (FT3I) were performed in 45 acutely hospitalized patients with major psychiatric disorders. Twenty-two (49%) patients exhibited significant elevations (greater than or equal to 2 SD above mean value of controls) of one or more thyroid hormone (or index) levels. Among depressed patients with elevated FT4I, TSH was higher (p less than .05) on the day of the peak FT4I than on the day of the FT4I nadir. There were significant positive correlations between psychiatric symptom severity and levels of FT4I among both depressed (p less than .01) and schizophrenic (p less than .025) patients. These data show that elevations of T4, FT4I, T3, and FT3I are common among psychiatric inpatients, especially early in their hospitalization, and that levels of thyroid hormones are correlated with severity of psychiatric symptomatology. TSH is higher early in the acute phase of illness and is not suppressed in the face of elevated thyroid hormone levels, a finding that distinguishes this phenomenon from ordinary hyperthyroidism. Elevations of peripheral thyroid hormone levels, particularly among depressed patients, may result from a centrally-mediated hypersecretion of TSH.

  2. Maternal phthalate exposure during the first trimester and serum thyroid hormones in pregnant women and their newborns.

    PubMed

    Yao, Hui-Yuan; Han, Yan; Gao, Hui; Huang, Kun; Ge, Xing; Xu, Yuan-Yuan; Xu, Ye-Qing; Jin, Zhong-Xiu; Sheng, Jie; Yan, Shuang-Qin; Zhu, Peng; Hao, Jia-Hu; Tao, Fang-Biao

    2016-08-01

    Animal and human studies have suggested that phthalate alters thyroid hormone concentrations. This study investigated the associations between phthalate exposure during the first trimester and thyroid hormones in pregnant women and their newborns. Pregnant women were enrolled from the prospective Ma'anshan Birth Cohort study in China. A standard questionnaire was completed by the women at the first antenatal visit. Seven phthalate metabolites were measured in one-spot urine at enrolment (10.0 ± 2.1 gestational weeks), as were thyroid hormone levels in maternal and cord sera. Multivariable linear regression showed that 1-standard deviation (SD) increase in natural log (ln)-transformed mono(2-ethylhexyl) phthalate (MEHP) and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was associated with 0.163 μg/dL (p = 0.001) and 0.173 μg/dL (p = 0.001) decreases in maternal total thyroxine (TT4). Both MEHP and MEHHP were negatively associated with maternal free thyroxine (FT4; β: -0.013, p < 0.001 and β: -0.011, p = 0.001, respectively) and positively associated with maternal thyroid-stimulating hormone (β: 0.101, p < 0.001; β: 0.132, p < 0.001, respectively). An inverse association was observed between monobenzyl phthalate and maternal TT4 and FT4. A 1-SD increase in ln-transformed monoethyl phthalate was inversely associated with maternal TT4 (β: -0.151, p = 0.002). By contrast, the concentrations of phthalate metabolites in urine were not associated with those of thyroid hormone in cord serum. Our analysis suggested that phthalate exposure during the first trimester disrupts maternal thyroid hormone levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3 years.

    PubMed

    Vuong, Ann M; Braun, Joseph M; Webster, Glenys M; Thomas Zoeller, R; Hoofnagle, Andrew N; Sjödin, Andreas; Yolton, Kimberly; Lanphear, Bruce P; Chen, Aimin

    2018-08-01

    Polybrominated diphenyl ethers (PBDEs) reduce serum thyroid hormone concentrations in animal studies, but few studies have examined the impact of early-life PBDE exposures on thyroid hormone disruption in childhood. We used data from 162 mother-child pairs from the Health Outcomes and Measures of the Environment Study (2003-2006, Cincinnati, OH). We measured PBDEs in maternal serum at 16 ± 3 weeks gestation and in child serum at 1-3 years. Thyroid hormones were measured in serum at 3 years. We used multiple informant models to investigate associations between prenatal and early-life PBDE exposures and thyroid hormone levels at age 3 years. Prenatal PBDEs were associated with decreased thyroid stimulating hormone (TSH) levels at age 3 years. A 10-fold increase in prenatal ∑PBDEs (BDE-28, -47, -99, -100, and -153) was associated with a 27.6% decrease (95% CI -40.8%, -11.3%) in TSH. A ten-fold increase in prenatal ∑PBDEs was associated with a 0.25 pg/mL (0.07, 0.43) increase in free triiodothyronine (FT 3 ). Child sex modified associations between prenatal PBDEs and thyroid hormones, with significant decrements in TSH among females and decreased free T 4 (FT 4 ) in males. Prenatal ∑PBDEs were not associated with TT 4 , FT 4 , or total T 3 . These findings suggest an inverse relationship between prenatal ∑PBDEs and TSH at 3 years. Associations may be sexually dimorphic, with an inverse relationship between prenatal BDE-47 and -99 and TSH in females and null associations among males. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Plasma Selenium Levels in First Trimester Pregnant Women with Hyperthyroidism and the Relationship with Thyroid Hormone Status.

    PubMed

    Arikan, Tugba Atilan

    2015-10-01

    The thyroid gland has the highest selenium (Se) concentration per unit weight among all tissues. The aims of the present study were to evaluate the Se levels in the plasma of hyperthyroidic pregnant women and to investigate the association between maternal plasma Se concentrations and thyroid hormone levels. The study population consisted of 107 pregnant women, 70 healthy pregnant women (group 1) and 37 pregnant women with hyperthyroidism (group 2). The plasma free triiodothyronine (fT3) and free thyroxine (fT4) levels were significantly higher, and the plasma thyroid-stimulating hormone (TSH) and Se levels were significantly lower in group 2 than in group 1 (p < 0.05). A correlation analysis showed a positive correlation between Se and fT4 in group 1 and with TSH in group 2 (p < 0.05). Decreased maternal serum antioxidant trace element Se in hyperthyroidic pregnant women compared with normal pregnant women supported the hypothesis that hyperthyroidism was associated with decreased antioxidant response.

  5. Thyroid Autoantibodies Are Rare in Nonhuman Great Apes and Hypothyroidism Cannot Be Attributed to Thyroid Autoimmunity

    PubMed Central

    Aliesky, Holly; Courtney, Cynthia L.; Rapoport, Basil

    2013-01-01

    The great apes include, in addition to Homo, the genera Pongo (orangutans), Gorilla (gorillas), and Pan, the latter comprising two species, P. troglodytes (chimpanzees) and P. paniscus (bonobos). Adult-onset hypothyroidism was previously reported in 4 individual nonhuman great apes. However, there is scarce information on normal serum thyroid hormone levels and virtually no data for thyroid autoantibodies in these animals. Therefore, we examined thyroid hormone levels and TSH in all nonhuman great ape genera including adults, adolescents, and infants. Because hypothyroidism in humans is commonly the end result of thyroid autoimmunity, we also tested healthy and hypothyroid nonhuman great apes for antibodies to thyroglobulin (Tg), thyroid peroxidase (TPO), and the TSH receptor (TSHR). We established a thyroid hormone and TSH database in orangutans, gorillas, chimpanzees, and bonobos (447 individuals). The most striking differences are the greatly reduced free-T4 and free-T3 levels in orangutans and gorillas vs chimpanzees and bonobos, and conversely, elevated TSH levels in gorillas vs Pan species. Antibodies to Tg and TPO were detected in only 2.6% of adult animals vs approximately 10% in humans. No animals with Tg, TPO, or TSHR antibodies exhibited thyroid dysfunction. Conversely, hypothyroid nonhuman great apes lacked thyroid autoantibodies. Moreover, thyroid histology in necropsy tissues was similar in euthyroid and hypothyroid individuals, and lymphocytic infiltration was absent in 2 hypothyroid animals. In conclusion, free T4 and free T3 are lower in orangutans and gorillas vs chimpanzees and bonobos, the closest living human relatives. Moreover, thyroid autoantibodies are rare and hypothyroidism is unrelated to thyroid autoimmunity in nonhuman great apes. PMID:24092641

  6. A case of myxedema coma caused by isolated thyrotropin stimulating hormone deficiency and Hashimoto's thyroiditis.

    PubMed

    Iida, Keiji; Hino, Yasuhisa; Ohara, Takeshi; Chihara, Kazuo

    2011-01-01

    Myxedema coma (MC) is a rare, but often fatal endocrine emergency. The majority of cases that occur in elderly women with long-standing primary hypothyroidism are caused by particular triggers. Conversely, MC of central origin is extremely rare. Here, we report a case of MC with both central and primary origins. A 56-year-old woman was transferred to our hospital due to loss of consciousness; a chest x-ray demonstrated severe cardiomegaly. Low body temperature, bradycardia, and pericardial effusion suggested the presence of hypothyroidism. Endocrinological examination revealed undetectable levels of serum free thyroxine (T(4)) and free triiodothyronine (T(3)), whereas serum thyroid-stimulating hormone (TSH) levels were not elevated. The woman's serum anti-thyroid peroxidase antibody and anti-thyroglobulin antibody tests were positive, indicating that she had Hashimoto's thyroiditis. Provocative tests to the anterior pituitary revealed that she had TSH and growth hormone (GH) deficiency; however, GH levels were restored after supplementation with levothyroxine for 5 months. This was not only a rare case of MC with TSH deficiency and Hashimoto's thyroiditis; the patient also developed severe osteoporosis and possessed transient elevated levels of serum carcinoembryonic antigen (CEA). This atypical case may suggest the role of anterior pituitary hormone deficiencies, as well as hypothyroidism, in the regulation of bone metabolism.

  7. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism.

    PubMed

    Jansen, S W; Akintola, A A; Roelfsema, F; van der Spoel, E; Cobbaert, C M; Ballieux, B E; Egri, P; Kvarta-Papp, Z; Gereben, B; Fekete, C; Slagboom, P E; van der Grond, J; Demeneix, B A; Pijl, H; Westendorp, R G J; van Heemst, D

    2015-06-19

    Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism.

  8. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease.

    PubMed

    Delitala, Alessandro P; Fanciulli, Giuseppe; Maioli, Margherita; Delitala, Giuseppe

    2017-03-01

    Subclinical hypothyroidism is defined by elevated serum thyrotropin in presence of normal free thyroid hormones. Lipid metabolism is influenced by thyroid hormone and many reports showed that lipids status worsen along with TSH level. Subclinical hypothyroidism has been also linked to other cardiovascular risk factors such as alteration in blood pressure and increased atherosclerosis. Further evidences suggested that mild dysfunction of thyroid gland is associated with metabolic syndrome and heart failure. Thyrotropin level seems the best predictor of cardiovascular disease, in particular when its levels are above 10mU/L. However, despite these observations, there is no clear evidence that levothyroxine therapy in subjects with milder form of subclinical hypothyroidism could improve lipid status and the other cardiovascular risk factors. In this review, we address the effect of thyroid hormone and cardiovascular risk, with a focus on lipid metabolism. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  9. Exposure to pyrethroids insecticides and serum levels of thyroid-related measures in pregnant women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Hisada, Aya; Yoshinaga, Jun, E-mail: junyosh@k.u-tokyo.ac.jp

    Possible association between environmental exposure to pyrethroid insecticides and serum thyroid-related measures was explored in 231 pregnant women of 10–12 gestational weeks recruited at a university hospital in Tokyo during 2009–2011. Serum levels of free thyroxine (fT4), thyroid stimulating hormone (TSH) and thyroid biding globulin (TBG) and urinary pyrethroid insecticide metabolite (3-phenoxybenzoic acid, 3-PBA) were measured. Obstetrical information was obtained from medical records and dietary and lifestyle information was collected by self-administered questionnaire. Geometric mean concentration of creatinine-adjusted urinary 3-PBA was 0.363 (geometric standard deviation: 3.06) μg/g cre, which was consistent with the previously reported levels for non-exposed Japanese adultmore » females. The range of serum fT4, TSH and TBG level was 0.83–3.41 ng/dL, 0.01–27.4 μIU/mL and 16.4–54.4 μg/mL, respectively. Multiple regression analysis was carried out by using either one of serum levels of thyroid-related measures as a dependent variable and urinary 3-PBA as well as other potential covariates (age, pre-pregnancy BMI, parity, urinary iodine, smoking and drinking status) as independent variables: 3-PBA was not found as a significant predictor of serum level of thyroid-related measures. Lack of association may be due to lower pyrethroid insecticide exposure level of the present subjects. Taking the ability of pyrethroid insecticides and their metabolite to bind to nuclear thyroid hormone (TH) receptor, as well as their ability of placental transfer, into consideration, it is warranted to investigate if pyrethroid pesticides do not have any effect on TH actions in fetus brain even though maternal circulating TH level is not affected. -- Highlights: • Pyrethroid exposure and thyroid hormone status was examined in pregnant women. • Urinary 3-phenoxybenzoic acid was used as a biomarker of exposure. • Iodine nutrition, age and other covariates were included in statistical models. • No association was found between levels of thyroid hormone and pyrethroid exposure. • The result may be ascribed to lower exposure level.« less

  10. Functional central hypothyroidism in the elderly.

    PubMed

    Sell, Maren A; Schott, Matthias; Tharandt, Lutz; Cissewski, Klaus; Scherbaum, Werner A; Willenberg, Holger S

    2008-06-01

    Previous studies have shown that blood concentrations of free thyroxin and basal thyroid-stimulating hormone (TSH) decrease during adult life. Suggested mechanisms include reduced thyroid activity resulting from decreased serum TSH concentrations, impairment of peripheral 5'-deiodinase, and an increase in reverse 3,5,3'-triiodothyronine due to non-thyroidal illness. However, testing of pituitary reserves leads to contradictory results and has infrequently been evaluated in studies. We investigated whether the response of TSH to thyrotropin-releasing hormone (TRH) is preserved during aging. This was tested in a cohort of 387 subjects aged 13 to 100 years in whom thyroid disease was excluded by normal thyroid ultrasound, normal values for free thyroxin, free triiodothyronin, TSH, and negative thyroid peroxidase antibodies. Serum concentrations of free thyroxin remained almost unchanged, whereas free triiodothyronin and TSH levels were lower in older subjects. In addition, the TSH response to TRH was blunted in older subjects, especially in male individuals. There is evidence that the decreased thyroid hormone levels observed in aging are due to lower TSH concentrations, and that lower TSH concentrations may be linked to an impaired pituitary activity.

  11. [Low levels of TSH measured by a sensitive assay: do they reflect hyperthyroidism? A critical analysis of 580 cases].

    PubMed

    Rohmer, V; Ligeard-Ducoroy, A; Perdrisot, R; Beldent, V; Jallet, P; Bigorgne, J C

    1990-05-12

    Highly sensitive TSH assays make it easier to diagnose thyroid diseases. During one year, we performed 5,300 sensitive TSH assays (normal range: 0.15-4 mU/l) in various patients. The purpose of this work was to test the value of the low TSH plasma concentrations found in 580 patients. In 99.7 percent of the cases, low TSH levels were the consequence of a thyroid disorder or a treatment by thyroid hormones; non thyroidal illnesses were detected in only 0.3 percent. However, not all TSH values below 0.15 mU/l were associated with overt or occult thyrotoxicosis. When TSH was undetectable (less than 0.04 mU/l), and excluding thyroid hormone-treated patients, thyrotoxicosis was present in 97 percent of the cases. On the other hand, when TSH values were between 0.04 and 0.15 mU/l, 41 percent of the patients failed to show any sign or symptom of hyperthyroidism, although they had functioning thyroid nodules, multinodular goitre or iodine overload, or they received thyroid hormones.

  12. TSH Compensates Thyroid-Specific IGF-I Receptor Knockout and Causes Papillary Thyroid Hyperplasia

    PubMed Central

    Müller, Kathrin; Führer, Dagmar; Mittag, Jens; Klöting, Nora; Blüher, Matthias; Weiss, Roy E.; Many, Marie-Christine; Schmid, Kurt Werner

    2011-01-01

    Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r+/−, and Igf1r−/− genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r+/− and Igf1r−/− mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis. PMID:21980075

  13. Persistence of a circadian rhythmicity for thyroid hormones in plasma and thyroid of hibernating male Rana ridibunda.

    PubMed

    Kühn, E R; Delmotte, N M; Darras, V M

    1983-06-01

    The presence and circadian rhythmicity of thyroid hormones was studied in plasma and the thyroid gland of male Rana ridibunda before and during hibernation. Hibernating January frogs do have a lower T3 and T4 content of their thyroid gland whereas plasma levels of T3 are maintained and of T4 increased compared to fed September or October frogs. It seems likely that the increased photoperiod in January will be responsible for this increased T4 secretion, since controlled laboratory experiments performed in December did not reveal any influence of low temperature on circulating T3 or T4 levels. Also feeding does not influence circulating levels and thyroid content of thyroid hormones in frogs kept at room temperature during the month of January. A circadian rhythmicity of T3 and T4 in the thyroid gland is present in fed October frogs and in non fed December frogs acclimated at 5 degrees C for 12 days with an acrophase for T3 at approximately 1500 h and for T4 at around 1900 h, whereas in plasma only T3 does have circadian variations (acrophase about midnight) but not T4. When December frogs are acclimated to room temperature for 12 days, frogs are active again, but do not eat and have a lower body weight than frogs hibernating at 5 degrees C. Their T3 content of the thyroid gland has disappeared, but T4 thyroid content and plasma levels of T3 and T4 are maintained. As in hibernating frogs, no circadian variations in T4 plasma concentrations are present whereas the circadian thyroid T4 rhythm disappears. At the same time a dampening in rhythmicity for plasma T3 as judged by the significantly lower amplitude occurs. It is concluded that the persistence of circulating levels of thyroid hormones and of a circadian cyclicity for T3 in plasma in non feeding hibernating frogs may reflect the special metabolic state e.g. availability of food reserves in these animals.

  14. Asymptomatic hyperthyroidism in older adults: is it a distinct clinical and laboratory entity?

    PubMed

    Mooradian, Arshag D

    2008-01-01

    Hyperthyroidism is the result of increased serum free thyroid hormone levels and is associated with a well recognized set of clinical signs and symptoms. However, older patients who develop hyperthyroidism tend to have fewer hyperadrenergic signs and an increased incidence of weight loss, cardiac arrhythmias and, occasionally, apathetic mood. This article highlights the paucity of clinical signs and symptoms of hyperthyroidism in older people and reviews the potential biochemical changes in thyroid hormone physiology that may account for an altered clinical presentation in older people with hyperthyroidism. First, a brief vignette from our own clinical practice is described to highlight an unusual presentation of hyperthyroidism in an older woman. The subject is then reviewed on the basis of relevant articles identified through a MEDLINE search of the English literature, using the key words 'hyperthyroidism' and 'aging'. The available evidence indicates that the clinical syndrome of asymptomatic hyperthyroidism in older adults appears to be distinct from the more widely recognized syndromes of apathetic hyperthyroidism or thyroid hormone resistance. Age-related changes in thyroid hormone economy and reduced cellular uptake of thyroid hormone as well as changes in thyroid hormone regulation of gene expression may account for reduced manifestations of hyperthyroidism in older adults. Thus, in addition to the well known changes in thyroid gland anatomy and function with aging, there may be an age-related resistance to thyroid hormone action. Asymptomatic hyperthyroidism may well be a syndrome that is currently under-diagnosed.

  15. Conversion of autoimmune hypothyroidism to hyperthyroidism.

    PubMed

    Furqan, Saira; Haque, Naeem-ul; Islam, Najmul

    2014-08-03

    Graves' disease and Hashimoto's thyroiditis are the two autoimmune spectrum of thyroid disease. Cases of conversion from hyperthyroidism to hypothyroidism have been reported but conversion from hypothyroidism to hyperthyroidism is very rare. Although such cases have been reported rarely in the past we are now seeing such conversions from hypothyroidism to hyperthyroidism more frequently in clinical practice. We are reporting three cases of middle aged Asian females who presented with classical symptoms of hypothyroidism and the investigations showed elevated thyroid stimulating hormone with positive thyroid antibodies. Diagnosis of autoimmune hypothyroidism was made and thyroxine replacement therapy was initiated. Patients became asymptomatic with normalization of thyroid stimulating hormone level. After few years they developed symptoms of hyperthyroidism with suppressed thyroid stimulating hormone level. Over replacement of thyroxine was considered and the dose of thyroxine was decreased, but they remain symptomatic. After gradual decrease in the dose of thyroxine it was stopped finally. Even after few months of stopping thyroxine, the symptoms of hyperthyroidism did not improve and the biochemical and imaging modalities confirmed that the patients have developed hyperthyroidism. Anti-thyroid treatment was then started and the patients became symptom free. High index of suspicion should be there for possible conversion of hypothyroidism to hyperthyroidism if a patient with primary hypothyroidism develops persistent symptoms of hyperthyroidism. Otherwise it can be missed easily considering it as an over replacement with thyroid hormone.

  16. Conversion of autoimmune hypothyroidism to hyperthyroidism

    PubMed Central

    2014-01-01

    Background Graves’ disease and Hashimoto’s thyroiditis are the two autoimmune spectrum of thyroid disease. Cases of conversion from hyperthyroidism to hypothyroidism have been reported but conversion from hypothyroidism to hyperthyroidism is very rare. Although such cases have been reported rarely in the past we are now seeing such conversions from hypothyroidism to hyperthyroidism more frequently in clinical practice. Case presentation We are reporting three cases of middle aged Asian females who presented with classical symptoms of hypothyroidism and the investigations showed elevated thyroid stimulating hormone with positive thyroid antibodies. Diagnosis of autoimmune hypothyroidism was made and thyroxine replacement therapy was initiated. Patients became asymptomatic with normalization of thyroid stimulating hormone level. After few years they developed symptoms of hyperthyroidism with suppressed thyroid stimulating hormone level. Over replacement of thyroxine was considered and the dose of thyroxine was decreased, but they remain symptomatic. After gradual decrease in the dose of thyroxine it was stopped finally. Even after few months of stopping thyroxine, the symptoms of hyperthyroidism did not improve and the biochemical and imaging modalities confirmed that the patients have developed hyperthyroidism. Anti-thyroid treatment was then started and the patients became symptom free. Conclusion High index of suspicion should be there for possible conversion of hypothyroidism to hyperthyroidism if a patient with primary hypothyroidism develops persistent symptoms of hyperthyroidism. Otherwise it can be missed easily considering it as an over replacement with thyroid hormone. PMID:25086829

  17. Maternal Urinary Triclosan Concentration in Relation to Maternal and Neonatal Thyroid Hormone Levels: A Prospective Study.

    PubMed

    Wang, Xu; Ouyang, Fengxiu; Feng, Liping; Wang, Xia; Liu, Zhiwei; Zhang, Jun

    2017-06-27

    Triclosan (TCS) is a synthetic antibacterial chemical widely used in personal care products. TCS exposure has been associated with decreased thyroid hormone levels in animals, but human studies are scarce and controversial. We evaluated the association between maternal TCS exposure and thyroid hormone levels of mothers and newborns. TCS was measured by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in urine samples collected during gestational weeks 38.8±1.1 from 398 pregnant women in a prospective birth cohort enrolled in 2012-2013 in Shanghai, China. Maternal serum levels of free thyroxine (FT 4 ), thyroid-stimulating hormone (TSH), and thyroid peroxidase antibody (TPOAb) were obtained from medical records. Cord blood levels of free triiodothyronine (FT 3 ), FT 4 , TSH, and TPOAb were measured. Multiple linear and logistic regression models were used to examine the relationship between maternal urinary TCS and thyroid hormone levels. TCS was detectable (≥0.1 ng/mL) in 98.24% of maternal urine samples with tertile of urinary TCS levels: low (>0.1-2.75 μg/g.Cr), medium (2.75–9.78 μg/g.Cr), and high (9.78–427.38 μg/g.Cr). With adjustment for potential confounders, cord blood log(FT 3 )pmol/L concentration was 0.11 lower in newborns of mothers with medium and high urinary TCS levels compared with those with low levels. At third trimester, the high TCS concentration was associated with 0.03 [95% confidence interval (CI) −0.08, −0.02] lower maternal serum log(FT 4 )pmol/L, whereas the medium TCS concentration was associated with 0.15 (95% CI: −0.28, −0.03) lower serum log(TSH)mIU/L with adjustment for covariates. Our results suggest significant inverse associations between maternal urinary TCS and cord blood FT 3 as well as maternal blood FT 4 concentrations at third trimester. https://doi.org/10.1289/EHP500.

  18. Thyroid hormones and their effects: a new perspective.

    PubMed

    Hulbert, A J

    2000-11-01

    The thyroid hormones are very hydrophobic and those that exhibit biological activity are 3',5',3,5-L-tetraiodothyronine (T4), 3',5,3-L-triiodothyronine (T3), 3',5',3-L-triiodothyronine (rT3) and 3,5',-L-diiothyronine (3,5-T2). At physiological pH, dissociation of the phenolic -OH group of these iodothyronines is an important determinant of their physical chemistry that impacts on their biological effects. When non-ionized these iodothyronines are strongly amphipathic. It is proposed that iodothyronines are normal constituents of biological membranes in vertebrates. In plasma of adult vertebrates, unbound T4 and T3 are regulated in the picomolar range whilst protein-bound T4 and T3 are maintained in the nanomolar range. The function of thyroid-hormone-binding plasma proteins is to ensure an even distrubtion throughout the body. Various iodothyronines are produced by three types of membrane-bound cellular deiodinase enzyme systems in vertebrates. The distribution of deiodinases varies between tissues and each has a distinct developmental profile. Thyroid hormones. (1) the nuclear receptor mode is especially important in the thyroid hormone axis that controls plasma and cellular levels of these hormones. (2) These hormones are strongly associated with membranes in tissues and normally rigidify these membranes. (3) They also affect the acyl composition of membrane bilayers and it is suggested that this is due to the cells responding to thyroid-hormone-induced membrane rigidificataion. Both their immediate effects on the physical state of membranes and the consequent changes in membrane composition result in several other thyroid hormone effects. Effects on metabolism may be due primarily to membrane acyl changes. There are other actions of thyroid hormones involving membrane receptors and influences on cellular interactions with the extracellulara matrix. The effects of thyroid hormones are reviewed and appear to b combinations of these various modes of action. During development, vertebrates show a surge in T4 and other thyroid hormones, as well as distinctive profiles in the appearance of the deiodinase enzymes and nuclear receptors. Evidence from the use of analogues supports multiple modes of action. Re-examination of data from th early 1960s supports a membrane action. Findings from receptor 'knockout' mice supports an important role for receptors in the development of the thyroid axis. These iodothyronines may be better thought of as 'vitamone'-like molecules than traditional hormonal messengers.

  19. The Use of Lithium in the Treatment of Thyrotoxicosis

    PubMed Central

    Temple, R.; Berman, M.; Robbins, J.; Wolff, J.

    1972-01-01

    Since lithium has been shown to inhibit release of iodine from the thyroid, we have investigated its therapeutic potential in thyrotoxicosis. Eight detailed 131I kinetic studies were performed on seven thyrotoxic women and data was analyzed using a computer program. Lithium at serum levels of about 1 mEq liter decreased the loss of 131I from the thyroid, led to a fall in serum 131I levels and diminished urinary 131I excretion. Computer simulation of the lithium effect required, in every case, that lithium inhibit hormonal and nonhormonal thyroid iodine release. In five cases a second lithium effect was required for a satisfactory fit of the model soluton with observed data: namely, an inhibition of hormone disappearance from serum. Neither inhibition of release nor of hormone disappearance seemed to be affected by methimazole (release: 52% decrease without methimazole, 60% with methimazole; hormone disappearance: ∼60% decrease in both). When Li+ was discontinued, recovery of the iodine release rate and hormone disappearance rate over the observed time span was variable, ranging from no recovery to rates that exceeded pre-Li+ values. When Li+ is used alone its effect on serum hormone levels is diminished due to continued accumulation of iodide by the thyroid. Thus, serum thyroxine-iodine levels fell 21-30% in 6-8 days in patients who did not receive methimazole and 15-67% in the methimazole-treated subjects. For prolonged therapy, therefore, a thiocarbamide drug must be used in conjunction with Li+. The similarity of inhibition of iodine release from the thyroid produced by Li+ and iodides is discussed. PMID:4115707

  20. Effects of Inula racemosa root and Gymnema sylvestre leaf extracts in the regulation of corticosteroid induced diabetes mellitus: involvement of thyroid hormones.

    PubMed

    Gholap, S; Kar, A

    2003-06-01

    The efficacy of Inula racemosa (root) and Gymnema sylvestre (leaf) extracts either alone or in combination was evaluated in the amelioration of corticosteroid-induced hyperglycaemia in mice. Simultaneously thyroid hormone levels were estimated by radio-immunoassay (RIA) in order to ascertain whether the effects are mediated through thyroid hormones or not. While the corticosteroid (dexamethasone) administration increased the serum glucose concentration, it decreased serum concentrations of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Administration of the two plant extracts either alone or in combination decreased the serum glucose concentration in dexamethasone induced hyperglycaemic animals. However, the administration of Inula racemosa and Gymnema sylvestre extracts in combination proved to be more effective than the individual extracts. These effects were comparable to a standard corticosteroid-inhibiting drug, ketoconazole. As no marked changes in thyroid hormone concentrations were observed by the administration of any of the plant extracts in dexamethasone treated animals, it is further suggested that these plant extracts may not prove to be effective in thyroid hormone mediated type II diabetes, but for steroid induced diabetes.

  1. Hypopituitarism in the elderly in the presence of elevated thyroid stimulating hormone levels.

    PubMed Central

    Beringer, T.; McClements, B.; Weir, I.; Gilmore, D.; Kennedy, L.

    1988-01-01

    Two cases of primary hypothyroidism with hypopituitarism in elderly patients are reported. The elevated levels of thyroid stimulating hormone led to delay in the recognition of accompanying pituitary failure. Elderly patients should not be commenced on thyroxine replacement therapy until the possibility of hypopituitarism and cortisol deficiency has been excluded. PMID:3256811

  2. The thyroid hormone triiodothyronine controls macrophage maturation and functions: protective role during inflammation.

    PubMed

    Perrotta, Cristiana; Buldorini, Marcella; Assi, Emma; Cazzato, Denise; De Palma, Clara; Clementi, Emilio; Cervia, Davide

    2014-01-01

    The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor β1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Thyroid hormones regulate anxiety in the male mouse.

    PubMed

    Buras, Alexander; Battle, Loxley; Landers, Evan; Nguyen, Tien; Vasudevan, Nandini

    2014-02-01

    Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) α and β isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRα1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light-dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Methyltestosterone-induced transient hyperthyroidism in a hypothyroid patient.

    PubMed

    Krysiak, R; Okopien, B

    2013-01-01

    In this paper we report different effects of methyltestosterone administration on thyroid function in two twin brothers, one of whom suffered from hypothyroidism, while the other was apparently healthy. Methyltestosterone, which is a non-aromatisable androgen, resulted in a marked reduction of thyroxine-binding globulin (TBG), irrespectively of the patient's hormonal status, while the impact on free thyroid hormones depended on baseline thyroid function. Our research shows that a possibility of the use of non-aromatisable androgens or other drugs affecting TBG levels should be taken into consideration in all hypothyroid patients receiving levothyroxine, in whom thyroid hormone status suddenly changes without any apparent reason.

  5. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling

    USDA-ARS?s Scientific Manuscript database

    The osteoporosis associated with human hyperthyroidism has traditionally been attributed to elevated thyroid hormone levels. There is evidence, however, that thyroid-stimulating hormone (TSH), which is low in most hyperthyroid states, directly affects the skeleton. Importantly, Tshr-knockout mice ar...

  6. A longitudinal study on the radiation-induced thyroid gland changes after external beam radiotherapy of nasopharyngeal carcinoma.

    PubMed

    Lin, Zhixiong; Wu, Vincent Wing-Cheung; Lin, Jing; Feng, Huiting; Chen, Longhua

    2011-01-01

    Radiation-induced thyroid disorders have been reported in radiotherapy of head and neck cancers. This study evaluated the radiation-induced damages to thyroid gland in patients with nasopharyngeal carcinoma (NPC). Forty-five patients with NPC treated by radiotherapy underwent baseline thyroid hormones (free triiodothyronine, free thyroxine [fT4], and thyrotropin [TSH]) examination and CT scan before radiotherapy. The volume of the thyroid gland was calculated by delineating the structure in the corresponding CT slices using the radiotherapy treatment planning system. The thyroid doses were estimated using the treatment planning system. Subsequent CT scans were conducted at 6, 12, and 18 months after radiotherapy, whereas the hormone levels were assessed at 3, 6, 12, and 18 months after radiotherapy. Trend lines of the volume and hormone level changes against time were plotted. The relationship between the dose and the change of thyroid volume and hormone levels were evaluated using the Pearson correlation test. An average of 20% thyroid volume reduction in the first 6 months and a further 8% shrinkage at 12 months after radiotherapy were observed. The volume reduction was dependent on the mean thyroid doses at 6, 12, and 18 months after radiotherapy (r = -0.399, -0.472, and -0.417, respectively). Serum free triiodothyronine and fT4 levels showed mild changes of <2.5% at 6 months, started to drop by 8.8% and 11.3%, respectively, at 12 months, and became stable at 18 months. The mean serum TSH level increased mildly at 6 months after radiotherapy and more steeply after 18 months. At 18 months after radiotherapy, 12 patients had primary hypothyroidism with an elevated serum TSH, in which 4 of them also presented with low serum fT4. There was a significant difference (p = 0.014) in the mean thyroid doses between patients with hypothyroidism and normal thyroid function. Radiotherapy for patients with NPC caused radiation-induced changes of the thyroid gland. The shrinkage of the gland was greatest in the first 6 months after radiotherapy, whereas the serum fT4 and TSH levels changed at 12 months. Radiation-induced changes were dependent on the mean dose to the gland. Therefore, measures to reduce the thyroid dose in radiotherapy should be considered.

  7. Low thyroid function is not associated with an accelerated deterioration in renal function.

    PubMed

    Meuwese, Christiaan L; van Diepen, Merel; Cappola, Anne R; Sarnak, Mark J; Shlipak, Michael G; Bauer, Douglas C; Fried, Linda P; Iacoviello, Massimo; Vaes, Bert; Degryse, Jean; Khaw, Kay-Tee; Luben, Robert N; Åsvold, Bjørn O; Bjøro, Trine; Vatten, Lars J; de Craen, Anton J M; Trompet, Stella; Iervasi, Giorgio; Molinaro, Sabrina; Ceresini, Graziano; Ferrucci, Luigi; Dullaart, Robin P F; Bakker, Stephan J L; Jukema, J Wouter; Kearney, Patricia M; Stott, David J; Peeters, Robin P; Franco, Oscar H; Völzke, Henry; Walsh, John P; Bremner, Alexandra; Sgarbi, José A; Maciel, Rui M B; Imaizumi, Misa; Ohishi, Waka; Dekker, Friedo W; Rodondi, Nicolas; Gussekloo, Jacobijn; den Elzen, Wendy P J

    2018-04-18

    Chronic kidney disease (CKD) is frequently accompanied by thyroid hormone dysfunction. It is currently unclear whether these alterations are the cause or consequence of CKD. This study aimed at studying the effect of thyroid hormone alterations on renal function in cross-sectional and longitudinal analyses in individuals from all adult age groups. Individual participant data (IPD) from 16 independent cohorts having measured thyroid stimulating hormone, free thyroxine levels and creatinine levels were included. Thyroid hormone status was defined using clinical cut-off values. Estimated glomerular filtration rates (eGFR) were calculated by means of the four-variable Modification of Diet in Renal Disease (MDRD) formula. For this IPD meta-analysis, eGFR at baseline and eGFR change during follow-up were computed by fitting linear regression models and linear mixed models in each cohort separately. Effect estimates were pooled using random effects models. A total of 72 856 individuals from 16 different cohorts were included. At baseline, individuals with overt hypothyroidism (n = 704) and subclinical hypothyroidism (n = 3356) had a average (95% confidence interval) -4.07 (-6.37 to -1.78) and -2.40 (-3.78 to -1.02) mL/min/1.73 m2 lower eGFR as compared with euthyroid subjects (n = 66 542). In (subclinical) hyperthyroid subjects (n = 2254), average eGFR was 3.01 (1.50-4.52) mL/min/1.73 m2 higher. During 329 713 patient years of follow-up, eGFR did not decline more rapidly in individuals with low thyroid function compared with individuals with normal thyroid function. Low thyroid function is not associated with a deterioration of renal function. The cross-sectional association may be explained by renal dysfunction causing thyroid hormone alterations.

  8. Waterborne exposure to BPS causes thyroid endocrine disruption in zebrafish larvae

    PubMed Central

    Zhang, Dan-hua; Zhou, En-xiang; Yang, Zhu-lin

    2017-01-01

    Bisphenol S (BPS) is widely used as a raw material in industry, resulting in its ubiquitous distribution in natural environment, including the aqueous environment. However, the effect of BPS on the thyroid endocrine system is largely unknown. In this study, zebrafish (Danio rerio) embryos were exposed to BPS at 1, 3, 10, and 30 μg/L, from 2 h post-fertilization (hpf) to 168hpf. Bioconcentration of BPS and whole-body thyroid hormones (THs), thyroid-stimulating hormone (TSH) concentrations as well as transcriptional profiling of key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were examined. Chemical analysis indicated that BPS was accumulated in zebrafish larvae. Thyroxine (T4) and triiodothyronine (T3) levels were significantly decreased at ≥ 10 and 30 μg/L of BPS, respectively. However, TSH concentration was significantly induced in the 10 and 30 μg/L BPS-treated groups. After exposure to BPS, the mRNA expression of corticotrophin releasing hormone (crh) and thyroglobulin (tg) genes were up-regulated at ≥10 μg/L of BPS, in a dose-response manner. The transcription of genes involved in thyroid development (pax8) and synthesis (sodium/iodide symporter, slc5a5) were also significantly increased in the 30 μg/L of BPS treatment group. Moreover, exposure to 10 μg/L or higher concentration of BPS significantly up-regulated genes related to thyroid hormone metabolism (deiodinases, dio1, dio2 and uridinediphosphate glucoronosyltransferases, ugt1ab), which might be responsible for the altered THs levels. However, the transcript of transthyretin (ttr) was significantly down-regulated at ≥ 3 μg/L of BPS, while the mRNA levels of thyroid hormone receptors (trα and trβ) and dio3 remained unchanged. All the results indicated that exposure to BPS altered the whole-body THs and TSH concentrations and changed the expression profiling of key genes related to HPT axis, thus triggering thyroid endocrine disruption. PMID:28467477

  9. The effect of vitamin D on thyroid autoimmunity in non-lactating women with postpartum thyroiditis.

    PubMed

    Krysiak, R; Kowalcze, K; Okopien, B

    2016-05-01

    The study included 38 non-lactating l-thyroxine-treated women with postpartum thyroiditis (PPT) and 21 matched healthy postpartum women. Women with vitamin D deficiency were treated with oral vitamin D (4000 IU daily), whereas women with vitamin D insufficiency and women with normal 25-hydroxy vitamin levels were either treated with vitamin D (2000 IU daily) or left untreated. Serum hormone levels and thyroid antibody titers were measured at the beginning of the study and 3 months later. 25-hydroxy vitamin D levels were lower in women with PPT than in healthy women. Thyroid peroxidase and thyroglobulin antibody titers inversely correlated with vitamin D status. Apart from increasing serum levels of 25-hydroxy vitamin D and decreasing serum levels of parathyroid hormone, vitamin D reduced titers of thyroid peroxidase antibodies and this effect was stronger in women with vitamin D deficiency. The study's results suggest that vitamin D supplementation may bring benefits to l-thyroxine-treated women with PPT.

  10. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    PubMed

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  11. Effects of thyroid hormone manipulation on pre-nuptial molt, luteinizing hormone and testicular growth in male white-crowned sparrows (Zonotrichia leuchophrys gambelii).

    PubMed

    Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C; Ramenofsky, Marilyn

    2018-01-01

    Most seasonal species rely on the annual change in day length as the primary cue to appropriately time major spring events such as pre-nuptial molt and breeding. Thyroid hormones are thought to be involved in the regulation of both of these spring life history stages. Here we investigated the effects of chemical inhibition of thyroid hormone production using methimazole, subsequently coupled with either triiodothyronine (T3) or thyroxine (T4) replacement, on the photostimulation of pre-nuptial molt and breeding in Gambel's white-crowned sparrows (Zonotrichia leuchophrys gambelii). Suppression of thyroid hormones completely prevented pre-nuptial molt, while both T3 and T4 treatment restored normal patterns of molt in thyroid hormone-suppressed birds. Testicular recrudescence was blocked by methimazole, and restored by T4 but not T3, in contrast to previous findings demonstrating central action of T3 in the photostimulation of breeding. Methimazole and replacement treatments elevated plasma luteinizing hormone levels compared to controls. These data are partially consistent with existing theories on the role of thyroid hormones in the photostimulation of breeding, while highlighting the possibility of additional feedback pathways. Thus we suggest that regulation of the hypothalamic pituitary gonad axis that controls breeding may be more complex than previously considered. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Association between organophosphate pesticides exposure and thyroid hormones in floriculture workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacasana, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.e; CIBER de Epidemiologia y Salud Publica; Lopez-Flores, Inmaculada

    The ability of organophosphate pesticides to disturb thyroid gland function has been demonstrated by experimental studies on animal, but evidence of such effects on human remains scarce. The aim of this study was to assess the association between exposure to organophosphate compounds and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the State of Mexico and Morelos, Mexico, occupationally exposed to organophosphate pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on sociodemographic characteristics,more » anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Urine and blood samples were taken the day after pesticide application to determine urine dialkylphosphate (DAP) levels, serum levels of TSH, total T{sub 3}, total T{sub 4}, serum PON1 activity, and serum p,p'-DEE levels. The analysis of the association between DAP levels and thyroid hormonal profile was carried out using multivariate generalized estimating equation (GEE) models. Our results showed an increase in both TSH and T{sub 4} hormones in serum associated with a increase in total dimethylphosphate levels (SIGMADMP) in urine (p-trend < 0.001) and a decrease in total T{sub 3} serum levels with an increase of SIGMADMP levels in the urine (p-trend = 0.053). These results suggest that exposure to organophosphate pesticides may be responsible of increasing TSH and T{sub 4} serum hormone levels and decreasing T{sub 3} serum hormone levels, therefore supporting the hypothesis that organophosphate pesticides act as endocrine disruptors in humans.« less

  13. Influence of thyroid in nervous system growth.

    PubMed

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or are nervous cell specific, genes coding neurotropins or proteins involved in synaptic excitation. The use of new PMRS and MRI non-invasive techniques has enabled identification of metabolic and biochemical markers for alterations in the encephalon of untreated hypothyroid children. Even an excess of thyroid hormones during early nervous system development can cause permanent effects. Hyperthyroidism in fact initially induces accelerated maturation process including cell migration and differentiation, extension of dendritic processes and synaptogenesis but a later excess of thyroid hormones causes reduction of the total number of dendritic spikes, due to early interruption of neuron proliferation. Experimental studies and clinical research have clarified not only the correlation between nervous system maturation and thyroid function during early development stages and the certain finding from this research is that both excess and deficient thyroid hormones can cause permanent anatomo-functional alterations to the nervous system.

  14. Patient's Guide to Detecting and Treating Hypothyroidism Before, During, and After Pregnancy

    MedlinePlus

    Detecting and Treating Hypothyroidism Before, During, and After Pregnancy A Patient’s Guide Pregnancy causes major changes in the levels of hormones made by ... thyroid hormone, doctors call this underactive thyroid or hypothyroidism . Hypothyroidism during pregnancy is not common. However, the ...

  15. EFFECTS OF BDE-47 ON NUCLEAR RECEPTOR REGULATED GENES AND IMPLICATIONS FOR THYROID HORMONE DISRUPTION.

    EPA Science Inventory

    Previous studies have shown that exposure to polybrominated diphenyl ethers (PBDEs) can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferase, (UGTs) which catalyze glucuronidation of T4 resulting in T4-glucuronide excretion. Bas...

  16. Diabetes mellitus in a girl with thyroid hormone resistance syndrome: a little recognized interaction between the two diseases.

    PubMed

    Stagi, Stefano; Manoni, Cristina; Cirello, Valentina; Covelli, Danila; Giglio, Sabrina; Chiarelli, Francesco; Seminara, Salvatore; de Martino, Maurizio

    2014-01-01

    The syndrome of resistance to thyroid hormone (RTH) is characterized by elevated serum free thyroid hormones (FT4 and FT3) in the presence of unsuppressed TSH levels, reflecting resistance to the normal negative feedback mechanisms in the hypothalamus and pituitary. The degree of resistance within peripheral tissues determines whether thyrotoxic clinical features are associated with this condition. Classic features include attention deficit hyperactivity disorder, growth delay, tachycardia, and goiter. However, other features, such as frequent ear, nose and throat infections, hearing deficit, and decreased bone mass have recently been recognized. The phenotype of RTH is variable, with most patients presenting with mild to moderate symptoms. In this report we describe a girl with familiar RTH and diabetes mellitus. This is, to our knowledge, the first report regarding this association. Nearly one year after long-term triiodothyroacetic acid (Triac) therapy, we observed a reduction of thyroid hormone levels with an amelioration of insulin resistance. The possible interactions between these disorders are discussed.

  17. The urgency for optimization and harmonization of thyroid hormone analyses and their interpretation in developmental and reproductive toxicology studies.

    PubMed

    Beekhuijzen, Manon; Schneider, Steffen; Barraclough, Narinder; Hallmark, Nina; Hoberman, Alan; Lordi, Sheri; Moxon, Mary; Perks, Deborah; Piersma, Aldert H; Makris, Susan L

    2018-05-02

    In recent years several OECD test guidelines have been updated and some will be updated shortly with the requirement to measure thyroid hormone levels in the blood of mammalian laboratory species. There is, however, an imperative need for clarification and guidance regarding the collection, assessment, and interpretation of thyroid hormone data for regulatory toxicology and risk assessment. Clarification and guidance is needed for 1) timing and methods of blood collection, 2) standardization and validation of the analytical methods, 3) triggers for additional measurements, 4) the need for T4 measurements in postnatal day (PND) 4 pups, and 5) the interpretation of changes in thyroid hormone levels regarding adversity. Discussions on these topics have already been initiated, and involve expert scientists from a number of international multisector organizations. This paper provides an overview of existing issues, current activities and recommendations for moving forward. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Thyroid functions and trace elements in pediatric patients with exogenous obesity.

    PubMed

    Cayir, Atilla; Doneray, Hakan; Kurt, Nezahat; Orbak, Zerrin; Kaya, Avni; Turan, Mehmet Ibrahim; Yildirim, Abdulkadir

    2014-02-01

    Obesity is a multifactorial disease developing following impairment of the energy balance. The endocrine system is known to be affected by the condition. Serum thyroid hormones and trace element levels have been shown to be affected in obese children. Changes in serum thyroid hormones may result from alterations occurring in serum trace element levels. The aim of this study was to evaluate whether or not changes in serum thyroid hormone levels in children with exogenous obesity are associated with changes in trace element levels. Eighty-five children diagnosed with exogenous obesity constituted the study group, and 24 age- and sex-matched healthy children made up the control group. Serum thyroid stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), thyroglobulin (TG), selenium (Se), zinc (Zn), copper (Cu), and manganese (Mn) levels in the study group were measured before and at the third and sixth months of treatment, and once only in the control group. Pretreatment fT4 levels in the study group rose significantly by the sixth month (p = 0.006). Zn levels in the patient group were significantly low compared to the control group (p = 0.009). Mn and Se levels in the obese children before and at the third and sixth months of treatment were significantly higher than those of the control group (p = 0.001, p = 0.001). In conclusion, fT4, Zn, Cu, Mn, and Se levels are significantly affected in children diagnosed with exogenous obesity. The change in serum fT4 levels is not associated with changes in trace element concentrations.

  19. Elevated levels of circulating thyroid hormone do not cause the medical sequelae of hyperthyroidism.

    PubMed

    Kelly, Tammas; Denmark, Lawrence; Lieberman, Daniel Z

    2016-11-03

    Clinicians have been reluctant to use high dose thyroid (HDT) to treat affective disorders because high circulating levels of thyroid hormone have traditionally been equated with hyperthyroidism, and understood as the cause of the medical sequelae of hyperthyroidism, such as osteoporosis and cardiac abnormalities. This conclusion is not supported by (HDT) research. A literature review of research related to the morbidity and mortality of HDT treatment was performed. There exists a large body of research involving the use of HDT treatment to prevent the recurrence of differentiated thyroid cancer and to treat affective disorders. A review of this literature finds a lack of support for HDT as a cause of osteoporosis, nor is there support for an increase in morbidity or mortality associated with HDT. This finding contrasts with the well-established morbidity and mortality associated with Graves' disease, thyroiditis, and other endogenous forms of hyperthyroidism. The lack of evidence that exogenous HDT causes osteoporosis, cardiac abnormalities or increases mortality compared with the significant morbidity and mortality of hyperthyroidism requires an alternative cause for the medical sequelae of hyperthyroidism. One possibility is an autoimmune mechanism. High circulating levels of thyroid hormone is not the cause of the sequela of hyperthyroidism. The reluctance to using high dose thyroid is unwarranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones

    PubMed Central

    Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin

    2016-01-01

    Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052

  1. The effect of thyroid hormone and a long-acting somatostatin analogue on TtT-97 murine thyrotropic tumors.

    PubMed

    Woodmansee, W W; Gordon, D F; Dowding, J M; Stolz, B; Lloyd, R V; James, R A; Wood, W M; Ridgway, E C

    2000-07-01

    Thyroid hormone inhibits thyrotropin (TSH) production and thyrotrope growth. Somatostatin has been implicated as a synergistic factor in the inhibition of thyrotrope function. We have previously shown that pharmacological doses of thyroid hormone (levothyroxine [LT4]) inhibit growth of murine TtT-97 thyrotropic tumors in association with upregulation of somatostatin receptor type 5 (sst5) mRNA and somatostatin receptor binding. In the current study, we examined the effect of physiological thyroid hormone replacement alone or in combination with the long-acting somatostatin analogue, Sandostatin LAR, on thyrotropic tumor growth, thyrotropin growth factor-beta (TSH-beta), and sst5 mRNA expression, as well as somatostatin receptor binding sites. Physiological LT4 replacement therapy resulted in tumor shrinkage in association with increased sst5 mRNA levels, reduced TSH-beta mRNA levels and enhanced somatostatin receptor binding. Sandostatin LAR alone had no effect on any parameter measured. However, Sandostatin LAR combined with LT4 synergistically inhibited TSH-beta mRNA production and reduced final tumor weights to a greater degree. In this paradigm, Sandostatin LAR required a euthyroid status to alter thyrotrope parameters. These data suggest an important interaction between the somatostatinergic system and thyroid hormone in the regulation of thyrotrope cell structure and function.

  2. The Effect of Maternal Thyroid Disorders (Hypothyroidism and Hyperthyroidism) During Pregnancy and Lactation on Skin Development in Wistar Rat Newborns

    PubMed Central

    Amerion, Maryam; Tahajjodi, Somayye; Hushmand, Zahra; Mahdavi Shahri, Nasser; Nikravesh, Mohammad Reza; Jalali, Mahdi

    2013-01-01

    Objective(s): Previous studies have shown that thyroid hormones are necessary for normal development of many organs and because of the importance of skin as the largest and the most important organ in human body protection in spite of external environment, the study of thyroid hormones effects on skin development is considerable. In this survey we have tried to study the effects of maternal hypothyroidism on skin development in fetus during pregnancy and lactation by immunohistochemistry technique. Materials and Methods: Rats were divided into 4 groups, hypothyroids, hyperthyroids, hypothyroids are treated with levothyroxin and a control group. The rat mothers were exposed to PTU with 50 mg/lit dosage and levothyroxin with 1 mg/lit dosage and PTU and levothyroxin simultaneously and with the same dosage respectively in hypothyroid, hyperthyroid and treated hypothyroids with levothyroxin groups. After 14 days, blood sample was taken from mothers, and if thyroid hormones level had change well, mating was allowed. After pregnancy and delivery, 1th day dorsal skin (as the sample for pregnancy assay) and 10th day skin (as for lactation assay) was used for immunohystochemical and morphometric studies. Results: In this study it was observed that maternal hypothyroidism during pregnancy and lactation causes significant increase in laminin expression, in most areas of skin, and maternal hyperthyroidism during pregnancy and lactation causes significant decrease in laminin expression. Also significant decrease was observed in hair follicles number and epidermis thickness in hypothyroidism groups. Conclusion: This study showed maternal hypothyroidism causes significant decrease in epidermis thickness and hair follicles number and it causes less hair in fetus. Also maternal hypothyroidism causes large changes in laminin expression in different parts of skin. At the same time,maternal hyperthyroidism causes opposite results. In fact, thyroid hormones regulate laminin expression negatively which means increase in thyroid hormone level, decreases laminin expression. So changes in thyroid hormones level can influence skin development significantly. PMID:23826487

  3. Effects of Thyroid Dysfunction on Reproductive Hormones in Female Rats.

    PubMed

    Liu, Juan; Guo, Meng; Hu, Xusong; Weng, Xuechun; Tian, Ye; Xu, Kaili; Heng, Dai; Liu, Wenbo; Ding, Yu; Yang, Yanzhou; Zhang, Cheng

    2018-05-10

    Thyroid hormones (THs) play a critical role in the development of ovarian cells. Although the effects of THs on female reproduction are of great interest, the mechanism remains unclear. We investigated the effects of TH dysregulation on reproductive hormones in rats. Propylthiouracil (PTU) and L-thyroxine were administered to rats to induce hypo- and hyper-thyroidism, respectively, and the reproductive hormone profiles were analyzed by radioimmunoassay. Ovarian histology was evaluated with H&E staining, and gene protein level or mRNA content was analyzed by western blotting or RT-PCR. The serum levels of gonadotropin releasing hormone (GnRH) and follicle stimulating hormone (FSH) in both rat models were significantly decreased on day 21, although there were no significant changes at earlier time points. There were no significant differences in luteinizing hormone (LH) or progesterone levels between the treatment and the control groups. Both PTU and L-thyroxine treatments downregulated estradiol concentrations; however, the serum testosterone level was increased only in hypothyroid rats at day 21. In addition, the expression levels of FSH receptor, cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic acute regulatory protein were decreased in both rat models. Moreover, the onset of puberty was significantly delayed in the hypothyroid group. These results provide evidence that TH dysregulation alters reproductive hormone profiles, and that the initiation of the estrous cycle is postponed in hypothyroidism.

  4. Insights into Enzyme Catalysis and Thyroid Hormone Regulation of Cerebral Ketimine Reductase/μ-Crystallin Under Physiological Conditions.

    PubMed

    Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter

    2015-06-01

    Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.

  5. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function.*

    EPA Science Inventory

    The critical role of thyroid hormone (TH) in brain development is well established, severe deficiencies leading to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degr...

  6. Analysis of iodine-131-induced early thyroid hormone variations in Graves' disease.

    PubMed

    Xu, Feng; Gu, Aichun; Pan, Yifan; Yang, Liwen; Ma, Yubo

    2016-11-01

    This prospective study aimed to assess iodine-131 (I)-induced early thyroid hormone variations in Graves' disease (GD) and determine the associated factors. One hundred and seventy-one GD patients treated with I were evaluated (47 men, 124 women). I was administered at 9.0±4.9 mCi on average. Serum free triiodothyronine and free thyroxin were measured within 24 h before treatment and 8 (3-14) days after treatment. Patients were divided into increase, no change, and decrease groups, respectively, on the basis of hormone variations after treatment. χ-Test, analysis of variance, and the Kruskal-Wallis test were used to compare groups in terms of sex, age, course of disease, thyroid stimulating hormone receptor antibodies, antithyroid drug (ATD) pretreatment time, time of ATD discontinuation before I treatment, 24 h thyroid I uptake, thyroid weight, I activity, and I activity/thyroid weight (μCi/g). The Spearman method was used for correlation analyses. Twenty-seven, 20, and 124 cases were assigned to increase, no change, and decrease groups, respectively. Significant differences were found among groups in the time of ATD discontinuation before I treatment [the median duration for methimazole was 11 (5-26), 16 (10-30), and 21 (1-30) days, P=0.000, the median duration for propylthiouracil was 12.5 (5-24), 22 (11-26), and 26 (21-30) days, P=0.000], thyroid weight (93.5±33.6, 90.3±48.8, and 74.1±26.0 g, P=0.003), and μCi/g (84.8±11.8, 100.4±24.9, and 121.1±44.0 μCi/g, P=0.000). Interestingly, μCi/g was negatively and positively correlated to the possibility of hormone increase and decrease, respectively. No significant differences were found in the other parameters assessed. At the early stage of I treatment for GD, few patients showed increased thyroid hormone levels. Key factors may include time of ATD discontinuation before I treatment and μCi/g. High μCi/g might decrease thyroid hormone levels in early treatment, making it safe.

  7. Establishing a reference range for triiodothyronine levels in preterm infants.

    PubMed

    Oh, Ki Won; Koo, Mi Sung; Park, Hye Won; Chung, Mi Lim; Kim, Min-ho; Lim, Gina

    2014-10-01

    Thyroid dysfunction affects clinical complications in preterm infants and older children. However, thyroid hormone replacement in preterm infants has no proven benefits, possibly owing to the lack of an appropriate reference range for thyroid hormone levels. We aimed to establish a reference range for triiodothyronine (T3) levels at 1-month postnatal age (PNA) in preterm infants. This retrospective study included preterm infants born at a tertiary referral neonatal center at gestational age (GA)<35 weeks with no apparent thyroid dysfunction, for 6 consecutive years, with follow-up from PNA 2 weeks to 16 weeks. Using thyroid function tests (TFT), the relationships between T3 levels and thyrotropin (TSH) and free thyroxine (fT4) levels, birth weight, GA, postmenstrual age (PMA), and PNA were examined. The conversion trend for fT4 to T3 was analyzed using the T3/fT4 ratio. Overall, 464 TFTs from 266 infants were analyzed, after excluding 65 infants with thyroid dysfunction. T3 levels increased with fT4 levels, birth weight, GA, PMA, and PNA but not with TSH levels. The T3/fT4 ratio also increased with GA, PNA, and PMA. The average T3 level at 1 month PNA was 72.56 ± 27.83 ng/dL, with significant stratifications by GA. Relatively low T3 and fT4 levels in preterm infants were considered normal, with T3 levels and conversion trends increasing with GA, PMA, and PNA. Further studies are required to confirm the role of the present reference range in thyroid hormone replacement therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Recent Advances in Thyroid Hormone Regulation: Toward a New Paradigm for Optimal Diagnosis and Treatment

    PubMed Central

    Hoermann, Rudolf; Midgley, John E. M.; Larisch, Rolf; Dietrich, Johannes W.

    2017-01-01

    In thyroid health, the pituitary hormone thyroid-stimulating hormone (TSH) raises glandular thyroid hormone production to a physiological level and enhances formation and conversion of T4 to the biologically more active T3. Overstimulation is limited by negative feedback control. In equilibrium defining the euthyroid state, the relationship between TSH and FT4 expresses clusters of genetically determined, interlocked TSH–FT4 pairs, which invalidates their statistical correlation within the euthyroid range. Appropriate reactions to internal or external challenges are defined by unique solutions and homeostatic equilibria. Permissible variations in an individual are much more closely constrained than over a population. Current diagnostic definitions of subclinical thyroid dysfunction are laboratory based, and do not concur with treatment recommendations. An appropriate TSH level is a homeostatic concept that cannot be reduced to a fixed range consideration. The control mode may shift from feedback to tracking where TSH becomes positively, rather than inversely related with FT4. This is obvious in pituitary disease and severe non-thyroid illness, but extends to other prevalent conditions including aging, obesity, and levothyroxine (LT4) treatment. Treatment targets must both be individualized and respect altered equilibria on LT4. To avoid amalgamation bias, clinically meaningful stratification is required in epidemiological studies. In conclusion, pituitary TSH cannot be readily interpreted as a sensitive mirror image of thyroid function because the negative TSH–FT4 correlation is frequently broken, even inverted, by common conditions. The interrelationships between TSH and thyroid hormones and the interlocking elements of the control system are individual, dynamic, and adaptive. This demands a paradigm shift of its diagnostic use. PMID:29375474

  9. The Association Between the Levels of Thyroid Hormones and Peripheral Nerve Conduction in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Zhu, Fan-Fan; Yang, Li-Zhen

    2018-06-26

    Type 2 diabetes has an underlying pathology with thyroid dysfunction. However, few studies have investigated the association between thyroid hormones and diabetic peripheral neuropathy. Our aim was to evaluate the relationship between thyroid hormones and electrophysiological properties of peripheral nerves in type 2 diabetes. The medical records of 308 patients with type 2 diabetes were enrolled in this study. Subjects stratified by sex were divided into subgroups based on the diagnosis of nerve conduction study. The nerve conduction parameters were separately described with the spectrum of thyroid hormones. Multivariate regression models to analyze the potential links between thyroid hormones and nerve conduction parameters. The serum free triiodine thyronine levels between normal and abnormal nerve conduction groups were statistically different in total (4.55±0.65 vs 4.37±0.63, P<0.05) and female diabetic patients (4.46±0.50 vs 4.14±0.57, P<0.01). Moreover, the summed amplitude and velocity Z score of female and male increased with free triiodine thyronine levels (P<0.05). Sex-specific binary logistic regression models showed that free triiodine thyronine levels were associated with decreased odds of abnormal nerve conduction diagnosis (odds ratio [95%CI]=0.151[0.047-0.186]) and low tertile of summed amplitude Z score (odds ratio [95%CI]=0.283[0.099-0.809]) in female. In total patients, free triiodine thyronine level was negatively associated with odds of abnormal nerve conduction (odds ratio [95%CI]=0.436 [0.226-0.842]), low tertile of summed velocity (odds ratio [95%CI]=0.44[0.226-0.858]) and amplitude (odds ratio [95%CI]=0.436[0.227-0.838) Z score. Serum free triiodine thyronine level is associated with nerve conduction in diabetes. Low free triiodine thyronine may be a potential risk for diabetic peripheral neuropathy. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Cytomorphologic spectrum of lymphocytic thyroiditis and correlation between cytological grading and biochemical parameters

    PubMed Central

    Anila, KR; Nayak, Nileena; Jayasree, K

    2016-01-01

    Introduction: Chronic lymphocytic thyroiditis [Hashimoto thyroiditis (HT)] is a common thyroid lesion diagnosed on fine-needle aspiration cytology (FNAC). Apart from FNAC, various other parameters, such as clinical features, ultrasonographic findings, antithyroid antibody levels, hormone profiles, and radionuclide thyroid scan, are also taken into consideration in making a diagnosis of HT. Aims: To grade lymphocytic thyroiditis based on the cytomorphology and to correlate the cytological grades with the levels of antithyroid peroxidase antibody (ATPO), antithyroglobulin antibody (ATG), and thyroid stimulating hormone (TSH). Materials and Methods: During a period of one and half years, 1,667 cases underwent FNAC of thyroid at our tertiary care center. Of these, 128 cases had cytological evidence of lymphocytic thyroiditis. Out of these, in 60 cases the levels of ATPO, ATG, and TSH were known. The cytological grades of lymphocytic thyroiditis in these cases were correlated with these parameters. Results: Out of the 60 cases, 55 were females. Age ranged from 5 years to 70 years, with majority of patients in third decade. Diffuse enlargement of thyroid was the commonest presentation. However, 14 cases presented with nodular disease. Majority of the patients had grade 1 thyroiditis (27 cases), followed by grade 2 thyroiditis (22 cases). Cytomorphology was diagnostic of thyroiditis in all 60 cases. ATPO was elevated in 57 cases and ATG was elevated in 40 cases. Elevated level of TSH was seen in only 18 cases. In 39 cases, TSH value was normal. There was no correlation between the cytological grades of thyroiditis and the levels of antithyroid antibodies and TSH. Conclusion: Lymphocytic infiltration of thyroid follicles is pathognomonic of lymphocytic thyroiditis. Positivity for antithyroid antibodies is strongly associated with HT but no correlation was observed between the grades of thyroiditis and the levels of ATPO, ATG, and TSH. PMID:27756987

  11. Oleuropein and hydroxytyrosol protect rats' pups against bisphenol A induced hypothyroidism.

    PubMed

    Mahmoudi, Asma; Ghorbel, Hèla; Feki, Ines; Bouallagui, Zouhaier; Guermazi, Fadhel; Ayadi, Lobna; Sayadi, Sami

    2018-04-27

    Bisphenol A (BPA) can disturb the endocrine system and the organs that respond to endocrine signals in organisms, indirectly exposed during prenatal and/or early postnatal life. The present study was designed to assess the protective effect of phenolic compounds from olive leaves against BPA induced thyroid dysfunction and growth perturbation in young rats during lactation. The BPA disrupting effect on thyroid function was investigated by measuring changes in plasma levels of thyroid hormones. Free triiodothyronine (FT3) and thyroxine (FT4) were decreased in young rats breast-fed from mothers treated with bisphenol A. This effect was associated with an increase in the plasma level of thyroid-stimulating hormone (TSH). The histological and immunohistochemical study of the thyroid gland revealed a disturbance in morphological structure and thyroid cells function. Thyroid dysfunction led to a disruption in the skeletal bone growth of young rats. In fact, the infrared microspectroscopic analysis and histological examination of femoral bone showed significant changes in their histoarchitecture associated with a perturbation in the mechanism of bone tissue mineralization. The administration of oleuropein or hydroxytyrosol in BPA treated lactating mothers improved the thyroid cells function by enhancing thyroid hormone levels. Moreover, these phenolics increased the body growth characterized by an amelioration in the structure and the microstructure of femoral bone tissue. HPLC analysis of rats-breast milk indicated the presence of oleuropein and hydroxytyrosol, which could contribute to the protective effect against bisphenol A induced hypothyroidism in pups rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Soy isoflavones inducing overt hypothyroidism in a patient with chronic lymphocytic thyroiditis: a case report.

    PubMed

    Nakamura, Yuya; Ohsawa, Isao; Goto, Yoshikazu; Tsuji, Mayumi; Oguchi, Tatsunori; Sato, Naoki; Kiuchi, Yuji; Fukumura, Motonori; Inagaki, Masahiro; Gotoh, Hiromichi

    2017-09-05

    Many people have thyroid conditions that make them susceptible to hypothyroidism. If the foods they eat may interfere with the production of thyroid hormone, which can lead to development of serious hypothyroidism. The danger of health drinks should always be noted. A 72-year-old Japanese woman was previously diagnosed with chronic lymphocytic thyroiditis caused by a goiter and had an elevated thyroid-stimulating hormone level (6.56 μIU/ml), a high anti-thyroid peroxidase antibody level (>600 IU/ml), and a high antithyroglobulin level (> 4000 IU/ml) but normal levels of free triiodothyronine (3.08 pg/ml) and thyroxine (1.18 ng/ml). She presented to our hospital with sudden-onset general malaise, edema, and hoarseness with an elevated thyroid-stimulating hormone (373.3 μIU/ml) level and very low triiodothyronine (< 0.26 pg/ml) and thyroxine (0.10 ng/ml) levels. It was determined that for 6 months she had been consuming a processed, solved health drink ("barley young leaf") in amounts of 9 g/day, which included soybean and kale powder extract. Hypothyroidism might be affected by ingredients of health drinks. She discontinued consumption of the health drink immediately and began taking 12.5 μg of levothyroxine. The amount of levothyroxine was gradually increased every 3 days up to 100 μg. At day 61, her thyroid-stimulating hormone level had decreased (6.12 μIU/ml), her free triiodothyronine (2.69 pg/ml) and thyroxine (1.56 ng/ml) levels had increased, and her general condition was improved. Among risky foods lowering thyroid function, some experimental studies have revealed that isoflavones reduce thyroid function. Therefore, we measured the presence of isoflavones in the patient's frozen serum with thin-layer chromatography. After she discontinued consumption of the health drink, two components quickly disappeared, and the other three components gradually decreased. On the basis of developing solvent composition and a positive ferric chloride reaction in thin-layer chromatography experiment, the five ingredients that disappeared or decreased were highly suspected to be soy isoflavones. This case emphasizes that consuming health drinks that include soy isoflavone powder extracts can lead to severe hypothyroidism.

  13. Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007–08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmaus, Craig, E-mail: craigs@berkeley.edu; Miller, Mark D., E-mail: ucsfpehsumiller@gmail.com; Cushing, Lara, E-mail: lara.cushing@berkeley.edu

    Perchlorate, thiocyanate, and low iodine intake can all decrease iodide intake into the thyroid gland. This can reduce thyroid hormone production since iodide is a key component of thyroid hormone. Previous research has suggested that each of these factors alone may decrease thyroid hormone levels, but effect sizes are small. We hypothesized that people who have all three factors at the same time have substantially lower thyroid hormone levels than people who do not, and the effect of this combined exposure is substantially larger than the effects seen in analyses focused on only one factor at a time. Using datamore » from the 2007–2008 National Health and Nutrition Examination Survey, subjects were categorized into exposure groups based on their urinary perchlorate, iodine, and thiocyanate concentrations, and mean serum thyroxine concentrations were compared between groups. Subjects with high perchlorate (n=1939) had thyroxine concentrations that were 5.0% lower (mean difference=0.40 μg/dl, 95% confidence interval=0.14–0.65) than subjects with low perchlorate (n=2084). The individual effects of iodine and thiocyanate were even smaller. Subjects with high perchlorate, high thiocyanate, and low iodine combined (n=62) had thyroxine concentrations 12.9% lower (mean difference=1.07 μg/dl, 95% confidence interval=0.55–1.59) than subjects with low perchlorate, low thiocyanate, and adequate iodine (n=376). Potential confounders had little impact on results. Overall, these results suggest that concomitant exposure to perchlorate, thiocyanate, and low iodine markedly reduces thyroxine production. This highlights the potential importance of examining the combined effects of multiple agents when evaluating the toxicity of thyroid-disrupting agents. -- Highlights: ► Recent data suggest that essentially everyone in the US is exposed to perchlorate. ► Perchlorate exposure may be associated with lower thyroid hormone levels. ► Some groups may be more susceptible to perchlorate than others.« less

  14. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known as...

  15. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known as...

  16. Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism.

    PubMed

    Stohn, J Patrizia; Martinez, M Elena; Hernandez, Arturo

    2016-12-01

    Hypo- and hyperthyroid states, as well as functional abnormalities in the hypothalamic-pituitary-thyroid axis have been associated with psychiatric conditions like anxiety and depression. However, the nature of this relationship is poorly understood since it is difficult to ascertain the thyroid status of the brain in humans. Data from animal models indicate that the brain exhibits efficient homeostatic mechanisms that maintain local levels of the active thyroid hormone, triiodothyronine (T3) within a narrow range. To better understand the consequences of peripheral and central thyroid status for mood-related behaviors, we used a mouse model of type 3 deiodinase (DIO3) deficiency (Dio3 -/- mouse). This enzyme inactivates thyroid hormone and is highly expressed in the adult central nervous system. Adult Dio3 -/- mice exhibit elevated levels of T3-dependent gene expression in the brain, despite peripheral hypothyroidism as indicated by low circulating levels of thyroxine and T3. Dio3 -/- mice of both sexes exhibit hyperactivity and significantly decreased anxiety-like behavior, as measured by longer time spent in the open arms of the elevated plus maze and in the light area of the light/dark box. During the tail suspension, they stayed immobile for a significantly shorter time than their wild-type littermates, suggesting decreased depression-like behavior. These results indicate that increased thyroid hormone in the brain, not necessarily in peripheral tissues, correlates with hyperactivity and with decreases in anxiety and depression-like behaviors. Our results also underscore the importance of DIO3 as a determinant of behavior by locally regulating the brain levels of thyroid hormone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Decreased Anxiety- and Depression-like Behaviors and Hyperactivity in a Type 3 Deiodinase-Deficient Mouse Showing Brain Thyrotoxicosis and Peripheral Hypothyroidism

    PubMed Central

    Stohn, J. Patrizia; Martinez, M. Elena; Hernandez, Arturo

    2016-01-01

    Hypo- and hyperthyroid states, as well as functional abnormalities in the hypothalamic-pituitary-thyroid axis have been associated with psychiatric conditions like anxiety and depression. However, the nature of this relationship is poorly understood since it is difficult to ascertain the thyroid status of the brain in humans. Data from animal models indicate that the brain exhibits efficient homeostatic mechanisms that maintain local levels of the active thyroid hormone, triiodothyronine (T3) within a narrow range. To better understand the consequences of peripheral and central thyroid status for mood-related behaviors, we used a mouse model of type 3 deiodinase (DIO3) deficiency (Dio3 −/− mouse). This enzyme inactivates thyroid hormone and is highly expressed in the adult central nervous system. Adult Dio3 −/− mice exhibit elevated levels of T3-dependent gene expression in the brain, despite peripheral hypothyroidism as indicated by low circulating levels of thyroxine and T3. Dio3 −/− mice of both sexes exhibit hyperactivity and significantly decreased anxiety-like behavior, as measured by longer time spent in the open arms of the elevated plus maze and in the light area of the light/dark box. During the tail suspension, they stayed immobile for a significantly shorter time than their wild-type littermates, suggesting decreased depression-like behavior. These results indicate that increased thyroid hormone in the brain, not necessarily in peripheral tissues, correlates with hyperactivity and with decreases in anxiety and depression-like behaviors. Our results also underscore the importance of DIO3 as a determinant of behavior by locally regulating the brain levels of thyroid hormone. PMID:27580013

  18. Polybrominated diphenyl ethers--plasma levels and thyroid status of workers at an electronic recycling facility.

    PubMed

    Julander, A; Karlsson, M; Hagström, K; Ohlson, C G; Engwall, M; Bryngelsson, I-L; Westberg, H; van Bavel, B

    2005-08-01

    Personnel working with electronic dismantling are exposed to polybrominated diphenyl ethers (PBDEs), which in animal studies have been shown to alter thyroid homeostasis. The aim of this longitudinal study was to measure plasma level of PBDEs in workers at an electronic recycling facility and to relate these to the workers' thyroid status. PBDEs and three thyroid hormones: triiodothyronine (T(3)), thyroxin (T(4)) and thyroid stimulating hormone (TSH) were repeatedly analysed in plasma from 11 workers during a period of 1.5 years. Plasma levels of PBDEs at start of employment were <0.5-9.1 pmol/g lipid weight (l.w.). The most common congener was PBDE #47 (median 2.8 pmol/g l.w.), followed by PBDE #153 (median 1.7 pmol/g l.w.), and PBDE #183 had a median value of <0.19 pmol/g l.w. After dismantling the corresponding median concentrations were: 3.7, 1.7 and 1.2 pmol/g l.w., respectively. These differences in PBDE levels were not statistically significant. PBDE #28 showed a statistically significantly higher concentration after dismantling than at start of employment (P=0.016), although at low concentrations (start 0.11 pmol/g l.w. and dismantling 0.26 pmol/g l.w.). All measured levels of thyroid hormones (T(3), T(4) and TSH) were within the normal physiological range. Statistically significant positive correlations were found between T(3) and #183 in a worker, between T(4) and both #28 and #100 in another worker and also between TSH and #99 and #154 in two workers. The workers' plasma levels of PBDEs fluctuated during the study period. Due to small changes in thyroid hormone levels it was concluded that no relevant changes were present in relation to PBDE exposure within the workers participating in this study.

  19. Thyroid dysfunctions of prematurity and their impacts on neurodevelopmental outcome.

    PubMed

    Chung, Mi Lim; Yoo, Han Wok; Kim, Ki-Soo; Lee, Byong Sop; Pi, Soo-Young; Lim, Gina; Kim, Ellen Ai-Rhan

    2013-01-01

    Thyroid dysfunction is very common and is associated with neurodevelopmental impairments in preterm infants. This study was conducted to determine the incidence and natural course of various thyroid dysfunctions and their impacts on neurodevelopmental outcomes among premature infants. A total of 177 infants were enrolled who were born at <34 weeks or whose birth weight was <1500 g and who underwent repeat thyroid function tests. We analyzed how various thyroid dysfunctions affected neurodevelopmental outcomes at 18 months of corrected age. Thyroid dysfunction was noted in 88 infants. Hypothyroxinemia was observed in 23 infants, and their thyroid function was influenced by variable clinical factors. Free T4 levels were all normalized without thyroxine medication, and neurodevelopmental outcomes were not affected. In contrast, hyperthyrotropinemia was not associated with other clinical factors. Among 58 subjects who had hyperthyrotropinemia, only 31 infants showed normal thyroid-stimulating hormone (TSH) levels at follow-up tests. The remaining 27 infants had persistently high TSH levels, which significantly and poorly influenced the neurodevelopmental outcomes. Thyroid dysfunction is common among preterm infants. With the exception of persistent hyperthyrotropinemia, it generally does not affect neurodevelopmental outcomes. However, the beneficial effects of thyroid hormone therapy in patients with persistent hyperthyrotropinemia merits further study.

  20. Neurodevelopment and Thyroid Hormone Synthesis Inhibition in the Rat: Quantitative Understanding Within the Adverse Outcome Pathway Framework

    EPA Science Inventory

    Adequate levels of thyroid hormones (TH) are needed for proper brain development, deficiencies may lead to adverse neurological outcomes in humans and animal models. Environmental chemicals have been linked to TH disruption, yet the relationship between developmental exposures an...

  1. Cortical Brain Malformation and Learning Impairments Induced by Developmental Thyroid Hormone Insufficiency: A Cross-Fostering Study

    EPA Science Inventory

    Although it is clear that severe reductions in thyroid hormones (TH) during development alter brain structure and function, the impact of low level, timing, and duration of TH insufficiency is less well understood. We have previously reported the presence of a cortical heterotopi...

  2. Increased insulin sensitivity in intrauterine growth retarded newborns--do thyroid hormones play a role?

    PubMed

    Setia, Sajita; Sridhar, M G; Koner, B C; Bobby, Zachariah; Bhat, Vishnu; Chaturvedula, Lata

    2007-02-01

    Thyroid hormones are necessary for normal brain development. We studied thyroid hormone profile and insulin sensitivity in intrauterine growth retarded (IUGR) newborns to find correlation between insulin sensitivity and thyroid status in IUGR newborns. Fifty IUGR and fifty healthy control infants were studied at birth. Cord blood was collected for determination of T(3), T(4), TSH, glucose and insulin levels. IUGR newborns had significantly lower insulin, mean+/-S.D., 5.25+/-2.81 vs. 11.02+/-1.85microU/ml, but significantly higher insulin sensitivity measured as glucose to insulin ratio (G/I), 9.80+/-2.91 vs. 6.93+/-1.08 compared to healthy newborns. TSH was also significantly higher 6.0+/-2.70 vs. 2.99+/-1.05microU/ml with significantly lower T(4), 8.65+/-1.95 vs. 9.77+/-2.18microg/dl, but similar T(3) levels, 100.8+/-24.36 vs. 101.45+/-23.45ng/dl. On stepwise linear regression analysis in IUGR infants, insulin sensitivity was found to have a significant negative association with T(4) and significant positive association with TSH. Thyroid hormones may play a role in increased insulin sensitivity at birth in IUGR.

  3. Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging

    PubMed Central

    Nelson, Peter T.; Katsumata, Yuriko; Nho, Kwangsik; Artiushin, Sergey C.; Jicha, Gregory A.; Wang, Wang-Xia; Abner, Erin L.; Saykin, Andrew J.; Kukull, Walter A.; Fardo, David W.

    2016-01-01

    We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer’s neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer’s Coordinating Center/Alzheimer’s Disease Genetic Consortium data; n=2,113, including 241 autopsy-confirmed HS cases). Further, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer’s Disease Neuroimaging Initiative data; n=1,239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p<0.04 in two separately analyzed groups), but not in Alzheimer’s disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone perturbation is a potential pathogenetic factor in HS that may also provide the basis for a novel CSF-based clinical biomarker. PMID:27815632

  4. Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Kenzaburo; Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002; Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 5-21-16 Omorinishi, Ota, Tokyo 143-8540

    Thyroglobulin (Tg) stored in thyroid follicles exerts a potent negative-feedback effect on each step of pre-hormone biosynthesis, including Tg gene transcription and iodine uptake and organification, by suppressing the expression of specific transcription factors that regulate these steps. Pre-hormones are stored in the follicular colloid before being reabsorbed. Following lysosomal proteolysis of its precursor, thyroid hormone (TH) is released from thyroid follicles. Although the suppressive effects of follicular Tg on each step of pre-hormone biosynthesis have been extensively characterized, whether follicular Tg accumulation also affects hormone reabsorption, proteolysis, and secretion is unclear. In this study we explored whether follicular Tgmore » can regulate the expression and function of the lysosomal endopeptidases cathepsins. We found that in the rat thyroid cell line FRTL-5 follicular Tg induced cathepsin H mRNA and protein expression, as well as cathepsin H enzyme activity. Double immunofluorescence staining showed that Tg endocytosis promoted cathepsin H translocalization into lysosomes where it co-localized with internalized Tg. These results suggest that cathepsin H is an active participant in lysosome-mediated pre-hormone degradation, and that follicular Tg stimulates mobilization of pre-hormones by activating cathepsin H-associated proteolysis pathways. - Highlights: • Follicular Tg increases cathepsin H mRNA and protein levels in rat thyroid cells. • Follicular Tg increases cathepsin H enzyme activity in rat thyroid cells. • After Tg stimulation cathepsin H co-localizes to lysosomes with follicular Tg. • Cathepsin H promotes hormone secretion by lysosome-mediated mechanisms.« less

  5. Quantitative analysis of in-vivo responses of reproductive and thyroid endpoints in male goldfish exposed to monocrotophos pesticide.

    PubMed

    Zhang, Xiaona; Liu, Wei; Wang, Jun; Tian, Hua; Wang, Wei; Ru, Shaoguo

    2018-09-01

    Cross-regulation occurs at many points between the hypothalamic-pituitary-gonad (HPG) and hypothalamic-pituitary-thyroid (HPT) axes. Monocrotophos (MCP) pesticide could disrupt HPG and HPT axes, but its direct target within the endocrine system is still unclear. In the present study, hormone concentrations and transcriptional profiles of HPG and HPT genes were examined in male goldfish (Carassius auratus) exposed to 0, 4, 40, and 400 μg/L MCP for 2, 4, 8, and 12 d. In vivo data were analyzed by multiple linear regression and correlation analysis, quantitatively indicating that MCP-induced plasma 17β-estradiol (E 2 ) levels were most associated with alteration of cyp19a transcription, which was also a potential point indirectly modulated by the MCP-altered thyroid hormones (THs) status; disturbance of THs pathways was most related with effect of MCP on regulation of the hypothalamic-pituitary hormones involved in the thyroid system, and the increased E 2 levels might enhance the impact of MCP on HPT axis by modulating hepatic deiodinase expression. Our finding, based on these correlational data, gave a whole view of the regulations, especially on the cross-talk between sex hormone and thyroid hormone pathways upon exposure to chemicals with unknown direct target in vivo, and cautions should be exercised when developing adverse outcome pathway networks for reproductive and thyroidal endocrine disruption. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The role of magnesium and thyroid function in early pregnancy after in-vitro fertilization (IVF): New aspects in endocrine physiology.

    PubMed

    Stuefer, Sibilla; Moncayo, Helga; Moncayo, Roy

    2015-06-01

    The initiation of a pregnancy is a process that requires adequate energetic support. Recent observations at our Institution suggest a central role of magnesium in this situation. The aim of this study was to evaluate magnesium, zinc, selenium and thyroid function as well as anti-Müllerian hormone in early pregnancy following in-vitro fertilization as compared to spontaneous successful pregnancies. A successful outcome of pregnancy after IVF treatment was associated with 2 parameters: higher levels of anti-Müllerian hormone as well as higher levels of magnesium in the pre-stimulation blood sample. These two parameters, however, showed no correlation. Spontaneous pregnancies as well as pregnancies after IVF show a fall of magnesium levels at 2-3 weeks of gestation. This drop of magnesium concentration is larger following IVF as compared to spontaneous pregnancies. Parallel to these changes TSH levels showed an increase in early IVF-pregnancy. At this time point we also observed a positive correlation between fT4 and TSH. This was not observed in spontaneous pregnancies. Thyroid antibodies showed no correlation to outcomes. In connection with the initiation of pregnancy following ovarian stimulation dynamic changes of magnesium and TSH levels can be observed. A positive correlation was found between fT4 and TSH in IVF pregnancies. In spontaneous pregnancies smaller increases of TSH levels are related to higher magnesium levels. We propose that magnesium plays a role in early pregnancy as well as in pregnancy success independently from anti-Müllerian hormone. Neither thyroid hormones nor thyroid antibodies were related to outcome.

  7. Thyroid stimulating hormone and serum, plasma, and platelet brain-derived neurotrophic factor during a 3-month follow-up in patients with major depressive disorder.

    PubMed

    Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin

    2014-12-01

    Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Circulating levels of irisin is elevated in hypothyroidism, a case-control study.

    PubMed

    Ateş, İhsan; Altay, Mustafa; Topçuoğlu, Canan; Yılmaz, Fatma Meriç

    2016-04-01

    Objective Our objective in this study was to determine the relationship between irisin hormone, which has a similar effect with thyroid hormones on adipose tissue and the metabolism, and the thyroid functions and the obesity secondary to thyroid disease. Subjects and methods Seventy-four patients were included in the study, of the patients, 37 were newly diagnosed with Hashimoto's thyroiditis related hypothyroidism but not started on a treatment yet, and the remaining 37 were healthy volunteers without a known disease. Serum thyroid stimulating hormone (TSH), free thyroxin (fT4), anti-thyroglobulin and anti-thyroid peroxidase were measured and thyroid ultrasonography was performed in both groups. Serum irisin levels were measured using the commercially available ELISA kit. The hypothyroidism group had higher levels of irisin compared to the control group (2.77 ng/mL vs. 2.15 ng/mL respectively; p = 0.017). Results The hypothyroidism group had higher median levels of irisin in the obese patients than those in the control group (3.10 ng/mL vs. 2.10 ng/mL respectively; p = 0.013). Irisin level was negatively correlated with age in the whole population and patients with hypothyroidism (r = -0.255, p = 0.028; r = -0.346, p = 0.036 respectively). Irisin level was positively correlated with TSH (r = 0.247, p = 0.034) but negatively correlated with the fT4 (r = -0.316, p = 0.006) in the whole population. Obesity, fT4 and irisin levels were identified to be independent predictors in the diagnosis of hypothyroidism in the multivariable logistic regression analysis. Conclusion To the best of our knowledge, this study is the first in literature to identify that obesity, irisin level and fT4 level are independent risk factors for hypothyroidism.

  9. Insufficient documentation for clinical efficacy of selenium supplementation in chronic autoimmune thyroiditis, based on a systematic review and meta-analysis.

    PubMed

    Winther, Kristian Hillert; Wichman, Johanna Eva Märta; Bonnema, Steen Joop; Hegedüs, Laszlo

    2017-02-01

    By a systematic review and meta-analysis to investigate clinically relevant effects of selenium supplementation in patients with chronic autoimmune thyroiditis. Controlled trials in adults (≥18 years) with autoimmune thyroiditis, comparing selenium with or without levothyroxine substitution, versus placebo and/or levothyroxine substitution, were eligible for inclusion. Identified outcomes were serum thyrotropin (thyroid stimulating hormone) levels in LT4-untreated patients, thyroid ultrasound and health-related quality of life. Eleven publications, covering nine controlled trials, were included in the systematic review. Random effects model meta-analyses were performed in weighted mean difference for thyroid stimulating hormone, ultrasound and health-related quality of life. Quality of evidence was assessed per outcome, using GRADE. Meta-analyses showed no change in thyroid stimulating hormone, or improvements in health-related quality of life or thyroid echogenicity (ultrasound), between levothyroxine substitution-untreated patients assigned to selenium supplementation or placebo. Three trials found some improvement in wellbeing in patients receiving levothyroxine substitution, but could not be synthesized in a meta-analysis. The quality of evidence ranged from very low to low for thyroid stimulating hormone as well as ultrasound outcomes, and low to moderate for health-related quality of life, and was generally downgraded due to small sample sizes. We found no effect of selenium supplementation on thyroid stimulating hormone, health-related quality of life or thyroid ultrasound, in levothyroxine substitution-untreated individuals, and sporadic evaluation of clinically relevant outcomes in levothyroxine substitution-treated patients. Future well-powered RCTs, evaluating e.g. disease progression or health-related quality of life, are warranted before determining the relevance of selenium supplementation in autoimmune thyroiditis.

  10. Association between Perchlorate and indirect indicators of thyroid dysfunction in NHANES 2001-2002, a Cross-Sectional, Hypothesis-Generating Study

    EPA Science Inventory

    Background: A previous study observed associations of urinary perchlorate with thyroid hormones based on the National Health and Nutrition Examination Survey (NHANES) 2001-2002. Increased levels of urinary perchlorate were associated with increased levels of thyroid stimulating h...

  11. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue.

    PubMed

    Matsen, Miles E; Thaler, Joshua P; Wisse, Brent E; Guyenet, Stephan J; Meek, Thomas H; Ogimoto, Kayoko; Cubelo, Alex; Fischer, Jonathan D; Kaiyala, Karl J; Schwartz, Michael W; Morton, Gregory J

    2013-04-01

    Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)β-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a β(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.

  12. A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo

    PubMed Central

    Machado, Danielle S.; Sabet, Amin; Santiago, Leticia A.; Sidhaye, Aniket R.; Chiamolera, Maria I.; Ortiga-Carvalho, Tania M.; Wondisford, Fredric E.

    2009-01-01

    Resistance to thyroid hormone (RTH) is most often due to point mutations in the β-isoform of the thyroid hormone (TH) receptor (TR-β). The majority of mutations involve the ligand-binding domain, where they block TH binding and receptor function on both stimulatory and inhibitory TH response elements. In contrast, a few mutations in the ligand-binding domain are reported to maintain TH binding and yet cause RTH in certain tissues. We introduced one such naturally occurring human RTH mutation (R429Q) into the germline of mice at the TR-β locus. R429Q knock-in (KI) mice demonstrated elevated serum TH and inappropriately normal thyroid-stimulating hormone (TSH) levels, consistent with hypothalamic–pituitary RTH. In contrast, 3 hepatic genes positively regulated by TH (Dio1, Gpd1, and Thrsp) were increased in R429Q KI animals. Mice were then rendered hypothyroid, followed by graded T3 replacement. Hypothyroid R429Q KI mice displayed elevated TSH subunit mRNA levels, and T3 treatment failed to normally suppress these levels. T3 treatment, however, stimulated pituitary Gh levels to a greater degree in R429Q KI than in control mice. Gsta, a hepatic gene negatively regulated by TH, was not suppressed in R429Q KI mice after T3 treatment, but hepatic Dio1 and Thrsp mRNA levels increased in response to TH. Cardiac myosin heavy chain isoform gene expression also showed a specific defect in TH inhibition. In summary, the R429Q mutation is associated with selective impairment of TH-mediated gene repression, suggesting that the affected domain, necessary for TR homodimerization and corepressor binding, has a critical role in negative gene regulation by TH. PMID:19439650

  13. Sclerostin and bone metabolism markers in hyperthyroidism before treatment and interrelations between them.

    PubMed

    Sarıtekin, İlker; Açıkgöz, Şerefden; Bayraktaroğlu, Taner; Kuzu, Fatih; Can, Murat; Güven, Berrak; Mungan, Görkem; Büyükuysal, Çağatay; Sarıkaya, Selda

    2017-01-01

    Sclerostin, which is a glycoprotein produced by osteocytes, reduces the formation of bones by inhibiting the Wnt signal pathway. Thyroid hormones are related with Wnt signal pathway and it has been reported that increased thyroid hormones in hyperthyroidism fasten epiphysis maturation in childhood, and increase the risk of bone fractures by stimulating the bone loss in adults. The aim of this study was to examine the sclerostin serum levels, the relation between sclerostin and thyroid hormones as well as the biochemical markers of the bone metabolism in patients with hyperthyroidism (including multinodular goiter and Graves' disease), whose treatments have not started yet. No difference was found in the serum sclerostin levels between the hyperthyroidism group (n=24) and the control group (n=24) (p=0.452). The serum osteocalcin levels and 24-hour urinary phosphorus excretion were found to be higher in the hyperthyroid group than in the control group (p<0.001, p=0.009). A positive correlation was determined between the sclerostin and bone alkaline phosphatase levels (p<0.001); a negative correlation between the osteocalcin and thyroid stimulating hormone (TSH) (p<0.05); a positive correlation between the osteocalcin and thyroid hormones (FT 3 ,FT 4 ) (p<0.001); and a positive correlation between the deoxypyridinoline and hydroxyproline (p<0.001). No correlation was determined between sclerostin and TSH,FT 3 ,FT 4 (p>0.05). Therefore, we consider that a long-term study that covers the pre-post treatment stages of hyperthyroidism, including both the destruction and construction of the skeleton would be more enlightening. Moreover, the assessment of the synthesis of sclerostin in the bone tissue and in the serum level might show differences.

  14. Thyroid Hormones and Growth in Health and Disease

    PubMed Central

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children. Conflict of interest:None declared. PMID:21750631

  15. Etiological evaluation of primary congenital hypothyroidism cases.

    PubMed

    Bezen, Diğdem; Dilek, Emine; Torun, Neşe; Tütüncüler, Filiz

    2017-06-01

    Primary congenital hypothyroidism is frequently seen endocrine disorder and one of the preventable cause of mental retardation. Aim of study was to evaluate the frequency of permanent/transient hypothyrodism, and to detect underlying reason to identfy any marker which carries potential to discriminate permanent/transient form. Forty eight cases older than 3 years of age, diagnosed as primary congenital hypothyroidism and started thyroxin therapy in newborn-period, and followed up between January 2007-June 2013 were included in the study. Thyroid hormon levels were evaluated and thyroid ultrasonography was performed in cases who are at the end of their 3 years of age, after 6 weeks of thyroxine free period. Thyroid sintigraphy was performed if serum thyroid-stimulating hormone was high (≥ 5 mIU/mL) and perchlorate discharge test was performed if uptake was normal or increased on sintigraphy. Cases with thyroid-stimulating hormone levels ≥ 5 mIU/mL were defined as permanent primary congenital hypothyroidism group and as transient primary congenital hypothyroidism group with normal thyroid hormones during 6 months. The mean age was 3.8±0.7 years. Mean diagnosis age was 16.6±6.5 days and 14 cases (29.2%) were diagnosed by screening program of Ministry of Health. There were 23 cases (14F, 9M) in permanent primary congenital hypothyroidism group and 12 (52.2%) of them were dysgenesis (8 hypoplasia, 4 ectopia), and 11 (47.8%) dyshormonogenesis. In transient primary congenital hypothyroidism group, there were 25 cases (17M, 8F). The mean thyroid-stimulating hormone levels at diagnosis were similar in two groups. The mean thyroxin dose in permanent primary congenital hypothyroidism group was significantly higher than transient group at the time of thyroxin cessation (2.1±0.7, 1.5±0.5 mg/kg/d, respectively, p=0.004). Thyroxin dose ≥1.6 mcg/kg/d was 72% sensitive and 69.6% specific for predicting permenant primary congenital hypothyroidism. Transient primary congenital hypothyroidism is more frequent than expected and found often in males in the primary congenital hypothyroidism cases, started thyroxin therapy in neonatal period. While fT4, thyroid-stimulating hormone, Tg levels at diagnosis do not predict transient/permenant primary congenital hypothyroidism, thyroxin dose before the therapy cessation at the age of 3 may make the distinction between transient/permenant primary congenital hypothyroidism.

  16. Serum concentrations of thyroid and adrenal hormones and TSH in men after repeated 1 h-stays in a cold room.

    PubMed

    Korhonen, I; Hassi, J; Leppäluoto, J

    2001-11-01

    We exposed six healthy men to 1-h cold air (10 degrees C) daily for 11 days and measured adrenal and thyroid hormones and TSH in serum before and after the cold air exposure on days 0, 5 and 10. We observed that on days 0, 5 and 10 the resting levels and the levels after the cold exposure in serum adrenaline, thyroid hormones and TSH did not significantly change, whereas the serum noradrenaline levels showed a significant 2.2-2.5-fold increase in response to the cold air exposures. The increases were similar indicating that the subjects did not show signs of habituation in their noradrenaline responses. Therefore the 1-h cold air exposure is not sufficiently intensive to reduce the cold-induced sympathetic response.

  17. [Effects of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly peptides on hormonal activity and thyroid morphology in hypophysectomized mature and old birds].

    PubMed

    Kuznik, B I; Pateiuk, A V; Rusaeva, N S; Baranchugova, L M; Obydenko, V I

    2011-01-01

    The aim of the paper was to investigate effects of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly peptides which were designed and synthesized on the basis of amino acid study of the hypophyseal anterior and posterior lobe peptides on the thyroid morphology and hormonal activity in mature chicken and old birds. Hypophysectomy was established to produce atrophic changes in the thyroid gland and development of secondary hypothyrosis. Administration of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly tetrapeptides significantly prevented these impairments by increasing the levels of the thyroid-stimulating hormone (TSH) as well as T3 and T4. Restoration of the thyroid functions and morphology was registered to be greater in one-year-old chicken as compared to five-year-old ones.

  18. Thyroid hormone levels and incident chronic kidney disease in euthyroid individuals: the Kangbuk Samsung Health Study.

    PubMed

    Zhang, Yiyi; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Pastor-Barriuso, Roberto; Rampal, Sanjay; Han, Won Kon; Shin, Hocheol; Guallar, Eliseo

    2014-10-01

    Overt and subclinical hypothyroidism are associated with higher levels of serum creatinine and with increased risk of chronic kidney disease (CKD). The prospective association between thyroid hormones and kidney function in euthyroid individuals,however, is largely unexplored. We conducted a prospective cohort study in 104 633 South Korean men and women who were free of CKD and proteinuria at baseline and had normal thyroid hormone levels and no history of thyroid disease or cancer. At each annual or biennial follow-up visit, thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxin (FT4) levels were measured by radioimmunoassay. The study outcome was incident CKD, defined as an estimated glomerular filtration rate (eGFR)<60 ml/min/1.73 m2 based on the Chronic Kidney Disease Epidemiology Collaboration creatinine equation. After a median follow-up of 3.5 years, 1032 participants developed incident CKD.There was a positive association between high-normal levels of TSH and increased risk of incident CKD. In fully-adjusted models including baseline eGFR, the hazard ratio comparing the highest vs the lowest quintiles of TSH was 1.26 [95% confidence interval (CI) 1.02 to 1.55; P for linear trend=0.03]. In spline models, FT3 levels below 3 pg/ml were also associated with increased risk of incident CKD. There was no association between FT4 levels and CKD. In a large cohort of euthyroid men and women, high levels of TSH and low levels of FT3, even within the normal range, were modestly associated with an increased risk of incident CKD.

  19. Effect of functionally significant deiodinase single nucleotide polymorphisms on drinking behavior in alcohol dependence: an exploratory investigation

    PubMed Central

    Lee, MR; Schwandt, ML; Bollinger, JW; Dias, AA; Oot, EN; Goldman, D; Hodgkinson, CA; Leggio, L

    2016-01-01

    Background Abnormalities of the hypothalamic-pituitary-thyroid (HPT) axis have been reported in alcoholism, however, there is no definitive agreement on the specific thyroid abnormalities and their underlying mechanisms in alcohol dependence (AD). The biological activity of thyroid hormones or the availability of T3 is regulated by the three deiodinase enzymes D1, D2 and D3. In the context of alcohol use, functionally significant single nucleotide polymorphisms (SNP’s) of these deiodinase genes may play a role in HPT dysfunction. Methods The present study explored the effect of three functionally significant SNP’s (D1: rs2235544, D2: rs225014 and rs12885300) of deiodinase genes on drinking behavior and thyroid stimulating hormone (TSH) levels in alcohol dependent (N=521) and control subjects (N=228). Results Rs225014 was associated with significant differences in the amount of naturalistic alcohol drinking assessed by the Timeline Follow-Back (TLFB). Alcohol-dependent subjects had significantly higher thyroid stimulating hormone levels compared to controls; however, there was no effect of genotype on TSH levels for either group. Conclusions These findings extend previous studies on thyroid dysfunction in alcoholism and provide novel, albeit preliminary, information by linking functionally significant genetic polymorphisms of the deiodinase enzymes with alcohol drinking behavior. PMID:26207529

  20. Free and total thyroid hormones in humans at extreme altitude

    NASA Astrophysics Data System (ADS)

    Basu, Minakshi; Pal, K.; Malhotra, A. S.; Prasad, R.; Sawhney, R. C.

    1995-03-01

    Alterations in circulatory levels of total T4 (TT4), total T3 (TT3), free T4 (FT4), free T3 (FT3), thyrotropin (TSH) and T3 uptake (T3U) were studied in male and female sea-level residents (SLR) at sea level, in Armed forces personnel staying at high altitude (3750 m) for prolonged duration (acclimatized lowlanders, ALL) and in high-altitude natives (HAN). Identical studies were also performed on male ALL who trekked to an extreme altitude of 5080 m and stayed at an altitude of more than 6300 m for about 6 months. The total as well as free thyroid hormones were found to be significantly higher in ALL and HAN as compared to SLR values. Both male as well as female HAN had higher levels of thyroid hormones. The rise in hormone levels in different ALL ethnic groups drawn from amongst the southern and northern parts of the country was more or less identical. In both HAN and ALL a decline in FT3 and FT4 occurred when these subjects trekked at subzero temperatures to extreme altitude of 5080 m but the levels were found to be higher in ALL who stayed at 6300 m for a prolonged duration. Plasma TSH did not show any appreciable change at lower altitudes but was found to be decreased at extreme altitude. The increase in thyroid hormones at high altitude was not due to an increase in hormone binding proteins, since T3U was found to be higher at high altitudes. A decline in TSH and hormone binding proteins and an increase in the free moiety of the hormones is indicative of a subtle degree of tissue hyperthyroidism which may be playing an important role in combating the extreme cold and hypoxic environment of high altitudes.

  1. Progressive Non-familial Adult onset Cerebellar Degeneration: An Unusual Occurrence with Hashimoto's Thyroiditis.

    PubMed

    Rao, Raghavendra S; Sheshadri, Shubha; Bhattacharjee, Dipanjan; Patil, Navin; Rao, Karthik

    2018-03-13

    Progressive non-familial adult onset cerebellar degeneration has been rarely associated with hypothyroidism and is known to be reversible after therapy. We report a case of cerebellar atrophy in a 31 year old female whose detailed evaluation had revealed sub-clinical hypothyroidism secondary to autoimmune thyroiditis with a very high anti-TPO (anti-thyroid peroxidase) antibody levels. MRI (Magnetic Resonanace Imaging) of brain showed diffuse bilateral cerebellar atrophy. She was treated with thyroid hormone supplementation and after one year of follow up, cerebellar signs had disappeared completely with significant reduction in anti-TPO antibody levels. Imaging of the brain post one year of follow-up revealed normal cerebellum. Hence, we opine that thyroid dysfunction should always be kept in mind while evaluating patients presenting with acute onset cerebellar ataxia as it can be easily reversed with thyroid hormone replacement therapy.

  2. A Rapid Cytoplasmic Mechanism for PI3 Kinase Regulation by the Nuclear Thyroid Hormone Receptor, TRβ, and Genetic Evidence for Its Role in the Maturation of Mouse Hippocampal Synapses In Vivo

    PubMed Central

    Martin, Negin P.; Fernandez de Velasco, Ezequiel Marron; Mizuno, Fengxia; Scappini, Erica L.; Gloss, Bernd; Erxleben, Christian; Williams, Jason G.; Stapleton, Heather M.; Gentile, Saverio

    2014-01-01

    Several rapid physiological effects of thyroid hormone on mammalian cells in vitro have been shown to be mediated by the phosphatidylinositol 3-kinase (PI3K), but the molecular mechanism of PI3K regulation by nuclear zinc finger receptor proteins for thyroid hormone and its relevance to brain development in vivo have not been elucidated. Here we show that, in the absence of hormone, the thyroid hormone receptor TRβ forms a cytoplasmic complex with the p85 subunit of PI3K and the Src family tyrosine kinase, Lyn, which depends on two canonical phosphotyrosine motifs in the second zinc finger of TRβ that are not conserved in TRα. When hormone is added, TRβ dissociates and moves to the nucleus, and phosphatidylinositol (3, 4, 5)-trisphosphate production goes up rapidly. Mutating either tyrosine to a phenylalanine prevents rapid signaling through PI3K but does not prevent the hormone-dependent transcription of genes with a thyroid hormone response element. When the rapid signaling mechanism was blocked chronically throughout development in mice by a targeted point mutation in both alleles of Thrb, circulating hormone levels, TRβ expression, and direct gene regulation by TRβ in the pituitary and liver were all unaffected. However, the mutation significantly impaired maturation and plasticity of the Schaffer collateral synapses on CA1 pyramidal neurons in the postnatal hippocampus. Thus, phosphotyrosine-dependent association of TRβ with PI3K provides a potential mechanism for integrating regulation of development and metabolism by thyroid hormone and receptor tyrosine kinases. PMID:24932806

  3. THE EFFECTS OF LOW DOSE PTU ON ENDPOINTS OF THYROID HORMONE ACTION IN THE DEVELOPING BRAIN.

    EPA Science Inventory

    Thyroid hormone (TH) is essential for normal brain development. Therefore, there is concern that any factor that reduces TH levels may permanently alter brain development. As part of an EPA Cooperative Agreement, the goal of this work was to characterize the degree to which cir...

  4. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice.

    PubMed

    Cao, Xin-Yuan; Hua, Xu; Xiong, Jian-Wei; Zhu, Wen-Ting; Zhang, Jun; Chen, Ling

    2018-01-01

    Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone ( GnRH ) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function.

  5. Impact of Triclosan on Female Reproduction through Reducing Thyroid Hormones to Suppress Hypothalamic Kisspeptin Neurons in Mice

    PubMed Central

    Cao, Xin-Yuan; Hua, Xu; Xiong, Jian-Wei; Zhu, Wen-Ting; Zhang, Jun; Chen, Ling

    2018-01-01

    Triclosan (TCS), a broad-spectrum antimicrobial agent, is widely used in clinical settings and various personal care products. The aim of this study was to evaluate the influence of TCS on reproductive endocrine and function. Here, we show that the exposure of adult female mice to 10 or 100 mg/kg/day TCS caused prolongation of diestrus, and decreases in antral follicles and corpora lutea within 2 weeks. TCS mice showed decreases in the levels of serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and progesterone, and gonadotrophin-releasing hormone (GnRH) mRNA with the lack of LH surge and elevation of prolactin (PRL). TCS mice had lower kisspeptin immunoreactivity and kiss1 mRNA in anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). Moreover, the estrogen (E2)-enhanced AVPV-kisspeptin expression was reduced in TCS mice. In addition, the serum thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) in TCS mice were reduced with increases in levels of thyroid stimulating hormone (TSH) and thyroid releasing hormone (TRH). In TCS mice, the treatment with Levothyroxine (L-T4) corrected the increases in PRL, TSH and TRH; the administration of L-T4 or type-2 dopamine receptors agonist quinpirole inhibiting PRL release could rescue the decline of kisspeptin expression in AVPV and ARC; the treatment with L-T4, quinpirole or the GPR45 agonist kisspeptin-10 recovered the levels of serum LH and FSH and progesterone, and GnRH mRNA. Furthermore, TCS mice treated with L-T4 or quinpirole resumed regular estrous cycling, follicular development and ovulation. Together, these results indicate that exposing adult female mice to TCS (≥10 mg/kg) reduces thyroid hormones causing hyperprolactinemia that then suppresses hypothalamic kisspeptin expression, leading to deficits in reproductive endocrine and function. PMID:29403355

  6. Differences in Brain Glucose Metabolism During Preparation for 131I Ablation in Thyroid Cancer Patients: Thyroid Hormone Withdrawal Versus Recombinant Human Thyrotropin.

    PubMed

    Jeong, Hyeonseok S; Choi, Eun Kyoung; Song, In-Uk; Chung, Yong-An; Park, Jong-Sik; Oh, Jin Kyoung

    2017-01-01

    In preparation for 131 I ablation, temporary withdrawal of thyroid hormone is commonly used in patients with thyroid cancer after total thyroidectomy. The current study aimed to investigate brain glucose metabolism and its relationships with mood or cognitive function in these patients using 18 F-fluoro-2-deoxyglucose positron emission tomography ( 18 F-FDG-PET). A total of 40 consecutive adult patients with thyroid carcinoma who had undergone total thyroidectomy were recruited for this cross-sectional study. At the time of assessment, 20 patients were hypothyroid after two weeks of thyroid hormone withdrawal, while 20 received thyroid hormone replacement therapy and were euthyroid. All participants underwent brain 18 F-FDG-PET scans and completed mood questionnaires and cognitive tests. Multivariate spatial covariance analysis and univariate voxel-wise analysis were applied for the image data. The hypothyroid patients were more anxious and depressed than the euthyroid participants. The multivariate covariance analysis showed increases in glucose metabolism primarily in the bilateral insula and surrounding areas and concomitant decreases in the parieto-occipital regions in the hypothyroid group. The level of thyrotropin was positively associated with the individual expression of the covariance pattern. The decreased 18 F-FDG uptake in the right cuneus cluster from the univariate analysis was correlated with the increased thyrotropin level and greater depressive symptoms in the hypothyroid group. These results suggest that temporary hypothyroidism, even for a short period, may induce impairment in glucose metabolism and related affective symptoms.

  7. Fetal Thyroid Function, Birth Weight, and in Utero Exposure to Fine Particle Air Pollution: A Birth Cohort Study.

    PubMed

    Janssen, Bram G; Saenen, Nelly D; Roels, Harry A; Madhloum, Narjes; Gyselaers, Wilfried; Lefebvre, Wouter; Penders, Joris; Vanpoucke, Charlotte; Vrijens, Karen; Nawrot, Tim S

    2017-04-01

    Thyroid hormones are critical for fetal development and growth. Whether prenatal exposure to fine particle air pollution (≤ 2.5 μm; PM 2.5 ) affects fetal thyroid function and what the impact is on birth weight in normal healthy pregnancies have not been studied yet. We studied the impact of third-trimester PM 2.5 exposure on fetal and maternal thyroid hormones and their mediating role on birth weight. We measured the levels of free thyroid hormones (FT 3 , FT 4 ) and thyroid-stimulating hormone (TSH) in cord blood ( n = 499) and maternal blood ( n = 431) collected after delivery from mother-child pairs enrolled between February 2010 and June 2014 in the ENVIR ON AGE birth cohort with catchment area in the province of Limburg, Belgium. An interquartile range (IQR) increment (8.2 μg/m 3 ) in third-trimester PM 2.5 exposure was inversely associated with cord blood TSH levels (-11.6%; 95% CI: -21.8, -0.1) and the FT 4 /FT 3 ratio (-62.7%; 95% CI: -91.6, -33.8). A 10th-90th percentile decrease in cord blood FT 4 levels was associated with a 56 g decrease in mean birth weight (95% CI: -90, -23). Assuming causality, we estimated that cord blood FT 4 mediated 21% (-19 g; 95% CI: -37, -1) of the estimated effect of an IQR increment in third-trimester PM 2.5 exposure on birth weight. Third-trimester PM 2.5 exposure was inversely but not significantly associated with maternal blood FT 4 levels collected 1 day after delivery (-4.0%, 95% CI: -8.0, 0.2 for an IQR increment in third-trimester PM 2.5 ). In our study population of normal healthy pregnancies, third-trimester exposure to PM 2.5 air pollution was associated with differences in fetal thyroid hormone levels that may contribute to reduced birth weight. Additional research is needed to confirm our findings in other populations and to evaluate potential consequences later in life.

  8. Thyroid hormone effects on mitochondrial energetics.

    PubMed

    Harper, Mary-Ellen; Seifert, Erin L

    2008-02-01

    Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.

  9. Thyroid hormones and changes in body weight and metabolic parameters in response to weight loss diets: the POUNDS LOST trial.

    PubMed

    Liu, G; Liang, L; Bray, G A; Qi, L; Hu, F B; Rood, J; Sacks, F M; Sun, Q

    2017-06-01

    The role of thyroid hormones in diet-induced weight loss and subsequent weight regain is largely unknown. To examine the associations between thyroid hormones and changes in body weight and resting metabolic rate (RMR) in a diet-induced weight loss setting. Data analysis was conducted among 569 overweight and obese participants aged 30-70 years with normal thyroid function participating in the 2-year Prevention of Obesity Using Novel Dietary Strategies (POUNDS) LOST randomized clinical trial. Changes in body weight and RMR were assessed during the 2-year intervention. Thyroid hormones (free triiodothyronine (T3), free thyroxine (T4), total T3, total T4 and thyroid-stimulating hormone (TSH)), anthropometric measurements and biochemical parameters were assessed at baseline, 6 months and 24 months. Participants lost an average of 6.6 kg of body weight during the first 6 months and subsequently regained an average of 2.7 kg of body weight over the remaining period from 6 to 24 months. Baseline free T3 and total T3 were positively associated, whereas free T4 was inversely associated, with baseline body weight, body mass index and RMR. Total T4 and TSH were not associated with these parameters. Higher baseline free T3 and free T4 levels were significantly associated with a greater weight loss during the first 6 months (P<0.05) after multivariate adjustments including dietary intervention groups and baseline body weight. Comparing extreme tertiles, the multivariate-adjusted weight loss±s.e. was -3.87±0.9 vs -5.39±0.9 kg for free T3 (P trend =0.02) and -4.09±0.9 vs -5.88±0.9 kg for free T4 (P trend =0.004). The thyroid hormones did not predict weight regain in 6-24 months. A similar pattern of associations was also observed between baseline thyroid hormones and changes in RMR. In addition, changes in free T3 and total T3 levels were positively associated with changes in body weight, RMR, body fat mass, blood pressure, glucose, insulin, triglycerides and leptin at 6 months and 24 months (all P<0.05). In this diet-induced weight loss setting, higher baseline free T3 and free T4 predicted more weight loss, but not weight regain among overweight and obese adults with normal thyroid function. These findings reveal a novel role of thyroid hormones in body weight regulation and may help identify individuals more responsive to weight loss diets.

  10. Contribution to the Study of Phosphate Uptake (P$sup 32$) at the Level of the Thyroid, The Suprarenals, and Testicles after Administration of Epiphysis Hormone; CONTRIBUTION A L'ETUDE DE LA PHOSPHOCAPTATION (P$sup 52$) AU NIVEAU DE LA THYROIDE DES SURRENALES ET DES TESTICULES APRES ADMINISTRATION DE L'EPIPHYSE-HORMONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negosscou, I.; Bojinescuu, Al.; Cocou, Fl.

    1959-10-31

    The phosphorus uptake by several endocrine glands after the administration of epiphysis hormone was studied by a tracer technique. After ten days of daily injections of the hormone into male albino rats, the rats received an injection of P/sup 32/. The hormone was again given 6, 12, and 18 hours after the P/sup 32/ injection. Some animals were killed 8 hours after the administration of phosphorus and the rest after 24 hours. The radioactivity of the epiphysis, hypophysis, thyroid, suprarenals, testicles, and seminal vesicles was determined. The results showed a functional inhibition of the phosphorus uptake in the thyroid, suprarenals,more » testicles, and seminal vesicles. A decrease in the phosphorus uptake by the hypophysis was also observed. (J.S.R.)« less

  11. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone.

    PubMed

    Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana

    2003-01-10

    It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.

  12. Boron - A potential goiterogen?

    PubMed

    Popova, Elizaveta V; Tinkov, Alexey A; Ajsuvakova, Olga P; Skalnaya, Margarita G; Skalny, Anatoly V

    2017-07-01

    The iodine deficiency disorders (IDD) include a variety of disturbances such as decreased fertility, increased perinatal and infant mortality, impaired physical and intellectual development, mental retardation, cretinism, hypothyroidism, and endemic goiter (EG). The occurrence of the latter is determined by interplay between genetic and environmental factors. The major environmental factor is iodine status that is required for normal thyroid hormone synthesis. However, other factors like intake of micronutrients and goiterogens also have a significant impact. Essential and toxic trace elements both play a significant role in thyroid physiology. We hypothesize that in terms of overexposure boron may serve as a potential goiterogen. In particular, it is proposed that boron overload may impair thyroid physiology ultimately leading to goiter formation. Certain studies provide evidential support of the hypothesis. In particular, it has been demonstrated that serum and urinary B levels are characterized by a negative association with thyroid hormone levels in exposed subjects. Single indications on the potential efficiency of B in hypothyroidism also exist. Moreover, the levels of B were found to be interrelated with thyroid volume in children environmentally exposed to boron. Experimental studies also demonstrated a significant impact of boron on thyroid structure and hormone levels. Finally, the high rate of B cumulation in thyroid may also indicate that thyroid is the target for B activity. Chemical properties of iodine and boron also provide a background for certain competition. However, it is questionable whether these interactions may occur in the biological systems. Further clinical and experimental studies are required to support the hypothesis of the involvement of boron overexposure in goiter formation. If such association will be confirmed and the potential mechanisms elucidated, it will help to regulate the incidence of hypothyroidism and goiter in endemic regions with high boron levels in soil and water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Tissue-engineered thyroid cell sheet rescued hypothyroidism in rat models after receiving total thyroidectomy comparing with nontransplantation models.

    PubMed

    Arauchi, Ayumi; Shimizu, Tatsuya; Yamato, Masayuki; Obara, Takao; Okano, Teruo

    2009-12-01

    For hormonal deficiency caused by endocrine organ diseases, continuous oral hormone administration is indispensable to supplement the shortage of hormones. In this study, as a more effective therapy, we have tried to reconstruct the three-dimensional thyroid tissue by the cell sheet technology, a novel tissue engineering approach. The cell suspension obtained from rat thyroid gland was cultured on temperature-responsive culture dishes, from which confluent cells detach as a cell sheet simply by reducing temperature without any enzymatic treatment. The 8-week-old Lewis rats were exposed to total thyroidectomy as hypothyroidism models and received thyroid cell sheet transplantation 1 week after total thyroidectomy. Serum levels of free triiodothyronine (fT(3)) and free thyroxine (fT(4)) significantly decreased 1 week after total thyroidectomy. On the other hand, transplantation of the thyroid cell sheets was able to restore the thyroid function 1 week after the cell sheet transplantation, and improvement was maintained for 4 weeks. Moreover, morphological analyses showed typical thyroid follicle organization, and anti-thyroid-transcription-factor-1 antibody staining demonstrated the presence of follicle epithelial cells. The presence of functional microvessels was also detected within the engineered thyroid tissues. In conclusion, our results indicate that thyroid cell sheets transplanted in a model of total thyroidectomy can reorganize histologically to resemble a typical thyroid gland and restore thyroid function in vivo. In this study, we are the first to confirm that engineered thyroid tissue can repair hypothyroidism models in rats and, therefore, cell sheet transplantation of endocrine organs may be suitable for the therapy of hormonal deficiency.

  14. Thyroid hormones and mortality risk in euthyroid individuals: the Kangbuk Samsung health study.

    PubMed

    Zhang, Yiyi; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Pastor-Barriuso, Roberto; Rampal, Sanjay; Han, Won Kon; Shin, Hocheol; Guallar, Eliseo

    2014-07-01

    Hyperthyroidism and hypothyroidism, both overt and subclinical, are associated with all-cause and cardiovascular mortality. The association between thyroid hormones and mortality in euthyroid individuals, however, is unclear. To examine the prospective association between thyroid hormones levels within normal ranges and mortality endpoints. A prospective cohort study of 212 456 middle-aged South Korean men and women who had normal thyroid hormone levels and no history of thyroid disease at baseline from January 1, 2002 to December 31, 2009. Free T4 (FT4), free T3 (FT3), and TSH levels were measured by RIA. Vital status and cause of death ascertainment were based on linkage to the National Death Index death certificate records. After a median follow-up of 4.3 years, 730 participants died (335 deaths from cancer and 112 cardiovascular-related deaths). FT4 was inversely associated with all-cause mortality (HR = 0.77, 95% confidence interval 0.63-0.95, comparing the highest vs lowest quartile of FT4; P for linear trend = .01), and FT3 was inversely associated cancer mortality (HR = 0.62, 95% confidence interval 0.45-0.85; P for linear trend = .001). TSH was not associated with mortality endpoints. In a large cohort of euthyroid men and women, FT4 and FT3 levels within the normal range were inversely associated with the risk of all-cause mortality and cancer mortality, particularly liver cancer mortality.

  15. Refuse leachate exposure causes changes of thyroid hormone level and related gene expression in female goldfish (Carassius auratus).

    PubMed

    Gong, Yufeng; Tian, Hua; Zhang, Xiaona; Dong, Yifei; Wang, Wei; Ru, Shaoguo

    2016-12-01

    To elucidate the potential thyroid disrupting effects of refuse leachate on females, female goldfish (Carassius auratus) were exposed to 0.5% diluted leachates from each step of a leachate treatment process (i.e. raw leachate before treatment, after membrane bioreactor treatment, and the final treated leachate) for 21days. Raw leachate exposure caused disturbances in the thyroid cascade of female fish, as evidenced by the elevated plasma 3,3',5-triiodo-l-thyronine (p<0.05) and thyroid-stimulating hormone (p<0.01) levels as well as up-regulated hepatic and gonadal type I deiodinase (p<0.01), type II deiodinase (p<0.01) and thyroid receptor (p<0.05) mRNA levels. Thyroid disrupting potency decreased markedly as raw leachate progressed through the "membrane bioreactor + reverse osmosis" treatment but could still be detected in the treated leachate. As our results indicated, thyroid system in female goldfish was more sensitive to leachate exposure than that of the male fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Impact of Bariatric Surgery on Thyroid Function and Medication Use in Patients with Hypothyroidism.

    PubMed

    Zendel, Alex; Abu-Ghanem, Yasmin; Dux, Joseph; Mor, Eyal; Zippel, Douglas; Goitein, David

    2017-08-01

    Bariatric surgery (BS) is effective in treating obesity and its associated comorbidities. However, there is a paucity of data on the effect of BS on thyroid function in hypothyroid patients, specifically in those treated with thyroid hormone replacement therapy (THR). The aim of this study was to assess the effect of BS on thyroid function and on THR dosage in patients with hypothyroidism. A retrospective analysis of prospectively collected data of all hypothyroid patients who underwent BS between 2010 and 2014 was performed. Data collected included demographic and anthropometric measurements, as well as changes in thyroid hormone levels and THR dosage up to a year from surgery. During the study period, 93 hypothyroid patients (85 females, 91%), 83 of which treated with replacement thyroid hormone, underwent BS. Laparoscopic sleeve gastrectomy was performed in 77 (82.8%) and Roux-en-Y gastric bypass in 16 patients. Average age and body mass index (BMI) were 46.6 ± 11.2 years and 43.7 ± 6.4 kg/m 2 , respectively. Mean BMI and thyroid-stimulating hormone (TSH) significantly deceased after 6 and 12 months following surgery whereas mean free T4 levels remained stable. TSH decrease was directly correlated to baseline TSH but not to BMI reduction. One year after surgery, 11 patients (13.2%) did not require THR, while the rest required a significantly lower average dose (P < 0.02). There is a favorable effect of BS on the hypothyroid bariatric population. This includes improvement of thyroid function and reduction of thyroid medication dosages. Further studies are required to evaluate an influence of THR absorption and compare different types of bariatric surgeries.

  17. Clinical Features of Early and Late Postoperative Hypothyroidism After Lobectomy.

    PubMed

    Park, Suyeon; Jeon, Min Ji; Song, Eyun; Oh, Hye-Seon; Kim, Mijin; Kwon, Hyemi; Kim, Tae Yong; Hong, Suck Joon; Shong, Young Kee; Kim, Won Bae; Sung, Tae-Yon; Kim, Won Gu

    2017-04-01

    Lobectomy is preferred in thyroid cancer to decrease surgical complications and avoid lifelong thyroid-hormone replacement. However, postoperative hypothyroidism, requiring thyroid-hormone replacement, may occur. We aimed to identify the incidence and risk factors of postoperative hypothyroidism to develop a surveillance strategy after lobectomy for papillary thyroid microcarcinoma (PTMC). This historical cohort study involved 335 patients with PTMC treated by lobectomy. Postoperative thyroid functions were measured regularly, and patients were prescribed levothyroxine according to specific criteria. Patients not satisfying hormone-replacement criteria were closely followed up. Postoperative hypothyroidism occurred in 215 patients (64.2%) including 5 (1.5%) with overt hypothyroidism and 210 (62.7%) with subclinical hypothyroidism. Forty patients (11.9%) were required thyroid hormone replacement. One hundred nineteen patients (33.5%) experienced temporary hypothyroidism and spontaneously recovered to euthyroid state. High preoperative thyroid-stimulating hormone (TSH) was the most important factor predicting postoperative hypothyroidism and failure of recover from hypothyroidism (odds ratio [OR], 2.82 and 1.77; 95% confidence interval [CI], 2.07 to 3.95 and 1.22 to 2.63; P < 0.001 and 0.002, respectively). Of the 215 patients eventually developing postoperative hypothyroidism, 70 (32.6%) developed hypothyroidism after the first postoperative year. Postoperative 1-year TSH levels were able to differentiate patients developing late hypothyroidism or euthyroidism (OR, 2.29; 95% CI, 1.68 to 3.26; P < 0.001). Preoperative and postoperative TSH levels might be predictive for patients who develop postlobectomy hypothyroidism and identify those requiring long-term surveillance for hypothyroidism. Additionally, mild postoperative hypothyroidism cases should be followed up without immediate levothyroxine replacement with the expectation of spontaneous recovery. Copyright © 2017 by the Endocrine Society

  18. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    PubMed Central

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  19. Predictors of Malignancy in Patients with Cytologically Suspicious Thyroid Nodules

    PubMed Central

    Espiritu, Rachel P.; Bahn, Rebecca S.; Henry, Michael R.; Gharib, Hossein; Caraballo, Pedro J.; Morris, John C.

    2011-01-01

    Background Fine needle aspiration (FNA), although very reliable for cytologically benign and malignant thyroid nodules, has much lower predictive value in the case of suspicious or indeterminate nodules. We aimed to identify clinical predictors of malignancy in the subset of patients with suspicious FNA cytology. Methods We reviewed the electronic medical records of 462 patients who had FNA of thyroid nodules at our institution with a suspicious cytological diagnosis, and underwent surgery at Mayo Clinic between January 2004 and September 2008. Demographic data including age, gender, history of exposure to radiation and use of thyroid hormone was collected. The presence of single versus multiple nodules by ultrasonography, nodule size, and serum thyroid-stimulating harmone (TSH) level before thyroid surgery were recorded. Analysis of the latter was limited to patients not taking thyroid hormone or antithyroid drugs at the time of FNA. Results Of the 462 patients, 327 had lesions suspicious for follicular neoplasm (S-FN) or Hürthle cell neoplasm (S-HCN), 125 had cytology suspicious for papillary carcinoma (S-PC) and 10 had a variety of other suspicious lesions (medullary cancer, lymphoma and atypical). Malignancy rate for suspicious neoplastic lesions (FN+HCN) was ∼15%, whereas malignancy rate for lesions S-PC was 77%. Neither age, serum TSH level, or history of radiation exposure were associated with increased malignancy risk. The presence of multiple nodules (41.1% vs. 26.4%, p=0.0014) or smaller nodule size (2.6±1.8 cm vs. 2.9±1.6 cm, p=0.008) was associated with higher malignancy risk. In patients with cytology suspicious for neoplasm (FN, HCN) malignancy risk was higher in those receiving thyroid hormone therapy than in nonthyroid hormone users (37.7% vs. 16.5%, p=0.0004; odds ratio: 3.1), although serum TSH values did not differ significantly between thyroid hormone users and nonusers. Conclusion In patients with cytologically suspicious thyroid nodules, the presence of multiple nodules or smaller nodule size was associated with increased risk of malignancy. In addition, our study demonstrates for the first time, an increased risk of malignancy in patients with nodules suspicious for neoplasm who are taking thyroid hormone therapy. The reason for this association is unknown. PMID:22007937

  20. Thyroid storm induced by TSH-secreting pituitary adenoma: a case report.

    PubMed

    Fujio, Shingo; Ashari; Habu, Mika; Yamahata, Hitoshi; Moinuddin, F M; Bohara, Manoj; Arimura, Hiroshi; Nishijima, Yui; Arita, Kazunori

    2014-01-01

    Thyroid stimulating hormone-secreting pituitary adenomas (TSHomas) are uncommon tumors of the anterior pituitary gland. Patients with TSHomas may present with hyperthyroidism, but the incidence of thyroid storm due to TSHomas has yet to be determined. We report a rare case of thyroid storm caused by TSHoma in a 54-year-old woman. Preoperatively she had symptoms of excessive sweating and palpitation. Blood tests showed inappropriate secretion of TSH with blood TSH 6.86 μ U/mL, fT3 19.8 pg/mL, and fT4 5.95 ng/dL. Magnetic resonance imaging (MRI) revealed a pituitary tumor with maximum diameter of 13 mm that was extirpated through transsphenoidal route. After operation the patient was stuporous and thyroid storm occurred presenting with hyperthermia, hypertension, and tachycardia. It was well managed with nicardipine, midazolam, steroids, and potassium iodide. Immunohistochemical staining of tumor specimen was positive for TSH and growth hormone (GH). One year after operation, fT3 and fT4 levels were still high. As her tumor was diagnosed to be GH- and TSH-producing adenoma, octreotide injection therapy was started, which normalized thyroid hormone levels. This is the second reported case with thyroid storm due to TSHoma and emphasizes the importance of strategies with interdisciplinary cooperation for prevention of such emergency conditions.

  1. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and metabolism.

    PubMed

    Yu, Wen-Guang; Liu, Wei; Jin, Yi-He

    2009-05-01

    The potential toxicity of perfluorooctane sulfonate (PFOS), an environmentally persistent organic pollutant, is of great concern. The present study examines the ability of PFOS to disturb thyroid function and the possible mechanisms involved in PFOS-induced thyroid hormone alteration. Male Sprague-Dawley rats were exposed to 1.7, 5.0, and 15.0 mg/L of PFOS in drinking water for 91 consecutive days. Serum was collected for analysis of total and free thyroxine (T4), total triiodothyronine (T3), and thyrotrophin (TSH). Thyroid and liver were removed for the measurement of endpoints closely related to thyroid hormone biosynthesis and metabolism following PFOS exposure. Determined endpoints were the messenger RNA (mRNA) levels for two isoforms of uridine diphosphoglucuronosyl transferases (UGT1A6 and UGT1A1) and type 1 deiodinase (DIO1) in liver, sodium iodide symporter (NIS), TSH receptor (TSHR), and DIO1 in thyroid as well as the activity of thyroid peroxidase (TPO). Serum total T4 level decreased significantly at all applied dosages, whereas total T3 level increased markedly only at 1.7 mg/L of PFOS. No statistically significant toxic effects of PFOS on serum TSH were observed. Hepatic UGTIA1, but not UGT1A6, mRNA was up-regulated at 5.0 and 15.0 mg/L of PFOS. Treatment with PFOS lowered hepatic DIO1 mRNA at 15.0 mg/L but increased thyroidal DIO1 mRNA dose dependently. The activity of TPO, NIS, and TSHR mRNA in thyroid were unaffected by PFOS treatment. These results indicate that increased hepatic T4 glucuronidation via UGT1A1 and increased thyroidal conversion of T4 to T3 via DIO1 were responsible in part for PFOS-induced hypothyroxinemia in rats.

  2. Association between organochlorine pesticide exposure and thyroid hormones in floriculture workers.

    PubMed

    Blanco-Muñoz, Julia; Lacasaña, Marina; López-Flores, Inmaculada; Rodríguez-Barranco, Miguel; González-Alzaga, Beatriz; Bassol, Susana; Cebrian, Mariano E; López-Carrillo, Lizbeth; Aguilar-Garduño, Clemente

    2016-10-01

    Several studies have suggested that exposure to DDT may be related to changes in thyroid hormone levels in animals and humans, even though results across studies are inconsistent. The aim of this study was to assess the association between exposure to p,p'-DDE (a stable metabolite of DDT) and serum levels of thyroid hormones in floriculture workers. A longitudinal study was conducted on 136 male subjects from the States of Mexico and Morelos, Mexico, who were occupationally exposed to pesticides, during agricultural periods of high (rainy season) and low (dry season) levels of pesticide application. Using a structured questionnaire, a survey was carried out on socio-demographic characteristics, anthropometry, clinical history, alcohol and tobacco consumption, residential chemical exposure, and occupational history. Blood and urine samples were collected to determine serum levels of TSH, total T3, total T4, and p,p'-DDE, and metabolites of organophosphate pesticides (OP), respectively. The analysis of the associations between p,p'-DDE levels and thyroid hormone profile adjusting by potential confounding variables including urinary OP metabolites was carried out using multivariate generalized estimating equation (GEE) models. Our results showed that the geometric means of p,p'-DDE levels were 6.17 ng/ml and 4.71 ng/ml in the rainy and dry seasons, respectively. We observed positive associations between the serum levels of p,p'-DDE and those of total T3 (β=0.01, 95% CI: -0.009, 0.03), and total T4 (β=0.08, 95% CI:0.03, 0.14) and negative but no significant changes in TSH in male floricultural workers, supporting the hypothesis that acts as thyroid disruptor in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase.

    PubMed

    Ng, Lily; Liu, Hong; St Germain, Donald L; Hernandez, Arturo; Forrest, Douglas

    2017-06-01

    Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.

  4. Relationship Between the Thyroid Axis and Alcohol Craving

    PubMed Central

    Aoun, Elie G.; Lee, Mary R.; Haass-Koffler, Carolina L.; Swift, Robert M.; Addolorato, Giovanni; Kenna, George A.; Leggio, Lorenzo

    2015-01-01

    Aims: A few studies have suggested a relationship between thyroid hormones and alcohol dependence (AD) such as a blunted increase of thyroid stimulating hormone (TSH) in response to thyrotropin-releasing hormone (TRH), lower levels of circulating free triiodothyronine (fT3) and free thyroxine (fT4) levels and down regulation of the TRH receptors. The current study aimed to explore the relationship between the hormones of the thyroid axis and alcohol-seeking behaviors in a sample of alcohol-dependent patients. Methods: Forty-two treatment-seeking alcohol-dependent individuals enrolled in a 12-week treatment study were considered. The Timeline Follow Back (TLFB) was used to assess the number of drinks consumed during the 12-week period. Blood levels of thyroid hormones (TSH, fT3 and fT4) were measured prior to and at the end of treatment. Questionnaires were administered to evaluate craving for alcohol [Penn Alcohol Craving Scale (PACS) and the Obsessive Compulsive Drinking Scale (OCDS) and its two subscales ODS for obsessions and CDS for compulsions] as well as anxiety [State and Trait Inventory (STAI)], depression [the Zung Self-Rating Depression Scale (Zung)] and aggression [the Aggressive Questionnaire (AQ)]. Results: At baseline, we found significant positive correlations between fT3 and OCDS (r = 0.358, P = 0.029) and CDS (r = 0.405, P = 0.013) and negative correlations between TSH levels and STAI (r = −0.342, P = 0.031), and AQ (r = −0.35, P = 0.027). At the end of the 12-week study period, abstinent patients had a greater change in TSH than those who relapsed (−0.4 vs. −0.25, F(1,24) = 5.4, P = 0.029). Conclusion: If confirmed in larger samples, these findings could suggest that the thyroid axis might represent a biomarker of alcohol craving and drinking. PMID:25433251

  5. Early Hypoparathyroidism Reversibility with Treatment of Riedel's Thyroiditis.

    PubMed

    Stan, Marius N; Haglind, Elizabeth G; Drake, Matthew T

    2015-09-01

    Riedel's thyroiditis (RT) is a rare, fibroinflammatory condition which induces gradual thyroid gland destruction and adjacent soft-tissue fibrous infiltration. About one- seventh of RT cases are associated with hypoparathyroidism, necessitating long-term therapy for symptomatic hypocalcemia. The reversibility of the parathyroid hormone deficit has not been fully described. A 40-year-old woman with no prior history of thyroid disease presented with a six month history of progressive thyroid enlargement complicated by worsening dysphagia and positional dyspnea. Her past medical history was remarkable only for retroperitoneal fibrosis. Physical examination revealed a large, hard, non-mobile goiter. Thyroid indices while maintained on levothyroxine were normal, but marked asymptomatic hypocalcemia with an inappropriately normal parathyroid hormone level was noted. Thyroid imaging and fine needle aspiration were consistent with RT. Isthmectomy and subsequent serial corticosteroid and tamoxifen treatment led to rapid symptom improvement. Serum calcium and parathyroid hormone levels returned to the reference range within three months. We describe a case of RT in which hypoparathyroidism resolved after treatment targeted the mechanical compression and the fibroinflammatory milieu of the patient's thyroidal disease. RT can be associated with hypoparathyroidism that is clinically silent at presentation. Mechanical decompression of the goiter and immunomodulatory therapy can reverse the fibrosclerotic process and lead to rapid recovery of parathyroid gland function, as in this patient. However, in most cases hypoparathyroidism is persistent and requires continued treatment to prevent symptomatic hypocalcemia.

  6. Thyroid hormone stimulation of NADPH P450 reductase expression in liver and extrahepatic tissues. Regulation by multiple mechanisms.

    PubMed

    Ram, P A; Waxman, D J

    1992-02-15

    The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major increase in P450 reductase protein or activity was detectable over a 3-day period. Together, these studies establish that thyroid hormone regulates P450 reductase expression by pretranslational mechanisms. They also suggest that other regulatory mechanisms, which may involve changes in P450 reductase protein stability and/or changes in the translational efficiency of its mRNA, are likely to occur.

  7. Toxicological effects of clofibric acid and diclofenac on plasma thyroid hormones of an Indian major carp, Cirrhinus mrigala during short and long-term exposures.

    PubMed

    Saravanan, Manoharan; Hur, Jang-Hyun; Arul, Narayanasamy; Ramesh, Mathan

    2014-11-01

    In the present investigation, the toxicity of most commonly detected pharmaceuticals in the aquatic environment namely clofibric acid (CA) and diclofenac (DCF) was investigated in an Indian major carp Cirrhinus mrigala. Fingerlings of C. mrigala were exposed to different concentrations (1, 10 and 100μgL(-1)) of CA and DCF for a period of 96h (short term) and 35 days (long term). The toxic effects of CA and DCF on thyroid hormones (THs) such as thyroid stimulating hormone (TSH), thyroxine (T4) and triiodothyronine (T3) levels were evaluated. During the short and long-term exposure period TSH level was found to be decreased at all concentrations of CA (except at the end of 14(th) day in 1 and 10μgL(-l) and 21(st) day in 1μgL(-l)) whereas in DCF exposed fish TSH level was found to be increased when compared to control groups. T4 level was found to be decreased at 1 and 100μgL(-l) of CA exposure at the end of 96h. However, T4 level was decreased at all concentrations of CA and DCF during long-term (35 days) exposure period. Fish exposed to all concentrations of CA and DCF had lower level of T3 in both the treatments. These results suggest that both CA and DCF drugs induced significant changes (P<0.01 and P<0.05) on thyroid hormonal levels of C. mrigala. The alterations of these hormonal levels can be used as potential biomarkers in monitoring of pharmaceutical drugs in aquatic organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Bisphenol A influences oestrogen- and thyroid hormone-regulated thyroid hormone receptor expression in rat cerebellar cell culture.

    PubMed

    Somogyi, Virág; Horváth, Tamás L; Tóth, István; Bartha, Tibor; Frenyó, László Vilmos; Kiss, Dávid Sándor; Jócsák, Gergely; Kerti, Annamária; Naftolin, Frederick; Zsarnovszky, Attila

    2016-12-01

    Thyroid hormones (THs) and oestrogens are crucial in the regulation of cerebellar development. TH receptors (TRs) mediate these hormone effects and are regulated by both hormone families. We reported earlier that THs and oestradiol (E 2 ) determine TR levels in cerebellar cell culture. Here we demonstrate the effects of low concentrations (10 -10 M) of the endocrine disruptor (ED) bisphenol A (BPA) on the hormonal (THs, E 2 ) regulation of TRα,β in rat cerebellar cell culture. Primary cerebellar cell cultures, glia-containing and glia-destroyed, were treated with BPA or a combination of BPA and E 2 and/or THs. Oestrogen receptor and TH receptor mRNA and protein levels were determined by real-time qPCR and Western blot techniques. The results show that BPA alone decreases, while BPA in combination with THs and/or E 2 increases TR mRNA expression. In contrast, BPA alone increased receptor protein expressions, but did not further increase them in combination with THs and/or E 2 . The modulatory effects of BPA were mediated by the glia; however, the degree of changes also depended on the specific hormone ligand used. The results signify the importance of the regulatory mechanisms interposed between transcription and translation and raise the possibility that BPA could act to influence nuclear hormone receptor levels independently of ligand-receptor interaction.

  9. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-11-22

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital.

  10. Thyroid hormones in the elderly sick: "T4 euthyroidism".

    PubMed Central

    Burrows, A W; Shakespear, R A; Hesch, R D; Cooper, E; Aickin, C M; Burke, C W

    1975-01-01

    Thyroid function and serum levels of triiodothyronine (T3) and thyroxine (T4) were investigated in 79 euthyroid geriatric patients. Of the 59 inpatients and 20 outpatients 35 (59%) and 2, respectively, had low T3 levels. In contrast, 7 (12%) and 6 (30%), respectively, had raised T4 levels. Two further patients were excluded from the study because of raised levels of thyroid-stimulating hormone. Thyroxine-binding globulin was greatly increased in both groups of patients, but low serum albumin levels were present in 31 (39%). Despite these changes free T3 and T4 indices closely followed total T3 and T4 levels. The difference between the two groups of patients did not correlate with body weight, diagnostic categories, age, drug treatment, or duration of stay in hospital. PMID:811313

  11. Relational Stability of Thyroid Hormones in Euthyroid Subjects and Patients with Autoimmune Thyroid Disease

    PubMed Central

    Hoermann, Rudolf; Midgley, John E.M.; Larisch, Rolf; Dietrich, Johannes W.

    2016-01-01

    Background/Aim Operating far from its equilibrium resting point, the thyroid gland requires stimulation via feedback-controlled pituitary thyrotropin (TSH) secretion to maintain adequate hormone supply. We explored and defined variations in the expression of control mechanisms and physiological responses across the euthyroid reference range. Methods We analyzed the relational equilibria between thyroid parameters defining thyroid production and thyroid conversion in a group of 271 thyroid-healthy subjects and 86 untreated patients with thyroid autoimmune disease. Results In the euthyroid controls, the FT3-FT4 (free triiodothyronine-free thyroxine) ratio was strongly associated with the FT4-TSH ratio (tau = −0.22, p < 0.001, even after correcting for spurious correlation), linking T4 to T3 conversion with TSH-standardized T4 production. Using a homeostatic model, we estimated both global deiodinase activity and maximum thyroid capacity. Both parameters were nonlinearly and inversely associated, trending in opposite directions across the euthyroid reference range. Within the panel of controls, the subgroup with a relatively lower thyroid capacity (<2.5 pmol/s) displayed lower FT4 levels, but maintained FT3 at the same concentrations as patients with higher functional and anatomical capacity. The relationships were preserved when extended to the subclinical range in the diseased sample. Conclusion The euthyroid panel does not follow a homogeneous pattern to produce random variation among thyroid hormones and TSH, but forms a heterogeneous group that progressively displays distinctly different levels of homeostatic control across the euthyroid range. This suggests a concept of relational stability with implications for definition of euthyroidism and disease classification. PMID:27843807

  12. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  13. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain###

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  14. [Analysis of serum levels of nesfatin-1 in children and adolescents with autoimmune thyroid diseases].

    PubMed

    Sawicka, Beata; Bossowski, Artur

    2013-01-01

    Overweight and diseases connected with it are an increasing problem in children and adolescents. Thyroid disease leads to a change of weight - in hyperthyroidism body mass is reduced whereas in hypothyroidism it is increased. It is emphasized that changes in hormones such as peptide levels are in close relationship with the regulation of body mass. Nesfatin-1 is a recently described anorexigenic peptide produced by the brain. Nesfatin-1 also reduces body weight gain, suggesting a role as a new modulator of energy balance. Excess nesfatin in the brain leads to a loss of appetite, less frequent hunger, a `sense of fullness´, and a drop in body fat and weight. A lack of nesfatin-1 in the brain leads to an increase of appetite, more frequent episodes of hunger, an increase of body fat and weight, and the inability to `feel full´. Aim of the study was to evaluate nesfatin-1 levels in young patients with untreated Graves´ disease, subclinical Hashimoto´ thyroiditis, and in healthy children. The study group formed 78 patients of the Outpatient Endocrinology Clinic of Pediatrics, Endocrinology, Diabetology with Cardiology Division. In all the patients, nesfatin level was analyzed by the ELISA´s method. In the group with hyperthyroidism in Graves´ disease lower levels of nesfatin-1 were found compared to the group of healthy children (19.37 vs 32.96 ng/ml; p<0.02); after appropriate treatment in that group the levels of nesfatin-1 were higher compared to the group with hyperthyroidism, but lower compared to the group of healthy children (20.35 vs 32.96 ng/ml; NS). On the other hand, nesfatin-1 levels were lower in children with untreated subclinical hypothyroidism in Hashimoto´s thyroiditis compared to the group of healthy children (17.2 vs32.96 ng/ml; p<0.002). After treatment of L-thyroxine lower levels of nesfatin-1 were found compared to the control group (14.5 vs 32.96 ng/ml; NS). No relationship between nesfatin-1 and thyroid hormones was observed. It might be that disturbances in thyroid hormones in thyroid diseases do not have an essential effect on changes of nesfatin-1 - an appetite-controlling hormone/peptide. Secondly, nesfatin-1 levels were lower in children with untreated autoimmune thyroid diseases, however, the mechanism is also unknown.

  15. Thyroid Hormone Indices in Computer Workers with Emphasis on the Role of Zinc Supplementation.

    PubMed

    Amin, Ahmed Ibrahim; Hegazy, Noha Mohamed; Ibrahim, Khadiga Salah; Mahdy-Abdallah, Heba; Hammouda, Hamdy A A; Shaban, Eman Essam

    2016-06-15

    This study aimed to investigate the effects of computer monitor-emitted radiation on thyroid hormones and the possible protective role of zinc supplementation. The study included three groups. The first group (group B) consisted of 42 computer workers. This group was given Zinc supplementation in the form of one tablet daily for eight weeks. The second group (group A) comprised the same 42 computer workers after zinc supplementation. A group of 63 subjects whose job does not entail computer use was recruited as a control Group (Group C). All participants filled a questionnaire including detailed medical and occupational histories. They were subjected to full clinical examination. Thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4) and zinc levels were measured in all participants. TSH, FT3, FT4 and zinc concentrations were decreased significantly in group B relative to group C. In group A, all tested parameters were improved when compared with group B. The obtained results revealed that radiation emitted from computers led to changes in TSH and thyroid hormones (FT3 and FT4) in the workers. Improvement after supplementation suggests that zinc can ameliorate hazards of such radiation on thyroid hormone indices.

  16. Thyroid-stimulating Hormone (TSH): Measurement of Intracellular, Secreted, and Circulating Hormone in Xenopus laevis and Xenopus tropicalis.

    EPA Science Inventory

    Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...

  17. Association between genetic polymorphism and levothyroxine bioavailability in hypothyroid patients.

    PubMed

    Arici, Merve; Oztas, Ezgi; Yanar, Fatih; Aksakal, Nihat; Ozcinar, Beyza; Ozhan, Gul

    2018-03-28

    Thyroid hormones play a vital role in the human body for growth and differentiation, regulation of energy metabolism, and physiological function. Hypothyroidism is a common endocrine disorder, which generally results from diminished normal circulating concentrations of serum thyroxine (fT4) and triiodothyronine (fT3). The primary choice in hypothyroidism treatment is oral administration of levothyroxine (L-T4), a synthetic T4 hormone, as approximately 100-125 μg/day. Generally, dose adjustment is made by trial and error approach. However, there are several factors which might influence bioavailability of L-T4 treatment. Genetic background could be an important factor in hypothyroid patients as well as age, gender, concurrent medications and patient compliance. The concentration of thyroid hormones in tissue is regulated by both deiodinases enzyme and thyroid hormone transporters. In the present study, it was aimed to evaluate the effects of genetic differences in the proteins and enzymes (DIO1, DIO2, TSHR, THR and UGT) which are efficient in thyroid hormone metabolism and bioavailability of L-T4 in Turkish population. According to our findings, rs225014 and rs225015 variants in DIO2, which catalyses the conversion of thyroxine (pro-hormone) to the active thyroid hormone, were associated with TSH levels. It should be given lower dose to the patients with rs225014 TT and rs225015 GG genotypes in order to provide proper treatment with higher effectivity and lower toxicity.

  18. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism.

    PubMed

    Casas, François; Fouret, Gilles; Lecomte, Jérome; Cortade, Fabienne; Pessemesse, Laurence; Blanchet, Emilie; Wrutniak-Cabello, Chantal; Coudray, Charles; Feillet-Coudray, Christine

    2018-02-01

    Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.

  19. Thyroid storm with multiple organ failure, disseminated intravascular coagulation, and stroke with a normal serum FT3 level.

    PubMed

    Harada, Yuko; Akiyama, Hisanao; Yoshimoto, Tatsuji; Urao, Yasuko; Ryuzaki, Munekazu; Handa, Michiko

    2012-01-01

    Thyroid storm is a rare disorder with a sudden onset, rapid progression and high mortality. We experienced a case of thyroid storm which had a devastating course, including multiple organ failure (MOF), severe hypoglycemia, disseminated intravascular coagulation (DIC), and stroke. It was difficult to make a diagnosis of thyroid storm in the present patient, because she did not have a history of thyroid disease and her serum FT3 level was normal. Clinicians should be aware that thyroid storm can occur even when there is an almost normal level of thyroid hormones, and that intensive anticoagulation is required for patients with atrial fibrillation to prevent stroke after thyroid storm.

  20. The different requirement of L-T4 therapy in congenital athyreosis compared with adult-acquired hypothyroidism suggests a persisting thyroid hormone resistance at the hypothalamic-pituitary level.

    PubMed

    Bagattini, Brunella; Cosmo, Caterina Di; Montanelli, Lucia; Piaggi, Paolo; Ciampi, Mariella; Agretti, Patrizia; Marco, Giuseppina De; Vitti, Paolo; Tonacchera, Massimo

    2014-11-01

    Levothyroxine (l-T4) is commonly employed to correct hormone deficiency in children with congenital hypothyroidism (CH) and in adult patients with iatrogenic hypothyroidism. To compare the daily weight-based dosage of the replacement therapy with l-T4 in athyreotic adult patients affected by CH and adult patients with thyroid nodular or cancer diseases treated by total thyroidectomy. A total of 36 adult patients (27 females and nine males) aged 18-29 years were studied; 13 patients (age: 21.5±2.1, group CH) had athyreotic CH treated with l-T4 since the first days of life. The remaining 23 patients (age: 24±2.7, group AH) had hypothyroidism after total thyroidectomy (14 patients previously affected by nodular disease and nine by thyroid carcinoma with clinical and biochemical remission). Patient weight, serum free thyroid hormones, TSH, thyroglobulin (Tg), anti-Tg, and anti-thyroperoxidase antibodies were measured. Required l-T4 dosage was evaluated. At the time of the observations, all patients presented free thyroid hormones within the normal range and TSH between 0.8 and 2 μIU/ml. Patients had undetectable Tg and anti-thyroid antibodies. The daily weight-based dosage of the replacement therapy with l-T4 to reach euthyroidism in patients of group CH was significantly higher than that in those of group AH (2.16±0.36 vs 1.73±0.24 μg/kg, P<0.005). Patients of group CH treated with l-T4 had significantly higher serum TSH levels than patients of group AH (P=0.05) as well as higher FT4 concentrations. To correct hypothyroidism, patients of group CH required a daily l-T4 dose/kg higher than group AH patients, despite higher levels of TSH. The different requirement of replacement therapy between adult patients with congenital and those with surgical athyroidism could be explained by a lack of thyroid hormones since fetal life in CH, which could determine a different set point of the hypothalamus-pituitary-thyroid axis. © 2014 European Society of Endocrinology.

  1. The environmental contaminant tributyltin leads to abnormalities in different levels of the hypothalamus-pituitary-thyroid axis in female rats.

    PubMed

    Andrade, Marcelle Novaes; Santos-Silva, Ana Paula; Rodrigues-Pereira, Paula; Paiva-Melo, Francisca Diana; de Lima Junior, Niedson Correa; Teixeira, Mariana Pires; Soares, Paula; Dias, Glaecir Roseni Munstock; Graceli, Jones Bernardes; de Carvalho, Denise Pires; Ferreira, Andrea Claudia Freitas; Miranda-Alves, Leandro

    2018-06-11

    Tributyltin is a biocide used in nautical paints, aiming to reduce fouling of barnacles in ships. Despite the fact that many effects of TBT on marine species are known, studies in mammals have been limited, especially those evaluating its effect on the function of the hypothalamus-pituitary-thyroid (HPT) axis. The aim of this study was to investigate the effects of subchronic exposure to TBT on the HPT axis in female rats. Female Wistar rats received vehicle, TBT 200 ng kg -1 BW d -1 or 1000 ng kg -1 BW d -1 orally by gavage for 40 d. Hypothalamus, pituitary, thyroid, liver and blood samples were collected. TBT200 and TBT1000 thyroids showed vacuolated follicular cells, with follicular hypertrophy and hyperplasia. An increase in epithelial height and a decrease in the thyroid follicle and colloid area were observed in TBT1000 rats. Moreover, an increase in the epithelium/colloid area ratio was observed in both TBT groups. Lower TRH mRNA expression was observed in the hypothalami of TBT200 and TBT1000 rats. An increase in Dio1 mRNA levels was observed in the hypothalamus and thyroid in TBT1000 rats only. TSH serum levels were increased in TBT200 rats. In TBT1000 rats, there was a decrease in total T4 serum levels compared to control rats, whereas T3 serum levels did not show significant alterations. We conclude that TBT exposure can promote critical abnormalities in the HPT axis, including changes in TRH mRNA expression and serum TSH and T4 levels, in addition to affecting thyroid morphology. These findings demonstrate that TBT disrupts the HPT axis. Additionally, the changes found in thyroid hormones suggest that TBT may interfere with the peripheral metabolism of these hormones, an idea corroborated by the observed changes in Dio1 mRNA levels. Therefore, TBT exposition might interfere not only with the thyroid axis but also with thyroid hormone metabolism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. [The course of pregnancy in congenital thyroid gland aplasia. Case report with special reference to maternal hypothyroidism].

    PubMed

    Bolz, M; Nagel, H

    1994-01-01

    A report is given on a 28 years old women with congenital aplasia of the thyroid gland. She was substituted with thyroxine (300 micrograms per day). Her first pregnancy was complicated by gestational hypertension and pre-eclampsia. Delivery was by forceps. During the first trimester of her second pregnancy, bleedings occurred. The thyroid-stimulating hormone level (TSH-level) was increased (18.3 microU/ml). The patient did not show clinical signs of manifested hypothyroidism. The thyroxine dosis was increased. Bleedings disappeared. Labour was terminated and induced. Labour intra partum was hypoactive. The delivery was again by forceps. The newborn did not show any signals of hypothyroidism. Dysfunction of thyroid gland is associated with reduced fertility. Hypothyroidism in pregnancy is associated with an adverse outcome in fetal health as well as an increase in obstetric complications. Thyroid hormones play a vital role in fetal development and maturation of brain. Women with a hypothyroidism have a lower rate of pregnancy and a higher rate of spontaneous miscarriages compared to a normal population. Recognition and treatment of thyroid disorders in reproductive age occur before conception. Iodoprophylaxis is necessary for prevention of congenital hypothyroidism (cretinism). Iodoprophylaxis is necessary to prevent endemic goiter in pregnancy. Euthyroid goiter is an indication for a combined treatment with jodid and levothyroxine. Treatment should be individualized. Assessment of efficacy of treatment is based on measurement of TSH- and free thyroid hormone (fT4)-levels.

  3. The heterochronic gene Lin28 regulates amphibian metamorphosis through disturbance of thyroid hormone function.

    PubMed

    Faunes, Fernando; Gundermann, Daniel G; Muñoz, Rosana; Bruno, Renzo; Larraín, Juan

    2017-05-15

    Metamorphosis is a classic example of developmental transition, which involves important morphological and physiological changes that prepare the organism for the adult life. It has been very well established that amphibian metamorphosis is mainly controlled by Thyroid Hormone (TH). Here, we show that the heterochronic gene Lin28 is downregulated during Xenopus laevis metamorphosis. Lin28 overexpression before activation of TH signaling delays metamorphosis and inhibits the expression of TH target genes. The delay in metamorphosis is rescued by incubation with exogenous TH, indicating that Lin28 works upstream or parallel to TH. High-throughput analyses performed before any delay on metamorphosis or change in TH signaling showed that overexpression of Lin28 reduces transcript levels of several hormones secreted by the pituitary, including the Thyroid-Stimulating Hormone (TSH), and regulates the expression of proteins involved in TH transport, metabolism and signaling, showing that Lin28 disrupts TH function at different levels. Our data demonstrates that the role of Lin28 in controlling developmental transitions is evolutionary conserved and establishes a functional interaction between Lin28 and thyroid hormone function introducing a new regulatory step in perinatal development with implications for our understanding of endocrine disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A novel hypothyroid dwarfism due to the missense mutation Arg479Cys of the thyroid peroxidase gene in the mouse.

    PubMed

    Takabayashi, Shuji; Umeki, Kazumi; Yamamoto, Etsuko; Suzuki, Tohru; Okayama, Akihiko; Katoh, Hideki

    2006-10-01

    Recently, we found a novel dwarf mutation in an ICR closed colony. This mutation was governed by a single autosomal recessive gene. In novel dwarf mice, plasma levels of the thyroid hormones, T3 and T4, were reduced; however, TSH was elevated. Their thyroid glands showed a diffuse goiter exhibiting colloid deficiency and abnormal follicle epithelium. The dwarfism was improved by adding thyroid hormone in the diet. Gene mapping revealed that the dwarf mutation was closely linked to the thyroid peroxidase (Tpo) gene on chromosome 12. Sequencing of the Tpo gene of the dwarf mice demonstrated a C to T substitution at position 1508 causing an amino acid change from arginine (Arg) to cysteine (Cys) at codon 479 (Arg479Cys). Western blotting revealed that TPO protein of the dwarf mice was detected in a microsomal fraction of thyroid tissue, but peroxidase activity was not detected. These findings suggested that the dwarf mutation caused a primary congenital hypothyroidism by TPO deficiency, resulting in a defect of thyroid hormone synthesis.

  5. Thyroid Allostasis–Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming

    PubMed Central

    Chatzitomaris, Apostolos; Hoermann, Rudolf; Midgley, John E.; Hering, Steffen; Urban, Aline; Dietrich, Barbara; Abood, Assjana; Klein, Harald H.; Dietrich, Johannes W.

    2017-01-01

    The hypothalamus–pituitary–thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions. PMID:28775711

  6. Functional expression of the thyrotropin receptor in C cells: new insights into their involvement in the hypothalamic-pituitary-thyroid axis

    PubMed Central

    Morillo-Bernal, Jesús; Fernández-Santos, José M; Utrilla, José C; de Miguel, Manuel; García-Marín, Rocío; Martín-Lacave, Inés

    2009-01-01

    Thyroid C cells, or parafollicular cells, are mainly known for producing calcitonin, a hormone involved in calcium homeostasis with hypocalcemic and hypophosphatemic effects. Classically, the main endocrine activity of this cell population has been believed to be restricted to its roles in serum calcium and bone metabolism. Nonetheless, in the last few years evidence has been accumulating in the literature with regard to local regulatory peptides secreted by C cells, such as somatostatin, ghrelin, thyrotropin releasing hormone or the recently described cocaine- and amphetamine-related transcript, which could modify thyroid function. As thyrotropin is the main hormone controlling the hypothalamic-pituitary-thyroid axis and, accordingly, thyroid function, we have examined the functional expression of the thyrotropin receptor in C-cell lines and in thyroid tissues. We have found that rat and human C-cell lines express the thyrotropin receptor at both mRNA and protein levels. Furthermore, incubation of C cells with thyrotropin resulted in a 10-fold inhibition of thyrotropin-receptor expression, and a concomitant decrease of the steady-state mRNA levels for calcitonin and calcitonin gene-related peptide determined by quantitative real-time PCR was found. Finally, thyrotropin receptor expression by C cells was confirmed at protein level in both normal and pathological thyroid tissues by immunohistochemistry and immunofluorescence. These results confirm that C cells, under regulation by thyrotropin, are involved in the hypothalamic-pituitary-thyroid axis and suggest a putative role in local fine-tuning of follicular cell activity. PMID:19493188

  7. Pyrrolidon carboxypeptidase activities in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-ovary axes of rats with mammary gland cancer induced by N-methyl nitrosourea.

    PubMed

    Carrera, M P; Ramírez-Expósito, M J; Valenzuela, M T; García, M J; Mayas, M D; Arias de Saavedra, J M; Sánchez, R; Pérez, M C; Martínez-Martos, J M

    2005-02-01

    Pyrrolidon carboxypeptidase is an omega-peptidase that hydrolyses N-terminal pyroglutamyl residues from biologically active peptides such as gonadotropin-releasing and thyrotrophin-releasing hormones. We previously described a decrease in both rat and human pyrrolidon carboxypeptidase activity with breast cancer, suggesting that gonadotropin-releasing hormone may be an important local intracrine, autocrine and/or paracrine hormonal factor in the pathogenesis of breast cancer while playing a role in the tumoral process. However, the other susceptible substrate of pyrrolidon carboxypeptidase, thyrotrophin-releasing hormone, may also be modified with breast cancer, supporting an association between breast cancer and thyroid disorders. The present work analyses soluble and membrane-bound pyrrolidon carboxypeptidase activities in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-ovary axes in N-methyl nitrosourea-induced breast cancer in rats. Our aim was to determine the possible relationship between gonadotropin-releasing hormone and thyrotrophin-releasing hormone regulation through pyrrolidon carboxypeptidase activity. We propose that pyrrolidon carboxypeptidase activity dysregulation at various local and systemic levels may participate in the initiation, promotion and progression of breast cancer induced in rat by N-methyl nitrosourea through the increase in gonadotropin-releasing hormone. Since pyrrolidon carboxypeptidase activity also acts on thyrotrophin-releasing hormone, the dysregulation of this enzyme's activity could indirectly affect hypothalamus-pituitary-thyroid axis function, and thus potentially represent a link between the diseases of thyroid and breast cancer.

  8. Effects of PCBs and PBDEs on thyroid hormone, lymphocyte proliferation, hematology and kidney injury markers in residents of an e-waste dismantling area in Zhejiang, China.

    PubMed

    Xu, Peiwei; Lou, Xiaoming; Ding, Gangqiang; Shen, Haitao; Wu, Lizhi; Chen, Zhijian; Han, Jianlong; Wang, Xiaofeng

    2015-12-01

    Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are two typical categories of contaminants released from e-waste dismantling environments. In China, the body burdens of PCBs and PBDEs are associated with abnormal thyroid hormones in populations from e-waste dismantling sites, but the results are limited and contradictory. In this study, we measured the serum levels of PCBs and PBDEs and the thyroid hormone free triiodothyronine (FT3), free thyroxine (FT4) and thyroid-stimulating hormone (TSH) in 40 residents in an e-waste dismantling area and in 15 residents in a control area. Additionally, we also measured some lymphocyte proliferation indexes, hematologic parameters and kidney injury markers, including white blood cells, neutrophils, monocytes, lymphocytes, hemoglobin, platelets, serum creatinine and beta 2-microglobulin (β2-MG). The results indicated that the mean level of ΣPCBs in the exposure group was significantly higher than that in the control group (964.39 and 67.98 ng g(-1), p<0.0001), but the mean level of ΣPBDEs in the exposure group was not significantly higher than that in the controls (139.32 vs. 75.74 ng g(-1), p>0.05). We determined that serum levels of FT3, FT4, monocytes and lymphocytes were significantly lower, whereas the levels of neutrophils, hemoglobin, platelets and serum creatinine were significantly higher in the exposed group (p<0.05). The mean level of ΣPCBs was negatively correlated with levels of FT3, FT4, monocytes and lymphocytes (p<0.05) and positively correlated with levels of neutrophils, hemoglobin, serum creatinine and β2-MG (p<0.05). Additionally, the mean level of ΣPBDEs was positively correlated with levels of white blood cells, hemoglobin and platelets (p<0.05). Our data suggest that exposure to an e-waste dismantling environment may increase the body burdens of PCBs and the specific PBDEs congeners in native residents and that the contaminants released from e-waste may contribute to abnormal changes in body levels of thyroid hormone, hematology and kidney injury markers. Copyright © 2015. Published by Elsevier B.V.

  9. Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism.

    PubMed

    Varela, Luis; Martínez-Sánchez, Noelia; Gallego, Rosalía; Vázquez, María J; Roa, Juan; Gándara, Marina; Schoenmakers, Erik; Nogueiras, Rubén; Chatterjee, Krishna; Tena-Sempere, Manuel; Diéguez, Carlos; López, Miguel

    2012-06-01

    Hyperthyroidism is characterized in rats by increased energy expenditure and marked hyperphagia. Alterations of thermogenesis linked to hyperthyroidism are associated with dysregulation of hypothalamic AMPK and fatty acid metabolism; however, the central mechanisms mediating hyperthyroidism-induced hyperphagia remain largely unclear. Here, we demonstrate that hyperthyroid rats exhibit marked up-regulation of the hypothalamic mammalian target of rapamycin (mTOR) signalling pathway associated with increased mRNA levels of agouti-related protein (AgRP) and neuropeptide Y (NPY), and decreased mRNA levels of pro-opiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC), an area where mTOR co-localizes with thyroid hormone receptor-α (TRα). Central administration of thyroid hormone (T3) or genetic activation of thyroid hormone signalling in the ARC recapitulated hyperthyroidism effects on feeding and the mTOR pathway. In turn, central inhibition of mTOR signalling with rapamycin in hyperthyroid rats reversed hyperphagia and normalized the expression of ARC-derived neuropeptides, resulting in substantial body weight loss. The data indicate that in the hyperthyroid state, increased feeding is associated with thyroid hormone-induced up-regulation of mTOR signalling. Furthermore, our findings that different neuronal modulations influence food intake and energy expenditure in hyperthyroidism pave the way for a more rational design of specific and selective therapeutic compounds aimed at reversing the metabolic consequences of this disease. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. Thyroid Hormone Therapy and Risk of Thyrotoxicosis in Community-Resident Older Adults: Findings from the Baltimore Longitudinal Study of Aging.

    PubMed

    Mammen, Jennifer S; McGready, John; Oxman, Rachael; Chia, Chee W; Ladenson, Paul W; Simonsick, Eleanor M

    2015-09-01

    Both endogenous and exogenous thyrotoxicosis has been associated with atrial fibrillation and low bone mineral density. Therefore, this study investigated the risk factors associated with prevalent and incident thyrotoxicosis and the initiation of thyroid hormone therapy in a healthy, aging cohort. A total of 1450 ambulatory community volunteer participants in the Baltimore Longitudinal Study of Aging examined at the NIA Clinical Research Unit in Baltimore, MD, have undergone longitudinal monitoring of serum thyrotropin (TSH) and thyroid hormone (free thyroxine and free triiodothryonine) levels as well as medication use every one to four years, depending on age, between 2003 and 2014. The prevalence of low TSH was 9.6% for participants on thyroid hormone and 0.8% for nontreated individuals (p < 0.001). New cases occurred at a rate of 17.7/1000 person-years of exposure to thyroid hormone therapy [CI 9-32/1000] and 1.5/1000 person-years in the unexposed population [CI 0.7-2.9/1000]. Women were more likely to be treated and more often overtreated than men were. The adjusted hazard ratio (HR) for thyrotoxicosis between treated and untreated women was 27.5 ([CI 7.2-105.4]; p < 0.001) and 3.8 for men ([CI 1.2-6.3]; p < 0.01). White race/ethnicity and older age were risk factors for thyroid hormone therapy but not overtreatment. Body mass index was not associated with starting therapy (HR = 1.0). Thyroid hormone initiation was highest among women older than 80 years of age (3/100 person-years). For one-third of treated participants with follow-up data, overtreatment persisted at least two years. Iatrogenic thyrotoxicosis accounts for approximately half of both prevalent and incident low TSH events in this community-based cohort, with the highest rates among older women, who are vulnerable to atrial fibrillation and osteoporosis. Physicians should be particularly cautious in treating subclinical hypothyroidism in elderly women in light of recent studies demonstrating no increased risk of cardiovascular morbidity or death for individuals with elevated TSH levels <10 mIU/L.

  11. Hepatocyte nuclear factor 4alpha contributes to thyroid hormone homeostasis by cooperatively regulating the type 1 iodothyronine deiodinase gene with GATA4 and Kruppel-like transcription factor 9.

    PubMed

    Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F; Gonzalez, Frank J; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro

    2008-06-01

    Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4alpha (HNF4alpha)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4alpha-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4alpha plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4alpha site (direct repeat 1 [TGGACAAAGGTGC]; HNF4alpha-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4alpha. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4alpha-RE. Furthermore, KLF9 functions together with HNF4alpha and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4alpha and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4alpha regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9.

  12. Hepatocyte Nuclear Factor 4α Contributes to Thyroid Hormone Homeostasis by Cooperatively Regulating the Type 1 Iodothyronine Deiodinase Gene with GATA4 and Krüppel-Like Transcription Factor 9▿ †

    PubMed Central

    Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F.; Gonzalez, Frank J.; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro

    2008-01-01

    Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4α (HNF4α)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4α-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4α plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4α site (direct repeat 1 [TGGACAAAGGTGC]; HNF4α-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4α. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4α-RE. Furthermore, KLF9 functions together with HNF4α and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4α and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4α regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9. PMID:18426912

  13. Thyroid, cortisol and growth hormone levels in adult Nigerians with metabolic syndrome.

    PubMed

    Udenze, Ifeoma Christiana; Olowoselu, Olusola Festus; Egbuagha, Ephraim Uchenna; Oshodi, Temitope Adewunmi

    2017-01-01

    The similarities in presentation of cortisol excess, growth hormone deficiency, hypothyroidism and metabolic syndrome suggest that subtle abnormalities of these endocrine hormones may play a causal role in the development of metabolic syndrome. The aim of this study is to determine the levels of cortisol, thyroid and growth hormones in adult Nigerians with metabolic syndrome and determine the relationship between levels of these hormones and components of the syndrome. This was a case control study conducted at the Lagos University Teaching Hospital, Lagos, Nigeria. Participants were fifty adult men and women with the metabolic syndrome, and fifty, age and sex matched males and females without the metabolic syndrome. Metabolic syndrome was defined based on the NCEP-ATPIII criteria. Written Informed consent was obtained from the participants. Socio demographic and clinical data were collected using a structured questionnaire. Venous blood was collected after an over-night fast. The Ethics committee of the Lagos University Teaching Hospital, Lagos, Nigeria, approved the study protocol. Comparison of continuous variables was done using the Student's t test. Correlation analysis was employed to determine the associations between variables. Statistical significance was set at P<0.05. Triiodotyronine (T3) was significantly decreased (p<0.001) and thyroxine (T4 ) significantly increased ( p<0.001) in metabolic syndrome compared to healthy controls. T3 correlated positively and significantly with waist circumference (p=0.004), glucose (p= 0.002), total cholesterol ( p=0.001) and LDL- cholesterol ( p<0.001 ) and negatively with body mass index ( p<0.001 )and triglyceride ( p=0.026). T4 had a negative significant correlation with waist circumference (p=0.004). Cortisol and growth hormone levels were similar in metabolic syndrome and controls. Cortisol however had a positive significant correlation with waist/hip ratio (p<0.001) while growth hormone correlated positively with HDL ( p=0.023)and negatively with diastolic blood pressure (p=0.049). Thyroid hormones T3 and T4 were associated with metabolic syndrome. The thyroid hormones, cortisol and growth hormones correlated with components of the syndrome. A therapeutic role may exit for these hormones in the management of metabolic syndrome and related disorders.

  14. [Effect of combined oral contraceptives on the hypophyseo-thyroid and hypophyseo-adrenal systems in women with various anatomy of the thyroid gland].

    PubMed

    Zigizmund, V A; Sadykova, M Sh; Samoĭlova, O N; Moiseeva, O M

    1988-11-01

    Potential therapeutic effects of combined oral contraceptives (COC) rigevidon and ovidon (estrogen:gestagen ratio of 1:5) were studied in 97 women aged 19-35 years. With respect to the anatomical state of the thyroid, the patients were divided into two groups: group 1 included 42 women with normal thyroid function and group 2 included 55 women with euthyroid hyperplasia of the thyroid gland of stage I-II (the anatomical state of the thyroid gland was ranked according to the five-point Swiss scale adopted by WHO in 1975). All patients had a history of pregnancy, normal delivery, or abortion. The state of the pituitary-thyroid system was estimated by absorption of iodine isotopes in the thyroid tissue, and by the blood levels of thyrotropic hormone, thyroxine-binding globulin, thyroxine, and triiodothyronine. Activity of the pituitary- adrenal system was estimated by the blood levels of adrenocorticotropic hormone (ACTH) and cortisol. Blood samples were withdrawn 9 and 10 hours prior to the onset of COC administration, and after 24 and 48 weeks of COC use. The changes in the functional state of the pituitary- thyroid system in groups 1 and 2 were identical throughout the entire period of COC administration. Progressive increase in the levels of thyroxine and triiodothyronine was associated with inhibition of the thyrotropic function of the pituitary seen as decrease in thyrotropin levels. COC administration caused decrease in size of hyperplastic tyroid gland. Prior to COC administration, women in group 2 showed significant elevation of ACTH levels and marked decrease in ACTH levels and increase in cortisol levels in both groups. Normalization of the size of thyroid gland indicated that COC be used therapeutically in patients with thyroid hyperplasia.

  15. Radioimmunoassay of Human Serum Thyrotrophin

    PubMed Central

    Hall, Reginald; Amos, Jacqueline; Ormston, Brian J.

    1971-01-01

    The double antibody radioimmunoassay of serum thyroid-stimulating hormone (TSH) allows measurement of circulating levels of the hormone in most normal subjects. The serum TSH level in normal subjects is 1·6 ± 0·8μU/ml. Patients with non-toxic goitre and acromegaly have normal TSH levels. Values are always raised in hypothyroid patients (with primary thyroid disease) and are significantly lowered in those with hyperthyroidism. Of the many stimuli used in an attempt to raise TSH levels in normal adult subjects only three—synthetic thyrotrophin-releasing hormone, ethinyloestradiol, and carbimazole plus iodides—have been effective. The major clinical application of the TSH immunoassay lies in the diagnosis of minor degrees of hypothyroidism. An impaired response of serum TSH to synthetic thyrotrophin-releasing hormone should also help in the diagnosis of hypopituitarism affecting TSH production. PMID:5548300

  16. A review on cardiovascular diseases originated from subclinical hypothyroidism.

    PubMed

    Mansourian, Azad Reza

    2012-01-15

    Thyroid hormones play an important role on the cardiovascular systems and thyroid disorder ultimately have a profound adverse effects on myocardium and vascular functions. There are extensive reports on the role of overt thyroid dysfunction which adversely can modify the cardiovascular metabolism but even at the present of some controversial reports, the subclinical thyroid disorders are able also to manipulate cardiovascular system to some extent. The aim of this study is to review the cardiovascular disorders accompanied with subclinical hypothyroidism. It is concluded that adverse effect of thyroid malfunction on myocardium and vascular organs are through the direct role of thyroid hormone and dyslipidemia on heart muscle cells at nuclear level and vascular system, respectively. It seems many cardiovascular disorders initially would not have been occurred in the first place if the thyroid of affected person had functioned properly, therefore thyroid function tests should be one of a prior laboratory examinations in cardiovascular disorders.

  17. Pheochromocytoma, papillary thyroid carcinoma.

    PubMed

    Nasser, Tariq; Qari, Faiza

    2009-08-01

    A 53-year-old woman presented with labile and difficult to control hypertension on 3 different anti-hypertensive medications. Abdominal computed tomography and ultrasonography of the thyroid gland showed a 1.8 cm thyroid nodule. Fine needle aspiration biopsy of the thyroid nodule revealed papillary thyroid carcinoma. Serum thyroid stimulating hormone and free thyroxine, calcitonin, carcinoembryonic antigen, intact parathyroid hormone, and calcium levels were within normal limits. A 24-hour urine metanephrine showed significant elevation in urine metanephrine of approximately 3 times the upper limit of normal, and the result of 131I-metaiodobenzyleguanjdjne (131I-MIBG) scintigraphy confirmed that the adrenal mass was pheochromocytoma. Right adrenalectomy and total thyroidectomy were performed. The final pathology was pheochromocytoma and papillary thyroid carcinoma. An analysis of c-ret porto-oncogene mutation yielded a negative result. This unusual association of 2 tumors represents a new entity.

  18. Control of Pituitary Thyroid-stimulating Hormone Synthesis and Secretion by Thyroid Hormones during Xenopus Metamorphosis

    EPA Science Inventory

    Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....

  19. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    PubMed

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.

  20. [Hypothyreodism. From the latent functional disorder up to coma].

    PubMed

    Hintze, G; Derwahl, M

    2010-05-01

    An autoimmune thyroiditis represents the main reason of hypothyroidism, defined as a lack of thyroid hormone. This autoimmune process results in destruction of functioning thyroid follicles. While subclinical or latent hypothyroidism is defined on the basis of laboratory values (an elevation of TSH with normal peripheral hormone levels), the typical signs and symptoms are associated with hypothyroidism. In about 80% of cases antibodies against thyroid peroxidase can be measured, but only in about 40-50% of cases antibodies against thyroglobulin are detectable. If hypothyrodism has been diagnosed, substitution with levothyroxine should be initiated, with the therapeutic goal to decrease TSH level to the lower normal range. In cases of subclinical hypothyroidism, levothyroxine medication should be started in patients with a high TSH value, positive antibodies and/or the typical ultrasound of autoimmune thyroiditis. However, substitution with levothyroxine in any case of elevated TSH values should be avoided.

  1. A patient with Graves' disease who survived despite developing thyroid storm and lactic acidosis.

    PubMed

    Yoshino, Tetsuhiro; Kawano, Daisuke; Azuhata, Takeo; Kuwana, Tsukasa; Kogawa, Rikimaru; Sakurai, Atsushi; Tanjoh, Katsuhisa; Yanagawa, Tatsuo

    2010-11-01

    A 56-year-old woman with Graves' disease presented with the complaints of diarrhea and palpitations. Physical examination and laboratory data revealed hypothermia and signs of mild hyperthyroidism, heart failure, hepatic dysfunction with jaundice, hypoglycemia, and lactic acidosis. The patient was diagnosed as having developed the complication of thyroid storm in the absence of marked elevation of the thyroid hormone levels, because of the potential hepatic and cardiac dysfunctions caused by heavy alcohol drinking. A year later, after successful treatment, the patient remains well without any clinical evidence of heart failure or hepatic dysfunction. Thyroid storm associated with lactic acidosis and hypothermia is a serious condition and has rarely been reported. Prompt treatment is essential even if the serum thyroid hormone levels are not markedly elevated. We present a report about this patient, as her life could eventually be saved.

  2. Etiological evaluation of primary congenital hypothyroidism cases

    PubMed Central

    Bezen, Diğdem; Dilek, Emine; Torun, Neşe; Tütüncüler, Filiz

    2017-01-01

    Aim Primary congenital hypothyroidism is frequently seen endocrine disorder and one of the preventable cause of mental retardation. Aim of study was to evaluate the frequency of permanent/transient hypothyrodism, and to detect underlying reason to identfy any marker which carries potential to discriminate permanent/transient form. Material and Methods Forty eight cases older than 3 years of age, diagnosed as primary congenital hypothyroidism and started thyroxin therapy in newborn-period, and followed up between January 2007–June 2013 were included in the study. Thyroid hormon levels were evaluated and thyroid ultrasonography was performed in cases who are at the end of their 3 years of age, after 6 weeks of thyroxine free period. Thyroid sintigraphy was performed if serum thyroid-stimulating hormone was high (≥ 5 mIU/mL) and perchlorate discharge test was performed if uptake was normal or increased on sintigraphy. Cases with thyroid-stimulating hormone levels ≥ 5 mIU/mL were defined as permanent primary congenital hypothyroidism group and as transient primary congenital hypothyroidism group with normal thyroid hormones during 6 months. Results The mean age was 3.8±0.7 years. Mean diagnosis age was 16.6±6.5 days and 14 cases (29.2%) were diagnosed by screening program of Ministry of Health. There were 23 cases (14F, 9M) in permanent primary congenital hypothyroidism group and 12 (52.2%) of them were dysgenesis (8 hypoplasia, 4 ectopia), and 11 (47.8%) dyshormonogenesis. In transient primary congenital hypothyroidism group, there were 25 cases (17M, 8F). The mean thyroid-stimulating hormone levels at diagnosis were similar in two groups. The mean thyroxin dose in permanent primary congenital hypothyroidism group was significantly higher than transient group at the time of thyroxin cessation (2.1±0.7, 1.5±0.5 mg/kg/d, respectively, p=0.004). Thyroxin dose ≥1.6 mcg/kg/d was 72% sensitive and 69.6% specific for predicting permenant primary congenital hypothyroidism. Conclusions Transient primary congenital hypothyroidism is more frequent than expected and found often in males in the primary congenital hypothyroidism cases, started thyroxin therapy in neonatal period. While fT4, thyroid-stimulating hormone, Tg levels at diagnosis do not predict transient/permenant primary congenital hypothyroidism, thyroxin dose before the therapy cessation at the age of 3 may make the distinction between transient/permenant primary congenital hypothyroidism. PMID:28747839

  3. Exposure to DBP and High Iodine Aggravates Autoimmune Thyroid Disease Through Increasing the Levels of IL-17 and Thyroid-Binding Globulin in Wistar Rats.

    PubMed

    Duan, Jiufei; Kang, Jun; Deng, Ting; Yang, Xu; Chen, Mingqing

    2018-05-01

    Autoimmune thyroid disease (AITD) is the most common autoimmune disease that causes hypothyroidism. High iodine is a well-known factor that can induce thyroid disorders, including Hashimoto's thyroiditis, one of the main types of AITD. Recent epidemiological studies have indicated that phthalates, especially di-n-butyl phthalate (DBP) may induce thyroid disease. In this study, we aim to determine the effects and underlying mechanisms of high iodine and/or DBP exposure on AITD. Female Wistar rats were modeled with thyroglobulin and exposed to high iodine and/or DBP. We investigated histopathological changes in the thyroid and measured thyroid hormone levels in serum to assess thyroid function. In the thyroid and liver, we detected oxidative stress, proinflammatory factors (IL-1β, IL-6, and IL-17) and the activation of activator protein 1 (AP-1), a transcription factor that is related to the synthesis of the thyroxine-binding globulin (TBG) and the activation of Th17. After blocking AP-1 with SP600125, we detected TBG and the Th17 related cytokines (IL-6 and IL-17). The data showed that thyroid damage and the alteration of thyroid hormones were greater when the rats were exposed to both high iodine and DBP. Coexposure to DBP and high iodine enhanced the activation of AP-1 in the liver and thyroid, and induced an increase in the levels of TBG in serum and IL-17 in the thyroid. Blocking AP-1 activation prevented the increase of TBG and IL-17. The results indicate that high iodine and/or DBP exposure exacerbated AITD through altering TBG levels in serum and aggravating IL-17 in the thyroid.

  4. Hyperthyroidism: Diagnosis and Treatment.

    PubMed

    Kravets, Igor

    2016-03-01

    Hyperthyroidism is an excessive concentration of thyroid hormones in tissues caused by increased synthesis of thyroid hormones, excessive release of preformed thyroid hormones, or an endogenous or exogenous extrathyroidal source. The most common causes of an excessive production of thyroid hormones are Graves disease, toxic multinodular goiter, and toxic adenoma. The most common cause of an excessive passive release of thyroid hormones is painless (silent) thyroiditis, although its clinical presentation is the same as with other causes. Hyperthyroidism caused by overproduction of thyroid hormones can be treated with antithyroid medications (methimazole and propylthiouracil), radioactive iodine ablation of the thyroid gland, or surgical thyroidectomy. Radioactive iodine ablation is the most widely used treatment in the United States. The choice of treatment depends on the underlying diagnosis, the presence of contraindications to a particular treatment modality, the severity of hyperthyroidism, and the patient's preference.

  5. Thyroid hormones and thyroid disease in relation to perchlorate dose and residence near a superfund site.

    PubMed

    Gold, Ellen B; Blount, Benjamin C; O'Neill Rasor, Marianne; Lee, Jennifer S; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-07-01

    Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Residential blocks were randomly selected from areas: (1) with potential perchlorate exposure via drinking water; (2) with potential exposure to environmental contaminants; and (3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20-50 years during 1988-1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone and free thyroxine) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Residential location and current perchlorate dose were not associated with thyroid function or disease. No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped.

  6. Pre-operative ultrasound identification of thyroiditis helps predict the need for thyroid hormone replacement after thyroid lobectomy.

    PubMed

    Morris, Lilah F; Iupe, Isabella M; Edeiken-Monroe, Beth S; Warneke, Carla L; Hansen, Mandy O; Evans, Douglas B; Lee, Jeffrey E; Grubbs, Elizabeth G; Perrier, Nancy D

    2013-01-01

    To evaluate whether pre-operative thyroiditis identified by ultrasound (US) could help predict the need for thyroid hormone replacement (THR) following thyroid lobectomy. Data from patients who underwent thyroid lobectomy in 2006-2011, were not taking THR pre-operatively, and had ≥1 month of follow-up were reviewed retrospectively. THR was prescribed for relatively elevated thyroid-stimulating hormone (TSH) and hypothyroid symptoms. The Kaplan-Meier method was used to estimate the percentage of patients who required THR at 6, 12, 18, and 24 months postoperatively, and Cox proportional hazards regression models were used to evaluate prognostic factors for requiring post-thyroid lobectomy THR. During follow-up, 45 of 98 patients required THR. Median follow-up among patients not requiring THR was 11.6 months (range, 1.2 to 51.3 months). Six months after thyroid lobectomy, 22% of patients were taking THR (95% confidence interval [CI], 15-32%); the proportion increased to 46% at 12 months (95% CI, 36-57%) and 55% at 18 months (95% CI, 43-67%). On univariate analysis, significant prognostic factors for postoperative THR included a pre-operative TSH level >2.5 μ international units [IU]/mL (hazard ratio [HR], 2.8; 95% CI, 1.4-5.5; P = .004) and pathology-identified thyroiditis (HR, 2.4; 95% CI, 1.3-4.3; P = .005). Patients with both pre-operative TSH >2.5 μIU/mL and US-identified thyroiditis had a 5.8-fold increased risk of requiring postoperative THR (95% CI, 2.4-13.9; P<.0001). A pre-operative TSH level >2.5 μIU/mL significantly increases the risk of requiring THR after thyroid lobectomy. Thyroiditis can add to that prediction and guide pre-operative patient counseling and surgical decision making. US-identified thyroiditis should be reported and post-thyroid lobectomy patients followed long-term (≥18 months).

  7. Thyrotoxicosis presenting as hypogonadism: a case of central hyperthyroidism.

    PubMed

    Childress, R Dale; Qureshi, M Nauman; Kasparova, Meri; Oktaei, Hooman; Williams-Cleaves, Beverly; Solomon, Solomon S

    2004-11-01

    Herein, we present a case of central thyrotoxicosis with well-documented serial therapeutic interventions. Thyroid-stimulating hormone (TSH)-secreting pituitary tumors represent a rare cause of hyperthyroidism. It is being diagnosed more frequently with the third-generation TSH assay. Many conditions can produce normal or elevated TSH levels in combination with elevated thyroid hormone levels. The differential diagnosis includes resistance to thyroid hormone (RTH, Refetoff's syndrome), assay interference from anti-T4/T3 and heterophile antibodies, elevated or altered binding proteins, drugs affecting peripheral metabolism, and noncompliance with thyroid replacement therapy. In contrast to RTH, our patient presented had high alpha-subunit-to-TSH molar ratio, failed TSH response to thyrotropin-releasing hormone stimulation, and a large pituitary mass. Normal or high TSH in the presence of elevated T4 or T3 is a fairly common clinical scenario with many etiologic possibilities. This TSH-producing adenoma represents an unusual initial clinical presentation, as hypogonadism appeared before features of thyrotoxicosis were appreciated. This case represents the most modern therapeutic approach to the management of this rare disease. Our patient has done well on octreotide with control of thyrotoxicosis and an additional 30% shrinkage of his tumor mass.

  8. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  9. Relationship between levels of thyroid stimulating hormone, age, and gender, with symptoms of depression among patients with thyroid disorders as measured by the Depression Anxiety Stress Scale 21 (DASS-21).

    PubMed

    Saidi, Sanisah; Iliani Jaafar, Siti Nur; Daud, Azlina; Musa, Ramli; Nik Ahmad, Nik Noor Fatnoon

    2018-02-01

    The aim of this study was to investigate the correlation between levels of depression symptoms and age, thyroid-stimulating hormone levels, and stressful life events of the participants. Patients above 18 years old, with any thyroid disorders, and without psychiatric disorders were included in this study. All participants completed the Depression Anxiety Stress Scale 21 (DASS-21). The depression symptom score was calculated and interpreted as follows: less than 9: no depression; between 10 and 13: mild depression; between 14 and 20: moderate depression; between 21 and 27: severe depression, and more than 28: extremely severe depression. The total number of participants in this study was 199. There was no correlation between age, thyroid stimulating hormone, and the DASS score. There was also no significant difference in the DASS-21 score between genders. However, there was a positive correlation between depression symptoms and stressful life events (r=0.201, n=199, p < 0.05). These findings would suggest that increased depression symptom scores correlate with increased stressful life events. A larger study should be undertaken to confirm these findings. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  10. [F-18-fluordeoxyglucose positron emission tomography on patients with differentiated thyroid cancer who present elevated human serum thyroglobulin levels and negative I-131 whole body scan].

    PubMed

    Ruiz Franco-Baux, J V; Borrego Dorado, I; Gómez Camarero, P; Rodríguez Rodríguez, J R; Vázquez Albertino, R J; Navarro González, E; Astorga Jiménez, R

    2005-01-01

    This study aimed to evaluate the role of Fluorine-18-fluorodeoxyglucose positron emission tomography (PET-FDG) in patients with elevated serum thyroglobulin (hTg) levels where thyroid cancer tissue does not concentrate radioiodine, rendering false-negative results on I-131 scanning. Whole-body PET imaging using FDG was performed in 54 patients (37 female, 17 male) aged 17-88 years: 45 with papillary tumors and 9 with follicular tumors who were suspected of having recurrent thyroid carcinoma due to elevated thyroglobulin levels (hTg > 2 ng/ml) under thyroid-stimulating hormone (TSH > or = 30 microIU/ml) in whom the iodine scan was negative. All whole body scans were obtained with diagnostic doses (185 MBq). Whole body PET imaging was performed in fasting patients following i.v. administration of 370 MBq FDG while the patients were receiving full thyroid hormone replacement. Before PET, 99mTc methoxyisobutylisonitrile scintigraphy (99mTc-MIBI) was done in 14 patients and morphologic imaging in 26 by CT scan. Positive PET results confirmed the presence of hypermetabolic foci in 25/54 patients (46.29 %). Positive findings were found for PET-FDG in patients with hTg levels higher than 10 ng/ml receiving full thyroid hormone replacement. 99mTc-MIBI demonstrated lesions in 7/14 patients (50 %). PET-FDG and 99mTc-MIBI had congruent positive results in 4/7 patients. All the lesions found by CT were detected by PET-FDG, while recurrent disease was found in 12/21 patients with previous negative CT. These results suggest that PET-FDG seems to be a promising tool in the follow-up of thyroid cancer and should be considered in patients suffering from differentiated thyroid cancer with suspected recurrence and/or metastases by elevated thyroglobulin levels, and negative I-131 whole body scans. PET-FDG might be more useful at hTg levels > 10 ng/ml.

  11. Thyroid Hormones and Changes in Body Weight and Metabolic Parameters in Response to Weight-Loss Diets: The POUNDS LOST Trial

    PubMed Central

    Liu, Gang; Liang, Liming; Bray, George A.; Qi, Lu; Hu, Frank B.; Rood, Jennifer; Sacks, Frank M.; Sun, Qi

    2017-01-01

    Background The role of thyroid hormones in diet-induced weight loss and subsequent weight regain is largely unknown. Objectives To examine the associations between thyroid hormones and changes in body weight and resting metabolic rate (RMR) in a diet-induced weight-loss setting. Subjects/Methods Data analysis was conducted among 569 overweight and obese participants aged 30–70 years with normal thyroid function participating in the 2-year POUNDS LOST randomized clinical trial. Changes in body weight and RMR were assessed during the 2-year intervention. Thyroid hormones (free triiodothyronine [T3], free thyroxine [T4], total T3, total T4, and thyroid stimulating hormone [TSH]), anthropometric measurements, and biochemical parameters were assessed at baseline, 6 months, and 24 months. Results Participants lost an average of 6.6 kg of body weight during the first 6 months and subsequently regained an average of 2.7 kg of body weight over the remaining period from 6–24 months. Baseline free T3 and total T3 were positively associated, whereas free T4 was inversely associated, with baseline body weight, body mass index, and RMR. Total T4 and TSH were not associated with these parameters. Higher baseline free T3 and free T4 levels were significantly associated with a greater weight loss during the first 6 months (P<0.05) after multivariate adjustments including dietary intervention groups and baseline body weight. Comparing extreme tertiles, the multivariate-adjusted weight loss ± standard error was −3.87±0.9 vs −5.39±0.9 kg for free T3 (P trend=0.02) and −4.09±0.9 vs −5.88±0.9 kg for free T4 (P trend=0.004). The thyroid hormones did not predict weight regain in 6–24 months. A similar pattern of associations was also observed between baseline thyroid hormones and changes in RMR. In addition, changes in free T3 and total T3 levels were positively associated with changes in body weight, RMR, body fat mass, blood pressure, glucose, insulin, triglycerides, and leptin at 6 months and 24 months (all P<0.05). Conclusions In this diet-induced weight-loss setting, higher baseline free T3 and free T4 predicted more weight loss, but not weight regain among overweight and obese adults with normal thyroid function. These findings reveal a novel role of thyroid hormones in body weight regulation and may help identify individuals more responsive to weight-loss diets. PMID:28138133

  12. The hormonal pathway to cognitive impairment in older men.

    PubMed

    Maggio, M; Dall'Aglio, E; Lauretani, F; Cattabiani, C; Ceresini, G; Caffarra, P; Valenti, G; Volpi, R; Vignali, A; Schiavi, G; Ceda, G P

    2012-01-01

    In older men there is a multiple hormonal dysregulation with a relative prevalence of catabolic hormones such as thyroid hormones and cortisol and a decline in anabolic hormones such as dehydroepiandrosterone sulphate, testosterone and insulin like growth factor 1 levels. Many studies suggest that this catabolic milieu is an important predictor of frailty and mortality in older persons. There is a close relationship between frailty and cognitive impairment with studies suggesting that development of frailty is consequence of cognitive impairment and others pointing out that physical frailty is a determinant of cognitive decline. Decline in cognitive function, typically memory, is a major symptom of dementia. The "preclinical phase" of cognitive impairment occurs many years before the onset of dementia. The identification of relevant modifiable factors, including the hormonal dysregulation, may lead to therapeutic strategies for preventing the cognitive dysfunction. There are several mechanisms by which anabolic hormones play a role in neuroprotection and neuromodulation. These hormones facilitate recovery after brain injury and attenuate the neuronal loss. In contrast, elevated thyroid hormones may increase oxidative stress and apoptosis, leading to neuronal damage or death. In this mini review we will address the relationship between low levels of anabolic hormones, changes in thyroid hormones and cognitive function in older men. Then, giving the contradictory data of the literature and the multi-factorial origin of dementia, we will introduce the hypothesis of multiple hormonal derangement as a better determinant of cognitive decline in older men.

  13. [Subclinical hypothyroidism in obese children].

    PubMed

    Januszek-Trzciąkowska, Aleksandra; Małecka-Tendera, Ewa

    2013-08-05

    Subclinical hypothyroidism (SH) is defined as an elevated thyroid stimulating hormone (TSH) associated with normal levels of free thyroxine. In obese persons prevalence of SH is significantly higher than in general population. SH is of particular interest in children with respect to the crucial role of thyroid hormones in the development of central nervous system and linear growth. Currently there is no general consensus on the treatment of SH with L-tyroxine. It is suggested that this hormonal state is rather a consequence that the cause of the overweight status.

  14. Regulation of vernal migration in Gambel's white-crowned sparrows: Role of thyroxine and triiodothyronine.

    PubMed

    Pérez, Jonathan H; Furlow, J David; Wingfield, John C; Ramenofsky, Marilyn

    2016-08-01

    Appropriate timing of migratory behavior is critical for migrant species. For many temperate zone birds in the spring, lengthening photoperiod is the initial cue leading to morphological, physiological and behavior changes that are necessary for vernal migration and breeding. Strong evidence has emerged in recent years linking thyroid hormone signaling to the photoinduction of breeding in birds while more limited information suggest a potential role in the regulation of vernal migration in photoperiodic songbirds. Here we investigate the development and expression of the vernal migratory life history stage in captive Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) in a hypothyroidic state, induced by chemical inhibition of thyroid hormone production. To explore possible variations in the effects of the two thyroid hormones, triiodothyronine and thyroxine, we subsequently performed a thyroid inhibition coupled with replacement therapy. We found that chemical inhibition of thyroid hormones resulted in complete abolishment of mass gain, fattening, and muscle hypertrophy associated with migratory preparation as well as resulting in failure to display nocturnal restlessness behavior. Replacement of thyroxine rescued all of these elements to near control levels while triiodothyronine replacement displayed partial or delayed rescue. Our findings support thyroid hormones as being necessary for the expression of changes in morphology and physiology associated with migration as well as migratory behavior itself. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Congenital isolated thyrotrophin releasing hormone deficiency

    PubMed Central

    Niimi, H; Inomata, H; Sasaki, N; Nakajima, H

    1982-01-01

    A 4⅓-year-old girl with congenital thyrotrophin-releasing hormone (TRH) deficiency is described. Oral TRH administration led to normal thyroid hormone and TRH levels in the blood; favourable growth and development was achieved. PMID:6816148

  16. Possible implications of leptin, adiponectin and ghrelin in the regulation of energy homeostasis by thyroid hormone.

    PubMed

    Kokkinos, Alexander; Mourouzis, Iordanis; Kyriaki, Despoina; Pantos, Constantinos; Katsilambros, Nicholas; Cokkinos, Dennis V

    2007-08-01

    Thyroid hormone plays a critical role in energy homeostasis through mechanisms, which are not fully understood. In the present study, we investigated possible alterations of important energy regulators such as leptin, adiponectin, and ghrelin in relation to changes in thyroid hormones. Thyroid hormone (250 microg/kg) was administered in male Wistar rats for 2 weeks (THYR), while hypothyroidism (HYPO) was induced by propylthiouracil administration (0.05% in drinking water) for 3 weeks. Untreated animals served as controls (NORM). Leptin and adiponectin were measured in plasma by ELISA, while total ghrelin was measured with RIA. Body weight was significantly reduced both in THYR and HYPO rats, while food intake was significantly increased in THYR and decreased in HYPO. This response was associated with various changes in leptin, adiponectin, and ghrelin in plasma. In fact, in THYR rats, leptin levels (mean +/- SEM) were 240 +/- 55 pg/ml as compared to 819 +/- 70 pg/ml in untreated rats (P < 0.05), while no changes were observed in ghrelin and adiponectin. In HYPO rats, leptin levels were 1400 +/- 200 pg/ml vs. 819 +/- 70 pg/ml in untreated rats (P < 0.05), while ghrelin and adiponectin were significantly increased in HYPO rats as compared to untreated rats (P < 0.05). Furthermore, T(3) and T(4) levels were inversely correlated to leptin (P = 0.014), while ghrelin and adiponectin were inversely correlated to weight changes (P = 0.05 and P = 0.03, respectively). In conclusion, leptin seems mainly to be involved in the thyroid hormone effects on energy homeostasis. Ghrelin and adiponectin may serve a compensatory physiological role in hypothyroidism.

  17. Light-Regulated Thyroid Hormone Signaling Is Required for Rod Photoreceptor Development in the Mouse Retina.

    PubMed

    Sawant, Onkar; Horton, Amanda M; Shukla, Meenal; Rayborn, Mary E; Peachey, Neal S; Hollyfield, Joe G; Rao, Sujata

    2015-12-01

    Ambient light is both a stimulus for visual function and a regulator of photoreceptor physiology. However, it is not known if light can regulate any aspect of photoreceptor development. The purpose of this study was to investigate whether ambient light is required for the development of mouse rod photoreceptors. Newborn mouse pups (C57BL/6) were reared in either cyclic light (LD) or constant dark (DD). Pups were collected at postnatal day (P)5, P10, P17, or P24. We performed retinal morphometric and cell death analysis at P5, P10, and P17. Rhodopsin expression was assessed using immunofluorescence, Western blot, and quantitative RT-PCR analysis. Electroretinograms were performed at P17 and P24. Radioimmunoassay and ELISA were used to follow changes in thyroid hormone levels in the serum and vitreous. In the DD pups, the outer nuclear layer was significantly thinner at P10 and there were higher numbers of apoptotic cells at P5 compared to the LD pups. Rhodopsin expression was lower at P10 and P17 in DD pups. Electroretinogram a-waves were reduced in amplitude at P17 in the DD pups. The DD animals had lower levels of circulating thyroid hormones at P10. Light-mediated changes in thyroid hormones occur as early as P5, as we detected lower levels of total triiodothyronine in the vitreous from the DD animals. Drug-induced developmental hypothyroidism resulted in lower rhodopsin expression at P10. Our data demonstrate that light exposure during postnatal development is required for rod photoreceptor development and that this effect could be mediated by thyroid hormone signaling.

  18. Associations between brominated flame retardants in human milk and Thyroid-Stimulating Hormone (TSH) in neonates

    PubMed Central

    Eggesbø, Merete; Thomsen, Cathrine; Jørgensen, Jens V.; Becher, Georg; Odland, Jon Øyvind; Longnecker, Matthew P.

    2011-01-01

    Background Brominated flame retardants (BFRs) have been in widespread use in a vast array of consumer products since the 1970s. The metabolites of some BFRs show a structural similarity to thyroid hormones and experimental animal studies have confirmed that they may interfere with thyroid hormone homeostasis. A major concern has been whether intrauterine exposure to BFRs may disturb thyroid homeostasis since the fetal brain is particularly susceptible to alterations in thyroid hormones. However, few reports on newborns have been published to date. Objectives To evaluate the association between BFRs and neonatal thyroid-stimulating hormone (TSH). Methods We studied six polybrominated diphenyl ethers (PBDEs) measured in milk samples from 239 women who were part of the “Norwegian Human Milk Study” (HUMIS), 2003–2006. Hexabromocyclododecane (HBCD) and BDE-209 were measured in a subset of the women (193 and 46 milk samples, respectively). The milk was sampled at a median of 33 days after delivery. TSH was measured in babies three days after delivery as part of the routine national screening program for early detection of congenital hypothyroidism. Additional information was obtained through the Medical Birth Registry and questionnaires to the mothers. Results The PBDE concentrations in human milk in Norway were comparable to concentrations reported from other European countries and Asia, but not the US and Canada where levels are approximately one order of magnitude higher. We observed no statistically significant associations between BDE-47, 99, 153, 154, 209 and HBCD in human milk and TSH in models adjusted for possible confounders and other environmental toxicants including polychlorinated biphenyls (PCBs). Conclusions We did not observe an association between TSH and exposure to HBCD and PBDEs within the exposure levels observed. PMID:21601188

  19. Comparative Analysis of Zearalenone Effects on Thyroid Receptor Alpha (TRα) and Beta (TRβ) Expression in Rat Primary Cerebellar Cell Cultures.

    PubMed

    Kiss, David Sandor; Ioja, Eniko; Toth, Istvan; Barany, Zoltan; Jocsak, Gergely; Bartha, Tibor; Horvath, Tamas L; Zsarnovszky, Attila

    2018-05-11

    Thyroid receptors play an important role in postnatal brain development. Zearalenone (ZEN), a major mycotoxin of Fusarium fungi, is well known to cause serious health problems in animals and humans through various mechanisms, including the physiological pathways of thyroid hormone (TH). In the present study, we aimed to investigate the expression of thyroid receptors α (TRα) and β (TRβ) in primary cerebellar neurons in the presence or absence of glia and following ZEN treatment, using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Primary cerebellar granule cells were treated with low doses of ZEN (0.1 nM) in combination with physiologically relevant concentrations of l-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3) and 17β-estradiol (E2). Expression levels of TRα and TRβ at mRNA and protein levels were slightly modified by ZEN administered alone; however, along with thyroid and steroid hormones, modelling the physiological conditions, expression levels of TRs varied highly depending on the given treatment. Gene expression levels were also highly modulated by the presence or absence of glial cells, with mostly contrasting effects. Our results demonstrate divergent transcriptional and translational mechanisms involved in the expression of TRs implied by ZEN and hormonal milieu, as well as culturing conditions.

  20. Thyroid functional disease: an under-recognized cardiovascular risk factor in kidney disease patients

    PubMed Central

    Rhee, Connie M.; Brent, Gregory A.; Kovesdy, Csaba P.; Soldin, Offie P.; Nguyen, Danh; Budoff, Matthew J.; Brunelli, Steven M.; Kalantar-Zadeh, Kamyar

    2015-01-01

    Thyroid functional disease, and in particular hypothyroidism, is highly prevalent among chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. In the general population, hypothyroidism is associated with impaired cardiac contractility, endothelial dysfunction, atherosclerosis and possibly higher cardiovascular mortality. It has been hypothesized that hypothyroidism is an under-recognized, modifiable risk factor for the enormous burden of cardiovascular disease and death in CKD and ESRD, but this has been difficult to test due to the challenge of accurate thyroid functional assessment in uremia. Low thyroid hormone levels (i.e. triiodothyronine) have been associated with adverse cardiovascular sequelae in CKD and ESRD patients, but these metrics are confounded by malnutrition, inflammation and comorbid states, and hence may signify nonthyroidal illness (i.e. thyroid functional test derangements associated with underlying ill health in the absence of thyroid pathology). Thyrotropin is considered a sensitive and specific thyroid function measure that may more accurately classify hypothyroidism, but few studies have examined the clinical significance of thyrotropin-defined hypothyroidism in CKD and ESRD. Of even greater uncertainty are the risks and benefits of thyroid hormone replacement, which bear a narrow therapeutic-to-toxic window and are frequently prescribed to CKD and ESRD patients. In this review, we discuss mechanisms by which hypothyroidism adversely affects cardiovascular health; examine the prognostic implications of hypothyroidism, thyroid hormone alterations and exogenous thyroid hormone replacement in CKD and ESRD; and identify areas of uncertainty related to the interplay between hypothyroidism, cardiovascular disease and kidney disease requiring further investigation. PMID:24574542

  1. Novel neural pathways for metabolic effects of thyroid hormone.

    PubMed

    Fliers, Eric; Klieverik, Lars P; Kalsbeek, Andries

    2010-04-01

    The relation between thyrotoxicosis, the clinical syndrome resulting from exposure to excessive thyroid hormone concentrations, and the sympathetic nervous system remains enigmatic. Nevertheless, beta-adrenergic blockers are widely used to manage severe thyrotoxicosis. Recent experiments show that the effects of thyrotoxicosis on hepatic glucose production and insulin sensitivity can be modulated by selective hepatic sympathetic and parasympathetic denervation. Indeed, thyroid hormone stimulates hepatic glucose production via a sympathetic pathway, a novel central pathway for thyroid hormone action. Rodent studies suggest that similar neural routes exist for thyroid hormone analogues (e.g. thyronamines). Further elucidation of central effects of thyroid hormone on autonomic outflow to metabolic organs, including the thyroid and brown adipose tissue, will add to our understanding of hyperthyroidism. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Serum Anti-TPO and TPO Gene Polymorphism as a Predictive Factor for Hidden Autoimmune Thyroiditis in Patient with Bronchial Asthma and Allergic Rhinitis.

    PubMed

    El Shabrawy, Reham M; Atta, Amal H; Rashad, Nearmeen M

    2016-01-01

    Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones T3 and T4. Autoimmune thyroiditis is a common disorder affecting 10% of population worldwide. A key feature of autoimmune thyroiditis is the presence of anti TPO antibodies, and some mutation of the TPO gene. Association between autoimmune thyroiditis and other autoimmune disorders has been reported but little is known about association with allergic diseases. In this study, we aimed to evaluate frequency of hidden autoimmune thyroiditis among allergic patient and examine possible relationship between anti-TPO levels and polymorphism at the TPO gene A2173/C exon 12 and different types of allergens. The study included 50 adult Egyptian patients with allergic rhinitis and /or bronchial asthma and 50 controls. For each subject, thyroid stimulating hormone (TSH), thyroxin 4 (T4) and Triiodothyronine (T3) hormones were measured. Anti-thyroid peroxidase (anti-TPO) level was detected by ELISA; and TPO gene polymorphism 2173A>C exon 12 was analyzed using restriction fragment length polymorphism (RFLP). Skin prick test was done to assess allergic response in patients. Serum levels of T3, T4 and TSH did not show any statistical significant difference between patients and groups. However, mean serum anti-TPO level was statistically higher in patients than controls, and correlated positively with body mass index, age, diastolic blood pressure, suggesting higher prevalence of hidden autoimmune thyroiditis in allergic patients than in control group. 2173A>C Genotyping revealed that the frequency of C allele is increased in the patient group. C allele represents a risk factor with odds ratio of 2.37 (1.035-5.44) and a significant P value <0.05. It is concluded that TPO 2173A>C polymorphism may be considered as a risk factor for developing autoimmune thyroiditis in patients with allergic rhinitis and asthma and that these patients should regularly be checked for hidden thyroiditis. Copyright© by the Egyptian Association of Immunologists.

  3. Changes of Serum Angiotensin-Converting Enzyme Activity During Treatment of Patients with Graves’ Disease*

    PubMed Central

    Lee, Dong Soo; Chung, June-Key; Cho, Bo Youn; Koh, Chang-Soon; Lee, Munho

    1986-01-01

    Serum angiotensin-converting enzyme activity was measured spectrophotometrically, and serum thyrotropin-binding-inhibitory immunoglobulin (TBII) activity was measured by radioreceptor assay in normal subjects and in patients with Graves’ disease serially before and during treatment, and these activities were compared with each other and with thyroid hormone levels in various thyroid functional status. Correlation between serum angiotensin-converting enzyme activity and serum thyroid hormone level was pursued with relation to the changes of thyroid functional status in patients with Graves’ disease during treatment. Serum angiotensin-converting enzyme activity was significantly elevated in patients with hyperthyroid Graves’ disease before the start of treatment (35 ± 13 nmol/min/ml, n=50), and not in patients with Graves’ disease, euthyroid state during treatment with antithyroid drugs or radioactive iodine (23 ± 9 nmol/min/ml, n=12), but decreased significantly in patients with Graves’ disease, hypothyroid state transiently during treatment (15 ± 4 nmol/min/ml, n=12), respectively in comparison with normal control subjects. Serum angiotensin-converting enzyme activity was positively correlated with the log value of serum T3 concentration (r=0.62, p<0.001, n=95), and with the log value of free thyroxine index (r=0.66, p<0.001, n=91) but not statistically significantly with serum TBII activity. Serum angiotensin-converting enzyme activity was followed in 11 patients with initially increased activity and the activity decreased in proportion to serum thyroid hormone level during treatment, irrespective of treatment modality. It is suggested that thyroid hormones play a role in the increase and decrease of serum angiotensin-converting enzyme activity directly or indirectly influencing the peripheral tissues (probably reticuloendothelial cells or peripheral endothelial cells) in patients with Graves’ disease. PMID:15759385

  4. Influence of thyroid hormones and transforming growth factor-β1 on cystatin C concentrations.

    PubMed

    Kotajima, N; Yanagawa, Y; Aoki, T; Tsunekawa, K; Morimura, T; Ogiwara, T; Nara, M; Murakami, M

    2010-01-01

    Serum cystatin C concentrations are reported to increase in the hyperthyroid state. Serum concentrations of cystatin C and transforming growth factor-β1 (TGF-β1) were measured in patients with thyroid dysfunction, and the effects of 3,5,3'-tri-iodothyronine (T(3)) and TGF-β1 on cystatin C production in human hepatoblastoma (Hep G2) cells were studied. Serum concentrations of cystatin C and TGF-β1 were significantly higher in patients with Graves' disease compared with control subjects. Significantly positive correlations were observed between thyroid hormones and cystatin C, thyroid hormones and TGF-β1, and TGF-β1 and cystatin C in patients with thyroid dysfunction. Serum concentrations of cystatin C and TGF-β1 decreased after treatment for hyperthyroidism. Cystatin C mRNA levels and cystatin C secretion were increased by T(3) and TGF-β1 in cultured Hep G2 cells. These results suggest that serum cystatin C concentrations increase in patients with hyperthyroidism. The mechanisms for this may involve elevation of serum TGF-β1 levels and the stimulatory effects of T(3) and TGF-β1 on cystatin C production.

  5. Evaluation of Thyroid Hormone Levels and Urinary Iodine Concentrations in Koreans Based on the Data from Korea National Health and Nutrition Examination Survey VI (2013 to 2015).

    PubMed

    Chung, Jae Hoon

    2018-06-01

    No nationwide data have been published about thyroid hormone levels and urinary iodine concentrations (UICs) in Korea. The Korea Centers for Disease Control and Prevention and the Korean Thyroid Association established a project to evaluate the nationwide thyroid hormone profile and UICs in healthy Koreans as part of the Korea National Health and Nutrition Examination Survey (KNHANES) VI (2013 to 2015), a nationwide, cross-sectional survey of the Korean population that enrolled 7,061 individuals who were weighted to represent the entire Korean population. Based on the KNHANES VI, the geometric mean value of serum thyroid stimulating hormone was 2.16 mIU/L, and its reference interval was 0.59 to 7.03 mIU/L. The mean value of serum free thyroxine was 1.25 ng/dL, and its reference interval was 0.92 to 1.60 ng/dL. The median UIC in the Korean population was reported to be 294 μg/L, corresponding to 'above requirements' iodine intake according to the World Health Organization recommendations. A U-shaped relationship of UIC with age was found. The prevalence of overt hyperthyroidism and overt hypothyroidism in the Korean population based on the KNHANES VI was 0.54% and 0.73%, respectively. Copyright © 2018 Korean Endocrine Society.

  6. Pregnancy and Thyroid Disease

    MedlinePlus

    ... especially during the first trimester—can cause low IQ and problems with normal development. How do doctors ... of your thyroid gland. At first, the leakage raises the hormone levels in your blood, leading to ...

  7. THYROID STATUS IN JUVENILE ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED AND REFERENCE SITES ON LAKE OKEECHOBEE, FLORIDA, USA

    EPA Science Inventory

    Exposure to environmental contaminants has been shown to alter normal thyroid function in various wildlife species, including the American alligator (Alligator mississippiensis). Abnormalities in circulating levels of the thyroid hormone thyroxine (T4) have been reported in juven...

  8. [Thyroid hormone metabolism and action].

    PubMed

    Köhrle, Josef

    2004-05-01

    Reductive deiodination of thyroid hormones at the phenolic and tyrosyl ring leads to the activation or inactivation of the thyromimetic activity inherent to thyroid hormones. Alterations in the activities of the three selenocysteine-containing enzymes, the iodothyronine deiodinases, have been reported during development and in specific cells and tissues of the adult organism. Furthermore, pathophysiological changes in the deiodinase expression lead to therapeutically relevant disturbances of the homeostasis of thyroid hormones. Metabolisation of thyroid hormones by conjugation of their phenolic 4'-OH group, their alanine side chain or cleavage of their diphenylether bridge also contributes to both local and systemic supply of thyromimetic activity or hormone degradation. Further components mediating the pleiotropic action of thyroid hormones in part include redundant T3 receptors, binding and transport proteins, metabolising enzymes and T3-regulated gene products. This is achieved in a finely tuned manner with multiple feedback control, malfunction or complete failure of individual components and networks involved in the iodothyronine metabolism and thyroid hormone action can thus be compensated or prevented.

  9. Assessment of criteria used by veterinary practitioners to diagnose hypothyroidism in sighthounds and investigation of serum thyroid hormone concentrations in healthy Salukis.

    PubMed

    Shiel, Robert E; Sist, MaryDee; Nachreiner, Raymond F; Ehrlich, Claire P; Mooney, Carmel T

    2010-02-01

    To assess use of serum thyroid hormone concentrations by veterinarians to diagnose hypothyroidism in sighthounds and to evaluate serum thyroid hormone concentrations in healthy Salukis. Retrospective case series and cross-sectional study. 398 sighthounds of various breeds with a diagnosis of hypothyroidism and 283 healthy Salukis. Pretreatment thyroid hormone assay results from sighthounds subsequently classified as hypothyroid by practitioners were retrieved from a laboratory database. In healthy Salukis, serum concentrations of total thyroxine (T(4)), free T(4), total triiodothyronine (T(3)), free T(3), and thyroid-stimulating hormone (TSH) and antibodies against thyroglobulin and thyroid hormones were assayed. Records indicated hypothyroidism had been diagnosed in 303 (76.1%) sight-hounds on the basis of low serum thyroid hormone concentrations alone and in 30 (7.5%) others despite all thyroid hormone indices being within reference limits. Only 65 (16.3%) dogs had a high TSH concentration or positive thyroglobulin autoantibody result to support the diagnosis. In healthy Salukis, median (reference limits) serum concentrations of total T(4), free T(4), total T(3), free T(3), and TSH were 13.0 nmol/L (2.8 to 40.0 nmol/L), 12.0 pmol/L (2.0 to 30.3 pmol/L), 1.0 nmol/L (0.4 to 2.1 nmol/L), 4.0 pmol/L (1.6 to 7.7 pmol/L), and 0.18 ng/mL (0 to 0.86 ng/mL), respectively. Diagnosis of hypothyroidism by practitioners was most often made without adequate supportive laboratory evidence. Thyroid hormone values in healthy Salukis differed markedly from standard reference limits for some, but not all, thyroid hormone indices. Breed-specific reference limits should be used when interpreting thyroid hormone profiles of sighthounds.

  10. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  11. Thyroid hormones and fetal brain development.

    PubMed

    Pemberton, H N; Franklyn, J A; Kilby, M D

    2005-08-01

    Thyroid hormones are intricately involved in the developing fetal brain. The fetal central nervous system is sensitive to the maternal thyroid status. Critical amounts of maternal T3 and T4 must be transported across the placenta to the fetus to ensure the correct development of the brain throughout ontogeny. Severe mental retardation of the child can occur due to compromised iodine intake or thyroid disease. This has been reported in areas of the world with iodine insufficiency, New Guinea, and also in mother with thyroid complications such as hypothyroxinaemia and hyperthyroidism. The molecular control of thyroid hormones by deiodinases for the activation of thyroid hormones is critical to ensure the correct amount of active thyroid hormones are temporally supplied to the fetus. These hormones provide timing signals for the induction of programmes for differentiation and maturation at specific stages of development. Understanding these molecular mechanisms further will have profound implications in the clinical management of individuals affected by abnormal maternal of fetal thyroid status.

  12. Assay of free thyroxine and free triiodothyronine in fine-needle aspiration of thyroid nodules: a useful and low-cost assessment.

    PubMed

    Barbaro, Daniele; Macchia, Enrico; Orsini, Paola; Piazza, Francesca; Lapi, Paola; Pasquini, Cristina

    2004-01-01

    To evaluate whether analysis of thyroid hormones in fine-needle aspiration (FNA) of thyroid nodules can provide information about the functional status and the nature of the nodules. We studied 4 groups of patients: group 1, 17 patients with autonomous hyperfunctioning thyroid nodules; group 2, 52 patients with cold nonfunctioning thyroid nodules; group 3, 12 patients with malignant thyroid nodules; and group 4 (control group), 10 patients with nonthyroid nodular lesions (enlarged parathyroid glands or lymph nodes). The assay of thyroid hormones was performed in FNA after the washing of needles and, with patient consent, also in normal thyroid parenchyma. The free thyroxine (FT(4)) and free triiodothyronine (FT(3)) values were remarkably high in group 1 (mean, 5.5 +/- 0.53 ng/dL and 27.6 +/- 3.1 pg/mL, respectively; P<0.05 versus group 2 and group 4, the control group). The levels of FT(4) and FT(3) were very low in group 3 (<0.2 ng/dL and <1.0 pg/mL, respectively; P<0.05 versus group 2). Thyroglobulin values in FNA specimens were much higher than the normal range in human serum, but no significant differences were found between the various groups. The control group had low levels of FT(4) and FT(3) (<0.2 ng/dL and <1.0 pg/mL, respectively) in conjunction with low levels of thyroglobulin, whereas parathyroid hormone levels were high in parathyroid nodules. These results show that assay of FT(4) and FT(3) in FNA can yield information about the functional status of thyroid nodules and, indirectly, about the nature of nodules. In this era of sophisticated new molecular markers in FNA cytology, this low-cost diagnostic method can be readily performed in every laboratory.

  13. Short-chain chlorinated paraffins (SCCPs) induced thyroid disruption by enhancement of hepatic thyroid hormone influx and degradation in male Sprague Dawley rats.

    PubMed

    Gong, Yufeng; Zhang, Haijun; Geng, Ningbo; Xing, Liguo; Fan, Jingfeng; Luo, Yun; Song, Xiaoyao; Ren, Xiaoqian; Wang, Feidi; Chen, Jiping

    2018-06-01

    Short-chain chlorinated paraffins (SCCPs) are known to disturb thyroid hormone (TH) homeostasis in rodents. However, the mechanism remains to be fully characterized. In this study, male Sprague Dawley rats received SCCPs (0, 1, 10, or 100mg/kg/day) via gavage once a day for consecutive 28days. Plasma and hepatic TH concentrations, thyrocyte structure, as well as thyroid and hepatic mRNA and protein levels of genes associated with TH homeostasis were examined. Moreover, we performed molecular docking to predict interactions between constitutive androstane receptor (CAR), a key regulator in xenobiotic-induced TH metabolism, with different SCCP molecules. Exposure to SCCPs significantly decreased the circulating free thyroxine (T 4 ) and triiodothyronine (T 3 ) levels, but increased thyroid-stimulating hormone (TSH) levels by a feedback mechanism. Decreased hepatic T 4 and increased hepatic T 3 levels were also seen after 100mg/kg/day SCCPs exposure. SCCPs didn't show any significant effects on the expression of thyroid TH synthesis genes or thyrocyte structure. However, stimulation effects were observed for mRNA and protein levels of hepatic uridine diphosphoglucuronosyl transferase (UGT) 1A1 and organic anion transporter 2, suggesting an accelerated TH metabolism in rat liver. The increased cytochrome P450 2B1 but not 1A1 mRNA and protein levels indicated that the CAR signaling was activated by SCCPs exposure. According to docking analysis, SCCPs form hydrophobic interactions with CAR and the binding affinity shows dependency on chlorine content. Overall, our data showed that CAR implicated enhancement of hepatic TH influx and degradation could be the main cause for SCCPs induced TH deficiency in male rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. HISTORICAL AND CURRENT PERSPECTIVE IN THE USE OF THYROID EXTRACTS FOR THE TREATMENT OF HYPOTHYROIDISM.

    PubMed

    Hennessey, James V

    2015-10-01

    To describe the history, refinements, implementation, physiology, and clinical outcomes achieved over the past several centuries of thyroid hormone replacement strategies. A Medline search was initiated using the following search terms: bioidentical thyroid hormone, thyroid hormone extract, combination thyroxine (T4) and tri-iodothyronine (T3) therapy, homeopathic thyroid hormone therapy, and thyroid hormone replacement. Pertinent articles of interest were identified by title (and where available abstract) for further review. Additional references were identified during a review of the identified literature. A rich history of physician intervention in thyroid dysfunction was identified dating back more than 2 millennia. Although not precisely documented, thyroid ingestion from animal sources had been used for centuries but was finally scientifically described and documented in Europe over 130 years ago. Since the reports by Bettencourt and Murray, there has been a continuous documentation of outcomes, refinement of hormone preparation production, and updating of recommendations for the most effective and safe use of these hormones for relieving the symptoms of hypothyroidism. As the thyroid extract preparations contain both levothyroxine (LT4) and liothyronine (LT3), current guidelines do not endorse their use as controlled studies do not clearly document enhanced objective outcomes compared with LT4 monotherapy. Among current issues cited, the optimum ratio of LT4 to LT3 has yet to be determined, and the U.S. Food and Drug Administration (FDA) does not appear to be monitoring the thyroid hormone ratios or content in extract preparations on the market. Taken together, these limitations are important detriments to the use of thyroid extract products. The evolution of thyroid hormone therapies has been significant over the extended period of time they have been in use to treat hypothyroidism. Although numerous websites continue to advocate the use of thyroid hormone extracts as a superior therapy for hypothyroidism, none of the most recent guidelines of major endocrine societies recommend thyroid extract use for hypothyroidism.

  15. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective

    PubMed Central

    Fisher, W.; Wang, Jian; George, Nysia I.; Gearhart, Jeffery M.; McLanahan, Eva D.

    2016-01-01

    The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children’s Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150–180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29–32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency. PMID:26930410

  16. Dietary Iodine Sufficiency and Moderate Insufficiency in the Lactating Mother and Nursing Infant: A Computational Perspective.

    PubMed

    Fisher, W; Wang, Jian; George, Nysia I; Gearhart, Jeffery M; McLanahan, Eva D

    2016-01-01

    The Institute of Medicine recommends that lactating women ingest 290 μg iodide/d and a nursing infant, less than two years of age, 110 μg/d. The World Health Organization, United Nations Children's Fund, and International Council for the Control of Iodine Deficiency Disorders recommend population maternal and infant urinary iodide concentrations ≥ 100 μg/L to ensure iodide sufficiency. For breast milk, researchers have proposed an iodide concentration range of 150-180 μg/L indicates iodide sufficiency for the mother and infant, however no national or international guidelines exist for breast milk iodine concentration. For the first time, a lactating woman and nursing infant biologically based model, from delivery to 90 days postpartum, was constructed to predict maternal and infant urinary iodide concentration, breast milk iodide concentration, the amount of iodide transferred in breast milk to the nursing infant each day and maternal and infant serum thyroid hormone kinetics. The maternal and infant models each consisted of three sub-models, iodide, thyroxine (T4), and triiodothyronine (T3). Using our model to simulate a maternal intake of 290 μg iodide/d, the average daily amount of iodide ingested by the nursing infant, after 4 days of life, gradually increased from 50 to 101 μg/day over 90 days postpartum. The predicted average lactating mother and infant urinary iodide concentrations were both in excess of 100 μg/L and the predicted average breast milk iodide concentration, 157 μg/L. The predicted serum thyroid hormones (T4, free T4 (fT4), and T3) in both the nursing infant and lactating mother were indicative of euthyroidism. The model was calibrated using serum thyroid hormone concentrations for lactating women from the United States and was successful in predicting serum T4 and fT4 levels (within a factor of two) for lactating women in other countries. T3 levels were adequately predicted. Infant serum thyroid hormone levels were adequately predicted for most data. For moderate iodide deficient conditions, where dietary iodide intake may range from 50 to 150 μg/d for the lactating mother, the model satisfactorily described the iodide measurements, although with some variation, in urine and breast milk. Predictions of serum thyroid hormones in moderately iodide deficient lactating women (50 μg/d) and nursing infants did not closely agree with mean reported serum thyroid hormone levels, however, predictions were usually within a factor of two. Excellent agreement between prediction and observation was obtained for a recent moderate iodide deficiency study in lactating women. Measurements included iodide levels in urine of infant and mother, iodide in breast milk, and serum thyroid hormone levels in infant and mother. A maternal iodide intake of 50 μg/d resulted in a predicted 29-32% reduction in serum T4 and fT4 in nursing infants, however the reduced serum levels of T4 and fT4 were within most of the published reference intervals for infant. This biologically based model is an important first step at integrating the rapid changes that occur in the thyroid system of the nursing newborn in order to predict adverse outcomes from exposure to thyroid acting chemicals, drugs, radioactive materials or iodine deficiency.

  17. [Thyroid and pregnancy].

    PubMed

    Iwen, K A; Lehnert, H

    2018-05-17

    During pregnancy thyroid hormones have profound effects on embryonal/fetal development and maternal health. Therefore, thyroid gland disorders should be immediately diagnosed and adequately treated. Pregnancy-specific physiological alterations during pregnancy cause changes in the reference interval for thyroid-stimulating hormone levels and trimester-specific thresholds must be taken into account. This article summarizes the most important diagnostic and therapeutic aspects before, during and after pregnancy. With reference to the period prior to pregnancy, the article discusses iodide supplementation, preconceptional examination of thyroid gland metabolism and the importance of thyroid gland functional disorders for fertility and fulfilling the desire to have children. With a view to the period during pregnancy, the effect of hypothyroxinemia, hypothyroidism, and hyperthyroidism as well as the effects of their treatment on the development of the child are explained. Finally, a description is given of what must be paid attention to in the breast-feeding period and in postpartum thyroiditis.

  18. Overexpression of Interleukin-4 in the Thyroid of Transgenic Mice Upregulates the Expression of Duox1 and the Anion Transporter Pendrin

    PubMed Central

    Achouri, Younes; Hahn, Stephan; Many, Marie-Christine; Craps, Julie; Refetoff, Samuel; Liao, Xiao-Hui; Dumont, Jacques E.; Van Sande, Jacqueline; Corvilain, Bernard; Miot, Françoise; De Deken, Xavier

    2016-01-01

    Background: The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. Methods: Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. Results: Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene Slc5a5 was markedly downregulated resulting in impaired iodide uptake and reduced thyroid hormone levels in transgenic thyroid tissue. Hydrogen peroxide production was increased in Thyr-IL-4 thyroid tissue compared with wild-type animals, but no significant oxidative stress could be detected. Conclusions: This is the first study to show that ectopic expression of IL-4 in thyroid tissue upregulates Duox1/Duoxa1 and Slc26a4 expression in the thyroid. The present data demonstrate that IL-4 could affect thyroid morphology and function, mainly by downregulating Slc5a5 expression, while maintaining a normal euthyroid phenotype. PMID:27599561

  19. Fetal Thyroid Function, Birth Weight, and in Utero Exposure to Fine Particle Air Pollution: A Birth Cohort Study

    PubMed Central

    Janssen, Bram G.; Saenen, Nelly D.; Roels, Harry A.; Madhloum, Narjes; Gyselaers, Wilfried; Lefebvre, Wouter; Penders, Joris; Vanpoucke, Charlotte; Vrijens, Karen; Nawrot, Tim S.

    2016-01-01

    Background: Thyroid hormones are critical for fetal development and growth. Whether prenatal exposure to fine particle air pollution (≤ 2.5 μm; PM2.5) affects fetal thyroid function and what the impact is on birth weight in normal healthy pregnancies have not been studied yet. Objectives: We studied the impact of third-trimester PM2.5 exposure on fetal and maternal thyroid hormones and their mediating role on birth weight. Methods: We measured the levels of free thyroid hormones (FT3, FT4) and thyroid-stimulating hormone (TSH) in cord blood (n = 499) and maternal blood (n = 431) collected after delivery from mother–child pairs enrolled between February 2010 and June 2014 in the ENVIRONAGE birth cohort with catchment area in the province of Limburg, Belgium. Results: An interquartile range (IQR) increment (8.2 μg/m3) in third-trimester PM2.5 exposure was inversely associated with cord blood TSH levels (–11.6%; 95% CI: –21.8, –0.1) and the FT4/FT3 ratio (–62.7%; 95% CI: –91.6, –33.8). A 10th–90th percentile decrease in cord blood FT4 levels was associated with a 56 g decrease in mean birth weight (95% CI: –90, –23). Assuming causality, we estimated that cord blood FT4 mediated 21% (–19 g; 95% CI: –37, –1) of the estimated effect of an IQR increment in third-trimester PM2.5 exposure on birth weight. Third-trimester PM2.5 exposure was inversely but not significantly associated with maternal blood FT4 levels collected 1 day after delivery (–4.0%, 95% CI: –8.0, 0.2 for an IQR increment in third-trimester PM2.5). Conclusions: In our study population of normal healthy pregnancies, third-trimester exposure to PM2.5 air pollution was associated with differences in fetal thyroid hormone levels that may contribute to reduced birth weight. Additional research is needed to confirm our findings in other populations and to evaluate potential consequences later in life. Citation: Janssen BG, Saenen ND, Roels HA, Madhloum N, Gyselaers W, Lefebvre W, Penders J, Vanpoucke C, Vrijens K, Nawrot TS. 2017. Fetal thyroid function, birth weight, and in utero exposure to fine particle air pollution: a birth cohort study. Environ Health Perspect 125:699–705; http://dx.doi.org/10.1289/EHP508 PMID:27623605

  20. Inherited hypothyroidism.

    PubMed

    Jackson, I M

    1976-03-01

    Familial hypothyroidism results from both thyroidal and extrathyroidal dysfunction. Specific intrathyroidal abnormalities in thyroid hormone synthesis causing goitrous hypothyroidism are iodide trap defect, organification defect, "coupling" defect, iodoprotein defect, and dehalogenase defect. The diagnostic studies for each are outlined utilizing radioiodine(131I) studies. Other causes of cretinism include failure of the thyroid gland to respond to TSH and lack of pituitary TSH (or hypothalamic TRH). The syndrome of peripheral resistance to thyroid hormone is discussed. The diagnosis of inherited hypothyrodism rests on an adequate family history and measurement of both T4 and TSH levels which can be determined in cord blood or peripheral blood from the infant. The importance of early treatment of hypothyroidism in the neonatal period to prevent brain damage is emphasized. The rec:nt discovery of the importance of reverse T3 (RT3) in fetal thyroid metabolism is described, and the possibility of amniocentesis as an aid in prenatal diagnosis is considered. The place of intrauterine administration of thyroid hormone to the fetus at risk from hypothyroidism is uncertain at this time and requires carefully controlled studies and long-term follow-up.

  1. Direct calorimetry of free-moving eels with manipulated thyroid status

    NASA Astrophysics Data System (ADS)

    van Ginneken, Vincent; Ballieux, Bart; Antonissen, Erik; van der Linden, Rob; Gluvers, Ab; van den Thillart, Guido

    2007-02-01

    In birds and mammals, the thyroid gland secretes the iodothyronine hormones of which tetraiodothyronine (T4) is less active than triiodothyronine (T3). The action of T3 and T4 is calorigenic and is involved in the control of metabolic rate. Across all vertebrates, thyroid hormones also play a major role in differentiation, development and growth. Although the fish thyroidal system has been researched extensively, its role in thermogenesis is unclear. In this study, we measured overall heat production to an accuracy of 0.1 mW by direct calorimetry in a free-moving European eel ( Anguilla anguilla L.) with different thyroid status. Hyperthyroidism was induced by injection of T3 and T4, and hypothyroidism was induced with phenylthiourea. The results show for the first time at the organismal level, using direct calorimetry, that neither overall heat production nor overall oxygen consumption in eels is affected by hyperthyroidism. Therefore, we conclude that the thermogenic metabolism-stimulating effect of thyroid hormones (TH) is not present with a cold-blooded fish species like the European eel. This supports the concept that TH does not stimulate thermogenesis in poikilothermic species.

  2. Thyroid-stimulating hormone and adverse left ventricular remodeling following ST-segment elevation myocardial infarction.

    PubMed

    Reindl, Martin; Feistritzer, Hans-Josef; Reinstadler, Sebastian Johannes; Mueller, Lukas; Tiller, Christina; Brenner, Christoph; Mayr, Agnes; Henninger, Benjamin; Mair, Johannes; Klug, Gert; Metzler, Bernhard

    2018-04-01

    Adverse left ventricular remodeling is one of the major determinants of heart failure and mortality in patients surviving ST-segment elevation myocardial infarction (STEMI). The hypothalamic-pituitary-thyroid axis is a key cardiovascular regulator; however, the relationship between hypothalamic-pituitary-thyroid status and post-STEMI left ventricular remodeling is unclear. We aimed to investigate the association between thyroid-stimulating hormone concentrations and the development of left ventricular remodeling following reperfused STEMI. In this prospective observational study of 102 consecutive STEMI patients, thyroid-stimulating hormone levels were measured at the first day after infarction and 4 months thereafter. Cardiac magnetic resonance scans were performed within the first week as well as at 4 months follow-up to determine infarct characteristics, myocardial function and as primary endpoint left ventricular remodeling, defined as a 20% or greater increase in left ventricular end-diastolic volume. Patients with left ventricular remodeling ( n=15, 15%) showed significantly lower concentrations of baseline (1.20 [0.92-1.91] vs. 1.73 [1.30-2.60] mU/l; P=0.02) and follow-up (1.11 [0.86-1.28] vs. 1.51 [1.15-2.02] mU/l; P=0.002) thyroid-stimulating hormone. The association between baseline thyroid-stimulating hormone and left ventricular remodeling remained significant after adjustment for major clinical (peak high-sensitivity cardiac troponin T and C-reactive protein, heart rate; odds ratio (OR) 5.33, 95% confidence interval (CI) 1.52-18.63; P=0.01) and cardiac magnetic resonance predictors of left ventricular remodeling (infarct size, microvascular obstruction, ejection fraction; OR 4.59, 95% CI 1.36-15.55; P=0.01). Furthermore, chronic thyroid-stimulating hormone was related to left ventricular remodeling independently of chronic left ventricular remodeling correlates (infarct size, ejection fraction, left ventricular end-diastolic volume, left ventricular end-systolic volume; OR 9.22, 95% CI 1.69-50.22; P=0.01). Baseline and chronic thyroid-stimulating hormone concentrations following STEMI were independently associated with left ventricular remodeling, proposing a novel pathophysiological axis in the development of post-STEMI left ventricular remodeling.

  3. Regulation of mammary gland sensitivity to thyroid hormones during the transition from pregnancy to lactation.

    PubMed

    Capuco, A V; Connor, E E; Wood, D L

    2008-10-01

    Thyroid hormones are galactopoietic and help to establish the mammary gland's metabolic priority during lactation. Expression patterns for genes that can alter tissue sensitivity to thyroid hormones and thyroid hormone activity were evaluated in the mammary gland and liver of cows at 53, 35, 20, and 7 days before expected parturition, and 14 and 90 days into the subsequent lactation. Transcript abundance for the three isoforms of iodothyronine deiodinase, type I (DIO1), type II (DIO2) and type III (DIO3), thyroid hormone receptors alpha1 (TRalpha1), alpha2 (TRalpha2) and beta1 (TRbeta1), and retinoic acid receptors alpha (RXRalpha) and gamma (RXRgamma), which act as coregulators of thyroid hormone receptor action, were evaluated by quantitative RT-PCR. The DIO3 is a 5-deiodinase that produces inactive iodothyronine metabolites, whereas DIO1 and DIO2 generate the active thyroid hormone, triiodothyronine, from the relatively inactive precursor, thyroxine. Low copy numbers of DIO3 transcripts were present in mammary gland and liver. DIO2 was the predominant isoform expressed in mammary gland and DIO1 was the predominant isoform expressed in liver. Quantity of DIO1 mRNA in liver tissues did not differ with physiological state, but tended to be lowest during lactation. Quantity of DIO2 mRNA in mammary gland increased during lactation (P < 0.05), with copy numbers at 90 days of lactation 6-fold greater than at 35 and 20 days prepartum. When ratios of DIO2/DIO3 mRNA were evaluated, the increase was more pronounced (>100-fold). Quantity of TRbeta1 mRNA in mammary gland increased with onset of lactation, whereas TRalpha1 and TRalpha2 transcripts did not vary with physiological state. Conversely, quantity of RXRalpha mRNA decreased during late gestation to low levels during early lactation. Data suggest that increased expression of mammary TRbeta1 and DIO2, and decreased RXRalpha, provide a mechanism to increase thyroid hormone activity within the mammary gland during lactation.

  4. Combined Effects of Perchlorate, Thiocyanate, and Iodine on Thyroid Function in the National Health and Nutrition Examination Survey 2007-8

    PubMed Central

    Steinmaus, Craig; Miller, Mark D.; Cushing, Lara; Blount, Benjamin C.; Smith, Allan H.

    2013-01-01

    Perchlorate, thiocyanate, and low iodine intake can all decrease iodide intake into the thyroid gland. This can reduce thyroid hormone production since iodide is a key component of thyroid hormone. Previous research has suggested that each of these factors alone may decrease thyroid hormone levels, but effect sizes are small. We hypothesized that people who have all three factors at the same time have substantially lower thyroid hormone levels than people who do not, and the effect of this combined exposure is substantially larger than the effects seen in analyses focused on only one factor at a time. Using data from the 2007-2008 National Health and Nutrition Examination Survey, subjects were categorized into exposure groups based on their urinary perchlorate, iodine, and thiocyanate concentrations, and mean serum thyroxine concentrations were compared between groups. Subjects with high perchlorate (n=1939) had thyroxine concentrations that were 5.0% lower (mean difference = 0.40 µg/dl, 95% confidence interval=0.14-0.65) than subjects with low perchlorate (n=2084). The individual effects of iodine and thiocyanate were even smaller. Subjects with high perchlorate, high thiocyanate, and low iodine combined (n=62) had thyroxine concentrations 12.9% lower (mean difference = 1.07 µg/dl, 95% confidence interval=0.55-1.59) than subjects with low perchlorate, low thiocyanate, and adequate iodine (n=376). Potential confounders had little impact on results. Overall, these results suggest that concomitant exposure to perchlorate, thiocyanate, and low iodine markedly reduces thyroxine production. This highlights the potential importance of examining the combined effects of multiple agents when evaluating the toxicity of thyroid-disrupting agents. PMID:23473920

  5. Maternal urinary bisphenol a during pregnancy and maternal and neonatal thyroid function in the CHAMACOS study.

    PubMed

    Chevrier, Jonathan; Gunier, Robert B; Bradman, Asa; Holland, Nina T; Calafat, Antonia M; Eskenazi, Brenda; Harley, Kim G

    2013-01-01

    Bisphenol A (BPA) is widely used in the manufacture of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt thyroid function. Although thyroid hormones play a determinant role in human growth and brain development, no studies have investigated relations between BPA exposure and thyroid function in pregnant women or neonates. Our goal was to evaluate whether exposure to BPA during pregnancy is related to thyroid hormone levels in pregnant women and neonates. We measured BPA concentration in urine samples collected during the first and second half of pregnancy in 476 women participating in the CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas) study. We also measured free thyroxine (T4), total T4, and thyroid-stimulating hormone (TSH) in women during pregnancy, and TSH in neonates. Associations between the average of the two BPA measurements and maternal thyroid hormone levels were not statistically significant. Of the two BPA measurements, only the one taken closest in time to the TH measurement was significantly associated with a reduction in total T4 (β = -0.13 µg/dL per log2 unit; 95% CI: -0.25, 0.00). The average of the maternal BPA concentrations was associated with reduced TSH in boys (-9.9% per log2 unit; 95% CI: -15.9%, -3.5%) but not in girls. Among boys, the relation was stronger when BPA was measured in the third trimester of pregnancy and decreased with time between BPA and TH measurements. Results suggest that exposure to BPA during pregnancy is related to reduced total T4 in pregnant women and decreased TSH in male neonates. Findings may have implications for fetal and neonatal development.

  6. An animal model of marginal iodine deficiency during development: The thyroid axis and neurodevelopmental outcome

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development and iodine is required for TH synthesis. Environmental chemicals that perturb the thyroid axis result in modest reductions in TH, yet there is a paucity of data on the neurological impairments associated with low level TH ...

  7. THYROID INSUFFICIENCY AND GENE EXPRESSION IN DEVELOPING RAT BRAIN: A DOSE RESPONSE STUDY.

    EPA Science Inventory

    Thyroid Insufficiency and Gene Expression in Developing Rat Brain: A Dose Response Study. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption is an area of major concern in environmental neurotoxicity. Deficits in thyroid hormone (TH) levels h...

  8. Interaction between organophosphate pesticide exposure and PON1 activity on thyroid function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacasana, Marina, E-mail: marina.lacasana.easp@juntadeandalucia.e; CIBER de Epidemiologia y Salud Publica; Lopez-Flores, Inmaculada

    Organophosphate pesticides are widely used in agricultural purposes. Recently, a few studies have demonstrated the ability of these chemicals to alter the function of the thyroid gland in human. Moreover, the paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity. This study evaluates the interaction between exposure to organophosphate compounds and PON1 enzyme activity on serum levels of TSH and thyroid hormones in a population of workers occupationally exposed to pesticides. A longitudinal study was conducted on a population of floriculture workers from Mexico, duringmore » two periods of high and low-intensity levels of pesticide application. A structured questionnaire was completed by workers containing questions on sociodemographic characteristics and other variables of interest. Urine and blood samples were taken, and biomarkers of exposure (dialkylphosphates), susceptibility (PON1 polymorphisms and activity) and effect (thyroid hormone levels) were determined. Interaction between dialkylphosphates and PON1 polymorphisms or PON1 activity on hormone levels was evaluated by generalized estimating equation (GEE) models. A significant interaction was found between serum diazoxonase activity and total dialkylphosphates ({Sigma}DAP) on TSH levels. Thus, when PON1 activity was increased we observed a decrease in the percentage of variation of TSH level for each increment in one logarithmic unit of the {Sigma}DAP levels. This interaction was also observed with the PON1{sub 192}RR genotype. These results suggest a stronger association between organophosphate pesticides and thyroid function in individuals with lower PON1 activity.« less

  9. Iodothyronine deiodinase gene analysis of the Pacific oyster Crassostrea gigas reveals possible conservation of thyroid hormone feedback regulation mechanism in mollusks

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Xu, Fei; Qu, Tao; Li, Li; Que, Huayong; Zhang, Guofan

    2015-07-01

    Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two deiodinases were cloned in the Pacific oyster Crassostrea gigas ( CgDx and CgDy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase cDNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid Capitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of CgDx and CgDy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of CgDx and CgDy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.

  10. ANIMAL PHYSIOLOGY. Exceptionally low daily energy expenditure in the bamboo-eating giant panda.

    PubMed

    Nie, Yonggang; Speakman, John R; Wu, Qi; Zhang, Chenglin; Hu, Yibo; Xia, Maohua; Yan, Li; Hambly, Catherine; Wang, Lu; Wei, Wei; Zhang, Jinguo; Wei, Fuwen

    2015-07-10

    The carnivoran giant panda has a specialized bamboo diet, to which its alimentary tract is poorly adapted. Measurements of daily energy expenditure across five captive and three wild pandas averaged 5.2 megajoules (MJ)/day, only 37.7% of the predicted value (13.8 MJ/day). For the wild pandas, the mean was 6.2 MJ/day, or 45% of the mammalian expectation. Pandas achieve this exceptionally low expenditure in part by reduced sizes of several vital organs and low physical activity. In addition, circulating levels of thyroid hormones thyroxine (T4) and triiodothyronine (T3) averaged 46.9 and 64%, respectively, of the levels expected for a eutherian mammal of comparable size. A giant panda-unique mutation in the DUOX2 gene, critical for thyroid hormone synthesis, might explain these low thyroid hormone levels. A combination of morphological, behavioral, physiological, and genetic adaptations, leading to low energy expenditure, likely enables giant pandas to survive on a bamboo diet. Copyright © 2015, American Association for the Advancement of Science.

  11. Exposure to polychlorinated biphenyls and the thyroid gland - examining and discussing possible longitudinal health effects in humans.

    PubMed

    Gaum, Petra M; Lang, Jessica; Esser, André; Schettgen, Thomas; Neulen, Joseph; Kraus, Thomas; Gube, Monika

    2016-07-01

    Many previous studies have dealt with the effect of polychlorinated biphenyls (PCBs) on the thyroid gland, but their findings are inconsistent. One problem of these studies has been their use of cross-sectional designs. The aim of the current study is to investigate longitudinal effects of PCBs on the thyroid gland, focusing on: morphological changes in thyroid tissue (i.e. thyroid volume), changes in thyroid hormones and in thyroid antibodies. A total of 122 individuals (Mage=44.7) were examined over a period of four years (t(1) until t(4)). Medical history was collected via interviews, an ultrasound examination was performed and blood samples were taken to determine plasma PCB levels, thyroid stimulating hormone (TSH), free triiodthyronine (fT3), free thyroxine (fT4), thyroid peroxidase antibodies (TPOab), thyreoglobulin antibodies (TGab) and thyroid-stimulating hormone receptor antibodies (TSHRab). Rank correlation coefficients and mixed effect models were performed controlling for age and total lipids. There were negative correlations between higher chlorinated biphenyls and fT3, cross-sectionally as well as longitudinally. We also found an interaction effect of higher-chlorinated PCBs over time for fT4 as well as TSHRab. In case of high exposure, a decrease in fT4 and an increase in TSHRab level were found over time. In regards to the other variables, our findings yielded no clear results in the examined time period. This is the first study to shows a PCB-related effect on fT3, fT4 and TSHRab over a four year period. The data also suggest that morphological and antibody findings remain inconsistent and do not allow for unambiguous interpretation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Subclinical hypothyroidism: Should we treat?

    PubMed

    Redford, Christopher; Vaidya, Bijay

    2017-06-01

    Subclinical hypothyroidism (also known as compensated hypothyroidism or mild hypothyroidism) is a condition associated with a raised serum concentration of thyroid stimulating hormone (TSH) but a normal serum free thyroxine (FT4). It is common, affecting about 10% of women above the age of 55 years. Autoimmunity is the commonest cause of subclinical hypothyroidism. About 2.5% of patients with subclinical hypothyroidism progress to clinically overt hypothyroidism each year; the rate of progression is higher in patients with thyroid autoantibodies and higher thyroid stimulating hormone levels. However, thyroid function normalises spontaneously in up to 40% cases. Only a small minority of patients with subclinical hypothyroidism have symptoms, and the evidence to support that levothyroxine ameliorate the symptoms in these patients is weak. Subclinical hypothyroidism in younger patients (<65 years) is associated with an increased risk of coronary heart disease, heart failure and cerebrovascular disease. The risk increases with increasing levels of thyroid stimulating hormone, and is particularly high in patients with TSH levels ≥10.0 mu/L. There is lack of evidence from randomised controlled trials as to whether levothyroxine treatment can prevent these risks, although a large observational study of the UK general practice research database has shown that levothyroxine may reduce the risk of coronary heart disease in younger patients (<70 years). Therefore, the decision whether to treat or not to treat subclinical hypothyroidism should be made after careful consideration of the patient's age, the presence of symptoms, the presence of thyroid antibodies and other risk factors such as cardiovascular disease.

  13. Levothyroxine rescues the lead-induced hypothyroidism and impairment of long-term potentiation in hippocampal CA1 region of the developmental rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Chuanyun; Liu Bing; Wang Huili

    Lead (Pb) exposure during development has been associated with impaired long-term potentiation (LTP). Hypothyroidism happening upon subjects with occupational exposure to Pb is suggestive of an adverse effect of Pb on thyroid homeostasis, leading to the hypothesis that Pb exposure may alter thyroid hormone homeostasis. Hippocampus is one of the targets of Pb exposure, and is sensitive to and dependent on thyroid hormones, leading us to explore whether levothyroxine (L-T{sub 4}) administration could alter the thyroid disequilibrium and impairment of LTP in rat hippocampus caused by Pb exposure. Our results show that Pb exposure caused a decrease in triiodothyronine (T{submore » 3}) and tetraiodothyronine (T{sub 4}) levels accompanied by a dramatic decrease of TSH and application of L-T{sub 4} restored these changes to about control levels. Hippocampal and blood Pb concentration were significantly reduced following L-T{sub 4} treatment. L-T{sub 4} treatment rescued the impairment of LTP induced by the Pb exposure. These results suggest that Pb exposure may lead to thyroid dysfunction and induce hypothyroidism and provide a direct electrophysiological proof that L-T{sub 4} relieves chronic Pb exposure-induced impairment of synaptic plasticity. - Highlights: > Lead may interfere with thyroid hormone homeostasis and induce hypothyroidism. > Levothyroxine decreases the hippocampal and blood Pb concentration. > Levothyroxine amends the T{sub 3}, T{sub 4} and TSH levels in blood. > Levothyroxine rescues the impaired LTP in CA1.« less

  14. TSHR intronic polymorphisms (rs179247 and rs12885526) and their role in the susceptibility of the Brazilian population to Graves' disease and Graves' ophthalmopathy.

    PubMed

    Bufalo, N E; Dos Santos, R B; Marcello, M A; Piai, R P; Secolin, R; Romaldini, J H; Ward, L S

    2015-05-01

    Intronic thyroid-stimulating hormone receptor polymorphisms have been associated with the risk for both Graves' disease and Graves' ophthalmopathy, but results have been inconsistent among different populations. We aimed to investigate the influence of thyroid-stimulating hormone receptor intronic polymorphisms in a large well-characterized population of GD patients. We studied 279 Graves' disease patients (231 females and 48 males, 39.80 ± 11.69 years old), including 144 with Graves' ophthalmopathy, matched to 296 healthy control individuals. Thyroid-stimulating hormone receptor genotypes of rs179247 and rs12885526 were determined by Real Time PCR TaqMan(®) SNP Genotyping. A multivariate analysis showed that the inheritance of the thyroid-stimulating hormone receptor AA genotype for rs179247 increased the risk for Graves' disease (OR = 2.821; 95 % CI 1.595-4.990; p = 0.0004), whereas the thyroid-stimulating hormone receptor GG genotype for rs12885526 increased the risk for Graves' ophthalmopathy (OR = 2.940; 95 % CI 1.320-6.548; p = 0.0083). Individuals with Graves' ophthalmopathy also presented lower mean thyrotropin receptor antibodies levels (96.3 ± 143.9 U/L) than individuals without Graves' ophthalmopathy (98.3 ± 201.9 U/L). We did not find any association between the investigated polymorphisms and patients clinical features or outcome. We demonstrate that thyroid-stimulating hormone receptor intronic polymorphisms are associated with the susceptibility to Graves' disease and Graves' ophthalmopathy in the Brazilian population, but do not appear to influence the disease course.

  15. [Influence of phthalates from Shaying river on children's intelligence and secretion of thyroid hormone].

    PubMed

    Li, Anqi; Tang, Chunyu; Hang, Hui; Cheng, Xuemin; Gao, Yalin; Cheng, Hongyang; Huang, Qi; Luo, Yixin; Xue, Yutang; Zuo, Qiting; Ba, Yue; Cui, Liuxin

    2013-03-01

    To investigate the effect of phthalates exposure from drinking water on children's intelligence and secretion of thyroid hormone. Two villages in S County were selected randomly as polluted area and control area according to the distance from the Shaying river basin. Phthalates including DEP, DBP, DMP, DEHP were measured both in the river water and drinking water using HPLC method. Children aged 8 to 13 years old studying in the village primary school were recruited by cluster sampling (n = 154). The combined Reven Test was used to test children intelligence and ELISA method was used to determined thyroid hormone levels. The concentrations of phthalates (DEP, DBP) were exceeding standards of surface water quality in any of the three sections of the river. Compared to the control area, the concentration of DEP and DBP in drinking water were significant higher in the polluted area than that in control area (P < 0.05). Children from polluted area had significant higher FT4 concentration compared to children from control area (P < 0.05). Intelligence level in children from polluted area was lower than that from control area (P < 0.05). The drinking water has been polluted by Shaying river and thyroid hormones levels of children were affected in the polluted areas. It is necessary to verify if this change is related to the phthalates.

  16. [Sub-acute thyroiditis in a patient on immunosuppressive treatment].

    PubMed

    D'Amico, Giovanna; Di Crescenzo, Vincenzo; Caleo, Alessia; Garzi, Alfredo; Vitale, Mario

    2013-01-01

    Sub-acute thyroiditis or De Quervain's thyroiditis is a viral, inflammatory disease which causes the serum release of thyroidal hormones and hyperthyroidism. The pathogenesis of thyroid follicle damage is unclear because the exclusive viral action or a concomitant autoimmune component, determined by the lymphoid infiltrate remain to be assessed. We describe the case of a patient under immunosuppressive treatment, who developed sub-acute thyroiditis with hormone release and hyperthyroidism. The patient, while was under immunosuppressive treatment for kidney transplant, exhibited a clinical picture and hormonal profile of hyperthyroidism. Thyroid scintiscan exhibited an extremely low uptake. Fine-needle cytologic diagnosis was granulomatous sub-acute thyroiditis (De Quervain's thyroiditis). This case suggests the primary or even exclusive role of the viral infection in hormone release and hyperthyroidism in sub-acute thyroiditis, excluding an autoimmune component.

  17. Developmental neurotoxicity of Propylthiouracil (PTU) in rats: Relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelstad, Marta; Hansen, Pernille Reimar; Boberg, Julie

    2008-10-01

    Markedly lowered thyroid hormone levels during development may influence a child's behaviour, intellect, and auditory function. Recent studies, indicating that even small changes in the mother's thyroid hormone status early in pregnancy may cause adverse effects on her child, have lead to increased concern for thyroid hormone disrupting chemicals in the environment. The overall aim of the study was therefore to provide a detailed knowledge on the relationship between thyroid hormone levels during development and long-lasting effects on behaviour and hearing. Groups of 16-17 pregnant rats (HanTac:WH) were dosed with PTU (0, 0.8, 1.6 or 2.4 mg/kg/day) from gestation daymore » (GD) 7 to postnatal day (PND) 17, and the physiological and behavioural development of rat offspring was assessed. Both dams and pups in the higher dose groups had markedly decreased thyroxine (T{sub 4}) levels during the dosing period, and the weight and histology of the thyroid glands were severely affected. PTU exposure caused motor activity levels to decrease on PND 14, and to increase on PND 23 and in adulthood. In the adult offspring, learning and memory was impaired in the two highest dose groups when tested in the radial arm maze, and auditory function was impaired in the highest dose group. Generally, the results showed that PTU-induced hypothyroxinemia influenced the developing rat brain, and that all effects on behaviour and loss of hearing in the adult offspring were significantly correlated to reductions in T{sub 4} during development. This supports the hypothesis that decreased T{sub 4} may be a relevant predictor for long-lasting developmental neurotoxicity.« less

  18. Associations between Polybrominated Diphenyl Ether (PBDE) Flame Retardants, Phenolic Metabolites, and Thyroid Hormones during Pregnancy

    PubMed Central

    Eagle, Sarah; Anthopolos, Rebecca; Wolkin, Amy; Miranda, Marie Lynn

    2011-01-01

    Background: Polybrominated diphenyl ethers (PBDEs) are chemical additives used as flame retardants in commercial products. PBDEs are bioaccumulative and persistent and have been linked to several adverse health outcomes. Objectives: This study leverages an ongoing pregnancy cohort to measure PBDEs and PBDE metabolites in serum collected from an understudied population of pregnant women late in their third trimester. A secondary objective was to determine whether the PBDEs or their metabolites were associated with maternal thyroid hormones. Methods: One hundred forty pregnant women > 34 weeks into their pregnancy were recruited into this study between 2008 and 2010. Blood samples were collected during a routine prenatal clinic visit. Serum was analyzed for a suite of PBDEs, three phenolic metabolites (i.e., containing an –OH moiety), and five thyroid hormones. Results: PBDEs were detected in all samples and ranged from 3.6 to 694 ng/g lipid. Two hydroxylated BDE congeners (4´-OH-BDE 49 and 6-OH-BDE 47) were detected in > 67% of the samples. BDEs 47, 99, and 100 were significantly and positively associated with free and total thyroxine (T4) levels and with total triiodothyronine levels above the normal range. Associations between T4 and PBDEs remained after controlling for smoking status, maternal age, race, gestational age, and parity. Conclusions: PBDEs and OH-BDEs are prevalent in this cohort, and levels are similar to those in the general population. Given their long half-lives, PBDEs may be affecting thyroid regulation throughout pregnancy. Further research is warranted to determine mechanisms through which PBDEs affect thyroid hormone levels in developing fetuses and newborn babies. PMID:21715241

  19. Developmental neurotoxicity of propylthiouracil (PTU) in rats: relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes.

    PubMed

    Axelstad, Marta; Hansen, Pernille Reimar; Boberg, Julie; Bonnichsen, Mia; Nellemann, Christine; Lund, Søren Peter; Hougaard, Karin Sørig; Hass, Ulla

    2008-10-01

    Markedly lowered thyroid hormone levels during development may influence a child's behaviour, intellect, and auditory function. Recent studies, indicating that even small changes in the mother's thyroid hormone status early in pregnancy may cause adverse effects on her child, have lead to increased concern for thyroid hormone disrupting chemicals in the environment. The overall aim of the study was therefore to provide a detailed knowledge on the relationship between thyroid hormone levels during development and long-lasting effects on behaviour and hearing. Groups of 16-17 pregnant rats (HanTac:WH) were dosed with PTU (0, 0.8, 1.6 or 2.4 mg/kg/day) from gestation day (GD) 7 to postnatal day (PND) 17, and the physiological and behavioural development of rat offspring was assessed. Both dams and pups in the higher dose groups had markedly decreased thyroxine (T(4)) levels during the dosing period, and the weight and histology of the thyroid glands were severely affected. PTU exposure caused motor activity levels to decrease on PND 14, and to increase on PND 23 and in adulthood. In the adult offspring, learning and memory was impaired in the two highest dose groups when tested in the radial arm maze, and auditory function was impaired in the highest dose group. Generally, the results showed that PTU-induced hypothyroxinemia influenced the developing rat brain, and that all effects on behaviour and loss of hearing in the adult offspring were significantly correlated to reductions in T(4) during development. This supports the hypothesis that decreased T(4) may be a relevant predictor for long-lasting developmental neurotoxicity.

  20. Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.

    PubMed

    Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M

    2017-10-01

    Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pituitary Dysfunction from an Unruptured Ophthalmic Internal Carotid Artery Aneurysm with Improved 2-year Follow-up Results: A Case Report.

    PubMed

    Qi, Meng; Ye, Ming; Li, Meng; Zhang, Peng

    2018-01-01

    Internal carotid artery (ICA) supraclinoid segment aneurysms extending into the sellar region and leading to pituitary dysfunction are a rare occurrence. To date, long-term follow up of pituitary function 2 years post-treatment has never been reported. Herein, we present a case of pituitary dysfunction due to an unruptured ophthalmic segment internal carotid artery aneurysm and report improved 2-year follow-up results. A 76-year-old male presented with disturbed consciousness due to hyponatremia, which was caused by hypoadrenocorticism resulting from pituitary dysfunction complicated by hypogonadism and hypothyroidism. Computed tomography angiography revealed an intracranial aneurysm of the ophthalmic segment of the right ICA with an intrasellar extension. Thus, digital subtraction angiography and coil embolization were performed, followed by hormone replacement therapy. A 2-year follow-up revealed a partial improvement in the pituitary function, including complete restoration of thyroid-stimulating hormone level and other thyroid hormones levels, and partial restoration of testosterone levels, followed by discontinuation of thyroid hormone replacement therapy. However, the mechanisms of such pituitary dysfunction and the effects of various treatments, including clipping and coiling, on different hormones of pituitary function recovery remain unclear. A long-term follow-up of >2 years may elucidate the pituitary function recovery post-treatment and provide a medication adjustment for hormone replacement therapy.

  2. Myopathy in hyperthyroidism as a consequence of rapid reduction of thyroid hormone: A case report.

    PubMed

    Li, Qianrui; Liu, Yuping; Zhang, Qianying; Tian, Haoming; Li, Jianwei; Li, Sheyu

    2017-07-01

    Myalgia and elevated creatine kinase (CK) are occasionally observed during the treatment of hyperthyroid patients. Relative hypothyroidism resulted from rapid thyroid hormone reduction had been promoted as a plausible cause of these myopathic changes, however rarely reported. We hereby presented a 20-year-old female with Grave's disease, who developed myopathy and elevated CK during rapid correction of thyroid hormone. Relative hypothyroidism-induced myopathy. Antithyroid drug (ATD) dosage was reduced without levothyroxine replacement. The muscular symptoms were recovered with CK level returned to normal after adoption of the euthyroid status. Differentiation of relative hypothyroidism from other causes of myopathy, especially with the effect of ATD, is important for clinical practice, although difficult in many cases.

  3. Thyroid hormone independent associations between serum TSH levels and indicators of bone turnover in cured patients with differentiated thyroid carcinoma.

    PubMed

    Heemstra, Karen A; van der Deure, Wendy M; Peeters, Robin P; Hamdy, Neveen A; Stokkel, Marcel P; Corssmit, Eleonora P; Romijn, Johannes A; Visser, Theo J; Smit, Johannes W

    2008-07-01

    It has been proposed that TSH has thyroid hormone-independent effects on bone mineral density (BMD) and bone metabolism. This concept is still controversial and has not been studied in human subjects in detail. We addressed this question by studying relationships between serum TSH concentration and indicators of bone turnover, after controlling for triiodothyronine (T(3)), free thyroxine (FT(4)), and non-thyroid factors relevant to BMD and bone metabolism. We also studied the contribution of the TSH receptor (TSHR)-Asp727Glu polymorphism to these relationships. We performed a cross-sectional study with 148 patients, who had been thyroidectomized for differentiated thyroid carcinoma. We measured BMD of the femoral neck and lumbar spine. FT(4), T(3), TSH, bone-specific alkaline phosphatase, procollagen type 1 aminoterminal propeptide levels, C-cross-linking terminal telopeptide of type I collagen, and urinary N-telopeptide of collagen cross-links were measured. Genotypes of the TSHR-Asp727Glu polymorphism were determined by Taqman assay. We found a significant, inverse correlation between serum TSH levels and indicators of bone turnover, which was independent of serum FT(4) and T(3) levels as well as other parameters influencing bone metabolism. We found that carriers of the TSHR-Asp727Glu polymorphism had an 8.1% higher femoral neck BMD, which was, however, no longer significant after adjusting for body mass index. We conclude that in this group of patients, serum TSH was related to indicators of bone remodeling independently of thyroid hormone levels. This may point to a functional role of the TSHR in bone in humans. Further research into this mechanism needs to be performed.

  4. Why is the thyroid so prone to autoimmune disease?

    PubMed

    Saranac, L; Zivanovic, S; Bjelakovic, B; Stamenkovic, H; Novak, M; Kamenov, B

    2011-01-01

    The thyroid gland plays a major role in the human body; it produces the hormones necessary for appropriate energy levels and an active life. These hormones have a critical impact on early brain development and somatic growth. At the same time, the thyroid is highly vulnerable to autoimmune thyroid diseases (AITDs). They arise due to the complex interplay of genetic, environmental, and endogenous factors, and the specific combination is required to initiate thyroid autoimmunity. When the thyroid cell becomes the target of autoimmunity, it interacts with the immune system and appears to affect disease progression. It can produce different growth factors, adhesion molecules, and a large array of cytokines. Preventable environmental factors, including high iodine intake, selenium deficiency, and pollutants such as tobacco smoke, as well as infectious diseases and certain drugs, have been implicated in the development of AITDs in genetically predisposed individuals. The susceptibility of the thyroid to AITDs may come from the complexity of hormonal synthesis, peculiar oligoelement requirements, and specific capabilities of the thyroid cell's defense system. An improved understanding of this interplay could yield novel treatment pathways, some of which might be as simple as identifying the need to avoid smoking or to control the intake of some nutrients. Copyright © 2011 S. Karger AG, Basel.

  5. Thyroid Hormones and Thyroid Disease in Relation to Perchlorate Dose and Residence Near a Superfund Site

    PubMed Central

    Gold, Ellen B.; Blount, Benjamin C.; Rasor, Marianne O’Neill; Lee, Jennifer S.; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi

    2013-01-01

    Background Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. Objectives In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Methods Residential blocks were randomly selected from areas: 1) with potential perchlorate exposure via drinking water; 2) with potential exposure to environmental contaminants; and 3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20–50 years during 1988–1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone [TSH] and free thyroxine [fT4]) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Results Residential location and current perchlorate dose were not associated with thyroid function or disease. Conclusions No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped. PMID:22968349

  6. Highly-sensitive C-reactive protein, a biomarker of cardiovascular disease risk, in radically-treated differentiated thyroid carcinoma patients after repeated thyroid hormone withholding.

    PubMed

    Piciu, A; Piciu, D; Marlowe, R J; Irimie, A

    2013-02-01

    In patients radically treated for differentiated thyroid carcinoma, we assessed the response of highly-sensitive C-reactive protein, an inflammatory biomarker for cardiovascular risk, after thyroid hormone withholding ("deprivation"), as well as factors potentially influencing this response. We included 52 adults (mean age 45.6±14.0 years, 35 females) who were disease-free after total thyroidectomy, radioiodine ablation and chronic thyroid hormone therapy. They were lifelong non-smokers without apparent inflammatory comorbidity, cardiovascular history beyond pharmacotherapy-controlled hypertension, anti-dyslipidemic medication, or C-reactive protein >10 mg/L in any study measurement. The index deprivation lasted ≥2 weeks, elevating serum thyrotropin >40 mIU/L or ≥100 × the individual's suppressed level. We examined the relationship of age, number of prior deprivations, and gender with the magnitude of post-deprivation C-reactive protein concentration through multivariable statistical analyses using the F test on linear regression models. Post-deprivation, C-reactive protein reached intermediate cardiovascular risk levels (based on general population studies involving chronic elevation), 1-3 mg/L, in 44.2% of patients and high-risk levels, >3 mg/L, in another 17.3%. Mean C-reactive protein was 1.77±1.50 mg/L, differing significantly in females (2.12±1.66 mg/L) vs. males (1.05±0.69 mg/L, P <0.001). In multivariable analysis, patients ≤45 years old (odds ratio, 95% confidence interval 0.164 [0.049-0.548]) were less likely, and females, more likely (3.571 [1.062-12.009]) to have post-deprivation C-reactive protein ≥1 mg/L. Thyroid hormone withdrawal frequently elevated C-reactive protein to levels that when present chronically, were associated with increased cardiovascular risk in general population studies. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  7. Trimester specific reference intervals for thyroid function tests in normal Indian pregnant women.

    PubMed

    Sekhri, Tarun; Juhi, Juhi Agarwal; Wilfred, Reena; Kanwar, Ratnesh S; Sethi, Jyoti; Bhadra, Kuntal; Nair, Sirimavo; Singh, Satveer

    2016-01-01

    Accurate assessment of thyroid function during pregnancy is critical, for initiation of thyroid hormone therapy, as well as for adjustment of thyroid hormone dose in hypothyroid cases. We evaluated pregnant women who had no past history of thyroid disorders and studied their thyroid function in each trimester. 86 normal pregnant women in the first trimester of pregnancy were selected for setting reference intervals. All were healthy, euthyroid and negative for thyroid peroxidase antibody (TPOAb). These women were serially followed throughout pregnancy. 124 normal nonpregnant subjects were selected for comparison. Thyrotropin (TSH), free thyroxine (FT4), free triiodothyronine (FT3) and anti-TPO were measured using Roche Elecsys 1010 analyzer. Urinary iodine content was determined by simple microplate method. The 2.5th and 97.5th percentiles were calculated as the reference intervals for thyroid hormone levels during each trimester. SPSS (version 14.0, SPSS Inc., Chicago, IL, USA) was used for data processing and analysis. The reference intervals for the first, second and third trimesters for the following parameters: TSH 0.09-6.65, 0.51-6.66, 0.91-4.86 µIU/mL, FT4 9.81-18.53, 8.52-19.43, 7.39-18.28 pM/L and FT3 3.1-6.35, 2.39-5.12, 2.57-5.68 pM/L respectively. Thyroid hormone concentrations significantly differed during pregnancy at different stages of gestation. The pregnant women in the study had median urinary iodine concentration of 150-200 µg/l during each trimester. The trimester-specific reference intervals for thyroid tests during pregnancy have been established for pregnant Indian women serially followed during pregnancy using 2.5th and 97.5th percentiles.

  8. Tiratricol-induced periodic paralysis: a review of nutraceuticals affecting thyroid function.

    PubMed

    Cohen-Lehman, Janna; Charitou, Marina M; Klein, Irwin

    2011-01-01

    To review the potential adverse effects of thyroid hormone-based nutraceuticals and describe a case of thyrotoxic periodic paralysis (TPP) after abuse of a dietary supplement containing 3,5,3'-triiodothyroacetic acid (tiratricol). We review the literature on potential dangers and therapeutic misadventures of thyroid hormone-based nutraceuticals and present the clinical, laboratory, and radiologic data of a bodybuilder in whom hypokalemic TPP developed after use of "Triax Metabolic Accelerator". A 23-year-old white man developed lower extremity paralysis, diaphoresis, and palpitations in the setting of low serum potassium levels. Laboratory results showed suppressed thyroid-stimulating hormone, low levels of free and total thyroxine, low total triiodothyronine level, and very low 24-hour radioiodine uptake. The patient ultimately admitted to taking a supplement containing tiratricol for approximately 2 months, and hypokalemic TPP was diagnosed. He was treated with potassium supplementation and a β-adrenergic blocking agent, which completely resolved his symptoms. Results of thyroid function tests normalized or approached normal 1 week after hospitalization, and future use of dietary supplements was strongly discouraged. Despite 2 warnings by the US Food and Drug Administration, products containing tiratricol are still available for sale on the Internet. This report illustrates both an unusual adverse effect of a nutraceutical containing tiratricol and the importance of educating our patients about the risks versus benefits of using these widely available but loosely regulated products.

  9. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    PubMed

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  10. Incorporating thyroid markers in Down syndrome screening protocols.

    PubMed

    Dhaifalah, Ishraq; Salek, Tomas; Langova, Dagmar; Cuckle, Howard

    2017-05-01

    The article aimed to assess the benefit of incorporating maternal serum thyroid disease marker levels (thyroid-stimulating hormone and free thyroxine) into first trimester Down syndrome screening protocols. Statistical modelling was used to predict performance with and without the thyroid markers. Two protocols were considered: the combined test and the contingent cell-free DNA (cfDNA) test, where 15-40% women are selected for cfDNA because of increased risk based on combined test results. Published parameters were used for the combined test, cfDNA and the Down syndrome means for thyroid-stimulating hormone and free thyroxine; other parameters were derived from a series of 5230 women screened for both thyroid disease and Down syndrome. Combined test: For a fixed 85% detection rate, the predicted false positive rate was reduced from 5.3% to 3.6% with the addition of the thyroid markers. Contingent cfDNA test: For a fixed 95% detection rate, the proportion of women selected for cfDNA was reduced from 25.6% to 20.2%. When screening simultaneously for maternal thyroid disease and Down syndrome, thyroid marker levels should be used in the calculation of Down syndrome risk. The benefit is modest but can be achieved with no additional cost. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  11. The History and Future of Treatment of Hypothyroidism

    PubMed Central

    McAninch, Elizabeth A.; Bianco, Antonio C.

    2016-01-01

    Thyroid hormone replacement has been used for more than a century to treat hypothyroidism. Natural thyroid preparations (thyroid extract, desiccated thyroid, or thyroglobulin), which contain both thyroxine (T4) and triiodothyronine (T3), were the first pharmacologic treatments available and dominated the market for the better part of the 20th century. Dosages were adjusted to resolve symptoms and to normalize the basal metabolic rate and/or serum protein-bound iodine level, but thyrotoxic adverse effects were not uncommon. Two major developments in the 1970s led to a transition in clinical practice: 1) The development of the serum thyroid-stimulating hormone (TSH) radioimmunoassay led to the discovery that many patients were overtreated, resulting in a dramatic reduction in thyroid hormone replacement dosage, and 2) the identification of peripheral deiodinase-mediated T4-to-T3 conversion provided a physiologic means to justify l-thyroxine monotherapy, obviating concerns about inconsistencies with desiccated thyroid. Thereafter, l-thyroxine mono-therapy at doses to normalize the serum TSH became the standard of care. Since then, a subgroup of thyroid hormone–treated patients with residual symptoms of hypothyroidism despite normalization of the serum TSH has been identified. This has brought into question the inability of l-thyroxine monotherapy to universally normalize serum T3 levels. New research suggests mechanisms for the inadequacies of l-thyroxine monotherapy and highlights the possible role for personalized medicine based on deiodinase polymorphisms. Understanding the historical events that affected clinical practice trends provides invaluable insight into formulation of an approach to help all patients achieve clinical and biochemical euthyroidism. PMID:26747302

  12. Stimulation by thyroid-stimulating hormone and Grave's immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo.

    PubMed

    Sato, K; Yamazaki, K; Shizume, K; Kanaji, Y; Obara, T; Ohsumi, K; Demura, H; Yamaguchi, S; Shibuya, M

    1995-09-01

    To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.

  13. Rapid method for the measurement of circulating thyroid hormones in low volumes of teleost fish plasma by LC-ESI/MS/MS

    PubMed Central

    Noyes, Pamela D.; Lema, Sean C.; Roberts, Simon C.; Cooper, Ellen M.

    2014-01-01

    Thyroid hormones are critical regulators of normal development and physiological functioning in all vertebrates. Radioimmunoassay (RIA) approaches have been the method of choice for measuring circulating levels of thyroid hormones in vertebrates. While sensitive, RIA-based approaches only allow for a single analyte measurement per assay, can lack concordance across platforms and laboratories, and can be prone to analytical interferences especially when used with fish plasma. Ongoing advances in liquid chromatography tandem mass spectrometry (LC/MS/MS) have led to substantial decreases in detection limits for thyroid hormones and other biomolecules in complex matrices, including human plasma. Despite these advances, current analytical approaches do not allow for the measurement of native thyroid hormone in teleost fish plasma by mass spectrometry and continue to rely on immunoassay. In this study, we developed a new method that allows for the rapid extraction and simultaneous measurement of total T4 (TT4) and total T3 (TT3) in low volumes (50 μL) of fish plasma by LC/MS/MS. Methods were optimized initially in plasma from rainbow trout (Oncorhynchus mykiss) and applied to plasma from other teleost fishes, including fathead minnows (Pimephales promelas), mummichogs (Fundulus heteroclitus), sockeye salmon (Oncorhynchus nerka), and coho salmon (Oncorhynchus kisutch). Validation of method performance with T4- and T3-spiked rainbow trout plasma at 2 and 4 ng/mL produced mean recoveries ranging from 82 to 95 % and 97 to 105 %, respectively. Recovery of 13C12-T4 internal standard in plasma extractions was: 99±1.8 % in rainbow trout, 85±11 % in fathead minnow, 73±5.0 % in mummichog, 73±1.7 % in sockeye salmon, and 80±8.4 % in coho salmon. While absolute levels of thyroid hormones measured in identical plasma samples by LC/MS/MS and RIA varied depending on the assay used, T4/T3 ratios were generally consistent across both techniques. Less variability was measured among samples subjected to LC/MS/MS suggesting a more precise estimate of thyroid hormone homeostasis in the species targeted. Overall, a sensitive and reproducible method was established that takes advantage of LC/MS/MS techniques to rapidly measure TT4 and TT3 with negligible interferences in low volumes of plasma across a variety of teleost fishes. PMID:24343452

  14. Thyroid Hormone Therapy and Risk of Thyrotoxicosis in Community-Resident Older Adults: Findings from the Baltimore Longitudinal Study of Aging

    PubMed Central

    McGready, John; Oxman, Rachael; Chia, Chee W.; Ladenson, Paul W.; Simonsick, Eleanor M.

    2015-01-01

    Background: Both endogenous and exogenous thyrotoxicosis has been associated with atrial fibrillation and low bone mineral density. Therefore, this study investigated the risk factors associated with prevalent and incident thyrotoxicosis and the initiation of thyroid hormone therapy in a healthy, aging cohort. Methods: A total of 1450 ambulatory community volunteer participants in the Baltimore Longitudinal Study of Aging examined at the NIA Clinical Research Unit in Baltimore, MD, have undergone longitudinal monitoring of serum thyrotropin (TSH) and thyroid hormone (free thyroxine and free triiodothryonine) levels as well as medication use every one to four years, depending on age, between 2003 and 2014. Results: The prevalence of low TSH was 9.6% for participants on thyroid hormone and 0.8% for nontreated individuals (p < 0.001). New cases occurred at a rate of 17.7/1000 person-years of exposure to thyroid hormone therapy [CI 9–32/1000] and 1.5/1000 person-years in the unexposed population [CI 0.7–2.9/1000]. Women were more likely to be treated and more often overtreated than men were. The adjusted hazard ratio (HR) for thyrotoxicosis between treated and untreated women was 27.5 ([CI 7.2–105.4]; p < 0.001) and 3.8 for men ([CI 1.2–6.3]; p < 0.01). White race/ethnicity and older age were risk factors for thyroid hormone therapy but not overtreatment. Body mass index was not associated with starting therapy (HR = 1.0). Thyroid hormone initiation was highest among women older than 80 years of age (3/100 person-years). For one-third of treated participants with follow-up data, overtreatment persisted at least two years. Conclusions: Iatrogenic thyrotoxicosis accounts for approximately half of both prevalent and incident low TSH events in this community-based cohort, with the highest rates among older women, who are vulnerable to atrial fibrillation and osteoporosis. Physicians should be particularly cautious in treating subclinical hypothyroidism in elderly women in light of recent studies demonstrating no increased risk of cardiovascular morbidity or death for individuals with elevated TSH levels <10 mIU/L. PMID:26177259

  15. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    PubMed

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Leptin, neuropeptide Y (NPY), melatonin and zinc levels in experimental hypothyroidism and hyperthyroidism: relation with melatonin and the pineal gland.

    PubMed

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2018-03-02

    Background Melatonin, an important neurohormone released from the pineal gland, is generally accepted to exercise an inhibitor effect on the thyroid gland. Zinc mediates the effects of many hormones and is found in the structure of numerous hormone receptors. Aim The present study aims to examine the effect of melatonin supplementation and pinealectomy on leptin, neuropeptide Y (NPY), melatonin and zinc levels in rats with hypothyroidism and hyperthyroidism. Methods This study was performed on the 70 male rats. Experimental animals in the study were grouped as follows: control (C); hypothyroidism (PTU); hypothyroidism + melatonin (PTU + M); hypothyroidism + pinealectomy (PTU + Pnx); hyperthyroidism (H); hyperthyroidism + melatonin (H + M) and hyperthyroidism + pinealectomy (H + Pnx). Blood samples collected at the end of 4-week procedures were analyzed to determine melatonin, leptin, NPY and zinc levels. Results It was found that thyroid parameters thyroid stimulating hormone (TSH), free triiodthyronine (FT3), free thyroxine (FT4), total T3 (TT3) and total T4 (TT4) decreased in hypothyroidism groups and increased in the groups with hyperthyroidism. The changes in these hormones remained unaffected by melatonin supplementation and pinealectomy. Melatonin levels rose in hyperthyroidism and fell in hypothyroidism. Leptin and NPY levels increased in both hypothyroidism and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and pinealectomy, but increased in hyperthyroidism. Conclusion The results of the study demonstrate that hypothyroidism and hyperthyroidism affect leptin, NPY, melatonin and zinc values in different ways in rats. However, melatonin supplementation and pinealectomy do not have any significant influence on the changes occurring in leptin, NPY and zinc levels in thyroid dysfunction.

  17. BRAFV600E mutation contributes papillary thyroid carcinoma and Hashimoto thyroiditis with resistance to thyroid hormone: A case report and literature review

    PubMed Central

    Xing, Wanjia; Liu, Xiaohong; He, Qingqing; Zhang, Zongjing; Jiang, Zhaoshun

    2017-01-01

    Resistance to thyroid hormone (RTH) is a rare autosomal hereditary disorder characterized by increased serum thyroid hormone (TH) levels with unsuppressed or increased thyrotropin concentration. It remains unknown whether the coexistence of RTH with papillary thyroid carcinoma (PTC) and Hashimoto thyroiditis (HT) is incidental or whether it possesses a genetic or pathophysiological association. In the present study, a case of RTH with PTC and HT in an 11-year-old Chinese patient was examined and the clinical presentation of RTH with PTC was discussed. In addition, the possible associations between RTH, PTC and HT were determined. HT was confirmed in the patient using an autoimmune assay and thyroid ultrasound. RTH was diagnosed on the basis of clinical manifestations, laboratory information and gene analysis, and PTC was diagnosed according to histological results. Results of BRAFV600E mutation analysis were positive. A literature review of 14 cases of RTH with PTC was included for comparison. The present case report indicates an association of RTH with PTC and HT coexistence in the patient. Close follow-up, histological evaluation and BRAFV600E mutation detection should be performed in each RTH case with HT, since a persistent increase in TSH may be a risk factor for the development of thyroid neoplasm. PMID:28928829

  18. BRAFV600E mutation contributes papillary thyroid carcinoma and Hashimoto thyroiditis with resistance to thyroid hormone: A case report and literature review.

    PubMed

    Xing, Wanjia; Liu, Xiaohong; He, Qingqing; Zhang, Zongjing; Jiang, Zhaoshun

    2017-09-01

    Resistance to thyroid hormone (RTH) is a rare autosomal hereditary disorder characterized by increased serum thyroid hormone (TH) levels with unsuppressed or increased thyrotropin concentration. It remains unknown whether the coexistence of RTH with papillary thyroid carcinoma (PTC) and Hashimoto thyroiditis (HT) is incidental or whether it possesses a genetic or pathophysiological association. In the present study, a case of RTH with PTC and HT in an 11-year-old Chinese patient was examined and the clinical presentation of RTH with PTC was discussed. In addition, the possible associations between RTH, PTC and HT were determined. HT was confirmed in the patient using an autoimmune assay and thyroid ultrasound. RTH was diagnosed on the basis of clinical manifestations, laboratory information and gene analysis, and PTC was diagnosed according to histological results. Results of BRAF V600E mutation analysis were positive. A literature review of 14 cases of RTH with PTC was included for comparison. The present case report indicates an association of RTH with PTC and HT coexistence in the patient. Close follow-up, histological evaluation and BRAF V600E mutation detection should be performed in each RTH case with HT, since a persistent increase in TSH may be a risk factor for the development of thyroid neoplasm.

  19. The hypothalamic-pituitary-thyroid axis and melatonin in humans: possible interactions in the control of body temperature.

    PubMed

    Mazzoccoli, G; Giuliani, A; Carughi, S; De Cata, A; Puzzolante, F; La Viola, M; Urbano, N; Perfetto, F; Tarquini, R

    2004-10-01

    Melatonin plays a role in the regulation of biological rhythms, body temperature presents circadian variations with lower levels during nighttime, when melatonin levels are very high, and thyroid hormones influence shiver independent thermogenesis. We have investigated on possible interactions between the hypothalamic-pituitary-thyroid axis and melatonin in the control of body temperature in humans. Peripheral blood samples for thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH), free-thyroxine (FT4), melatonin levels determination and body temperature measurements were obtained every four hours for 24-hours starting at 0600 h in a controlled temperature and light-dark environment from ten healthy males, aged 38-65 (mean age +/-s.e. 57.4+/-3.03, mean body mass index +/-s.e. 25.5+/-0.75). We calculated fractional variation and correlation on single time point hormone serum levels and tested whether the time-qualified data series showed consistent pattern of circadian variation. A statistically significant difference was evidenced for the fractional variation of daytime TSH serum levels (0600 h-1000 h vs. 1000 h-1400 h, p=0.01, 1000 h-1400 h vs. 1400 h-1800 h, p=0.0001, 1400 h-1800 h vs. 1800 h-2200 h, p=0.001) and for the fractional variation of FT4 serum levels at 1800 h-2200 h vs. 2200 h-0200 h (p=0.02). FT4 serum levels correlated positively with TRH serum levels at 1000 h (r=0.67, P=0.03) and at 1400 h (r=0.63, p=0.04), negatively with TSH serum levels at 2200 h (r=-0.67, p=0.03), negatively with melatonin serum levels at 2200 h (r=-0.64, p=0.04) and at 0200 h (r=-0.73, p=0.01). TRH serum levels correlated positively with TSH serum levels at 0200 h (r=0.65, p=0.04) and at 0600 h (r=0.64, p=0.04). Body temperature correlated positively with FT4 serum levels at 1000 h (r=0.63, p=0.04) and negatively with melatonin serum levels at 0200 h (r=-0.64, p=0.04). A clear circadian rhythm was validated for body temperature (with acrophase in the morning) and melatonin, TRH and TSH secretion (with acrophase at night), while FT4 serum level changes presented ultradian periodicity (with acrophase in the morning). Changes of TSH serum levels are smaller and those of FT4 are greater at night, when melatonin levels are higher, so that the response of anterior pituitary to hypothalamic TRH and of thyroid to hypophyseal TSH may be influenced by the pineal hormone that may modulate the hypothalamic-pituitary-thyroid axis function and influence the circadian rhythm of body temperature.

  20. 75 FR 66104 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A. 2000 Nov... overactivated. These mice have a knock-in dominantly negative mutant thyroid hormone receptor [beta] gene (TR... mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model...

  1. Inherited tertiary hypothyroidism in Sprague-Dawley rats.

    PubMed

    Stoica, George; Lungu, Gina; Xie, Xueyi; Abbott, Louise C; Stoica, Heidi M; Jaques, John T

    2007-05-07

    Thyroid hormones (THs) are important in the development and maturation of the central nervous system (CNS). The significant actions of THs during CNS development occur at the time when TH levels are lower than those in the mother and the hypothalamic-thyroid (HPT) axis is not fully functional. In the developing rat nervous system, primarily the cerebellum, the first three postnatal weeks represent a period of significant sensitivity to thyroid hormones. This study presents a spontaneous, inherited recessive hypothyroidism in Sprague-Dawley rats with devastating functional consequences to the development of the CNS. The clinical signs develop around 14 day's postnatal (dpn) and are characterized by ataxia, spasticity, weight loss and hypercholesterolemia. The afflicted rats died at 30 days due to severe neurological deficits. The deterioration affects the entire CNS and is characterized by progressive neuronal morphological and biochemical changes, demyelination and astrogliosis. The cerebellum, brain stem, neocortex, hippocampus and adrenal gland medulla appear to be most affected. Thyroid Stimulating Hormone (TSH), T3 and T4 levels were significantly lower in hypothyroid rats than control. Immunohistochemistry and RT-PCR demonstrated a reduction of Thyrotropin Releasing Hormone (TRH) in the hypothalamus of hypothyroid rats. The weight of both thyroid and pituitary glands were significantly less in hypothyroid rats than the corresponding normal littermate controls. Transmission electron microscopy demonstrates consistent postsynaptic dendritic, synaptic and spine alterative changes in the brain of hypothyroid rats. These data suggest that we discovered a tertiary form of inherited hypothyroidism involving the hypothalamus.

  2. Neurotoxicity of Thyroid Disrupting Contaminants

    EPA Science Inventory

    Thyroid hormones playa critical role in the normal development ofthe mammalian brain. Thyroid disrupting chemicals (TDCs) are environmental contaminants that alter the structure or function ofthe thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeost...

  3. Thyroid Hormone Role and Economy in the Developing Testis.

    PubMed

    Hernandez, Arturo

    2018-01-01

    Thyroid hormones (TH) exhibit pleiotropic regulatory effects on growth, development, and metabolism, and it is becoming increasingly apparent that the developing testis is an important target for them. Testicular development is highly dependent on TH status. Both hypo- and hyperthyroidism affect testis size and the proliferation and differentiation of Sertoli, Leydig, and germ cells, with consequences for steroidogenesis, spermatogenesis, and male fertility. These observations suggest that an appropriate content of TH and by implication TH action in the testis, whether the result of systemic hormonal levels or regulatory mechanisms at the local level, is critical for normal testicular and reproductive function. The available evidence indicates the presence in the developing testis of a number of transporters, deiodinases and receptors that could play a role in the timely delivery of TH action on testicular cells. These include the thyroid hormone receptor alpha (THRA), the MCT8 transporter, the TH-activating deiodinase DIO2, and the TH-inactivating deiodinase DIO3, all of which appear to modulate testicular TH economy and testis outcomes. © 2018 Elsevier Inc. All rights reserved.

  4. Thyroid hormone and obesity.

    PubMed

    Pearce, Elizabeth N

    2012-10-01

    To review several of the most recent and most important clinical studies regarding the effects of thyroid treatments on weight change, associations between thyroid status and weight, and the effects of obesity and weight change on thyroid function. Weight decreases following treatment for hypothyroidism. However, following levothyroxine treatment for overt hypothyroidism, weight loss appears to be modest and mediated primarily by loss of water weight rather than fat. There is conflicting evidence about the effects of thyroidectomy on weight. In large population studies, even among euthyroid individuals, serum thyroid-stimulating hormone is typically positively associated with body weight and BMI. Both serum thyroid-stimulating hormone and T3 are typically increased in obese compared with lean individuals, an effect likely mediated, at least in part, by leptin. Finally, there is no consistent evidence that thyroid hormone treatment induces weight loss in obese euthyroid individuals, but thyroid hormone analogues may eventually be useful for weight loss. The interrelationships between body weight and thyroid status are complex.

  5. The emergence of levothyroxine as a treatment for hypothyroidism.

    PubMed

    Hennessey, James V

    2017-01-01

    To describe the historical refinements, understanding of physiology and clinical outcomes observed with thyroid hormone replacement strategies. A Medline search was initiated using the search terms, levothyroxine, thyroid hormone history, levothyroxine mono therapy, thyroid hormone replacement, combination LT4 therapy, levothyroxine Bioequivalence. Pertinent articles of interest were identified by title and where available abstract for further review. Additional references were identified in the course of review of the literature identified. Physicians have intervened in cases of thyroid dysfunction for more than two millennia. Ingestion of animal thyroid derived preparations has been long described but only scientifically documented for the last 130 years. Refinements in hormone preparation, pharmaceutical production and regulation continue to this day. The literature provides documentation of physiologic, pathologic and clinical outcomes which have been reported and continuously updated. Recommendations for effective and safe use of these hormones for reversal of patho-physiology associated with hypothyroidism and the relief of symptoms of hypothyroidism has documented a progressive refinement in our understanding of thyroid hormone use. Studies of thyroid hormone metabolism, action and pharmacokinetics have allowed evermore focused recommendations for use in clinical practice. Levothyroxine mono-therapy has emerged as the therapy of choice of all recent major guidelines. The evolution of thyroid hormone therapies has been significant over an extended period of time. Thyroid hormone replacement is very useful in the treatment of those with hypothyroidism. All of the most recent guidelines of major endocrine societies recommend levothyroxine mono-therapy for first line use in hypothyroidism.

  6. Thyroid hormones and menstrual cycle function in a longitudinal cohort of premenopausal women.

    PubMed

    Jacobson, Melanie H; Howards, Penelope P; Darrow, Lyndsey A; Meadows, Juliana W; Kesner, James S; Spencer, Jessica B; Terrell, Metrecia L; Marcus, Michele

    2018-05-01

    Previous studies have reported that hyperthyroid and hypothyroid women experience menstrual irregularities more often compared with euthyroid women, but reasons for this are not well-understood and studies on thyroid hormones among euthyroid women are lacking. In a prospective cohort study of euthyroid women, this study characterised the relationship between thyroid hormone concentrations and prospectively collected menstrual function outcomes. Between 2004-2014, 86 euthyroid premenopausal women not lactating or taking hormonal medications participated in a study measuring menstrual function. Serum thyroid hormones were measured before the menstrual function study began. Women then collected first morning urine voids and completed daily bleeding diaries every day for three cycles. Urinary oestrogen and progesterone metabolites (estrone 3-glucuronide (E 1 3G) and pregnanediol 3-glucuronide (Pd3G)) and follicle-stimulating hormone were measured and adjusted for creatinine (Cr). Total thyroxine (T 4 ) concentrations were positively associated with Pd3G and E 1 3G. Women with higher (vs lower) T 4 had greater luteal phase maximum Pd3G (Pd3G = 11.7 μg/mg Cr for women with high T 4 vs Pd3G = 9.5 and 8.1 μg/mg Cr for women with medium and low T 4 , respectively) and greater follicular phase maximum E 1 3G (E 1 3G = 41.7 ng/mg Cr for women with high T 4 vs E 1 3G = 34.3 and 33.7 ng/mg Cr for women with medium and low T 4 , respectively). Circulating thyroid hormone concentrations were associated with subtle differences in menstrual cycle function outcomes, particularly sex steroid hormone levels in healthy women. Results contribute to the understanding of the relationship between thyroid function and the menstrual cycle, and may have implications for fertility and chronic disease. © 2018 John Wiley & Sons Ltd.

  7. Subclinical hyperthyroidism: current concepts and scintigraphic imaging.

    PubMed

    Intenzo, Charles; Jabbour, Serge; Miller, Jeffrey L; Ahmed, Intekhab; Furlong, Kevin; Kushen, Medina; Kim, Sung M; Capuzzi, David M

    2011-09-01

    Subclinical hyperthyroidism is defined as normal serum free thyroxine and a free triiodothyronine level, with a thyroid-stimulating hormone level suppressed below the normal range and is usually undetectable. Although patients with this diagnosis have no or few signs and symptoms of overt thyrotoxicosis, there is sufficient evidence that it is associated with a relatively higher risk of supraventricular arrhythmias as well as the acceleration or the development of osteoporosis. Consequently, the approach to the patient with subclinical hyperthyroidism is controversial, that is, therapeutic intervention versus watchful waiting. Regardless, it is imperative for the referring physician to identify the causative thyroid disorder. This is optimally accomplished by a functional study, namely scintigraphy. Recognition of the scan findings of the various causes of subclinical hyperthyroidism enables the imaging specialist to help in diagnosing the underlying condition causing thyroid-stimulating hormone suppression thereby facilitating the workup and management of this thyroid disorder.

  8. Increased macrophage colony-stimulating factor levels in patients with Graves' disease.

    PubMed

    Morishita, Eriko; Sekiya, Akiko; Hayashi, Tomoe; Kadohira, Yasuko; Maekawa, Mio; Yamazaki, Masahide; Asakura, Hidesaku; Nakao, Shinji; Ohtake, Shigeki

    2008-10-01

    Previous studies have found markedly elevated serum concentrations of proinflammatory cytokines in patients with Graves' disease (GD). We investigated the role of macrophage colony-stimulating factor (M-CSF) in GD. We assayed concentrations of M-CSF in sera from 32 patients with GD (25 untreated; 7 receiving thiamazole therapy). We also studied 32 age-matched healthy subjects as controls. Relationships between serum M-CSF and both thyroid state and serum lipids were examined. Moreover, to examine the effect of thyroid hormone alone on serum M-CSF, T3 was administered orally to normal subjects. Serum concentrations of M-CSF in GD patients who were hyperthyroid were significantly increased compared with GD patients who were euthyroid (P < 0.05) and control subjects (P < 0.0001). Serum M-CSF concentrations correlated closely with T3 levels in patients (r = 0.51, P < 0.005). Serial measurement of five individual patients revealed that serum concentrations of M-CSF were significantly decreased (P < 0.05), reaching normal control values upon attainment of euthyroidism. Furthermore, oral T3 administered to 15 volunteers for 7 days produced significant increases in serum levels of M-CSF (P < 0.05). The close correlation between serum M-CSF and serum thyroid hormone levels suggests that high circulating levels of thyroid hormones may directly or indirectly potentiate the production of M-CSF in patients with GD.

  9. Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate (OMC) on the function of the hypothalamo-pituitary-thyroid function in rats.

    PubMed

    Klammer, Holger; Schlecht, Christiane; Wuttke, Wolfgang; Schmutzler, Cornelia; Gotthardt, Inka; Köhrle, Josef; Jarry, Hubertus

    2007-09-05

    Octyl-methoxycinnamate (OMC) is one of the most frequently used UV-filters in sunscreens to protect the skin against the noxious influence of UV radiation. Recently, OMC was suspected to act as an "endocrine active chemical" (EAC) with estrogenic actions. While EACs have been investigated thoroughly for interference with reproductive function in mammalians, surprisingly little efforts have been made to investigate an interference of EACs with the hypothalamo-pituitary-thyroid (HPT) axis despite the expression of estrogen receptors in all parts of this axis. Therefore, we conducted an in vivo study with ovariectomised rats treated for 5 days with different doses of OMC or 17beta-estradiol (E2) as a control. Determined parameters comprised serum levels of TSH, T4 and T3, hypothalamic TRH mRNA expression, protein-expression of the sodium-iodide-symporter (NIS) and the TSH receptor and the activities of thyroid peroxidase (TPO) in the thyroid and the T3-responsive hepatic type I 5'deiodinase (Dio1) in the liver. While E2 did not affect TSH-, T4- or T3-levels, OMC caused a dose-dependent decrease of serum concentrations of all of these hormones. TRH expression remained unaffected, while in the thyroid, expression of the TSH receptor but not of NIS was stimulated by OMC. TPO activity was unaltered but Dio1 activity was reduced by OMC. Thus, our results demonstrate a non-estrogenic interference of OMC within the rodent HPT axis with inadequate feedback response to impaired thyroid hormone status, indicated by decreased serum thyroid hormone and hepatic Dio1 levels.

  10. Subclinical hypothyroidism: A common finding in adult patients with cyanotic congenital heart disease.

    PubMed

    Bak, Peter; Hjortshøj, Cristel S; Gaede, Peter; Idorn, Lars; Søndergaard, Lars; Jensen, Annette S

    2018-03-01

    Cyanotic congenital heart disease is a systemic disease, with effects on multiple organ systems. A high prevalence of subclinical hypothyroidism (SCH) has been reported in a small cohort of cyanotic congenital heart disease patients. Subclinical hypothyroidism has been associated with various adverse cardiovascular effects, as well as an increased risk of progression to overt hypothyroidism. The aim of this study was to examine the prevalence of SCH in cyanotic congenital heart disease patients, consider possible etiologies, and evaluate thyroid function over time. First, 90 clinically stable cyanotic congenital heart disease patients were examined with blood samples (thyroid-stimulating hormone, C-reactive protein, hemoglobin, hematocrit, and N-terminal pro-brain-natriuretic peptide) in a cross-sectional descriptive study. Second, a longitudinal follow-up study of 43 patients originating from the first study part, was carried out. These patients had thyroid function parameters (thyroid-stimulating hormone, thyroid hormones, and thyroid peroxidase antibodies) evaluated biannually. Elevated thyroid-stimulating hormone was present in 24% of the 90 screened patients. During follow-up (6.5 ± 1.0 years), SCH (defined as ≥2 consecutive elevated thyroid-stimulating hormone values) was present in 26%. Three patients progressed to overt hypothyroidism. Patients with SCH were younger (34 ± 12 vs 42 ± 16 years; P = .01) and had a lower oxygen saturation (80 ± 5 vs 84 ± 6%; P = .03). Subclinical hypothyroidism is a very common finding in cyanotic congenital heart disease. This is not associated with increased levels of C-reactive protein, heart failure, or autoimmunity but appears to be associated with cyanosis and age. Since the clinical impact of SCH is uncertain, further studies are needed to determine this. Regular thyroid evaluation is recommended in cyanotic congenital heart disease patients since SCH can develop to overt hypothyroidism. © 2017 Wiley Periodicals, Inc.

  11. Evidence for the possible occurrence of Grave's disease in a blue-eyed black lemur (Eulemur flavifrons).

    PubMed

    Quintard, Benoît; Giorgiadis, Marine; Feirrera, Xavier; Lefaux, Brice; Schohn, Christophe; Lemberger, Karin

    2018-03-01

    The blue-eyed black lemur (Eulemur flavifrons) is classified by the International Union for Conservation of Nature (IUCN) as critically endangered. A 23-year-old male housed at Mulhouse Zoo presented with lethargy, polyphagia, alopecia, and chronic weight loss. Clinical examination suggested an endocrine pathology such as hyperthyroidism. Secondary examinations included cervical ultrasound, thyroid biopsy, and scintigraphy. The latter revealed elevated thyroid activity. Blood analysis was performed to measure the level of anti-receptor thyroid-stimulating hormone antibodies, which allowed us to test the autoimmune hypothesis. The high level of antibodies together with levels of thyroid-stimulating hormone and the scintigraphy images led to the diagnosis of Grave's disease. Carbimazole treatment followed by thyroidectomy resulted in a quick weight gain and general improvement in health status. The following breeding season, the treated individual sired an offspring. To the authors' knowledge, this is the first report of likely Grave's disease in a non-human primate.

  12. Preoperative therapeutic apheresis for severe medically refractory amiodarone-induced thyrotoxicosis: a case report.

    PubMed

    Yamamoto, Jennifer; Dostmohamed, Hanifa; Schacter, Isanne; Ariano, Robert E; Houston, Donald S; Lewis, Brenda; Knoll, Colleen; Katz, Pamela; Zarychanski, Ryan

    2014-06-01

    Amiodarone is associated with thyroid dysfunction and life-threatening thyrotoxicosis. In medically refractory cases, or where medical therapy is contraindicated, thyroidectomy may be required. To decrease perioperative thyroid storm and to reduce overall surgical risk, apheresis may be considered preoperatively to restore euthyroidism. We report a 46-year-old female with a history of cardiac arrhythmia and tachycardia-induced cardiomyopathy for which she received amiodarone. Months after discontinuation of amiodarone, the patient presented with wide complex tachycardia and symptoms of thyrotoxicosis. Laboratory testing confirmed severe thyrotoxicosis which was subsequently refractory to medical therapy. Total thyroidectomy was required. Following a total of 10 apheresis treatments, thyroid hormone levels were reduced to near normal levels and the patient's symptoms improved. Thyroidectomy was performed without intraoperative or postoperative complication. In the setting of life-threatening, medically refractory amiodarone-induced thyrotoxicosis, therapeutic apheresis can effectively reduce thyroid hormone levels and restore a state of clinical and biochemical euthyroidism. © 2013 Wiley Periodicals, Inc.

  13. Phenols and Parabens in relation to Reproductive and Thyroid Hormones in Pregnant Women

    PubMed Central

    Aker, Amira M; Watkins, Deborah J; Johns, Lauren E; Ferguson, Kelly K; Soldin, Offie P; Del Toro, Liza V Anzalota; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D

    2016-01-01

    Introduction Phenols and parabens are ubiquitous environmental contaminants. Evidence from animal studies and limited human data suggest they may be endocrine disruptors. In the current study, we examined associations of phenols and parabens with reproductive and thyroid hormones in 106 pregnant women recruited for the prospective cohort, “Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)”. Methods Urinary exposure biomarkers (bisphenol A, triclosan, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, butyl, methyl and propyl paraben) and serum hormone levels (estradiol, progesterone, sex hormone-binding globulin (SHBG), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone) were measured at up to two time points during pregnancy (16–20 weeks and 24–28 weeks). We used linear mixed models to assess relationships between exposure biomarkers and hormone levels across pregnancy, controlling for urinary specific gravity, maternal age, BMI and education. In sensitivity analyses, we evaluated cross-sectional relationships between exposure and hormone levels stratified by study visit using linear regression. Results An IQR increase in methyl paraben was associated with a 7.70% increase (95% CI 1.50, 13.90) in SHBG. Furthermore, an IQR increase in butyl paraben as associated with an 8.46% decrease (95% CI 16.92, 0.00) in estradiol, as well as a 9.34% decrease (95% CI −18.31, −0.38) in estradiol/progesterone. Conversely, an IQR increase in butyl paraben was associated with a 5.64% increase (95% CI 1.26, 10.02) in FT4. Progesterone was consistently negatively associated with phenols, but none reached statistical significance. After stratification, methyl and propyl paraben were suggestively negatively associated with estradiol at the first time point (16–20 weeks), and suggestively positively associated with estradiol at the second time point (24–28 weeks). Conclusions Within this ongoing birth cohort, certain phenols and parabens were associated with altered reproductive and thyroid hormone levels during pregnancy. These changes may contribute to adverse health effects in mothers or their offspring, but additional research is required. PMID:27448730

  14. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women.

    PubMed

    Aker, Amira M; Watkins, Deborah J; Johns, Lauren E; Ferguson, Kelly K; Soldin, Offie P; Anzalota Del Toro, Liza V; Alshawabkeh, Akram N; Cordero, José F; Meeker, John D

    2016-11-01

    Phenols and parabens are ubiquitous environmental contaminants. Evidence from animal studies and limited human data suggest they may be endocrine disruptors. In the current study, we examined associations of phenols and parabens with reproductive and thyroid hormones in 106 pregnant women recruited for the prospective cohort, "Puerto Rico Testsite for Exploring Contamination Threats (PROTECT)". Urinary exposure biomarkers (bisphenol A, triclosan, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, butyl, methyl and propyl paraben) and serum hormone levels (estradiol, progesterone, sex hormone-binding globulin (SHBG), free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone) were measured at up to two time points during pregnancy (16-20 weeks and 24-28 weeks). We used linear mixed models to assess relationships between exposure biomarkers and hormone levels across pregnancy, controlling for urinary specific gravity, maternal age, BMI and education. In sensitivity analyses, we evaluated cross-sectional relationships between exposure and hormone levels stratified by study visit using linear regression. An IQR increase in methyl paraben was associated with a 7.70% increase (95% CI 1.50, 13.90) in SHBG. Furthermore, an IQR increase in butyl paraben as associated with an 8.46% decrease (95% CI 16.92, 0.00) in estradiol, as well as a 9.34% decrease (95% CI -18.31,-0.38) in estradiol/progesterone. Conversely, an IQR increase in butyl paraben was associated with a 5.64% increase (95% CI 1.26, 10.02) in FT4. Progesterone was consistently negatively associated with phenols, but none reached statistical significance. After stratification, methyl and propyl paraben were suggestively negatively associated with estradiol at the first time point (16-20 weeks), and suggestively positively associated with estradiol at the second time point (24-28 weeks). Within this ongoing birth cohort, certain phenols and parabens were associated with altered reproductive and thyroid hormone levels during pregnancy. These changes may contribute to adverse health effects in mothers or their offspring, but additional research is required. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models

    PubMed Central

    Anderson, Grant; Forrest, Douglas; Galton, Valerie Anne; Gereben, Balázs; Kim, Brian W.; Kopp, Peter A.; Liao, Xiao Hui; Obregon, Maria Jesus; Peeters, Robin P.; Refetoff, Samuel; Sharlin, David S.; Simonides, Warner S.; Weiss, Roy E.; Williams, Graham R.

    2014-01-01

    Background: An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. Summary: Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. Conclusions: It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes. PMID:24001133

  16. Liothyronine

    MedlinePlus

    ... the thyroid gland does not produce enough thyroid hormone). Liothyronine is also used to treat a goiter ( ... where the thyroid gland produces too much thyroid hormone). Liothyronine is in a class of medications called ...

  17. Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones.

    PubMed

    Saito, M; Seki, M; Amemiya, S; Yamasu, K; Suyemitsu, T; Ishihara, K

    1998-06-01

    The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.

  18. Myxedema coma and cardiac ischemia in relation to thyroid hormone replacement therapy in a 38-year-old Japanese woman.

    PubMed

    Taguchi, Takafumi; Iwasaki, Yasumasa; Asaba, Koichi; Takao, Toshihiro; Hashimoto, Kozo

    2007-12-01

    Although thyroid hormone deficiency, either clinical or subclinical, is an established risk factor for cardiovascular disease, coronary ischemia in a premenopausal woman in her 30s is relatively rare. A 38-year-old woman was referred to our hospital with severe breathlessness and depressed consciousness. Physical examination found facial, abdominal, and pretibial edema; coarse hair, hoarse voice, and dry skin; engorged jugular veins; a distant heart sound; and reduced bilateral entry of air into the chest. Laboratory examinations revealed severe hypothyroidism, hyperlipidemia, and elevated serum levels of carcinoembryonic antigen (CEA) and carbohydrate antigen 125 (CA125). A computed tomography scan showed massive pleural and pericardial effusions. After 3 months of levothyroxine replacement therapy (initial dose: 12.5 microg/d; maintenance dose: 125 microg/d), all abnormal laboratory values associated with hypothyroidism returned to within normal ranges, with the exception of a transient and paradoxical rise in serum thyroid-stimulating hormone levels. However, 3 weeks after the initiation of therapy, the patient reported intermittent chest pains during the course of therapy, and a coronary artery angiogram revealed diffuse stenosis of all 3 branches. The patient underwent coronary artery bypass grafting, with subsequent improvement in coronary perfusion. Careful cardiovascular evaluation is recommended before the start of thyroid hormone replacement therapy. In addition, care should be taken in the interpretation of serum biomarkers of malignancy (eg, CEA, CA125) in patients with myxedema, as values may be elevated in a hypothyroid state. Long-standing hypothyroidism may be associated with severe coronary atherosclerosis, even in a relatively young, premenopausal woman. The potential adverse cardiovascular effects of thyroid hormone must be considered during replacement therapy, even in relatively young patients.

  19. The effects of experimentally induced hyperthyroidism on the diving physiology of harbor seals (Phoca vitulina)

    PubMed Central

    Weingartner, Gundula M.; Thornton, Sheila J.; Andrews, Russel D.; Enstipp, Manfred R.; Barts, Agnieszka D.; Hochachka, Peter W.

    2012-01-01

    Many phocid seals are expert divers that remain submerged longer than expected based on estimates of oxygen storage and utilization. This discrepancy is most likely due to an overestimation of diving metabolic rate. During diving, a selective redistribution of blood flow occurs, which may result in reduced metabolism in the hypoperfused tissues and a possible decline in whole-body metabolism to below the resting level (hypometabolism). Thyroid hormones are crucial in regulation of energy metabolism in vertebrates and therefore their control might be an important part of achieving a hypometabolic state during diving. To investigate the effect of thyroid hormones on diving physiology of phocid seals, we measured oxygen consumption, heart rate, and post-dive lactate concentrations in five harbor seals (Phoca vitulina) conducting 5 min dives on command, in both euthyroid and experimentally induced hyperthyroid states. Oxygen consumption during diving was significantly reduced (by 25%) in both euthyroid and hyperthyroid states, confirming that metabolic rate during diving falls below resting levels. Hyperthyroidism increased oxygen consumption (by 7–8%) when resting in water and during diving, compared with the euthyroid state, illustrating the marked effect of thyroid hormones on metabolic rate. Consequently, post-dive lactate concentrations were significantly increased in the hyperthyroid state, suggesting that the greater oxygen consumption rates forced seals to make increased use of anaerobic metabolic pathways. During diving, hyperthyroid seals also exhibited a more profound decline in heart rate than seals in the euthyroid state, indicating that these seals were pushed toward their aerobic limit and required a more pronounced cardiovascular response. Our results demonstrate the powerful role of thyroid hormones in metabolic regulation and support the hypothesis that thyroid hormones play a role in modulating the at-sea metabolism of phocid seals. PMID:23060807

  20. Insulin-like growth factor-binding protein-3 (IGFBP-3) but not insulin-like growth factor-I (IGF-I) remains elevated in euthyroid TSH-suppressed Graves' disease.

    PubMed

    Wan Nazaimoon, W M; Khalid, B A

    1998-04-01

    Thyroid hormones have been shown to be involved in the regulation of insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (IGFBP-3) expression. This is a cross-sectional study to look at the effects of thyroid hormone status on the circulating levels of IGF-I and IGFBP-3 in a group of 127 patients, aged 20-80 years, who were hyperthyroid, hypothyroid, rendered euthyroid and clinically euthyroid with normal free thyroxine (fT4), but suppressed thyroid stimulating hormone (TSH) levels. TSH was measured by the IMx (Abbott) ultrasensitive assay, while radioimmunoassays for total T3 and T4 were performed using kits from ICN, USA; fT4 and fT3 using kits from DPC USA; IGF-I and IGFBP-3 using kits from Nichols Institute Diagnostics B.V., Netherlands. Differences in the levels of IGF-I between the 4 groups of patients were significant only in the patients aged 20-40. Mean (+/-SEM) IGF-I levels of hypothyroid patients (169+/-19ng/ml) was significantly lower than hyperthyroid (315+/-26 ng/ml, p=0.003), euthyroid patients (241+/-19 ng/ml, p=0.002) and patients with suppressed TSH (308+/-29 ng/ml, p=0.02). The IGF-I levels of the hyperthyroid and suppressed TSH patients were, however, comparable to age-matched normal subjects (281+/-86 ng/ml). Although there was no difference in mean IGFBP-3 levels between the 4 groups of patients, the levels in the patients aged 20-40 with hyperthyroidism (3.7+/-0.9 microg/ml) and suppressed TSH (3.9+/-1.2 microg/ml) were significantly higher (p=0.02) than age-matched normal subjects (3.1+/-0.8 microg/ml). The IGF-I levels of the thyroid patients aged 20-40 showed significant negative correlation to TSH and positive correlations to the thyroid hormones. Hence, whilst low IGF-I is associated with hypothyroidism, high IGFBP-3 is associated with hyperthyroidism. Our finding that IGFBP-3 remained significantly elevated in patients with suppressed TSH but normalised fT4 and fT3 is important as it suggests a prolonged tissue effect of thyroid hormones on IFGBP-3. As such patients have been shown to have higher risk for atrial fibrillation, the significance and possible role of IGFBP-3 in these conditions should be further elucidated in future studies.

  1. Non-autoimmune primary hypothyroidism in diabetic and non-diabetic chronic renal dysfunction.

    PubMed

    Bando, Y; Ushiogi, Y; Okafuji, K; Toya, D; Tanaka, N; Miura, S

    2002-11-01

    The aim of this study was to investigate the frequency and mechanisms of hypothyroidism observed in diabetic patients with advanced diabetic nephropathy, including outcomes of management for this condition. A controlled study was designed using 32 diabetic and 31 non-diabetic patients not receiving hemodialysis or continuous ambulatory peritoneal dialysis (CAPD) who excreted mean urinary protein greater than 0.5 g/day examined on three consecutive days during admission to our hospital. Thyroid hormones in both serum and urine, anti-thyroid antibodies, renal function and iodine concentrations in serum were measured during admission in all patients included. In particular, in patients who showed overt hypothyroidism, further studies including large-needle biopsies of the thyroid and iodine-perchlorate discharge tests were performed. All patients in the two groups revealed negative antithyroid antibody titers, and the mean serum total iodine levels did not significantly differ between the two groups. Mean serum FT4 levels significantly decreased, and the TSH level was significantly elevated in the diabetic group compared to those in the non-diabetic group (p < 0.005, p < 0.02, respectively). The frequency of overt hypothyroidism in the diabetic group (22%; 7/32) was significantly higher (p < 0.05) than that in the non-diabetic group (3.2%; 1/31). The daily urinary thyroid hormone excretion in both groups did not show any significant correlation with serum thyroid hormone levels. Seven patients who revealed overt hypothyroidism in the diabetic group showed elevated serum total iodine levels during hypothyroidal status, ranging between 177 and 561 microg/l. Also, the iodine-perchlorate discharge tests carried out in six of these patients all showed a positive discharge. After management based on iodine restriction, normalization of serum thyroid hormone levels in accordance with definite decreases in the serum total iodine level was achieved, accompanied by a significant weight reduction. In conclusion, we found a significantly high prevalence of non-autoimmune primary hypothyroidism in patients with advanced diabetic nephropathy compared to those with non-diabetic chronic renal dysfunction, which may partly relate to earlier development of oedematous status. Clinical and laboratory findings suggest that impaired renal handling of iodine resulting in an elevation of serum iodine levels, rather than autoimmune mechanism or urinary hormone loss, may play a principal role in the development of these conditions, probably through a prolongation of the Wolff-Chaikoff effect. The mechanisms by which this phenomenon develops more frequently in diabetic than in non-diabetic renal dysfunction remain to be elucidated.

  2. Effect of adrenal hormones on thyroid secretion and thyroid hormones on adrenal secretion in the sheep.

    PubMed Central

    Falconer, I R; Jacks, F

    1975-01-01

    1. Previous work has shown that after stressful stimuli, sheep initially secrete increased amounts of thyroid hormone, at a time when adrenal secretion is also elevated. 2. This study was designed to evaluate (a) any short-term activation or inhibition of thyroid secretion by exogenous cortisol or ACTH administered in quantities comparable to those secreted after stress in sheep and (b) any short-term effect that exogenous thyroxine or triiodothyronine may have on the concentration of plasma cortisol in the sheep. 3. Thyroid activity was measured by determination of plasma protein bound 125I (PB125I) and total 125I in thyroid vein and mixed venous (jugular) blood. Plasma cortisol and thyroxine concentrations were measured by a competitive protein-binding assay at intervals for up to 5 hr after commencement of the experiment. 4. No evidence of an activation of thyroid secretion was found during cortisol or ACTH infusion, as monitored by thyroid vein PB125I. Similarly there was no evidence of any inhibition of thyroid function, as measured by continued secretion of thyroid hormones into thyroid vein blood. 5. No effect on plasma cortisol concentration due to thyroid hormone treatment was observed. 6. It was concluded that (a) elevated circulating corticosteroids in physiological concentrations have no short-term effects on thyroid activity in the sheep and (b) the short-term alterations in thyroid and adrenal cortical secretion observed during stress in the sheep could not be attributed to direct interaction of elevated thyroid hormone concentrations with adrenal cortical secretion. PMID:170400

  3. Energy sources and levels influenced on performance parameters, thyroid hormones, and HSP70 gene expression of broiler chickens under heat stress.

    PubMed

    Raghebian, Majid; Sadeghi, Ali Asghar; Aminafshar, Mehdi

    2016-12-01

    The present study was conducted to evaluate the effects of energy sources and levels on body and organs weights, thyroid hormones, and heat shock protein (HSP70) gene expression in broilers under heat stress. In a completely randomized design, 600 1-day-old Cobb chickens were assigned to five dietary treatments and four replicates. The chickens were fed diet based on corn as main energy source and energy level based on Cobb standard considered as control (C), corn-based diet with 3 % lesser energy than the control (T1), corn-based diet with 6 % lesser energy than the control (T2), corn and soybean oil-based diet according to Cobb standard (T3), and corn and soybean oil-based diet with 3 % upper energy than the control (T4). Temperature was increased to 34 °C for 8 h daily from days 12 to 41 of age to induce heat stress. The chickens in T1 and T2 had lower thyroid hormones and corticosterone levels than those in C, T3, and T4. The highest liver weight was for C and the lowest one was for T4. The highest gene expression was found in chickens fed T4 diet, and the lowest gene expression was for those in T2 group. The highest feed intake and worse feed conversion ratio was related to chickens in T2. The chickens in T3 and T4 had higher feed intake and weight gain than those in C. The results showed that the higher energy level supplied from soybean oil could enhance gene expression of HSP70 and decline the level of corticosterone and thyroid hormones and consequently improved performance.

  4. Treatment of hyperthyroidism with antithyroid drugs corrects mild neutropenia in Graves' disease.

    PubMed

    Aggarwal, N; Tee, S A; Saqib, W; Fretwell, T; Summerfield, G P; Razvi, S

    2016-12-01

    Neutropenia secondary to antithyroid drug (ATD) therapy in Graves' disease (GD) is well recognized. However, the effect of hyperthyroidism, prior to and after ATD therapy, on neutrophil counts in patients with GD is unclear. To study the prevalence of neutropenia in newly diagnosed untreated GD and the effect of ATD on the neutrophil count. Prospective study from August 2010 to December 2014. Endocrinology outpatient clinic in a single centre. Consecutive patients (n = 206) with newly diagnosed GD. ATD therapy. Prevalence and factors predicting neutropenia (<2 × 10 9 /l) and change in neutrophil counts following ATD. At diagnosis, 29 (14·1%) of GD individuals had neutropenia. Non-Caucasians [odds ratio (95% CI) of 4·06 (1·14-14·45), P = 0·03] and patients with higher serum thyroid hormone levels [OR 1·07 (1·02-1·13), P = 0·002 for serum FT3] were the only independent predictors of neutropenia. All patients with neutropenia had normalized blood neutrophil levels after achieving euthyroidism with ATD therapy. In patients in whom data were available posteuthyroidism (n = 149), change in neutrophil count after achieving euthyroidism was independently related to reduction in thyroid hormone levels (P < 0·01). GD is associated with neutropenia in one in seven patients at diagnosis, especially in non-Caucasians and those with higher serum thyroid hormone levels. Neutrophil counts increase with treatment with ATD and are related to reduction in thyroid hormone concentrations. It is therefore important to check neutrophil levels in newly diagnosed patients with GD prior to commencing ATD therapy as otherwise low levels may incorrectly be attributed to ATD therapy. © 2016 John Wiley & Sons Ltd.

  5. Screening the Tox21 10K library for thyroid stimulating hormone receptor agonist and antagonist activity (SOT annual meeting)

    EPA Science Inventory

    Thyroid-stimulating hormone (TSH) regulates thyroid hormone (TH) production via binding to its receptor (TSHR). The roles of TSHR in human pathologies including hyper/hypothyroidism, Grave’s disease, and thyroid cancer are known, but it is currently unknown whether TSHR is an imp...

  6. The interrelationships of thyroid and growth hormones: effect of growth hormone releasing hormone in hypo- and hyperthyroid male rats.

    PubMed

    Root, A W; Shulman, D; Root, J; Diamond, F

    1986-01-01

    Growth hormone (GH) and the thyroid hormones interact in the hypothalamus, pituitary and peripheral tissues. Thyroid hormone exerts a permissive effect upon the anabolic and metabolic effects of GH, and increases pituitary synthesis of this protein hormone. GH depresses the secretion of thyrotropin and the thyroid hormones and increases the peripheral conversion of thyroxine to triiodothyronine. In the adult male rat experimental hypothyroidism produced by ingestion of propylthiouracil depresses the GH secretory response to GH-releasing hormone in vivo and in vitro, reflecting the lowered pituitary stores of GH in the hypothyroid state. Short term administration of large amounts of thyroxine with induction of the hyperthyroid state does not affect the in vivo GH secretory response to GH-releasing hormone in this animal.

  7. Myopathy in hyperthyroidism as a consequence of rapid reduction of thyroid hormone

    PubMed Central

    Li, Qianrui; Liu, Yuping; Zhang, Qianying; Tian, Haoming; Li, Jianwei; Li, Sheyu

    2017-01-01

    Abstract Rationale: Myalgia and elevated creatine kinase (CK) are occasionally observed during the treatment of hyperthyroid patients. Relative hypothyroidism resulted from rapid thyroid hormone reduction had been promoted as a plausible cause of these myopathic changes, however rarely reported. Patient concerns: We hereby presented a 20-year-old female with Grave's disease, who developed myopathy and elevated CK during rapid correction of thyroid hormone. Diagnoses: Relative hypothyroidism-induced myopathy. Interventions: Antithyroid drug (ATD) dosage was reduced without levothyroxine replacement. Outcomes: The muscular symptoms were recovered with CK level returned to normal after adoption of the euthyroid status. Lessons: Differentiation of relative hypothyroidism from other causes of myopathy, especially with the effect of ATD, is important for clinical practice, although difficult in many cases. PMID:28746208

  8. Cerebral Cortex Hyperthyroidism of Newborn Mct8-Deficient Mice Transiently Suppressed by Lat2 Inactivation

    PubMed Central

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M.; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2 -/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development. PMID:24819605

  9. Cerebral cortex hyperthyroidism of newborn mct8-deficient mice transiently suppressed by lat2 inactivation.

    PubMed

    Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M; Morte, Beatriz; Bernal, Juan

    2014-01-01

    Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.

  10. Thyroid Echography-induced Thyroid Storm and Exacerbation of Acute Heart Failure.

    PubMed

    Nakabayashi, Keisuke; Nakazawa, Naomi; Suzuki, Toshiaki; Asano, Ryotaro; Saito, Hideki; Nomura, Hidekimi; Isomura, Daichi; Okada, Hisayuki; Sugiura, Ryo; Oka, Toshiaki

    2016-01-01

    Hyperthyroidism and thyroid storm affect cardiac circulation in some conditions. Several factors including trauma can induce thyroid storms. We herein describe the case of a 57-year-old woman who experienced a thyroid storm and exacerbation of acute heart failure on thyroid echography. She initially demonstrated a good clinical course after medical rate control for atrial fibrillation; however, thyroid echography for evaluating hyperthyroidism led to a thyroid storm and she collapsed. A multidisciplinary approach stabilized her thyroid hormone levels and hemodynamics. Thus, the medical staff should be prepared for a deterioration in the patient's condition during thyroid echography in heart failure patients with hyperthyroidism.

  11. Thyroid disease in pustulosis palmoplantaris.

    PubMed

    Agner, T; Sindrup, J H; Høier-Madsen, M; Hegedüs, L

    1989-10-01

    An increased frequency of thyroid autoantibodies has been reported in patients with palmar and plantar pustulosis (PPP). This study was undertaken to determine the frequency and type of thyroid disease in 32 patients with this disease compared with a control group. Thyroid disease was demonstrated in 53% of the patients with PPP as compared to 16% in the matched control group. Fourteen patients with PPP had an enlarged thyroid and in six there were thyroid autoantibodies. There appears to be an increased incidence of goitre and thyroid autoantibodies in PPP with a decrease in the level of the thyroid hormones.

  12. Variations of rat thyroid activity during exposure to high environmental temperature (34 degrees C). Relation between hypothalamic pituitary and thyroid hormone levels.

    PubMed

    Rousset, B; Cure, M

    1975-01-01

    Changes in thyroid activity and variations in the hypthalamo-pituitary-thyroid hormone levels were examined in rats exposed to heat (34 degrees C)for3 weeks. Thyroid activity evaluated histologically (epithelium/colloid ratio, nuclear size) by radioiodine exploration (24 hrs 125 I uptake, ratio of mono- to di-125 iodotyrosines - MIT/DIT, ratio of tri- to tetra-125 iodothyronines-T3/T4, and plasma 125I-T4 and assay of plasma T4, evolves in a triphasic manner. 1.a depression phase between day 0 and day 2.5. 2. a rebound of thyroid activity between day 2.5 and day 9.3 a stabilization of thyroid parameters from day 9 to day 24. These results indicate adaptation of thyroid function to heat after 3 weeks. In phase i, plasma TSH )MeKenzie bioassay) fell to undectable levels concurrent with a 50% decrease in hypothalamic TRH (in vitro assay). Plasma TSH peaked on day 4.5, fell on day 9.5 and returned progressively to initial levels. Hypothalamic TRH returned to initial levels after 6.5 days. The rapid and simultaneous decrease in hypothalamic TRH, plasma TSH, plasma T4 and thyroid activity by the 36th hour of heat exposure (34 degrees C) suggests initiation at the hypothalamic level. In the secound phase, the rebound in thyroid activity is presumably due to the peak in circulating TSH in ralation to the marked decrease in plasma T4. The oscillations of phase 2 and the stabilization of all the thyroid parameters in phase 3 may be the reflection of an apparent discrepancy remains between a low plasma T4 and a normal or subnormal plasma TSH. A modification in the "set point" for the control of TSH secretion is discussed.

  13. Thyroid Disrupting Chemicals: Interpreting Upstream Biomarkers of Adverse Outcomes

    EPA Science Inventory

    There is increasing evidence in humans and in experimental animals for a relationship between exposure to specific environmental chemicals and perturbations in levels of critically important thyroid hormones (THs). Identification and proper interpretation of these relationships a...

  14. Pseudohypoparathyroidism with Hashimoto's thyroiditis and Turner syndrome: a case report.

    PubMed

    Zeng, Wen-Heng; Xu, Jiao-Jun; Jia, Min-Yue; Ren, Yue-Zhong

    2014-10-01

    To report the case of an individual with PHP, Turner syndrome and Hashimoto's thyroiditis. A 16-year-old girl was referred to our hospital with chief complaint of short stature. She presented with round chubby facies, short neck, obesity and short stature. Radiography indicated short metatarsals and metacarpals, which mainly affected the second, third and fourth digits. Biochemistry revealed hyperphosphatemia, increased serum concentrations of parathyroid hormone and thyroid stimulating hormone, elevated levels of follicular-stimulating hormone and prolactin, and increased thyroid peroxidase antibody and thyroglobulin antibody. Radiographic examination revealed delayed bone age and pelvic ultrasonography demonstrated an immature uterus. Karyotype analysis showed 46,X,i(Xq10), while molecular analysis revealed a same sense mutation in exon 5 of GNAS (ATC → ATT, Ile).The specific diagnosis was made of Turner syndrome in the presence of Hashimoto's thyroiditis and PHP. She was treated with calcium supplementation, calcitriol and thyroxine. This is the first case report to describe a combination of Turner syndrome with these other clinical entities, and their co-existence should be considered and further investigated.

  15. Acute and transient activation of pituitary-thyroid axis during unforced restriction in rats: component of nonshivering thermogenesis in conscious animals?

    PubMed

    Langer, P; Földes, O; Macho, L; Kvetnanský, R

    1983-01-01

    Groups of 6-8 male Wistar Olac SPF rats weighing about 300 g were subjected to unforced restriction (UR) in small cages with a metallic bottom and a Plexiglas cover for various intervals from 2 min to 72 h. An acute activation of the pituitary-thyroid axis was found which was manifested by an increase of thyrotropin (TSH) and thyroxine (T4) levels at 2-5 min of UR. This was presumably due to the emotional effect of a rapid transfer and to the placing of the animals into restriction cages. Later, between 3 and 6 h of UR, another, and more pronounced period of activation of the pituitary-thyroid axis and of the peripheral thyroid hormone metabolism was repeatedly observed which lasted until about 36-48 h and was manifested by a highly significant increase of TSH, T4, 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) levels. It was concluded that this phenomenon presumably may be a component of nonshivering thermogenesis resulting from a decreased muscular activity and resembling the conditions occurring under cold stress. Such a view was supported by findings of highly increased nonesterified fatty acid levels in plasma in restricted animals, by unchanged levels of TSH and thyroid hormones found in unrestricted animals kept individually in regular group cages and, finally, by a preventive effect of ambient temperature of 32 degrees C on the pituitary-thyroid activation at 6 h of UR. In some experiments, no substantial differences in hormone levels were found between the animals kept in Plexiglas or stainless wire-mesh restriction cages. Finally, a multifold increase of prolactin level in plasma was found as early as 2 min of UR, the peak being observed between 5 and 20 min and a decrease to about the initial level at about 360 min.

  16. Management of Subclinical Hyperthyroidism

    PubMed Central

    Santos Palacios, Silvia; Pascual-Corrales, Eider; Galofre, Juan Carlos

    2012-01-01

    The ideal approach for adequate management of subclinical hyperthyroidism (low levels of thyroid-stimulating hormone [TSH] and normal thyroid hormone level) is a matter of intense debate among endocrinologists. The prevalence of low serum TSH levels ranges between 0.5% in children and 15% in the elderly population. Mild subclinical hyperthyroidism is more common than severe subclinical hyperthyroidism. Transient suppression of TSH secretion may occur because of several reasons; thus, corroboration of results from different assessments is essential in such cases. During differential diagnosis of hyperthyroidism, pituitary or hypothalamic disease, euthyroid sick syndrome, and drug-mediated suppression of TSH must be ruled out. A low plasma TSH value is also typically seen in the first trimester of gestation. Factitial or iatrogenic TSH inhibition caused by excessive intake of levothyroxine should be excluded by checking the patient’s medication history. If these nonthyroidal causes are ruled out during differential diagnosis, either transient or long-term endogenous thyroid hormone excess, usually caused by Graves’ disease or nodular goiter, should be considered as the cause of low circulating TSH levels. We recommend the following 6-step process for the assessment and treatment of this common hormonal disorder: 1) confirmation, 2) evaluation of severity, 3) investigation of the cause, 4) assessment of potential complications, 5) evaluation of the necessity of treatment, and 6) if necessary, selection of the most appropriate treatment. In conclusion, management of subclinical hyperthyroidism merits careful monitoring through regular assessment of thyroid function. Treatment is mandatory in older patients (> 65 years) or in presence of comorbidities (such as osteoporosis and atrial fibrillation). PMID:23843809

  17. Effects of thyroid hormones on the heart.

    PubMed

    Vargas-Uricoechea, Hernando; Bonelo-Perdomo, Anilsa; Sierra-Torres, Carlos Hernán

    2014-01-01

    Thyroid hormones have a significant impact on heart function, mediated by genomic and non-genomic effects. Consequently, thyroid hormone deficiencies, as well as excesses, are expected to result in profound changes in cardiac function regulation and cardiovascular hemodynamics. Thyroid hormones upregulate the expression of the sarcoplasmic reticulum calcium-activated ATPase and downregulate the expression of phospholamban. Overall, hyperthyroidism is characterized by an increase in resting heart rate, blood volume, stroke volume, myocardial contractility, and ejection fraction. The development of "high-output heart failure" in hyperthyroidism may be due to "tachycardia-mediated cardiomyopathy". On the other hand, in a hypothyroid state, thyroid hormone deficiency results in lower heart rate and weakening of myocardial contraction and relaxation, with prolonged systolic and early diastolic times. Cardiac preload is decreased due to impaired diastolic function. Cardiac afterload is increased, and chronotropic and inotropic functions are reduced. Subclinical thyroid dysfunction is relatively common in patients over 65 years of age. In general, subclinical hypothyroidism increases the risk of coronary heart disease (CHD) mortality and CHD events, but not of total mortality. The risk of CHD mortality and atrial fibrillation (but not other outcomes) in subclinical hyperthyroidism is higher among patients with very low levels of thyrotropin. Finally, medications such as amiodarone may induce hypothyroidism (mediated by the Wolff-Chaikoff), as well as hyperthyroidism (mediated by the Jod-Basedow effect). In both instances, the underlying cause is the high concentration of iodine in this medication. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  18. Effects of Sample Handling and Analytical Procedures on Thyroid Hormone Concentrations in Pregnant Women's Plasma.

    PubMed

    Villanger, Gro Dehli; Learner, Emily; Longnecker, Matthew P; Ask, Helga; Aase, Heidi; Zoeller, R Thomas; Knudsen, Gun P; Reichborn-Kjennerud, Ted; Zeiner, Pål; Engel, Stephanie M

    2017-05-01

    Maternal thyroid function is a critical mediator of fetal brain development. Pregnancy-related physiologic changes and handling conditions of blood samples may influence thyroid hormone biomarkers. We investigated the reliability of thyroid hormone biomarkers in plasma of pregnant women under various handling conditions. We enrolled 17 pregnant women; collected serum and plasma were immediately frozen. Additional plasma aliquots were subjected to different handling conditions before the analysis of thyroid biomarkers: storage at room temperature for 24 or 48 hours before freezing and an extra freeze-thaw cycle. We estimated free thyroid hormone indices in plasma based on T3 uptake. High correlations between plasma and serum (>0.94) and intraclass correlation coefficients for plasma handling conditions (0.96 to 1.00) indicated excellent reliability for all thyroid hormone biomarkers. Delayed freezing and freeze-thaw cycles did not affect reliability of biomarkers of thyroid function in plasma during pregnancy. See video abstract at, http://links.lww.com/EDE/B180.

  19. Relation with HOMA-IR and thyroid hormones in obese Turkish women with metabolic syndrome.

    PubMed

    Topsakal, S; Yerlikaya, E; Akin, F; Kaptanoglu, B; Erürker, T

    2012-03-01

    The aim of this study was to investigate the relationship between insulin resistance and thyroid function in obese pre- and postmenopausal women with or without metabolic syndrome (MetS). 141 obese women were divided into two groups, HOMA-IR<2.7 and HOMA-IR>2.7, to evaluate relation with HOMA-IR and fatness, hormone and blood parameters. They were then divided into four groups as pre- and postmenopausal with or without MetS. Various fatness, hormone and blood parameters were examined. Statistically significant difference was found in weight, body mass index (BMI), waist circumference, fat%, fasting insulin, TSH, FT3, FT4, FSH, Anti-microsomal antibody (ANTIM) and triglycerides levels in HOMA-IR<2.7 and HOMA-IR>2.7 obese Turkish women. This study showed that age, weight, BMI, waist circumference, fat%, fasting insulin, FT3, ANTIM, FSH, LH, total cholesterol, triglycerides, HDL, HOMA-IR, systolic and diastolic blood pressure levels were related in preand post menopausal status in obese women with or without MetS. Obesity may influence the levels of thyroid hormones and increases the risk of MetS in women. Postmenopausal status with MetS is associated with an increased TSH, FT3 and FT4 levels and HOMA-IR in obese women. Strong relation was observed with MetS and TSH and FT3 levels.

  20. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    USDA-ARS?s Scientific Manuscript database

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  1. TSH (Thyroid-stimulating hormone) test

    MedlinePlus

    ... your blood ( hyperthyroidism ), or too little thyroid hormone ( hypothyroidism ). Symptoms of hyperthyroidism, also known as overactive thyroid, ... Bulging of the eyes Difficulty sleeping Symptoms of hypothyroidism, also known as underactive thyroid, include: Weight gain ...

  2. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels.

    PubMed

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-05-01

    There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB.

  3. Comparative effect of Citrus sinensis and carbimazole on serum T4, T3 and TSH levels

    PubMed Central

    Uduak, Okon Akpan; Ani, Elemi John; Etoh, Emmauel Columba Inyang; Macstephen, Adienbo Ologbagno

    2014-01-01

    Background: There are previous independent reports on the anti-thyroid property of Citrus sinensis. This isoflavones and phenolic acid-rich natural agent is widely consumed as dietary supplement, thus the need to investigate its comparative effect with a standard anti-thyroid drug on T4, T3 and thyroid stimulating hormone (TSH) levels. Objective: To compare the effect of Citrus sinensis and carbimazole (CARB) on blood levels of thyroid hormones (T4 and T3) and TSH. Materials and Methods: Male wistar albino rats weighing 100-150 g were employed in this research. The rats were randomly assigned to four groups of seven rats per group. Group I served as control and were administered distilled water while groups II-IV were administered with 1500 mg/kg of Citrus sinensis (fresh orange juice; FOJ), 0.1 μg/g of levothyroxine (LVT) and 0.01 mg/g of CARB, respectively, per oral once daily for 28 days. The animals were sacrificed under chloroform anaesthesia and blood sample collected by cardiac puncture and processed by standard method to obtain serum. TSH, T4 and T3 were assayed with the serum using ARIA II automated radioimmunoassay instrument. Results: The results showed that TSH level was significantly (P < 0.05) decreased in LVT treated group compared with the FOJ group. T4 was significantly (P < 0.05) decreased in the FOJ and CARB groups compared with the control and LVT groups. LVT significantly increased T4 when compared with FOJ group. T3 was significantly (P < 0.05) decreased in the CARB group compared with the control. Conclusion: These findings suggest that FOJ alters thyroid hormones metabolism to reduce their serum levels with a compensatory elevations of TSH level in a direction similar to CARB. PMID:25013255

  4. Lower-normal TSH is associated with better metabolic risk factors: a cross-sectional study on spanish men

    USDA-ARS?s Scientific Manuscript database

    Background and aims: Subclinical thyroid conditions, defined by normal thyroxin (T4) but abnormal thyroid-stimulating hormone (TSH) levels, may be associated with cardiovascular and metabolic risk. More recently, TSH levels within the normal range have been suggested to be associated with metabolic ...

  5. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  6. Comparative study of thyroid hormone and antithyroid antibody levels in patients with gestational diabetes mellitus and pregnant patients with diabetes.

    PubMed

    Xu, Chengkai; Zhang, Zhenjian

    2018-06-01

    The aim of this study was to investigate the levels of thyroid hormone and antithyroid antibodies and their relationship with pregnancy outcome in patients with gestational diabetes mellitus (GDM) and diabetic patients. Fifty patients with GDM and 50 pregnant patients with diabetes were selected. Their levels of fasting blood glucose (FBG), glycosylated hemoglobin, FT3, FT4, TGab, TSH, TPOab were measured until parturition. There were no statistically significant differences in the age, gestational age, weight, FBG and glycosylated hemoglobin between the two groups (P>0.05). The levels of FT3 and FT4 in patients with GDM were significantly lower than those in diabetic pregnant patients, while the levels of TSH, TGab, TPOab of GDM patients were significantly higher than in diabetic pregnant patients (P<0.05). The total incidence rates of premature delivery, post-term birth and cesarean section in patients with GDM were significantly higher than those in diabetic pregnant patients. At six-month follow-up, the intellectual levels of infants delivered by patients with GDM were significantly lower than those of diabetic pregnant patients (P<0.05). The levels of thyroid hormones and related antibodies in patients with GDM were abnormal, which may have affected outcome of pregnancy and the intellectual level of their infants.

  7. Pleiotropic Effects of Thyroid Hormones: Learning from Hypothyroidism

    PubMed Central

    Franco, Martha; Chávez, Edmundo; Pérez-Méndez, Oscar

    2011-01-01

    Hypothyroidism induces several metabolic changes that allow understanding some physiopathological mechanisms. Under experimental hypothyroid conditions in rats, heart and kidney are protected against oxidative damage induced by ischemia reperfusion. An increased resistance to opening of the permeability transition pore seems to be at the basis of such protection. Moreover, glomerular filtration rate of hypothyroid kidney is low as a result of adenosine receptors-induced renal vasoconstriction. The vascular tone of aorta is also regulated by adenosine in hypothyroid conditions. In other context, thyroid hormones regulate lipoprotein metabolism. High plasma level of LDL cholesterol is a common feature in hypothyroidism, due to a low expression of the hepatic LDL receptor. In contrast, HDL-cholesterol plasma levels are variable in hypothyroidism; several proteins involved in HDL metabolism and structure are expressed at lower levels in experimental hypothyroidism. Based on the positive influence of thyroid hormones on lipoprotein metabolism, thyromimetic drugs are promising for the treatment of dyslipidemias. In summary, hypothyroid status has been useful to understand molecular mechanisms involved in ischemia reperfusion, regulation of vascular function and intravascular metabolism of lipoproteins. PMID:21760977

  8. Thyroid status in a large cohort of patients with mental retardation: the TOP-R (Thyroid Origin of Psychomotor Retardation) study.

    PubMed

    Visser, Willem Edward; de Rijke, Yolanda B; van Toor, Hans; Visser, Theo J

    2011-09-01

    Abnormalities in thyroid state may affect development and function of the brain and result in mental retardation (MR). Thyroid parameters have not been systematically investigated in institutionalized MR subjects. The objective is to measure thyroid parameters in a novel cohort of 946 institutionalized subjects. The TOP-R (Thyroid Origin of Psychomotor Retardation) study is a cross-sectional nation-wide multicentre study. Subjects with unexplained MR. The majority of the MR subjects had thyroid parameters within the reference range used in our laboratory. Antiepileptic drugs (AEDs) use affected thyroid hormones (T4: 102·1 ± 1·2 vs 83·9 ± 1·2 nmol/l, P < 1 × 10(-24) ; FT4: 18·0 ± 0·2 vs 16·1 ± 0·2 pmol/l, P < 1 × 10(-9) ; T3: 1·72 ± 0·02 vs 1·57 ± 0·02 nmol/l, P < 1 × 10(-9) ; and rT3: 0·37 ± 0·01 vs 0·27 ± 0·01 nmol/l, P < 1 × 10(-28) in subjects without vs with AEDs). The prevalence of unrecognized primary hypothyroidism and hyperthyroidism was 5·2% and 2·8%, respectively. We report thyroid parameters in a cohort of institutionalized subjects with MR. Our findings substantiate the fact that AEDs affect thyroid hormone levels. Future studies will be employed to investigate genetic causes of MR related to abnormalities in thyroid hormone homeostasis. © 2011 Blackwell Publishing Ltd.

  9. Tissue-specific regulation of malic enzyme by thyroid hormone in the neonatal rat.

    PubMed

    Sood, A; Schwartz, H L; Oppenheimer, J H

    1996-05-15

    Two recent studies have claimed that thyroid hormone administration accelerates malic enzyme gene expression in the neonatal brain in contrast to the well-documented lack of effect of triiodothyronine on malic enzyme gene expression in the adult brain. Since these observations conflict with earlier observations in our laboratory, we reinvestigated the effect of thyroid hormone status on the ontogeny of malic enzyme gene expression in the neonatal rat. Neither hypothyroidism nor hyperthyroidism influenced the ontogenesis of malic enzyme activity in neonatal brain whereas the patterns of gene expression and enzyme activity in liver were markedly affected. Our results suggest that tissue-specific factors in brain block thyroid hormone-induced gene expression by thyroid hormone.

  10. Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog.

    PubMed

    Masuda, Yoriko; Haramizu, Satoshi; Oki, Kasumi; Ohnuki, Koichiro; Watanabe, Tatsuo; Yazawa, Susumu; Kawada, Teruo; Hashizume, Shu-ichi; Fushiki, Tohru

    2003-12-01

    Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.

  11. Fetal and Neonatal Iron Deficiency Exacerbates Mild Thyroid Hormone Insufficiency Effects on Male Thyroid Hormone Levels and Brain Thyroid Hormone-Responsive Gene Expression

    PubMed Central

    Bastian, Thomas W.; Prohaska, Joseph R.; Georgieff, Michael K.

    2014-01-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression. PMID:24424046

  12. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes

    PubMed Central

    Wen, Gaiping; Eder, Klaus

    2017-01-01

    Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of the SREBP-2 pathway at 0.1 μg TM/mL (P < 0.05). In conclusion, the expression of key genes involved in thyroid hormone synthesis and their critical regulators and of the TSH receptor as well as the uptake of iodide is attenuated in thyrocytes during mild ER stress. Down-regulation of NIS, TPO and TG during ER stress is likely the consequence of impaired TSH/TSHR signaling in concert with reduced expression of critical transcriptional regulators of these genes. PMID:29095946

  13. Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes.

    PubMed

    Wen, Gaiping; Ringseis, Robert; Eder, Klaus

    2017-01-01

    Endoplasmic reticulum (ER) stress is characterized by the accumulation of misfolded proteins due to an impairment of ER quality control pathways leading to the activation of a defense system, called unfolded protein response (UPR). While thyrocytes are supposed to be highly susceptible to environmental conditions that cause ER stress due to the synthesis of large amounts of secretory proteins required for thyroid hormone synthesis, systematic investigations on the effect of ER stress on expression of key genes of thyroid hormone synthesis and their transcriptional regulators are lacking. Since the aim of the ER stress-induced UPR is to restore ER homeostasis and to facilitate cell survival through transient shutdown of ribosomal protein translation, we hypothesized that the expression of genes involved in thyroid hormone synthesis and their transcriptional regulators, all of which are not essential for cell survival, are down-regulated in thyrocytes during ER stress, while sterol regulatory element-binding proteins (SREBPs) are activated during ER stress in thyrocytes. Treatment of FRTL-5 thyrocytes with the ER stress inducer tunicamycin (TM) dose-dependently increased the mRNA and/or protein levels of known UPR target genes, stimulated phosphorylation of the ER stress sensor protein kinase RNA-like ER kinase (PERK) and of the PERK target protein eukaryotic initiation factor 2α (eIF2α) and caused splicing of the ER stress-sensitive transcription factor X-box binding protein (XBP-1) (P < 0.05). The mRNA levels and/or protein levels of genes involved in thyroid hormone synthesis, sodium/iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), their transcriptional regulators and thyrotropin (TSH) receptor and the uptake of Na125I were reduced at the highest concentration of TM tested (0.1 μg/mL; P < 0.05). Proteolytic activation of the SREBP-1c pathway was not observed in FRTL-5 cells treated with TM, whereas TM reduced proteolytic activation of the SREBP-2 pathway at 0.1 μg TM/mL (P < 0.05). In conclusion, the expression of key genes involved in thyroid hormone synthesis and their critical regulators and of the TSH receptor as well as the uptake of iodide is attenuated in thyrocytes during mild ER stress. Down-regulation of NIS, TPO and TG during ER stress is likely the consequence of impaired TSH/TSHR signaling in concert with reduced expression of critical transcriptional regulators of these genes.

  14. A meta-analysis of the associations between common variation in the PDE8B gene and thyroid hormone parameters, including assessment of longitudinal stability of associations over time and effect of thyroid hormone replacement

    PubMed Central

    Taylor, Peter N; Panicker, Vijay; Sayers, Adrian; Shields, Beverley; Iqbal, Ahmed; Bremner, Alexandra P; Beilby, John P; Leedman, Peter J; Hattersley, Andrew T; Vaidya, Bijay; Frayling, Timothy; Evans, Jonathan; Tobias, Jonathan H; Timpson, Nicholas J; Walsh, John P; Dayan, Colin M

    2011-01-01

    Objective Common variants in PDE8B are associated with TSH but apparently without any effect on thyroid hormone levels that is difficult to explain. Furthermore, the stability of the association has not been examined in longitudinal studies or in patients on levothyroxine (l-T4). Design Totally, four cohorts were used (n=2557): the Busselton Health Study (thyroid function measured on two occasions), DEPTH, EFSOCH (selective cohorts), and WATTS (individuals on l-T4). Methods Meta-analysis to clarify associations between the rs4704397 single nucleotide polymorphism in PDE8B on TSH, tri-iodothyronine (T3), and T4 levels. Results Meta-analysis confirmed that genetic variation in PDE8B was associated with TSH (P=1.64×10−10 0.20 s.d./allele, 95% confidence interval (CI) 0.142, 0.267) and identified a possible new association with free T4 (P=0.023, −0.07 s.d./allele, 95% CI −0.137, −0.01), no association was seen with free T3 (P=0.218). The association between PDE8B and TSH was similar in 1981 (0.14 s.d./allele, 95% CI 0.04, 0.238) and 1994 (0.20 s.d./allele, 95% CI 0.102, 0.300) and even more consistent between PDE8B and free T4 in 1981 (−0.068 s.d./allele, 95% CI −0.167, 0.031) and 1994 (−0.07 s.d./allele, 95% CI −0.170, 0.030). No associations were seen between PDE8B and thyroid hormone parameters in individuals on l-T4. Conclusion Common genetic variation in PDE8B is associated with reciprocal changes in TSH and free T4 levels that are consistent over time and lost in individuals on l-T4. These findings identify a possible genetic marker reflecting variation in thyroid hormone output that will be of value in epidemiological studies and provides additional evidence that PDE8B is involved in TSH signaling in the thyroid. PMID:21317282

  15. Ovarian ultrasound and ovarian and adrenal hormones before and after treatment for hyperthyroidism.

    PubMed

    Skjöldebrand Sparre, L; Kollind, M; Carlström, K

    2002-01-01

    To relate thyroid, steroid and pituitary hormones to ovarian ultrasonographic findings in hyperthyroid patients before and during treatment. Ultrasonography of the ovaries and serum hormone determination by immunoassay were performed before and during thiamazole therapy in 18 women of fertile age treated for hyperthyroidism at the Danderyd Hospital from 1996 to 1998. When hyperthyreotic, the patients had elevated serum levels of sex hormone-binding globulin (SHBG) and subnormal values of cortisol, free testosterone (fT) and dehydroepiandrosterone (DHEA). In the euthyreotic state following treatment, endocrine variables were normalized. Patients with a short duration of the disease had higher pretreatment levels of free thyroxine (fT4), SHBG and testosterone and lower corticosteroid binding globulin (CBG) and cortisol levels compared to patients with a long duration of the disease. The pretreatment ultrasonographic picture was abnormal in 16 of 18 patients. Of the 8 patients who were examined by ultrasonography after 3 months of treatment, all but 1 showed a normal picture. Samples from patients showing an abnormal ultrasonographic picture had significantly higher fT4 and lower free testosterone (fT) values than samples from patients with a normal ultrasonographic picture. Ultrasonographic findings showing a multicystic/multifollicular picture, resembling polycystic ovaries (PCO), in hyperthyroidism may be related to direct effects of thyroid hormones on the ovaries and/or altered intraovarian androgen environment due to elevated SHBG levels. It is highly recommended to assess the thyroid status in patients with multicystic/multifollicular ovaries/PCO. Copyright 2002 S. Karger AG, Basel

  16. RET/PTC Rearrangements Are Associated with Elevated Postoperative TSH Levels and Multifocal Lesions in Papillary Thyroid Cancer without Concomitant Thyroid Benign Disease

    PubMed Central

    Su, Xuan; He, Caiyun; Ma, Jiangjun; Tang, Tao; Zhang, Xiao; Ye, Zulu; Long, Yakang; Shao, Qiong

    2016-01-01

    RET/PTC rearrangements, resulting in aberrant activity of the RET protein tyrosine kinase receptor, occur exclusively in papillary thyroid cancer (PTC). In this study, we examined the association between RET/PTC rearrangements and thyroid hormone homeostasis, and explored whether concomitant diseases such as nodular goiter and Hashimoto's thyroiditis influenced this association. A total of 114 patients diagnosed with PTC were enrolled in this study. Thyroid hormone levels, clinicopathological parameters and lifestyle were obtained through medical records and surgical pathology reports. RET/PTC rearrangements were detected using TaqMan RT-PCR and validated by direct sequencing. No RET/PTC rearrangements were detected in benign thyroid tissues. RET/PTC rearrangements were detected in 23.68% (27/114) of PTC tissues. No association between thyroid function, clinicopathological parameters and lifestyle was observed either in total thyroid cancer patients or the subgroup of patients with concomitant disease. In the subgroup of PTC patients without concomitant disease, RET/PTC rearrangement was associated with multifocal cancer (P = 0.018). RET/PTC rearrangement was also correlated with higher TSH levels at one month post-surgery (P = 0.037). Based on likelihood-ratio regression analysis, the RET/PTC-positive PTC cases showed an increased risk of multifocal cancers in the thyroid gland (OR = 5.57, 95% CI, 1.39–22.33). Our findings suggest that concomitant diseases such as nodular goiter and Hashimoto's thyroiditis in PTC may be a confounding factor when examining the effects of RET/PTC rearrangements. Excluding the potential effect of this confounding factor showed that RET/PTC may confer an increased risk for the development of multifocal cancers in the thyroid gland. Aberrantly increased post-operative levels of TSH were also associated with RET/PTC rearrangement. Together, our data provides useful information for the treatment of papillary thyroid cancer. PMID:27802347

  17. Computational modeling of the amphibian thyroid axis ...

    EPA Pesticide Factsheets

    In vitro screening of chemicals for bioactivity together with computational modeling are beginning to replace animal toxicity testing in support of chemical risk assessment. To facilitate this transition, an amphibian thyroid axis model has been developed to describe thyroid homeostasis during Xenopus laevis pro-metamorphosis. The model simulates the dynamic relationships of normal thyroid biology throughout this critical period of amphibian development and includes molecular initiating events (MIEs) for thyroid axis disruption to allow in silico simulations of hormone levels following chemical perturbations. One MIE that has been formally described using the adverse outcome pathway (AOP) framework is thyroperoxidase (TPO) inhibition. The goal of this study was to refine the model parameters and validate model predictions by generating dose-response and time-course biochemical data following exposure to three TPO inhibitors, methimazole, 6-propylthiouracil and 2-mercaptobenzothiazole. Key model variables including gland and blood thyroid hormone (TH) levels were compared to empirical values measured in biological samples at 2, 4, 7 and 10 days following initiation of exposure at Nieuwkoop and Faber (NF) stage 54 (onset of pro-metamorphosis). The secondary objective of these studies was to relate depleted blood TH levels to delayed metamorphosis, the adverse apical outcome. Delayed metamorphosis was evaluated by continuing exposure with a subset of larvae until a

  18. Prognostic Value of Thyroid Hormone Levels in Patients Evaluated for Liver Transplantation

    PubMed Central

    Van Thiel, David H.; Udani, Mahendra; Schade, Robert R.; Sanghvi, Agit; Starzl, Thomas E.

    2010-01-01

    The thyroid hormones T4, T3, rT3 and TSH were assayed in 134 adult patients evaluated and accepted as potential liver transplant candidates at the University of Pittsburgh from March, 1981 to December, 1983. The subsequent course of these patients was evaluated with respect to the levels of these hormones obtained at the time of acceptance for transplantation. T4 levels were increased significantly while their T3 levels were reduced (both p < 0.01) in those who survived and were discharged home as compared to either those who died waiting to be transplanted or died following the procedure. As a result, the ratio of T3/T4 was reduced markedly (p < 0.01) in those who were transplanted and survived as compared to those not transplanted or dying following transplantation. Importantly, the rT3 levels clearly separated (p < 0.01) those who would die prior to transplantation from those who would survive to be transplanted. Finally, the ratio rT3/T3 even more clearly separates those who will die prior to transplantation (p < 0.01) from the other two groups. These data suggest that thyroid hormone levels, particularly rT3 levels, might be useful in setting priorities for which patients referred for a transplantation evaluation should be accepted into the program and in determining who among accepted patients should be operated upon in preference to others also accepted and waiting to be transplanted. PMID:2993148

  19. [Hyperthyroidism in molar pregnancy].

    PubMed

    Boufettal, H; Mahdoui, S; Noun, M; Hermas, S; Samouh, N

    2014-03-01

    Hyperthyroidism is a rare complication of molar pregnancy. We report a 39-year-old woman who presented a thyrotoxic syndrome accompanying a molar pregnancy. Serum thyroid hormones were elevated and returned to normal level after uterine evacuation of a molar pregnancy. The authors detail the role of thyroid stimulating property of human gonadotropin chorionic hormone and its structural changes during the gestational trophoblastic diseases. These changes give the latter the thyroid stimulating properties and signs of hyperthyroidism. Molar pregnancy may be a cause of hyperthyroidism. The diagnosis of molar pregnancy should be a mention to thyrotoxicosique syndrome in a woman of childbearing age. Copyright © 2013. Published by Elsevier SAS.

  20. Plasmapheresis rapidly eliminates thyroid hormones from the circulation, but does not affect the speed of TSH recovery following prolonged suppression.

    PubMed

    Liel, Yair; Weksler, Natan

    2003-01-01

    To report an attempt to shorten the preparation interval before radioactive iodine administration using plasmapheresis in a 77-year-old woman with a history of papillary thyroid carcinoma with local recurrence and lung metastases, in whom the administration of a high dose of radioactive iodine was intended as a desperate rescue procedure. The patient was initially started on cholestyramine. Two days later, plasmapheresis was performed. Plasmapheresis rapidly decreased free tri-iodothyronine (FT(3)) and free thyroxine (FT(4)). Serum FT(4) subsequently remained low, while FT(3) recovered the next day. Thyroid-stimulating hormone (TSH) reached 25 mIU/l in 14 days, which is within the time frame required to reach the target TSH level by withdrawing levothyroxine alone. Plasmapheresis is very effective in eliminating thyroid hormones from the circulation. However, it does not seem to accelerate thyrotroph recovery to a considerable extent after prolonged suppression. Copyright 2003 S. Karger AG, Basel

  1. Thyroid function and cold acclimation in the hamster, Mesocricetus auratus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, T.E.; Horwitz, B.A.

    1987-02-01

    Basal metabolic rate (BMR), thyroxine utilization rate (T4U), and triiodothyronine utilization rate (T3U) were measured in cold-acclimated (CA) and room temperature-acclimated (RA) male golden hamsters, Mesocricetus auratus. Hormone utilization rates were calculated via the plasma disappearance technique using SVI-labeled hormones and measuring serum hormone levels via radioimmunoassay. BMR showed a significant 28% increase with cold acclimation. The same cold exposure also produced a 32% increase in T4U, and a 204% increase in T3U. The much greater increase in T3U implies that previous assessments of the relationship between cold acclimation and thyroid function may have been underestimated and that cold exposuremore » induces both quantitative and qualitative changes in thyroid function. It is concluded that in the cold-acclimated state, T3U more accurately reflects thyroid function than does T4U. A mechanism for the cold-induced change in BMR is proposed.« less

  2. The immediate and late effects of thyroid hormone (triiodothyronine) on murine coagulation gene transcription.

    PubMed

    Salloum-Asfar, Salam; Boelen, Anita; Reitsma, Pieter H; van Vlijmen, Bart J M

    2015-01-01

    Thyroid dysfunction is associated with changes in coagulation. The aim of our study was to gain more insight into the role of thyroid hormone in coagulation control. C57Black/6J mice received a low-iodine diet and drinking water supplemented with perchlorate to suppress endogenous triiodothyronine (T3) and thyroxine (T4) production. Under these conditions, the impact of exogenous T3 on plasma coagulation, and hepatic and vessel-wall-associated coagulation gene transcription was studied in a short- (4 hours) and long-term (14 days) setting. Comparing euthyroid conditions (normal mice), with hypothyroidism (conditions of a shortage of thyroid hormone) and those with replacement by incremental doses of T3, dosages of 0 and 0.5 μg T3/mouse/day were selected to study the impact of T3 on coagulation gene transcription. Under these conditions, a single injection of T3 injection increased strongly hepatic transcript levels of the well-characterized T3-responsive genes deiodinase type 1 (Dio1) and Spot14 within 4 hours. This coincided with significantly reduced mRNA levels of Fgg, Serpinc1, Proc, Proz, and Serpin10, and the reduction of the latter three persisted upon daily treatment with T3 for 14 days. Prolonged T3 treatment induced a significant down-regulation in factor (F) 2, F9 and F10 transcript levels, while F11 and F12 levels increased. Activity levels in plasma largely paralleled these mRNA changes. Thbd transcript levels in the lung (vessel-wall-associated coagulation) were significantly up-regulated after a single T3 injection, and persisted upon prolonged T3 exposure. Two-week T3 administration also resulted in increased Vwf and Tfpi mRNA levels, whereas Tf levels decreased. These data showed that T3 has specific effects on coagulation, with Fgg, Serpinc1, Proc, Proz, Serpin10 and Thbd responding rapidly, making these likely direct thyroid hormone receptor targets. F2, F9, F10, F11, F12, Vwf, Tf and Tfpi are late responding genes and probably indirectly modulated by T3.

  3. Disruption of thyroid hormone (TH) levels and TH-regulated gene expression by polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hydroxylated PCBs in e-waste recycling workers.

    PubMed

    Zheng, Jing; He, Chun-Tao; Chen, She-Jun; Yan, Xiao; Guo, Mi-Na; Wang, Mei-Huan; Yu, Yun-Jiang; Yang, Zhong-Yi; Mai, Bi-Xian

    2017-05-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are the primary toxicants released by electronic waste (e-waste) recycling, but their adverse effects on people working in e-waste recycling or living near e-waste sites have not been studied well. In the present study, the serum concentrations of PBDEs, PCBs, and hydroxylated PCBs, the circulating levels of thyroid hormones (THs), and the mRNA levels of seven TH-regulated genes in peripheral blood leukocytes of e-waste recycling workers were analyzed. The associations of the hormone levels and gene expression with the exposure to these contaminants were examined using multiple linear regression models. There were nearly no associations of the TH levels with PCBs and hydroxylated PCBs, whereas elevated hormone (T 4 and T 3 ) levels were associated with certain lower-brominated BDEs. While not statistically significant, we did observe a negative association between highly brominated PBDE congeners and thyroid-stimulating hormone (TSH) levels in the e-waste workers. The TH-regulated gene expression was more significantly associated with the organohalogen compounds (OHCs) than the TH levels in these workers. The TH-regulated gene expression was significantly associated with certain PCB and hydroxylated PCB congeners. However, the expression of most target genes was suppressed by PBDEs (mostly highly brominated congeners). This is the first evidence of alterations in TH-regulated gene expression in humans exposed to OHCs. Our findings indicated that OHCs may interfere with TH signaling and/or exert TH-like effects, leading to alterations in related gene expression in humans. Further research is needed to investigate the mechanisms of action and associated biological consequences of the gene expression disruption by OHCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 21 CFR 862.1695 - Free thyroxine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to measure free (not protein bound) thyroxine (thyroid hormone) in serum or plasma. Levels of free thyroxine in plasma are thought to reflect the amount of thyroxine hormone available to the cells and may...

  5. 21 CFR 862.1695 - Free thyroxine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to measure free (not protein bound) thyroxine (thyroid hormone) in serum or plasma. Levels of free thyroxine in plasma are thought to reflect the amount of thyroxine hormone available to the cells and may...

  6. 21 CFR 862.1695 - Free thyroxine test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to measure free (not protein bound) thyroxine (thyroid hormone) in serum or plasma. Levels of free thyroxine in plasma are thought to reflect the amount of thyroxine hormone available to the cells and may...

  7. 21 CFR 862.1695 - Free thyroxine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to measure free (not protein bound) thyroxine (thyroid hormone) in serum or plasma. Levels of free thyroxine in plasma are thought to reflect the amount of thyroxine hormone available to the cells and may...

  8. 21 CFR 862.1695 - Free thyroxine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to measure free (not protein bound) thyroxine (thyroid hormone) in serum or plasma. Levels of free thyroxine in plasma are thought to reflect the amount of thyroxine hormone available to the cells and may...

  9. The association of polymorphisms in the type 1 and 2 deiodinase genes with circulating thyroid hormone parameters and atrophy of the medial temporal lobe.

    PubMed

    de Jong, Frank Jan; Peeters, Robin P; den Heijer, Tom; van der Deure, Wendy M; Hofman, Albert; Uitterlinden, André G; Visser, Theo J; Breteler, Monique M B

    2007-02-01

    Thyroid function has been related to Alzheimer disease (AD) and neuroimaging markers thereof. Whether thyroid dysfunction contributes to or results from developing AD remains unclear. Variations in the deiodinase type 1 (DIO1) and type 2 (DIO2) genes that potentially alter thyroid hormone bioactivity may help in elucidating the role of thyroid function in AD. We investigated the association of recently identified polymorphisms in the DIO1 (D1a-C/T, D1b-A/G) and DIO2 (D2-ORFa-Gly3Asp, D2-Thr92Ala) genes with circulating thyroid parameters and early neuroimaging markers of AD. The Rotterdam Scan Study is a population-based cohort study among 1,077 elderly individuals aged 60-90 yr. DIO1 and DIO2 polymorphisms and serum TSH, free T4, T3, and reverse T3 (rT3) levels were determined in 995 nondemented elderly, including 473 persons with assessments of hippocampal and amygdalar volume on brain magnetic resonance imaging. Carriers of the D1a-T allele had higher serum free T4 and rT3, lower T3, and lower T3/rT3. The D1b-G allele was associated with higher serum T3 and T3/rT3. The DIO2 variants were not associated with serum thyroid parameters. No associations were found with hippocampal or amygdalar volume. This is the first study to report an association of D1a-C/T and D1b-A/G polymorphisms with iodothyronine levels in the elderly. Polymorphisms in the DIO1 and DIO2 genes are not associated with early magnetic resonance imaging markers of AD. This suggests that the previously reported association between iodothyronine levels and brain atrophy reflects comorbidity or nonthyroidal illness rather than thyroid hormones being involved in developing AD.

  10. Effects of Chronic Exposure to an Environmentally Relevant Mixture of Brominated Flame Retardants on the Reproductive and Thyroid System in Adult Male Rats

    PubMed Central

    Ernest, Sheila R.; Wade, Michael G.; Lalancette, Claudia; Ma, Yi-Qian; Berger, Robert G.; Robaire, Bernard; Hales, Barbara F.

    2012-01-01

    Brominated flame retardants (BFRs) are incorporated into a wide variety of consumer products, are readily released into home and work environments, and are present in house dust. Studies using animal models have revealed that exposure to polybrominated diphenyl ethers (PBDEs) may impair adult male reproductive function and thyroid hormone physiology. Such studies have generally characterized the outcome of acute or chronic exposure to a single BFR technical mixture or congener but not the impact of environmentally relevant BFR mixtures. We tested whether exposure to the BFRs found in house dust would have an adverse impact on the adult male rat reproductive system and thyroid function. Adult male Sprague Dawley rats were exposed to a complex BFR mixture composed of three commercial brominated diphenyl ethers (52.1% DE-71, 0.4% DE-79, and 44.2% decaBDE-209) and hexabromocyclododecane (3.3%), formulated to mimic the relative congener levels in house dust. BFRs were delivered in the diet at target doses of 0, 0.02, 0.2, 2, or 20 mg/kg/day for 70 days. Compared with controls, males exposed to the highest dose of BFRs displayed a significant increase in the weights of the kidneys and liver, which was accompanied by induction of CYP1A and CYP2B P450 hepatic drug–metabolizing enzymes. BFR exposure did not affect reproductive organ weights, serum testosterone levels, testicular function, or sperm DNA integrity. The highest dose caused thyroid toxicity as indicated by decreased serum thyroxine (T4) and hypertrophy of the thyroid gland epithelium. At lower doses, the thickness of the thyroid gland epithelium was reduced, but no changes in hormone levels (T4 and thyroid-stimulating hormone) were observed. Thus, exposure to BFRs affected liver and thyroid physiology but not male reproductive parameters. PMID:22387749

  11. The effects of clobazam treatment in rats on the expression of genes and proteins encoding glucronosyltransferase 1A/2B (UGT1A/2B) and multidrug resistance‐associated protein-2 (MRP2), and development of thyroid follicular cell hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Izuru, E-mail: izuru-miyawaki@ds-pharma.co.jp; Tamura, Akitoshi; Matsumoto, Izumi

    Clobazam (CLB) is known to increase hepatobiliary thyroxine (T4) clearance in Sprague–Dawley (SD) rats, which results in hypothyroidism followed by thyroid follicular cell hypertrophy. However, the mechanism of the acceleration of T4-clearance has not been fully investigated. In the present study, we tried to clarify the roles of hepatic UDP-glucronosyltransferase (UGT) isoenzymes (UGT1A and UGT2B) and efflux transporter (multidrug resistance–associated protein-2; MRP2) in the CLB-induced acceleration of T4-clearance using two mutant rat strains, UGT1A-deficient mutant (Gunn) and MRP2-deficient mutant (EHBR) rats, especially focusing on thyroid morphology, levels of circulating hormones (T4 and triiodothyronine (T3)) and thyroid-stimulating hormone (TSH), and mRNAmore » or protein expressions of UGTs (Ugt1a1, Ugt1a6, and Ugt2b1/2) and MRP2 (Mrp). CLB induced thyroid morphological changes with increases in TSH in SD and Gunn rats, but not in EHBR rats. T4 was slightly decreased in SD and Gunn rats, and T3 was decreased in Gunn rats, whereas these hormones were maintained in EHBR rats. Hepatic Ugt1a1, Ugt1a6, Ugt2b1/2, and Mrp2 mRNAs were upregulated in SD rats. In Gunn rats, UGT1A mRNAs (Ugt1a1/6) and protein levels were quite low, but UGT2B mRNAs (Ugt2b1/2) and protein were prominently upregulated. In SD and Gunn rats, MRP2 mRNA and protein were upregulated to the same degree. These results suggest that MRP2 is an important contributor in development of the thyroid cellular hypertrophy in CLB-treated rats, and that UGT1A and UGT2B work in concert with MRP2 in the presence of MRP2 function to enable the effective elimination of thyroid hormones. -- Highlights: ► Role of UGT and MRP2 in thyroid pathology was investigated in clobazam-treated rats. ► Clobazam induced thyroid cellular hypertrophy in SD and Gunn rats, but not EHBR rats. ► Hepatic Mrp2 gene and protein were upregulated in SD and Gunn rats, but not EHBR rats. ► Neither serum thyroid hormones (T3/T4) nor thyroid pathology changed in EHBR rats. ► Mrp2 was implied to be a key molecule in clobazam-induced thyroid pathology in rats.« less

  12. Molecular Aspects of Thyroid Hormone Actions

    PubMed Central

    Cheng, Sheue-Yann; Leonard, Jack L.; Davis, Paul J.

    2010-01-01

    Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T3 via transcriptional regulation. Two TR genes, α and β, encode four T3-binding receptor isoforms (α1, β1, β2, and β3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T3, transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T3 target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T3-dependent manner. In the absence of T3, corepressors act to repress the basal transcriptional activity, whereas in the presence of T3, coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRβ gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T3. Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin αvβ3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na+/H+ exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T4 is an agonist at the plasma membrane without conversion to T3. Tetraiodothyroacetic acid is a T4 analog that inhibits the actions of T4 and T3 at the integrin, including angiogenesis and tumor cell proliferation. T3 can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin αvβ3. Downstream consequences of phosphatidylinositol 3-kinase activation by T3 include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T3 and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T4 and rT3, but not T3, is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRα1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton. PMID:20051527

  13. γ-Aminobutyric acid ameliorates fluoride-induced hypothyroidism in male Kunming mice.

    PubMed

    Yang, Haoyue; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Pengcheng

    2016-02-01

    This study evaluated the protective effects of γ-aminobutyric acid (GABA), a non-protein amino acid and anti-oxidant, against fluoride-induced hypothyroidism in mice. Light microscope sample preparation technique and TEM sample preparation technique were used to assay thyroid microstructure and ultrastructure; enzyme immunoassay method was used to assay hormone and protein levels; immunohistochemical staining method was used to assay apoptosis of thyroid follicular epithelium cells. Subacute injection of sodium fluoride (NaF) decreased blood T4, T3 and thyroid hormone-binding globulin (TBG) levels to 33.98 μg/l, 3 2.8 ng/ml and 11.67 ng/ml, respectively. In addition, fluoride intoxication induced structural abnormalities in thyroid follicles. Our results showed that treatment of fluoride-exposed mice with GABA appreciably decreased metabolic toxicity induced by fluoride and restored the microstructural and ultrastructural organisation of the thyroid gland towards normalcy. Compared with the negative control group, GABA treatment groups showed significantly upregulated T4, T3 and TBG levels (42.34 μg/l, 6.54 ng/ml and 18.78 ng/ml, respectively; P<0.05), properly increased TSH level and apoptosis inhibition in thyroid follicular epithelial cells. To the best of our knowledge, this is the first study to establish the therapeutic efficacy of GABA as a natural antioxidant in inducing thyroprotection against fluoride-induced toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Thyroid hormone receptor beta2 is strongly up-regulated at all levels of the hypothalamo-pituitary-thyroidal axis during late embryogenesis in chicken.

    PubMed

    Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert

    2008-03-01

    In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.

  15. Establishing Adverse Outcome Pathways of Thyroid Hormone Disruption in an Amphibian Model

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) provides a framework for understanding the relevance of toxicology data in ecotoxicological hazard assessments. The AOP concept can be applied to many toxicological pathways including thyroid hormone disruption. Thyroid hormones play a critical r...

  16. THYROSIM App for Education and Research Predicts Potential Health Risks of Over-the-Counter Thyroid Supplements.

    PubMed

    Han, Simon X; Eisenberg, Marisa; Larsen, P Reed; DiStefano, Joseph

    2016-04-01

    Computer simulation tools for education and research are making increasingly effective use of the Internet and personal devices. To facilitate these activities in endocrinology and metabolism, a mechanistically based simulator of human thyroid hormone and thyrotropin (TSH) regulation dynamics was developed and further validated, and it was implemented as a facile and freely accessible web-based and personal device application: the THYROSIM app. This study elucidates and demonstrates its utility in a research context by exploring key physiological effects of over-the-counter thyroid supplements. THYROSIM has a simple and intuitive user interface for teaching and conducting simulated "what-if" experiments. User-selectable "experimental" test-input dosages (oral, intravenous pulses, intravenous infusions) are represented by animated graphical icons integrated with a cartoon of the hypothalamic-pituitary-thyroid axis. Simulations of familiar triiodothyronine (T3), thyroxine (T4), and TSH temporal dynamic responses to these exogenous stimuli are reported graphically, along with normal ranges on the same single interface page; and multiple sets of simulated experimental results are superimposable to facilitate comparative analyses. This study shows that THYROSIM accurately reproduces a wide range of published clinical study data reporting hormonal kinetic responses to large and small oral hormone challenges. Simulation examples of partial thyroidectomies and malabsorption illustrate typical usage by optionally changing thyroid gland secretion and/or gut absorption rates--expressed as percentages of normal--as well as additions of oral hormone dosing, all directly on the interface, and visualizing the kinetic responses to these challenges. Classroom and patient education usage--with public health implications--is illustrated by predictive simulated responses to nonprescription thyroid health supplements analyzed previously for T3 and T4 content. Notably, it was found that T3 in supplements has potentially more serious pathophysiological effects than does T4--concomitant with low-normal TSH levels. Some preparations contain enough T3 to generate thyrotoxic conditions, with supernormal serum T3-spiking and subnormal serum T4 and TSH levels and, in some cases, with normal or low-normal range TSH levels due to thyroidal axis negative feedback. These results suggest that appropriate regulation of these products is needed.

  17. Action of specific thyroid hormone receptor α(1) and β(1) antagonists in the central and peripheral regulation of thyroid hormone metabolism in the rat.

    PubMed

    van Beeren, Hermina C; Kwakkel, Joan; Ackermans, Mariëtte T; Wiersinga, Wilmar M; Fliers, Eric; Boelen, Anita

    2012-12-01

    The iodine-containing drug amiodarone (Amio) and its noniodine containing analogue dronedarone (Dron) are potent antiarrhythmic drugs. Previous in vivo and in vitro studies have shown that the major metabolite of Amio, desethylamiodarone, acts as a thyroid hormone receptor (TR) α(1) and β(1) antagonist, whereas the major metabolite of Dron debutyldronedarone acts as a selective TRα(1) antagonist. In the present study, Amio and Dron were used as tools to discriminate between TRα(1) or TRβ(1) regulated genes in central and peripheral thyroid hormone metabolism. Three groups of male rats received either Amio, Dron, or vehicle by daily intragastric administration for 2 weeks. We assessed the effects of treatment on triiodothyronine (T(3)) and thyroxine (T(4)) plasma and tissue concentrations, deiodinase type 1, 2, and 3 mRNA expressions and activities, and thyroid hormone transporters monocarboxylate transporter 8 (MCT8), monocarboxylate transporter 10 (MCT10), and organic anion transporter 1C1 (OATP1C1). Amio treatment decreased serum T(3), while serum T(4) and thyrotropin (TSH) increased compared to Dron-treated and control rats. At the central level of the hypothalamus-pituitary-thyroid axis, Amio treatment decreased hypothalamic thyrotropin releasing hormone (TRH) expression, while increasing pituitary TSHβ and MCT10 mRNA expression. Amio decreased the pituitary D2 activity. By contrast, Dron treatment resulted in decreased hypothalamic TRH mRNA expression only. Upon Amio treatment, liver T(3) concentration decreased substantially compared to Dron and control rats (50%, p<0.01), but liver T(4) concentration was unaffected. In addition, liver D1, mRNA, and activity decreased, while the D3 activity and mRNA increased. Liver MCT8, MCT10, and OATP1C1 mRNA expression were similar between groups. Our results suggest an important role for TRα1 in the regulation of hypothalamic TRH mRNA expression, whereas TRβ plays a dominant role in pituitary and liver thyroid hormone metabolism.

  18. Regulation of microglial development: a novel role for thyroid hormone.

    PubMed

    Lima, F R; Gervais, A; Colin, C; Izembart, M; Neto, V M; Mallat, M

    2001-03-15

    The postnatal development of rat microglia is marked by an important increase in the number of microglial cells and the growth of their ramified processes. We studied the role of thyroid hormone in microglial development. The distribution and morphology of microglial cells stained with isolectin B4 or monoclonal antibody ED1 were analyzed in cortical and subcortical forebrain regions of developing rats rendered hypothyroid by prenatal and postnatal treatment with methyl-thiouracil. Microglial processes were markedly less abundant in hypothyroid pups than in age-matched normal animals, from postnatal day 4 up to the end of the third postnatal week of life. A delay in process extension and a decrease in the density of microglial cell bodies, as shown by cell counts in the developing cingulate cortex of normal and hypothyroid animals, were responsible for these differences. Conversely, neonatal rat hyperthyroidism, induced by daily injections of 3,5,3'-triiodothyronine (T3), accelerated the extension of microglial processes and increased the density of cortical microglial cell bodies above physiological levels during the first postnatal week of life. Reverse transcription-PCR and immunological analyses indicated that cultured cortical ameboid microglial cells expressed the alpha1 and beta1 isoforms of nuclear thyroid hormone receptors. Consistent with the trophic and morphogenetic effects of thyroid hormone observed in situ, T3 favored the survival of cultured purified microglial cells and the growth of their processes. These results demonstrate that thyroid hormone promotes the growth and morphological differentiation of microglia during development.

  19. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  20. [Serum cortisol level variations in thyroid diseases].

    PubMed

    Seck-Gassama; Ndoye, O; Mbodj, M; Akala, A; Cisse, F; Niang, M; Ndoye, R

    2000-01-01

    This work studies the thyroid disorders impact on adrenals glands by measuring total cortisol. Radioimmunoassays of thyroid hormones and cortisol were performed in 108 subjects, aged 20-52 years, with thyroid diseases. Our results show low cortisol values (80.35 nmol/L) in 4.77% of hyperthyroids, high values in 3.57% of hyperthyroids (1348.18 nmol/L) and 12.5% of hypothyroids (969.05 nmol/L). In hyperthyroidism, thyroid hormone stimulates the secretion of 11 ceto metabolites biologically inactive, unable to slow pituitary activity, inducing an increased production of endogene cortisol. Excessive catabolism can lead to the exhausting of overstimulated adrenal glands, and therefore to a decreased cortisol. In hypothyroidism, high cortisol results of increase cortisol half life and decrease of metabolic clearance. Control mechanisms often allow normal cortisol values. These alterations in functional activity of adrenal glands, seen in nearly 10% of these subjects, sometimes command a specific attitude in diagnosis and therapy.

  1. [Studies of the morphology of the thyroid gland and thyroid hormone levels in the blood of rats in experiments on "Kosmos-1667" and "Kosmos-1887"].

    PubMed

    Plakhuta-Plakutina, G I; Kabitskiĭ, E N; Dmitrieva, N P; Amirkhanian, E A

    1990-01-01

    Using histological, electron microscopic, and biochemical (measurement of total thyroxine, free thyroxine and triiodothyronine in plasma) method, thyroid glands of 17 male rats of the Wistar SPF strain flown for 7 days on Cosmos-1667 and for 13 days on Cosmos-1887 were investigated. It was found that a longer exposure to space flight effects (for 13 days) led to a thyroid activity decline (significant reduction of thyrocyte size and nuclear area, accumulation of colloid drops in the cytoplasm, decrease of iodinated thyroglobulins in the colloid, etc.) together with a substantial decrease of T4 and T3 in plasma. The above structural and functional changes in the thyroid gland and hormonal status are characteristic of a moderate stress-reaction and reflect variations of the early and intermediate stages of adaptation to microgravity during 7- and 13-day space flights.

  2. Effects of hyperthyroidism and hypothyroidism on rat growth hormone release induced by thyrotropin-releasing hormone.

    PubMed

    Chihara, K; Kato, Y; Ohgo, S; Iwasaki, Y; Maeda, K

    1976-06-01

    The effect of synthetic thyrotropin-releasing hormone (TRH) on the release of growth hormone (GH) and thyroid-stimulating hormone (TSH) was investigated in euthyroid, hypothyroid, and hyperthyroid rats under urethane anesthesia. In euthyroid control rats, intravenous injection of TRH (200 ng/100 g BW) resulted in a significant increase in both plasma GH and TSH. In rats made hypothyroid by treatment with propylthiouracil or by thyroidectomy, basal GH and TSH levels were significantly elevated with exaggerated responses to TRH. In contrast, plasma GH and TSH responses to TRH were both significantly inhibited in rats made hyperthyroid by L-thyroxine (T4) treatment. These results suggest that altered thyroid status influences GH release as well as TSH secretion induced by TRH in rats.

  3. [Hypothyroidism-when and how to treat?

    PubMed

    Koehler, V F; Reincke, M; Spitzweg, C

    2018-06-05

    The diagnosis of hypothyroidism is primarily based on clinical signs and symptoms as well as measurement of thyroid-stimulating hormone (TSH) concentration. Subclinical hypothyroidism is characterized by elevated TSH with normal serum free thyroxine (fT 4 ) and triiodothyronine (fT 3 ) levels, while in manifest hypothyroidism serum fT 4 and fT 3 levels are reduced. Common causes of primary hypothyroidism are autoimmune thyroiditis as well as therapeutic interventions, such as thyroid surgery or radioiodine therapy. Signs and symptoms of hypothyroidism include fatigue, bradycardia, constipation and cold intolerance. In subclinical hypothyroidism, symptoms may be absent. Initiation of levothyroxine (T 4 ) therapy not only depends on the level of TSH elevation, but also on other factors, such as patient age, presence of pregnancy or comorbidities. Treatment of patients with subclinical hypothyroidism is still a controversial topic. In general, thyroid hormone replacement therapy in non-pregnant adults ≤ 70 years is clearly indicated if the TSH concentration is >10 mU/l. Standard of care for treatment of hypothyroidism is T 4 monotherapy. The biochemical treatment goal for T 4 replacement in primary hypothyroidism is a TSH level within the reference range (0.4-4.0 mU/l). In contrast, in secondary hypothyroidism, serum fT 4 levels are the basis for adjusting thyroid hormone dosage. Inadequate replacement of T 4 resulting in subclinical or even manifest hyperthyroidism should urgently be avoided. T 4 /liothyronine (T3) combination therapy is still a matter of debate and not recommended as standard therapy, but may be considered in patients with persistence of symptoms, despite optimal T 4 treatment, based on expert opinion.

  4. The relationship between LH and thyroid volume in patients with PCOS

    PubMed Central

    2012-01-01

    Background Thyroid volume (TV) has been found to be associated with age, anthropometry, smoking, iodine status and hyperinsulinemia. Hyperinsulinemia is frequent finding in patients with PCOS and has associations with TV. However, the TV has been evaluated only a few studies in patients with PCOS. Therefore, the aim of this study was to evaluate the biochemical and hormonal variables in patients with PCOS comparing with the controls and their relationships between TV. Methods This was a case–control study conducted in a training and research hospital. The study population consisted of 47 reproductive-age PCOS women and 30 control subjects. We evaluated anthropometric, biochemical and hormonal parameters as well as thyroid volume in PCOS patients and controls. Insulin resistance was calculated using the homeostasis model assessment insulin resistance index (HOMA-IR). Results Mean age, BMI, thyroid stimulant hormone (TSH) levels and TV were similar between groups (p<0.05). The HOMA-IR and free T4 levels were higher in patients with PCOS. However, hyperinsulinemia and insulin resistance were not found to be associated with TV. Thyroid volume was positively correlated with the LH and anti TPO levels. The participants were divided into 2 groups according to HOMA-IR levels. The mean TV measurement was higher in group with higher HOMA-IR levels, but the difference was not significant in young age PCOS patients. Conclusion In early age PCOS patients it was observed that insulin resistance had no effect on TV. In this case, anti TPO and LH have dominant effect on TV. Chronic stimulation with LH and insulin may lead to increase in TV in later stages of the PCOS diseases. PMID:23231775

  5. Hyperthyroidism

    PubMed Central

    2016-01-01

    Hyperthyroidism is characterised by increased thyroid hormone synthesis and secretion from the thyroid gland, whereas thyrotoxicosis refers to the clinical syndrome of excess circulating thyroid hormones, irrespective of the source. The most common cause of hyperthyroidism is Graves’ disease, followed by toxic nodular goitre. Other important causes of thyrotoxicosis include thyroiditis, iodine-induced and drug-induced thyroid dysfunction, and factitious ingestion of excess thyroid hormones. Treatment options for Graves’ disease include antithyroid drugs, radioactive iodine therapy, and surgery, whereas antithyroid drugs are not generally used long term in toxic nodular goitre, because of the high relapse rate of thyrotoxicosis after discontinuation. β blockers are used in symptomatic thyrotoxicosis, and might be the only treatment needed for thyrotoxicosis not caused by excessive production and release of the thyroid hormones. Thyroid storm and hyperthyroidism in pregnancy and during the post-partum period are special circumstances that need careful assessment and treatment. PMID:27038492

  6. Hyperthyroidism.

    PubMed

    De Leo, Simone; Lee, Sun Y; Braverman, Lewis E

    2016-08-27

    Hyperthyroidism is characterised by increased thyroid hormone synthesis and secretion from the thyroid gland, whereas thyrotoxicosis refers to the clinical syndrome of excess circulating thyroid hormones, irrespective of the source. The most common cause of hyperthyroidism is Graves' disease, followed by toxic nodular goitre. Other important causes of thyrotoxicosis include thyroiditis, iodine-induced and drug-induced thyroid dysfunction, and factitious ingestion of excess thyroid hormones. Treatment options for Graves' disease include antithyroid drugs, radioactive iodine therapy, and surgery, whereas antithyroid drugs are not generally used long term in toxic nodular goitre, because of the high relapse rate of thyrotoxicosis after discontinuation. β blockers are used in symptomatic thyrotoxicosis, and might be the only treatment needed for thyrotoxicosis not caused by excessive production and release of the thyroid hormones. Thyroid storm and hyperthyroidism in pregnancy and during the post-partum period are special circumstances that need careful assessment and treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Levels of unified metabolites and thyroid hormones in blood and oral fluid of children with minimal brain dysfunction].

    PubMed

    Gil'miiarova, F N; Pervova, Iu V; Radomskaia, V M; Gergel', N I; Tarasova, S V

    2004-01-01

    Minimal brain dysfunctions in children with various perinatal complications are accompanied by metabolic imbalance manifested by decreased total protein content, the tendency to reduced triglycerides, increased cholesterol concentrations in the oral fluid, the trend to hypoproteinaemia, hypoglycaemia, hypotriglyceridaemia. The most significant changes in the redox systems alpha-ketoglutarate-glutamate, oxaloacetate-malate, pyruvate-lactate, dioxyacetone phosphate-alpha-glycerophosphate in biological fluids were revealed in cases of antenatal alcoholisation. A certain correlation was found between anemia in pregnant women and hypothyroidal background in children. In addition, a high level of free and total thyroxine, that of total triiodthyronine were found in the oral fluid. Hypophysis--thyroid dysregulation in children with minimal brain dysfunction associated with gestosis in their mothers during pregnancy, was manifested by decreased content of total and free T4 and T3 in blood serum and increased level of the thyroid-stimulating hormone.

  8. Maternal thyroid function and child educational attainment: prospective cohort study

    PubMed Central

    Haig, Caroline; McConnachie, Alex; Sattar, Naveed; Ring, Susan M; Smith, George D; Lawlor, Debbie A; Lindsay, Robert S

    2018-01-01

    Abstract Objective To determine if first trimester maternal thyroid dysfunction is a critical determinant of child scholastic performance and overall educational attainment. Design Prospective cohort study. Setting Avon Longitudinal Study of Parents and Children cohort in the UK. Participants 4615 mother-child pairs with an available first trimester sample (median 10 weeks gestation, interquartile range 8-12). Exposures Free thyroxine, thyroid stimulating hormone, and thyroid peroxidase antibodies assessed as continuous measures and the seven clinical categories of maternal thyroid function. Main outcome measures Five age-specific national curriculum assessments in 3580 children at entry stage assessment at 54 months, increasing up to 4461 children at their final school assessment at age 15. Results No strong evidence of clinically meaningful associations of first trimester free thyroxine and thyroid stimulating hormone levels with entry stage assessment score or Standard Assessment Test scores at any of the key stages was found. Associations of maternal free thyroxine or thyroid stimulating hormone with the total number of General Certificates of Secondary Education (GCSEs) passed (range 0-16) were all close to the null: free thyroxine, rate ratio per pmol/L 1.00 (95% confidence interval 1.00 to 1.01); and thyroid stimulating hormone, rate ratio 0.98 (0.94 to 1.02). No important relationship was observed when more detailed capped scores of GCSEs allowing for both the number and grade of pass or when language, mathematics, and science performance were examined individually or when all educational assessments undertaken by an individual from school entry to leaving were considered. 200 (4.3%) mothers were newly identified as having hypothyroidism or subclinical hypothyroidism and 97 (2.1%) subclinical hyperthyroidism or hyperthyroidism. Children of mothers with thyroid dysfunction attained an equivalent number of GCSEs and equivalent grades as children of mothers with euthyroidism. Conclusions Maternal thyroid dysfunction in early pregnancy does not have a clinically important association with impaired child performance at school or educational achievement. PMID:29463525

  9. Pregnancy outcomes are not altered by variation in thyroid function within the normal range in women free of thyroid disease.

    PubMed

    Veltri, Flora; Kleynen, Pierre; Grabczan, Lidia; Salajan, Alexandra; Rozenberg, Serge; Pepersack, Thierry; Poppe, Kris

    2018-02-01

    In the recently revised guidelines on the management of thyroid dysfunction during pregnancy, treatment with thyroid hormone (LT4) is not recommended in women without thyroid autoimmunity (TAI) and TSH levels in the range 2.5-4.0 mIU/L, and in a recent study in that particular group of pregnant women, more complications were observed when a treatment with LT4 was given. The objective of the study was therefore to investigate whether variation in thyroid function within the normal (non-pregnant) range in women free of thyroid disease was associated with altered pregnancy outcomes? Cross-sectional data analysis of 1321 pregnant women nested within an ongoing prospective collection of pregnant women's data in a single centre in Brussels, Belgium. Thyroid peroxidase antibodies (TPO-abs), thyroid-stimulating hormone (TSH), free T4 (FT4) and ferritin levels were measured and baseline characteristics were recorded. Women taking LT4, with TAI and thyroid function outside the normal non-pregnant range were excluded. Pregnancy outcomes and baseline characteristics were correlated with all TSH and FT4 levels within the normal range and compared between two groups (TSH cut-off < and ≥2.5 mIU/L). Tobacco use was associated with higher serum TSH levels (OR: 1.38; CI 95%: 1.08-1.74); P  = 0.009. FT4 levels were inversely correlated with age and BMI (rho = -0.096 and -0.089; P  < 0.001 and 0.001 respectively) and positively correlated with ferritin levels (rho = 0.097; P  < 0.001). Postpartum haemorrhage (>500 mL) was inversely associated with serum FT4 levels (OR: 0.35; CI 95%: 0.13-0.96); P  = 0.040. Also 10% of women free of thyroid disease had serum TSH levels ≥2.5 mIU/L. Variation in thyroid function during the first trimester within the normal (non-pregnant) range in women free of thyroid disease was not associated with altered pregnancy outcomes. These results add evidence to the recommendation against LT4 treatment in pregnant women with high normal TSH levels and without TPO antibodies. © 2018 European Society of Endocrinology.

  10. Comparison and relationship of thyroid hormones, IL-6, IL-10 and albumin as mortality predictors in case-mix critically ill patients.

    PubMed

    Quispe E, Álvaro; Li, Xiang-Min; Yi, Hong

    2016-05-01

    To compare the ability of thyroid hormones, IL-6, IL-10, and albumin to predict mortality, and to assess their relationship in case-mix acute critically ill patients. APACHE II scores and serum thyroid hormones (FT3, FT4, and TSH), IL-6, IL-10, and albumin were obtained at EICU admission for 79 cases of mix acute critically ill patients without previous history of thyroid disease. Patients were followed for 28 days with patient's death as the primary outcome. All mean values were compared, correlations assessed with Pearson' test, and mortality prediction assessed by multivariate logistic regression and ROC. Non survivors were older, with higher APACHE II score (p=0.000), IL-6 (p<0.05), IL-10 (p=0.000) levels, and lower albumin (p=0.000) levels compared to survivors at 28 days. IL-6 and IL-10 had significant negative correlation with albumin (p=0.001) and FT3 (p ⩽ 0.05) respectively, while low albumin had a direct correlation with FT3 (p<0.05). In the mortality prediction assessment, IL-10, albumin and APACHE II were independent morality predictors and showed to have a good (0.70-0.79) AUC-ROC (p<0.05). Despite that the entire cohort showed low FT3 serum levels (p=0.000), there was not statistical difference between survivors and non-survivors; neither showed any significance as mortality predictor. IL-6 and IL-10 are correlated with Low FT3 and hypoalbuminemia. Thyroid hormones assessed at EICU admission did not have any predictive value in our study. And finally, high levels of IL-6 and IL-10 in conjunction with albumin could improve our ability to evaluate disease's severity and predict mortality in the critically ill patients. When use in combination with APACHE II scores, our model showed improved mortality prediction. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. HASHIMOTO THYROIDITIS NOT ASSOCIATED WITH VITAMIN D DEFICIENCY.

    PubMed

    Yasmeh, Joseph; Farpour, Farzin; Rizzo, Vincent; Kheradnam, Sharon; Sachmechi, Issac

    2016-07-01

    Vitamin D deficiency is associated with several autoimmune diseases. This study assessed whether vitamin D deficiency is associated with Hashimoto thyroiditis (HT). Two groups of patients were selected for which serum 25-hydroxyvitamin D (25(OH)D) levels had been measured: (1) a study group of patients diagnosed with HT as indicated by thyroid antibodies, and (2) a healthy control group. Each group was separated by sex and then controlled for age and body mass index (BMI). Groups' mean 25(OH)D levels were compared by analysis of variance (ANOVA), and percent frequencies of vitamin D sufficiency, insufficiency, and deficiency were compared with a Z-test. The correlations between 25(OH)D levels and thyroid antibodies and thyroid-stimulating hormone (TSH) levels were also tested. The mean 25(OH)D levels for the HT and control groups were significantly different in females (30.75 vs. 27.56 ng/mL, respectively) but not in males (14.24 vs. 13.26 ng/mL). HT females had a higher rate of vitamin D sufficiency (51.7% vs. 31.1%) and a lower rate of insufficiency (48.3% vs. 68.9%) relative to control females. No such differences were found in the male groups. None of the females were vitamin D deficient, but almost all males were. A significant (P = .016) positive correlation (rs = 0.436) between 25(OH)D and TPOAb was observed in males. HT is not associated with higher rates of vitamin D deficiency relative to a control group. BMI = body mass index HT = Hashimoto thyroiditis 25(OH)D = 25-hydroxyvitamin D TgAb = thyroglobulin antibody TSH = thyroid-stimulating hormone TPOAb = thyroid-peroxidase antibody VDR = Vitamin D receptor.

  12. Thyroid axis dysfunction in patients with Prader-Willi syndrome during the first 2 years of life.

    PubMed

    Vaiani, Elisa; Herzovich, Viviana; Chaler, Eduardo; Chertkoff, Lilien; Rivarola, Marco A; Torrado, Maria; Belgorosky, Alicia

    2010-10-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by the loss of expression of paternally transcribed genes in a highly imprinted region of chromosome 15q11-13. The clinical phenotype has been well characterized, mostly related to hypothalamic dysfunction. Even though central hypothyroidism has been documented in 20-30% of patients with PWS, thyroid function during the first 2 years of life has not been clearly defined. To evaluate hypothalamic-pituitary-thyroid function in infant PWS patients. Eighteen patients with PWS, aged 0.16-2 years, were included in a prospective study. PWS diagnosis was based on clinical features and molecular analysis. Serum total (T) T4, free (F) T4, T3 and thyroid-stimulating hormone (TSH) were evaluated in the patients with PWS included in the study. Serum hormone values were compared to those of a large reference population of the same age. In 13 of 18 patients with PWS (72.2%), serum TT4 and/or FT4 levels were below the 2.5th percentile of the reference population, while in only one PWS patient serum T3 was below this cut-off. The results of this study suggest that transient or definitive thyrotropin-releasing hormone (TRH)-TSH thyroid axis dysfunction may frequently be present in infant PWS patients. Paediatricians should be aware of this dysfunction in this critical period of thyroid hormone action on neurological development. © 2010 Blackwell Publishing Ltd.

  13. Prediction of infarct severity from triiodothyronine levels in patients with ST-elevation myocardial infarction.

    PubMed

    Kim, Dong Hun; Choi, Dong-Hyun; Kim, Hyun-Wook; Choi, Seo-Won; Kim, Bo-Bae; Chung, Joong-Wha; Koh, Young-Youp; Chang, Kyong-Sig; Hong, Soon-Pyo

    2014-07-01

    The aim of the present study was to evaluate the relationship between thyroid hormone levels and infarct severity in patients with ST-elevation myocardial infarction (STEMI). We retrospectively reviewed thyroid hormone levels, infarct severity, and the extent of transmurality in 40 STEMI patients evaluated via contrast-enhanced cardiac magnetic resonance imaging. The high triiodothyronine (T3) group (≥ 68.3 ng/dL) exhibited a significantly higher extent of transmural involvement (late transmural enhancement > 75% after administration of gadolinium contrast agent) than did the low T3 group (60% vs. 15%; p = 0.003). However, no significant difference was evident between the high- and low-thyroid-stimulating hormone/free thyroxine (FT4) groups. When the T3 cutoff level was set to 68.3 ng/dL using a receiver operating characteristic curve, the sensitivity was 80% and the specificity 68% in terms of differentiating between those with and without transmural involvement. Upon logistic regression analysis, high T3 level was an independent predictor of transmural involvement after adjustment for the presence of diabetes mellitus (DM) and the use of glycoprotein IIb/IIIa inhibitors (odds ratio, 40.62; 95% confidence interval, 3.29 to 502; p = 0.004). The T3 level predicted transmural involvement that was independent of glycoprotein IIb/IIIa inhibitor use and DM positivity.

  14. Thyroid hormone deiodination in birds.

    PubMed

    Darras, Veerle M; Verhoelst, Carla H J; Reyns, Geert E; Kühn, Eduard R; Van der Geyten, Serge

    2006-01-01

    Because the avian thyroid gland secretes almost exclusively thyroxine (T4), the availability of receptor-active 3,3',5-triiodothyronine (T3) has to be regulated in the extrathyroidal tissues, essentially by deiodination. Like mammals and most other vertebrates, birds possess three types of iodothyronine deiodinases (D1, D2, and D3) that closely resemble their mammalian counterparts, as shown by biochemical characterization studies in several avian species and by cDNA cloning of the three enzymes in chicken. The tissue distribution of these deiodinases has been studied in detail in chicken at the level of activity and mRNA expression. More recently specific antibodies were used to study cellular localization at the protein level. The abundance and distribution of the different deiodinases shows substantial variation during embryonic development and postnatal life. Deiodination in birds is subject to regulation by hormones from several endocrine axes, including thyroid hormones, growth hormone and glucocorticoids. In addition, deiodination is also influenced by external parameters, such as nutrition, temperature, light and also a number of environmental pollutants. The balance between the outer and inner ring deiodination resulting from the impact of all these factors ultimately controls T3 availability.

  15. Development of the thyroid gland.

    PubMed

    Nilsson, Mikael; Fagman, Henrik

    2017-06-15

    Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed. © 2017. Published by The Company of Biologists Ltd.

  16. Hyperkalemia develops in some thyroidectomized patients undergoing thyroid hormone withdrawal in preparation for radioactive iodine ablation for thyroid carcinoma.

    PubMed

    Horie, Ichiro; Ando, Takao; Imaizumi, Misa; Usa, Toshiro; Kawakami, Atsushi

    2015-05-01

    Hyponatremia is observed in hypothyroidism, but it is not known if hypo- or hyperkalemia is associated with hypothyroidism. To study these questions, we determined serum potassium (K(+)) levels in thyroidectomized patients undergoing levothyroxine withdrawal before radioactive iodine (RAI) therapy for thyroid carcinoma. We retrospectively studied the records of 108 patients who had undergone total thyroidectomy for thyroid carcinoma followed by levothyroxine withdrawal and then ablation with RAI at Nagasaki University Hospital from 2009-2013. Blood samples were analyzed for serum K(+) concentrations when patients were euthyroid just before levothyroxine withdrawal and hypothyroid 21 days after levothyroxine withdrawal. We determined the proportion of patients who developed hyperkalemia (K(+) ≥5 mEq/L) and hypokalemia (K(+) ≤3.5 mEq/L). Five (4.6%) patients developed hyperkalemia and 2 (1.9%) patients developed hypokalemia after levothyroxine withdrawal. The mean serum K(+) level after levothyroxine withdrawal was significantly higher than before levothyroxine withdrawal (4.23 ± 0.50 mEq/L vs. 4.09 ± 0.34 mEq/L; P<.001). After levothyroxine withdrawal, serum K(+) values were significantly correlated with age, serum sodium and creatinine levels, and the estimated glomerular filtration rate but not with serum free thyroxine or thyroid-stimulating hormone concentrations. The finding of an elevated serum K(+) of >0.5 mEq/L after levothyroxine withdrawal was more prevalent with age >60 years (odds ratio [OR], 4.66; P = .026) and with the use of angiotensin-II receptor blockers or angiotensin-converting enzyme inhibitors (OR, 3.53; P = .033) in a multivariate analysis. Hyperkalemia develops in a small percentage of hypothyroid patients after thyroid hormone withdrawal, especially in patients over 60 years of age who are using antihypertensive agents that inhibit the reninangiotensin-aldosterone system.

  17. Effects of hypergravity exposure on the developing central nervous system: possible involvement of thyroid hormone

    NASA Technical Reports Server (NTRS)

    Sajdel-Sulkowska, E. M.; Li, G. H.; Ronca, A. E.; Baer, L. A.; Sulkowski, G. M.; Koibuchi, N.; Wade, C. E.

    2001-01-01

    The present study examined the effects of hypergravity exposure on the developing brain and specifically explored the possibility that these effects are mediated by altered thyroid status. Thirty-four timed-pregnant Sprague-Dawley rats were exposed to continuous centrifugation at 1.5 G (HG) from gestational Day 11 until one of three key developmental points: postnatal Day (P) 6, P15, or P21 (10 pups/dam: 5 males/5 females). During the 32-day centrifugation, stationary controls (SC, n = 25 dams) were housed in the same room as HG animals. Neonatal body, forebrain, and cerebellum mass and neonatal and maternal thyroid status were assessed at each time point. The body mass of centrifuged neonates was comparatively lower at each time point. The mass of the forebrain and the mass of the cerebellum were maximally reduced in hypergravity-exposed neonates at P6 by 15.9% and 25.6%, respectively. Analysis of neonatal plasma suggested a transient hypothyroid status, as indicated by increased thyroid stimulating hormone (TSH) level (38.6%) at P6, while maternal plasma TSH levels were maximally elevated at P15 (38.9%). Neither neonatal nor maternal plasma TH levels were altered, suggesting a moderate hypothyroid condition. Thus, continuous exposure of the developing rats to hypergravity during the embryonic and neonatal periods has a highly significant effect on the developing forebrain and cerebellum and neonatal thyroid status (P < 0.05, Bonferroni corrected). These data are consistent with the hypothesized role of the thyroid hormone in mediating the effect of hypergravity in the developing central nervous system and begin to define the role of TH in the overall response of the developing organism to altered gravity.

  18. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats.

    PubMed

    Rodríguez-Gómez, Isabel; Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2016-03-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders. © 2015 by the Society for Experimental Biology and Medicine.

  19. l-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats

    PubMed Central

    Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2015-01-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders. PMID:26674221

  20. Effects of repeated potassium iodide administration on genes involved in synthesis and secretion of thyroid hormone in adult male rat.

    PubMed

    Lebsir, Dalila; Manens, Line; Grison, Stephane; Lestaevel, Philippe; Ebrahimian, Teni; Suhard, David; Phan, Guillaume; Dublineau, Isabelle; Tack, Karine; Benderitter, Marc; Pech, Annick; Jourdain, Jean-Rene; Souidi, Maâmar

    2018-02-26

    A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI. Adult Wistar rats received an optimal dose of KI 1 mg/kg over a period of 1, 4 or 8 days. hormonal status (TSH, FT4) of treated rats was unaffected. Contrariwise, a sequential Wolff-Chaikoff effect was observed, resulting in a prompt decrease of NIS and MCT8 mRNA expression (-58% and -26% respectively), followed by a delayed decrease of TPO mRNA expression (-33%) in conjunction with a stimulation of PDS mRNA expression (+62%). we show for the first time that repeated administration of KI at 1 mg/kg/24h doesn't cause modification of thyroid hormones level, but leads to a reversible modification of the expression of genes involved in the synthesis and secretion of thyroid hormones. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Thyroid hormone concentrations in captive and free-ranging West Indian manatees (Trichechus manatus).

    PubMed

    Ortiz, R M; MacKenzie, D S; Worthy, G A

    2000-12-01

    Because thyroid hormones play a critical role in the regulation of metabolism, the low metabolic rates reported for manatees suggest that thyroid hormone concentrations in these animals may also be reduced. However, thyroid hormone concentrations have yet to be examined in manatees. The effects of captivity, diet and water salinity on plasma total triiodothyronine (tT(3)), total thyroxine (tT(4)) and free thyroxine (fT(4)) concentrations were assessed in adult West Indian manatees (Trichechus manatus). Free-ranging manatees exhibited significantly greater tT(4) and fT(4) concentrations than captive adults, regardless of diet, indicating that some aspect of a captive existence results in reduced T(4) concentrations. To determine whether this reduction might be related to feeding, captive adults fed on a mixed vegetable diet were switched to a strictly sea grass diet, resulting in decreased food consumption and a decrease in body mass. However, tT(4) and fT(4) concentrations were significantly elevated over initial values for 19 days. This may indicate that during periods of reduced food consumption manatees activate thyroid-hormone-promoted lipolysis to meet water and energetic requirements. Alterations in water salinity for captive animals did not induce significant changes in thyroid hormone concentrations. In spite of lower metabolic rates, thyroid hormone concentrations in captive manatees were comparable with those for other terrestrial and marine mammals, suggesting that the low metabolic rate in manatees is not attributable to reduced circulating thyroid hormone concentrations.

  2. A Hormonally Active Malignant Struma Ovarii

    PubMed Central

    Lara, Carolina; Salame, Latife; Padilla-Longoria, Rafael

    2016-01-01

    Struma ovarii is a rare monodermal variant of ovarian teratoma that contains at least 50% thyroid tissue. Less than 8% of struma ovarii cases present with clinical and biochemical evidence of thyrotoxicosis due to ectopic production of thyroid hormone and only 5% undergo malignant transformation into a papillary thyroid carcinoma. Only isolated cases of hormonally active papillary thyroid carcinoma developing within a struma ovarii have been reported in the literature. We report the case of a 36-year-old woman who presented with clinical signs and symptoms of hyperthyroidism as well as a left adnexal mass, which proved to be a thyroid hormone-producing, malignant struma ovarii. PMID:27882257

  3. Thyroid and the Heart

    PubMed Central

    Grais, Ira Martin; Sowers, James R.

    2015-01-01

    Thyroid hormones modulate every component of the cardiovascular system necessary for normal cardiovascular development and function. When cardiovascular disease is present, thyroid function tests are characteristically indicated to determine if overt thyroid disorders or even subclinical dysfunction exists. As hypothyroidism, hypertension and cardiovascular disease all increase with advancing age monitoring of TSH, the most sensitive test for hypothyroidism, is important in this expanding segment of our population. A better understanding of the impact of thyroid hormonal status on cardiovascular physiology will enable health care providers to make decisions regarding thyroid hormone evaluation and therapy in concert with evaluating and treating hypertension and cardiovascular disease. The goal of this review is to access contemporary understanding of the effects of thyroid hormones on normal cardiovascular function and the potential role of overt and subclinical hypothyroidism and hyperthyroidism in a variety of cardiovascular diseases. PMID:24662620

  4. Interaction of interferon alpha therapy with thyroid function tests in the management of hepatitis C: a case report.

    PubMed

    Gill, Gurmit; Bajwa, Hammad; Strouhal, Peter; Buch, Harit N

    2016-09-15

    Interferon alpha is a widely used therapeutic agent in the treatment of hepatitis C virus infection. Clinical thyroid disease is seen in nearly 15 % of patients receiving interferon alpha for hepatitis C virus infection. The mechanism of thyroid dysfunction with interferon alpha is either autoimmune or inflammatory. We report a case of young woman who developed biphasic thyroid dysfunction posing a diagnostic challenge, while receiving interferon alpha treatment for hepatitis C virus infection. A 29-year-old, Caucasian woman with type 1 diabetes and hepatitis C virus infection was referred with hyperthyroidism, while she was at 17 weeks of a planned 24-week course of interferon alpha therapy. A laboratory investigation revealed a thyroid stimulation hormone level of 0.005 mU/L (0.350-4.94), free thyroxine of 45.6 pmol/L (9.0-19.0) and free tri-iodothyronine of 12.6 pmol/L (2.6-5.7). She had a mild neutropenia and alanine aminotransferase at double the reference value. Her thyroid peroxidase antibody level was 497 ku/L (<5.6) and thyroid inhibitory factor 7 IU/L (>1.8 iu/l is positive). Thyroid scintigraphy with technetium99 scan confirmed a normal-sized thyroid gland with diffuse but normal overall uptake. A diagnosis of interferon alpha-triggered autoimmune hyperthyroidism as opposed to an inflammatory thyroiditis was made. She was offered radioactive iodine therapy, as thionamides were considered inappropriate in view of her liver disease and mild neutropenia. Due to our patient's personal circumstances, radioactive iodine therapy was delayed by 8 weeks and her thyrotoxic symptoms were controlled with beta-blockers alone. A repeat thyroid function test, 4 weeks post treatment with interferon alpha, indicated spontaneous conversion to hypothyroidism with a thyroid stimulation hormone level of 100 mU/L, free thyroxine of 5.2 pmol/L and free tri-iodothyronine of 1.7 pmol/L. She subsequently received levothyroxine for 4 months only and had remained euthyroid for the last 3 months without any treatment. Initial investigations favored the autoimmune nature of hyperthyroidism but follow-up of the case, interestingly, was more consistent with inflammatory thyroiditis. We propose that this can be explained either on the basis of autoimmune subacute thyroiditis or a change in the nature of thyroid stimulation hormone receptor antibody production from stimulating-type to blocking-type antibodies, with disappearance of the latter on discontinuation of interferon alpha.

  5. The human body burden of polybrominated diphenyl ethers and their relationships with thyroid hormones in the general population in Northern China.

    PubMed

    Huang, Feifei; Wen, Sheng; Li, Jingguang; Zhong, Yuxin; Zhao, Yunfeng; Wu, Yongning

    2014-01-01

    This study was conducted to determine the human body burden of polybrominated diphenyl ethers (PBDEs) and then clarify the relationships between that and the disruption of thyroid hormones in the general population in Northern China. Between November 2010 and May 2011, 124 serum samples were obtained from volunteers from the provinces of Shanxi and Liaoning. Serum samples were prepared by solid-phase extraction and analyzed for BDE-17, 28, 47, 66, 99, 100, 153, 154, 183 and 209 by gas chromatography-negative chemical ionization mass spectrometry. The median concentration of the total PBDEs was 7.2 ng/g lipid weights (lw); concentrations ranged from 2.1 to 160.3 ng/glw. The PBDE profiles in this study differed from those of other general populations. BDE-209 was the most abundant congener (median, 5.0 ng/glw; range, non-detected - 157.1 ng/glw), accounting for more than 75% of the total PBDEs, followed by BDE-153. The total PBDE concentrations in men were significantly higher as compared to women. The donors' age was correlated with a few PBDE congeners, but was not correlated with the total PBDE concentrations. The overall level of PBDEs in this study was lower than that observed in general populations in Southern China, Europe, and North America. There were apparent correlations between concentrations of several PBDE congeners and thyroid hormones. Triiodothyronine (T₃) was correlated with BDE-99 and 209 and inversely correlated with BDE-17, 28, 47, 153, 183, and the summed tri- to hepta-PBDE congeners (∑₃₋₇PBDEs). Thyroid-stimulating hormone (TSH) was correlated with BDE-17, 28, 47, and 183 and inversely correlated with BDE-99. No correlation between free tetraidothyronine (FT₄) and PBDEs was observed. Logistic regression analysis results indicated that those with higher levels of BDE-17 or BDE-153 had significantly lower odds of having T₃ levels above the normal range compared to those with lower levels of BDE-17 or BDE-153. Association between FT₄ and BDE-153 disappeared after controlling for sex and age. However, there was no significant association between TSH and PBDEs. The results of the present study showed that even at a relatively low level, PBDEs might interfere with the thyroid hormone levels in the general population. © 2013 Elsevier B.V. All rights reserved.

  6. A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization.

    PubMed

    Li, Jian; Ren, Shujuan; Han, Shaolun; Li, Na

    2014-04-01

    The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different β-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced β-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 μg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Progesterone and norgestrel alter transcriptional expression of genes along the hypothalamic-pituitary-thyroid axis in zebrafish embryos-larvae.

    PubMed

    Liang, Yan-Qiu; Huang, Guo-Yong; Ying, Guang-Guo; Liu, Shuang-Shuang; Jiang, Yu-Xia; Liu, Shan

    2015-01-01

    The aim of this study was to investigate the effects of progestins on the hypothalamic-pituitary-thyroid (HPT) axis in the early stage of zebrafish. Zebrafish embryos were exposed to progesterone (P4) or norgestrel (NGT) at 5, 50 and 100 ng L(-1) for 144 h post fertilization (hpf), and the transcriptional levels of target genes along the hypothalamic-pituitary-thyroid axis were determined daily. The results showed that P4 had only minor effects on the mRNA expression of thyroglobulin (Tg), iodothyronine deiodinase type Ι (Dio1) and thyroid hormone receptor β (Thrb) genes. Similarly, the effects of NGT on transcripts of thyrotropin-releasing hormone (Trh), Dio1, iodothyronine deiodinase type II (Dio2) and thyroid hormone receptor α (Thra) genes were generally low. In addition, NGT resulted in some alterations of Tg and Thrb transcripts at different time points. However, a strong induction of Nis mRNA by P4 and NGT was observed in zebrafish embryos-larvae. The overall results showed that besides Nis no effects on the hypothalamic-pituitary-thyroid (HPT) axis are observed following exposure to P4 and NGT, which imply that both P4 and NGT have potential effects on the thyroid endocrine system by inducing transcript of Nis gene during the early stage of zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. RADIOACTIVE IODINE IN THE LYMPH LEAVING THE THYROID GLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, R.M.; Gale, M.M.; Pratt, O.E.

    1963-04-01

    Very high levels of I/sup 131/ were found in lymph of vessels draining the thyroid gland of animals injected with the isotope. The lymph was collected from the draining lymphatics 2-6 days after subcutaneous injection of 50-100 mu C in rabbits and cats and 200 mu C in sheep. Thyroid lymph contained a concentration of radioactivity considerably higher than that in either thyroid venous plasma or systemic blood plasma. This was found in all three species both before and after giving thyroid-stimulating hormone (TSH). Almost all the radioactivity in the lymph was due to organic I/sup 131/. When tie thyroidmore » gland was excised postmortem, a count showed that the proportion of I/sup 131/ which had been injected and which rernained in the gland at the end of the experiment varied considerably. Estimates of the radiation dose varied between 30 and 200 rad. There was no obvious relation between this dose the lymph/plasma I/sup 131/ ratio, which indicates that the radiation dose was not so high as to produce damage to the gland. The radiation dose to the thyroid in these experiments was not greater than is customarily given in studies of hormone release from the thyroid and the dosage used gives a lower level of radiation than that thought to cause radiation damage to the gland. Since, therefore, damage to the thyroid can be discounted as a cause for the release of iodinated protein, it seems likely that a significart proportion of organic iodine leaves the gland under normal conditions via the lymphatic pathway both before and after the administration of TSH and that this pathway should be taken into account in all studies of thyroid secretion. Gentle massage of the gland, which increases the flow of lymph, did not lead to an increase in the output of radioactivity. Movement of lymph in the thyroid vessels is relatively rapid and since the concentration of I/sup 131/ in thyroid lymph is high, the amount of thyroid hormones leaving the gland by this pathway must be considerable. (BBB)« less

  9. The use of konjac glucomannan to lower serum thyroid hormones in hyperthyroidism.

    PubMed

    Azezli, Adil Dogan; Bayraktaroglu, Taner; Orhan, Yusuf

    2007-12-01

    Patients with hyperthyroidism occasionally need rapid restoration to the euthyroid state. In view of the increased enterohepatic circulation of thyroxine (T4) and triiodothyronine (T3) in thyrotoxicosis, and metabolic effects of konjac glucomannan in gastrointestinal system, we aimed to determine the activity of glucomannan in treatment of hyperthyroidism. A prospective, randomized, placebo-controlled, one-blind study design was used with newly diagnosed 48 hyperthyroid patients (30 patients with Graves' disease and 12 with multinodulary goitre). They were assigned to one of the following treatment groups: I) methimazole 2 x 10 mg, propranolol 2 x 20 mg, and glucomannan (Propol) 2 x 1.3 gr daily for two months; II) methimazole 2 x 10 mg, propranolol 2 x 20 mg, and placebo powder daily for two months. No differences were detected from the point of view of the baseline thyroid hormone levels between groups (p > 0.05). Further analyses revealed that the patients receiving glucomannan at the end of the second, fourth and sixth weeks of the study had significantly lower serum T3, T4, FT3 and FT4 levels than the patients who received placebo (p < 0.05). TSH was not different between the two groups at any specific time (p > 0.05). At week 8, thyroid hormone levels were not shown any differences. The glucomannan-treated group had a more rapid decline in all four serum thyroid hormone levels than the placebo-treated group. We believe our preliminary results indicate that glucomannan may be a safe and easily tolerated adjunctive therapeutic agent in the treatment of thyrotoxicosis. This combination therapy seems most effect during first weeks of treatment of a hyperthyroid patient.

  10. Thyroid hormone deiodinase type 2 mRNA levels in sea lamprey (Petromyzon marinus) are regulated during metamorphosis and in response to a thyroid challenge.

    PubMed

    Stilborn, S Salina M; Manzon, Lori A; Schauenberg, Jennifer D; Manzon, Richard G

    2013-03-01

    Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Ethylene thiourea: thyroid function in two groups of exposed workers.

    PubMed Central

    Smith, D M

    1984-01-01

    Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH). PMID:6743584

  12. Ethylene thiourea: thyroid function in two groups of exposed workers.

    PubMed

    Smith, D M

    1984-08-01

    Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH).

  13. Pituitary Tumors

    MedlinePlus

    ... or milk production), sex hormones (control the menstrual cycle and other sexual functions), thyroid gland hormones (control the thyroid gland), adrenal gland hormones, and vasopressin (a hormone involved in water and electrolyte balance). Symptoms of pituitary adenoma and ...

  14. Thyroid function and insulin sensitivity before and after bilio-pancreatic diversion.

    PubMed

    Gniuli, Donatella; Leccesi, Laura; Guidone, Caterina; Iaconelli, Amerigo; Chiellini, Chiara; Manto, Andrea; Castagneto, Marco; Ghirlanda, Giovanni; Mingrone, Geltrude

    2010-01-01

    Bilio-pancreatic diversion (BPD) induces permanent weight loss in previously severe obese patients through a malabsorptive mechanism. The aim of the study was to evaluate the modifications of circulating thyroid hormones after BPD, a surgical procedure which interferes with the entero-hepatic circulation of biliary metabolites. Forty-five patients were studied before and 2 years after BPD. Thyroid-stimulating hormone (TSH), free triiodothyronine (fT3), free thyroxine (fT4), anti-thyroid antibodies, iodine urinary excretion, lipid profile, insulin and glucose plasma levels were assessed. The insulin-resistance HOMA IR index was calculated, and colour Doppler ultrasonography of the neck was performed. The subjects (23%) had subclinical hypothyroidism prior to BPD (TSH levels above the normal range with normal fT3 and fT4 levels). After 2 years 40.42% of the population showed subclinical hypothyroidism, while 6.3% became frankly hypothyroid, all of them with no evidence of auto-immune thyroiditis. Most of the patients, who became sub-clinically hypothyroid only following BPD, had already thyroid alterations at the sonogram (multi-nodular euthyroid goiter and thyroidal cysts) prior to surgery. BPD increases the prevalence of subclinical or even frank hypothyroidism, without causing a defect in thyroid function itself, through several integrated mechanisms. (1) It induces iodine malabsorption, which is partially compensated by iodine excretion contraction. (2) The entero-hepatic open circulation determines fT3 loss, which induces subclinical or frank hypothyroidism in patients with pre-existing thyroid alterations, interfering also with the weight loss progress. Iodine supplementation should be recommended in those patients reporting thyroid alterations at the sonogram prior to BPD, LT4 therapy should be strictly monitored in patients suffering of subclinical hypopthiroidism and T3 therapy should eventually be considered for patients diagnosed with frank hypothyroidism prior to BPD.

  15. THYROID HORMONE DISRUPTION: FROM KINETICS TO DYNAMICS.

    EPA Science Inventory

    A wide range of chemicals with diverse structures act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are chemicals that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormones (THs), or change circulating or t...

  16. Early Temporal Effects of Three Thyroid Hormone Synthesis Inhibitors in Xenopus laevis

    EPA Science Inventory

    Thyroid axis disruption is an important consideration when evaluating the risks associated with chemicals. Bioassay methods that include thyroid-related endpoints have been developed in a variety of species, including amphibians, whose metamorphic development is thyroid hormone ...

  17. [Advances in postoperative thyroid-stimulating hormone suppression therapy in females with thyroid cancer].

    PubMed

    Song, F; Yi, H L

    2018-05-07

    Differentiated thyroid cancer is the most common malignant carcinoma in female population.Postoperative long-term thyroid-stimulating hormone(TSH) suppression therapy can reduce the risk of recurrence for differentiated thyroid cancer and control the progress of the disease, but it also induces simultaneously subclinical hypothyroidism and imposes negative effect on female. In addition to cardiovascular disease, TSH suppression therapy can lead to the alteration of sex hormone metabolism, menstrual disorder, poor influence on pregnancy and osteoporosis. This article reviews the recent studies on postoperative TSH suppression therapy in women with thyroid cancer.

  18. Abrupt onset of muscle dysfunction after treatment for Grave's disease: a case report.

    PubMed

    Hernán Martínez, José; Sánchez, Alfredo; Torres, Oberto; Palermo, Coromoto; Santiago, Mónica; Figueroa, Carlos; Trinidad, Rafael; Mangual, Michelle; Gutierrez, Madeleine; González, Eva; Miranda, María de Lourdes

    2014-01-01

    Myopathy is a known complication of hypothyroidism, commonly characterized by an elevation in Creatine Kinase (CPK) due to increase capillary permeability proportional to the hypothyroid state. Thyroid hormone is important for the expression of fast myofibrillar proteins in the muscle. In hypothyroidism the expression of these proteins are deficient and there is an increase accumulation of slow myofibrillar proteins. A rapid or abrupt descend in thyroid hormones caused by radioiodine therapy after prolonged hyperthyroidism can lead to local hypothyroid state within the muscle tissue, resulting in CPK elevation and hypothyroid myopathy. Hormone replacement leads to resolution of symptoms and normalization of muscle enzymes serum levels.

  19. Effects of polychlorinated biphenyl (PCB) on regulation of thyroid-, growth-, and neurochemically related developmental processes in young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juarez de Ku, L.M.

    1992-01-01

    Neonatal exposure to the toxic chemical polychlorinated biphenyl (PCB) induces hypothyroidism and retarded growth. Neonatal rats made hypothyroid by chemical or surgical means experience retarded growth and subnormal activity of choline acetyltransferase (ChAT) This study compared thyroid-, growth-, and neurochemically-related processes altered by hypothyroidism induced by other means, with PCB-induced hypothyroidism: (1) titers of thyroid stimulating hormone (TSH); (2) titers of hormones that regulate growth [growth hormone (GH), insulin-growth like factor-I (IGF-1), growth hormone releasing hormone (GHRH) and somatostatin (SS)]; or (3) brain ChAT activity. Whether PCB-induced growth retardation and other alterations are secondary to accompanying hypothyroidism rather than ormore » in addition to a direct effect of PCB was also examined. Pregnant rats were fed chow containing 0 (controls), 62.5, 125, or 250 ppm PCB (entering offspring through placenta and milk) throughout pregnancy and lactation. Neonates exposed to PCB displayed many alterations similar to those made hypothyroid by other means: depression of overall and skeletal growth, circulating by other means: depression of overall and skeletal growth, circulating T[sub 4] levels and ChAT activity, and no change in hypothalamic GHRH and SS concentrations. Differences included a paradoxical increase in circulating GH levels, and no significant alteration of circulation IGF-1 and TSH levels and pituitary GH and TSH levels (although trends were in the expected direction). Thus, PCB-induced hypothyroidism may partially cause altered skeletal growth, circulating GH and TSH concentrations, and ChAT activity. Both T[sub 4] and T[sub 3] injections returned circulating TSH and GH levels and pituitary TSH content toward control levels; T[sub 3] restored skeletal, but not overall growth; and T[sub 4] elevated ChAT activity.« less

  20. THE THYROID HORMONE TRANSPORTER, MCT8, SELECTIVELY RESPONDS TO THYROID HORMONE INSUFFICIENCY IN THE DEVELOPMENT RAT BRAIN.

    EPA Science Inventory

    Thyroid hormone (TH) is essential for normal brain development. Therefore, it is not surprising that a variety of adaptive mechanisms are activated in response to TH insufficiency. However, not all brain regions respond in the same fashion to TH insufficiency. This observation...

  1. Analysis of thyroid hormones in biological samples using stable isotope dilution liquid chromatography-tandem mass spectrometry

    EPA Science Inventory

    This poster presentation will describe analytical chemistry methods for measuring thyroid hormones and related precursors and metabolites in very small tissue or plasma samples. These methods are amenable to measure thyroid hormones in amphibian tadpoles or small mammals used as ...

  2. Gene Expression as a Biomarker of Effect of Thyroid Hormone Action in Developing Brain: Relation to Serum Hormones.

    EPA Science Inventory

    Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have proved more diffic...

  3. Thyroid Hormone in the Clinic and Breast Cancer.

    PubMed

    Hercbergs, Aleck; Mousa, Shaker A; Leinung, Matthew; Lin, Hung-Yun; Davis, Paul J

    2018-06-01

    There is preclinical and recent epidemiological evidence that thyroid hormone supports breast cancer. These observations raise the issue of whether management of breast cancer in certain settings should include consideration of reducing the possible contribution of thyroid hormone to the advancement of the disease. In a preliminary experience, elimination of the clinical action of endogenous L-thyroxine (T 4 ) in patients with advanced solid tumors, including breast cancer, has favorably affected the course of the cancer, particularly when coupled with administration of exogenous 3,5,3'-triiodo-L-thyronine (T 3 ) (euthyroid hypothyroxinemia). We discuss in the current brief review the possible clinical settings in which to consider whether endogenous thyroid hormone-or exogenous thyroid hormone in the patient with hypothyroidism and coincident breast cancer-is significantly contributing to breast cancer outcome.

  4. Levothyroxine

    MedlinePlus

    Levothyroxine, a thyroid hormone, is used to treat hypothyroidism, a condition where the thyroid gland does not ... hormone.Levothyroxine is also used to treat congenital hypothyroidism (cretinism) and goiter (enlarged thyroid gland). Levothyroxine is ...

  5. Hormonal and reproductive risk factors of papillary thyroid cancer: A population-based case-control study in France.

    PubMed

    Cordina-Duverger, Emilie; Leux, Christophe; Neri, Monica; Tcheandjieu, Catherine; Guizard, Anne-Valérie; Schvartz, Claire; Truong, Thérèse; Guénel, Pascal

    2017-06-01

    The three times higher incidence of thyroid cancer in women compared to men points to a role of female sex hormones in its etiology. However the effects of these factors are poorly understood. We analyzed the association between thyroid cancer and hormonal and reproductive factors among women enrolled in CATHY, a population-based case-control study conducted in France. The study included 430 cases of papillary thyroid cancer and 505 controls frequency-matched on age and area of residence. The odds ratios for thyroid cancer increased with age at menarche (p trend 0.05). Postmenopausal women were at increased risk, as compared to premenopausal women, particularly if menopause followed an ovariectomy, and for women with age at menopause <55years. In addition, use of oral contraceptives and menopausal hormone therapy reduced the association with thyroid cancer by about one third, and breastfeeding by 27%. Overall, these findings provide evidence that the risk of thyroid cancer increases with later age at menarche and after menopause, and decreases with use of oral contraceptives and menopausal hormone therapy. These findings confirm an implication of hormonal factors in papillary thyroid cancer risk, whose mechanisms need to be elucidated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Red palm oil supplementation does not increase blood glucose or serum lipids levels in Wistar rats with different thyroid status.

    PubMed

    Rauchová, H; Vokurková, M; Pavelka, S; Vaněčková, I; Tribulová, N; Soukup, T

    2018-05-04

    Red palm oil (RPO) is a rich natural source of antioxidant vitamins, namely carotenes, tocopherols and tocotrienols. However, it contains approximately 50 % saturated fatty acids the regular consumption of which could negatively modify lipid profile. The aim of our study was to test whether 7 weeks of RPO supplementation (1 g/kg body weight/day) would affect blood glucose and lipid metabolism in adult male Wistar rats with altered thyroid status. We induced hypothyroidism and hyperthyroidism in rats by oral administration of either methimazole or mixture of thyroid hormones. Different thyroid status (EU - euthyroid, HY - hypothyroid and HT - hyperthyroid) was characterized by different serum thyroid hormones levels (total and free thyroxine and triiodothyronine), changes in the activity of a marker enzyme of thyroid status - liver mitochondrial glycerol-3-phosphate dehydrogenase, and altered absolute and relative heart weights. Fasting blood glucose levels were higher in HT rats in comparison with EU and HY rats, but the changes caused by RPO supplementation were not significant. The achievement of the HY status significantly increased serum levels of total cholesterol, as well as with high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol: 2.43+/-0.15, 1.48+/-0.09, 0.89+/-0.08 mmol/l, compared to EU: 1.14+/-0.06, 0.77+/-0.06, 0.34+/-0.05 mmol/l and HT: 1.01+/-0.06, 0.69+/-0.04, 0.20+/-0.03 mmol/l, respectively. RPO supplementation did not increase significantly levels of blood lipids but tended to increase glutathione levels in the liver. In conclusion, RPO supplementation did not induce the presumed deterioration of glucose and lipid metabolism in rats with three well-characterized alterations in thyroid status.

  7. Perchlorate Contamination of Drinking Water: Regulatory Issues and Legislative Actions

    DTIC Science & Technology

    2007-04-04

    al., “Primary Congenital Hypothyroidism , Newborn Thyroid Function, and Environmental Perchlorate Exposure Among Residents of a Southern California...Thyroid Hormone Levels in Adolescent and Adult Men and Women Living in the United States,” Centers for Disease Control and Prevention, in Environmental...identified hypothyroidism as the first adverse effect. Because of research gaps regarding perchlorate’s potential effects following changes in thyroid

  8. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    PubMed

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  9. Pituitary resistance to thyroid hormone associated with a base mutation in the hormone-binding domain of the human 3,5,3'-triiodothyronine receptor-beta.

    PubMed

    Sasaki, S; Nakamura, H; Tagami, T; Miyoshi, Y; Nogimori, T; Mitsuma, T; Imura, H

    1993-05-01

    Point mutations in the human T3 receptor-beta (TR beta) gene causing single amino acid substitutions have been identified in several different kindreds with generalized resistance to thyroid hormone. Until now, no study has been reported on the TR gene in cases of pituitary resistance (PRTH). In the present study, we analyzed the TR beta gene in a 30-yr-old Japanese female with PRTH. She exhibited clinical features of hyperthyroidism, elevated serum thyroid hormone levels accompanied by inappropriately increased secretion of TSH, mildly elevated basal metabolic rate, and increased urinary excretion of hydroxyproline. No pituitary tumor was detected. DNA fragments of exons 3-8 of the genomic TR beta gene were generated by the polymerase chain reaction and analyzed by a single stranded conformation polymorphism method. Exon 7 of the patient's TR beta gene showed an abnormal band, suggesting the existence of mutation(s). By subcloning and sequencing the DNA, a point mutation was identified in one allele at nucleotide 1297 (C to T), which altered the 333rd amino acid, arginine, to tryptophan. Neither of her apparently normal parents had any mutations of the TR beta gene. In vitro translation products of the mutant TR beta gene showed remarkably decreased T3-binding activity (Ka, 2.1 x 10(8) M-1; normal TR beta Ka, 1.1 x 10(10) M-1). Since the molecular defect detected in a patient with PRTH is similar to that seen in subjects with generalized resistance to thyroid hormone, both types of the syndrome may represent a continuous spectrum of the same etiological defect with variable tissue resistance to thyroid hormone.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahren, B.

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose ofmore » carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.« less

  11. Pituitary apoplexy

    MedlinePlus

    ... body's sex glands produce little or no hormones) Hypothyroidism (thyroid gland does not make enough thyroid hormone) ... other missing hormones are not replaced, symptoms of hypothyroidism and hypogonadism may develop.

  12. Soy isoflavones interfere with thyroid hormone homeostasis in orchidectomized middle-aged rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šošić-Jurjević, Branka, E-mail: brankasj@ibiss.bg.ac.rs; Filipović, Branko; Wirth, Eva Katrin

    We previously reported that genistein (G) and daidzein (D) administered subcutaneously (10 mg/kg) induce changes in the angio-follicular units of the thyroid gland, reduce concentration of total thyroid hormones (TH) and increase thyrotropin (TSH) in serum of orchidectomized middle-aged (16-month-old) rats. To further investigate these effects, we now examined expression levels of the thyroglobulin (Tg), thyroperoxidase (Tpo), vascular endothelial growth factor A (Vegfa) and deiodinase type 1 (Dio 1) genes in the thyroid; in the pituitary, genes involved in TH feedback control (Tsh β, Dio 1, Dio 2, Trh receptor); and in the liver and kidney, expression of T{sub 3}-activatedmore » genes Dio 1 and Spot 14, as well as transthyretin (Ttr), by quantitative real-time PCR. We also analyzed TPO-immunopositivity and immunofluorescence of T{sub 4} bound to Tg, determined thyroid T{sub 4} levels and measured deiodinase enzyme activities in examined organs. Decreased expression of Tg and Tpo genes (p < 0.05) correlated with immunohistochemical staining results, and together with decreased serum total T{sub 4} levels, indicates decreased Tg and TH synthesis following treatments with both isoflavones. However, expression of Spot 14 (p < 0.05) gene in liver and kidney was up-regulated, and liver Dio 1 expression and activity (p < 0.05) increased. At the level of pituitary, no significant change in gene expression levels, or Dio 1 and 2 enzyme activities was observed. In conclusion, both G and D impaired Tg and TH synthesis, but at the same time increased tissue availability of TH in peripheral tissues of Orx middle-aged rats. - Highlights: • We tested how genistein and daidzein interfere with thyroid hormone homeostasis. • Thyroid: decreased expression of Tg and TPO genes correlated with IHC results. • Serum: total T{sub 4} reduced and TSH increased. • Liver and kidney: expression of Spot 14 and liver Dio 1 activity increased. • Pituitary: expression of T{sub 3}-regulated genes and Dio 1 and 2 activities unchanged.« less

  13. Serum thyrotropin and thyroid hormone levels in elderly and middle-aged euthyroid persons.

    PubMed

    Hershman, J M; Pekary, A E; Berg, L; Solomon, D H; Sawin, C T

    1993-08-01

    To determine whether serum thyrotropin (TSH) levels are altered in euthyroid older persons compared with middle-aged adults. Serum TSH and thyroid hormone levels were measured in a large group of older persons (> 70 years old, n = 216) and their middle-aged offspring (40-60 years old, n = 211) after excluding those with clinical or historical evidence of thyroid disease or abnormal thyroid function. Serum TSH, thyroxine (T4), free T4 index, estimated free T4, triiodothyronine (T3), estimated free T3, and ferritin levels were measured on the Abbott IMx instrument. Peroxidase and thyroglobulin antibodies were measured by radioimmunoassay using Kronus kits. Overall, serum TSH showed a log-normal distribution. The geometric mean TSH (mU/L) and 95% confidence limits in the older persons, 1.24 (0.29-5.4), did not differ significantly from that in the middle-aged, 1.45 (0.54-3.9). The mean TSH in the 264 women, 1.37 (0.34-5.5), was similar to that of the 163 men, 1.30 (0.48-3.5). The mean TSH in older women, 1.21 (0.22-6.6), was slightly but significantly lower than that in middle-aged women, 1.52 (0.55-4.2). However, when euthyroid women with positive antibodies were excluded, this difference was not significant. Four of the 123 older women had TSH < 0.1 mU/L, but none of the men or middle-aged women had a suppressed serum TSH. The mean TSH in older men, 1.28 (0.43-3.8), was similar to that in middle-aged men, 1.32 (0.55-3.2). Free T4 was slightly higher in older women than middle-aged women. There were no significant correlations between TSH and any thyroid hormone level. Serum ferritin, measured as a potential marker for the action of thyroid hormone, did not correlate with any measure of thyroid function. At least one antibody level was > 10 U/mL in 14.6% of older women, 15.6% of middle-aged women, 4.3% of older men, and no middle-aged men. When those with milder elevations of antibody levels were included (at least one level > 1 U/mL), the prevalence was 32% of older women, 43.3% of middle-aged women, 15% of older men, and 11.4% of middle-aged men. Euthyroid older persons have about the same levels of serum TSH as younger ones, although older euthyroid women have a slightly lower serum TSH than middle-aged women. We recommend that the normal range of serum TSH in the elderly be considered to be the same as that in healthy middle-aged subjects.

  14. Long-term effects of treatment on endocrine function in children with brain tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffner, P.K.; Cohen, M.E.; Anderson, S.W.

    1983-11-01

    Fourteen children with brain tumors received endocrine evaluations at least one year following completion of cranial irradiation. Treatment consisted of operation (13 patients), craniospinal irradiation (6), whole brain irradiation (5), posterior fossa irradiation (3), and chemotherapy (10). Endocrine evaluation included bone age roentgenography and measurement of growth hormone (using sequential arginine and insulin stimulation), thyroxine, thyroid-stimulating hormone, plasma cortisol, testosterone, prolactin, and urinary follicle-stimulating hormone and luteinizing hormone. Ten of 12 children (83%) had abnormal responses to both tests of growth hormone stimulation. All growth hormone-deficient patients treated prior to puberty and tested at least 2 years following completion ofmore » cranial irradiation had decelerated linear growth. Results of thyroid function tests were abnormal in 4 patients: 2 patients had evidence of primary hypothyroidism, and 2 showed secondary or tertiary hypothyroidism. Two patients had inadequate cortisol responses to insulin hypoglycemia. Urinary follicle-stimulating hormone and luteinizing hormone, serum prolactin, and serum testosterone levels were appropriate for age in all patients.« less

  15. Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination

    PubMed Central

    López-Espíndola, Daniela; Morales-Bastos, Carmen; Grijota-Martínez, Carmen; Liao, Xiao-Hui; Lev, Dorit; Sugo, Ella; Verge, Charles F.; Refetoff, Samuel

    2014-01-01

    Context: Mutations in the MCT8 (SLC16A2) gene, encoding a specific thyroid hormone transporter, cause an X-linked disease with profound psychomotor retardation, neurological impairment, and abnormal serum thyroid hormone levels. The nature of the central nervous system damage is unknown. Objective: The objective of the study was to define the neuropathology of the syndrome by analyzing brain tissue sections from MCT8-deficient subjects. Design: We analyzed brain sections from a 30th gestational week male fetus and an 11-year-old boy and as controls, brain tissue from a 30th and 28th gestational week male and female fetuses, respectively, and a 10-year-old girl and a 12-year-old boy. Methods: Staining with hematoxylin-eosin and immunostaining for myelin basic protein, 70-kDa neurofilament, parvalbumin, calbindin-D28k, and synaptophysin were performed. Thyroid hormone determinations and quantitative PCR for deiodinases were also performed. Results: The MCT8-deficient fetus showed a delay in cortical and cerebellar development and myelination, loss of parvalbumin expression, abnormal calbindin-D28k content, impaired axonal maturation, and diminished biochemical differentiation of Purkinje cells. The 11-year-old boy showed altered cerebellar structure, deficient myelination, deficient synaptophysin and parvalbumin expression, and abnormal calbindin-D28k expression. The MCT8-deficient fetal cerebral cortex showed 50% reduction of thyroid hormones and increased type 2 deiodinase and decreased type 3 deiodinase mRNAs. Conclusions: The following conclusions were reached: 1) brain damage in MCT8 deficiency is diffuse, without evidence of focal lesions, and present from fetal stages despite apparent normality at birth; 2) deficient hypomyelination persists up to 11 years of age; and 3) the findings are compatible with the deficient action of thyroid hormones in the developing brain caused by impaired transport to the target neural cells. PMID:25222753

  16. Evaluation of clinical hypothyroidism risk due to irradiation of thyroid and pituitary glands in radiotherapy of nasopharyngeal cancer patients.

    PubMed

    Lin, Zhixiong; Wang, Xiaoyan; Xie, Wenjia; Yang, Zhining; Che, Kaijun; Wu, Vincent W C

    2013-12-01

    Radiation-induced thyroid dysfunction after radiotherapy for nasopharyngeal cancer (NPC) has been reported. This study investigated the radiation effects of the thyroid and pituitary glands on thyroid function after radiotherapy for NPC. Sixty-five NPC patients treated with radiotherapy were recruited. Baseline thyroid hormone levels comprising free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) were taken before treatment and at 3, 6, 12 and 18 months. A seven-beam intensity-modulated radiotherapy plan was generated for each patient. Thyroid and pituitary gland dose volume histograms were generated, dividing the patients into four groups: high (>50 Gy) thyroid and pituitary doses (HTHP group); high thyroid and low pituitary doses (HTLP group); low thyroid and high pituitary doses; and low thyroid and pituitary doses. Incidence of hypothyroidism was analysed. Twenty-two (34%) and 17 patients (26%) received high mean thyroid and pituitary doses, respectively. At 18 months, 23.1% of patients manifested various types of hypothyroidism. The HTHP group showed the highest incidence (83.3%) of hypothyroidism, followed by the HTLP group (50%). NPC patients with high thyroid and pituitary gland doses carried the highest risk of abnormal thyroid physiology. The dose to the thyroid was more influential than the pituitary dose at 18 months after radiotherapy, and therefore more attention should be given to the thyroid gland in radiotherapy planning. © 2013 The Royal Australian and New Zealand College of Radiologists.

  17. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    EPA Science Inventory

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  18. Thyroid hormone-induced oxidative stress.

    PubMed

    Venditti, P; Di Meo, S

    2006-02-01

    Hypermetabolic state in hyperthyroidism is associated with tissue oxidative injury. Available data indicate that hyperthyroid tissues exhibit an increased ROS and RNS production. The increased mitochondrial ROS generation is a side effect of the enhanced level of electron carriers, by which hyperthyroid tissues increase their metabolic capacity. Investigations of antioxidant defence system have returned controversial results. Moreover, other thyroid hormone-linked biochemical changes increase tissue susceptibility to oxidative challenge, which exacerbates the injury and dysfunction they suffer under stressful conditions. Mitochondria, as a primary target for oxidative stress, might account for hyperthyroidism linked tissue dysfunction. This is consistent with the inverse relationship found between functional recovery of ischemic hyperthyroid hearts and mitochondrial oxidative damage and respiration impairment. However, thyroid hormone-activated mitochondrial mechanisms provide protection against excessive tissue dysfunction, including increased expression of uncoupling proteins, proteolytic enzymes and transcriptional coactivator PGC-1, and stimulate opening of permeability transition pores.

  19. [Endocrine abnormalities in a patient with borderline personality disorder--case 8/2014].

    PubMed

    Gassenmaier, Christoph; Schittenhelm, Jens; Selo, Nadja; Schnauder, Günter

    2014-12-01

    We report on a 44-year-old woman who was treated for borderline personality disorder in the Department of Psychiatry. In addition, symptoms of hyperthyroidism (anxiety, weight loss, hyperdefecation) were noticeable. Thyroid stimulating hormone (TSH) was marginally elevated, free triiodothyronine (T3) and free thyroxine (T4) were clearly elevated. Hence, the patient was transferred to the Department of Endocrinology. Thyroid ultrasound revealed a diffuse goiter with a total volume of 24,8 ml. Antibody screening did not show elevated titers. The thyrotropin releasing hormone (TRH) test depicted a blunted TSH response. Serum levels of free glycoprotein hormone alpha-subunit, prolactin and insulin-like growth factor 1 were increased. In cranial magnetic resonance imaging (MRI), a hypointense lesion on the left side of the anterior pituitary gland was detected indicating a thyrotropin-secreting microadenoma with concomitant secretion of prolactin and possible secretion of human growth hormone (HGH). A thyreostatic therapy was initiated aiming at euthyreosis. For symptom control, betablockers were administered. Subsequently, the patient underwent an uncomplicated transsphenoidal resection. Histological examination confirmed the diagnosis of a pituitary adenoma with expression of TSH, prolactin and HGH. As expected, thyroid hormones declined afterwards. TSHoma is rare. Diagnosis is confirmed by endocrinological testing and cranial imaging. Therapeutic options comprise transsphenoidal adenomectomy, drug therapy (somatostatin analogues, dopaminergic agonists) and irradiation. Resistance to thyroid hormones should be included in the differential diagnosis. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins

    PubMed Central

    Herbert, Martha

    2017-01-01

    Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH) receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease. PMID:28894619

Top