Falconer, I R; Jacks, F
1975-01-01
1. Previous work has shown that after stressful stimuli, sheep initially secrete increased amounts of thyroid hormone, at a time when adrenal secretion is also elevated. 2. This study was designed to evaluate (a) any short-term activation or inhibition of thyroid secretion by exogenous cortisol or ACTH administered in quantities comparable to those secreted after stress in sheep and (b) any short-term effect that exogenous thyroxine or triiodothyronine may have on the concentration of plasma cortisol in the sheep. 3. Thyroid activity was measured by determination of plasma protein bound 125I (PB125I) and total 125I in thyroid vein and mixed venous (jugular) blood. Plasma cortisol and thyroxine concentrations were measured by a competitive protein-binding assay at intervals for up to 5 hr after commencement of the experiment. 4. No evidence of an activation of thyroid secretion was found during cortisol or ACTH infusion, as monitored by thyroid vein PB125I. Similarly there was no evidence of any inhibition of thyroid function, as measured by continued secretion of thyroid hormones into thyroid vein blood. 5. No effect on plasma cortisol concentration due to thyroid hormone treatment was observed. 6. It was concluded that (a) elevated circulating corticosteroids in physiological concentrations have no short-term effects on thyroid activity in the sheep and (b) the short-term alterations in thyroid and adrenal cortical secretion observed during stress in the sheep could not be attributed to direct interaction of elevated thyroid hormone concentrations with adrenal cortical secretion. PMID:170400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahren, B.
The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose ofmore » carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.« less
Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....
Optimized FPGA Implementation of the Thyroid Hormone Secretion Mechanism Using CAD Tools.
Alghazo, Jaafar M
2017-02-01
The goal of this paper is to implement the secretion mechanism of the Thyroid Hormone (TH) based on bio-mathematical differential eqs. (DE) on an FPGA chip. Hardware Descriptive Language (HDL) is used to develop a behavioral model of the mechanism derived from the DE. The Thyroid Hormone secretion mechanism is simulated with the interaction of the related stimulating and inhibiting hormones. Synthesis of the simulation is done with the aid of CAD tools and downloaded on a Field Programmable Gate Arrays (FPGAs) Chip. The chip output shows identical behavior to that of the designed algorithm through simulation. It is concluded that the chip mimics the Thyroid Hormone secretion mechanism. The chip, operating in real-time, is computer-independent stand-alone system.
Murao, K; Takahara, J; Sato, M; Tamaki, M; Niimi, M; Ishida, T
1994-10-01
Thyroid hormone plays an important role in growth hormone (GH) synthesis and secretion. To study the relationship between thyroid function and urinary GH secretion in the hyperthyroid and hypothyroid states, we measured thyroid hormones, simultaneously with serum and urinary GH levels, in 54 patients with thyroid diseases. GH-releasing hormone (GRH) test was performed in 18 patients in order to evaluate serum and urinary GH responses to GRH in hyper- and hypothyroid states. Serum thyroid hormone levels were strongly correlated with the urinary GH levels in the patients, and the correlation was greater than that between serum thyroid hormone and serum GH levels. Urinary GH levels were significantly higher in the hyperthyroid patients than in the euthyroid and hypothyroid patients, although serum GH levels were not significantly different among these three groups. Serum GH response to GRH was significantly decreased in hyperthyroid patients as compared to euthyroid patients. However, urinary GH levels after GRH administration were not decreased in the hyperthyroid patients. These results suggest that hyperthyroid states increase GH in urine and may accelerate the urinary clearance of GH.
Pathogenesis of Hyperthyroidism.
Singh, Ishita; Hershman, Jerome M
2016-12-06
Hyperthyroidism is a form of thyrotoxicosis in which there is excess thyroid hormone synthesis and secretion. Multiple etiologies can lead to a common clinical state of "thyrotoxicosis," which is a consequence of the high thyroid hormone levels and their action on different tissues of the body. The most common cause of thyrotoxicosis is Graves' disease, an autoimmune disorder in which stimulating thyrotropin receptor antibodies bind to thyroid stimulating hormone (TSH) receptors on thyroid cells and cause overproduction of thyroid hormones. Other etiologies include: forms of thyroiditis in which inflammation causes release of preformed hormone, following thyroid gland insult that is autoimmune, infectious, mechanical or medication induced; secretion of human chorionic gonadotropin in the setting of transient gestational thyrotoxicosis and trophoblastic tumors; pituitary thyrotropin release, and exposure to extra-thyroidal sources of thyroid hormone that may be endogenous or exogenous. © 2017 American Physiological Society. Compr Physiol 7:67-79, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej
2015-03-01
The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken. Copyright © 2015 Elsevier B.V. All rights reserved.
Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...
Peltsverger, Maya Y.; Butler, Peter W.; Alberobello, Anna Teresa; Smith, Sheila; Guevara, Yanina; Dubaz, Ornella M.; Luzon, Javier A.; Linderman, Joyce; Celi, Francesco S.
2012-01-01
Objective Type-2 deiodinase gene (DIO2) polymorphisms have been associated with changes in pituitary-thyroid axis homeostasis. The −258 A/G (SNP rs12885300) polymorphism has been associated with increased enzymatic activity, but data are conflicting. To characterize the effects of the −258 A/G polymorphism on intra-thyroidal T4 to T3 conversion and thyroid hormone secretion pattern we studied the effects of acute, TRH-mediated, TSH stimulation of the thyroid gland. Design Retrospective analysis. Methods The thyroid hormone secretion in response to 500 mcg iv TRH injection was studied in 45 healthy volunteers. Results Twenty-six subjects (16 females, 10 males, 32.8±10.4 years) were homozygous for the ancestral (−258 A/A) allele, 19 (11 females, 8 males, 31.1±10.9 years) were carrier of the (−258 G/x) variant. While no differences in the peak TSH and T3 levels were observed, carriers of the −258G/x allele showed a blunted rise in free T4 (p<0.01). The −258G/x 92Thr/Thr haplotype, compared to the other groups, had lower TSH values at 60' (p<0.03). No differences were observed between genotypes in baseline thyroid hormone levels. Conclusions The −258G/x DIO2 polymorphism variant is associated with a decreased rate of acute TSH-stimulated free T4 secretion with a normal T3 release from the thyroid consistent with a shift in the reaction equilibrium toward the product. These data indicate that the −258G DIO2 polymorphism cause changes in the pattern of hormonal secretion. These findings are a proof-of-concept that common polymorphisms in the DIO2 can subtly affect the circulating levels of thyroid hormone and might modulate the thyroid hormone homeostasis. PMID:22307573
Thyrotropin-secreting pituitary adenomas: biological and molecular features, diagnosis and therapy.
Losa, M; Fortunato, M; Molteni, L; Peretti, E; Mortini, P
2008-12-01
Central hyperthyroidism due to a thyrotropin (TSH)-secreting pituitary adenoma is a rare cause of hyperthyroidism, representing 0.5-1.0% of all pituitary adenomas. The etiopathogenesis of TSH-secreting-adenomas is unknown and no definite role for various oncogenes has been proven. Patients with TSH-secreting adenoma usually present with signs and symptoms of hyperthyroidism milder than those in patients with hyperthyroidism of thyroid origin, in addition to symptoms secondary to mass effects of the pituitary tumour. Mixed pituitary tumours co-secrete growth hormone and prolactin. The characteristic biochemical abnormalities are normal or high serum TSH concentrations in the presence of elevated total and/or free thyroid hormones concentrations. Measurement of markers of peripheral thyroid hormone action and dynamic tests may aid in the differential diagnosis with the syndrome of resistance to thyroid hormone. Neuroimaging is fundamental to visualize the pituitary tumor. Therapy of TSH-secreting adenomas can be accomplished by surgery, radiation therapies, and medical treatment with somatostatin analogs or dopamine agonists. Nowadays, and in contrast with the first reports on this rare disease, most patients are well controlled by current therapies.
Falconer, I R
1967-02-01
1. Emotional stimulus to the sheep has previously been shown to cause increased thyroid hormone secretion; the influence of adrenaline and noradrenaline in this process has been investigated.2. Sheep bearing exteriorized thyroid glands on carotid artery-jugular vein loops were used. Thyroid vein blood was collected through a cannula in the jugular vein within the loop, and blood flow was measured by a plethysmographic technique.3. (131)I (50 muc) was injected intramuscularly (I.M.) into the sheep, and 4-7 days later the concentration of total and protein bound (131)I in thyroid vein blood was measured in samples taken every 10 min for 4 hr. Intracarotid injections of 1 mug, I.V. injections of 5 mug, or I.V. infusions at 10 mug/min for 10 min, of adrenaline or noradrenaline were administered 1.5 hr after commencement of sampling. Blood flow from the thyroid was measured in similar experiments.4. No significant changes in thyroid hormone secretion could be attributed to adrenaline or noradrenaline, and it was concluded that circulating catecholamines do not influence the release of thyroid hormone observed after brief emotional stimulus in the sheep.
Thyrotropinoma and multinodular goiter: A diagnostic challenge for hyperthyroidism.
Aksoy, Duygu Yazgan; Gedik, Arzu; Cinar, Nese; Soylemezoglu, Figen; Berker, Mustafa; Gurlek, Omer Alper
2013-11-01
Thyroid disorders are frequently encountered. The diagnosis is straightforward unless clinical or laboratory findings are inconclusive and/or perplexing. Hyperthyroidism due to a thyrotropin-secreting pituitary adenoma rarely occurs and symptoms due to thyroid hormone excess are subtle. The presentation of the disease becomes unusual when co-secretion of other hormones with thyrotropin or concomitant thyroid parenchymal pathology exist. We present the case of a 63-year-old female patient with thyrotropinoma co-secreting growth hormone and multinodular goiter. She developed hyperthyroidism first due to thyrotropinoma and later due to a toxic nodule. Herein, we discuss the diagnostic and therapeutic challenges of hyperthyroidism with atypical presentation.
Silent pituitary macroadenoma co-secreting growth hormone and thyroid stimulating hormone.
Sen, Orhan; Ertorer, M Eda; Aydin, M Volkan; Erdogan, Bulent; Altinors, Nur; Zorludemir, Suzan; Guvener, Nilgun
2005-04-01
Silent pituitary adenomas are a group of tumors showing heterogenous morphological features with no hormonal function observed clinically. To date no explanation has been provided as to why these tumors remain "silent". We report a case of a silent macroadenoma with both growth hormone (GH) and thyroid stimulating hormone (TSH) staining and secretion but with no clinical manifestations, in particular, the absence of features of acromegaly or hyperthyroidism. The relevant literature is reviewed.
Okamura, Ken; Fujikawa, Megumi; Bandai, Sachiko
2006-12-01
Painless thyroiditis is characterized by painless low-uptake thyrotoxicosis (thyrotoxicosis without hyperthyroidism). Destructive damage of the thyroid has been thought to be the mechanism for self-limited thyrotoxicosis. However, hydrolysis of thyroglobulin must be responsible for the release of excessive thyroid hormone. Low-uptake of iodine and excessive release of thyroid hormone suggest the uncoupling of hormone synthesis and hormone secretion in the thyroid gland. Suppressed serum TSH level, various cytokines or growth factors including TGFbeta1, and thyroglobulin itself may be responsible for the suppressed hormone synthesis. The mechanism for persistent hormone release despite suppressed hormone synthesis should be clarified. Quantitative TSH binding inhibitor immunoglobulin assay is helpful for the differential diagnosis of painless thyroiditis and Graves' hyperthyroidism.
[Dynamics of hormone secretion during chronic emotional stress].
Amiragova, M G; Kovalev, S V; Svirskaia, R I
1979-05-01
Study of spontaneous secretion of corticosteroids and thyroid hormones and the direct hormonal response to stress revealed the pathogenic effect of chronic combined emotional stress upon the hormonal function of adrenal glands. The hippocampus takes part in formation of the emotional tension in response to stress stimulus and of the following hormonal secretion.
Interactions between the thyroid hormones and the hormones of the growth hormone axis.
Laron, Zvi
2003-12-01
The normal secretion and action of the thyroid hormones and the hormones of the GH/IGF-I (growth hormone/ insulin-like growth factor I) axis are interdependent. Their interactions often differ in man from animal studies in rodents and sheep. Thus neonates with congenital hypothyroidism are of normal length in humans but IUGR (intrauterine growth retardation) in sheep. Postnatally normal GH/IGF-I secretion and action depends on an euthyroid state. Present knowledge on the interactions between the two axes is reviewed in states of hypo- and hyperthyroidism, states of GH/IGF-I deprivation and hypersecretion, as well as the relationship between IGF-I and thyroid cancer. Emphasis is given to data in children and aspects of linear growth and skeletal maturation.
A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...
Ohara, Noriyuki; Tsujino, Taro; Maruo, Takeshi
2004-11-01
To review the literature on the roles of thyroid hormone in trophoblast function, early pregnancy maintenance, and fetal neurodevelopment. MEDLINE was searched for English-language papers published from 1971 to 2003, using the key words "brain," "hypothyroidism," "placenta," "pregnancy," "threatened abortion," "thyroid hormone," "thyroid hormone receptor," "thyroid hormone replacement therapy," "thyroid hormone-responsive gene," and "trophoblast." Transplacental transfer of thyroid hormone occurs before the onset of fetal thyroid hormone secretion. Thyroid hormone receptors and iodothyronine deiodinases are present in the placenta and the fetal central nervous system early in pregnancy, and thyroid hormone plays a crucial role both in trophoblast function and fetal neurodevelopment. Maternal hypothyroxinemia is associated with a high rate of spontaneous abortion and long-term neuropsychological deficits in children born of hypothyroid mothers. Maternal iodine deficiency also causes a wide spectrum of neuropsychological disorders in children, ranging from subclinical deficits in cognitive motor and auditory functions to hypothyroid-induced cognitive impairment in infants. However, these conditions are preventable when iodine supplementation is initiated before the second trimester. Although thyroid hormone replacement therapy is effective for reducing the adverse effects complicated by maternal hypothyroidism, the appropriate dose of thyroid hormone is mandatory in protecting the early stage of pregnancy. Close monitoring of maternal thyroid hormone status and ensuring adequate maternal thyroid hormone levels in early pregnancy are of great importance to prevent miscarriage and neuropsychological deficits in infants.
[Evaluation of salivary gland function in women with autoimmune thyroid diseases].
Koczor-Rozmus, Aleksandra; Zwirska-Korczala, Krystyna; Sadlak-Nowicka, Jadwiga; Ilewicz, Leşzek; Mayer-Parka, Danuta; Wierucka-Młynarczyk, Beata
2003-01-01
The function of the salivary glands is regulated by nervous system which influences salivary circulation. Moreover the volume of secreted saliva depends on the humoral agents, including thyroid hormones. The aim of the study was to determine the quantity of the secreted mixed resting and stimulated saliva in women with autoimmune thyroid diseases (AITD) depending on the function of the thyroid gland (hyperthyroidism, hypothyroidism and euthyroidism). The association between thyroid antibody concentrations (TPO-Ab, Tg-Ab, TR-Ab) and volume of secreted saliva was also examined. Studies were performed in 106 women suffering from AITD and 15 healthy volunteers. In hyperthyroid women there was a decrease in volumes of resting (57.14%) and stimulated (89.29%) saliva. Similarly, a decrease in secretion of resting (75%) and stimulated (66.67%) saliva was shown in hypothyroid women. In euthyroid patients with AITD there was a partial normalisation of salivary glands function. The negative correlation between concentrations of TPO-Ab, Tg-Ab and the volume of resting and stimulated saliva was found. In conclusion, AITD may be associated with disturbances in salivary secretion which depends on thyroid hormones production. It can be suggested that autoimmunological processes within salivary glands may influence their function.
Giustina, A; Ferrari, C; Bodini, C; Buffoli, M G; Legati, F; Schettino, M; Zuccato, F; Wehrenberg, W B
1990-12-01
In vitro studies have demonstrated that thyroid hormones can enhance basal and stimulated growth hormone secretion by cultured pituitary cells. However, both in man and in the rat the effects of high thyroid hormone levels on GH secretion are unclear. The aim of our study was to test the GH response to human GHRH in hyperthyroid patients and to evaluate the effects on GH secretion of short- and long-term pharmacological decrease of circulating thyroid hormones. We examined 10 hyperthyroid patients with recent diagnosis of Graves' disease. Twelve healthy volunteers served as controls. All subjects received a bolus iv injection of GHRH(1-29)NH2, 100 micrograms. Hyperthyroid patients underwent a GHRH test one and three months after starting antithyroid therapy with methimazole, 10 mg/day po. GH levels at 15, 30, 45, 60 min and GH peak after stimulus were significantly lower in hyperthyroid patients than in normal subjects. The GH peak was also delayed in hyperthyroid patients. After one month of methimazole therapy, most of the hyperthyroid patients had thyroid hormone levels in the normal range, but they did not show significant changes in GH levels after GHRH, and the GH peak was again delayed. After three months of therapy with methimazole, the hyperthyroid patients did not show a further significant decrease in serum thyroid hormone levels. However, mean GH levels from 15 to 60 min were significantly increased compared with the control study. The GH peak after GHRH was also earlier than in the pre-treatment study.(ABSTRACT TRUNCATED AT 250 WORDS)
Thyroid storm induced by TSH-secreting pituitary adenoma: a case report.
Fujio, Shingo; Ashari; Habu, Mika; Yamahata, Hitoshi; Moinuddin, F M; Bohara, Manoj; Arimura, Hiroshi; Nishijima, Yui; Arita, Kazunori
2014-01-01
Thyroid stimulating hormone-secreting pituitary adenomas (TSHomas) are uncommon tumors of the anterior pituitary gland. Patients with TSHomas may present with hyperthyroidism, but the incidence of thyroid storm due to TSHomas has yet to be determined. We report a rare case of thyroid storm caused by TSHoma in a 54-year-old woman. Preoperatively she had symptoms of excessive sweating and palpitation. Blood tests showed inappropriate secretion of TSH with blood TSH 6.86 μ U/mL, fT3 19.8 pg/mL, and fT4 5.95 ng/dL. Magnetic resonance imaging (MRI) revealed a pituitary tumor with maximum diameter of 13 mm that was extirpated through transsphenoidal route. After operation the patient was stuporous and thyroid storm occurred presenting with hyperthermia, hypertension, and tachycardia. It was well managed with nicardipine, midazolam, steroids, and potassium iodide. Immunohistochemical staining of tumor specimen was positive for TSH and growth hormone (GH). One year after operation, fT3 and fT4 levels were still high. As her tumor was diagnosed to be GH- and TSH-producing adenoma, octreotide injection therapy was started, which normalized thyroid hormone levels. This is the second reported case with thyroid storm due to TSHoma and emphasizes the importance of strategies with interdisciplinary cooperation for prevention of such emergency conditions.
Root, A W; Shulman, D; Root, J; Diamond, F
1986-01-01
Growth hormone (GH) and the thyroid hormones interact in the hypothalamus, pituitary and peripheral tissues. Thyroid hormone exerts a permissive effect upon the anabolic and metabolic effects of GH, and increases pituitary synthesis of this protein hormone. GH depresses the secretion of thyrotropin and the thyroid hormones and increases the peripheral conversion of thyroxine to triiodothyronine. In the adult male rat experimental hypothyroidism produced by ingestion of propylthiouracil depresses the GH secretory response to GH-releasing hormone in vivo and in vitro, reflecting the lowered pituitary stores of GH in the hypothyroid state. Short term administration of large amounts of thyroxine with induction of the hyperthyroid state does not affect the in vivo GH secretory response to GH-releasing hormone in this animal.
Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination.
Köhrle, Josef
2007-06-01
Thyroid hormone metabolism by the three deiodinase selenoproteins -- DIO1, DIO2, and DIO3 -- regulates the local availability of various iodothyronine metabolites and thus mediates their effects on gene expression, thermoregulation, energy metabolism, and many key reactions during the development and maintenance of an adult organism. Circulating serum levels of thyroid hormone and thyroid-stimulating hormone, used as a combined indicator of thyroid hormone status, reflect a composite picture of: thyroid secretion; tissue-specific production of T(3) by DIO1 and DIO2 activity, which both contribute to circulating levels of T(3); and degradation of the prohormone T4, of the thyromimetically active T(3), of the inactive rT(3), of other iodothyronines metabolites with a lower iodine content and of thyroid hormone conjugates. Degradation reactions are catalyzed by either DIO1 or DIO3. Aberrant expression of individual deiodinases in disease, single nucleotide polymorphisms in their genes, and novel regulators of DIO gene expression (such as bile acids) provide a more complex picture of the fine tuning and the adaptation of systemic and local bioavailability of thyroid hormones.
[Thyroid and cardiovascular disorders].
Zyśko, Dorota; Gajek, Jacek
2004-05-01
In this study three problems concerning interactions between thyroid and cardiovascular system are discussed. Cardiac arrhythmias, congestive heart failure, pleural effusion, hyperlipidaemia, arterial hypertension may be consequences of thyroid disorders leading to inappropriate hormone secretion. During such illnesses as heart failure, myocardial infarction and in patients undergoing coronary artery bypass surgery profound changes may occur in thyroid hormone metabolism known as sick euthyroid syndrome. Treatment with amiodarone may lead to changes in thyroid tests results and to development of hypothyroidism or thyrotoxicosis.
Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Kenzaburo; Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama, Tokyo 189-0002; Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University, 5-21-16 Omorinishi, Ota, Tokyo 143-8540
Thyroglobulin (Tg) stored in thyroid follicles exerts a potent negative-feedback effect on each step of pre-hormone biosynthesis, including Tg gene transcription and iodine uptake and organification, by suppressing the expression of specific transcription factors that regulate these steps. Pre-hormones are stored in the follicular colloid before being reabsorbed. Following lysosomal proteolysis of its precursor, thyroid hormone (TH) is released from thyroid follicles. Although the suppressive effects of follicular Tg on each step of pre-hormone biosynthesis have been extensively characterized, whether follicular Tg accumulation also affects hormone reabsorption, proteolysis, and secretion is unclear. In this study we explored whether follicular Tgmore » can regulate the expression and function of the lysosomal endopeptidases cathepsins. We found that in the rat thyroid cell line FRTL-5 follicular Tg induced cathepsin H mRNA and protein expression, as well as cathepsin H enzyme activity. Double immunofluorescence staining showed that Tg endocytosis promoted cathepsin H translocalization into lysosomes where it co-localized with internalized Tg. These results suggest that cathepsin H is an active participant in lysosome-mediated pre-hormone degradation, and that follicular Tg stimulates mobilization of pre-hormones by activating cathepsin H-associated proteolysis pathways. - Highlights: • Follicular Tg increases cathepsin H mRNA and protein levels in rat thyroid cells. • Follicular Tg increases cathepsin H enzyme activity in rat thyroid cells. • After Tg stimulation cathepsin H co-localizes to lysosomes with follicular Tg. • Cathepsin H promotes hormone secretion by lysosome-mediated mechanisms.« less
Jansen, S W; Akintola, A A; Roelfsema, F; van der Spoel, E; Cobbaert, C M; Ballieux, B E; Egri, P; Kvarta-Papp, Z; Gereben, B; Fekete, C; Slagboom, P E; van der Grond, J; Demeneix, B A; Pijl, H; Westendorp, R G J; van Heemst, D
2015-06-19
Few studies have included subjects with the propensity to reach old age in good health, with the aim to disentangle mechanisms contributing to staying healthier for longer. The hypothalamic-pituitary-thyroid (HPT) axis maintains circulating levels of thyroid stimulating hormone (TSH) and thyroid hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis may favour longevity without altering energy metabolism.
Leach, Prescott T.; Holliday, Erica; Kutlu, Munir G.
2015-01-01
Introduction: Cigarette smoking alters a variety of endocrine systems including thyroid hormones. Altered thyroid hormone signaling may lead to a subclinical or overt hypothyroid condition that could contribute to nicotine withdrawal-related symptoms, such as cognitive deficits. Thus, normalizing thyroid hormone levels may represent a novel therapeutic target for ameliorating nicotine withdrawal-associated cognitive deficits. Methods: The current studies conducted an analysis of serum thyroid hormone levels after chronic and withdrawal from chronic nicotine treatment in C57BL/6J mice using an enzyme-linked immunosorbent assay. The present studies also evaluated the effect of synthetic thyroid hormone (levothyroxine) on contextual and cued memory. Results: The current studies found that nicotine withdrawal reduces secreted thyroid hormone levels by 9% in C57BL/6J mice. Further, supplemental thyroid hormone not only enhanced memory in naïve animals, but also ameliorated deficits in hippocampus-dependent learning associated with nicotine withdrawal. Conclusions: These results suggest that smokers attempting to quit should be monitored closely for changes in thyroid function. If successfully treated, normalization of thyroid hormone levels may ameliorate some deficits associated with nicotine withdrawal and this may lead to higher rates of successful abstinence. PMID:25358661
Stimulation of thyroid hormone secretion by thyrotropin in beluga whales, Delphinapterus leucas.
St Aubin, D J
1987-01-01
Bovine thyroid stimulating hormone administered to three beluga whales, Delphinapterus leucas, was effective in producing an increase in circulating levels of triiodothyronine and thyroxine. A single dose of 10 I.U. of thyroid stimulating hormone resulted in a 145% increase in triiodothyronine and a 35% increase in thyroxine after nine hours in a whale tested within two hours after capture. The response was less pronounced in an animal tested with the same does on two occasions after four and eight weeks in captivity. In the third whale, 10 I.U. of thyroid stimulating hormone given on each of three consecutive days produced a marked increase in triiodothyronine and thyroxine. The elevation of thyroxine concentration persisted for at least two days after the last injection of thyroid stimulating hormone. A subsequent decrease in thyroxine to levels below baseline signalled the suppression of endogenous thyroid stimulating hormone. This preliminary study helps to establish a protocol for testing thyroid function in cetaceans. PMID:3651900
2016-01-01
Hyperthyroidism is characterised by increased thyroid hormone synthesis and secretion from the thyroid gland, whereas thyrotoxicosis refers to the clinical syndrome of excess circulating thyroid hormones, irrespective of the source. The most common cause of hyperthyroidism is Graves’ disease, followed by toxic nodular goitre. Other important causes of thyrotoxicosis include thyroiditis, iodine-induced and drug-induced thyroid dysfunction, and factitious ingestion of excess thyroid hormones. Treatment options for Graves’ disease include antithyroid drugs, radioactive iodine therapy, and surgery, whereas antithyroid drugs are not generally used long term in toxic nodular goitre, because of the high relapse rate of thyrotoxicosis after discontinuation. β blockers are used in symptomatic thyrotoxicosis, and might be the only treatment needed for thyrotoxicosis not caused by excessive production and release of the thyroid hormones. Thyroid storm and hyperthyroidism in pregnancy and during the post-partum period are special circumstances that need careful assessment and treatment. PMID:27038492
De Leo, Simone; Lee, Sun Y; Braverman, Lewis E
2016-08-27
Hyperthyroidism is characterised by increased thyroid hormone synthesis and secretion from the thyroid gland, whereas thyrotoxicosis refers to the clinical syndrome of excess circulating thyroid hormones, irrespective of the source. The most common cause of hyperthyroidism is Graves' disease, followed by toxic nodular goitre. Other important causes of thyrotoxicosis include thyroiditis, iodine-induced and drug-induced thyroid dysfunction, and factitious ingestion of excess thyroid hormones. Treatment options for Graves' disease include antithyroid drugs, radioactive iodine therapy, and surgery, whereas antithyroid drugs are not generally used long term in toxic nodular goitre, because of the high relapse rate of thyrotoxicosis after discontinuation. β blockers are used in symptomatic thyrotoxicosis, and might be the only treatment needed for thyrotoxicosis not caused by excessive production and release of the thyroid hormones. Thyroid storm and hyperthyroidism in pregnancy and during the post-partum period are special circumstances that need careful assessment and treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yaglova, N V; Yaglov, V V
2017-03-01
Exposure to endocrine disruptors is considered as a risk factor thyroid gland diseases. We analyzed cytophysiological changes in rat thyroid follicular epithelium after long-term exposure to low doses of the most widespread disruptor DDT. Analysis of thyroid hormone production and light and electron microscopy of thyroid gland samples revealed cytophysiological changes in thyroid epithelium related to impaired transport through the apical membrane, suppressed Golgi complex activity, and impaired thyrotrophic hormone regulation of the secretory functions of thyroid cells, which led to compensatory transition from merocrine to microapocrine secret release.
Molecular basis for regulating seasonal reproduction in vertebrates.
Nishiwaki-Ohkawa, Taeko; Yoshimura, Takashi
2016-06-01
Animals that inhabit mid- to high-latitude regions exhibit various adaptive behaviors, such as migration, reproduction, molting and hibernation in response to seasonal cues. These adaptive behaviors are tightly regulated by seasonal changes in photoperiod, the relative day length vs night length. Recently, the regulatory pathway of seasonal reproduction has been elucidated using quail. In birds, deep brain photoreceptors receive and transmit light information to the pars tuberalis in the pituitary gland, which induces the secretion of thyroid-stimulating hormone. Thyroid-stimulating hormone locally activates thyroid hormone via induction of type 2 deiodinase in the mediobasal hypothalamus. Thyroid hormone then induces morphological changes in the terminals of neurons that express gonadotropin-releasing hormone and facilitates gonadotropin secretion from the pituitary gland. In mammals, light information is received by photoreceptors in the retina and neurally transmitted to the pineal gland, where it inhibits the synthesis and secretion of melatonin, which is crucial for seasonal reproduction. Importantly, the signaling pathway downstream of light detection and signaling is fully conserved between mammals and birds. In fish, the regulatory components of seasonal reproduction are integrated, from light detection to neuroendocrine output, in a fish-specific organ called the saccus vasculosus. Various physiological processes in humans are also influenced by seasonal environmental changes. The findings discussed herein may provide clues to addressing human diseases, such as seasonal affective disorder. © 2016 Society for Endocrinology.
[Endocrine abnormalities in a patient with borderline personality disorder--case 8/2014].
Gassenmaier, Christoph; Schittenhelm, Jens; Selo, Nadja; Schnauder, Günter
2014-12-01
We report on a 44-year-old woman who was treated for borderline personality disorder in the Department of Psychiatry. In addition, symptoms of hyperthyroidism (anxiety, weight loss, hyperdefecation) were noticeable. Thyroid stimulating hormone (TSH) was marginally elevated, free triiodothyronine (T3) and free thyroxine (T4) were clearly elevated. Hence, the patient was transferred to the Department of Endocrinology. Thyroid ultrasound revealed a diffuse goiter with a total volume of 24,8 ml. Antibody screening did not show elevated titers. The thyrotropin releasing hormone (TRH) test depicted a blunted TSH response. Serum levels of free glycoprotein hormone alpha-subunit, prolactin and insulin-like growth factor 1 were increased. In cranial magnetic resonance imaging (MRI), a hypointense lesion on the left side of the anterior pituitary gland was detected indicating a thyrotropin-secreting microadenoma with concomitant secretion of prolactin and possible secretion of human growth hormone (HGH). A thyreostatic therapy was initiated aiming at euthyreosis. For symptom control, betablockers were administered. Subsequently, the patient underwent an uncomplicated transsphenoidal resection. Histological examination confirmed the diagnosis of a pituitary adenoma with expression of TSH, prolactin and HGH. As expected, thyroid hormones declined afterwards. TSHoma is rare. Diagnosis is confirmed by endocrinological testing and cranial imaging. Therapeutic options comprise transsphenoidal adenomectomy, drug therapy (somatostatin analogues, dopaminergic agonists) and irradiation. Resistance to thyroid hormones should be included in the differential diagnosis. © Georg Thieme Verlag KG Stuttgart · New York.
Gershengorn, M C; Weintraub, B D
1975-01-01
An 18-yr-old woman with clinical and laboratory features of hyperthyroidism had persistently elevated serum levels of immunoreative thyrotropin (TSH). During 11 yr of follow-up there had been no evidence of a pituitary tumor. After thyrotropin-releasing hormone (TRH), there was a marked increase in TSH and secondarily in triiodothyronine (T3), the latter observation confirming the biologic activity of the TSH. Exogenous T3 raised serum T3 and several measurements of peripheral thyroid hormone effect, while decreasing serum TSH, thyroxine (T4), and thyroidal radioiodine uptake. After T3, the TRH-stimulated TSH response was decreased but was still inappropriate for the elevated serum T3 levels. Dexamethasone reduced serum TSH but did not inhibit TRH stimulation of TSH. Propylthiouracil reduced serum T4 and T3 and raised TSH. This patient represents a new syndrome of TSH-induced hyperthyroidism, differing from previous reports in the absence of an obvious pituitary tumor and in the responsiveness of the TSH to TRH stimulation and thyroid hormone suppression. This syndrome appears to be caused by a selective, partial resistance of the pituitary to the action of thyroid hormone. This case is also compared with previous reports in the literature of patients with elevated serum levels of immunoreactive TSH in the presence of elevated total and free thyroid hormones. A classification of these cases, termed "inappropriate secretion of TSH," is proposed. PMID:1159077
Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions?
Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert
2016-03-01
Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions. Copyright © 2016 Elsevier Inc. All rights reserved.
McLanahan, Eva D; Andersen, Melvin E; Campbell, Jerry L; Fisher, Jeffrey W
2009-05-01
Perchlorate (ClO4(-)) is an environmental contaminant known to disrupt the thyroid axis of many terrestrial and aquatic species. ClO4(-) competitively inhibits iodide uptake into the thyroid at the sodium/iodide symporter and disrupts hypothalamic-pituitary-thyroid (HPT) axis homeostasis in rodents. We evaluated the proposed mode of action for ClO4(-)-induced rat HPT axis perturbations using a biologically based dose-response (BBDR) model of the HPT axis coupled with a physiologically based pharmacokinetic model of ClO4(-). We configured a BBDR-HPT/ClO4(-) model to describe competitive inhibition of thyroidal uptake of dietary iodide by ClO4(-) and used it to simulate published adult rat drinking water studies. We compared model-predicted serum thyroid-stimulating hormone (TSH) and total thyroxine (TT4) concentrations with experimental observations reported in these ClO4(-) drinking water studies. The BBDR-HPT/ClO4(-) model failed to predict the ClO4(-)-induced onset of disturbances in the HPT axis. Using ClO4(-) inhibition of dietary iodide uptake into the thyroid, the model underpredicted both the rapid decrease in serum TT4 concentrations and the rise in serum TSH concentrations. Assuming only competitive inhibition of thyroidal uptake of dietary iodide, BBDR-HPT/ClO4(-) model calculations were inconsistent with the rapid decrease in serum TT4 and the corresponding increase in serum TSH. Availability of bound iodide in the thyroid gland governed the rate of hormone secretion from the thyroid. ClO4(-) is translocated into the thyroid gland, where it may act directly or indirectly on thyroid hormone synthesis/secretion in the rat. The rate of decline in serum TT4 in these studies after 1 day of treatment with ClO4(-) appeared consistent with a reduction in thyroid hormone production/secretion. This research demonstrates the utility of a biologically based model to evaluate a proposed mode of action for ClO4(-) in a complex biological process.
Kuzu, F; Bayraktaroğlu, T; Zor, F; G N, B D; Salihoğlu, Y S; Kalaycı, M
2015-01-01
Thyrotropin (thyroid stimulating hormone [TSH]) secreting pituitary adenomas (TSHoma) are rare adenomas presenting with hyperthyroidism due to impaired negative feedback of thyroid hormone on the pituitary and inappropriate TSH secretion. This article presents a case of TSH-secreting macroadenoma without any clinical hyperthyroidism symptoms accompanying immunoreaction with growth hormone (GH) and prolactin. A 36-year-old female patient was admitted with complaints of irregular menses and blurred vision. On physical exam, she had bitemporal hemianopsia defect. Magnetic resonance imaging (MRI) evaluation showed suprasellar macroadenoma measuring 33 mm × 26 mm × 28 mm was detected on pituitary MRI. She had no hyperthyroidism symptoms clinically. Although free T4 and free T3 levels were elevated, TSH level was inappropriately within the upper limit of normal. Response to T3 suppression and thyrotropin releasing hormone-stimulation test was inadequate. Other pituitary hormones were normal. Transsphenoidal adenomectomy was performed due to parasellar compression findings. Immunohistochemically widespread reaction was observed with TSH, GH and prolactin in the adenoma. The patient underwent a second surgical procedure 2 months later due to macroscopic residual tumor, bitemporal hemianopsia and a suprasellar homogenous uptake with regular borders on indium-111 octreotide scintigraphy. After second surgery; due to ongoing symptoms and residual tumor, she was managed with octreotide and cabergoline treatment. On her follow-up with medical treatment, TSH and free T4 values were within normal limits. Although silent TSHomas are rare, they may arise with compression symptoms as in our case. The differential diagnosis of secondary hyperthyroidism should include TSHomas and thyroid hormone receptor resistance syndrome.
Hormone supply of the organism in prolonged emotional stress
NASA Technical Reports Server (NTRS)
Amiragova, M. G.; Stulnikov, B. V.; Svirskaya, R. I.
1980-01-01
The effect of prolonged emotional stress of varying genesis on the hormonal function of the pancreas, thyroid gland, and adrenal cortex was studied. The amount of the hormonal secretion was found to depend on the type of adaptation activity and its duration. High secretion of the hormones observed outside the adaptation activity was examined as an index of the phase transition of defense reactions to the phase of overstress.
Falconer, I R
1968-12-01
1. Vasopressin has been shown to activate the thyroid in some species, and also to be released into the bloodstream after emotional and other stresses.2. Emotional stimuli applied to sheep have previously been shown to increase thyroid secretion and the possible influence of vasopressin in this process has been investigated. Sheep bearing exteriorized thyroid glands were used, so that thyroid vein blood could be collected in undisturbed conscious animals.3. (125)I or (131)I (50 muc) was injected I.M. into the sheep; 4-7 days later, samples of thyroid vein blood were collected at 10 min intervals for 4 hr, and the concentration of total and protein bound (125)I or (131)I was measured. Intravenous infusions of 0.3, 3.0 or 31 m-u./min arginine or lysine vasopressin, or close arterial infusions of 3.0 or 31 m-u./min arginine vasopressin were administered 1.5 hr after commencement of blood sampling. Blood flow from the thyroid was measured by a plethysmographic technique during similar experiments.4. No significant changes in thyroid hormone secretion were observed as a result of vasopressin infusion, and it was concluded that vasopressin release does not play a part in the activation of the thyroid resulting from emotional stimulus in the sheep.
Thyroid-stimulating hormone pituitary adenomas.
Clarke, Michelle J; Erickson, Dana; Castro, M Regina; Atkinson, John L D
2008-07-01
Thyroid-stimulating hormone (TSH)-secreting pituitary adenomas are rare, representing < 2% of all pituitary adenomas. The authors conducted a retrospective analysis of patients with TSH-secreting or clinically silent TSH-immunostaining pituitary tumors among all pituitary adenomas followed at their institution between 1987 and 2003. Patient records, including clinical, imaging, and pathological and surgical characteristics were reviewed. Twenty-one patients (6 women and 15 men; mean age 46 years, range 26-73 years) were identified. Of these, 10 patients had a history of clinical hyperthyroidism, of whom 7 had undergone ablative thyroid procedures (thyroid surgery/(131)I ablation) prior to the diagnosis of pituitary adenoma. Ten patients had elevated TSH preoperatively. Seven patients presented with headache, and 8 presented with visual field defects. All patients underwent imaging, of which 19 were available for imaging review. Sixteen patients had macroadenomas. Of the 21 patients, 18 underwent transsphenoidal surgery at the authors' institution, 2 patients underwent transsphenoidal surgery at another facility, and 1 was treated medically. Patients with TSH-secreting tumors were defined as in remission after surgery if they had no residual adenoma on imaging and had biochemical evidence of hypo-or euthyroidism. Patients with TSH-immunostaining tumors were considered in remission if they had no residual tumor. Of these 18 patients, 9 (50%) were in remission following surgery. Seven patients had residual tumor; 2 of these patients underwent further transsphenoidal resection, 1 underwent a craniotomy, and 4 underwent postoperative radiation therapy (2 conventional radiation therapy, 1 Gamma Knife surgery, and 1 had both types of radiation treatment). Two patients had persistently elevated TSH levels despite the lack of evidence of residual tumor. On pathological analysis and immunostaining of the surgical specimen, 17 patients had samples that stained positively for TSH, 8 for alpha-subunit, 10 for growth hormone, 7 for prolactin, 2 for adrenocorticotrophic hormone, and 1 for follicle-stimulating hormone/luteinizing hormone. Eleven patients (61%) ultimately required thyroid hormone replacement therapy, and 5 (24%) required additional pituitary hormone replacement. Of these, 2 patients required treatment for new anterior pituitary dysfunction as a complication of surgery, and 2 patients with preoperative partial anterior pituitary dysfunction developed complete panhypopituitarism. One patient had transient diabetes insipidus. The remainder had no change in pituitary function from their preoperative state. Thyroid-stimulating hormone-secreting pituitary lesions are often delayed in diagnosis, are frequently macroadenomas and plurihormonal in terms of their pathological characteristics, have a heterogeneous clinical picture, and are difficult to treat. An experienced team approach will optimize results in the management of these uncommon lesions.
[Thyroid emergencies : Thyroid storm and myxedema coma].
Spitzweg, C; Reincke, M; Gärtner, R
2017-10-01
Thyroid emergencies are rare life-threatening endocrine conditions resulting from either decompensated thyrotoxicosis (thyroid storm) or severe thyroid hormone deficiency (myxedema coma). Both conditions develop out of a long-standing undiagnosed or untreated hyper- or hypothyroidism, respectively, precipitated by an acute stress-associated event, such as infection, trauma, or surgery. Cardinal features of thyroid storm are myasthenia, cardiovascular symptoms, in particular tachycardia, as well as hyperthermia and central nervous system dysfunction. The diagnosis is made based on clinical criteria only as thyroid hormone measurements do not differentiate between thyroid storm and uncomplicated hyperthyroidism. In addition to critical care measures therapy focusses on inhibition of thyroid hormone synthesis and secretion (antithyroid drugs, perchlorate, Lugol's solution, cholestyramine, thyroidectomy) as well as inhibition of thyroid hormone effects in the periphery (β-blocker, glucocorticoids).Cardinal symptoms of myxedema coma are hypothermia, decreased mental status, and hypoventilation with risk of pneumonia and hyponatremia. The diagnosis is also purely based on clinical criteria as measurements of thyroid hormone levels do not differ between uncomplicated severe hypothyroidism and myxedema coma. In addition to substitution of thyroid hormones and glucocorticoids, therapy focusses on critical care measures to treat hypoventilation and hypercapnia, correction of hyponatremia and hypothermia.Survival of both thyroid emergencies can only be optimized by early diagnosis based on clinical criteria and prompt initiation of multimodal therapy including supportive measures and treatment of the precipitating event.
Graves' disease: diagnostic and therapeutic challenges (multimedia activity).
Kahaly, George J; Grebe, Stefan K G; Lupo, Mark A; McDonald, Nicole; Sipos, Jennifer A
2011-06-01
Graves' disease is the most common cause of hyperthyroidism in the United States. Graves' disease occurs more often in women with a female:male ratio of 5:1 and a population prevalence of 1% to 2%. A genetic determinant to the susceptibility to Graves' disease is suspected because of familial clustering of the disease, a high sibling recurrence risk, the familial occurrence of thyroid autoantibodies, and the 30% concordance in disease status between identical twins. Graves' disease is an autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid antigen-specific T cells into the thyroid and thyroid-stimulating hormone receptor expressing tissues, with the production of autoantibodies to well-defined thyroidal antigens, such as thyroid peroxidase, thyroglobulin, and the thyroid-stimulating hormone receptor. The thyroid-stimulating hormone receptor is central to the regulation of thyroid growth and function. Stimulatory autoantibodies in Graves' disease activate the thyroid-stimulating hormone receptor leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Below-normal levels of baseline serum thyroid-stimulating hormone receptor, normal to elevated serum levels of T4, elevated serum levels of T3 and thyroid-stimulating hormone receptor autoantibodies, and a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow) thyroid gland confirm diagnosis of Graves' disease (available at: http://supplements.amjmed.com/2010/hyperthyroid/faculty.php). This Resource Center is also available through the website of The American Journal of Medicine (www.amjmed.com). Click on the “Thyroid/Graves' Disease” link in the “Resource Centers” section, found on the right side of the Journal homepage. Copyright © 2011 Elsevier Inc. All rights reserved.
Thyrotropin secreting pituitary adenoma accompanying a silent somatotropinoma.
Berker, Dilek; Isik, Serhat; Aydin, Yusuf; Tutuncu, Yasemin; Akdemir, Gokhan; Ozcan, Hatice Nursun; Guler, Serdar
2011-01-01
Thyroid stimulating hormone (TSH) secreting pituitary adenomas are rare tumors manifested as hyperthyroidism with goiter in the presence of elevated TSH. We present a case with pituitary adenoma secreting both TSH and growth hormone (GH) with the prominent clinical findings of hyperthyroidism but without clinical findings of acromegaly. Pituitary magnetic resonance imaging revealed a macroadenoma. Transsphenoidal surgery was performed twice. The immunohistochemical staining showed that tumor cells were strongly reactive to GH and relatively mildly reactive to TSH. Control pituitary imaging revealed a residual macroadenoma, and long acting octreotide treatment was administered. After two years of the treatment, tumor size remained the same while thyroid function tests and insulin-like growth factor 1 (IGF-I) values returned to normal ranges. In conclusion, we always recommend hormonal examinations for all patients who have pituitary adenoma without signs and symptoms of acromegaly.
Kiatpanabhikul, Phatharaporn; Shuangshoti, Shanop; Chantra, Kraisri; Navicharern, Patpong; Kingpetch, Kanaungnit; Houngngam, Natnicha; Snabboon, Thiti
2017-07-01
Co-existence of thyrotropin/growth hormone-secreting pituitary adenoma with differentiated thyroid carcinoma is exceedingly rare, with less than 15 cases having been reported. Its clinical presentation and treatment strategy are challenging. We report a case of pituitary macroadenoma, with clinical syndromes of acromegaly and hyperthyroidism, and a thyroid nodule, with cytologically confirmed to be a papillary thyroid carcinoma. Clinical implications, focusing on the strategy for proper management, and possible pathogenesis were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sato, K; Yamazaki, K; Shizume, K; Kanaji, Y; Obara, T; Ohsumi, K; Demura, H; Yamaguchi, S; Shibuya, M
1995-09-01
To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.
Seigel, Stuart C; Hodak, Steven P
2012-03-01
Hyperthyroidism describes the sustained increase in thyroid hormone biosynthesis and secretion by a thyroid gland with increased metabolism. Although the use of radioiodine scanning serves as a useful surrogate that may help characterize the cause of thyrotoxicosis, it only indirectly addresses the underlying physiologic mechanism driving the increase in serum thyroid hormones. In this article, thyrotoxic states are divided into increased or decreased thyroid metabolic function. In addition to the diagnosis, clinical presentation, and treatment of the various causes of hyperthyroidism, a section on functional imaging and appropriate laboratory testing is included. Copyright © 2012 Elsevier Inc. All rights reserved.
Lebsir, Dalila; Manens, Line; Grison, Stephane; Lestaevel, Philippe; Ebrahimian, Teni; Suhard, David; Phan, Guillaume; Dublineau, Isabelle; Tack, Karine; Benderitter, Marc; Pech, Annick; Jourdain, Jean-Rene; Souidi, Maâmar
2018-02-26
A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI. Adult Wistar rats received an optimal dose of KI 1 mg/kg over a period of 1, 4 or 8 days. hormonal status (TSH, FT4) of treated rats was unaffected. Contrariwise, a sequential Wolff-Chaikoff effect was observed, resulting in a prompt decrease of NIS and MCT8 mRNA expression (-58% and -26% respectively), followed by a delayed decrease of TPO mRNA expression (-33%) in conjunction with a stimulation of PDS mRNA expression (+62%). we show for the first time that repeated administration of KI at 1 mg/kg/24h doesn't cause modification of thyroid hormones level, but leads to a reversible modification of the expression of genes involved in the synthesis and secretion of thyroid hormones. Copyright © 2018 Elsevier B.V. All rights reserved.
Sharma, Mala; Aronow, Wilbert S.; Patel, Laxesh; Gandhi, Kaushang; Desai, Harit
2011-01-01
Summary Hyperthyroidism is a pathological syndrome in which tissue is exposed to excessive amounts of circulating thyroid hormone. The most common cause of this syndrome is Graves’ disease, followed by toxic multinodular goitre, and solitary hyperfunctioning nodules. Autoimmune postpartum and subacute thyroiditis, tumors that secrete thyrotropin, and drug-induced thyroid dysfunction, are also important causes. PMID:21455118
A Case of a TSH-secreting Pituitary Adenoma Associated with Evans' Syndrome.
Yasuda, Atsushi; Seki, Toshiro; Oki, Masayuki; Takagi, Atsushi; Inomoto, Chie; Nakamura, Naoya; Atsumi, Hideki; Baba, Tanefumi; Matsumae, Mitsunori; Sasaki, Noriko; Suzuki, Yasuo; Fukagawa, Masafumi
2015-06-20
We present a case of a TSH-secreting pituitary adenoma (TSHoma) associated with Evans' syndrome. A 30-year-old woman was referred to our hospital due to purpura and ecchymoses on her limb and body and epistaxis. Evans' syndrome was diagnosed based on idiopathic thrombocytopenic purpura and autoimmune hemolytic anemia. She had a history of malocclusion and thyroid gland enlargement 4 years prior to admission. Endocrinological tests and magnetic resonance imaging also revealed that this patient had hyperthyroidism due to the TSHoma and that this adenoma concomitantly secreted GH. Recently, several cases of Evans' syndrome were associated with hyperthyroidism caused by autoimmune thyroid disease, such as Graves' disease, suggesting that these 2 conditions may have a common immunological basis. To the best of our knowledge, there is no case report of Evans' syndrome associated with hyperthyroidism due to TSHoma. Our report suggests that the excess of thyroid hormone itself promotes autoimmunity in Evans' syndrome. Thus, early treatment for hyperthyroidism is necessary in TSHomas because of the possibility that thyroid hormone normalization may prevent the development of Evans' syndrome.
Maji, D
2006-10-01
Hyperthyroidism is a clinical situation where there is excess thyroid hormones in the circulation due to increased synthesis of hormone from a hyperactive thyroid gland. Common causes are Graves' disease, toxic multinodular goitre and toxic solitary nodule. Excess thyroid hormones in the circulation are also found in thyroiditis (hormone leakage) and excess exogenous thyroxine intake. Thyrotoxicosis is the term applied when there is excess thyroid hormone in the circulation due to any cause. Thyrotoxicosis can be easily diagnosed by high serum level of thyroxine (T4) and triiodothyronine (T3) and low serum level of thyroid stimulating hormone (TSH). Hyperthyroidism is confirmed by high isotope (I 131 or Tc99) uptake by the thyroid gland, while in thyroiditis it will be low. Treatment of hyperthyroidism depends on the underlying cause. Antithyroid drugs, 1131 therapy and surgery are the options of treatment of hyperthyroidism. Surgery is the preferred treatment for toxic adenoma and toxic multinodular goitre, while 1131 therapy may be suitable in some cases. Antithyroid drugs and 1131 therapy are mostly preferred for Graves' disease. Beta-adrenergic blockers are used for symptomatic relief in most patients of thyrotoxicosis due to any cause. Other rare causes of hyperthyroidism like, amiodarone induced thyrotoxicosis, choriocarcinoma, thyrotropin secreting pituitary tumour are difficult to diagnose as well as to treat.
Armario, A; Montero, J L; Jolin, T
1987-01-01
Adult male Sprague-Dawley rats were subjected to food restriction so that they ate 65% of food ingested by control rats. While control rats had free access to food over the 24-hour period, food-restricted rats were provided with food daily at 10 a.m. The experimental period lasted for 34 days. On day 35, rats from both experimental groups were killed at 08.00, 11.00, 14.00, 24.00 and 02.00 h. Food restriction modified the circadian rhythms of ACTH and corticosterone. In addition, total circulating corticosterone throughout the day was higher in food-restricted than in control rats. In contrast, food restriction resulted in depressed secretion of thyroid-stimulating hormone and growth hormone. The results indicate that time of food availability entrained circadian corticosterone rhythm but not thyroid-stimulating hormone and growth hormone rhythms.
[A case of GH and TSH secreting pituitary macroadenoma].
Gołkowski, Filip; Buziak-Bereza, Monika; Stefańska, Agnieszka; Trofimiuk, Małgorzata; Pantofliński, Jacek; Huszno, Bohdan; Czepko, Ryszard; Adamek, Dariusz
2006-01-01
A case of GH and TSH secreting pituitary macroadenoma is reported. A 45-year-old female presented clinical features of acromegaly (the abnormal growth of the hands and feet, with lower jaw protrusion), diabetes mellitus, hypertension, nodular goiter and hyperthyroidism of unclear origin. NMR pituitary imaging revealed intra and extrasellar tumor. The laboratory examinations showed very high plasma levels of GH and IGF-1 and normal level of TSH coexisting with high plasma levels of free thyroid hormones. Pharmacological pretreatment with somatostatin analogues caused the substantial reduction of GH and TSH plasma levels. Histological and immunohistochemical examination of the tissue obtained at transsphenoidal surgery showed GH and TSH secreting adenoma. The laboratory examinations after surgery showed normal GH and IGF-1 plasma levels and reduced insulin requirement, what indicates radical operation. The very low plasma levels of TSH and free thyroid hormones after surgery and immunohistochemical examination suggest central hyperthyroidism due to TSH secreting pituitary tumor (thyrotropinoma).
Management of hyper and hypo thyroid conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locke, W.
1982-03-01
In hyperthyroidism, the primary objective of therapy is to reduce secretion of thyroid hormone, which can be accomplished in various ways. The stimulus to hypersecretion can be removed in some causes of hyperthyroidism; in others, hormone synthesis and release can be inhibited by drugs such as thioamides, adrenergic blocking agents, or possibly lithium or glucocorticoids. Radioactive iodine is indicated for primary therapy of uncomplicated hyperthyroidism due to Graves' disease in persons over 30 years of age (myxedema may be a complication) and for treatment of autonomous thyroid adenoma in patients who are not suitable candidates for surgery. Surgical ablation ismore » preferred for some causes of hyperthyroidism but may induce postoperative hypothyroidism. Hypothyroidism due to thyroid failure usually presents few therapeutic difficulties and can be managed simply by long-term hormone replacement. Before hormone replacement is prescribed for secondary or tertiary hypothyroidism, the other pituitary functions should be assessed.« less
Endocrinological control of growth.
Sizonenko, P C
1978-01-01
Many endocrinological factors control cellular growth of different tissues (cell multiplication and cell volume) and skeletal growth. The role of neuro-transmitters and of hypothalamic releasing and inhibiting factors of growth hormone secretion will be reviewed. The importance of the somatomedins on cartilage growth will be stressed. Thyroid hormones, androgens, and oestrogens have important stimulating actions on skeletal growth and maturation. Conversely, glucocorticoids have an important inhibitory effect on growth. The precise roles of these hormone factors in the regulation of growth hormone secretion, somatomedin production and tissue growth, particularly the cartilage, remain to be completely elucidated.
[Thyroid function in patients with anorexia nervosa and depression].
Natori, Y; Yamaguchi, N; Koike, S; Aoyama, A; Tsuchibuchi, S; Kojyo, K; Demura, R
1994-12-01
Thyroid hormone levels were measured in 21 patients with anorexia nervosa, 15 patients with depression and 16 patients with severe depression and were compared with those in 53 normal subjects. In anorexia nervosa and severe depressed patients, serum T3, T4, fT3, fT4 and T3/T4 ratio showed significantly lower values than those in normal subjects. However there was no difference between depressed patients and normal subjects. The serum TSH levels were within normal range in all of the studied subjects. Thus, thyroid hormone levels in severe depressed patients were similar to those in anorexia nervosa and the changes were inversely related to disease conditions. The supplementation of thyroid hormones to antidepressant relieved clinical symptoms in some of the severe depressed patients. These results suggested that the changes in thyroid hormone levels in anorexia nervosa and severe depression were mainly due to impaired conversion of T4 to T3 by increased cortisol secretion through emotional stress.
Thyrotropin-producing pituitary adenoma simultaneously existing with Graves' disease: a case report.
Arai, Nobuhiko; Inaba, Makoto; Ichijyo, Takamasa; Kagami, Hiroshi; Mine, Yutaka
2017-01-06
Thyrotropin-producing pituitary tumor is relatively rare. In particular, concurrent cases associated with Graves' disease are extremely rare and only nine cases have been reported so far. We describe a case of a thyrotropin-producing pituitary adenoma concomitant with Graves' disease, which was successfully treated. A 40-year-old Japanese woman presented with mild signs of hyperthyroidism. She had positive anti-thyroid-stimulating hormone receptor antibody, anti-thyroglobulin antibody, and anti-thyroid peroxidase antibody. Her levels of serum thyroid-stimulating hormone, which ranged from low to normal in the presence of high levels of serum free thyroid hormones, were considered to be close to a state of syndrome of inappropriate secretion of thyroid-stimulating hormone. Magnetic resonance imaging showed a macropituitary tumor. The coexistence of thyrotropin-producing pituitary adenoma and Graves' disease was suspected. Initial therapy included anti-thyroid medication, which was immediately discontinued due to worsening symptoms. Subsequently, surgical therapy for the pituitary tumor was conducted, and her levels of free thyroid hormones, including the thyroid-stimulating hormone, became normal. On postoperative examination, her anti-thyroid-stimulating hormone receptor antibody levels decreased, and the anti-thyroglobulin antibody became negative. The coexistence of thyrotropin-producing pituitary adenoma and Graves' disease is rarely reported. The diagnosis of this condition is complicated, and the appropriate treatment strategy has not been clearly established. This case suggests that physicians should consider the coexistence of thyrotropin-producing pituitary adenoma with Graves' disease in cases in which thyroid-stimulating hormone values range from low to normal in the presence of thyrotoxicosis, and the surgical treatment of thyrotropin-producing pituitary adenoma could be the first-line therapy in patients with both thyrotropin-producing pituitary adenoma and Graves' disease.
Hormonal disturbances in visceral leishmaniasis (kala-azar).
Verde, Frederico Araujo Lima; Verde, Francisco Agenor Araujo Lima; Neto, Augusto Saboia; Almeida, Paulo César; Verde, Emir Mendonça Lima
2011-05-01
This study presents a cross-sectional analysis of the hormonal alterations of patients with visceral leishmaniasis. The diagnosis was established by the bone marrow aspiration and polymerase chain reaction test. Primary adrenal insufficiency was observed in 45.8% of patients; low aldosterone/renin plasma ratio in 69.4%; low daily urinary aldosterone excretion in 61.1%; and low transtubular potassium gradient in 68.0%. All patients had normal plasma antidiuretic hormone (ADH) concentrations, hyponatremia, and high urinary osmolality. Plasma parathyroid hormone was low in 63%; hypomagnesemia was present in 46.4%, and increased Mg(++)(EF) in 100%. Primary thyroid insufficiency was observed in 24.6%, and secondary thyroid insufficiency in 14.1%. Normal follicle-stimulating hormone plasma levels were present in 81.4%; high luteinizing hormone and low testosterone plasma levels in 58.2% of men. There are evidences of hypothalamus-pituitary-adrenal axis abnormalities, inappropriate aldosterone and ADH secretions, and presence of hypoparathyroidism, magnesium depletion, thyroid and testicular insufficiencies.
Clinical characteristics of patients with thyrotropin-secreting pituitary adenoma.
Wu, Yung-Yen; Chang, Hung-Yu; Lin, Jen-Der; Chen, Kwang-Wen; Huang, Yu-Yao; Jung, Shih-Ming
2003-03-01
Thyroid-stimulating hormone (thyrotropin, TSH)-secreting pituitary adenoma is a very rare cause of hyperthyroidism. Diagnosis of this condition is often delayed due to lack of availability of TSH radioimmunoassay (RIA), the failure to recognize the utility of RIA and the incorrect attribution of the condition to other causes of thyrotoxicosis. This retrospective study analyzed the clinical characteristics of patients with this disorder treated from 1991 to 2002. Seven patients (6 females, 1 male; mean age, 48 years; range, 33 to 72 years) with a diagnosis of TSHsecreting pituitary adenoma based on detectable TSH levels with high serum free thyroid hormone or triiodothyronine concentrations and pituitary lesions found on neuroimaging were included in this study. Patient records including clinical features, endocrine studies, immunohistochemistry studies, and response to treatment were reviewed. All 7 patients had hyperthyroidism, elevated free thyroxine or triiodothyronine levels, and unsuppressed levels of TSH. Imaging studies demonstrated a pituitary mass or lesion in all patients. Six patients had macroadenomas and 1 patient had a microadenoma. One of the patients had coexisting acromegalic features and hypersecretion of growth hormone was diagnosed. All of the patients had been treated with thionamides or thyroidectomy for presumed primary hyperthyroidism. Serum alpha-subunit level was uncharacteristically normal in 2 patients and elevated in 1 patient. Alpha-subunit/TSH molar ratios were elevated in 3 patients. Five patients underwent transsphenoidal adenomectomy but only one of them remained well-controlled at follow-up. Three patients received administration of somatostatin analogs and they achieved normalization of serum TSH and free thyroid hormones during the period of therapy. TSH immunoassay has an important role in the evaluation of hyperthyroid patients to determine the presence of inappropriate secretion. TSH-secreting pituitary adenoma exhibits heterogeneity in clinical presentation, hormonal expression and therapeutic response.
Thyroid Function in Human Obesity: Underlying Mechanisms.
Fontenelle, L C; Feitosa, M M; Severo, J S; Freitas, T E C; Morais, J B S; Torres-Leal, F L; Henriques, G S; do Nascimento Marreiro, D
2016-12-01
Obesity is associated with several metabolic and endocrine disorders; and changes in plasma concentrations, secretion patterns, and clearance of various hormones are observed in obese patients. In this context, recent research has shown that overweight can influence the function of the thyroid gland, usually leading to increased thyrotropin concentrations and changes in the ratio between the hormones triiodothyronine and thyroxine, though within the normal range. The etiology of these changes is still unclear; however, several mechanisms have been proposed including the adaptive process to increase energy expenditure, hyperleptinemia, changes in the activity of deiodinases, the presence of thyroid hormones resistance, chronic low-grade inflammation, and insulin resistance. Although the clinical implications have not been clarified, studies suggest that these changes in the thyroid function of obese individuals may contribute to the worsening of metabolic complications and the development of diseases in the thyroid gland. © Georg Thieme Verlag KG Stuttgart · New York.
Mutant HABP2 Causes Non-Medullary Thyroid Cancer | Center for Cancer Research
The thyroid is a butterfly-shaped gland that lies at the base of the throat in front of the windpipe. A member of the endocrine system, the thyroid secretes hormones to regulate heart rate, blood pressure, temperature, and metabolism. Cancer of the thyroid is the most common endocrine cancer and the eighth most common cancer in the U.S. An estimated 63,450 Americans will be
Influence of chronic exposure to cold environment on thyroid gland function in rabbits.
Mustafa, S; Elgazzar, A
2014-07-01
Chronic exposure to cold can affect the thyroid gland. However, the effect on thyroid gland perfusion images and the ratio between thyroid hormones secretion were not addressed in any previous study. The present study investigates the effects of chronic cold exposure on thyroid gland function using radionuclide tracer and thyroid hormones secretion concentration. New Zealand white rabbits weighing approximately 1.8-2 kg were kept in a cold room (4°C) for 7 weeks. Thyroid scintigraphy was performed for cold exposed rabbits and a control rabbit group. Each rabbit was injected with 115 MBq (3.1 mCi) technetium-99m pertechnetate (99mTc pertechnetate). Studies were performed using Gamma camera equipped with a low energy, high resolution, pinhole collimator interfaced with a computer. Static images were acquired 20 min after administration of the radiotracer. Rabbits chronically exposed to cold had less body weights than control. Thyroid gland uptake is higher in rabbits chronically exposed to cold than controls using radionuclide perfusion study. The increase was proportional to the time period, so the increase after 7 weeks was greater than 5 weeks. There is also an increase in free triiodothyronine (FT3) and a decrease in free thyroxine (FT4) values. Our results indicate that thyroid gland uptake is higher in rabbits chronically exposed to cold than control and the increase was proportional to the duration. The decrease in rabbit body weights may be related to the increase in metabolism due to the increase of thyroid hormones. Chronic cold exposure also increased the conversion of T4 to T3, which is more potent in thermogenic effect. © Georg Thieme Verlag KG Stuttgart · New York.
Mafrica, Federica; Fodale, Vincenzo
2008-05-01
Hypothyroidism and hyperthyroidism are commonly present conditions in adults, leading to neurological symptoms, affecting the central and peripheral nervous system, and to neurocognitive impairment. Several studies investigated a possible association between Alzheimer's disease (AD) and thyroid dysfunctions. Increasing evidence supports an extensive interrelationship between thyroid hormones and the cholinergic system, which is selectively and early affected in AD. Moreover, thyroid hormones negatively regulate expression of the amyloid-beta protein precursor (AbetaPP), which plays a key role in the development of AD. A condition, the so called euthyroid sick syndrome (ESS), characterized by reduced serum T_{3} and T_{4} concentrations without increased serum thyroid stimulation hormone secretion, occurs within hours after major surgery. After surgery, elderly patients often exhibit a transient, reversible state of cognitive alterations. Delirium occurs in 10-26% of general medical patients over 65, and it is associated with a significant increase in morbidity and mortality. Modifications in thyroid hormone functioning may take place as a consequence of psycho-physical stress caused by surgery, and probably as a consequence of reduced conversion of T4 into T3 by the liver engaged in metabolizing anesthetic drugs. Therefore, modifications of thyroid hormones post-surgery, might play a role in the pathogenesis of postoperative cognitive dysfunction.
Boyarskaya, O Y; Kopilova, O V
2008-02-01
We present results of a long-term study of the morpho-functional state of the thyroid gland and of the functional capacities of the hypothalamic-hypophyseal system, as shown by thyrotropin releasing hormone stimulation, in different groups of children who suffered from the Chernobyl accident. It was shown that the thyroid gland of the children who were evacuated from the 30-km zone was damaged most severely due to the influence of radioactive iodine (131I). Living on radionuclide-polluted territories in conditions of iodine deficiency has been an additional contributory factor in the development of thyroid gland diseases. Latent functional deficiency of the hypothalamic-hypophyseal system can be one of the reasons leading to oncopathology of the thyroid gland.
Li, Anqi; Tang, Chunyu; Hang, Hui; Cheng, Xuemin; Gao, Yalin; Cheng, Hongyang; Huang, Qi; Luo, Yixin; Xue, Yutang; Zuo, Qiting; Ba, Yue; Cui, Liuxin
2013-03-01
To investigate the effect of phthalates exposure from drinking water on children's intelligence and secretion of thyroid hormone. Two villages in S County were selected randomly as polluted area and control area according to the distance from the Shaying river basin. Phthalates including DEP, DBP, DMP, DEHP were measured both in the river water and drinking water using HPLC method. Children aged 8 to 13 years old studying in the village primary school were recruited by cluster sampling (n = 154). The combined Reven Test was used to test children intelligence and ELISA method was used to determined thyroid hormone levels. The concentrations of phthalates (DEP, DBP) were exceeding standards of surface water quality in any of the three sections of the river. Compared to the control area, the concentration of DEP and DBP in drinking water were significant higher in the polluted area than that in control area (P < 0.05). Children from polluted area had significant higher FT4 concentration compared to children from control area (P < 0.05). Intelligence level in children from polluted area was lower than that from control area (P < 0.05). The drinking water has been polluted by Shaying river and thyroid hormones levels of children were affected in the polluted areas. It is necessary to verify if this change is related to the phthalates.
De novo triiodothyronine formation from thyrocytes activated by thyroid-stimulating hormone.
Citterio, Cintia E; Veluswamy, Balaji; Morgan, Sarah J; Galton, Valerie A; Banga, J Paul; Atkins, Stephen; Morishita, Yoshiaki; Neumann, Susanne; Latif, Rauf; Gershengorn, Marvin C; Smith, Terry J; Arvan, Peter
2017-09-15
The thyroid gland secretes primarily tetraiodothyronine (T 4 ), and some triiodothyronine (T 3 ). Under normal physiological circumstances, only one-fifth of circulating T 3 is directly released by the thyroid, but in states of hyperactivation of thyroid-stimulating hormone receptors (TSHRs), patients develop a syndrome of relative T 3 toxicosis. Thyroidal T 4 production results from iodination of thyroglobulin (TG) at residues Tyr 5 and Tyr 130 , whereas thyroidal T 3 production may originate in several different ways. In this study, the data demonstrate that within the carboxyl-terminal portion of mouse TG, T 3 is formed de novo independently of deiodination from T 4 We found that upon iodination in vitro , de novo T 3 formation in TG was decreased in mice lacking TSHRs. Conversely, de novo T 3 that can be formed upon iodination of TG secreted from PCCL3 (rat thyrocyte) cells was augmented from cells previously exposed to increased TSH, a TSHR agonist, a cAMP analog, or a TSHR-stimulating antibody. We present data suggesting that TSH-stimulated TG phosphorylation contributes to enhanced de novo T 3 formation. These effects were reversed within a few days after removal of the hyperstimulating conditions. Indeed, direct exposure of PCCL3 cells to human serum from two patients with Graves' disease, but not control sera, led to secretion of TG with an increased intrinsic ability to form T 3 upon in vitro iodination. Furthermore, TG secreted from human thyrocyte cultures hyperstimulated with TSH also showed an increased intrinsic ability to form T 3 Our data support the hypothesis that TG processing in the secretory pathway of TSHR-hyperstimulated thyrocytes alters the structure of the iodination substrate in a way that enhances de novo T 3 formation, contributing to the relative T 3 toxicosis of Graves' disease.
Central hypothyroidism in adults: better understanding for better care.
Grunenwald, Solange; Caron, Philippe
2015-02-01
Central hypothyroidism (CH) is a rare cause of hypothyroidism generally related to a hypothalamic-pituitary disorder or arising as an iatrogenic complication. In adults, CH may be secondary to quantitative and/or qualitative alterations in thyroid-stimulating hormone (TSH) secretion. The disease is difficult to diagnose clinically because it lacks specific clinical signs and these may be masked by other anterior pituitary hormone secretion deficiencies. In patients with long-standing and marked CH, a diagnosis may be made based on low free T4 levels and normal, low or moderately increased TSH levels. In patients with early-stage or moderate CH, exploration of the circadian TSH cycle, determination of TSH response after a TRH test or recombinant TSH injection, estimation of TSH index, or evaluation of peripheral indexes of thyroid hormone metabolism may be required to establish a diagnosis. Regarding treatment, patients should receive levothyroxine replacement therapy, but hormone objectives during follow-up need to be precisely determined in order to reduce cardiovascular risks and to improve the quality of life of patients.
Thyroid dysfunction and thyroid autoimmunity in euthyroid women in achieving fertility.
Medenica, S; Nedeljkovic, O; Radojevic, N; Stojkovic, M; Trbojevic, B; Pajovic, B
2015-01-01
Thyroid disease is the second most common endocrine condition in women of childbearing age. Thyroid hormones are involved in control of menstrual cycle and in achieving fertility affecting the actions of follicle-stimulating hormone and luteinizing hormone on steroid biosynthesis by specific triiodothyronine sites on oocytes; therefore, affect all aspects of reproduction. It remains controversial if pregnant women should be screened for thyroid dysfunction. Purpose of this review was to examine recent studies on the assessment of thyroid dysfunction in pregnancy, its treatment and newly perspective of thyroid autoimmunity in pregnant euthyroid women in achieving fertility. An electronic search was conducted using the internet medical databases: Medline/PubMed, EMBASE, EBSCO, and the Cochrane library. Thyroid gland faces great challenge in pregnancy when many hormonal changes occur. Precondition for normal follicular development and ovulation is pulsate gonadothropin realizing hormone secretion. Thyroid dysfunction in pregnancy is classified as forms of hypothyroidism (positivity of thyroid autoantibody, isolated hypothyroidism, and subclinical or overt hypothyroidism), hyperthyroidism, and autoimmune disease, but also thyroid nodules and cancer, iodine insufficiency and postpartum thyroiditis. These conditions can cause adverse effects on mother and fetus including pregnancy loss, gestational hypertension, or pre-eclampsia, pre-term delivery, low birth weight, placental abruption and postpartum hemorrhage. There is an evidence that thyroid autoimmunity, in thyroid dysfunction adversely affects conception and pregnancy outcomes, but it is unclear what impact has isolated eumetabolic thyroid autoimmunity in achieving fertility, especially in women undergoing in vitro fertilization. Treatment of euthyroid pregnant women with positive thyroid peroxides antibodies is still controverse, but not few studies show that levothyroxine substitution is able to lower the chance of miscarriage and premature delivery. Further randomized trials are needed to expand our knowledge of physiologic changes in thyroid function during the pregnancy and to reveal mechanisms by which thyroid autoimmunity in euthyroid women affect fertility, especially the success of assisted reproductive technology in achieving the same and validity of levothyroxine administration in thyroid autoimmunity positive women.
[Thyroid hormones and the development of the nervous system].
Mussa, G C; Zaffaroni, M; Mussa, F
1990-09-01
The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)
Medical Surveillance Monthly Report. Volume 19, Number 10
2012-10-01
Forces, 2002-2011 During 2002-2011, among active component U.S. military members, the rates of idiopathic hypothyroidism were 39.7 and 7.8 per 10,000...person-years among females and males, respectively. Unadjusted rates of idiopathic hypothyroidism and chronic thyroiditis (e.g., Hashimoto’s disease...of the thyroid gland results in insuf- fi cient secretion of thyroid hormones, eventually producing “ hypothyroidism ”; its clinical manifestations
Direct calorimetry of free-moving eels with manipulated thyroid status
NASA Astrophysics Data System (ADS)
van Ginneken, Vincent; Ballieux, Bart; Antonissen, Erik; van der Linden, Rob; Gluvers, Ab; van den Thillart, Guido
2007-02-01
In birds and mammals, the thyroid gland secretes the iodothyronine hormones of which tetraiodothyronine (T4) is less active than triiodothyronine (T3). The action of T3 and T4 is calorigenic and is involved in the control of metabolic rate. Across all vertebrates, thyroid hormones also play a major role in differentiation, development and growth. Although the fish thyroidal system has been researched extensively, its role in thermogenesis is unclear. In this study, we measured overall heat production to an accuracy of 0.1 mW by direct calorimetry in a free-moving European eel ( Anguilla anguilla L.) with different thyroid status. Hyperthyroidism was induced by injection of T3 and T4, and hypothyroidism was induced with phenylthiourea. The results show for the first time at the organismal level, using direct calorimetry, that neither overall heat production nor overall oxygen consumption in eels is affected by hyperthyroidism. Therefore, we conclude that the thermogenic metabolism-stimulating effect of thyroid hormones (TH) is not present with a cold-blooded fish species like the European eel. This supports the concept that TH does not stimulate thermogenesis in poikilothermic species.
Havekes, Bas; Sauerwein, Hans P
2010-11-01
To review original research studies and reviews that present data on adipocyte-myocyte crosstalk in the development of skeletal muscle insulin resistance with a specific focus on thyroid hormone. Adipose tissue communicates with skeletal muscle not only through free fatty acids but also through secretion of various products called adipokines. Adipokines came out as governors of insulin sensitivity and are deregulated in obesity. In addition to well known leptin, adiponectin, interleukin-6 and tumor necrosis factor-alpha, newer adipokines like retinol-binding protein 4 have been associated with insulin resistance. There is mounting evidence that not only adipose tissue but also skeletal muscle produces and secretes biologically active proteins or 'myokines' that facilitate metabolic crosstalk between organ systems. In recent years, increased expression of myostatin, a secreted anabolic inhibitor of muscle growth and development, has been associated with obesity and insulin resistance. Both hypothyroidism and hyperthyroidism affect insulin sensitivity in multiple ways that might overlap adipocyte-myocyte crosstalk. Recent studies have provided new insights in effects of processing of the parent hormone T4 to the active T3 at the level of the skeletal muscle. Adipocyte-myocyte crosstalk is an important modulator in the development of skeletal muscle insulin resistance. Thyroid disorders are very common and may have detrimental effects on skeletal muscle insulin resistance, potentially by interacting with adipocyte-myocyte crosstalk.
Mutant HABP2 Causes Non-Medullary Thyroid Cancer | Center for Cancer Research
The thyroid is a butterfly-shaped gland that lies at the base of the throat in front of the windpipe. A member of the endocrine system, the thyroid secretes hormones to regulate heart rate, blood pressure, temperature, and metabolism. Cancer of the thyroid is the most common endocrine cancer and the eighth most common cancer in the U.S. An estimated 63,450 Americans will be diagnosed with thyroid cancer this year. The vast majority is of follicular cell origin, and the remaining cancer originates from parafollicular cells, so called medullary thyroid cancer.
Tamada, Daisuke; Onodera, Toshiharu; Kitamura, Tetsuhiro; Yamamoto, Yuichi; Hayashi, Yoshitaka; Murata, Yoshiharu; Otsuki, Michio; Shimomura, Iichiro
2013-07-01
Hyperthyroidism with the syndrome of inappropriate secretion of TSH (SITSH) occurred by a decrease in hydrocortisone dose after surgery for Cushing's syndrome. This is a novel cause of SITSH. The aim of this study was to describe and discuss 2 cases of SITSH patients that were found after surgery for Cushing's syndrome. We also checked whether SITSH occurred in 7 consecutive patients with Cushing's syndrome after surgery. A 45-year-old Japanese woman with ACTH-independent Cushing's syndrome and a 37-year-old Japanese man with ACTH-dependent Cushing's syndrome presented SITSH caused by insufficient replacement of hydrocortisone for postoperative adrenal insufficiency. When the dose of hydrocortisone was reduced to less than 20 mg/d within 18 days after surgery, SITSH occurred in both cases. We examined whether the change of the hydrocortisone dose induced the secretion of TSH. Free T₃ and TSH were normalized by the hydrocortisone dose increase of 30 mg/d, and these were elevated by the dose decrease of 10 mg/d. We also checked TSH and thyroid hormone levels of the 7 consecutive patients with Cushing's syndrome after surgery. Six (66.6 %) of 9 patients showed SITSH. This is the first report that insufficient replacement of hydrocortisone after surgery for Cushing's syndrome caused SITSH. Hyperthyroidism by SITSH as well as adrenal insufficiency can contribute to withdrawal symptoms of hydrocortisone replacement. We need to consider the possibility of SITSH for the pathological evaluation of withdrawal syndrome of hydrocortisone replacement.
Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke
2015-11-10
The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.
Chihara, K; Kato, Y; Ohgo, S; Iwasaki, Y; Maeda, K
1976-06-01
The effect of synthetic thyrotropin-releasing hormone (TRH) on the release of growth hormone (GH) and thyroid-stimulating hormone (TSH) was investigated in euthyroid, hypothyroid, and hyperthyroid rats under urethane anesthesia. In euthyroid control rats, intravenous injection of TRH (200 ng/100 g BW) resulted in a significant increase in both plasma GH and TSH. In rats made hypothyroid by treatment with propylthiouracil or by thyroidectomy, basal GH and TSH levels were significantly elevated with exaggerated responses to TRH. In contrast, plasma GH and TSH responses to TRH were both significantly inhibited in rats made hyperthyroid by L-thyroxine (T4) treatment. These results suggest that altered thyroid status influences GH release as well as TSH secretion induced by TRH in rats.
Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development.
Kero, Jukka; Ahmed, Kashan; Wettschureck, Nina; Tunaru, Sorin; Wintermantel, Tim; Greiner, Erich; Schütz, Günther; Offermanns, Stefan
2007-09-01
The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The Gs-mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the Gq/G11-mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the alpha subunits of Gq and G11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Galphaq/Galpha11-deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that Gq/G11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth.
Autoimmune thyrotoxicosis: diagnostic challenges.
Ponto, Katharina A; Kahaly, George J
2012-09-01
Autoimmune thyrotoxicosis or Graves' disease (GD) is the most common cause of hyperthyroidism in the United States (full text available online: http://education.amjmed.com/pp1/249). GD occurs more often in women (ratio 5:1) and has a population prevalence of 1-2%. A genetic determinant to the susceptibility to GD is suspected because of familial clustering of the disease, a high sibling recurrence risk, and the familial occurrence of thyroid autoantibodies. GD is a systemic autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid-antigen-specific T cells into the thyroid and thyroid stimulating hormone receptor (TSHR) expressing tissues, i.e. orbit, skin, with the production of autoantibodies to well-defined thyroidal antigens. Stimulatory autoantibodies in GD activate the TSHR leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Diagnosis of GD is straightforward in a patient with a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow on neck ultrasound) thyroid gland, associated orbitopathy, biochemically confirmed thyrotoxicosis, positive TSHR autoantibodies, and often a family history of autoimmune disorders. Copyright © 2012. Published by Elsevier Inc.
[Serum cortisol level variations in thyroid diseases].
Seck-Gassama; Ndoye, O; Mbodj, M; Akala, A; Cisse, F; Niang, M; Ndoye, R
2000-01-01
This work studies the thyroid disorders impact on adrenals glands by measuring total cortisol. Radioimmunoassays of thyroid hormones and cortisol were performed in 108 subjects, aged 20-52 years, with thyroid diseases. Our results show low cortisol values (80.35 nmol/L) in 4.77% of hyperthyroids, high values in 3.57% of hyperthyroids (1348.18 nmol/L) and 12.5% of hypothyroids (969.05 nmol/L). In hyperthyroidism, thyroid hormone stimulates the secretion of 11 ceto metabolites biologically inactive, unable to slow pituitary activity, inducing an increased production of endogene cortisol. Excessive catabolism can lead to the exhausting of overstimulated adrenal glands, and therefore to a decreased cortisol. In hypothyroidism, high cortisol results of increase cortisol half life and decrease of metabolic clearance. Control mechanisms often allow normal cortisol values. These alterations in functional activity of adrenal glands, seen in nearly 10% of these subjects, sometimes command a specific attitude in diagnosis and therapy.
Neuroendocrine Alterations in Obese Patients with Sleep Apnea Syndrome
Lanfranco, Fabio; Motta, Giovanna; Minetto, Marco Alessandro; Baldi, Matteo; Balbo, Marcella; Ghigo, Ezio; Arvat, Emanuela; Maccario, Mauro
2010-01-01
Obstructive sleep apnea syndrome (OSAS) is a serious, prevalent condition that has significant morbidity and mortality when untreated. It is strongly associated with obesity and is characterized by changes in the serum levels or secretory patterns of several hormones. Obese patients with OSAS show a reduction of both spontaneous and stimulated growth hormone (GH) secretion coupled to reduced insulin-like growth factor-I (IGF-I) concentrations and impaired peripheral sensitivity to GH. Hypoxemia and chronic sleep fragmentation could affect the sleep-entrained prolactin (PRL) rhythm. A disrupted Hypothalamus-Pituitary-Adrenal (HPA) axis activity has been described in OSAS. Some derangement in Thyroid-Stimulating Hormone (TSH) secretion has been demonstrated by some authors, whereas a normal thyroid activity has been described by others. Changes of gonadal axis are common in patients with OSAS, who frequently show a hypogonadotropic hypogonadism. Altogether, hormonal abnormalities may be considered as adaptive changes which indicate how a local upper airway dysfunction induces systemic consequences. The understanding of the complex interactions between hormones and OSAS may allow a multi-disciplinary approach to obese patients with this disturbance and lead to an effective management that improves quality of life and prevents associated morbidity or death. PMID:20182553
Frączek, Magdalena Maria; Gackowski, Andrzej; Przybylik-Mazurek, Elwira; Nessler, Jadwiga
2016-06-01
It has been proven that either excess or deficiency of thyroid hormones has harmful influence on the cardiovascular system function. On the other hand, severe systemic conditions like myocardial infarction or severe heart failure may affect thyroid hormones secretion and their peripheral conversion, leading to low T3 syndrome. Amongst many mechanisms causing T4 to T3 conversion disturbances, important role plays decreased activity of D1 deiodinase and increased activity of D3 deiodinase. The animal research confirmed that thyroid hormones influence cardiomiocytes phenotype and morphology. They inhibit inflammation, apoptosis and cardiac remodelling after myocardial infarction. It was also proven that free triiodothyronine similarly to brain natriuretic peptide predict long-term prognosis in chronic and acute heart failure patients. Potential influence of low T3 syndrome on the course of myocardial infarction and heart failure may have significant impact on the future research on individualization of myocardial infarction and heart failure treatment depending on patient's thyroid status. © 2016 MEDPRESS.
Mann, D R; Bhat, G K; Stah, C D; Pohl, C R; Plant, T M
2006-09-01
The present study aimed to determine the influence of thyroid status on the timing of the pubertal resurgence in gonadotrophin-releasing hormone pulse generator activity [tracked by circulating luteinising hormone (LH) levels] in male rhesus monkeys. Six juvenile monkeys were orchidectomised and then treated with the antithyroid drug, methimazole, from 15-19 months until 36 months of age, at which time thyroxine (T(4)) replacement was initiated. Four additional agonadal monkeys served as controls. Blood samples were drawn weekly for hormonal assessments. Body weight, crown-rump length and bone age were monitored at regular intervals. By 8 weeks of methimazole treatment, plasma T(4) had fallen sharply, and the decline was associated with a plasma thyroid-stimulating hormone increase. In controls, plasma LH levels remained undetectable until the pubertal rise occurred at 29.3 +/- 0.2 months of age. This developmental event occurred in only half of the methimazole-treated animals before 36 months of age when T(4) replacement was initiated. The hypothyroid state was associated with a profound arrest of growth and bone maturation, but increased body mass indices and plasma leptin levels. T(4) replacement in methimazole-treated monkeys was associated with the pubertal rise in LH in the remaining three animals and accelerated somatic development in all six animals. Although pubertal resurgence in LH secretion occurred at a later chronological age in methimazole-treated animals compared to controls, bone age, crown-rump length and body weight at that time did not differ between groups. There were no long-term differences in plasma prolactin between groups. We conclude that juvenile hypothyroidism in male primates causes a marked delay in the pubertal resurgence of LH secretion, probably occasioned at the hypothalamic level. Whether this effect is meditated by an action of thyroid hormone directly on the hypothalamus or indirectly as a result of the concomitant deficit in somatic development remains to be determined.
Mazerkina, Nadia; Trunin, Yuri; Gorelyshev, Sergey; Golanov, Andrey; Kadashev, Boris; Shishkina, Liudmila; Rotin, Daniil; Karmanov, Maxim; Orlova, Elizabet
2016-02-01
Thyrotropinomas (TSHomas) are rare pituitary adenomas, particularly in childhood. We present here the case of an 11-year-old boy with type 1 autoimmune polyglandular syndrome (APS1) and TSHoma which was diagnosed by elevated thyroid - stimulating hormone and thyroid hormones levels without evident clinical signs of hyperthyroidism. He was underwent partial resection of the tumor via transsphenoidal approach and subsequently radiation therapy. Consequently, 1 year after radiotherapy, the patient developed growth hormone deficiency, three and half years after radiation became euthyroid, and five and half years after treatment - hypothyroid. This is the first case of the coexistence of these two rare endocrine diseases in one patient.
A combined case of macroprolactinoma, growth hormone excess and Graves' disease.
Hussein, Z; Tress, B; Colman, P G
2005-06-01
Thyrotoxicosis due to Graves disease is a relatively common endocrine disorder. The occurrence of a prolactinoma with co-secretion of growth hormone (GH) is on the other hand, rare. We report the rare co-existence of Graves' disease in a patient with macroprolactinoma and GH hypersecretion and describe the successful response to medical therapy with dopamine agonist and antithyroid therapy. We hypothesize that hyperprolactinaemia played a role in promoting autoimmune thyroid disease in our patient and that treatment of hyperprolactinaemia may have been important in suppressing autoimmune disease activity in Graves' disease. This case also reflects on the close and complex interactions between thyroid hormones, prolactin (PRL), GH and testosterone (T).
Rodrigues, Tiago B.; Ceballos, Ainhoa; Grijota-Martínez, Carmen; Nuñez, Barbara; Refetoff, Samuel; Cerdán, Sebastian; Morte, Beatriz; Bernal, Juan
2013-01-01
Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-13C) glucose and brain extracts prepared and analyzed by 13C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood. PMID:24098341
Rodrigues, Tiago B; Ceballos, Ainhoa; Grijota-Martínez, Carmen; Nuñez, Barbara; Refetoff, Samuel; Cerdán, Sebastian; Morte, Beatriz; Bernal, Juan
2013-01-01
Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-(13)C) glucose and brain extracts prepared and analyzed by (13)C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood.
Kamoi, K; Mitsuma, T; Sato, H; Yokoyama, M; Washiyama, K; Tanaka, R; Arai, O; Takasu, N; Yamada, T
1985-11-01
A 46-year-old woman had signs of thyrotoxicosis and galactorrhoea. Serum immunoreactive TSH and its alpha-subunit increased in the presence of high serum triiodothyronine (T3), thyroxine (T4), and free T4 concentrations, whereas beta-subunit TSH was undetectable. Exogenous TRH failed to increase serum TSH. Serum TSH was markedly suppressed by glucocorticoid, but was increased by antithyroid drug. L-Dopa or bromocriptine partially suppressed, but nomifensine had no influence on serum TSH. Serum prolactin (Prl) was above normal and markedly increased by TRH, but depressed by bromocriptine and not suppressed by nomifensine. Plasma TRH was normal in the hyperthyroid state, but was increased by glucocorticoid and antithyroid drug. Excess thyroid hormone depressed plasma TRH concentrations. Basal serum GH levels were constantly low. Transsphenoidal removal of the tumour normalized serum hormones (T3, T4 free T4, TSH, alpha-subunit and Prl), and eradicated the clinical signs of hyperthyroidism and galactorrhoea. Histological study of the tumour tissue demonstrated both thyrotrophes and somatotrophes. A reciprocal relationship between serum TSH and T4 concentrations shifted to a higher level before but was normalized after removal of the tumour. Ten months later, the clinical signs of thyrotoxicosis and the increase in serum thyroid hormone recurred without a concomitant increase in serum TSH and its alpha-subunit. Thyroidal auto-antibodies were slightly positive, but thyrotrophin-binding inhibitor immunoglobulin (TBII) was negative. Administration of antithyroid drug produced a euthyroid state, but 3 years later, discontinuation of the treatment resulted in recurrent hyperthyroidism without suppressed plasma TRH and with no evidence of regrowth of the pituitary tumour. It is suggested that the patient initially had hyperthyroidism owing to excessive TSH secretion from the tumour caused by abnormal TRH secretion, and subsequently had hyperthyroidism owing to Graves' disease.
Amiragova, M G; Arkhangel'skaia, M I; Polyntsev, Iu V; Vorontsov, V I
1985-08-01
A study was made of the effect of chronic emotional stress on the formation of hypertension in animals. This was shown to be related to dynamic changes in the function of the CNS, particularly in the hypothalamic apparatus of the neuroendocrine control. The above changes played a role in the formation of hypertensive vascular reactions accompanied by a high hormonal secretion of the adrenal cortex and thyroid. During stabilization of high arterial blood pressure at the late stages of the "after-effect", the hormonal secretion returns to normal.
Faunes, Fernando; Gundermann, Daniel G; Muñoz, Rosana; Bruno, Renzo; Larraín, Juan
2017-05-15
Metamorphosis is a classic example of developmental transition, which involves important morphological and physiological changes that prepare the organism for the adult life. It has been very well established that amphibian metamorphosis is mainly controlled by Thyroid Hormone (TH). Here, we show that the heterochronic gene Lin28 is downregulated during Xenopus laevis metamorphosis. Lin28 overexpression before activation of TH signaling delays metamorphosis and inhibits the expression of TH target genes. The delay in metamorphosis is rescued by incubation with exogenous TH, indicating that Lin28 works upstream or parallel to TH. High-throughput analyses performed before any delay on metamorphosis or change in TH signaling showed that overexpression of Lin28 reduces transcript levels of several hormones secreted by the pituitary, including the Thyroid-Stimulating Hormone (TSH), and regulates the expression of proteins involved in TH transport, metabolism and signaling, showing that Lin28 disrupts TH function at different levels. Our data demonstrates that the role of Lin28 in controlling developmental transitions is evolutionary conserved and establishes a functional interaction between Lin28 and thyroid hormone function introducing a new regulatory step in perinatal development with implications for our understanding of endocrine disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Thyrotoxicosis presenting as hypogonadism: a case of central hyperthyroidism.
Childress, R Dale; Qureshi, M Nauman; Kasparova, Meri; Oktaei, Hooman; Williams-Cleaves, Beverly; Solomon, Solomon S
2004-11-01
Herein, we present a case of central thyrotoxicosis with well-documented serial therapeutic interventions. Thyroid-stimulating hormone (TSH)-secreting pituitary tumors represent a rare cause of hyperthyroidism. It is being diagnosed more frequently with the third-generation TSH assay. Many conditions can produce normal or elevated TSH levels in combination with elevated thyroid hormone levels. The differential diagnosis includes resistance to thyroid hormone (RTH, Refetoff's syndrome), assay interference from anti-T4/T3 and heterophile antibodies, elevated or altered binding proteins, drugs affecting peripheral metabolism, and noncompliance with thyroid replacement therapy. In contrast to RTH, our patient presented had high alpha-subunit-to-TSH molar ratio, failed TSH response to thyrotropin-releasing hormone stimulation, and a large pituitary mass. Normal or high TSH in the presence of elevated T4 or T3 is a fairly common clinical scenario with many etiologic possibilities. This TSH-producing adenoma represents an unusual initial clinical presentation, as hypogonadism appeared before features of thyrotoxicosis were appreciated. This case represents the most modern therapeutic approach to the management of this rare disease. Our patient has done well on octreotide with control of thyrotoxicosis and an additional 30% shrinkage of his tumor mass.
Hoermann, Rudolf; Midgley, John E. M.; Dietrich, Johannes W.; Larisch, Rolf
2017-01-01
Background: Patient responses to levothyroxine (LT4) monotherapy vary considerably. We sought to differentiate contributions of FT4 and FT3 in controlling pituitary thyroid stimulating hormone (TSH) secretion. Methods: We retrospectively assessed the relationships between TSH and thyroid hormones in 319 patients with thyroid carcinoma through 2914 visits on various LT4 doses during follow-up for 5.5 years (median, IQR 4.2, 6.9). We also associated patient complaints with the relationships. Results: Under varying dose requirements (median 1.84 µg/kg, IQR 1.62, 2.11), patients reached TSH targets below 0.4, 0.1 or 0.01 mIU/l at 73%, 54% and 27% of visits. While intercept, slope and fit of linearity of the relationships between lnTSH and FT4/FT3 varied between individuals, gender, age, LT4 dose and deiodinase activity influenced the relationships in the cohort (all p < 0.001). Deiodinase activity impaired by LT4 dose significantly affected the lnTSH–FT4 relationship. Dose increase and reduced conversion efficiency displaced FT3–TSH equilibria. In LT4-treated patients, FT4 and FT3 contributed on average 52% versus 38%, and by interaction 10% towards TSH suppression. Symptomatic presentations (11%) accompanied reduced FT3 concentrations (–0.23 pmol/l, p = 0.001) adjusted for gender, age and BMI, their relationships being shifted towards higher TSH values at comparable FT3/FT4 levels. Conclusions: Variation in deiodinase activity and resulting FT3 levels shape the TSH–FT4 relationship in LT4-treated athyreotic patients, suggesting cascade control of pituitary TSH production by the two hormones. Consequently, measurement of FT3 and calculation of conversion efficiency may identify patients with impaired biochemistry and a resulting lack of symptomatic control. PMID:28794850
Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y
1999-10-01
The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.
Influence of thyroid hormones and transforming growth factor-β1 on cystatin C concentrations.
Kotajima, N; Yanagawa, Y; Aoki, T; Tsunekawa, K; Morimura, T; Ogiwara, T; Nara, M; Murakami, M
2010-01-01
Serum cystatin C concentrations are reported to increase in the hyperthyroid state. Serum concentrations of cystatin C and transforming growth factor-β1 (TGF-β1) were measured in patients with thyroid dysfunction, and the effects of 3,5,3'-tri-iodothyronine (T(3)) and TGF-β1 on cystatin C production in human hepatoblastoma (Hep G2) cells were studied. Serum concentrations of cystatin C and TGF-β1 were significantly higher in patients with Graves' disease compared with control subjects. Significantly positive correlations were observed between thyroid hormones and cystatin C, thyroid hormones and TGF-β1, and TGF-β1 and cystatin C in patients with thyroid dysfunction. Serum concentrations of cystatin C and TGF-β1 decreased after treatment for hyperthyroidism. Cystatin C mRNA levels and cystatin C secretion were increased by T(3) and TGF-β1 in cultured Hep G2 cells. These results suggest that serum cystatin C concentrations increase in patients with hyperthyroidism. The mechanisms for this may involve elevation of serum TGF-β1 levels and the stimulatory effects of T(3) and TGF-β1 on cystatin C production.
Christenson, W R; Becker, B D; Wahle, B S; Moore, K D; Dass, P D; Lake, S G; Van Goethem, D L; Stuart, B P; Sangha, G K; Thyssen, J H
1996-02-01
N-(4-Fluorophenyl)-N-(1-methylethyl)-2-[[5-(trifluoromethyl)-1,3, 4-thiadiazol-2-yl]oxy]acetamide (FOE 5043) is a new acetanilide-type herbicide undergoing regulatory testing. Previous work in this laboratory suggested that FOE 5043-induced reductions in serum thyroxine (T4) levels were mediated via an extrathyroidal site of action. The possibility that the alterations in circulating T4 levels were due to chemical induction of hepatic thyroid hormone metabolism was investigated. Treatment with FOE 5043 at a rate of 1000 ppm as a dietary admixture was found to significantly increase the clearance of [125I]T4 from the serum, suggesting an enhanced excretion of the hormone. In the liver, the activity of hepatic uridine glucuronosyl transferase, a major pathway of thyroid hormone biotransformation in the rat, increased in a statistically significant and dose-dependent manner; conversely, hepatic 5'-monodeiodinase activity trended downward with dose. Bile flow as well as the hepatic uptake and biliary excretion of [125I]T4 were increased following exposure to FOE 5043. Thyroidal function, as measured by the discharge of iodide ion in response to perchlorate, and pituitary function, as measured by the capacity of the pituitary to secrete thyrotropin in response to an exogenous challenge by hypothalamic thyrotropin releasing hormone, were both unchanged from the controlled response. These data suggest that the functional status of the thyroid and pituitary glands has not been altered by treatment with FOE 5043 and that reductions in circulating levels of T4 are being mediated indirectly through an increase in the biotransformation and excretion of thyroid hormone in the liver.
Pierpaoli, Walter; Lesnikov, Vladimir A
2011-02-01
Adult adipose mice, high fat diet-fed (HFD) mice, anterior hypothalamus-lesioned obese mice and genetically obese mice, were injected daily with thyrotropin releasing hormone (TRH). The treatment provoked a mobilization of triglycerides in the peripheral blood, a decrease of leptin and a loss of body weight. The weight loss did not depend on TSH-mediated stimulation of thyroid hormone secretion with consequent metabolic hyperthyroidism. The levels of blood cholesterol were not affected or even suppressed. Even at a very high dosage TRH did not affect the obesity of genetically obese mice. The ubiquitous tripeptide TRH may thus constitute a key element in the hormone-controlled regulation of body weight and fat stores in the adult and aging body.
Akieda-Asai, Sayaka; Zaima, Nobuhiro; Ikegami, Koji; Kahyo, Tomoaki; Yao, Ikuko; Hatanaka, Takahiro; Iemura, Shun-ichiro; Sugiyama, Rika; Yokozeki, Takeaki; Eishi, Yoshinobu; Koike, Morio; Ikeda, Kyoji; Chiba, Takuya; Yamaza, Haruyoshi; Shimokawa, Isao; Song, Si-Young; Matsuno, Akira; Mizutani, Akiko; Sawabe, Motoji; Chao, Moses V.; Tanaka, Masashi; Kanaho, Yasunori; Natsume, Tohru; Sugimura, Haruhiko; Date, Yukari; McBurney, Michael W.; Guarente, Leonard; Setou, Mitsutoshi
2010-01-01
Background SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. Methodology/Principal Findings Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5K)γ was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268) in PIP5Kγ and enhanced PIP5Kγ enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kγ knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kγ, PI(4,5)P2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. Conclusions/Significance Our findings indicated that the control of TSH release by the SIRT1-PIP5Kγ pathway is important for regulating the metabolism of the whole body. PMID:20668706
Builee, T L; Hatherill, J R
2004-11-01
Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.
Central regulation of the hypothalamo-pituitary-thyroid (HPT) axis: focus on clinical aspects.
Fliers, E; Boelen, A; van Trotsenburg, A S P
2014-01-01
The hypothalamus is the most prominent brain region involved in setpoint regulation of the thyroid axis. It generates the diurnal thyroid-stimulating hormone (TSH) rhythm, and it plays a central role in the adaptation of the thyroid axis to environmental factors such as caloric deprivation or infection. Many studies, including studies in human post-mortem tissue samples, have confirmed a key role for the thyrotropin-releasing hormone (TRH) neuron in the hypothalamic paraventricular nucleus (PVN) in thyroid axis regulation. In addition to their negative feedback action on TRH neurons in the hypothalamus, intrahypothalamic thyroid hormones can also modulate metabolism in adipose tissue and the liver via the autonomic nervous system. Congenital or acquired dysfunction of the hypothalamus or pituitary gland may result in central hypothyroidism (CeH). In the Netherlands, the prevalence of permanent congenital CeH as detected by neonatal screening is approximately 1 in 18000. In most neonates congenital CeH is accompanied by additional anterior pituitary hormone deficiencies, and many show clear morphological abnormalities such as a small anterior gland, a thin or absent pituitary stalk, or an ectopic posterior pituitary gland. Recently, a mutation in the immunoglobulin superfamily member 1 (IGSF1) gene was reported as a novel cause of X-linked, apparently isolated CeH occurring in neonates, children and adults. In adults, the most frequent cause of acquired CeH is a pituitary macroadenoma, usually accompanied by other pituitary hormone deficiencies. Central hyperthyroidism is a rare disorder, especially in children. In adults, it is mostly caused by a TSH-secreting pituitary adenoma. © 2014 Elsevier B.V. All rights reserved.
Influence of thyroid in nervous system growth.
Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L
2001-08-01
Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or are nervous cell specific, genes coding neurotropins or proteins involved in synaptic excitation. The use of new PMRS and MRI non-invasive techniques has enabled identification of metabolic and biochemical markers for alterations in the encephalon of untreated hypothyroid children. Even an excess of thyroid hormones during early nervous system development can cause permanent effects. Hyperthyroidism in fact initially induces accelerated maturation process including cell migration and differentiation, extension of dendritic processes and synaptogenesis but a later excess of thyroid hormones causes reduction of the total number of dendritic spikes, due to early interruption of neuron proliferation. Experimental studies and clinical research have clarified not only the correlation between nervous system maturation and thyroid function during early development stages and the certain finding from this research is that both excess and deficient thyroid hormones can cause permanent anatomo-functional alterations to the nervous system.
Hoermann, Rudolf; Midgley, John E.M.; Larisch, Rolf; Dietrich, Johannes W.
2016-01-01
Background/Aim Operating far from its equilibrium resting point, the thyroid gland requires stimulation via feedback-controlled pituitary thyrotropin (TSH) secretion to maintain adequate hormone supply. We explored and defined variations in the expression of control mechanisms and physiological responses across the euthyroid reference range. Methods We analyzed the relational equilibria between thyroid parameters defining thyroid production and thyroid conversion in a group of 271 thyroid-healthy subjects and 86 untreated patients with thyroid autoimmune disease. Results In the euthyroid controls, the FT3-FT4 (free triiodothyronine-free thyroxine) ratio was strongly associated with the FT4-TSH ratio (tau = −0.22, p < 0.001, even after correcting for spurious correlation), linking T4 to T3 conversion with TSH-standardized T4 production. Using a homeostatic model, we estimated both global deiodinase activity and maximum thyroid capacity. Both parameters were nonlinearly and inversely associated, trending in opposite directions across the euthyroid reference range. Within the panel of controls, the subgroup with a relatively lower thyroid capacity (<2.5 pmol/s) displayed lower FT4 levels, but maintained FT3 at the same concentrations as patients with higher functional and anatomical capacity. The relationships were preserved when extended to the subclinical range in the diseased sample. Conclusion The euthyroid panel does not follow a homogeneous pattern to produce random variation among thyroid hormones and TSH, but forms a heterogeneous group that progressively displays distinctly different levels of homeostatic control across the euthyroid range. This suggests a concept of relational stability with implications for definition of euthyroidism and disease classification. PMID:27843807
Li, Jiaqi; Li, Jianwei; Jiang, Shu; Yu, Ruichao; Yu, Yerong
2018-01-01
Thyrotropin-secreting adenoma (TSHoma) is rare, diagnosis and treatment are often delayed if the condition coexists with Hashimoto thyroiditis. The enlarged pituitary adenoma may eventually induce panhypopituitarism, infertility, or the compression of optic nerves and optic chiasma. This patient was a 36-year-old man who had been referred to the pituitary disease multidisciplinary team (MDT) of the West China Hospital, due to infertility. Examinations revealed pituitary thyrotropin-secreting macroadenoma. We conducted trans-sphenoidal surgery. Human chorionic gonadotropin (HCG) and human menopausal gonadotropin (HMG) were used for reproductive reconstruction after surgery. This patient successfully fathered a child. To date, the multidisciplinary team treatment of TSHoma was rare, TSHomas are often misdiagnosed as macroadenomas, because the clinical features are varied and it often takes a long time to be diagnosed. So the purpose of this case report is to attract attention to the manifestation of increased thyroid stimulating hormone (TSH) concentration and discuss MDT treatment for TSH-secreting adenoma. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Macro- and microadenoma of thyrotropin secreting pituitary tumors--two clinical cases.
Hubalewska-Hola, Alicja; Fröss, Katarzyna; Kostecka-Matyja, Marta; Sowa-Staszczak, Anna; Szybiński, Zbigniew; Huszno, Bohdan; Ptak, Marzena
2003-01-01
Thyrotropin secreting adenoma, thyrotropinoma (TSH-oma), is a rare cause of hyperthyroidism--called secondary hyperthyroidism. The hormonal profile in pituitary hyperthyroidism is characterized by a nonsuppressed TSH in the presence of high levels of free thyroid hormones (fT4, fT3) reflecting an abnormal feedback. The diagnosis of TSH-oma is often made at the stage of macroadenoma because of the aggressive nature of the tumor and due to the fact that patients are mistakenly treated for more common primary hyperthyroidism for a long time. Two cases of TSH-secreting adenoma were detected in Chair and Department of Endocrinology, Collegium Medicum of the Jagiellonian University in Krakow for the last twenty years. Case 1: 49 year old woman was admitted to the Clinic of Endocrinology in 1999 with recurring hyperthyroidism treated with surgical thyroid ablation in 1992 and thyreostatics for the previous nine years. On admission to the Clinic her thyroid panel presented with elevated free hormone levels (mainly fT3-14.8 pmol/l) and not suppressed TSH-0.7 mIU/l suggesting central hyperthyroidism. MRI scan of the pituitary gland revealed microadenoma of 5 mm in diameter. She was qualified to transsphenoidal resection of the tumor. Histopathology revealed acidophilic adenoma with positive TSH staining. Thyroid hormones 8 days after the operation suggested full effectiveness of the surgery. Case 2: 65 year old man treated for one year with L-Thyroxin because of elevated TSH (60 mIU/l) and then with thyreostatics for elevated fT3 and fT4 was admitted to the Clinic of Endocrinology in 2000 with suspected thyrotropinoma. On admission to the Clinic thyroid panel suggested hyperthyroidism with fT4-40 pmol/l, FT3-11.2 pmol/l without suppression of TSH 2.2 mIU/l. MRI scan revealed a pituitary tumor 20 x 18 x 20 mm, compressing the optic chiasm. He was administered octreotide as a preparation for the operation. The patient underwent trans-sphenoidal resection of the adenoma (histopathologically a chromophobic adenoma). The example of presented patients suggests that clinical course of the pituitary tumor producing TSH and the rate of the tumor growth may differ significantly. Surgical resection of TSH producing adenoma is the most effective therapy. It should be proceeded by octreotide administration in patients with macroadenoma.
de Carvalho, Gisah Amaral; Paz-Filho, Gilberto; Mesa Junior, Cleo; Graf, Hans
2018-06-01
Hypothyroidism is one of the most common hormone deficiencies in adults. Most of the cases, particularly those of overt hypothyroidism, are easily diagnosed and managed, with excellent outcomes if treated adequately. However, minor alterations of thyroid function determine nonspecific manifestations. Primary hypothyroidism due to chronic autoimmune thyroiditis is largely the most common cause of thyroid hormone deficiency. Central hypothyroidism is a rare and heterogeneous disorder characterized by decreased thyroid hormone secretion by an otherwise normal thyroid gland, due to lack of TSH. The standard treatment of primary and central hypothyroidism is hormone replacement therapy with levothyroxine sodium (LT4). Treatment guidelines of hypothyroidism recommend monotherapy with LT4 due to its efficacy, long-term experience, favorable side effect profile, ease of administration, good intestinal absorption, long serum half-life and low cost. Despite being easily treatable with a daily dose of LT4, many patients remain hypothyroid due to malabsorption syndromes, autoimmune gastritis, pancreatic and liver disorders, drug interactions, polymorphisms in DIO2 (iodothyronine deiodinase 2), high fiber diet, and more frequently, non-compliance to LT4 therapy. Compliance to levothyroxine treatment in hypothyroidism is compromised by daily and fasting schedule. Many adult patients remain hypothyroid due to all the above mentioned and many attempts to improve levothyroxine therapy compliance and absorption have been made. © 2018 European Society of Endocrinology.
Gondim, Jackson A; Schops, Michele; de Almeida, João Paulo C; de Albuquerque, Lucas Alverne F; Gomes, Erika; Ferraz, Tânia; Barroso, Francisca Andréa C
2010-01-01
Pituitary tumors are challenging tumors in the sellar region. Surgical approaches to the pituitary have undergone numerous refinements over the last 100 years. The introduction of the endoscope have revolutionized pituitary surgery. The aim of this study is to report the results of a consecutive series of patients undergoing pituitary surgery using a pure endoscopic endonasal approach and to evaluate the efficacy and safety of this procedure. We reviewed the data of 228 consecutive patients who underwent endonasal transsphenoidal adenoma removal over an 10-year period. Pre- and post-operative hormonal status (at least 3 months after surgery) were analyzed and compared with clinical parameters presented by the patients. Tumor removal rate, endocrinological outcomes, and complications were retrospectively assessed in 228 patients with pituitary adenomas who underwent 251 procedures between December 1998 and December 2007. There were 93 nonfunctioning adenomas, 58 growth hormone-secreting, 41 prolactin-secreting, 28 adrenocorticotropin hormone secreting, 7 FSH-LH secreting and 1 thyroid-stimulating hormone-secreting adenomas. Gross total removal was achieved in 79.3% of the cases after a median follow-up of 61.5 months. The remission results for patients with nonfunctioning adenomas was 83% and for functioning adenomas were 76.3% (70.6% for GH hormone-secreting, 85.3% for prolactin hormone-secreting, 71.4% for ACTH hormone-secreting, 85.7% for FSH-LH hormone-secreting and 100% for TSH hormone-secreting), with no recurrence at the time of the last follow-up. Post-operative complications were present in 35 (13.9%) cases. The most frequent complications were temporary and permanent diabetes insipidus (six and two cases, respectively), syndrome of inappropriate antidiuretic hormone secretion (two cases) and CSF leaks (eight cases). There was no death related to the procedure in this series. The endoscopic endonasal approach for resection of pituitary adenomas, provides acceptable results representing a safe alternative procedure to the microscopic approach. This less invasive method, associated with a small number of complications, provides excellent tumor removal rates and represents an important tool for the achievement of good results in the pituitary surgery, mainly for the complete removal of large adenomas.
Luk, Cynthia T; Kovacs, Kalman; Rotondo, Fabio; Horvath, Eva; Cusimano, Michael; Booth, Gillian L
2012-01-01
To describe the case of a patient with an unusual plurihormonal pituitary adenoma with immunoreactivity for thyroid-stimulating hormone (TSH), growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. We report the clinical, laboratory, imaging, and pathology findings of a patient symptomatic from a plurihormonal pituitary adenoma and describe her outcome after surgical treatment. A 60-year-old woman presented to the emergency department with headaches, blurry vision, fatigue, palpitations, sweaty hands, and weight loss. Her medical history was notable for hyperthyroidism, treated intermittently with methimazole. Magnetic resonance imaging disclosed a pituitary macroadenoma (2.3 by 2.2 by 2.0 cm), and preoperative blood studies revealed elevated levels of TSH at 6.11 mIU/L, free thyroxine at 3.6 ng/dL, and free triiodothyronine at 6.0 pg/mL. She underwent an uncomplicated transsphenoidal resection of the pituitary adenoma. Immunostaining of tumor tissue demonstrated positivity for not only TSH but also growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. The Ki-67 index of the tumor was estimated at 2% to 5%, and DNA repair enzyme O6-methylguanine-DNA methyltransferase immunostaining was mostly negative. Electron microscopy showed the ultrastructural phenotype of a glycoprotein-producing adenoma. Postoperatively, her symptoms and hyperthyroidism resolved. Thyrotropin-secreting pituitary adenomas are rare. Furthermore, recent reports suggest that 31% to 36% of adenomas may show evidence of secretion of multiple pituitary hormones. This case emphasizes the importance of considering pituitary causes of thyrotoxicosis and summarizes the clinical and pathology findings in a patient with a plurihormonal pituitary adenoma.
Mechanisms for pituitary tumorigenesis: the plastic pituitary
Melmed, Shlomo
2003-01-01
The anterior pituitary gland integrates the repertoire of hormonal signals controlling thyroid, adrenal, reproductive, and growth functions. The gland responds to complex central and peripheral signals by trophic hormone secretion and by undergoing reversible plastic changes in cell growth leading to hyperplasia, involution, or benign adenomas arising from functional pituitary cells. Discussed herein are the mechanisms underlying hereditary pituitary hypoplasia, reversible pituitary hyperplasia, excess hormone production, and tumor initiation and promotion associated with normal and abnormal pituitary differentiation in health and disease. PMID:14660734
The Jeremiah Metzger Lecture. Humanities in medicine: treatment of a deficiency disorder.
Hook, E. W.
1997-01-01
Al Jonson pointed out that Sir William Osler provided one of the best rationales for Humanities in Medicine (21, 65). In 1919, in one of Sir William's last lectures given just a few months prior to his death, a lecture to the British Classical Society, he discussed how the sciences and the humanities can inform each other. He compared the humanities to thyroid hormone-thyroxine had just been discovered in 1914-"a hormone...," Sir William said, "...which lubricates the wheels of life...Deprive man of the lubricants ... and ... he sinks into dementia..." And so to the Classical Society, Sir William said, "You secrete materials which do for society at large what the thyroid gland does for the individual. The humanities are the hormones..." And Al Jonsen suggested that we in Medicine reaffirm Sir William's metaphor that the humanities are the hormones which will do for medicine what they do for society at large. PMID:9108678
Suzuki, Hirohumi; Yamamoto, Toshiharu
2014-02-01
In this study, we used immunohistochemical techniques to determine the cell type of leucine-enkephalin (Leu-ENK)-immunoreactive cells in the axolotl (Ambystoma mexicanum) pituitary. Immunoreactive cells were scattered throughout the pars distalis except for the dorso-caudal portion. These cells were immuno-positive for luteinizing hormone (LH), but they were immuno-negative for adrenocorticotrophic, growth, and thyroid-stimulating hormones, as well as prolactin. Immunoelectron microscopy demonstrated that Leu-ENK-like substance and LH co-localized within the same secretory granules. Leu-ENK secreted from gonadotrophs may participate in LH secretion in an autocrine fashion, and/or may participate in the release of sex steroids together with LH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pituitary tumors. Current concepts in diagnosis and management.
Aron, D C; Tyrrell, J B; Wilson, C B
1995-01-01
Diagnostic advances have resulted in earlier and more frequent recognition of pituitary tumors. Pituitary tumors cause problems owing to the hormones they secrete or the effects of an expanding sellar mass--hypopituitarism, visual field abnormalities, and neurologic deficits. Prolactin-secreting tumors (prolactinomas), which cause amenorrhea, galactorrhea, and hypogonadism, constitute the most common type of primary pituitary tumors, followed by growth hormone-secreting tumors, which cause acromegaly, and corticotropin-secreting tumors, which cause Cushing's syndrome. Hypersecretion of thyroid-stimulating hormone, the gonadotrophins, or alpha-subunits is unusual. Nonfunctional tumors currently represent only 10% of all clinically diagnosed pituitary adenomas, and some of these are alpha-subunit-secreting adenomas. Insights into the pathogenesis and biologic behavior of these usually benign tumors have been gained from genetic studies. We review some of the recent advances and salient features of the diagnosis and management of pituitary tumors, including biochemical and radiologic diagnosis, transsphenoidal surgery, radiation therapy, and medical therapy. Each type of lesion requires a comprehensive but individualized treatment approach, and regardless of the mode of therapy, careful follow-up is essential. Images PMID:7747500
Caglar, Asli Sezgin; Kapucu, Aysegul; Dar, Kadriye Akgun; Ozkaya, Hande Mefkure; Caglar, Erkan; Ince, Haluk; Kadioglu, Pinar
2015-08-01
The aim of this study is to evaluate aromatase expression in prolactin (PRL), thyroid stimulating hormone (TSH), and growth hormone (GH) secreting cells. Nontumoral human pituitary specimens were obtained from autopsy samples. Aromatase co-expression was determined by double immunohistochemical staining and assessed using H scores. H scores for GH-aromatase co-expression (GH-aromatase), TSH-aromatase co-expression (TSH-aromatase), and PRL-aromatase co-expression (PRL-aromatase) were 83.1 ± 13.1, 95.6 ± 16.1, and 83.7 ± 14.5, respectively. TSH producing cells exhibited the highest H score for co-expression of aromatase (p < 0.001). There was no gender difference in terms of H scores for aromatase expression and double immunohistochemical staining results (p > 0.05 for all). There was a negative correlation between the H scores for aromatase and PRL-aromatase, GH-aromatase and TSH-aromatase, respectively (r = -0.592, p < 0.001; r = -0.593, p < 0.001; r = -0.650, p < 0.001, respectively). Also, H scores for aromatase co-expression of each hormone were negatively correlated with the H scores for the corresponding hormone (r = -0.503, p < 0.001 for PRL-aromatase and PRL; r = -0.470, p < 0.001 for GH-aromatase, and GH; r = -0.641, p < 0.001 for TSH-aromatase and TSH). H scores for mean aromatase, GH-aromatase, TSH-aromatase were invariant of age (p > 0.05 for all). Age was negatively correlated with PRL-aromatase H score (r = -0.373, p = 0.008). Our study demonstrated significant aromatase co-expression in PRL, GH, and TSH secreting cells of the human anterior pituitary gland. The mutual paracrinal regulation between aromatase and three adenohypophyseal hormones indicates that aromatase may have a regulatory role on the synthesis and secretion of these hormones.
Sasaki, S; Nakamura, H; Tagami, T; Miyoshi, Y; Nogimori, T; Mitsuma, T; Imura, H
1993-05-01
Point mutations in the human T3 receptor-beta (TR beta) gene causing single amino acid substitutions have been identified in several different kindreds with generalized resistance to thyroid hormone. Until now, no study has been reported on the TR gene in cases of pituitary resistance (PRTH). In the present study, we analyzed the TR beta gene in a 30-yr-old Japanese female with PRTH. She exhibited clinical features of hyperthyroidism, elevated serum thyroid hormone levels accompanied by inappropriately increased secretion of TSH, mildly elevated basal metabolic rate, and increased urinary excretion of hydroxyproline. No pituitary tumor was detected. DNA fragments of exons 3-8 of the genomic TR beta gene were generated by the polymerase chain reaction and analyzed by a single stranded conformation polymorphism method. Exon 7 of the patient's TR beta gene showed an abnormal band, suggesting the existence of mutation(s). By subcloning and sequencing the DNA, a point mutation was identified in one allele at nucleotide 1297 (C to T), which altered the 333rd amino acid, arginine, to tryptophan. Neither of her apparently normal parents had any mutations of the TR beta gene. In vitro translation products of the mutant TR beta gene showed remarkably decreased T3-binding activity (Ka, 2.1 x 10(8) M-1; normal TR beta Ka, 1.1 x 10(10) M-1). Since the molecular defect detected in a patient with PRTH is similar to that seen in subjects with generalized resistance to thyroid hormone, both types of the syndrome may represent a continuous spectrum of the same etiological defect with variable tissue resistance to thyroid hormone.
Ikegami, Keisuke; Yoshimura, Takashi
2017-10-01
Thyroid hormones (TH) are important for development, growth, and metabolism. It is also clear that the synthesis and secretion of TH are regulated by the hypothalamic-pituitary-thyroid (HPT) axis. Animal models have helped advance our understanding of the roles and regulatory mechanisms of TH. The animals' bodies develop through coordinated timing of cell division and differentiation. Studies of frog metamorphosis led to the discovery of TH and their role in development. However, to adapt to rhythmic environmental changes, animals also developed various endocrine rhythms. Studies of rodents clarified the neural and molecular mechanisms underlying the circadian regulation of the HPT axis. Moreover, birds have a sophisticated seasonal adaptation mechanism, and recent studies of quail revealed unexpected roles for thyroid-stimulating hormone (TSH) and TH in the seasonal regulation of reproduction. Interestingly, this mechanism is conserved in mammals. Thus, we review how animal studies have shaped our general understanding of the HPT axis in relation to biological rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Pharmacological approaches for correction of thyroid dysfunctions in diabetes mellitus].
Shpakov, A O
2017-05-01
Thyroid diseases are closely associated with the development of types 1 and 2 diabetes mellitus (DM), and as a consequence, the development of effective approaches for their treatment is one of the urgent problems of endocrinology. Traditionally, thyroid hormones (TH) are used to correct functions of the thyroid system. However, they are characterized by many side effects, such as their negative effect on the cardiovascular system as well as the ability of TH to enhance insulin resistance and to disturb insulin-producing function of pancreas, exacerbating thereby diabetic pathology. Therefore, the analogues of TH, selective for certain types of TH receptors, that do not have these side effects, are being developed. The peptide and low-molecular weight regulators of thyroid-stimulating hormone receptor, which regulate the activity of the thyroid axis at the stage of TH synthesis and secretion in thyrocytes, are being created. Systemic and intranasal administration of insulin, metformin therapy and drugs with antioxidant activity are effective for the treatment of thyroid pathology in types 1 and 2 DM. In the review, the literature data and the results of own investigations on pharmacological approaches for the treatment and prevention of thyroid diseases in patients with types 1 and 2 DM are summarized and analyzed.
Carlson, H E; Linfoot, J A; Braunstein, G D; Kovacs, K; Young, R T
1983-05-01
A 47-year-old woman with acromegaly and hyperthyroidism was found to have an inappropriately normal serum thyrotropin level (1.5 to 2.5 microU/ml) that responded poorly to thyrotropin-releasing hormone but showed partial responsiveness to changes in circulating thyroid hormones. Serum alpha-subunit levels were high-normal and showed a normal response to thyrotropin-releasing hormone. Growth hormone and thyrotropin hypersecretion persisted despite radiotherapy and bromocriptine treatment. Selective trans-sphenoidal removal of a pituitary adenoma led to normalization of both growth hormone and thyrotropin levels. Both thyrotropes and somatotropes were demonstrated in the adenoma by the immunoperoxidase technique and electron microscopy.
Brown, Janine L; Somerville, Malia; Riddle, Heidi S; Keele, Mike; Duer, Connie K; Freeman, Elizabeth W
2007-04-01
Concentrations of serum testosterone, cortisol, thyroxine (free and total T4), triiodothyronine (free and total T3) and thyroid stimulating hormone (TSH) were measured to assess adrenal and thyroid function as they relate to testicular activity and musth in captive elephants. Blood samples were collected approximately weekly from Asian (n=8) and African (n=12) bulls at seven facilities for periods of 4 months to 9.5 years. Age ranges at study onset were 8-50 years for Asian and 10-21 years for African elephants. Based on keeper logs, seven Asian and three African bulls exhibited behavioral and/or physical (temporal gland secretion, TGS, or urine dribbling, UD) signs of musth, which lasted 2.8+/-2.5 months in duration. Serum testosterone was elevated during musth, with concentrations often exceeding 100 ng/ml. Patterns of testosterone secretion and musth varied among bulls with no evidence of seasonality (P>0.05). Only three bulls at one facility exhibited classic, well-defined yearly musth cycles. Others exhibited more irregular cycles, with musth symptoms often occurring more than once a year. A number of bulls (1 Asian, 9 African) had consistently low testosterone (<10 ng/ml) and never exhibited significant TGS or UD. At facilities with multiple bulls (n=3), testosterone concentrations were highest in the oldest, most dominant male. There were positive correlations between testosterone and cortisol for six of seven Asian and all three African males that exhibited musth (range, r=0.23-0.52; P<0.05), but no significant correlations for bulls that did not (P>0.05). For the three bulls that exhibited yearly musth cycles, TSH was positively correlated (range, r=0.22-0.28; P<0.05) and thyroid hormones (T3, T4) were negatively correlated (range, r=-0.25 to -0.47; P<0.05) to testosterone secretion. In the remaining bulls, there were no clear relationships between thyroid activity and musth status. Overall mean testosterone and cortisol concentrations increased with age for all bulls combined, whereas thyroid activity declined. In summary, a number of bulls did not exhibit musth despite being of adequate physical maturity. Cortisol and testosterone were correlated in most bulls exhibiting musth, indicating a possible role for the adrenal gland in modulating or facilitating downstream responses. Data were generally inconclusive as to a role for thyroid hormones in male reproduction, but the finding of discrete patterns in bulls showing clear testosterone cycles suggests they may facilitate expression or control of musth in some individuals.
Differential expression of connexin 43 in human autoimmune thyroid disease.
Jiang, Xiao-Yan; Feng, Xiao-Hong; Li, Guo-Yan; Zhao, Qian; Yin, Hui-Qing
2010-05-01
Gap junctions provide a pathway for cell-to-cell communication. Reduced thyroid epithelial cell-cell communication has been reported in some animal models of autoimmune thyroid disease. In order to assess whether this change was similar to human autoimmune thyroid disease, we identified some connexin proteins and their corresponding mRNA in human thyroid gland. The aim of our study was to explore the expression of connexin 43 (Cx43) in the thyroid gland from normal and diseased human thyroid tissue by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). The expression levels of Cx43 in Grave's disease were significantly increased in comparison with those of normal thyroid tissue. There was a significant decrease in expression of Cx43 in Hashimoto's thyroiditis, compared with normal thyroid tissue. These data indicate that changes of Cx43 expression in human autoimmune thyroid disease were associated with variations in thyroid function and hormone secretion. 2009 Elsevier GmbH. All rights reserved.
Morillo-Bernal, Jesús; Fernández-Santos, José M; Utrilla, José C; de Miguel, Manuel; García-Marín, Rocío; Martín-Lacave, Inés
2009-01-01
Thyroid C cells, or parafollicular cells, are mainly known for producing calcitonin, a hormone involved in calcium homeostasis with hypocalcemic and hypophosphatemic effects. Classically, the main endocrine activity of this cell population has been believed to be restricted to its roles in serum calcium and bone metabolism. Nonetheless, in the last few years evidence has been accumulating in the literature with regard to local regulatory peptides secreted by C cells, such as somatostatin, ghrelin, thyrotropin releasing hormone or the recently described cocaine- and amphetamine-related transcript, which could modify thyroid function. As thyrotropin is the main hormone controlling the hypothalamic-pituitary-thyroid axis and, accordingly, thyroid function, we have examined the functional expression of the thyrotropin receptor in C-cell lines and in thyroid tissues. We have found that rat and human C-cell lines express the thyrotropin receptor at both mRNA and protein levels. Furthermore, incubation of C cells with thyrotropin resulted in a 10-fold inhibition of thyrotropin-receptor expression, and a concomitant decrease of the steady-state mRNA levels for calcitonin and calcitonin gene-related peptide determined by quantitative real-time PCR was found. Finally, thyrotropin receptor expression by C cells was confirmed at protein level in both normal and pathological thyroid tissues by immunohistochemistry and immunofluorescence. These results confirm that C cells, under regulation by thyrotropin, are involved in the hypothalamic-pituitary-thyroid axis and suggest a putative role in local fine-tuning of follicular cell activity. PMID:19493188
Majumdar, Jayjeet; Chakraborty, Pratip; Mitra, Analava; Sarkar, Nirmal Kumar; Sarkar, Supriti
2017-07-01
Fenugreek ( Trigonella foenum graecum) , a medicinal herb with potent antihyperglycaemic and hypoglycaemic effects, is used to treat diabetes. This study is aimed to explore the interaction of fenugreek seed extract (FSE) and HPT (hypothalamic-pituitary-thyroid) axis in context of leptin secretion which have important role in normal and type-1 diabetic subjects. FSE (confirmed to contain trigonelline, diosgenin, 4 hydroxyisoleucine) was gavaged (0.25 gm/kg body weight/day) to normal and alloxan-induced type-1 diabetic rats for 4 weeks. Expression of hypothalamic prepro-TRH (Thyrotropin releasing hormone) mRNA, serum levels of TRH, TSH (Thyroid stimulating hormone), fT 3 , fT 4 , insulin, leptin, glucose; thyroperoxidase activity and growth of thyroid gland, food intake, adiposity index were also studied FSE significantly down regulated prepro-TRH mRNA expression; decreased serum TRH, TSH, fT 3 , fT 4 levels, and regressed thyroid gland in FSE-fed normal and diabetic rats than those observed in normal diet-fed control and diabetic rats. FSE decreased (p<0.005-0.001) adiposity index and leptin secretion, increased food intake and body weight in all FSE-fed rats. FSE improved insulin secretion, decreased glucose level but impaired HPT axis in diabetic rats, indicating insulin-independent central hypothyroidism. Results suggested that the dominant signal to hypothalamus suppressing HPT axis is the fall in leptin level which i resulted from decreased adiposity index following FSE feeding. Fenugreek simultaneously having hypoglycaemic and hypothyroidal actions raises questions whether it can be safely used to treat diabetes and/or hyperthyroidism as was suggested by many workers. © Georg Thieme Verlag KG Stuttgart · New York.
Survival and growth in a woman with untreated hypothalamic panhypopituitarism of 21 years' duration.
Tolis, G; Cruess, S; Goldstein, M; Friesen, H G; Rochefort, J G
1974-09-21
A 29-year-old woman with evidence of a craniopharyngioma and documented panhypopituitarism is described. Clinical and laboratory evaluation revealed deficiencies of follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone, growth hormone, prolactin, adrenocorticotropic hormone and antidiuretic hormone. Prompt release of several pituitary hormones was noticed after administration of the hypothalamic releasing hormones FSH/LH-RF and thyrotropin-releasing hormone, whereas insulin-induced hypoglycemia, levodopa, chlorpromazine and clomiphene citrate, all of which act at the level of the hypothalamus, did not alter basal pituitary secretion. The patient's height of 60 inches, despite panhypopituitarism, and the interpretation of the above data are discussed in the light of current concepts regarding the dynamics of the hypothalamic-hypophyseal system.
Survival and growth in a woman with untreated hypothalamic panhypopituitarism of 21 years' duration
Tolis, G.; Cruess, S.; Goldstein, M.; Friesen, H. G.; Rochefort, J. G.
1974-01-01
A 29-year-old woman with evidence of a craniopharyngioma and documented panhypopituitarism is described. Clinical and laboratory evaluation revealed deficiencies of follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone, growth hormone, prolactin, adrenocorticotropic hormone and antidiuretic hormone. Prompt release of several pituitary hormones was noticed after administration of the hypothalamic releasing hormones FSH/LH-RF and thyrotropin-releasing hormone, whereas insulin-induced hypoglycemia, levodopa, chlorpromazine and clomiphene citrate, all of which act at the level of the hypothalamus, did not alter basal pituitary secretion. The patient's height of 60 inches, despite panhypopituitarism, and the interpretation of the above data are discussed in the light of current concepts regarding the dynamics of the hypothalamic-hypophyseal system. ImagesFIG. 1 PMID:4370418
Hermus, A; Ross, H; van Liessum, P; Naber, A; Smals, A; Kloppenborg, P
1991-06-01
The case histories of three patients with hyperthyroidism due to overproduction of thyroid-stimulating hormone (TSH) by the pituitary gland are described. In the first patient treatment with the T3-metabolite 3,5,3'-triiodothyroacetic acid (TRIAC) led to complete clinical and biochemical normalization. In the second patient treatment with the dopaminergic agonist bromocriptine led to a temporal amelioration of hyperthyroidism. In the third patient, who was the only one with a proven pituitary adenoma, hypersecretion of TSH could be controlled by administration of the somatostatin analogue octreotide. It is emphasized that patients with this disorder should preferably not be treated with thyrostatic drugs, radioactive iodine or thyroid surgery. The success rate of these treatment modalities is lower than normal, they may lead to an increase of goiter size, and they potentially may promote growth or development of a TSH-producing adenoma. Treatment should be aimed at diminishing TSH hypersecretion.
Thyroid hormone deiodination in birds.
Darras, Veerle M; Verhoelst, Carla H J; Reyns, Geert E; Kühn, Eduard R; Van der Geyten, Serge
2006-01-01
Because the avian thyroid gland secretes almost exclusively thyroxine (T4), the availability of receptor-active 3,3',5-triiodothyronine (T3) has to be regulated in the extrathyroidal tissues, essentially by deiodination. Like mammals and most other vertebrates, birds possess three types of iodothyronine deiodinases (D1, D2, and D3) that closely resemble their mammalian counterparts, as shown by biochemical characterization studies in several avian species and by cDNA cloning of the three enzymes in chicken. The tissue distribution of these deiodinases has been studied in detail in chicken at the level of activity and mRNA expression. More recently specific antibodies were used to study cellular localization at the protein level. The abundance and distribution of the different deiodinases shows substantial variation during embryonic development and postnatal life. Deiodination in birds is subject to regulation by hormones from several endocrine axes, including thyroid hormones, growth hormone and glucocorticoids. In addition, deiodination is also influenced by external parameters, such as nutrition, temperature, light and also a number of environmental pollutants. The balance between the outer and inner ring deiodination resulting from the impact of all these factors ultimately controls T3 availability.
Lovejoy, J C; Smith, S R; Bray, G A; Veldhuis, J D; Rood, J C; Tulley, R
1997-12-01
Although triiodothyronine (T3) exerts major regulatory actions in both animals and humans, most clinical studies of T3 administration have been relatively short-term. The present study examined the effects of more than 2 months (63 days) of low-dose T3 treatment on overnight pulsatile growth hormone (GH) secretion, short-term insulin secretion, and of sex steroid levels in seven healthy, lean men studied at an inpatient metabolic unit. At baseline, there were strong correlations between sex hormone-binding globulin (SHBG) and several measures of GH production, including total GH production (r = .99), GH interburst interval (r = -.75), and GH mass (r = .82). SHBG was also inversely correlated with basal insulin secretion (r = -.74). There was a 42% increase in serum levels of total testosterone (18.5 +/- 1.3 to 26.3 +/- 1.8 nmol/L, P = .005) and a 150% increase in SHBG (18.0 +/- 2.2 to 44.9 +/- 7.0 nmol/L, P = .008) following T3 treatment. Estradiol and free testosterone levels were unchanged by treatment, although free testosterone decreased from 142.8 +/- 18.4 to 137.3 +/- 19.5 pmol/L. T3 treatment significantly reduced the GH interburst interval (P < .05) and produced slight increases in the measures of GH secretion. There were no statistically significant effects of T3 treatment on insulin secretion, although insulin peak amplitude, mass secreted per burst, and total production all decreased. We conclude that experimentally induced T3 excess in healthy men produces significant and sustained changes in sex hormone levels and GH secretion. Furthermore, there are strong associations between SHBG and both GH and insulin secretion independent of thyroid hormone excess that require additional study.
Maturation of human hypothalamic-pituitary-thyroid function and control.
Fisher, D A; Nelson, J C; Carlton, E I; Wilcox, R B
2000-03-01
Measurements of serum thyrotropin (TSH) and free thyroxine (T4) concentrations were conducted in infants, children, and adults to assess maturation of the hypothalamic-pituitary-thyroid (HPT) feedback control axis. Serum free T4 and TSH concentration data were collated for cord blood of the midgestation fetus, for premature and term infants, and for peripheral blood from newborn infants, children, and adults. Mean values were plotted on a nomogram developed to characterize the reference ranges of the normal axis quantitatively based on data from 522 healthy subjects, 2 weeks to 54 years of age; 83 untreated hypothyroid patients; and 116 untreated hyperthyroid patients. Samples for 75 patients with thyroid hormone resistance were also plotted. The characterized pattern of HPT maturation included a progressive decrease in the TSH/free T4 ratio with age, from 15 in the midterm fetus, to 4.7 in term infants, and 0.97 in adults. Maturation plotted on the nomogram was complex, suggesting increasing hypothalamic-pituitary T4 resistance during fetal development, probably secondary to increasing thyrotropin-releasing hormone (TRH) secretion, the marked, cold-stimulated TRH-TSH surge at birth with reequilibration by 2-20 weeks, and a final maturation phase characterized by a decreasing serum TSH with minimal change in free T4 concentration during childhood and adolescence. The postnatal maturative phase during childhood and adolescence correlates with the progressive decrease in thyroxine secretion rate (on a microg/kg per day basis) and metabolic rate and probably reflects decreasing TRH secretion.
Kühn, E R; Delmotte, N M; Darras, V M
1983-06-01
The presence and circadian rhythmicity of thyroid hormones was studied in plasma and the thyroid gland of male Rana ridibunda before and during hibernation. Hibernating January frogs do have a lower T3 and T4 content of their thyroid gland whereas plasma levels of T3 are maintained and of T4 increased compared to fed September or October frogs. It seems likely that the increased photoperiod in January will be responsible for this increased T4 secretion, since controlled laboratory experiments performed in December did not reveal any influence of low temperature on circulating T3 or T4 levels. Also feeding does not influence circulating levels and thyroid content of thyroid hormones in frogs kept at room temperature during the month of January. A circadian rhythmicity of T3 and T4 in the thyroid gland is present in fed October frogs and in non fed December frogs acclimated at 5 degrees C for 12 days with an acrophase for T3 at approximately 1500 h and for T4 at around 1900 h, whereas in plasma only T3 does have circadian variations (acrophase about midnight) but not T4. When December frogs are acclimated to room temperature for 12 days, frogs are active again, but do not eat and have a lower body weight than frogs hibernating at 5 degrees C. Their T3 content of the thyroid gland has disappeared, but T4 thyroid content and plasma levels of T3 and T4 are maintained. As in hibernating frogs, no circadian variations in T4 plasma concentrations are present whereas the circadian thyroid T4 rhythm disappears. At the same time a dampening in rhythmicity for plasma T3 as judged by the significantly lower amplitude occurs. It is concluded that the persistence of circulating levels of thyroid hormones and of a circadian cyclicity for T3 in plasma in non feeding hibernating frogs may reflect the special metabolic state e.g. availability of food reserves in these animals.
Aydin, Nazan; Ramazanoglu, Leyla; Onen, Mehmet Resid; Yilmaz, Ilhan; Aydin, Mehmet Dumlu; Altinkaynak, Konca; Calik, Muhammet; Kanat, Ayhan
2017-11-01
Hypothyroidism is defined as an underactive thyroid gland and one of the reasons for inadequate stimulation of thyroid is dysfunction of the hormone regulating brain centers. Olfaction disorders have been considered as a problem in hypothyroidism. It has been hypothesized that olfaction disorders reduce olfactory stimulation and diminished olfactory stimulus may trigger hypothyroidism. In this study, an examination was made of the thyroid hormone levels, histologic features of thyroid glands, and vagal nerve network degradation in an experimental animal model of olfactory bulbectomy (OBX). A total of 25 rats were divided into control (n = 5), SHAM (n = 5), and OBX (n = 15) groups and were followed up for 8 weeks. Thyroid hormone levels were measured before (1 time), during the experiment (1 time/month) and the animals were decapitated. The olfactory bulbs, dorsal motor nucleus of the vagal nerves, and thyroid gland sections were stained with hematoxylin-eosin and tunnel dye to determine OBX-related damage. Specimens were analyzed stereologically to evaluate neuron density of the vagal nucleus and hormone-filled total follicle volume (TFV) per cubic centimeter, and these were statistically compared with thyroid hormone levels. The mean degenerated neuron density of the vagal nucleus was 21 ± 8/mm 3 . TFV and triiodothyronine (T 3 )-thyroxine (T 4 ) levels were measured as TFV, (312 ± 91) × 10 6 μm 3 /cm 3 ; T 3 , 105 μg/dl; T 4 , 1.89 μg/dl in control (group I). Mean degenerated neuron density, 56 ± 12/mm 3 ; TFV, (284 ± 69) × 10 6 μm 3 /cm 3 ; T 3 , 103 μg/dl; T 4 , 1.85 μg/dl in SHAM (group II). Mean degenerated neuron density, 235 ± 64/mm 3 ; TFV, (193 ± 34) × 10 6 μm 3 /cm 3 ; T 3 , 86 μg/dl; T 4 , 1.37 μg/dl in the OBX group (group III). The TFV were significantly diminished because of apoptotic degradation in olfactory bulbs and thyroid gland with decreased T 3 - T 4 levels with increased thyroid-stimulating hormone levels in OBX-applied animals of subarachnoid hemorrhage (P < 0.005). The results suggested that diminished hormone secretion as a result of thyroid gland degradation results in both olfaction loss and vagal complex degeneration in OBX animals, contrary to the common belief that anosmia results from hypothyroidism. Copyright © 2017 Elsevier Inc. All rights reserved.
Vasilopoulou, E; Loubière, L S; Lash, G E; Ohizua, O; McCabe, C J; Franklyn, J A; Kilby, M D; Chan, S Y
2014-06-01
Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. This laboratory-based study used human decidua from first (8-11 weeks; n = 18) and second (12-16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10-) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel(®) was evaluated. Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different cell isolates were unaffected by T3 so changes in cell numbers could not account for any observed effects. In the first trimester, T3 decreased VEGF-A secretion by total decidual cells (P < 0.05) and increased angiopoietin-2 secretion by stromal-depleted cells (P < 0.05) but in the second trimester total decidual cells showed only increased angiogenin secretion (P < 0.05). In the first trimester, T3 reduced IL-10 secretion by total decidual cells (P < 0.05), and reduced granulocyte macrophage colony stimulating factor (P < 0.01), IL-8 (P < 0.05), IL-10 (P < 0.01), IL-1β (P < 0.05) and monocyte chemotactic protein -1 (P < 0.001) secretion by macrophages, but increased tumour necrosis factor-α secretion by stromal-depleted cells (P < 0.05) and increased IL-6 by uNK cells (P < 0.05). In contrast, in the second trimester T3 increased IL-10 secretion by total decidual cells (P < 0.01) but did not affect cytokine secretion by uNK cells and macrophages. Conditioned media from first trimester T3-treated total decidual cells and macrophages did not alter EVT invasion compared with untreated controls. Thus, treatment of decidual cells with T3 resulted in changes in both angiogenic growth factor and cytokine secretion in a cell type-specific and gestational age-dependent manner, with first trimester decidual macrophages being the most responsive to T3 treatment, but these changes in decidual cell secretome did not affect EVT invasion in vitro. Our results are based on in vitro findings and we cannot be certain if a similar response occurs in human pregnancy in vivo. Optimal maternal thyroid hormone concentrations could play a critical role in maintaining a balanced inflammatory response in early pregnancy to prevent fetal immune rejection and promote normal placental development through the regulation of the secretion of critical cytokines and angiogenic growth factors by human decidual cells. Our data suggest that there is an ontogenically determined regulatory 'switch' in T3 responsiveness between the first and second trimesters, and support the notion that the timely and early correction of maternal thyroid dysfunction is critical in influencing pregnancy outcomes. This study is funded by Wellbeing of Women (RG/1082/09 to S.Y.C., M.D.K., J.A.F., L.S.L., G.E.L.) and Action Medical Research - Henry Smith Charity (SP4335 to M.D.K., S.Y.C., L.S.L., J.A.F.). The authors have no conflicts of interest to disclose.
Vasilopoulou, E.; Loubière, L.S.; Lash, G.E.; Ohizua, O.; McCabe, C.J.; Franklyn, J.A.; Kilby, M.D.; Chan, S.Y.
2014-01-01
STUDY QUESTION Does triiodothyronine (T3) regulate the secretion of angiogenic growth factors and cytokines by human decidual cells isolated from early pregnancy? SUMMARY ANSWER T3 modulates the secretion of specific angiogenic growth factors and cytokines, with different regulatory patterns observed amongst various isolated subpopulations of human decidual cells and with a distinct change between the first and second trimesters of pregnancy. WHAT IS KNOWN ALREADY Maternal thyroid dysfunction during early pregnancy is associated with complications of malplacentation including miscarriage and pre-eclampsia. T3 regulates the proliferation and apoptosis of fetal-derived trophoblasts, as well as promotes the invasive capability of extravillous trophoblasts (EVT). We hypothesize that T3 may also have a direct impact on human maternal-derived decidual cells, which are known to exert paracrine regulation upon trophoblast behaviour and vascular development at the uteroplacental interface. STUDY DESIGN, SIZE, DURATION This laboratory-based study used human decidua from first (8–11 weeks; n = 18) and second (12–16 weeks; n = 12) trimester surgical terminations of apparently uncomplicated pregnancies. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary cultures of total decidual cells, and immunomagnetic bead-isolated populations of stromal-enriched (CD10+) and stromal-depleted (CD10−) cells, uterine natural killer cells (uNK cells; CD56+) and macrophages (CD14+) were assessed for thyroid hormone receptors and transporters by immunocytochemistry. Each cell population was treated with T3 (0, 1, 10, 100 nM) and assessments were made of cell viability (MTT assay) and angiogenic growth factor and cytokine secretion (immunomediated assay). The effect of decidual cell-conditioned media on EVT invasion through Matrigel® was evaluated. MAIN RESULTS AND THE ROLE OF CHANCE Immunocytochemistry showed the expression of thyroid hormone transporters (MCT8, MCT10) and receptors (TRα1, TRβ1) required for thyroid hormone-responsiveness in uNK cells and macrophages from the first trimester. The viability of total decidual cells and the different cell isolates were unaffected by T3 so changes in cell numbers could not account for any observed effects. In the first trimester, T3 decreased VEGF-A secretion by total decidual cells (P < 0.05) and increased angiopoietin-2 secretion by stromal-depleted cells (P < 0.05) but in the second trimester total decidual cells showed only increased angiogenin secretion (P < 0.05). In the first trimester, T3 reduced IL-10 secretion by total decidual cells (P < 0.05), and reduced granulocyte macrophage colony stimulating factor (P < 0.01), IL-8 (P < 0.05), IL-10 (P < 0.01), IL-1β (P < 0.05) and monocyte chemotactic protein -1 (P < 0.001) secretion by macrophages, but increased tumour necrosis factor-α secretion by stromal-depleted cells (P < 0.05) and increased IL-6 by uNK cells (P < 0.05). In contrast, in the second trimester T3 increased IL-10 secretion by total decidual cells (P < 0.01) but did not affect cytokine secretion by uNK cells and macrophages. Conditioned media from first trimester T3-treated total decidual cells and macrophages did not alter EVT invasion compared with untreated controls. Thus, treatment of decidual cells with T3 resulted in changes in both angiogenic growth factor and cytokine secretion in a cell type-specific and gestational age-dependent manner, with first trimester decidual macrophages being the most responsive to T3 treatment, but these changes in decidual cell secretome did not affect EVT invasion in vitro. LIMITATIONS, REASONS FOR CAUTION Our results are based on in vitro findings and we cannot be certain if a similar response occurs in human pregnancy in vivo. WIDER IMPLICATIONS OF THE FINDINGS Optimal maternal thyroid hormone concentrations could play a critical role in maintaining a balanced inflammatory response in early pregnancy to prevent fetal immune rejection and promote normal placental development through the regulation of the secretion of critical cytokines and angiogenic growth factors by human decidual cells. Our data suggest that there is an ontogenically determined regulatory ‘switch’ in T3 responsiveness between the first and second trimesters, and support the notion that the timely and early correction of maternal thyroid dysfunction is critical in influencing pregnancy outcomes. STUDY FUNDING/COMPETING INTEREST(S) This study is funded by Wellbeing of Women (RG/1082/09 to S.Y.C., M.D.K., J.A.F., L.S.L., G.E.L.) and Action Medical Research – Henry Smith Charity (SP4335 to M.D.K., S.Y.C., L.S.L., J.A.F.). The authors have no conflicts of interest to disclose. PMID:24626803
Voigt, Wieland; Maher, Gita; Wolf, Hans-Heinrich; Schmoll, Hans-Joachim
2007-06-01
Human chorionic gonadotropin (hCG)-induced hyperthyroidism represents a rare paraneoplastic syndrome in hCG-secreting testicular cancer. In most cases, this hyperthyroidism remains subclinical. hCG belongs to the family of glycoprotein hormones with structural homology to thyroid- stimulating hormone (TSH). The thyrotropic potency and thereby the degree of cross reactivity of hCG is determined by several factors, such as content of sialic acid or lack of the C-terminal tail. In the absence of clinical signs of hyperthyroidism, treatment usually consists of specific antitumor therapy which will result in normalization of thyroid function if hCG declines. Where there are clinical signs of hyperthyroidism, overlapping thyreostatic treatment is recommended. Here, we report of a young man presenting biochemical signs of hyperthyroidism without clinical signs at the time of diagnosis of non-seminomatous germ cell cancer. Beta-hCG initially exceeded 1,000,000 IU/ml and declined close to normal at the end of cancer treatment. Concomitantly, thyroid hormones returned to the normal range without any thyreostatic therapy. We observed a significant correlation of neta-hCG and thyroid hormones in linear regression analysis (r2 = 0.98, p< 0.05). A concise overview of potential mechanisms of hCG-induced hyperthyroidism in germ cell cancer but also in pregnancy is given and the case discussed according to the cited literature.
Datta, M; Roy, P; Banerjee, J; Bhattacharya, S
1998-09-01
Blood samples collected from 29 women (aged between 19 and 35 years) during the luteal phase of the menstrual cycle (between days 18 and 23 of the cycle) showed that deficiency in thyroid hormone level is related to a decrease in progesterone (P4) secretion. To observe the effect of thyroid hormone on human ovarian luteal cells, 3,5,3'-triiodothyronine (T3; 125 ng/ml) was added to luteal cells in vitro. T3 significantly stimulated progesterone release (P < 0.01) from luteal cells and this could be blocked by cycloheximide, indicating a protein mediator for the T3 effect. The T3 stimulatory effect was inhibited by anti-T3 antibody suggesting specificity of T3 action. Addition of T3 caused a more than threefold increase in cellular protein synthesis which was inhibited by cycloheximide. Preparation of partially purified thyroid hormone-induced factor (TIF) (from peak II of Sephadex G 100 chromatography of T3-incubated cells), and its addition to luteal cell incubations caused a significant increase in P4 release (P < 0.05). Incubation with trypsin or treatment with heat destroyed the stimulatory effect of TIF on P4 release, indicating the proteinaceous nature of TIF. Purified thyroid hormone-induced protein. (TIP) from rat granulosa cells and fish ovarian follicles greatly stimulated P4 release from human luteal cells. These results suggest that T3 stimulation of P4 release from human luteal cells is not direct, but is mediated through a putative protein factor, which appears to be a protein conserved through evolution as far as its biological activity is concerned.
Chan, Jean L; Mantzoros, Christos S
Leptin is an adipocyte-secreted hormone that plays a key part in energy homoeostasis. Advances in leptin physiology have established that the main role of this hormone is to signal energy availability in energy-deficient states. Studies in animals and human beings have shown that low concentrations of leptin are fully or partly responsible for starvation-induced changes in neuroendocrine axes, including low reproductive, thyroid, and insulin-like growth factor (IGF) hormones. Disease states such as exercise-induced hypothalamic amenorrhoea and anorexia nervosa are also associated with low concentrations of leptin and a similar spectrum of neuroendocrine abnormalities. We have recently shown in an interventional, proof-of-concept study that leptin can restore ovulatory menstrual cycles and improve reproductive, thyroid, and IGF hormones and bone markers in hypothalamic amenorrhoea. Further studies are warranted to establish the safety and effectiveness of leptin for the infertility and osteoporosis associated with hypothalamic amenorrhoea, and to clarify its role in anorexia nervosa.
Change in permeability of the plasma membrane of blood cells in irradiated animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevchenko, A.S.; Kobyalko, V.O.; Lazarev, N.M.
1994-11-01
The Chernobyl nuclear disaster showed the exposure of the thyroid gland to radioactive iodine is an important factor of radiation damage to animals. Examination of domestic animals showed a marked inhibition of thyroid hormone secretion and changes in red cell membrane permeability for calcium in the absence of marked hematological shifts. At the same time the disturbed thyroid statis is associated with changes in some structural and functional parameters of blood cells. This research on calves shows that radiation damage to the thyroid produces a modifying effect on blood cell membrane permeability for calcium during both the acute and latemore » periods following exposure to 131I. 15 refs., 2 figs., 1 tab.« less
Oda, T; Taneichi, H; Takahashi, K; Togashi, H; Hangai, M; Nakagawa, R; Ono, M; Matsui, M; Sasai, T; Nagasawa, K; Honma, H; Kajiwara, T; Takahashi, Y; Takebe, N; Ishigaki, Y; Satoh, J
2015-02-01
To analyse the effects of thyroid hormones on β-cell function and glucose metabolism in people with prediabetes who are euthyroid. A total of 111 people who were euthyroid underwent 75-g oral glucose tolerance tests, of whom 52 were assigned to the normal glucose tolerance and 59 to the prediabetes groups. Homeostatic model assessment of β-cell function, insulinogenic index and areas under the curve for insulin and glucose were evaluated as indices of pancreatic β-cell function. In both groups, BMI, fasting insulin, homeostasis model assessment ratio and HDL cholesterol correlated significantly with all indices of pancreatic β-cell function. Free triiodothyronine correlated positively with all insulin secretion indices in the prediabetes group. Multiple linear regression analysis showed that free triiodothyronine was an independent variable that had a positive correlation with all indices of β-cell function in the prediabetes group. By contrast, no such correlation was found in the normal glucose tolerance group. Free triiodothyronine is associated with both basal and glucose-stimulated insulin secretion in people with prediabetes who are euthyroid; therefore, the regulation of insulin secretion by thyroid hormones is a potentially novel therapeutic target for the treatment of diabetes. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.
Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.
Ikegami, Keisuke; Yoshimura, Takashi
2016-02-01
Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.
The role of thyroid hormones in stress response of fish.
Peter, M C Subhash
2011-06-01
Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish. Copyright © 2011 Elsevier Inc. All rights reserved.
Thyroid hormones and skeletal muscle — new insights and potential implications
Salvatore, Domenico; Simonides, Warner S.; Dentice, Monica; Zavacki, Ann Marie; Larsen, P. Reed
2014-01-01
Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type two (DIO2) and three (DIO3) iodothyronine deiodinases have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyzes outer ring monodeiodination of the secreted prohormone tetraiodothyronine (T4) to generate the active hormone triiodothyronine (T3). T3 may remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T3 through removal of an inner ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T3. This local control of T3 activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how they can be therapeutically harnessed to improve satellite cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury. PMID:24322650
Strosberg, Jonathan R
2013-02-01
Pheochromocytomas, paragangliomas, and medullary thyroid carcinomas (MTCs) originate in cells that share a common neuroectodermal origin. Like other neuroendocrine neoplasms, they are characterized by a propensity to secrete amines (epinephrine and norepinephrine) and peptide hormones (calcitonin). Improved understanding of underlying molecular pathways, such as mutations of the RET (rearranged during transfection) proto-oncogene, has led to new rational targeted therapies. Adrenocortical carcinomas (ACCs) originate in the steroid hormone-producing adrenal cortex. While tumors of the adrenal cortex are not, strictly speaking, part the "diffuse neuroendocrine system," they are often included in neuroendocrine tumor guidelines due to their orphan status. In this update on management of unusual neuroendocrine tumors, we review the biology and treatment of these rare neoplasms. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sakurai, Akihiro; Takeda, Kyoko; Ain, Kenneth; Ceccarelli, Paola; Nakai, Akira; Seino, Susumu; Bell, Graeme I.; Refetoff, Samuel; Degroot, Leslie J.
1989-11-01
The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. We have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine --> cytosine replacement in the codon for amino acid 340 resulted in a glycine --> arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor β gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor β gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.
Genazzani, Alessandro D; Podfigurna-Stopa, Agnieszka; Czyzyk, Adam; Katulski, Krzysztof; Prati, Alessia; Despini, Giulia; Angioni, Stefano; Simoncini, Tommaso; Meczekalski, Blazej
2016-01-01
To evaluate the influence of short-term estriol administration (10 d) on the hypothalamus-pituitary function and gonadotropins secretion in patients affected by functional hypothalamic amenorrhea (FHA). Controlled clinical study on patients with FHA (n = 12) in a clinical research environment. Hormonal determinations and gonadotropin (luteinizing hormone [LH] and FSH) response to a gonadotropin-releasing hormone (GnRH) bolus (10 μg) at baseline condition and after 10 d of therapy with 2 mg/d of estriol per os. Measurements of plasma LH, FSH, prolactin, estradiol, androstenedione, 17α-hydroxyprogesterone, insulin, cortisol, thyroid-stimulating hormone, free triiodothyronine, and free thyroxine. After treatment, the FHA patients showed a statistically significant increase of both LH and FSH plasma levels and the significant increase of their responses to the GnRH bolus. Estriol short-term therapy modulates within 10 d of administration the neuroendocrine control of the hypothalamus-pituitary unit and induces the recovery of both gonadotropins synthesis and secretion in hypogonadotropic patients with FHA.
Modification of hormonal secretion in clinically silent pituitary adenomas.
Daems, Tania; Verhelst, Johan; Michotte, Alex; Abrams, Pascale; De Ridder, Dirk; Abs, Roger
2009-01-01
Silent pituitary adenomas are a subtype of adenomas characterized by positive immunoreactivity for one or more hormones classically secreted by normal pituitary cells but without clinical expression, although in some occasions enhanced or changed secretory activity can develop over time. Silent corticotroph adenomas are the classical example of this phenomenon. A series of about 500 pituitary adenomas seen over a period of 20 years were screened for modification in hormonal secretion. Biochemical and immunohistochemical data were reviewed. Two cases were retrieved, one silent somatotroph adenoma and one thyrotroph adenoma, both without specific clinical features or biochemical abnormalities, which presented 20 years after initial surgery with evidence of acromegaly and hyperthyroidism, respectively. While the acromegaly was controlled by a combination of somatostatin analogs and growth hormone (GH) receptor antagonist therapy, neurosurgery was necessary to manage the thyrotroph adenoma. Immunohistochemical examination demonstrated an increase in the number of thyroid stimulating hormone (TSH)-immunoreactive cells compared to the first tissue. Apparently, the mechanisms responsible for the secretory modifications are different, being a change in secretory capacity in the silent somatotroph adenoma and a quantitative change in the silent thyrotroph adenoma. These two cases, one somatotroph and one thyrotroph adenoma, are an illustration that clinically silent pituitary adenomas may in rare circumstances evolve over time and become active, as previously demonstrated in silent corticotroph adenomas.
Congenital combined pituitary hormone deficiency attributable to a novel PROP1 mutation (467insT).
Nose, Osamu; Tatsumi, Keita; Nakano, Yukiko; Amino, Nobuyuki
2006-04-01
Combined pituitary hormone deficiency (CPHD) is an anterior pituitary disorder, commonly resulting in growth retardation. PROP1 gene mutations appear to be frequently responsible for CPHD, particularly in Middle and Eastern Europe and the Americas, but few cases have been reported in Japan. Two sisters (aged 8.4 and 4.3 years at presentation) exhibited proportional short stature from about 2 years of age. Genetic analysis determined the nature and location of mutations. Pituitary size by magnetic resonance imaging (MRI) indicated only slight hypoplasia, while hormone analysis revealed deficiencies in secretion of growth hormone (GH), thyroid stimulating hormone, prolactin and gonadotropins; adrenocortinotropin secretion appeared adequate. Genetic analysis revealed a novel familial inherited PROP1 mutation. A unique insertion mutation was found in codon 156 (467insT) located in the transcription-activating region of the PROP1 gene. The resulting PROP1 protein (191 amino acids) would lack the transcription activation domain and consequently be non-functional. Gene analysis suggested that the siblings had inherited a unique autosomal recessive PROP1 gene mutation resulting in severe GH deficiency and subsequent growth retardation.
RADIOACTIVE IODINE IN THE LYMPH LEAVING THE THYROID GLAND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, R.M.; Gale, M.M.; Pratt, O.E.
1963-04-01
Very high levels of I/sup 131/ were found in lymph of vessels draining the thyroid gland of animals injected with the isotope. The lymph was collected from the draining lymphatics 2-6 days after subcutaneous injection of 50-100 mu C in rabbits and cats and 200 mu C in sheep. Thyroid lymph contained a concentration of radioactivity considerably higher than that in either thyroid venous plasma or systemic blood plasma. This was found in all three species both before and after giving thyroid-stimulating hormone (TSH). Almost all the radioactivity in the lymph was due to organic I/sup 131/. When tie thyroidmore » gland was excised postmortem, a count showed that the proportion of I/sup 131/ which had been injected and which rernained in the gland at the end of the experiment varied considerably. Estimates of the radiation dose varied between 30 and 200 rad. There was no obvious relation between this dose the lymph/plasma I/sup 131/ ratio, which indicates that the radiation dose was not so high as to produce damage to the gland. The radiation dose to the thyroid in these experiments was not greater than is customarily given in studies of hormone release from the thyroid and the dosage used gives a lower level of radiation than that thought to cause radiation damage to the gland. Since, therefore, damage to the thyroid can be discounted as a cause for the release of iodinated protein, it seems likely that a significart proportion of organic iodine leaves the gland under normal conditions via the lymphatic pathway both before and after the administration of TSH and that this pathway should be taken into account in all studies of thyroid secretion. Gentle massage of the gland, which increases the flow of lymph, did not lead to an increase in the output of radioactivity. Movement of lymph in the thyroid vessels is relatively rapid and since the concentration of I/sup 131/ in thyroid lymph is high, the amount of thyroid hormones leaving the gland by this pathway must be considerable. (BBB)« less
Calcitonin secretion in congenital nongoitrous cretinism.
Carey, D E; Jones, K L; Parthemore, J G; Deftos, L J
1980-04-01
Plasma calcitonin (CT) was measured in the basal state and/or during provocative tests of hormone secretion in 11 children with congenital non-goitrous cretinism (CNC), in 1 girl with a lingual thyroid, and in 11 normal children. Basal and stimulated CT concentrations were significantly lower in the patients with CNC than in the normal subjects. Mean basal CT (+/- SE) was 41 +/- 4 pg/ml in the normal children, 24 +/- 3 pg/ml in the children with CNC, and 20 +/- 2 pg/ml in the patient with the lingual thyroid. The mean incremental CT responses to calcium infusion were 7.0 +/- 2 pg/ml in the children with CNC, 6.0 pg/ml in the patient with the lingual thyroid, and 146 +/- 47 pg/ml in the normal children. The children with CNC also demonstrated a significant delay in the return of the total serum calcium to basal level after the calcium infusion. The mean incremental CT response after infusion of pentagastrin was 7.6 +/- 2 pg/ml in the children with CNC, 10.0 pg/ml in the child with the lingual thyroid, and 34.4 +/- 11 pg/ml in the normal children. These data indicate that CT deficiency is present in children with CNC and suggest that the deficiency is a consequence of the defective embryologic development of the thyroid gland.
Alternate pathways of thyroid hormone metabolism.
Wu, Sing-Yung; Green, William L; Huang, Wen-Sheng; Hays, Marguerite T; Chopra, Inder J
2005-08-01
The major thyroid hormone (TH) secreted by the thyroid gland is thyroxine (T(4)). Triiodothyronine (T(3)), formed chiefly by deiodination of T(4), is the active hormone at the nuclear receptor, and it is generally accepted that deiodination is the major pathway regulating T(3) bioavailability in mammalian tissues. The alternate pathways, sulfation and glucuronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form iodothyroacetic acids, and ether link cleavage provide additional mechanisms for regulating the supply of active hormone. Sulfation may play a general role in regulation of iodothyronine metabolism, since sulfation of T(4) and T(3) markedly accelerates deiodination to the inactive metabolites, reverse triiodothyronine (rT(3)) and T(2). Sulfoconjugation is prominent during intrauterine development, particularly in the precocial species in the last trimester including humans and sheep, where it may serve both to regulate the supply of T(3), via sulfation followed by deiodination, and to facilitate maternal-fetal exchange of sulfated iodothyronines (e.g., 3,3'-diiodothyronine sulfate [T(2)S]). The resulting low serum T(3) may be important for normal fetal development in the late gestation. The possibility that T(2)S or its derivative, transferred from the fetus and appearing in maternal serum or urine, can serve as a marker of fetal thyroid function is being studied. Glucuronidation of TH often precedes biliary-fecal excretion of hormone. In rats, stimulation of glucuronidation by various drugs and toxins may lead to lower T(4) and T(3) levels, provocation of thyrotropin (TSH) secretion, and goiter. In man, drug induced stimulation of glucuronidation is limited to T(4), and does not usually compromise normal thyroid function. However, in hypothyroid subjects, higher doses of TH may be required to maintain euthyroidism when these drugs are given. In addition, glucuronidates and sulfated iodothyronines can be hydrolyzed to their precursors in gastrointestinal tract and various tissues. Thus, these conjugates can serve as a reservoir for biologically active iodothyronines (e.g., T(4), T(3), or T(2)). The acetic acid derivatives of T(4), tetrac and triac, are minor products in normal thyroid physiology. However, triac has a different pattern of receptor affinity than T(3), binding preferentially to the beta receptor. This makes it useful in the treatment of the syndrome of resistance to thyroid hormone action, where the typical mutation affects only the beta receptor. Thus, adequate binding to certain mutated beta receptors can be achieved without excessive stimulation of alpha receptors, which predominate in the heart. Ether link cleavage of TH is also a minor pathway in normal subjects. However, this pathway may become important during infections, when augmented TH breakdown by ether-link cleavage (ELC) may assist in bactericidal activity. There is a recent claim that decarboxylated derivates of thyronines, that is, monoiodothyronamine (T(1)am) and thyronamine (T(0)am), may be biologically important and have actions different from those of TH. Further information on these interesting derivatives is awaited.
Thyroid Dysfunction from Antineoplastic Agents
Larsen, P. Reed; Marqusee, Ellen
2011-01-01
Unlike cytotoxic agents that indiscriminately affect rapidly dividing cells, newer antineoplastic agents such as targeted therapies and immunotherapies are associated with thyroid dysfunction. These include tyrosine kinase inhibitors, bexarotene, radioiodine-based cancer therapies, denileukin diftitox, alemtuzumab, interferon-α, interleukin-2, ipilimumab, tremelimumab, thalidomide, and lenalidomide. Primary hypothyroidism is the most common side effect, although thyrotoxicosis and effects on thyroid-stimulating hormone secretion and thyroid hormone metabolism have also been described. Most agents cause thyroid dysfunction in 20%–50% of patients, although some have even higher rates. Despite this, physicians may overlook drug-induced thyroid dysfunction because of the complexity of the clinical picture in the cancer patient. Symptoms of hypothyroidism, such as fatigue, weakness, depression, memory loss, cold intolerance, and cardiovascular effects, may be incorrectly attributed to the primary disease or to the antineoplastic agent. Underdiagnosis of thyroid dysfunction can have important consequences for cancer patient management. At a minimum, the symptoms will adversely affect the patient’s quality of life. Alternatively, such symptoms can lead to dose reductions of potentially life-saving therapies. Hypothyroidism can also alter the kinetics and clearance of medications, which may lead to undesirable side effects. Thyrotoxicosis can be mistaken for sepsis or a nonendocrinologic drug side effect. In some patients, thyroid disease may indicate a higher likelihood of tumor response to the agent. Both hypothyroidism and thyrotoxicosis are easily diagnosed with inexpensive and specific tests. In many patients, particularly those with hypothyroidism, the treatment is straightforward. We therefore recommend routine testing for thyroid abnormalities in patients receiving these antineoplastic agents. PMID:22010182
Genazzani, Alessandro D; Meczekalski, Blazej; Podfigurna-Stopa, Agnieszka; Santagni, Susanna; Rattighieri, Erica; Ricchieri, Federica; Chierchia, Elisa; Simoncini, Tommaso
2012-02-01
To evaluate the influence of estriol administration on the hypothalamus-pituitary function and gonadotropins secretion in patients affected by functional hypothalamic amenorrhea (FHA). Controlled clinical study. Patients with FHA in a clinical research environment. Twelve hypogonadotropic patients affected by FHA. Pulsatility study of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and a gonadotropin-releasing hormone (GnRH) test (10 μg in bolus) at baseline condition and after 8 weeks of therapy with 2 mg/day of estriol. Measurements of plasma LH, FSH, estradiol (E(2)), androstenedione (A), 17α-hydroxyprogesterone (17-OHP), cortisol, androstenedione (A), testosterone (T), thyroid-stimulating hormone (TSH), free triiodothyronine (fT(3)), free thyroxine (fT(4)), and insulin, and pulse detection. After treatment, the FHA patients showed a statistically significant increase of LH plasma levels (from 0.7 ± 0.1 mIU/mL to 3.5 ± 0.3 mIU/mL) and a statistically significant increase of LH pulse amplitude with no changes in LH pulse frequency. In addition, the LH response to the GnRH bolus was a statistically significant increase. Estriol administration induced the increase of LH plasma levels in FHA and improved GnRH-induced LH secretion. These findings suggest that estriol administration modulates the neuroendocrine control of the hypothalamus-pituitary unit and induces the recovery of LH synthesis and secretion in hypogonadotropic patients with FHA. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V
2013-06-01
Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.
de Rougemont, Alexis; Mourot, Marie-Gabrielle; Riou, Jean-Paul
2009-01-01
For 10 years, a young man was followed for a severe osteoporosis associated with a considerable reduction in height and a massive weight loss. The constant increase of signs of tissue impregnation with thyroid hormones and the molar ratios of alpha-TSH suggested an inappropriate secretion of thyrotropin. Magnetic resonance imaging finally revealed a thyrotropic microadenoma of the pituitary gland. This case gives some new additional information on thyrotropin-induced osteoporosis. To our knowledge such a case has never been reported in the literature.
Walker, C D; Sizonenko, P C; Aubert, M L
1989-09-01
Neonatal rats exhibit a period of diminished pituitary and adrenocortical responses to stress during the first 2 weeks of life. Since thyroid hormones are known to affect brain development, modulation of these responses to stress by alterations in thyroid hormone status have been investigated in hypothyroid (Hypo) and hyperthyroid (Hyper) rat pups. Changes in ACTH and corticosterone (B) levels were measured under basal and stress conditions (3 min exposure to ether vapors) in neonates of various ages (day 5-21). Basal T4 and corticosterone-binding globulin (CBG) levels were also measured. Hypo pups were obtained from methimazole-treated mothers and hyperthyroidism was induced by daily subcutaneous injections of L-T4 (100 micrograms/kg BW) from birth on. In Hyper rats, premature onset of ACTH and B responses to stress was observed in 5-day-old rats while significant ACTH and B secretion only appeared by day 10 in vehicle-injected rats. By contrast, ACTH and B responses to stress were delayed in Hypo pups and only occurred by day 21. The lack of ACTH and B responses to stress of 14-day-old Hypo rats could be reversed by one single L-T4 injection (100 micrograms/kg BW) given 24 h, but not 4 h prior to exposure to stress. On day 21, smaller (p less than 0.05) stress-induced ACTH release was observed both in Hypo and Hyper rats compared to intact rats, concomitant with a diminished ACTH secretion following exogenous ovine CRF (10 micrograms/kg BW, i.p.) administration.(ABSTRACT TRUNCATED AT 250 WORDS)
Gene-specific regulation of hepatic selenoprotein expression by interleukin-6.
Martitz, J; Becker, N-P; Renko, K; Stoedter, M; Hybsier, S; Schomburg, L
2015-11-01
Sepsis is a severe inflammatory disease resulting in excessive production of pro-inflammatory cytokines including interleukin-6 (IL-6), causing oxidative stress, tissue damage and organ dysfunction. Health benefits have been observed upon selenium (Se) supplementation in severe sepsis. Selenium is incorporated into selenoproteins implicated in anti-oxidative defence, thyroid hormone metabolism and immunoregulation. Selenium metabolism is controlled by hepatocytes synthesizing and secreting the Se transporter selenoprotein P (SePP). The circulating SePP declines in sepsis causing low serum Se levels. Dysregulation of the hepatic selenoenzyme deiodinase type 1 (DIO1) potentially contributes to the low T3 (thyroid hormone) syndrome observed in severe diseases. We hypothesized that IL-6 affects hepatic selenoprotein biosynthesis directly. Testing human hepatocytes in culture, IL-6 reduced the concentrations of SePP mRNA and secreted SePP in a dose-dependent manner. In parallel, expression of DIO1 declined at the mRNA, protein and enzyme activity level. The effects of IL-6 on glutathione peroxidase (GPX) expression were isozyme-specific; GPX1 remained unaffected, while transcript concentrations of GPX2 increased and those of GPX4 decreased. This pattern of IL-6-dependent effects was mirrored in reporter gene experiments with SePP, DIO1, GPX1, and GPX2 promoter constructs pointing to direct transcriptional effects of IL-6. The redirection of hepatic selenoprotein biosynthesis by IL-6 may represent a central regulatory circuit responsible for the decline of serum Se and low T3 concentrations in sepsis. Accordingly, therapeutic IL-6 targeting may be effective for improving the Se and thyroid hormone status, adjuvant Se supplementation success and survival in sepsis.
Management of Subclinical Hyperthyroidism
Santos Palacios, Silvia; Pascual-Corrales, Eider; Galofre, Juan Carlos
2012-01-01
The ideal approach for adequate management of subclinical hyperthyroidism (low levels of thyroid-stimulating hormone [TSH] and normal thyroid hormone level) is a matter of intense debate among endocrinologists. The prevalence of low serum TSH levels ranges between 0.5% in children and 15% in the elderly population. Mild subclinical hyperthyroidism is more common than severe subclinical hyperthyroidism. Transient suppression of TSH secretion may occur because of several reasons; thus, corroboration of results from different assessments is essential in such cases. During differential diagnosis of hyperthyroidism, pituitary or hypothalamic disease, euthyroid sick syndrome, and drug-mediated suppression of TSH must be ruled out. A low plasma TSH value is also typically seen in the first trimester of gestation. Factitial or iatrogenic TSH inhibition caused by excessive intake of levothyroxine should be excluded by checking the patient’s medication history. If these nonthyroidal causes are ruled out during differential diagnosis, either transient or long-term endogenous thyroid hormone excess, usually caused by Graves’ disease or nodular goiter, should be considered as the cause of low circulating TSH levels. We recommend the following 6-step process for the assessment and treatment of this common hormonal disorder: 1) confirmation, 2) evaluation of severity, 3) investigation of the cause, 4) assessment of potential complications, 5) evaluation of the necessity of treatment, and 6) if necessary, selection of the most appropriate treatment. In conclusion, management of subclinical hyperthyroidism merits careful monitoring through regular assessment of thyroid function. Treatment is mandatory in older patients (> 65 years) or in presence of comorbidities (such as osteoporosis and atrial fibrillation). PMID:23843809
Saxena, Pratik; Charpin-El Hamri, Ghislaine; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin
2016-01-01
Graves’ disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus–pituitary–thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus–pituitary–thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies. PMID:26787873
Regulation of pulmonary surfactant secretion in the developing lizard, Pogona vitticeps.
Sullivan, Lucy C; Orgeig, Sandra; Daniels, Christopher B
2002-11-01
Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar type II cells in the lungs of all air-breathing vertebrates. Pulmonary surfactant functions to reduce the surface tension in the lungs and, therefore, reduce the work of breathing. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones and autonomic neurotransmitters. We have used a co-culture system of embryonic type II cells and lung fibroblasts to investigate the ability of dexamethasone, tri-iodothyronine (T(3)), adrenaline and carbamylcholine (carbachol) to stimulate the cellular secretion of phosphatidylcholine in the bearded dragon (Pogona vitticeps) at day 55 (approx. 92%) of incubation and following hatching. Adrenaline stimulated surfactant secretion both before and after hatching, whereas carbachol stimulated secretion only at day 55. Glucocorticoids and triiodothyronine together stimulated secretion at day 55 but did not after hatching. Therefore, adrenaline, carbachol, dexamethasone and T(3), are all involved in the development of the surfactant system in the bearded dragon. However, the efficacy of the hormones is attenuated during the developmental process. These differences probably relate to the changes in the cellular environment during development and the specific biology of the bearded dragon.
Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.
Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf
2012-03-01
Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.
Role of maternal thyroid hormones in the developing neocortex and during human evolution
Stenzel, Denise; Huttner, Wieland B.
2013-01-01
The importance of thyroid hormones during brain development has been appreciated for many decades. In humans, low levels of circulating maternal thyroid hormones, e.g., caused by maternal hypothyroidism or lack of iodine in diet, results in a wide spectrum of severe neurological defects, including neurological cretinism characterized by profound neurologic impairment and mental retardation, underlining the importance of the maternal thyroid hormone contribution. In fact, iodine intake, which is essential for thyroid hormone production in the thyroid gland, has been related to the expansion of the brain, associated with the increased cognitive capacities during human evolution. Because thyroid hormones regulate transcriptional activity of target genes via their nuclear thyroid hormone receptors (THRs), even mild and transient changes in maternal thyroid hormone levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Here we summarize how thyroid hormones may have influenced human brain evolution through the adaptation to new habitats, concomitant with changes in diet and, therefore, iodine intake. Further, we review the current picture we gained from experimental studies in rodents on the function of maternal thyroid hormones during developmental neurogenesis. We aim to evaluate the effects of maternal thyroid hormone deficiency as well as lack of THRs and transporters on brain development and function, shedding light on the cellular behavior conducted by thyroid hormones. PMID:23882187
Since atrazine (ATR), a chlorotriazine herbicide, has been shown previously to alter the secretion of luteinizing hormone (LH) and prolactin (PRL) through a direct effect on the central nervous system (CNS), we hypothesized that exposure to ATR in the EDSTAC male pubertal protoco...
21 CFR 862.1690 - Thyroid stimulating hormone test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known as...
21 CFR 862.1690 - Thyroid stimulating hormone test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known as...
Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae
2016-01-01
2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems PMID:27420076
Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae
2016-07-12
2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems.
Ohara, Nobumasa; Kaneko, Masanori; Kitazawa, Masaru; Uemura, Yasuyuki; Minagawa, Shinichi; Miyakoshi, Masashi; Kaneko, Kenzo; Kamoi, Kyuzi
2017-02-06
Graves' disease is an autoimmune thyroid disorder characterized by hyperthyroidism, and patients exhibit thyroid-stimulating hormone receptor antibody. The major methods of measuring circulating thyroid-stimulating hormone receptor antibody include the thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Although the diagnostic accuracy of these assays has been improved, a minority of patients with Graves' disease test negative even on second-generation and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulins. We report a rare case of a thyroid-stimulating hormone-binding inhibitory immunoglobulin-positive patient with Graves' disease who showed rapid lowering of thyroid-stimulating hormone-binding inhibitory immunoglobulin levels following administration of the anti-thyroid drug thiamazole, but still experienced Graves' hyperthyroidism. A 45-year-old Japanese man presented with severe hyperthyroidism (serum free triiodothyronine >25.0 pg/mL; reference range 1.7 to 3.7 pg/mL) and tested weakly positive for thyroid-stimulating hormone-binding inhibitory immunoglobulins on second-generation tests (2.1 IU/L; reference range <1.0 IU/L). Within 9 months of treatment with oral thiamazole (30 mg/day), his thyroid-stimulating hormone-binding inhibitory immunoglobulin titers had normalized, but he experienced sustained hyperthyroidism for more than 8 years, requiring 15 mg/day of thiamazole to correct. During that period, he tested negative on all first-generation, second-generation, and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, but thyroid scintigraphy revealed diffuse and increased uptake, and thyroid ultrasound and color flow Doppler imaging showed typical findings of Graves' hyperthyroidism. The possible explanations for serial changes in the thyroid-stimulating hormone-binding inhibitory immunoglobulin results in our patient include the presence of thyroid-stimulating hormone receptor antibody, which is bioactive but less reactive on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, or the effect of reduced levels of circulating thyroid-stimulating hormone receptor antibody upon improvement of thyroid autoimmunity with thiamazole treatment. Physicians should keep in mind that patients with Graves' disease may show thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results that do not reflect the severity of Graves' disease or indicate the outcome of the disease, and that active Graves' disease may persist even after negative results on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Timely performance of thyroid function tests in combination with sensitive imaging tests, including thyroid ultrasound and scintigraphy, are necessary to evaluate the severity of Graves' disease and treatment efficacy.
Darcy, Justin; Fang, Yimin; Hill, Cristal M; McFadden, Sam; Sun, Liou Y; Bartke, Andrzej
2016-10-01
Ames dwarf mice are exceptionally long-lived due to a Prop1 loss of function mutation resulting in deficiency of growth hormone, thyroid-stimulating hormone and prolactin. Deficiency in thyroid-stimulating hormone and growth hormone leads to greatly reduced levels of circulating thyroid hormones and insulin-like growth factor 1, as well as a reduction in insulin secretion. Early life growth hormone replacement therapy in Ames dwarf mice significantly shortens their longevity, while early life thyroxine (T4) replacement therapy does not. Possible mechanisms by which early life growth hormone replacement therapy shortens longevity include deleterious effects on glucose homeostasis and energy metabolism, which are long lasting. A mechanism explaining why early life T4 replacement therapy does not shorten longevity remains elusive. Here, we look for a possible explanation as to why early life T4 replacement therapy does not impact longevity of Ames dwarf mice. We found that early life T4 replacement therapy increased body weight and advanced the age of sexual maturation. We also find that early life T4 replacement therapy does not impact glucose tolerance or insulin sensitivity, and any deleterious effects on oxygen consumption, respiratory quotient and heat production are transient. Lastly, we find that early life T4 replacement therapy has long-lasting effects on bone mineral density and bone mineral content. We suggest that the transient effects on energy metabolism and lack of effects on glucose homeostasis are the reasons why there is no shortening of longevity after early life T4 replacement therapy in Ames dwarf mice. © 2016 by the Society for Experimental Biology and Medicine.
Achouri, Younes; Hahn, Stephan; Many, Marie-Christine; Craps, Julie; Refetoff, Samuel; Liao, Xiao-Hui; Dumont, Jacques E.; Van Sande, Jacqueline; Corvilain, Bernard; Miot, Françoise; De Deken, Xavier
2016-01-01
Background: The dual oxidases (Duox) are involved in hydrogen peroxide generation, which is essential for thyroid hormone synthesis, and therefore they are markers of thyroid function. During inflammation, cytokines upregulate DUOX gene expression in the airway and the intestine, suggesting a role for these proteins in innate immunity. It was previously demonstrated that interleukin-4 (IL-4) upregulates DUOX gene expression in thyrocytes. Although the role of IL-4 in autoimmune thyroid diseases has been studied extensively, the effects of IL-4 on thyroid physiology remain largely unknown. Therefore, a new animal model was generated to study the impact of IL-4 on thyroid function. Methods: Transgenic (Thyr-IL-4) mice with thyroid-targeted expression of murine IL-4 were generated. Transgene expression was verified at the mRNA and protein level in thyroid tissues and primary cultures. The phenotype of the Thyr-IL-4 animals was characterized by measuring serum thyroxine (T4) and thyrotropin levels and performing thyroid morphometric analysis, immunohistochemistry, whole transcriptome sequencing, quantitative reverse transcription polymerase chain reaction, and ex vivo thyroid function assays. Results: Thyrocytes from two Thyr-IL-4 mouse lines (#30 and #52) expressed IL-4, which was secreted into the extracellular space. Although 10-month-old transgenic animals had T4 and thyrotropin serum levels in the normal range, they had altered thyroid follicular structure with enlarged follicles composed of elongated thyrocytes containing numerous endocytic vesicles. These follicles were positive for T4 staining the colloid, indicating their capacity to produce thyroid hormones. RNA profiling of Thyr-IL-4 thyroid samples revealed modulation of multiple genes involved in inflammation, while no major leukocyte infiltration could be detected. Upregulated expression of Duox1, Duoxa1, and the pendrin anion exchanger gene (Slc26a4) was detected. In contrast, the iodide symporter gene Slc5a5 was markedly downregulated resulting in impaired iodide uptake and reduced thyroid hormone levels in transgenic thyroid tissue. Hydrogen peroxide production was increased in Thyr-IL-4 thyroid tissue compared with wild-type animals, but no significant oxidative stress could be detected. Conclusions: This is the first study to show that ectopic expression of IL-4 in thyroid tissue upregulates Duox1/Duoxa1 and Slc26a4 expression in the thyroid. The present data demonstrate that IL-4 could affect thyroid morphology and function, mainly by downregulating Slc5a5 expression, while maintaining a normal euthyroid phenotype. PMID:27599561
Maggi, Mario; Buvat, Jaques; Corona, Giovanni; Guay, André; Torres, Luiz Otavio
2013-03-01
Besides hypogonadism, other endocrine disorders have been associated with male sexual dysfunction (MSD). To review the role of the pituitary hormone prolactin (PRL), growth hormone (GH), thyroid hormones, and adrenal androgens in MSD. A systematic search of published evidence was performed using Medline (1969 to September 2011). Oxford Centre for Evidence-Based Medicine-Levels of Evidence (March 2009) was applied when possible. The most important evidence regarding the role played by PRL, GH, thyroid, and adrenal hormone was reviewed and discussed. Only severe hyperprolactinemia (>35 ng/mL or 735 mU/L), often related to a pituitary tumor, has a negative impact on sexual function, impairing sexual desire, testosterone production, and, through the latter, erectile function due to a dual effect: mass effect and PRL-induced suppression on gonadotropin secretion. The latter is PRL-level dependent. Emerging evidence indicates that hyperthyroidism is associated with an increased risk of premature ejaculation and might also be associated with erectile dysfunction (ED), whereas hypothyroidism mainly affects sexual desire and impairs the ejaculatory reflex. However, the real incidence of thyroid dysfunction in subjects with sexual problems needs to be evaluated. Prevalence of ED and decreased libido increase in acromegalic patients; however, it is still a matter of debate whether GH excess (acromegaly) may create effects due to a direct overproduction of GH/insulin-like growth factor 1 or because of the pituitary mass effects on gonadotropic cells, resulting in hypogonadism. Finally, although dehydroepiandrosterone (DHEA) and its sulfate have been implicated in a broad range of biological derangements, controlled trials have shown that DHEA administration is not useful for improving male sexual function. While the association between hyperprolactinemia and hypoactive sexual desire is well defined, more studies are needed to completely understand the role of other hormones in regulating male sexual functioning. © 2012 International Society for Sexual Medicine.
Thyroid Hormones and Growth in Health and Disease
Tarım, Ömer
2011-01-01
Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children. Conflict of interest:None declared. PMID:21750631
Han, Simon X; Eisenberg, Marisa; Larsen, P Reed; DiStefano, Joseph
2016-04-01
Computer simulation tools for education and research are making increasingly effective use of the Internet and personal devices. To facilitate these activities in endocrinology and metabolism, a mechanistically based simulator of human thyroid hormone and thyrotropin (TSH) regulation dynamics was developed and further validated, and it was implemented as a facile and freely accessible web-based and personal device application: the THYROSIM app. This study elucidates and demonstrates its utility in a research context by exploring key physiological effects of over-the-counter thyroid supplements. THYROSIM has a simple and intuitive user interface for teaching and conducting simulated "what-if" experiments. User-selectable "experimental" test-input dosages (oral, intravenous pulses, intravenous infusions) are represented by animated graphical icons integrated with a cartoon of the hypothalamic-pituitary-thyroid axis. Simulations of familiar triiodothyronine (T3), thyroxine (T4), and TSH temporal dynamic responses to these exogenous stimuli are reported graphically, along with normal ranges on the same single interface page; and multiple sets of simulated experimental results are superimposable to facilitate comparative analyses. This study shows that THYROSIM accurately reproduces a wide range of published clinical study data reporting hormonal kinetic responses to large and small oral hormone challenges. Simulation examples of partial thyroidectomies and malabsorption illustrate typical usage by optionally changing thyroid gland secretion and/or gut absorption rates--expressed as percentages of normal--as well as additions of oral hormone dosing, all directly on the interface, and visualizing the kinetic responses to these challenges. Classroom and patient education usage--with public health implications--is illustrated by predictive simulated responses to nonprescription thyroid health supplements analyzed previously for T3 and T4 content. Notably, it was found that T3 in supplements has potentially more serious pathophysiological effects than does T4--concomitant with low-normal TSH levels. Some preparations contain enough T3 to generate thyrotoxic conditions, with supernormal serum T3-spiking and subnormal serum T4 and TSH levels and, in some cases, with normal or low-normal range TSH levels due to thyroidal axis negative feedback. These results suggest that appropriate regulation of these products is needed.
Thyroid hormone modulates food intake and glycemia via ghrelin secretion in Zucker fatty rats.
Patel, K; Joharapurkar, A; Dhanesha, N; Patel, V; Kshirsagar, S; Raval, P; Raval, S; Jain, M R
2014-10-01
Hyperthyroidism is known to increase food intake and central administration of thyroid hormone shows acute orexigenic effects in rodents. We investigated whether T3 influences appetite and glucose homeostasis by modulating circulating ghrelin, an important orexigenic hormone, in Zucker fatty rats. The acute anorectic effects of T3 and ghrelin mimetic MK-0677 were studied in rats trained for fasting induced food intake. The serum concentration of T3, ghrelin, glucose, triglycerides, and liver glycogen were estimated. The involvement of sympathetic nervous system was evaluated by conducting similar experiments in vagotomized rats. T3 increased food intake and glucose in rats over 4 h, with increase in serum T3 and decrease in liver glycogen. T3 treatment was associated with increase in serum ghrelin. An additive effect on appetite and glucose was observed when T3 (oral) was administered with central (intracerebroventricular) administration of a ghrelin mimetic, MK-0677. Ghrelin antagonist, compound 8a, antagonized the hyperglycemic and hyperphagic effects of T3. In vagotomized rats, T3 did not show increase in appetite as well as glucose. Serum ghrelin levels were unchanged in these animals after T3 treatment. However, T3 showed increase in serum triglyceride levels indicating its peripheral lipolytic effect, in vagotomized as well as sham treated animals. To conclude, acute orexigenic and hyperglycemic effects of T3 are associated with ghrelin secretion and activity. This effect seems to be mediated via vagus nerves, and is independent of glucoregulatory hormones. © Georg Thieme Verlag KG Stuttgart · New York.
PU, JIUJUN; WANG, ZHIMING; ZHOU, HUI; ZHONG, AILING; JIN, KAI; RUAN, LUNLIANG; YANG, GANG
2016-01-01
Only a few cases of double or multiple pituitary adenomas have previously been reported in the literature; however, isolated double adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas are even more rare. The present study reports a rare case of a 50-year-old female patient who presented with typical clinical features of Cushing's disease and was diagnosed with isolated double ACTH-secreting pituitary adenomas. Endocrinological examination revealed an ACTH-producing pituitary adenoma, and preoperative magnetic resonance imaging (MRI) demonstrated a microadenoma with a lower intensity on the right side of the pituitary gland. The patient underwent endoscopic endonasal transsphenoidal surgery, which revealed another pituitary tumor in the left side of the pituitary gland. The two, clearly separated, pituitary adenomas identified in the same gland were completely resected. Immunohistochemistry and pathology revealed that the clearly separated double pituitary adenomas were positive for ACTH, thyroid-stimulating, growth and prolactin hormones. Postoperatively, the levels of ACTH and cortisol hormone decreased rapidly. The case reported in the present study is considerably rare, due to the presence of a second pituitary adenoma in the same gland, which was not detected by preoperative MRI scan, but was noticed during surgery. Intraoperative evaluation may be important in the identification of double or multiple pituitary adenomas. PMID:27347184
[Changes in the secretion of somatotropin and insulin in hyperthyroidism].
Cavagnini, F; Peracchi, M; Panerai, A E; Pinto, M
1975-06-01
Twenty hyperthyroid patients were investigated for growth hormone (GH) and immunoreactive insulin (IRI) secretion in response to insulin hypoglycaemia, arginine infusion and glucose-induced hyperglycaemia. GH response to either insulin hypoglycaemia or arginine infusion was significantly reduced in these patients compared with 20 normal subjects. Thyrotoxic patients also displayed an abnormal GH pattern after a 100 g oral glucose load: in fact, serum GH underwent a paradoxical increase in spite of abnormally high levels attained by blood glucose. IRI secretion was also clearly reduced in response to arginine infusion and moderately blunted after oral glucose. In a group of patients re-evaluated under euthyroid conditions, a fair increase of GH response to the provocative stimuli jointly with the restoration of a normal suppressibility of serum GH by glucose were noted; by contrast, no significant change of IRI response to arginine or glucose took place. Likewise, the impairment of glucose tolerance was not improved. These findings indicate that an impairment of GH and IRI secretion is present in hyperthyroidism. The possibility that a potentiation of the catecholamine effects caused by the thyroid hormones is involved in this alteration deserves consideration.
Thyroid hormone effects on mitochondrial energetics.
Harper, Mary-Ellen; Seifert, Erin L
2008-02-01
Thyroid hormones are the major endocrine regulators of metabolic rate, and their hypermetabolic effects are widely recognized. The cellular mechanisms underlying these metabolic effects have been the subject of much research. Thyroid hormone status has a profound impact on mitochondria, the organelles responsible for the majority of cellular adenosine triphosphate (ATP) production. However, mechanisms are not well understood. We review the effects of thyroid hormones on mitochondrial energetics and principally oxidative phosphorylation. Genomic and nongenomic mechanisms have been studied. Through the former, thyroid hormones stimulate mitochondriogenesis and thereby augment cellular oxidative capacity. Thyroid hormones induce substantial modifications in mitochondrial inner membrane protein and lipid compositions. Results are consistent with the idea that thyroid hormones activate the uncoupling of oxidative phosphorylation through various mechanisms involving inner membrane proteins and lipids. Increased uncoupling appears to be responsible for some of the hypermetabolic effects of thyroid hormones. ATP synthesis and turnover reactions are also affected. There appear to be complex relationships between mitochondrial proton leak mechanisms, reactive oxygen species production, and thyroid status. As the majority of studies have focused on the effects of thyroid status on rat liver preparations, there is still a need to address fundamental questions regarding thyroid hormone effects in other tissues and species.
Messina, M; Manieri, C; Spagnuolo, F; Sardi, E; Allegramente, L; Monaco, A; Ciccarelli, E
1989-04-01
Serum thyroid hormone and TSH concentrations were monitored in a patient with multinodular endemic goiter and severe methimazole (MMI) induced hypothyrodism up to 190 days after drug withdrawal. Serum concentrations of TT3, TT4 and TSH returned to normal values at the 6th., the 140th, and the 120th. day respectively. Within the first 20 days after MMI withdrawal the increase of serum T3 levels was correlated with the observed decrease of serum TSH concentrations. Successively T3 values decreased and T4 levels progressively increased. Six months after MMI withdrawal basal serum TSH concentration was normal while an exaggerated response to TRH was observed. We think that this peculiar hormone pattern is due to iodine depletion. In this case TSH hyperstimulation increases predominantly T3 secretion demonstrating the reduced thyroidal ability to produce T4 when hyperstimulated.
Favre, L; Rogers, L M; Cobb, C A; Rabin, D
1979-06-01
An 18-year old male is reported who presented with a history of a growtn spurt over the year preceding his admission. His height was above the 97th percentile, and he had incompletely developed secondary sexual characters. Pituitary evaluation demonstrated a moderately elevated level of growth hormone (hGH) not suppressible by a glucose load and not stimulable by TRH or by L-DOPA. Serum prolactin (PRL) concentration was also increased while gonadotrophin, thyroid and adrenal function were all subnormal. There was clear radiological evidence of a large pituitary tumour with suprasellar extension and transsphenoidal total hypophysectomy was performed. A mixed chromophobe and acidophilic adenoma was found and both growth hormone and prolactin were demonstrable in different cells of the tumour by the immunoperoxidase technique. Post-operatively the patient has hypopituitarism and levels of growth hormone and prolactin have remained low or undetectable after 6 months. Thus early diagnosis and surgical treatment of gigantism of this mixed hGH-PRL secreting pituitary tumour was associated with a cure, which contrasts with the unfavourable outcome of many of the patients previously reported.
Shi, Ya-nan; Liu, Feng-hua; Yu, Xiu-jie; Liu, Ze-bing; Li, Qing-xin; Yuan, Ji-hong; Zang, Xiao-yi; Li, Lan-ying
2013-02-01
Excessive iodine intake and viral infection are recognized as both critical factors associated with autoimmune thyroid diseases. Toll-like receptors (TLRs) have been reported to play an important role in autoimmune and inflammatory disorders. In this study, we aimed to clarify the possible mechanism of TLR3 involved in polyinosine-polycytidylic acid (poly(I:C)) promoting excessive iodine intake induced thyroiditis in non-obese diabetic (NOD) mice. Both NOD and BALB/c mice were randomly assigned to four groups: control group (n = 5), high iodine intake (HI) group (n = 7), poly(I:C) group (n = 7) and combination of excessive iodine and poly(I:C) injection (HIP) group (n = 7). After 8 weeks, mice were weighed and blood samples were collected. All the mice were sacrificed before dissection of spleen and thyroid gland. Then, thyroid histology, thyroid secreted hormone, expression of CD3(+) cells and TLR3 as well as inflammatory mRNA level were evaluated. Both NOD and BALB/c mice from HI and HIP group represented goiter and increasing thyroid relative weight. Thyroid histology evidence indicated that only HIP group of NOD mice showed severe thyroiditis with lymphocytes infiltration in majority of thyroid tissue, severe damage of follicles and general fibrosis. Immunofluorescence staining results displayed a large number of CD3(+) cells in HIP NOD mice. Real-time polymerase chain reaction (PCR) results suggested interferon (IFN)-α increased over 30 folds and IFN-γ expression was doubled compared with control group, but interleukin (IL)-4 remained unchanged in HIP group of NOD mice thyroid. Meanwhile, over one third decrease of blood total thyroxine (TT4) and increased thyroid-stimulating hormone (TSH) was observed in HIP group of NOD mice. Only HIP group of NOD mice represented significantly elevation of TLR3 expression. Poly(I:C) enhanced excessive dietary iodine induced thyroiditis in NOD mice through increasing TLR3 mediated inflammation.
Daya, Shyam K; Paulus, Andrew O; Braxton, Ernest E; Vroman, Penny J; Mathis, Derek A; Lin, Ryan; True, Mark W
2017-03-01
Anchoring bias occurs when clinicians hold on to previously known information about a patient, with failure to consider the full realm of possibilities to explain new findings. We present a case of delayed diagnosis of thyroid-stimulating-hormone-secreting pituitary adenoma (TSHoma), a rare disorder, in a military veteran whose symptoms were misconstrued as being caused from worsening of his prior diagnosis of post-traumatic stress disorder (PTSD). Anchoring bias in this case led to 2-year delay in the correct diagnosis. The clinical, laboratory, radiologic, and pathologic results are presented. We report a case of a 44-year-old retired male Army soldier with a prior diagnosis of PTSD who was evaluated for new symptoms including headaches, blurry vision, palpitations, and anxiety. These symptoms were considered by multiple services as worsening of his PTSD, with acknowledgment of normal thyroid hormone levels from 2 years prior, but with no levels at the time of the new presentation. Attempts to treat with standard PTSD therapies were unsuccessful. When thyroid hormone levels were eventually rechecked 2 years later, he was found to have an inappropriately normal level of thyroid-stimulating hormone (1.9 mcIU/mL) in the setting of elevated free thyroxine (2.30 pg/mL) and free triiodothyronine (5.8 ng/dL). With magnetic resonance imaging revealing a 1.4-cm pituitary macroadenoma, he was diagnosed with a TSHoma. A trial of octreotide, a somatostatin analog, was attempted to shrink the tumor size. However, because of the patient's intolerance of this medication, he underwent endoscopic transsphenoidal surgery as definitive treatment. Pathologic analysis of his tumor was consistent with TSHoma. On various follow-up intervals, he had normalization of thyroid function tests, no evidence of residual tumor on 6-month postoperative imaging, and reported improvement in his symptoms. This case highlights the details of a rare diagnosis of TSHoma, which has an estimated 1 to 2 cases per million in the general population and an unknown prevalence in the military population, in a veteran who had symptoms that were presumed to be worsening PTSD. While understandable to attribute new symptoms to pre-existing diagnoses such as PTSD, clinicians should consider the possibility of alternative diagnoses and perform the routine workup when indicated. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Luteal Expression of Thyroid Hormone Receptors During Gestation and Postpartum in the Rat
Navas, Paola B.; Redondo, Analía L.; Cuello-Carrión, F. Darío; Roig, Laura M. Vargas; Valdez, Susana R.; Jahn, Graciela A.
2014-01-01
Background: Progesterone (P4) is the main steroid secreted by the corpora lutea (CL) and is required for successful implantation and maintenance of pregnancy. Although adequate circulating levels of thyroid hormone (TH) are needed to support formation and maintenance of CL during pregnancy, TH signaling had not been described in this gland. We determined luteal thyroid hormone receptor isoforms (TR) expression and regulation throughout pregnancy and under the influence of thyroid status, and in vitro effects of triiodothyronine (T3) exposure on luteal P4 synthesis. Methods: Euthyroid female Wistar rats were sacrificed by decapitation on gestational day (G) 5, G10, G15, G19, or G21 of pregnancy or on day 2 postpartum (L2). Hyperthyroidism and hypothyroidism were induced in female Wistar rats by daily administration of thyroxine (T4; 0.25 mg/kg subcutaneously) or 6-propyl-2-thiouracil (PTU; 0.1 g/L in drinking water), respectively. Luteal TR expression of mRNA was determined using real-time reverse-transcription quantitative polymerase chain reaction, and of protein using Western blot and immunohistochemistry. Primary cultures of luteal cells and of luteinized granulosa cells were used to study in vitro effects of T3 on P4 synthesis. In addition, the effect of T3 on P4 synthesis under basal conditions and under stimulation with luteinizing hormone (LH), prolactin (PRL), and prostaglandin E2 (PGE2) was evaluated. Results: TRα1, TRα2, and TRβ1 mRNA were present in CL, increasing during the first half and decreasing during the second half of pregnancy. At the protein level, TRβ1 was abundantly expressed during gestation reaching a peak at G19 and decreasing afterwards. TRα1 was barely expressed during early gestation, peaked at G19, and diminished thereafter. Expression of TRβ1 and TRα1 at the protein and mRNA level were not influenced by thyroid status. T3 neither modified P4 secretion from CL of pregnancy nor its synthesis in luteinized granulosa cells in culture. Conclusions: This study confirms for the first time the presence of TR isoforms in the CL during pregnancy and postpartum, identifying this gland as a TH target during gestation. TR expression is modulated in this tissue in accordance with the regulation of P4 metabolism, and the abrupt peripartum changes suggest a role of TH during luteolysis. However, TH actions on the CL do not seem to be related to a direct regulation of P4 synthesis. PMID:24684177
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui
Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein thatmore » antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.« less
Thyroiditis: an integrated approach.
Sweeney, Lori B; Stewart, Christopher; Gaitonde, David Y
2014-09-15
Thyroiditis is a general term that encompasses several clinical disorders characterized by inflammation of the thyroid gland. The most common is Hashimoto thyroiditis; patients typically present with a nontender goiter, hypothyroidism, and an elevated thyroid peroxidase antibody level. Treatment with levothyroxine ameliorates the hypothyroidism and may reduce goiter size. Postpartum thyroiditis is transient or persistent thyroid dysfunction that occurs within one year of childbirth, miscarriage, or medical abortion. Release of preformed thyroid hormone into the bloodstream may result in hyperthyroidism. This may be followed by transient or permanent hypothyroidism as a result of depletion of thyroid hormone stores and destruction of thyroid hormone-producing cells. Patients should be monitored for changes in thyroid function. Beta blockers can treat symptoms in the initial hyperthyroid phase; in the subsequent hypothyroid phase, levothyroxine should be considered in women with a serum thyroid-stimulating hormone level greater than 10 mIU per L, or in women with a thyroid-stimulating hormone level of 4 to 10 mIU per L who are symptomatic or desire fertility. Subacute thyroiditis is a transient thyrotoxic state characterized by anterior neck pain, suppressed thyroid-stimulating hormone, and low radioactive iodine uptake on thyroid scanning. Many cases of subacute thyroiditis follow an upper respiratory viral illness, which is thought to trigger an inflammatory destruction of thyroid follicles. In most cases, the thyroid gland spontaneously resumes normal thyroid hormone production after several months. Treatment with high-dose acetylsalicylic acid or nonsteroidal anti-inflammatory drugs is directed toward relief of thyroid pain.
Generation of Functional Thyroid Tissue Using 3D-Based Culture of Embryonic Stem Cells.
Antonica, Francesco; Kasprzyk, Dominika Figini; Schiavo, Andrea Alex; Romitti, Mírian; Costagliola, Sabine
2017-01-01
During the last decade three-dimensional (3D) cultures of pluripotent stem cells have been intensively used to understand morphogenesis and molecular signaling important for the embryonic development of many tissues. In addition, pluripotent stem cells have been shown to be a valid tool for the in vitro modeling of several congenital or chronic human diseases, opening new possibilities to study their physiopathology without using animal models. Even more interestingly, 3D culture has proved to be a powerful and versatile tool to successfully generate functional tissues ex vivo. Using similar approaches, we here describe a protocol for the generation of functional thyroid tissue using mouse embryonic stem cells and give all the details and references for its characterization and analysis both in vitro and in vivo. This model is a valid approach to study the expression and the function of genes involved in the correct morphogenesis of thyroid gland, to elucidate the mechanisms of production and secretion of thyroid hormones and to test anti-thyroid drugs.
Update on 3-iodothyronamine and its neurological and metabolic actions.
Zucchi, Riccardo; Accorroni, Alice; Chiellini, Grazia
2014-01-01
3-iodothyronamine (T1AM) is an endogenous amine, that has been detected in many rodent tissues, and in human blood. It has been hypothesized to derive from thyroid hormone metabolism, but this hypothesis still requires validation. T1AM is not a ligand for nuclear thyroid hormone receptors, but stimulates with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor. With a lower affinity it interacts with alpha2A adrenergic receptors. Additional targets are represented by apolipoprotein B100, mitochondrial ATP synthase, and membrane monoamine transporters, but the functional relevance of these interactions is still uncertain. Among the effects reported after administration of exogenous T1AM to experimental animals, metabolic and neurological responses deserve special attention, because they were obtained at low dosages, which increased endogenous tissue concentration by about one order of magnitude. Systemic T1AM administration favored fatty acid over glucose catabolism, increased ketogenesis and increased blood glucose. Similar responses were elicited by intracerebral infusion, which inhibited insulin secretion and stimulated glucagon secretion. However, T1AM administration increased ketogenesis and gluconeogenesis also in hepatic cell lines and in perfused liver preparations, providing evidence for a peripheral action, as well. In the central nervous system, T1AM behaved as a neuromodulator, affecting adrenergic and/or histaminergic neurons. Intracerebral T1AM administration favored learning and memory, modulated sleep and feeding, and decreased the pain threshold. In conclusion T1AM should be considered as a component of thyroid hormone signaling and might play a significant physiological and/or pathophysiological role. T1AM analogs have already been synthetized and their therapeutical potential is currently under investigation. 3-iodothyronamine (T1AM) is a biogenic amine whose structure is closely related to that of thyroid hormone (3,5,3'-triiodothyronine, or T3). The differences with T3 are the absence of the carboxylate group and the substitution of iodine with hydrogen in 5 and 3' positions (Figure 1). In this paper we will review the evidence supporting the hypothesis that T1AM is a chemical messenger, namely that it is an endogenous substance able to interact with specific receptors producing significant functional effects. Special emphasis will be placed on neurological and metabolic effects, which are likely to have physiological and pathophysiological importance.
Matano, Fumihiro; Murai, Yasuo; Adachi, Koji; Kitamura, Takayuki; Teramoto, Akira
2014-04-01
Cases of moyamoya disease or intracranial arterial stenosis around the circle of Willis (M/IAS) associated with hyperthyroidism have been reported. However, most of these previous reports were of the ischemic form of M/IAS and primary hyperthyroidism. To the best of our knowledge, no studies have documented therapy for M/IAS associated with hyperthyroidism. We discuss four previously unreported cases, including those involving the intracerebral hemorrhage form and thyroid-stimulating hormone (TSH) secretion from a pituitary adenoma (secondary hyperthyroidism). We analyzed data from 52 previously reported cases, including the 4 cases presented here, and discuss M/IAS associated with hyperthyroidism, treatment options, pathophysiology, the ischemic and hemorrhagic forms, secondary hyperthyroidism, and the relevant literature. Hyperthyroidism results in thyrotoxicosis and the stimulation of the superior cervical ganglion by TSH antibodies and f-T3/f-T4. Consequently, hypercoagulability and stenosis of the cerebral artery can occur. There are many reports of ischemic M/IAS associated with hyperthyroidism. A conservative approach to treatment is important in such cases; for example, antithyroid therapy should be the first choice to treat ischemic M/IAS. There have been only a limited number of reports on hemorrhagic M/IAS. We presume that hemorrhagic M/IAS tears the weakened vasculature in a manner similar to that of normal M/IAS (with no complicating hyperthyroidism). The authors also reported M/IAS associated with secondary hyperthyroidism due to pituitary thyroid secreting hormone secreting adenoma.
Characterization of rat calcitonin mRNA.
Amara, S G; David, D N; Rosenfeld, M G; Roos, B A; Evans, R M
1980-01-01
A chimeric plasmic containing cDNA complementary to rat calcitonin mRNA has been constructed. Partial sequence analysis shows that the insert contains a nucleotide sequence encoding the complete amino acid sequence of calcitonin. Two basic amino acids precede and three basic amino acids follow the hormone sequence, suggesting that calcitonin is generated by the proteolytic cleavage of a larger precursor in a manner analogous to that of other small polypeptide hormones. The COOH-terminal proline, known to be amidated in the secreted hormone, is followed by a glycine in the precursor. The cloned calcitonin DNA was used to characterize the expression of calcitonin mRNA. Cytoplasmic mRNAs from calcitonin-producing rat medullary thyroid carcinoma lines and from normal rat thyroid glands contain a single species, 1050 nucleotides long, whch hybridizes to the cloned calcitonin cDNA. The concentration of calcitonin mRNA sequences is greater in those tumors that produce larger amounts of immunoreactive calcitonin. RNAs from other endocrine tissues, including anterior and neurointermediate lobes of rat pituitary, contain no detectable calcitonin mRNA. Images PMID:6933496
Liu, Shaoying; Chang, Juhua; Zhao, Ying; Zhu, Guonian
2011-11-01
In this study, zebrafish was exposed to triadimefon. Thyroid hormones levels and the expression of related genes in the hypothalamic-pituitary-thyroid (HPT) axis, including thyroid-stimulating hormone (TSH-beta), deiodinases (dio1 and dio2) and the thyroid hormone receptor (thraa and thrb) were evaluated. After triadimefon exposure, increased T4 can be explained by increased thyroid-stimulating hormone (TSH-beta). The conversion of T4 to T3 (deiodinase type I-dio1) was decreased, which reduced the T3 level. Thyroid hormone receptor beta (thrb) mRNA levels were significantly down-regulated, possibly as a response to the decreased T3 levels. The overall results indicated that triadimefon exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by triadimefon could occur at several steps in the synthesis, regulation, and action of thyroid hormones. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
[Effect of aceclofenac on thyroid hormone binding and thyroid function].
Nadler, K; Buchinger, W; Semlitsch, G; Pongratz, R; Rainer, F
2000-01-01
Influences of non-steroidal anti-inflammatory drugs (NSAID) on concentrations of thyroid hormones are known for a long time. These effects could be explained with interference between NSAIDs and thyroid hormone binding. We investigated the effects of a single dose of aceclofenac on thyroid function and thyroid hormone binding in 18 healthy volunteers. Serum levels of free thyroid hormones (FT3, FT4) and thyrotropin (TSH) were measured with commercial available kids and thyroid hormone binding was estimated with a specially modified horizontal argarose-gel-electrophoresis prior to and 2 hours after receiving a single dose of aceclofenac. We found a significant decrease in T3 binding on TBG and a significant increase of albumin-bound T3. All other investigated thyroid hormone binding parameters, FT3 and FT4, showed no significant changes. We conclude that aceclofenac leads to a significant redistribution of T3 protein binding. These effects seem to be explained by T3 displacement from TBG induced by aceclofenac.
Hypothyroidism: etiology, diagnosis, and management.
Almandoz, Jaime P; Gharib, Hossein
2012-03-01
Hypothyroidism is the result of inadequate production of thyroid hormone or inadequate action of thyroid hormone in target tissues. Primary hypothyroidism is the principal manifestation of hypothyroidism, but other causes include central deficiency of thyrotropin-releasing hormone or thyroid-stimulating hormone (TSH), or consumptive hypothyroidism from excessive inactivation of thyroid hormone. Subclinical hypothyroidism is present when there is elevated TSH but a normal free thyroxine level. Treatment involves oral administration of exogenous synthetic thyroid hormone. This review presents an update on the etiology and types of hypothyroidism, including subclinical disease; drugs and thyroid function; and diagnosis and treatment of hypothyroidism. Copyright © 2012 Elsevier Inc. All rights reserved.
Rousset, B; Cure, M
1975-01-01
Changes in thyroid activity and variations in the hypthalamo-pituitary-thyroid hormone levels were examined in rats exposed to heat (34 degrees C)for3 weeks. Thyroid activity evaluated histologically (epithelium/colloid ratio, nuclear size) by radioiodine exploration (24 hrs 125 I uptake, ratio of mono- to di-125 iodotyrosines - MIT/DIT, ratio of tri- to tetra-125 iodothyronines-T3/T4, and plasma 125I-T4 and assay of plasma T4, evolves in a triphasic manner. 1.a depression phase between day 0 and day 2.5. 2. a rebound of thyroid activity between day 2.5 and day 9.3 a stabilization of thyroid parameters from day 9 to day 24. These results indicate adaptation of thyroid function to heat after 3 weeks. In phase i, plasma TSH )MeKenzie bioassay) fell to undectable levels concurrent with a 50% decrease in hypothalamic TRH (in vitro assay). Plasma TSH peaked on day 4.5, fell on day 9.5 and returned progressively to initial levels. Hypothalamic TRH returned to initial levels after 6.5 days. The rapid and simultaneous decrease in hypothalamic TRH, plasma TSH, plasma T4 and thyroid activity by the 36th hour of heat exposure (34 degrees C) suggests initiation at the hypothalamic level. In the secound phase, the rebound in thyroid activity is presumably due to the peak in circulating TSH in ralation to the marked decrease in plasma T4. The oscillations of phase 2 and the stabilization of all the thyroid parameters in phase 3 may be the reflection of an apparent discrepancy remains between a low plasma T4 and a normal or subnormal plasma TSH. A modification in the "set point" for the control of TSH secretion is discussed.
Thyroid hormone and the central control of homeostasis.
Warner, Amy; Mittag, Jens
2012-08-01
It has long been known that thyroid hormone has profound direct effects on metabolism and cardiovascular function. More recently, it was shown that the hormone also modulates these systems by actions on the central autonomic control. Recent studies that either manipulated thyroid hormone signalling in anatomical areas of the brain or analysed seasonal models with an endogenous fluctuation in hypothalamic thyroid hormone levels revealed that the hormone controls energy turnover. However, most of these studies did not progress beyond the level of anatomical nuclei; thus, the neuronal substrates as well as the molecular mechanisms remain largely enigmatic. This review summarises the evidence for a role of thyroid hormone in the central autonomic control of peripheral homeostasis and advocates novel strategies to address thyroid hormone action in the brain on a cellular level.
Hyperthyroidism: Diagnosis and Treatment.
Kravets, Igor
2016-03-01
Hyperthyroidism is an excessive concentration of thyroid hormones in tissues caused by increased synthesis of thyroid hormones, excessive release of preformed thyroid hormones, or an endogenous or exogenous extrathyroidal source. The most common causes of an excessive production of thyroid hormones are Graves disease, toxic multinodular goiter, and toxic adenoma. The most common cause of an excessive passive release of thyroid hormones is painless (silent) thyroiditis, although its clinical presentation is the same as with other causes. Hyperthyroidism caused by overproduction of thyroid hormones can be treated with antithyroid medications (methimazole and propylthiouracil), radioactive iodine ablation of the thyroid gland, or surgical thyroidectomy. Radioactive iodine ablation is the most widely used treatment in the United States. The choice of treatment depends on the underlying diagnosis, the presence of contraindications to a particular treatment modality, the severity of hyperthyroidism, and the patient's preference.
Short-term preoperative octreotide treatment for TSH-secreting pituitary adenoma.
Fukuhara, Noriaki; Horiguchi, Kentaro; Nishioka, Hiroshi; Suzuki, Hisanori; Takeshita, Akira; Takeuchi, Yasuhiro; Inoshita, Naoko; Yamada, Shozo
2015-01-01
Preoperative control of hyperthyroidism in patients with TSH-secreting pituitary adenomas (TSHoma) may avoid perioperative thyroid storm. Perioperative administration of octreotide may control hyperthyroidism, as well as shrink tumor size. The effects of preoperative octreotide treatment were assessed in a large number of patients with TSHomas. Of 81 patients who underwent surgery for TSHoma at Toranomon Hospital between January 2001 and May 2013, 44 received preoperative short-term octreotide. After excluding one patient because of side effects, 19 received octreotide as a subcutaneous injection, and 24 as a long-acting release (LAR) injection. Median duration between initiation of octreotide treatment and surgery was 33.5 days. Octreotide normalized free T4 in 36 of 43 patients (84%) and shrank tumors in 23 of 38 (61%). Length of octreotide treatment did not differ significantly in patients with and without hormonal normalization (p=0.09) and with and without tumor shrinkage (p=0.84). Serum TSH and free T4 concentrations, duration of treatment, incidence of growth hormone (GH) co-secretion, results of octreotide loading tests, form of administration (subcutaneous injection or LAR), tumor volume, and tumor consistency did not differ significantly in patients with and without hormonal normalization and with and without tumor shrinkage. Short-term preoperative octreotide administration was highly effective for TSHoma shrinkage and normalization of excess hormone concentrations, with tolerable side effects.
Lambda cyhalothrin induced alterations in Clarias batrachus.
Saravanan, R; Revathi, K; Murthy, P Balakrishna
2009-03-01
The present study was undertaken to find out the toxic effect of synthetic pyrethroid lambda cyhalothrin on the functioning of endocrine glands in freshwater catfish, Clarias batrachus. The fish were exposed to the pesticide for a period of 45 days at a sublethal concentration of 5.768 ppm. Analysis of hormone profile was carried out on the 15, 30 and 45 days of exposure to find out the alteration in hormone secretion and the response of the fish to the compound. The results obtained showed a significant decline (p<0.05) in levels of thyroid hormones and testosterone while a significant increase (p<0.05) was observed in cortisol levels during the different days of exposure of the fish to lambda cyhalothrin.
Novel neural pathways for metabolic effects of thyroid hormone.
Fliers, Eric; Klieverik, Lars P; Kalsbeek, Andries
2010-04-01
The relation between thyrotoxicosis, the clinical syndrome resulting from exposure to excessive thyroid hormone concentrations, and the sympathetic nervous system remains enigmatic. Nevertheless, beta-adrenergic blockers are widely used to manage severe thyrotoxicosis. Recent experiments show that the effects of thyrotoxicosis on hepatic glucose production and insulin sensitivity can be modulated by selective hepatic sympathetic and parasympathetic denervation. Indeed, thyroid hormone stimulates hepatic glucose production via a sympathetic pathway, a novel central pathway for thyroid hormone action. Rodent studies suggest that similar neural routes exist for thyroid hormone analogues (e.g. thyronamines). Further elucidation of central effects of thyroid hormone on autonomic outflow to metabolic organs, including the thyroid and brown adipose tissue, will add to our understanding of hyperthyroidism. Copyright 2009 Elsevier Ltd. All rights reserved.
Tekin, Suat; Erden, Yavuz; Ozyalin, Fatma; Onalan, Ebru Etem; Cigremis, Yilmaz; Colak, Cemil; Tekedereli, Ibrahim; Sandal, Suleyman
2018-05-01
Irisin, which is secreted from the skeletal muscle in response to physical exercise and defined as a thermogenic peptide, may play an important role in energy metabolism. Thyroid hormones, which are one of the other influential factors on the metabolic status, increase heat production and are the main regulators of energy metabolism. This study was conducted to determine the possible effects of irisin administration on thyroid hormones. Forty adult male Wistar albino rats were used in the study. The rats were equally divided into 4 groups (n = 10). The brain infusion kit was implanted in the groups, and irisin (or solvent as control) was centrally administered to the rats via osmotic mini pumps for 7 days. During the experiment, food consumption, body weights, and body temperatures of the animals were recorded. Food intake was significantly increased in the groups treated with irisin (p < 0.05), but their body weights were not changed. Hypothalamic TRH gene expression, serum TSH, fT3, and fT4 levels were significantly lower in the groups treated with irisin as compared to the naive and control groups (p < 0.05). In addition, irisin increased UCP1 mRNA expression in white and brown adipose tissue and UCP3 mRNA expression in muscle tissue in rats and also raised their body temperature (p < 0.05). Consequently, although central irisin administration has inhibitory effects on the hypothalamic-pituitary-thyroid axis, it seems to be an important agent in the regulation of food intake and energy metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.
Tigas, S; Idiculla, J; Beckett, G; Toft, A
2000-12-01
There is controversy about the correct dose and form of thyroid hormone therapy for patients with hypothyroidism. Despite restoration of serum thyrotropin (TSH) concentrations to normal, many patients complain of excessive weight gain. We have compared weight at diagnosis of hyperthyroidism with that when euthyroid, evidenced by a stable, normal serum TSH concentration, with or without thyroxine (T4) replacement therapy, in patients treated with an 18-month course of antithyroid drugs (43 patients), surgery (56 patients), or 13I (34 patients) for Graves' disease. In addition, weights were recorded before and after treatment of 25 patients with differentiated thyroid carcinoma by total thyroidectomy, 131I, and long-term T4 suppressive therapy, resulting in undetectable serum TSH concentrations. Mean weight gain in patients with Graves' disease who required T4 replacement therapy following surgery was significantly greater than in those of the same age, sex, and severity of hyperthyroidism rendered euthyroid by surgery (3.9 kg) (p < 0.001) or at the end of a course of antithyroid drugs (4.1 kg) (p < 0.001). Weight gain was similar in those requiring T4 replacement following surgery or 131T therapy (10.4 versus 10.1 kg). In contrast, ablative therapy combined with suppression of TSH secretion by T4 in patients with differentiated thyroid carcinoma did not result in weight gain. The excessive weight gain in patients becoming hypothyroid after destructive therapy for Graves' disease suggests that restoration of serum TSH to the reference range by T4 alone may constitute inadequate hormone replacement.
The role of thyroid hormone signaling in the prevention of digestive system cancers.
Brown, Adam R; Simmen, Rosalia C M; Simmen, Frank A
2013-08-06
Thyroid hormones play a critical role in the growth and development of the alimentary tract in vertebrates. Their effects are mediated by nuclear receptors as well as the cell surface receptor integrin αVβ3. Systemic thyroid hormone levels are controlled via activation and deactivation by iodothyronine deiodinases in the liver and other tissues. Given that thyroid hormone signaling has been characterized as a major effector of digestive system growth and homeostasis, numerous investigations have examined its role in the occurrence and progression of cancers in various tissues of this organ system. The present review summarizes current findings regarding the effects of thyroid hormone signaling on cancers of the esophagus, stomach, liver, pancreas, and colon. Particular attention is given to the roles of different thyroid hormone receptor isoforms, the novel integrin αVβ3 receptor, and thyroid hormone-related nutrients as possible protective agents and therapeutic targets. Future investigations geared towards a better understanding of thyroid hormone signaling in digestive system cancers may provide preventive or therapeutic strategies to diminish risk, improve outcome and avert recurrence in afflicted individuals.
The Role of Thyroid Hormone Signaling in the Prevention of Digestive System Cancers
Brown, Adam R.; Simmen, Rosalia C. M.; Simmen, Frank A.
2013-01-01
Thyroid hormones play a critical role in the growth and development of the alimentary tract in vertebrates. Their effects are mediated by nuclear receptors as well as the cell surface receptor integrin αVβ3. Systemic thyroid hormone levels are controlled via activation and deactivation by iodothyronine deiodinases in the liver and other tissues. Given that thyroid hormone signaling has been characterized as a major effector of digestive system growth and homeostasis, numerous investigations have examined its role in the occurrence and progression of cancers in various tissues of this organ system. The present review summarizes current findings regarding the effects of thyroid hormone signaling on cancers of the esophagus, stomach, liver, pancreas, and colon. Particular attention is given to the roles of different thyroid hormone receptor isoforms, the novel integrin αVβ3 receptor, and thyroid hormone-related nutrients as possible protective agents and therapeutic targets. Future investigations geared towards a better understanding of thyroid hormone signaling in digestive system cancers may provide preventive or therapeutic strategies to diminish risk, improve outcome and avert recurrence in afflicted individuals. PMID:23924944
Thyrotropin (TSH) regulates triiodothyronine (T3) production in the unicellular Tetrahymena.
Csaba, G; Pállinger, Eva
2011-09-01
The aim of the experiments was to study the regulation of triiodothyronine (T3) production in the unicellular Tetrahymena. Untreated and troph-hormone treated specimen were prepared and in different timepoints T3 content was measured and compared by immunocytochemical flow cytometry. 0.1 or 0.001 IU TSH in tryptone-yeast medium stimulated T3 synthesis at 10, 20, 30 min, but does not stimulate after 1 h. The overlapping gonadotropic hormone (GTH) also did it, however only at 10 min. In Losina salt solution (physiological for Tetrahymena) the effect was weaker, however outer amino acid source was not absolutely needed for the production of the hormone. The results show that the TSH regulation of thyroid hormone synthesis (storage, secretion) and troph-hormone overlap can be deduced to a unicellular level. This may allow the hypothesis that the endocrine mechanisms proved at a low level of phylogeny are preserved for the higher ranked organisms.
NASA Astrophysics Data System (ADS)
Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.
2017-03-01
Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.
[Thyroid hormone metabolism and action].
Köhrle, Josef
2004-05-01
Reductive deiodination of thyroid hormones at the phenolic and tyrosyl ring leads to the activation or inactivation of the thyromimetic activity inherent to thyroid hormones. Alterations in the activities of the three selenocysteine-containing enzymes, the iodothyronine deiodinases, have been reported during development and in specific cells and tissues of the adult organism. Furthermore, pathophysiological changes in the deiodinase expression lead to therapeutically relevant disturbances of the homeostasis of thyroid hormones. Metabolisation of thyroid hormones by conjugation of their phenolic 4'-OH group, their alanine side chain or cleavage of their diphenylether bridge also contributes to both local and systemic supply of thyromimetic activity or hormone degradation. Further components mediating the pleiotropic action of thyroid hormones in part include redundant T3 receptors, binding and transport proteins, metabolising enzymes and T3-regulated gene products. This is achieved in a finely tuned manner with multiple feedback control, malfunction or complete failure of individual components and networks involved in the iodothyronine metabolism and thyroid hormone action can thus be compensated or prevented.
Shiel, Robert E; Sist, MaryDee; Nachreiner, Raymond F; Ehrlich, Claire P; Mooney, Carmel T
2010-02-01
To assess use of serum thyroid hormone concentrations by veterinarians to diagnose hypothyroidism in sighthounds and to evaluate serum thyroid hormone concentrations in healthy Salukis. Retrospective case series and cross-sectional study. 398 sighthounds of various breeds with a diagnosis of hypothyroidism and 283 healthy Salukis. Pretreatment thyroid hormone assay results from sighthounds subsequently classified as hypothyroid by practitioners were retrieved from a laboratory database. In healthy Salukis, serum concentrations of total thyroxine (T(4)), free T(4), total triiodothyronine (T(3)), free T(3), and thyroid-stimulating hormone (TSH) and antibodies against thyroglobulin and thyroid hormones were assayed. Records indicated hypothyroidism had been diagnosed in 303 (76.1%) sight-hounds on the basis of low serum thyroid hormone concentrations alone and in 30 (7.5%) others despite all thyroid hormone indices being within reference limits. Only 65 (16.3%) dogs had a high TSH concentration or positive thyroglobulin autoantibody result to support the diagnosis. In healthy Salukis, median (reference limits) serum concentrations of total T(4), free T(4), total T(3), free T(3), and TSH were 13.0 nmol/L (2.8 to 40.0 nmol/L), 12.0 pmol/L (2.0 to 30.3 pmol/L), 1.0 nmol/L (0.4 to 2.1 nmol/L), 4.0 pmol/L (1.6 to 7.7 pmol/L), and 0.18 ng/mL (0 to 0.86 ng/mL), respectively. Diagnosis of hypothyroidism by practitioners was most often made without adequate supportive laboratory evidence. Thyroid hormone values in healthy Salukis differed markedly from standard reference limits for some, but not all, thyroid hormone indices. Breed-specific reference limits should be used when interpreting thyroid hormone profiles of sighthounds.
Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.
Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A
2012-09-01
Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.
Thyroid hormones and fetal brain development.
Pemberton, H N; Franklyn, J A; Kilby, M D
2005-08-01
Thyroid hormones are intricately involved in the developing fetal brain. The fetal central nervous system is sensitive to the maternal thyroid status. Critical amounts of maternal T3 and T4 must be transported across the placenta to the fetus to ensure the correct development of the brain throughout ontogeny. Severe mental retardation of the child can occur due to compromised iodine intake or thyroid disease. This has been reported in areas of the world with iodine insufficiency, New Guinea, and also in mother with thyroid complications such as hypothyroxinaemia and hyperthyroidism. The molecular control of thyroid hormones by deiodinases for the activation of thyroid hormones is critical to ensure the correct amount of active thyroid hormones are temporally supplied to the fetus. These hormones provide timing signals for the induction of programmes for differentiation and maturation at specific stages of development. Understanding these molecular mechanisms further will have profound implications in the clinical management of individuals affected by abnormal maternal of fetal thyroid status.
Hennessey, James V
2015-10-01
To describe the history, refinements, implementation, physiology, and clinical outcomes achieved over the past several centuries of thyroid hormone replacement strategies. A Medline search was initiated using the following search terms: bioidentical thyroid hormone, thyroid hormone extract, combination thyroxine (T4) and tri-iodothyronine (T3) therapy, homeopathic thyroid hormone therapy, and thyroid hormone replacement. Pertinent articles of interest were identified by title (and where available abstract) for further review. Additional references were identified during a review of the identified literature. A rich history of physician intervention in thyroid dysfunction was identified dating back more than 2 millennia. Although not precisely documented, thyroid ingestion from animal sources had been used for centuries but was finally scientifically described and documented in Europe over 130 years ago. Since the reports by Bettencourt and Murray, there has been a continuous documentation of outcomes, refinement of hormone preparation production, and updating of recommendations for the most effective and safe use of these hormones for relieving the symptoms of hypothyroidism. As the thyroid extract preparations contain both levothyroxine (LT4) and liothyronine (LT3), current guidelines do not endorse their use as controlled studies do not clearly document enhanced objective outcomes compared with LT4 monotherapy. Among current issues cited, the optimum ratio of LT4 to LT3 has yet to be determined, and the U.S. Food and Drug Administration (FDA) does not appear to be monitoring the thyroid hormone ratios or content in extract preparations on the market. Taken together, these limitations are important detriments to the use of thyroid extract products. The evolution of thyroid hormone therapies has been significant over the extended period of time they have been in use to treat hypothyroidism. Although numerous websites continue to advocate the use of thyroid hormone extracts as a superior therapy for hypothyroidism, none of the most recent guidelines of major endocrine societies recommend thyroid extract use for hypothyroidism.
Friedrich, Nele; Pietzner, Maik; Cannet, Claire; Thuesen, Betina H.; Hansen, Torben; Wallaschofski, Henri; Grarup, Niels; Skaaby, Tea; Budde, Kathrin; Pedersen, Oluf; Nauck, Matthias; Linneberg, Allan
2017-01-01
Background Triiodothyronine (T3) and thyroxine (T4) as the main secretion products of the thyroid affect nearly every human tissue and are involved in a broad range of processes ranging from energy expenditure and lipid metabolism to glucose homeostasis. Metabolomics studies outside the focus of clinical manifest thyroid diseases are rare. The aim of the present investigation was to analyze the cross-sectional and longitudinal associations of urinary metabolites with serum free T4 (FT4) and thyroid-stimulating hormone (TSH). Methods Urine Metabolites of participants of the population-based studies Inter99 (n = 5620) and Health2006/Health2008 (n = 3788) were analyzed by 1H-NMR spectroscopy. Linear or mixed linear models were used to detect associations between urine metabolites and thyroid function. Results Cross-sectional analyses revealed positive relations of alanine, trigonelline and lactic acid with FT4 and negative relations of dimethylamine, glucose, glycine and lactic acid with log(TSH). In longitudinal analyses, lower levels of alanine, dimethylamine, glycine, lactic acid and N,N-dimethylglycine were linked to a higher decline in FT4 levels over time, whereas higher trigonelline levels were related to a higher FT4 decline. Moreover, the risk of hypothyroidism was higher in subjects with high baseline trigonelline or low lactic acid, alanine or glycine values. Conclusion The detected associations mainly emphasize the important role of thyroid hormones in glucose homeostasis. In addition, the predictive character of these metabolites might argue for a potential feedback of the metabolic state on thyroid function. Besides known metabolic consequences of TH, the link to the urine excretion of trigonelline, a marker of coffee consumption, represents a novel finding of this study and given the ubiquitous consumption of coffee requires further research. PMID:28253303
Stoker, T E; Ferrell, J M; Laws, S C; Cooper, R L; Buckalew, A
2006-11-10
The U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 male pubertal protocol was designed as a screen to detect endocrine-disrupting chemicals which may alter reproductive development or thyroid function. One purpose of this in vivo screening protocol is to detect thyrotoxicants via a number of different mechanisms of action, such as thyroid hormone synthesis or clearance. Here we evaluate the ability of this EDSP male pubertal protocol to detect the known thyrotoxicant ammonium perchlorate as an endocrine disruptor. Ammonium perchlorate is a primary ingredient in rocket fuel, fertilizers, paints, and lubricants. Over the past 50 years, potassium perchlorate has been used to treat hyperthyroidism in humans. Perchlorate alters thyroid hormone secretion by competitively inhibiting iodide uptake by the thyroid gland. In this study, ammonium perchlorate was administered at 62.5, 125, 250, and 500 mg/kg to male Wistar rats based on a pilot study of oral dosing. Doses of 125-500 mg/kg perchlorate decreased T4 in a dose-dependent manner. TSH was significantly increased in a dose-responsive manner at the same doses, while T3 was unchanged at any dose. Thyroid histology was significantly altered at all doses, even at the 62.5 mg/kg, with a clear dose-dependent decrease in colloid area and increase in follicular cell height. No effects on preputial separation, a marker of pubertal progression, or reproductive tract development were observed at any dose. These results demonstrate that the male pubertal protocol is useful for detecting thyrotoxicants which target the thyroid axis by this mechanism (altered uptake of iodide). This study also found that perchlorate exposure during this period did not alter any of the reproductive developmental endpoints.
Thyroid Hormone Availability and Action during Brain Development in Rodents.
Bárez-López, Soledad; Guadaño-Ferraz, Ana
2017-01-01
Thyroid hormones (THs) play an essential role in the development of all vertebrates; in particular adequate TH content is crucial for proper neurodevelopment. TH availability and action in the brain are precisely regulated by several mechanisms, including the secretion of THs by the thyroid gland, the transport of THs to the brain and neural cells, THs activation and inactivation by the metabolic enzymes deiodinases and, in the fetus, transplacental passage of maternal THs. Although these mechanisms have been extensively studied in rats, in the last decade, models of genetically modified mice have been more frequently used to understand the role of the main proteins involved in TH signaling in health and disease. Despite this, there is little knowledge about the mechanisms underlying THs availability in the mouse brain. This mini-review article gathers information from findings in rats, and the latest findings in mice regarding the ontogeny of TH action and the sources of THs to the brain, with special focus on neurodevelopmental stages. Unraveling TH economy and action in the mouse brain may help to better understand the physiology and pathophysiology of TH signaling in brain and may contribute to addressing the neurological alterations due to hypo and hyperthyroidism and TH resistance syndromes.
Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...
Microencapsulation Of Living Cells
NASA Technical Reports Server (NTRS)
Chang, Manchium; Kendall, James M.; Wang, Taylor G.
1989-01-01
In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.
[Sub-acute thyroiditis in a patient on immunosuppressive treatment].
D'Amico, Giovanna; Di Crescenzo, Vincenzo; Caleo, Alessia; Garzi, Alfredo; Vitale, Mario
2013-01-01
Sub-acute thyroiditis or De Quervain's thyroiditis is a viral, inflammatory disease which causes the serum release of thyroidal hormones and hyperthyroidism. The pathogenesis of thyroid follicle damage is unclear because the exclusive viral action or a concomitant autoimmune component, determined by the lymphoid infiltrate remain to be assessed. We describe the case of a patient under immunosuppressive treatment, who developed sub-acute thyroiditis with hormone release and hyperthyroidism. The patient, while was under immunosuppressive treatment for kidney transplant, exhibited a clinical picture and hormonal profile of hyperthyroidism. Thyroid scintiscan exhibited an extremely low uptake. Fine-needle cytologic diagnosis was granulomatous sub-acute thyroiditis (De Quervain's thyroiditis). This case suggests the primary or even exclusive role of the viral infection in hormone release and hyperthyroidism in sub-acute thyroiditis, excluding an autoimmune component.
TSH increment and the risk of incident type 2 diabetes mellitus in euthyroid subjects.
Jun, Ji Eun; Jin, Sang-Man; Jee, Jae Hwan; Bae, Ji Cheol; Hur, Kyu Yeon; Lee, Moon-Kyu; Kim, Sun Wook; Kim, Jae Hyeon
2017-03-01
Thyroid function is known to influence glucose metabolism, and thyroid-stimulating hormone is the most useful parameter in screening for thyroid dysfunction. Therefore, the aim of this study was to investigate the incidence of type 2 diabetes according to baseline thyroid-stimulating hormone level and thyroid-stimulating hormone change in euthyroid subjects. We identified and enrolled 17,061 euthyroid subjects without diabetes among participants who had undergone consecutive thyroid function tests between 2006 and 2012 as a part of yearly health check-up program. Thyroid-stimulating hormone changes were determined by subtracting baseline thyroid-stimulating hormone level from thyroid-stimulating hormone level at 1 year before diagnosis of diabetes or at the end of follow-up in subjects who did not develope diabetes. During 84,595 person-years of follow-up, there were 956 new cases of type 2 diabetes. Cox proportional hazards models showed the risk of incident type 2 diabetes was significantly increased with each 1 μIU/mL increment in TSH after adjustment for multiple confounding factors (hazard ratio = 1.13, 95% confidence interval: 1.07-1.20, P < 0.001). Compared with individuals in the lowest tertile (-4.08 to 0.34 μIU/mL), those in the highest thyroid-stimulating hormone change tertile (0.41-10.84 μIU/mL) were at greater risk for incident type 2 diabetes (hazard ratio = 1.25, 95% confidence interval: 1.05-1.48, P for trend = 0.011). However, baseline thyroid-stimulating hormone level and tertile were not associated with the risk for diabetes. Prominent increase in thyroid-stimulating hormone concentration can be an additional risk factor for the development of type 2 diabetes in euthyroid subjects.
Tosi, F; Moghetti, P; Castello, R; Negri, C; Bonora, E; Muggeo, M
1996-08-01
The mechanisms underlying deterioration of glucose tolerance associated with hyperthyroidism are not completely understood. Increases in glucagon and growth hormone (GH) secretion have been previously found in hyperthyroid subjects, and could play a crucial role in this phenomenon. However, studies have not yet established the time sequence of changes in plasma glucose on the one hand and glucagon and GH on the other. To assess the early effects of thyroid hormone excess on glucose tolerance and plasma concentrations of the main glucoregulatory hormones, 12 nondiabetic euthyroid subjects underwent an oral glucose tolerance test (OGTT) before and after triiodothyronine ([T3] 120 micrograms/d) was administered for 10 days. Plasma levels of glucose, insulin, glucagon, and GH were determined at fasting and after the glucose load. T3 administration caused a marked increase in serum T3 (8.8 +/- 0.6 v 2.0 +/- 0.1 nmol/L), with clinical and biochemical signs of thyrotoxicosis. During the treatment, plasma glucose significantly increased both at fasting and after the glucose load (basal, 5.3 +/- 0.1 v 4.9 +/- 0.2 mmol/L, P < .05; area under the curve [AUC] for OGTT, 7.7 +/- 0.3 v 6.7 +/- 0.4 mmol/L min, P < .01) without any change in plasma insulin levels. After T3 administration, plasma glucagon levels were lower than at baseline (basal, 92 +/- 7 v 148 +/- 35 ng/L; AUC, 74 +/- 6 v 98 +/- 16 ng/L.min, P < .05), showing an appropriate reduction by the increased glucose levels. Conversely, plasma GH showed impaired suppression by hyperglycemia (AUC, 1.2 +/- 0.3 v 0.7 +/- 0.2 microgram/L.min, P < .05). In conclusion, thyroid hormone excess rapidly impairs glucose tolerance. Altered secretion of GH is an early event in thyrotoxicosis accompanying the onset of hyperglycemia, whereas plasma glucagon is appropriately suppressed by the increased plasma glucose levels. Thus, GH but not glucagon may contribute to the early hyperglycemic effect of thyrotoxicosis.
Thyroid Hormone and Seasonal Rhythmicity
Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.
2014-01-01
Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714
Direct effects of thyroid hormones on hepatic lipid metabolism.
Sinha, Rohit A; Singh, Brijesh K; Yen, Paul M
2018-05-01
It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease (NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid metabolism at the molecular level. In this Review, we describe and summarize the key features of direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid hormone mediates these effects at the transcriptional and post-translational levels and via autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases involving the liver, such as hypercholesterolaemia and NAFLD.
Thyroid Hormone, Cancer, and Apoptosis.
Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J
2016-06-13
Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Zimmermann-Belsing, T; Juul, A; Juul Holst, J; Feldt-Rasmussen, U
2004-06-01
Hyperthyroidism is associated with altered growth hormone (GH) secretion. Many patients with thyroid dysfunction experience several poorly described complications such as symptoms and signs also seen in patients with growth hormone deficiency (GHD). We have therefore prospectively evaluated a possible relationship between the thyroid function, body composition, leptin levels and insulin-like growth factor (IGF) related peptides in patients with Graves' disease. DESIGN, PATIENTS, AND MEASUREMENTS: In a prospective group of 24 fasting female patients with Graves' disease (mean age (CI 95%): 40 years (33-47)), we measured serum thyroxine, triiodothyronine, thyrotropine (TSH), TSH receptor antibodies, anti-thyroid peroxidase, leptin, body composition, body mass index (BMI) and IGF-related peptides at diagnosis and after 12 months of treatment with thiamazol (ATD). In thyrotoxic patients IGF-I plus IGF-II correlated positively with IGFBP-3 at baseline (r = 0.90, p < 0.1 x 10(16)) and after 12 months follow-up (r = 0.87, p < 0.1 x 10(-16)). In the thyrotoxic state total IGF-I, IGF-II, IGF binding protein 3 (IGFBP-3) and acid-labile subunit (ALS) but not free IGF-I decreased significantly from 223 microg/L (189-260) (mean (CI 95%), 877 microg/L (801-953), 4165 microg/L (3772-4577) and 22 mg/L (18-26)) to 198 microg/L (172-226), 788 microg/L (711-865), 3431 microg/L (3135-3741) and 19 mg/L (16-26) (p <0.006), respectively, after 12 months of ATD despite an increase in BMI from 22 (21-23) to 23 kg/m(2) (22-25) (p < 0.0004) but no significant changes in leptin. The complex IGF systems seemed intact in thyrotoxic patients but change in body composition and the regulation of leptin and insulin secretion during treatment of autoimmune thyroid disease influence IGF-related peptides leaving the patient in a state somewhat similar to partial GHD, but the mechanism behind these alterations remains unclear.
Fontes, Klaus N.; Cabanelas, Adriana; Bloise, Flavia F.; de Andrade, Cherley Borba Vieira; Souza, Luana L.; Wilieman, Marianna; Trevenzoli, Isis H.; Agra, Lais C.; Silva, Johnatas D.; Bandeira-Melo, Christianne; Silva, Pedro L.; Rocco, Patricia R. M.; Ortiga-Carvalho, Tania M.
2017-01-01
Fasting and sepsis induce profound changes in thyroid hormone (TH) central and peripheral metabolism. These changes affect TH action and are called the non-thyroidal illness syndrome (NTIS). To date, it is still debated whether NTIS represents an adaptive response or a real hypothyroid state at the tissue level. Moreover, even though it has been considered the same syndrome, we hypothesized that fasting and sepsis induce a distinct set of changes in thyroid hormone metabolism. Herein, we aimed to evaluate the central and peripheral expression of genes involved in the transport (MCT8/Slc16a2 and MCT10/Slc16a10), metabolism (Dio1, Dio2, and Dio3) and action (Thra and Thrb) of TH during NTIS induced by fasting or sepsis. Male mice were subjected to a 48 h period of fasting or cecal ligation and puncture (CLP)-induced sepsis. At the peripheral level, fasting led to: (1) reduced serum thyroxine (T4) and triiodothyronine (T3), expression of Dio1, Thra, Slc16a2, and MCT8 protein in liver; (2) increased hepatic Slc16a10 and Dio3 expression; and (3) decreased Slc16a2 and Slc16a10 expressions in the thyroid gland. Fasting resulted in reduction of Tshb expression in the pituitary and increased expression of Dio2 in total hypothalamus, arcuate (ARC) and paraventricular (PVN) nucleus. CLP induced sepsis resulted in reduced: (1) T4 serum levels; (2) Dio1, Slc16a2, Slc16a10, Thra, and Thrb expression in liver as well as Slc16a2 expression in the thyroid gland (3) Thrb and Tshb mRNA expression in the pituitary; (4) total leukocyte counts in the bone marrow while increased its number in peritoneal and pleural fluids. In summary, fasting- or sepsis-driven NTIS promotes changes in the set point of hypothalamus-pituitary-thyroid axis through different mechanisms. Reduced hepatic THRs expression in conjunction with reduced TH transporters expression in the thyroid gland may indicate, respectively, reduction in the peripheral action and in the secretion of TH, which may contribute to the low TH serum levels observed in both models. PMID:29118715
Meyerholz, Marie Margarete; Mense, Kirsten; Linden, Matthias; Raliou, Mariam; Sandra, Olivier; Schuberth, Hans-Joachim; Hoedemaker, Martina; Schmicke, Marion
2016-09-08
Before the onset of fetal thyroid hormone production, the transplacental delivery of maternal thyroid hormones is necessary for embryonic and fetal development. Therefore, the adaptation of maternal thyroid hormone metabolism may be important for pregnancy success and embryo survival. The aims of this study were to determine the thyroid hormone levels during the early peri-implantation period until day 18 and on the day of ovulation, to determine whether pregnancy success is dependent on a "normothyroid status" and to determine whether physiological adaptations in maternal thyroid hormone metabolism occur, which may be necessary to provide sufficient amounts of biologically active T3 to support early pregnancy. Therefore, blood samples obtained on the day of ovulation (day 0) and days 14 and 18 of the Holstein-Friesian heifers (n = 10) during the respective pregnant, non-pregnant and negative control cycles were analyzed for thyroid-stimulating-hormone (TSH), thyroxine (T4) and triiodothyronine (T3). Liver biopsies (day 18) from pregnant and respective non-pregnant heifers were analyzed for mRNA expression of the most abundant hepatic thyroid hormone deiodinase (DIO1) by real time qPCR. Although liver DIO1 mRNA expression did not differ between the pregnant and non-pregnant heifers on day 18, the serum concentrations of TSH and T3 on day 18 were higher in non-pregnant heifers compared to pregnant heifers (P < 0.05). Moreover, T3 decreased between day 0 and 18 in pregnant heifers (P < 0.001). In conclusion, no associations between thyroid hormone patterns on day 18 and pregnancy success were detected. During the early peri-implantation period, TSH and T3 may be affected by the pregnancy status because both TSH and T3 were lower on day 18 in pregnant heifers compared to non-pregnant dairy heifers. In further studies, the thyroid hormone axis should be evaluated throughout the entire gestation to confirm these data and identify other possible effects of pregnancy on the thyroid hormone axis in cattle.
Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G
2018-07-01
Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Hormones in the immune system and their possible role. A critical review.
Csaba, György
2014-09-01
Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.
75 FR 66104 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A. 2000 Nov... overactivated. These mice have a knock-in dominantly negative mutant thyroid hormone receptor [beta] gene (TR... mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model...
Neurotoxicity of Thyroid Disrupting Contaminants
Thyroid hormones playa critical role in the normal development ofthe mammalian brain. Thyroid disrupting chemicals (TDCs) are environmental contaminants that alter the structure or function ofthe thyroid gland, alter regulatory enzymes associated with thyroid hormone (TH) homeost...
Pearce, Elizabeth N
2012-10-01
To review several of the most recent and most important clinical studies regarding the effects of thyroid treatments on weight change, associations between thyroid status and weight, and the effects of obesity and weight change on thyroid function. Weight decreases following treatment for hypothyroidism. However, following levothyroxine treatment for overt hypothyroidism, weight loss appears to be modest and mediated primarily by loss of water weight rather than fat. There is conflicting evidence about the effects of thyroidectomy on weight. In large population studies, even among euthyroid individuals, serum thyroid-stimulating hormone is typically positively associated with body weight and BMI. Both serum thyroid-stimulating hormone and T3 are typically increased in obese compared with lean individuals, an effect likely mediated, at least in part, by leptin. Finally, there is no consistent evidence that thyroid hormone treatment induces weight loss in obese euthyroid individuals, but thyroid hormone analogues may eventually be useful for weight loss. The interrelationships between body weight and thyroid status are complex.
The emergence of levothyroxine as a treatment for hypothyroidism.
Hennessey, James V
2017-01-01
To describe the historical refinements, understanding of physiology and clinical outcomes observed with thyroid hormone replacement strategies. A Medline search was initiated using the search terms, levothyroxine, thyroid hormone history, levothyroxine mono therapy, thyroid hormone replacement, combination LT4 therapy, levothyroxine Bioequivalence. Pertinent articles of interest were identified by title and where available abstract for further review. Additional references were identified in the course of review of the literature identified. Physicians have intervened in cases of thyroid dysfunction for more than two millennia. Ingestion of animal thyroid derived preparations has been long described but only scientifically documented for the last 130 years. Refinements in hormone preparation, pharmaceutical production and regulation continue to this day. The literature provides documentation of physiologic, pathologic and clinical outcomes which have been reported and continuously updated. Recommendations for effective and safe use of these hormones for reversal of patho-physiology associated with hypothyroidism and the relief of symptoms of hypothyroidism has documented a progressive refinement in our understanding of thyroid hormone use. Studies of thyroid hormone metabolism, action and pharmacokinetics have allowed evermore focused recommendations for use in clinical practice. Levothyroxine mono-therapy has emerged as the therapy of choice of all recent major guidelines. The evolution of thyroid hormone therapies has been significant over an extended period of time. Thyroid hormone replacement is very useful in the treatment of those with hypothyroidism. All of the most recent guidelines of major endocrine societies recommend levothyroxine mono-therapy for first line use in hypothyroidism.
Taniyama, Matsuo; Otsuka, Fumiko; Tozaki, Teruaki; Ban, Yoshiyuki
2013-07-01
Thyrotoxic disease can be difficult to recognize in patients with resistance to thyroid hormone (RTH) because the clinical symptoms of thyrotoxicosis cannot be observed, and thyrotropin (TSH) may not be suppressed because of hormone resistance. Painless thyroiditis is a relatively common cause of thyrotoxicosis, but its occurrence in RTH has not been reported. We assessed the thyroid profile in a patient with RTH and episodes of thyrotoxicosis who experienced repeated painless thyroiditis. A 44-year-old Japanese woman with RTH, which was confirmed by the presence of a P453A mutation in the thyroid hormone receptor β (TRβ) gene, showed a slight elevation of the basal levels of thyroid hormones, which indicated that her pituitary RTH was mild. She experienced a slight exacerbation of hyperthyroxinemia concomitant with TSH suppression. A diagnosis of painless thyroiditis was made because of the absence of TSH receptor antibodies, low Tc-99m pertechnetate uptake by the thyroid gland, and transient suppression followed by a slight elevation of TSH following the elevation of thyroid hormones. The patient's complaints of general malaise and occasional palpitations did not change throughout the course of painless thyroiditis. Three years later, painless thyroiditis occurred again without any deterioration of the clinical manifestations. Mild pituitary RTH can be overcome by slight exacerbation of hyperthyroxinemia during mild thyrotoxicosis. When pituitary resistance is severe and TSH is not suppressed, thyrotoxicosis may be overlooked.
Diagnosis and treatment of pituitary adenomas.
Chanson, P; Salenave, S
2004-12-01
Pituitary tumors cause symptoms by secreting hormones (prolactin, PRL, responsible for amenorrhea-galactorrhea in women and decreased libido in men; growth hormone, GH, responsible for acromegaly; adrenocorticotropic hormone, ACTH, responsible for Cushing's syndrome; thyroid-stimulating hormone, TSH, responsible for hyperthyroidism), depressing the secretion of hormones (hypopituitarism), or by mass-related effects (headaches, visual field abnormalities...). All patients with pituitary tumors should be evaluated for gonadal, thyroid and adrenal function as well as PRL and GH secretion. Specific stimulation and suppression tests for pituitary hormones are performed in selected situations for detecting the type of hypersecretion or the response to treatment. Imaging procedures (mainly magnetic resonance imaging, MRI, nowadays) determine the presence, size and extent of the lesion. The classification of pituitary tumors is based on the staining properties of the cell cytoplasm viewed by light microscopy and immunocytochemistry revealing the secretory pattern of the adenoma. Treatment of pituitary adenomas consists of surgery (performed in more than 99% of cases via a transphenoidal route) and radiotherapy, generally fractionated or, in selected cases, using stereotactic techniques such as gamma-knife. The availability of medical treatment (dopamine, DA, agonists, somatostatin analogs, GH-receptor antagonists...) has profoundly modified the indications of radiotherapy, drugs being now generally used as a second-line treatment, after surgery (or even as first-line treatment). Based on the results of the different treatment modalities for each type of pituitary adenoma, recommendations will be proposed. They may be summarized as follows. For treatment of GH-secreting adenomas, trans-sphenoidal surgery is the first-line therapy except when the macroadenoma is giant or if surgery is contra-indicated; postoperative radiation therapy (fractionated, or by gamma-knife) is performed for partially resected tumors or when GH levels remain elevated (eventually after a trial of somatostatin analog). Somatostatin analogs, now available in slow release form, are proposed when surgery is contra-indicated, or has failed to normalize GH levels, or in waiting for the delayed effects of radiation therapy. If the probability of surgical cure is low (e.g. in patients with very large and/or invasive tumors), then somatostatin analogs may be reasonable primary therapeutic modality provided that the tumor does not threaten vision or neurological function. Pegvisomant, the new GH-receptor antagonist, is indicated in case of resistance to somatostatin analogs. Patients with PRL-secreting microadenomas may be treated either with trans-sphenoidal surgery or medically with DA agonists. In patients with macroadenomas, even in the presence of chiasmatic syndrome, DA agonists are now proposed as primary treatment. Indeed, effects on visual disturbances are often very rapid (within a few hours or days) and tumoral shrinkage is usually very significant. For patients with ACTH-secreting adenomas, primary therapy is generally trans-sphenoidal surgery by a skilled surgeon, whether or not a microadenoma is visible on MRI. Radiotherapy is reserved for patients who are subtotally resected or remain hyper-secretory after surgery. In waiting for the effects of radiotherapy, adrenal steroidogenesis inhibitors (mitotane, ketoconazole) may be indicated. If drugs are not available or not tolerated, bilateral adrenalectomy may be proposed. For patients with clinically non functioning adenomas (generally gonadotropin-secreting adenomas on immunocytochemistry), trans-sphenoidal surgery with or without postoperative radiation therapy is performed for almost all patients whether or not they have visual consequences of their tumor. Selected patients with small, incidentally discovered microadenomas may be carefully followed without immediate therapy.
Anderson, Grant; Forrest, Douglas; Galton, Valerie Anne; Gereben, Balázs; Kim, Brian W.; Kopp, Peter A.; Liao, Xiao Hui; Obregon, Maria Jesus; Peeters, Robin P.; Refetoff, Samuel; Sharlin, David S.; Simonides, Warner S.; Weiss, Roy E.; Williams, Graham R.
2014-01-01
Background: An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment approaches for patients with thyroid disease. Summary: Important clinical practices in use today for the treatment of patients with hypothyroidism, hyperthyroidism, or thyroid cancer are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a series of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. Conclusions: It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes. PMID:24001133
Yamaguchi, Shinji; Hayase, Shin; Aoki, Naoya; Takehara, Akihiko; Ishigohoka, Jun; Matsushima, Toshiya; Wada, Kazuhiro; Homma, Koichi J
2017-01-01
Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3) peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4) in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.
... the thyroid gland does not produce enough thyroid hormone). Liothyronine is also used to treat a goiter ( ... where the thyroid gland produces too much thyroid hormone). Liothyronine is in a class of medications called ...
Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones.
Saito, M; Seki, M; Amemiya, S; Yamasu, K; Suyemitsu, T; Ishihara, K
1998-06-01
The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.
Hammami, Muhammad M; Duaiji, Najla; Mutairi, Ghazi; Aklabi, Sabah; Qattan, Nasser; Abouzied, Mohei El-Din M; Sous, Mohamed W
2015-09-09
Normalization of cortisol concentration by multikinase inhibitors have been reported in three patients with medullary thyroid cancer-related Cushing's syndrome. Aortic dissection has been reported in three patients with Cushing's syndrome. Diabetes insipidus without intrasellar metastasis, intestinal intussusception, and paraneoplastic dysautonomia have not been reported in medullary thyroid cancer. An adult male with metastatic medullary thyroid cancer presented with hyperglycemia, hypernatremia, hypokalemia, hypertension, acne-like rash, and diabetes insipidus (urine volume >8 L/d, osmolality 190 mOsm/kg). Serum cortisol, adrenocorticoitropic hormone, dehydroepiandrostenedione sulfate, and urinary free cortisol were elevated 8, 20, 4.4, and 340 folds, respectively. Pituitary imaging was normal. Computed tomography scan revealed jejunal intussusception and incidental abdominal aortic dissection. Sorafenib treatment was associated with Cushing's syndrome remission, elevated progesterone (>10 fold), normalization of dehydroepiandrostenedione sulfate, but persistently elevated cortisol concentration. Newly-developed proximal lower limb weakness and decreased salivation were associated with elevated ganglionic neuronal acetylcholine receptor (alpha-3) and borderline P/Q type calcium channel antibodies. Extreme cortisol concentration may have contributed to aortic dissection and suppressed antidiuretic hormone secretion; which combined with hypokalemia due cortisol activation of mineralocorticoid receptors, manifested as diabetes insipidus. This is the first report of paraneoplastic dysautonomia and jejunal intussusception in medullary thyroid cancer, they may be related to medullary thyroid cancer's neuroendocrine origin and metastasis, respectively. Remission of Cushing's syndrome without measurable reduction in cortisol concentration suggests a novel cortisol-independent mechanism of action or assay cross-reactivity. Normalization of dehydroepiandrostenedione sulfate and elevation of progesterone suggest inhibition of 17-hydroxylase and 21-hydroxylase activities by sorafenib.
There is a growing body of evidence that subtle decreases in maternal thyroid hormone during gestation can impact fetal brain development. The present study examined the impact of graded levels of thyroid hormone insufficiency on brain development in rodents. Maternal thyroid ho...
Thyroid-stimulating hormone (TSH) regulates thyroid hormone (TH) production via binding to its receptor (TSHR). The roles of TSHR in human pathologies including hyper/hypothyroidism, Grave’s disease, and thyroid cancer are known, but it is currently unknown whether TSHR is an imp...
Mao, Chaoming; Wang, Shu; Xiao, Yichuan; Xu, Jingwei; Jiang, Qian; Jin, Min; Jiang, Xiaohua; Guo, Hua; Ning, Guang; Zhang, Yanyun
2011-04-15
Graves' disease (GD) is one of the most common autoimmune diseases. The immune dysfunction in GD involves the generation of thyroid-stimulating hormone receptor (TSHR) autoantibodies that presumably arise consequent to interactions among dendritic cells (DCs), T cells, and regulatory T (Treg) cells. However, the immunological mechanisms of interactions between them that lead to the induction and regulation of this autoimmune disease are poorly defined. In this study, we investigated whether DCs are the main cause of the defective activity of Treg cells in GD patients. We found a significant decrease in the percentage of circulating CD4(+)CD25(+)FOXP3(+) Treg cells in untreated GD patients (uGD), which was negatively correlated with the concentration of TSHR autoantibodies. uGD-derived DCs were polarized to increase the number of plasmacytoid DCs (pDCs) and conferred the ability to abrogate the suppressive function of Treg cells through inducing apoptosis of CD4(+)CD25(+) Treg cells in an IFN-α-dependent manner, and elevated thyroid hormones further exacerbated the effect. The nucleotide UDP, which inhibits IFN-α secretion of pDCs through P2Y6 receptor signaling, restored the suppressive function of CD4(+)CD25(+) Treg cells. Collectively, uGD-derived DCs through pDC polarization and elevated thyroid hormones act in concert to impair the regulatory capacity of Treg cells, facilitating the production of TSHR autoantibodies in the pathogenesis of GD.
Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M.; Morte, Beatriz; Bernal, Juan
2014-01-01
Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2 -/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3′-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3′-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development. PMID:24819605
Núñez, Bárbara; Martínez de Mena, Raquel; Obregon, Maria Jesus; Font-Llitjós, Mariona; Nunes, Virginia; Palacín, Manuel; Dumitrescu, Alexandra M; Morte, Beatriz; Bernal, Juan
2014-01-01
Thyroid hormone entry into cells is facilitated by transmembrane transporters. Mutations of the specific thyroid hormone transporter, MCT8 (Monocarboxylate Transporter 8, SLC16A2) cause an X-linked syndrome of profound neurological impairment and altered thyroid function known as the Allan-Herndon-Dudley syndrome. MCT8 deficiency presumably results in failure of thyroid hormone to reach the neural target cells in adequate amounts to sustain normal brain development. However during the perinatal period the absence of Mct8 in mice induces a state of cerebral cortex hyperthyroidism, indicating increased brain access and/or retention of thyroid hormone. The contribution of other transporters to thyroid hormone metabolism and action, especially in the context of MCT8 deficiency is not clear. We have analyzed the role of the heterodimeric aminoacid transporter Lat2 (Slc7a8), in the presence or absence of Mct8, on thyroid hormone concentrations and on expression of thyroid hormone-dependent cerebral cortex genes. To this end we generated Lat2-/-, and Mct8-/yLat2-/- mice, to compare with wild type and Mct8-/y mice during postnatal development. As described previously the single Mct8 KO neonates had a transient increase of 3,5,3'-triiodothyronine concentration and expression of thyroid hormone target genes in the cerebral cortex. Strikingly the absence of Lat2 in the double Mct8Lat2 KO prevented the effect of Mct8 inactivation in newborns. The Lat2 effect was not observed from postnatal day 5 onwards. On postnatal day 21 the Mct8 KO displayed the typical pattern of thyroid hormone concentrations in plasma, decreased cortex 3,5,3'-triiodothyronine concentration and Hr expression, and concomitant Lat2 inactivation produced little to no modifications. As Lat2 is expressed in neurons and in the choroid plexus, the results support a role for Lat2 in the supply of thyroid hormone to the cerebral cortex during early postnatal development.
The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis.
Schreiber, G
2002-10-01
In larger mammals, thyroid hormone-binding plasma proteins are albumin, transthyretin (TTR) and thyroxine (T4)-binding globulin. They differ characteristically in affinities and release rates for T4 and triiodothyronine (T3). Together, they form a 'buffering' system counteracting thyroid hormone permeation from aqueous to lipid phases. Evolution led to important differences in the expression pattern of these three proteins in tissues. In adult liver, TTR is only made in eutherians and herbivorous marsupials. During development, it is also made in tadpole and fish liver. More intense TTR synthesis than in liver is found in the choroid plexus of reptilians, birds and mammals, but none in the choroid plexus of amphibians and fish, i.e. species without a neocortex. All brain-made TTR is secreted into the cerebrospinal fluid, where it becomes the major thyroid hormone-binding protein. During ontogeny, the maximum TTR synthesis in the choroid plexus precedes that of the growth rate of the brain and occurs during the period of maximum neuroblast replication. TTR is only one component in a network of factors determining thyroid hormone distribution. This explains why, under laboratory conditions, TTR-knockout mice show no major abnormalities. The ratio of TTR affinity for T4 over affinity for T3 is higher in eutherians than in reptiles and birds. This favors T4 transport from blood to brain providing more substrate for conversion of the biologically less active T4 into the biologically more active T3 by the tissue-specific brain deiodinases. The change in affinity of TTR during evolution involves a shortening and an increase in the hydrophilicity of the N-terminal regions of the TTR subunits. The molecular mechanism for this change is a stepwise shift of the splice site at the intron 1/exon 2 border of the TTR gene. The shift probably results from a sequence of single base mutations. Thus, TTR evolution provides an example for a molecular mechanism of positive Darwinian evolution. The amino acid sequences of fish and amphibian TTRs are very similar to those in mammals, suggesting that substantial TTR evolution occurred before the vertebrate stage. Open reading frames for TTR-like sequences already exist in Caenorhabditis elegans, yeast and Escherichia coli genomes.
Steinmaus, Craig; Pearl, Michelle; Kharrazi, Martin; Blount, Benjamin C; Miller, Mark D; Pearce, Elizabeth N; Valentin-Blasini, Liza; DeLorenze, Gerald; Hoofnagle, Andrew N; Liaw, Jane
2016-06-01
Findings from national surveys suggest that everyone in the United States is exposed to perchlorate. At high doses, perchlorate, thiocyanate, and nitrate inhibit iodide uptake into the thyroid and decrease thyroid hormone production. Small changes in thyroid hormones during pregnancy, including changes within normal reference ranges, have been linked to cognitive function declines in the offspring. We evaluated the potential effects of low environmental exposures to perchlorate on thyroid function. Serum thyroid hormones and anti-thyroid antibodies and urinary perchlorate, thiocyanate, nitrate, and iodide concentrations were measured in 1,880 pregnant women from San Diego County, California, during 2000-2003, a period when much of the area's water supply was contaminated from an industrial plant with perchlorate at levels near the 2007 California regulatory standard of 6 μg/L. Linear regression was used to evaluate associations between urinary perchlorate and serum thyroid hormone concentrations in models adjusted for urinary creatinine and thiocyanate, maternal age and education, ethnicity, and gestational age at serum collection. The median urinary perchlorate concentration was 6.5 μg/L, about two times higher than in the general U.S. Adjusted associations were identified between increasing log10 perchlorate and decreasing total thyroxine (T4) [regression coefficient (β) = -0.70; 95% CI: -1.06, -0.34], decreasing free thyroxine (fT4) (β = -0.053; 95% CI: -0.092, -0.013), and increasing log10 thyroid-stimulating hormone (β = 0.071; 95% CI: 0.008, 0.133). These results suggest that environmental perchlorate exposures may affect thyroid hormone production during pregnancy. This could have implications for public health given widespread perchlorate exposure and the importance of thyroid hormone in fetal neurodevelopment. Steinmaus C, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini L, DeLorenze G, Hoofnagle AN, Liaw J. 2016. Thyroid hormones and moderate exposure to perchlorate during pregnancy in women in Southern California. Environ Health Perspect 124:861-867; http://dx.doi.org/10.1289/ehp.1409614.
Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya
2017-12-01
Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017, 10: 1919-1928. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Thyroid hormones and coronary artery calcification in euthyroid men and women.
Zhang, Yiyi; Kim, Bo-Kyoung; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Rampal, Sanjay; Zhao, Di; Pastor-Barriuso, Roberto; Lima, Joao A; Shin, Hocheol; Guallar, Eliseo
2014-09-01
Overt and subclinical hypothyroidism are risk factors for atherosclerosis. It is unclear whether thyroid hormone levels within the normal range are also associated with atherosclerosis measured by coronary artery calcium (CAC). We conducted a cross-sectional study of 41 403 apparently healthy young and middle-aged men and women with normal thyroid hormone levels. Free thyroxin, free triiodothyronine, and thyroid-stimulating hormone levels were measured by electrochemiluminescent immunoassay. CAC score was measured by multidetector computed tomography. The multivariable adjusted CAC ratios comparing the highest versus the lowest quartile of thyroid hormones were 0.74 (95% confidence interval, 0.60-0.91; P for trend <0.001) for free thyroxin, 0.81 (0.66-1.00; P for trend=0.05) for free triiodothyronine, and 0.78 (0.64-0.95; P for trend=0.01) for thyroid-stimulating hormone. Similarly, the odds ratios for detectable CAC (CAC >0) comparing the highest versus the lowest quartiles of thyroid hormones were 0.87 (0.79-0.96; P for linear trend <0.001) for free thyroxin, 0.90 (0.82-0.99; P for linear trend=0.02) for free triiodothyronine, and 0.91 (0.83-1.00; P for linear trend=0.03) for thyroid-stimulating hormone. In a large cohort of apparently healthy young and middle-aged euthyroid men and women, low-normal free thyroxin and thyroid-stimulating hormone were associated with a higher prevalence of subclinical coronary artery disease and with a greater degree of coronary calcification. © 2014 American Heart Association, Inc.
Villanger, Gro Dehli; Learner, Emily; Longnecker, Matthew P; Ask, Helga; Aase, Heidi; Zoeller, R Thomas; Knudsen, Gun P; Reichborn-Kjennerud, Ted; Zeiner, Pål; Engel, Stephanie M
2017-05-01
Maternal thyroid function is a critical mediator of fetal brain development. Pregnancy-related physiologic changes and handling conditions of blood samples may influence thyroid hormone biomarkers. We investigated the reliability of thyroid hormone biomarkers in plasma of pregnant women under various handling conditions. We enrolled 17 pregnant women; collected serum and plasma were immediately frozen. Additional plasma aliquots were subjected to different handling conditions before the analysis of thyroid biomarkers: storage at room temperature for 24 or 48 hours before freezing and an extra freeze-thaw cycle. We estimated free thyroid hormone indices in plasma based on T3 uptake. High correlations between plasma and serum (>0.94) and intraclass correlation coefficients for plasma handling conditions (0.96 to 1.00) indicated excellent reliability for all thyroid hormone biomarkers. Delayed freezing and freeze-thaw cycles did not affect reliability of biomarkers of thyroid function in plasma during pregnancy. See video abstract at, http://links.lww.com/EDE/B180.
USDA-ARS?s Scientific Manuscript database
Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...
TSH (Thyroid-stimulating hormone) test
... your blood ( hyperthyroidism ), or too little thyroid hormone ( hypothyroidism ). Symptoms of hyperthyroidism, also known as overactive thyroid, ... Bulging of the eyes Difficulty sleeping Symptoms of hypothyroidism, also known as underactive thyroid, include: Weight gain ...
Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes
Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...
Fontes, Klaus N; Cabanelas, Adriana; Bloise, Flavia F; de Andrade, Cherley Borba Vieira; Souza, Luana L; Wilieman, Marianna; Trevenzoli, Isis H; Agra, Lais C; Silva, Johnatas D; Bandeira-Melo, Christianne; Silva, Pedro L; Rocco, Patricia R M; Ortiga-Carvalho, Tania M
2017-01-01
Fasting and sepsis induce profound changes in thyroid hormone (TH) central and peripheral metabolism. These changes affect TH action and are called the non-thyroidal illness syndrome (NTIS). To date, it is still debated whether NTIS represents an adaptive response or a real hypothyroid state at the tissue level. Moreover, even though it has been considered the same syndrome, we hypothesized that fasting and sepsis induce a distinct set of changes in thyroid hormone metabolism. Herein, we aimed to evaluate the central and peripheral expression of genes involved in the transport (MCT8/ Slc16a2 and MCT10/ Slc16a10 ), metabolism ( Dio1, Dio2 , and Dio3 ) and action ( Thra and Thrb ) of TH during NTIS induced by fasting or sepsis. Male mice were subjected to a 48 h period of fasting or cecal ligation and puncture (CLP)-induced sepsis. At the peripheral level, fasting led to: (1) reduced serum thyroxine (T 4 ) and triiodothyronine (T 3 ), expression of Dio1, Thra, Slc16a2 , and MCT8 protein in liver; (2) increased hepatic Slc16a10 and Dio3 expression; and (3) decreased Slc16a2 and Slc16a10 expressions in the thyroid gland. Fasting resulted in reduction of Tshb expression in the pituitary and increased expression of Dio2 in total hypothalamus, arcuate (ARC) and paraventricular (PVN) nucleus. CLP induced sepsis resulted in reduced: (1) T 4 serum levels; (2) Dio1, Slc16a2, Slc16a10, Thra , and Thrb expression in liver as well as Slc16a2 expression in the thyroid gland (3) Thrb and Tshb mRNA expression in the pituitary; (4) total leukocyte counts in the bone marrow while increased its number in peritoneal and pleural fluids. In summary, fasting- or sepsis-driven NTIS promotes changes in the set point of hypothalamus-pituitary-thyroid axis through different mechanisms. Reduced hepatic THRs expression in conjunction with reduced TH transporters expression in the thyroid gland may indicate, respectively, reduction in the peripheral action and in the secretion of TH, which may contribute to the low TH serum levels observed in both models.
Tissue-specific regulation of malic enzyme by thyroid hormone in the neonatal rat.
Sood, A; Schwartz, H L; Oppenheimer, J H
1996-05-15
Two recent studies have claimed that thyroid hormone administration accelerates malic enzyme gene expression in the neonatal brain in contrast to the well-documented lack of effect of triiodothyronine on malic enzyme gene expression in the adult brain. Since these observations conflict with earlier observations in our laboratory, we reinvestigated the effect of thyroid hormone status on the ontogeny of malic enzyme gene expression in the neonatal rat. Neither hypothyroidism nor hyperthyroidism influenced the ontogenesis of malic enzyme activity in neonatal brain whereas the patterns of gene expression and enzyme activity in liver were markedly affected. Our results suggest that tissue-specific factors in brain block thyroid hormone-induced gene expression by thyroid hormone.
Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.
Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M
2014-01-01
Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism.
Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue
Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.
2014-01-01
Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism. PMID:24465683
Thyroid hormones and their effects: a new perspective.
Hulbert, A J
2000-11-01
The thyroid hormones are very hydrophobic and those that exhibit biological activity are 3',5',3,5-L-tetraiodothyronine (T4), 3',5,3-L-triiodothyronine (T3), 3',5',3-L-triiodothyronine (rT3) and 3,5',-L-diiothyronine (3,5-T2). At physiological pH, dissociation of the phenolic -OH group of these iodothyronines is an important determinant of their physical chemistry that impacts on their biological effects. When non-ionized these iodothyronines are strongly amphipathic. It is proposed that iodothyronines are normal constituents of biological membranes in vertebrates. In plasma of adult vertebrates, unbound T4 and T3 are regulated in the picomolar range whilst protein-bound T4 and T3 are maintained in the nanomolar range. The function of thyroid-hormone-binding plasma proteins is to ensure an even distrubtion throughout the body. Various iodothyronines are produced by three types of membrane-bound cellular deiodinase enzyme systems in vertebrates. The distribution of deiodinases varies between tissues and each has a distinct developmental profile. Thyroid hormones. (1) the nuclear receptor mode is especially important in the thyroid hormone axis that controls plasma and cellular levels of these hormones. (2) These hormones are strongly associated with membranes in tissues and normally rigidify these membranes. (3) They also affect the acyl composition of membrane bilayers and it is suggested that this is due to the cells responding to thyroid-hormone-induced membrane rigidificataion. Both their immediate effects on the physical state of membranes and the consequent changes in membrane composition result in several other thyroid hormone effects. Effects on metabolism may be due primarily to membrane acyl changes. There are other actions of thyroid hormones involving membrane receptors and influences on cellular interactions with the extracellulara matrix. The effects of thyroid hormones are reviewed and appear to b combinations of these various modes of action. During development, vertebrates show a surge in T4 and other thyroid hormones, as well as distinctive profiles in the appearance of the deiodinase enzymes and nuclear receptors. Evidence from the use of analogues supports multiple modes of action. Re-examination of data from th early 1960s supports a membrane action. Findings from receptor 'knockout' mice supports an important role for receptors in the development of the thyroid axis. These iodothyronines may be better thought of as 'vitamone'-like molecules than traditional hormonal messengers.
Thyroid Hormone Availability and Action during Brain Development in Rodents
Bárez-López, Soledad; Guadaño-Ferraz, Ana
2017-01-01
Thyroid hormones (THs) play an essential role in the development of all vertebrates; in particular adequate TH content is crucial for proper neurodevelopment. TH availability and action in the brain are precisely regulated by several mechanisms, including the secretion of THs by the thyroid gland, the transport of THs to the brain and neural cells, THs activation and inactivation by the metabolic enzymes deiodinases and, in the fetus, transplacental passage of maternal THs. Although these mechanisms have been extensively studied in rats, in the last decade, models of genetically modified mice have been more frequently used to understand the role of the main proteins involved in TH signaling in health and disease. Despite this, there is little knowledge about the mechanisms underlying THs availability in the mouse brain. This mini-review article gathers information from findings in rats, and the latest findings in mice regarding the ontogeny of TH action and the sources of THs to the brain, with special focus on neurodevelopmental stages. Unraveling TH economy and action in the mouse brain may help to better understand the physiology and pathophysiology of TH signaling in brain and may contribute to addressing the neurological alterations due to hypo and hyperthyroidism and TH resistance syndromes. PMID:28855863
Aleksić, Aleksandar Z; Aleksić, Željka; Manić, Saška; Mitov, Vladimir; Jolić, Aleksandar
2014-01-01
Graves' disease is autoimmune hyperthyroidism caused by pathological stimulation of thyroid-stimulation hormone-receptor antibodies. The decision on changing the therapy can be made on time by determining the prognostic factors of thyrosuppressive drug therapy outcome. The aim of the study was to determine the significance of thyroid-stimulation hormone-receptor antibodies level on the prediction of therapy outcome. The study was prospective and involved 106 drug-treated patients with newly diagnosed Graves' disease. Thyroid-stimulation hormone-receptor antibodies level was measured at the beginning of therapy, during therapy and 12 months after it had been introduced. No statistically significant difference in the level of thyroid-stimulation hormone-receptor antibodies was found at the beginning of disease and 12 months after the introduction of thyrosuppressive drug therapy among the patients who had been in remission and those who had not. Regardless of the outcome, thyroid-stimulation hormone-receptor antibodies level significantly decreased in all patients 12 months after the therapy had been introduced. The level of thyroid-stimulation hormone-receptor antibodies at the beginning of disease and 12 months after the introduction of therapy cannot predict the outcome of thyrosuppressive drug therapy.
Selenium and the control of thyroid hormone metabolism.
Köhrle, Josef
2005-08-01
Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.
Regulation of LH/FSH expression by secretoglobin 3A2 in the mouse pituitary gland.
Miyano, Yuki; Tahara, Shigeyuki; Sakata, Ichiro; Sakai, Takafumi; Abe, Hiroyuki; Kimura, Shioko; Kurotani, Reiko
2014-04-01
Secretoglobin (SCGB) 3A2 was originally identified as a downstream target for the homeodomain transcription factor NKX2-1 in the lung. NKX2-1 plays a role in the genesis and expression of genes in the thyroid, lung and ventral forebrain; Nkx2-1-null mice have no thyroid and pituitary and severely hypoplastic lungs and hypothalamus. To demonstrate whether SCGB3A2 plays any role in pituitary hormone production, NKX2-1 and SCGB3A2 expression in the mouse pituitary gland was examined by immunohistochemical analysis and RT-PCR. NKX2-1 was localized in the posterior pituitary lobe, whereas SCGB3A2 was observed in both anterior and posterior lobes as shown by immunohistochemistry and RT-PCR. Expression of CCAAT-enhancer binding proteins (C/EBPs), which regulate mouse Scgb3a2 transcription, was also examined by RT-PCR. C/EBPβ, γ, δ and ζ were expressed in the adult mouse pituitary gland. SCGB3A2 was expressed in the anterior and posterior lobes from postnatal days 1 and 5, respectively and the areas where SCGB3A2 expression was found coincided with the area where FSH-secreting cells were found. Double-staining for SCGB3A2 and pituitary hormones revealed that SCGB3A2 was mainly localized in gonadotrophs in 49 % of FSH-secreting cells and 47 % of LH-secreting cells. In addition, SCGB3A2 dramatically inhibited LH and FSH mRNA expression in rat pituitary primary cell cultures. These results suggest that SCGB3A2 regulates FSH/LH production in the anterior pituitary lobe and that transcription factors other than NKX2-1 may regulate SCGB3A2 expression.
[Effects of thyroid hormone on macrophage dysfunction induced by oxidized low-density lipoprotein].
Ning, Yu; Zhang, Ming; DU, Yun-Hui; Zhang, Hui-Na; Li, Lin-Yi; Qin, Yan-Wen; Wen, Wan-Wan; Zhao, Quan-Ming
2018-04-25
It has been recognized that patients with hypothyroidism have higher risks of atherosclerosis and coronary heart disease, however, the mechanisms are largely unknown. Considering that macrophage dysfunction plays an important role in the formation and development of atherosclerosis plaques, this study aimed to investigate the direct effects of thyroid hormone on macrophage functions and to provide new insight for the mechanism of hypothyroid atherosclerosis. RAW264.7 cells (mouse leukaemic monocyte macrophage cell line) were incubated with oxidized low-density lipoprotein (oxLDL) to establish macrophage foam cells model in vitro, and the protective effects of different concentration of thyroxine (T4) on the macrophage foam cells function were explored. The proliferation, migration and cell aging of macrophages were detected by MTT method, scratch test and β-galactosidase staining respectively. The ELISA method was used to detect the secretion of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-1β (IL-1β). Western blot analysis was applied to measure the phosphorylation of focal adhesion kinase (FAK), which was required for the process of proliferation and migration of macrophages. The results showed that oxLDL significantly inhibited the macrophage proliferation and migration, induced cell senescence, and promoted the secretion of TNF-α, MCP-1, and IL-1β; while T4 reversed those effects of oxLDL on macrophage in a concentration-dependent manner. Moreover, oxLDL increased the phosphorylation of FAK in macrophage, while T4 concentration-dependently reversed the effect. These results suggest that T4 modulates macrophage proliferation, migration, senescence, and secretion of inflammation factors in a concentration-dependent way.
Dahan, Michael H; Tan, Seang L
2017-04-01
The pituitary gland plays a critical role in reproduction. In response to the hypothalamus the anterior pituitary secretes prolactin, thyroid-stimulating hormone, adreno-corticotropic hormone, follicle-stimulating hormone, luteinizing hormone and growth hormone. Dysregulation in these hormones often lead to reproductive failure. Multiple mechanisms of pituitary injury exist. Simmond's disease is atrophy or destruction of the anterior lobe of the pituitary gland resulting in hypopituitarism. Sheehan's syndrome is post-partum pituitary injury due to massive hemorrhage. Traumatic injury resulting in hemorrhage in a non-pregnancy state can also cause partial or complete pituitary failure. Dahan's syndrome is pituitary injury due to severe vasospasm, without significant hemorrhage. Pituitary apoplexy is infarction of a pituitary adenoma and intra-mass hemorrhage with result injury to hormone production by the gland. Lymphocytic infiltration is the most common cause of hypophysitis and the mechanism is often unknown, although it may be autoimmune-related. The mechanism and treatments of each of these pathologies will be discussed in a context of reproduction.
Circadian, endocrine, and metabolic effects of prolonged bedrest: Two 56-day bedrest studies
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Winget, C. M.; Leach, C. S.; Rambaut, P. C.
1974-01-01
Two bedrest studies of 56 days each have been conducted to evaluate the effects of prolonged bedrest on circadian synchrony and endocrine and metabolic function. Measurements included the pituitary-adrenal, thyroid, parathyroid, insulin-glucose-growth hormones, catecholamine excretion, body temperature, and heart rate. The results indicated that a rigorous regimen of exercise did not prevent the endocrine and metabolic effects of prolonged bedrest. Changes in circadian, endocrine, and metabolic functions in bedrest appear to be due to changes in hydrostatic pressure and lack of postural cues rather than to inactivity, confinement, or the bleeding schedule. Prolonged bedrest, particularly beyond 24 days, resulted in rhythm desynchronization in spite of well regulated light/dark cycles, temperature, humidity, activity, and meal times and meal composition and in increased lability of all endocrine parameter measured. It also resulted in an apparent insensitivity of the glucose response to insulin, of cortisol secretion to ACTH, and of growth hormone secretion to hypoglycemia.
Association between thyroid hormones and TRAIL.
Bernardi, Stella; Bossi, Fleur; Toffoli, Barbara; Giudici, Fabiola; Bramante, Alessandra; Furlanis, Giulia; Stenner, Elisabetta; Secchiero, Paola; Zauli, Giorgio; Carretta, Renzo; Fabris, Bruno
2017-11-01
Recent studies suggest that a circulating protein called TRAIL (TNF-related apoptosis-inducing ligand) might have a role in the regulation of body weight and metabolism. Interestingly, thyroid hormones seem to increase TRAIL tissue expression. This study aimed at evaluating whether overt thyroid disorders affected circulating TRAIL levels. TRAIL circulating levels were measured in euthyroid, hyperthyroid, and hypothyroid patients before and after thyroid function normalization. Univariate and multivariate analyses were performed to evaluate the correlation between thyroid hormones and TRAIL. Then, the stimulatory effect of both triiodothyronine (T3) and thyroxine (T4) on TRAIL was evaluated in vitro on peripheral blood mononuclear cells. Circulating levels of TRAIL significantly increased in hyperthyroid and decreased in hypothyroid patients as compared to controls. Once thyroid function was restored, TRAIL levels normalized. There was an independent association between TRAIL and both fT3 and fT4. Consistent with these findings, T3 and T4 stimulated TRAIL release in vitro. Here we show that thyroid hormones are associated with TRAIL expression in vivo and stimulate TRAIL expression in vitro. Given the overlap between the metabolic effects of thyroid hormones and TRAIL, this work sheds light on the possibility that TRAIL might be one of the molecules mediating thyroid hormones peripheral effects. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
[Hypophysis-adrenal and thyroid secretion at law order staff depending on professional loading].
Koubassov, R V; Barachevsky, Yu E; Ivanov, A M
2015-01-01
A current etiological and pathogenic opinion about human health disturbance thereupon extreme factor effects is shown that this cause is principal mechanism of regulatory system (neuroimmunoendocrine complex) distress. In endocrine link occurs hormonal disbalance in hypothalamus-hypophysis axis, physiological interrelation disturbances in central-peripheral gland system (hypophysis-adrenal, hypophysis-thyroid) and metabolism abnormalities subsequently. Our aim was to determine the particular content of adrenocorticotropic and thyrothrophin hormone, cortisol, thyroxin and triiodthyronine features at law order staff in dependence from professional loading. It's provided two investigation series among law order staff groups--combatants, ordinary policemen and military school students. The investigation period for all people corresponds to combat mission beginning and its finish. In blood serum an adrenocorticotropic (ACTH) and thyrothrophin (TSH) hormone, cortisol, thyroxin (T) and triiodthyronine (T) levels were determined. A higher ACTH and TSH levels detected at combatants in both investigation series. A cortisol, T4 and T3 at combatants before military mission were least in comparative with other groups, but after mission it indexes were largest. Prolonged changes of endocrine secretory function that lead to hormonal disbalance can result to adaptation derangement. In connection with it in medical providing system for person that undergo extreme negative professional factors it's necessary create a special endocrine link with the view of organism resistance and life viability to extreme emergency factors and for prevention of pathological conditions.
Maternal iron deficiency alters circulating thyroid hormone levels in developing neonatal rats
Thyroid hormone insufficiency and iron deficiency (FeD) during fetal and neonatal life are both similarly deleterious to mammalian development suggesting a possible linkage between iron and thyroid hormone insufficiencies. Recent published data from our laboratory demonstrate a r...
Establishing Adverse Outcome Pathways of Thyroid Hormone Disruption in an Amphibian Model
The Adverse Outcome Pathway (AOP) provides a framework for understanding the relevance of toxicology data in ecotoxicological hazard assessments. The AOP concept can be applied to many toxicological pathways including thyroid hormone disruption. Thyroid hormones play a critical r...
Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes
2012-04-01
Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.
IL-1β a potential factor for discriminating between thyroid carcinoma and atrophic thyroiditis.
Kammoun-Krichen, Maha; Bougacha-Elleuch, Noura; Mnif, Mouna; Bougacha, Fadia; Charffedine, Ilhem; Rebuffat, Sandra; Rebai, Ahmed; Glasson, Emilie; Abid, Mohamed; Ayadi, Fatma; Péraldi-Roux, Sylvie; Ayadi, Hammadi
2012-01-01
Interactions between cytokines and others soluble factors (hormones, antibodies...) can play an important role in the development of thyroid pathogenesis. The purpose of the present study was to examine the possible correlation between serum cytokine concentrations, thyroid hormones (FT4 and TSH) and auto-antibodies (Tg and TPO), and their usefulness in discriminating between different thyroid conditions. In this study, we investigated serum from 115 patients affected with a variety of thyroid conditions (44 Graves' disease, 17 Hashimoto's thyroiditis, 11 atrophic thyroiditis, 28 thyroid nodular goitre and 15 papillary thyroid cancer), and 30 controls. Levels of 17 cytokines in serum samples were measured simultaneously using a multiplexed human cytokine assay. Thyroid hormones and auto-antibodies were measured using ELISA. Our study showed that IL-1β serum concentrations allow the discrimination between atrophic thyroiditis and papillary thyroid cancer groups (p = 0.027).
Primary hypothyroidism in dogs is associated with elevated GH release.
Lee, W M; Diaz-Espineira, M; Mol, J A; Rijnberk, A; Kooistra, H S
2001-01-01
The pulsatile secretion patterns of GH were investigated in seven beagle bitches by collecting blood samples every 10 min for 6 h during euthyroidism and 1.5 years after induction of primary hypothyroidism. Hypothyroidism was induced by surgical removal of the thyroid gland and subsequent destruction of any remnant thyroid tissue by oral administration of sodium [(131)I]iodide. Some of the physical changes observed in the dogs with primary hypothyroidism mimicked those of acromegaly. During both euthyroidism and hypothyroidism GH was secreted in a pulsatile fashion. The mean (+/-s.e.m. ) basal plasma GH concentration was significantly higher (P=0.003) in the hypothyroid state (4.1+/-1.6 microg/l) than in the euthyroid state (1.2+/-0.4 microg/l). Likewise, the mean area under the curve (AUC) for GH above the zero-level during hypothyroidism (27.0+/-10.0 microg/lx6 h) was significantly higher (P=0.004) than that during euthyroidism (11.7+/-2.0 microg/l x 6 h). The mean AUC for GH above the baseline was significantly lower (P=0.008) during hypothyroidism (2.4+/-0.8 microg/l x 6 h) than during euthyroidism (4.5+/-1.8 microg/lx6 h), whereas there was no significant difference in GH pulse frequency. The mean plasma IGF-I level was significantly higher (P<0.01) in the hypothyroid state (169+/-45 microg/l) than in the euthyroid (97+/-15 microg/l). The results of this study demonstrate that primary hypothyroidism in dogs is associated with elevated basal GH secretion and less GH secreted in pulses. This elevated GH secretion has endocrine significance as illustrated by elevated plasma IGF-I levels and some physical changes mimicking acromegaly. It is discussed that the increased GH release in hypothyroid dogs may be the result of the absence of a response element for thyroid hormone within the canine pituitary GH gene and alterations in supra-pituitary regulation.
The thyroid and environmental stress in mammals
NASA Technical Reports Server (NTRS)
Galton, V. A.
1977-01-01
The effects of hyperoxia at ambient pressure on thyroid function and thyroid hormone metabolism have been assessed. Thyroidal activity was depressed in mice and rats by exposure to hyperoxia, due at least in part to a decrease in the rate of secretion of pituitary thyrotropin. The effects of hyperoxia on the peripheral deiodination of thyroxine were dependent on the concentration of oxygen employed and/or the duration of exposure. When significant changes were observed a reduction in the rate of deiodination and in the deiodinative clearance of T sub 4 occurred. Hyperoxia also resulted in a marked fall in circulating T sub 4 concentration and a decrease in T sub 4-binding activity in serum. Many of these effects of hyperoxia were prevented by the concomitant administration of large amounts of Vitamin E. These decreases in thyroid function and T sub 4 metabolism were associated with a decrease in the rate of whole body oxygen consumption. It was concluded that the deleterious effects of oxygen in the rat were not due to an oxygen induced hyperthyroid state in the peripheral tissues. Thyroxine was shown to be essential for survival during acute cold stress.
Thyroid and sympathetic influences on plasma leptin in hypothyroidism and hyperthyroidism.
Pinkney, J H; Goodrick, S J; Katz, J R; Johnson, A B; Lightman, S L; Coppack, S W; Medbak, S; Mohamed-Ali, V
2000-06-01
To determine the dependence of plasma leptin concentrations upon circulating noradrenaline (NA) and thyroid hormones (TH) in humans. Cross-sectional study in 40 newly diagnosed untreated patients with primary thyroid disease, and 69 lean and obese euthyroid control subjects. Plasma leptin, NA, free T3 (fT3) and TSH in the fasting state. Anthropometry and % body fat (electrical bioimpedance). Leptin levels were highest in 37 obese euthyroid and 22 hypothyroid (median [interquartiles]31.5 [19.0- 48.0], 19.2 [11.5-31.5] ng ml(-1)), and lowest in 32 lean euthyroid and 18 hyperthyroid subjects (6.6 [3.9-14.4], 8.9 [5.5-11.1]; ANOVA, P< 0.0001). Plasma NA was similar in all groups (P= n.s.). In obese controls, TSH correlated with % body fat and leptin (r= 0.67, r= 0.61; P< 0.001). Treatment of hypothyroidism (n= 10) with T4 reduced leptin from 20.8 [11.8-31.6] to 12.9[4.6-21.2] (P= 0.005) with no change in BMI. Thyroid status modifies leptin secretion independently of adiposity and NA. The data suggest leptin-thyroid interactions at hypothalamic and adipocyte level.
Development of the thyroid gland.
Nilsson, Mikael; Fagman, Henrik
2017-06-15
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed. © 2017. Published by The Company of Biologists Ltd.
Ortiz, R M; MacKenzie, D S; Worthy, G A
2000-12-01
Because thyroid hormones play a critical role in the regulation of metabolism, the low metabolic rates reported for manatees suggest that thyroid hormone concentrations in these animals may also be reduced. However, thyroid hormone concentrations have yet to be examined in manatees. The effects of captivity, diet and water salinity on plasma total triiodothyronine (tT(3)), total thyroxine (tT(4)) and free thyroxine (fT(4)) concentrations were assessed in adult West Indian manatees (Trichechus manatus). Free-ranging manatees exhibited significantly greater tT(4) and fT(4) concentrations than captive adults, regardless of diet, indicating that some aspect of a captive existence results in reduced T(4) concentrations. To determine whether this reduction might be related to feeding, captive adults fed on a mixed vegetable diet were switched to a strictly sea grass diet, resulting in decreased food consumption and a decrease in body mass. However, tT(4) and fT(4) concentrations were significantly elevated over initial values for 19 days. This may indicate that during periods of reduced food consumption manatees activate thyroid-hormone-promoted lipolysis to meet water and energetic requirements. Alterations in water salinity for captive animals did not induce significant changes in thyroid hormone concentrations. In spite of lower metabolic rates, thyroid hormone concentrations in captive manatees were comparable with those for other terrestrial and marine mammals, suggesting that the low metabolic rate in manatees is not attributable to reduced circulating thyroid hormone concentrations.
A Hormonally Active Malignant Struma Ovarii
Lara, Carolina; Salame, Latife; Padilla-Longoria, Rafael
2016-01-01
Struma ovarii is a rare monodermal variant of ovarian teratoma that contains at least 50% thyroid tissue. Less than 8% of struma ovarii cases present with clinical and biochemical evidence of thyrotoxicosis due to ectopic production of thyroid hormone and only 5% undergo malignant transformation into a papillary thyroid carcinoma. Only isolated cases of hormonally active papillary thyroid carcinoma developing within a struma ovarii have been reported in the literature. We report the case of a 36-year-old woman who presented with clinical signs and symptoms of hyperthyroidism as well as a left adnexal mass, which proved to be a thyroid hormone-producing, malignant struma ovarii. PMID:27882257
Regulation of fish growth hormone transcription.
Farchi-Pisanty, O; Hackett, P B; Moav, B
1995-09-01
Regulation of endogenous fish growth hormone transcription was studied using carp pituitaries in vitro. It was demonstrated that thyroid hormone (T3) and 9-cis retinoic acid have increased the steady state levels of growth hormone messenger RNA in pituitary cells, as compared with beta-actin messenger RNA levels. In contrast, estrogen failed to increase growth hormone mRNA levels. The possible involvement of thyroid hormone receptor in pituitary gene expression was demonstrated by in situ localization of both growth hormone mRNA and thyroid hormone receptor mRNA in the pituitaries as early as 4 days after fertilization.
Grais, Ira Martin; Sowers, James R.
2015-01-01
Thyroid hormones modulate every component of the cardiovascular system necessary for normal cardiovascular development and function. When cardiovascular disease is present, thyroid function tests are characteristically indicated to determine if overt thyroid disorders or even subclinical dysfunction exists. As hypothyroidism, hypertension and cardiovascular disease all increase with advancing age monitoring of TSH, the most sensitive test for hypothyroidism, is important in this expanding segment of our population. A better understanding of the impact of thyroid hormonal status on cardiovascular physiology will enable health care providers to make decisions regarding thyroid hormone evaluation and therapy in concert with evaluating and treating hypertension and cardiovascular disease. The goal of this review is to access contemporary understanding of the effects of thyroid hormones on normal cardiovascular function and the potential role of overt and subclinical hypothyroidism and hyperthyroidism in a variety of cardiovascular diseases. PMID:24662620
Thyroid hormone metabolism and environmental chemical exposure
2012-01-01
Background Polychlorinated dioxins and –furans (PCDD/Fs) and polychlorinated-biphenyls (PCBs) are environmental toxicants that have been proven to influence thyroid metabolism both in animal studies and in human beings. In recent years polybrominated diphenyl ethers (PBDEs) also have been found to have a negative influence on thyroid hormone metabolism. The lower brominated flame retardants are now banned in the EU, however higher brominated decabromo-diphenyl ether (DBDE) and the brominated flame retardant hexabromocyclododecane (HBCD) are not yet banned. They too can negatively influence thyroid hormone metabolism. An additional brominated flame retardant that is still in use is tetrabromobisphenol-A (TBBPA), which has also been shown to influence thyroid hormone metabolism. Influences of brominated flame retardants, PCDD/F’s and dioxin like-PCBs (dl-PCB’s) on thyroid hormone metabolism in adolescence in the Netherlands will be presented in this study and determined if there are reasons for concern to human health for these toxins. In the period 1987-1991, a cohort of mother-baby pairs was formed in order to detect abnormalities in relation to dioxin levels in the perinatal period. The study demonstrated that PCDD/Fs were found around the time of birth, suggesting a modulation of the setpoint of thyroid hormone metabolism with a higher 3,3’, 5,5’tetrathyroxine (T4) levels and an increased thyroid stimulating hormone (TSH). While the same serum thyroid hormone tests (- TSH and T4) were again normal by 2 years of age and were still normal at 8-12 years, adolescence is a period with extra stress on thyroid hormone metabolism. Therefore we measured serum levels of TSH, T4, 3,3’,5- triiodothyronine (T3), free T4 (FT4), antibodies and thyroxine-binding globulin (TBG) in our adolescent cohort. Methods Vena puncture was performed to obtain samples for the measurement of thyroid hormone metabolism related parameters and the current serum dioxin (PCDD/Fs), PCB and PBDE levels. Results The current levels of T3 were positively correlated to BDE-99. A positive trend with FT4 and BDE-99 was also seen, while a positive correlation with T3 and dl-PCB was also seen. No correlation with TBG was seen for any of the contaminants. Neither the prenatal nor the current PCDD/F levels showed a relationship with the thyroid parameters in this relatively small group. Conclusion Once again the thyroid hormone metabolism (an increase in T3) seems to have been influenced by current background levels of common environmental contaminants: dl-PCBs and BDE-99. T3 is a product of target organs and abnormalities might indicate effects on hormone transporters and could cause pathology. While the influence on T3 levels may have been compensated, because the adolescents functioned normal at the time of the study period, it is questionable if this compensation is enough for all organs depending on thyroid hormones. PMID:22759492
... or milk production), sex hormones (control the menstrual cycle and other sexual functions), thyroid gland hormones (control the thyroid gland), adrenal gland hormones, and vasopressin (a hormone involved in water and electrolyte balance). Symptoms of pituitary adenoma and ...
THYROID HORMONE DISRUPTION: FROM KINETICS TO DYNAMICS.
A wide range of chemicals with diverse structures act as thyroid disrupting chemicals (TDCs). Broadly defined, TDCs are chemicals that alter the structure or function of the thyroid gland, alter regulatory enzymes associated with thyroid hormones (THs), or change circulating or t...
Early Temporal Effects of Three Thyroid Hormone Synthesis Inhibitors in Xenopus laevis
Thyroid axis disruption is an important consideration when evaluating the risks associated with chemicals. Bioassay methods that include thyroid-related endpoints have been developed in a variety of species, including amphibians, whose metamorphic development is thyroid hormone ...
Song, F; Yi, H L
2018-05-07
Differentiated thyroid cancer is the most common malignant carcinoma in female population.Postoperative long-term thyroid-stimulating hormone(TSH) suppression therapy can reduce the risk of recurrence for differentiated thyroid cancer and control the progress of the disease, but it also induces simultaneously subclinical hypothyroidism and imposes negative effect on female. In addition to cardiovascular disease, TSH suppression therapy can lead to the alteration of sex hormone metabolism, menstrual disorder, poor influence on pregnancy and osteoporosis. This article reviews the recent studies on postoperative TSH suppression therapy in women with thyroid cancer.
Ectopic prolactin secretion from a perivascular epithelioid cell tumor (PEComa).
Korytnaya, Evgenia; Liu, Jiayan; Camelo-Piragua, Sandra; Sullivan, Stephen; Auchus, Richard J; Barkan, Ariel
2014-11-01
The diagnosis of ectopic pituitary hormone secretion requires abnormally high circulating hormone levels, absence of a pituitary tumor, and localization of the hormone in question to the extrapituitary malignant neoplasm. No case of a malignant solid tumor producing prolactin has been documented thus far. A 47-year-old woman presented with amenorrhea and galactorrhea of 3-year duration. Serum prolactin ranged from 300 to > 900 ng/mL, and other pituitary and thyroid indices were normal, including testing for macroprolactinemia. Pituitary magnetic resonance imaging revealed a partially empty sella but no tumor. Cabergoline 0.5 mg twice weekly did not affect her prolactinemia (1700 to 1900 ng/mL), and the medication was stopped. In the meantime, she developed abdominal pain, and a computed tomography scan showed a 17 × 13 × 8-cm mass abutting the distal stomach, proximal duodenum, and right colon. After the tumor was excised, her galactorrhea resolved, menstrual periodicity resumed within the first month, and serum prolactin fell to 5 ng/mL. Pathological examination of the excised tumor was consistent with perivascular epithelioid cell tumor. Between 5 and 10% of the tumor cells were strongly positive for prolactin on immunohistochemistry. RT-PCR detected prolactin mRNA in the tumor cell extract, confirming the diagnosis of ectopic prolactin synthesis and secretion. We present the first example of massive and symptomatic hyperprolactinemia due to ectopic prolactin production by a solid extrapituitary mesenchymal tumor confirmed with both mRNA analysis and immunohistochemistry. Ectopic prolactin secretion should be suspected in patients with a prolactin >200 ng/mL and negative sellar MRI.
New approaches to thyroid hormones and purinergic signaling.
Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar
2013-01-01
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.
New Approaches to Thyroid Hormones and Purinergic Signaling
Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar
2013-01-01
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925
Thyroid hormone (TH) is essential for normal brain development. Therefore, it is not surprising that a variety of adaptive mechanisms are activated in response to TH insufficiency. However, not all brain regions respond in the same fashion to TH insufficiency. This observation...
Polybrominated diphenyl ethers (PBDEs) are routinely found in human tissues including cord blood and breast milk. PBDEs may interfere with thyroid hormone (TH) during development, which could produce neurobehavioral deficits. An assumption in experimental and epidemiological stud...
This poster presentation will describe analytical chemistry methods for measuring thyroid hormones and related precursors and metabolites in very small tissue or plasma samples. These methods are amenable to measure thyroid hormones in amphibian tadpoles or small mammals used as ...
Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have proved more diffic...
Thyroid Hormone in the Clinic and Breast Cancer.
Hercbergs, Aleck; Mousa, Shaker A; Leinung, Matthew; Lin, Hung-Yun; Davis, Paul J
2018-06-01
There is preclinical and recent epidemiological evidence that thyroid hormone supports breast cancer. These observations raise the issue of whether management of breast cancer in certain settings should include consideration of reducing the possible contribution of thyroid hormone to the advancement of the disease. In a preliminary experience, elimination of the clinical action of endogenous L-thyroxine (T 4 ) in patients with advanced solid tumors, including breast cancer, has favorably affected the course of the cancer, particularly when coupled with administration of exogenous 3,5,3'-triiodo-L-thyronine (T 3 ) (euthyroid hypothyroxinemia). We discuss in the current brief review the possible clinical settings in which to consider whether endogenous thyroid hormone-or exogenous thyroid hormone in the patient with hypothyroidism and coincident breast cancer-is significantly contributing to breast cancer outcome.
Levothyroxine, a thyroid hormone, is used to treat hypothyroidism, a condition where the thyroid gland does not ... hormone.Levothyroxine is also used to treat congenital hypothyroidism (cretinism) and goiter (enlarged thyroid gland). Levothyroxine is ...
Cordina-Duverger, Emilie; Leux, Christophe; Neri, Monica; Tcheandjieu, Catherine; Guizard, Anne-Valérie; Schvartz, Claire; Truong, Thérèse; Guénel, Pascal
2017-06-01
The three times higher incidence of thyroid cancer in women compared to men points to a role of female sex hormones in its etiology. However the effects of these factors are poorly understood. We analyzed the association between thyroid cancer and hormonal and reproductive factors among women enrolled in CATHY, a population-based case-control study conducted in France. The study included 430 cases of papillary thyroid cancer and 505 controls frequency-matched on age and area of residence. The odds ratios for thyroid cancer increased with age at menarche (p trend 0.05). Postmenopausal women were at increased risk, as compared to premenopausal women, particularly if menopause followed an ovariectomy, and for women with age at menopause <55years. In addition, use of oral contraceptives and menopausal hormone therapy reduced the association with thyroid cancer by about one third, and breastfeeding by 27%. Overall, these findings provide evidence that the risk of thyroid cancer increases with later age at menarche and after menopause, and decreases with use of oral contraceptives and menopausal hormone therapy. These findings confirm an implication of hormonal factors in papillary thyroid cancer risk, whose mechanisms need to be elucidated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Subclinical Hyperthyroidism: When to Consider Treatment.
Donangelo, Ines; Suh, Se Young
2017-06-01
Subclinical hyperthyroidism is defined by a low or undetectable serum thyroid-stimulating hormone level, with normal free thyroxine and total or free triiodothyronine levels. It can be caused by increased endogenous production of thyroid hormone (e.g., in Graves disease, toxic nodular goiter, or transient thyroiditis), by administration of thyroid hormone to treat malignant thyroid disease, or by unintentional excessive replacement therapy. The prevalence of subclinical hyperthyroidism in the general population is about 1% to 2%; however, it may be higher in iodinedeficient areas. The rate of progression to overt hyperthyroidism is higher in persons with thyroid-stimulating hormone levels less than 0.1 mIU per L than in persons with low but detectable thyroid-stimulating hormone levels. Subclinical hyperthyroidism is associated with an increased risk of atrial fibrillation and heart failure in older adults, increased cardiovascular and all-cause mortality, and decreased bone mineral density and increased bone fracture risk in postmenopausal women. However, the effectiveness of treatment in preventing these conditions is unclear. A possible association between subclinical hyperthyroidism and quality-of-life parameters and cognition is controversial. The U.S. Preventive Services Task Force found insufficient evidence to assess the balance of benefits and harms of screening for thyroid dysfunction in asymptomatic persons. The American Thyroid Association and the American Association of Clinical Endocrinologists recommend treating patients with thyroid-stimulating hormone levels less than 0.1 mIU per L if they are older than 65 years or have comorbidities such as heart disease or osteoporosis.
Endocrinology Update: Thyroid Disorders.
Kelley, Scott
2016-12-01
Thyroid disease affects nearly every organ system in the body. Hypothyroidism is a state of thyroid hormone insufficiency that results in decreased metabolism and secondary effects including fatigue and weight gain. Primary hypothyroidism typically is a result of autoimmune thyroiditis or iodine deficiency and is assessed by measurement of the thyroid-stimulating hormone (TSH) level. This level usually is elevated in patients with hypothyroidism and low in patients with hyperthyroidism. Levothyroxine is the treatment of choice for hypothyroidism. Hyperthyroidism is a state of thyroid hormone excess, which increases the metabolic rate and causes symptoms including anxiety and tremor. Graves disease is the most common etiology in developed countries. Patients with hyperthyroidism are evaluated with measurement of TSH and free thyroxine levels. Management options include antithyroid drugs, radioactive iodine, and surgery. Thyroid nodules are detected commonly in family medicine, and may or may not be associated with thyroid hormone abnormalities. Patients with thyroid nodules should be evaluated with TSH level measurement and thyroid ultrasonography to guide further testing. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.
The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.
Gould, E; Woolley, C S; McEwen, B S
1991-01-01
The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.
Stimulants and growth in children with attention-deficit/hyperactivity disorder.
Negrao, Bianca Lee; Viljoen, Margaretha
2011-07-01
Initial suggestions that suppression of growth may be an intrinsic characteristic of attention-deficit/hyperactivity disorder (ADHD) have now largely been disproven. Although controversy persists regarding the possible negative effect of adrenergic stimulants on growth in children with ADHD, the consensus that appears to be reached in the scientific literature is that stimulant usage may cause a manageable attenuation of growth in these children. Since it is known that stimulants increase the amount of dopamine and noradrenaline in the synapse, this writing suggests that these increases in dopamine and noradrenaline are responsible for the growth attenuation in these children. It appears that increased amounts of dopamine and noradrenaline have the ability to inhibit the secretion of growth hormone and growth-related hormones such as prolactin, thyroid hormones, sex hormones and insulin. Therefore, it would be reasonable to suggest that the increases in dopamine and noradrenaline caused by stimulant usage can disrupt the homeostasis of both growth hormone and growth-related hormones, generating the potential for the suppression of growth. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thyroglobulin Represents a Novel Molecular Architecture of Vertebrates.
Holzer, Guillaume; Morishita, Yoshiaki; Fini, Jean-Baptiste; Lorin, Thibault; Gillet, Benjamin; Hughes, Sandrine; Tohmé, Marie; Deléage, Gilbert; Demeneix, Barbara; Arvan, Peter; Laudet, Vincent
2016-08-05
Thyroid hormones modulate not only multiple functions in vertebrates (energy metabolism, central nervous system function, seasonal changes in physiology, and behavior) but also in some non-vertebrates where they control critical post-embryonic developmental transitions such as metamorphosis. Despite their obvious biological importance, the thyroid hormone precursor protein, thyroglobulin (Tg), has been experimentally investigated only in mammals. This may bias our view of how thyroid hormones are produced in other organisms. In this study we searched genomic databases and found Tg orthologs in all vertebrates including the sea lamprey (Petromyzon marinus). We cloned a full-size Tg coding sequence from western clawed frog (Xenopus tropicalis) and zebrafish (Danio rerio). Comparisons between the representative mammal, amphibian, teleost fish, and basal vertebrate indicate that all of the different domains of Tg, as well as Tg regional structure, are conserved throughout the vertebrates. Indeed, in Xenopus, zebrafish, and lamprey Tgs, key residues, including the hormonogenic tyrosines and the disulfide bond-forming cysteines critical for Tg function, are well conserved despite overall divergence of amino acid sequences. We uncovered upstream sequences that include start codons of zebrafish and Xenopus Tgs and experimentally proved that these are full-length secreted proteins, which are specifically recognized by antibodies against rat Tg. By contrast, we have not been able to find any orthologs of Tg among non-vertebrate species. Thus, Tg appears to be a novel protein elaborated as a single event at the base of vertebrates and virtually unchanged thereafter. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won
2014-01-01
A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936
... body's sex glands produce little or no hormones) Hypothyroidism (thyroid gland does not make enough thyroid hormone) ... other missing hormones are not replaced, symptoms of hypothyroidism and hypogonadism may develop.
A review on hyperthyroidism: thyrotoxicosis under surveillance.
Mansourian, Azad Reza
2010-11-15
Thyrotoxicosis exhibit collective clinical manifestation, caused by excessive serum thyroid hormones particularity thyroxin. The clinical signs and symptoms included general alteration of metabolic process leading to weight loss fatigue and weakness and some specific disorders such as cardiovascular, neuromuscular reproductive gastrointestinal dermatological and bone disorders. The diagnosis of thyrotoxicosis relay on the thyroid function test carried out by the laboratory serum measurement of thyroxin, triiodothyronine and thyroid stimulating hormones accompanied by other para-medical examinations suggested by clinicians and endociologicst. In thyrotoxicosis serum level of thyroid hormones and thyroxin in particular elevated accompanied by pituitary thyroid stimulating hormone suppression reaching to undetectable level in sever thyrotoxicosis. Among the most common cause of thyrotoxicosis are, thyroid autoimmunity diseases thyroid toxic, adenoma toxic nodular and multinodular hyperthyroidism. The main aim behind this review is to explore the clinical manifestation, the causative factors, diagnosis, metabolic disorder occur due to thyrotoxicosis.
Sharan, Shruti; Nikhil, Kumar; Roy, Partha
2014-09-15
Triorganotins, such as tributyltin chloride (TBTCl), are environmental contaminants that are commonly found in the antifouling paints used in ships and other vessels. The importance of TBTCl as an endocrine-disrupting chemical (EDC) in different animal models is well known; however, its adverse effects on the thyroid gland are less understood. Hence, in the present study, we aimed to evaluate the thyroid-disrupting effects of this chemical using both in vitro and in vivo approaches. We used HepG2 hepatocarcinoma cells for the in vitro studies, as they are a thyroid hormone receptor (TR)-positive and thyroid responsive cell line. For the in vivo studies, Swiss albino male mice were exposed to three doses of TBTCl (0.5, 5 and 50μg/kg/day) for 45days. TBTCl showed a hypo-thyroidal effect in vivo. Low-dose treatment of TBTCl exposure markedly decreased the serum thyroid hormone levels via the down-regulation of the thyroid peroxidase (TPO) and thyroglobulin (Tg) genes by 40% and 25%, respectively, while augmenting the thyroid stimulating hormone (TSH) levels. Thyroid-stimulating hormone receptor (TSHR) expression was up-regulated in the thyroid glands of treated mice by 6.6-fold relative to vehicle-treated mice (p<0.05). In the transient transactivation assays, TBTCl suppressed T3 mediated transcriptional activity in a dose-dependent manner. In addition, TBTCl was found to decrease the expression of TR. The present study thus indicates that low concentrations of TBTCl suppress TR transcription by disrupting the physiological concentrations of T3/T4, followed by the recruitment of NCoR to TR, providing a novel insight into the thyroid hormone-disrupting effects of this chemical. Copyright © 2014 Elsevier Inc. All rights reserved.
Fetal and neonatal thyrotoxicosis
Batra, Chandar Mohan
2013-01-01
Fetal thyrotoxicosis is a rare disease occurring in 1 out of 70 pregnancies with Grave's disease or in 1 out of 4000-50,000 deliveries. The mortality is 12-20%, usually from heart failure, but other complications are tracheal compression, infections and thrombocytopenia. It results from transfer of thyroid stimulating immunoglobulins from mother to fetus through the placenta. This transplacental transfer begins around 20th week of pregnancy and reaches its maximum by 30th week. These autoantibodies bind to the fetal thyroid stimulating hormone (TSH) receptors and increase the secretion of the thyroid hormones. The mother has an active autoimmune thyroid disease or has been treated for it in the past. She may be absolutely euthyroid due to past treatment by drugs, surgery or radioiodine ablation, but still have active TSH receptor stimulating autoantibodies, which can cause fetal thyrotoxicosis. The other features of this disease are fetal tachycardia, fetal goiter and history of spontaneous abortions and findings of goiter, ascites, craniosyntosis, fetal growth retardation, maceration and hydrops at fetal autopsy. If untreated, this disease can result in intrauterine death. The treatment for this disease consists of giving carbimazole to the mother, which is transferred through the placenta to the fetus. The dose of carbimazole is titrated with the fetal heart rate. If the mother becomes hypothyroid due to carbimazole, thyroxine is added taking advantage of the fact that very little of thyroxine is transferred across the placenta. Neonatal thyrotoxicosis patients are very sick and require emergency treatment. The goal of the treatment is to normalize thyroid functions as quickly as possible, to avoid iatrogenic hypothyroidism while providing management and supportive therapy for the infant's specific signs and symptoms. PMID:24251220
Johns, Lauren E.; Ferguson, Kelly K.; McElrath, Thomas F.; Mukherjee, Bhramar; Meeker, John D.
2016-01-01
Background: Maintaining thyroid homeostasis during pregnancy is essential for normal fetal growth and development. Growing evidence suggests that phthalates interfere with normal thyroid function. Few human studies have investigated the degree to which phthalates may affect thyroid hormone levels in particularly susceptible populations such as pregnant women. Objectives: We examined the associations between repeated measures of urinary phthalate metabolites and plasma thyroid hormone levels in samples collected at up to four time points per subject in pregnancy. Additionally, we investigated the potential windows of susceptibility to thyroid hormone disturbances related to study visit of sample collection. Methods: Data were obtained from pregnant women (n = 439) participating in a nested case–control study of preterm birth with 116 cases and 323 controls. We measured 9 phthalate metabolite concentrations in urine samples collected at up to four study visits per subject during pregnancy (median = 10, 18, 26, and 35 weeks of gestation, respectively). We also measured a panel of thyroid function markers in plasma collected at the same four time points per subject during pregnancy. Results: Although our results were generally null, in repeated measures analyses we observed that phthalate metabolites were largely inversely associated with thyrotropin and positively associated with free and total thyroid hormones. Cross-sectional analyses by study visit revealed that the magnitude and/or direction of these relationships varied by timing of exposure during gestation. Conclusions: These results support previous reports showing the potential for environmental phthalate exposure to alter circulating levels of thyroid hormones in pregnant women. Citation: Johns LE, Ferguson KK, McElrath TF, Mukherjee B, Meeker JD. 2016. Associations between repeated measures of maternal urinary phthalate metabolites and thyroid hormone parameters during pregnancy. Environ Health Perspect 124:1808–1815; http://dx.doi.org/10.1289/EHP170 PMID:27152641
Bayraktaroglu, Taner; Noel, Janet; Mukaddes, Nahit Motavalli; Refetoff, Samuel
2018-01-01
Two members of a Turkish family, a mother and son, had thyroid function tests suggestive of resistance to thyroid hormone (RTH). The clinical presentation was, however, different. The mother (proposita) had palpitation, weakness, tiredness, nervousness, dry mouth and was misdiagnosed as having multinodular toxic goiter which was treated with antithyroid drugs and partial thyroidectomy. Her younger son had attention deficit hyperactivity disorder and primary encopresis, but normal intellectual quotient. Both had elevated serum iodothyronine levels with nonsuppressed thyrotropin. A mutation in one allele of the thyroid hormone receptor beta gene (P453A) was identified, providing a genetic confirmation for the diagnosis of RTH. PMID:18561095
Herbert, Martha
2017-01-01
Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH) receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease. PMID:28894619
Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A
2011-05-01
Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.
Thyroid disease and the cardiovascular system.
Danzi, Sara; Klein, Irwin
2014-06-01
Thyroid hormones, specifically triiodothyronine (T3), have significant effects on the heart and cardiovascular system. Hypothyroidism, hyperthyroidism, subclinical thyroid disease, and low T3 syndrome each cause cardiac and cardiovascular abnormalities through both genomic and nongenomic effects on cardiac myocytes and vascular smooth muscle cells. In compromised health, such as occurs in heart disease, alterations in thyroid hormone metabolism may further impair cardiac and cardiovascular function. Diagnosis and treatment of cardiac disease may benefit from including analysis of thyroid hormone status, including serum total T3 levels. Copyright © 2014 Elsevier Inc. All rights reserved.
Selenium glutathione peroxidase activities and thyroid functions in human individuals
NASA Astrophysics Data System (ADS)
Bellisola, G.; Calza Contin, M.; Ceccato, D.; Cinque, G.; Francia, G.; Galassini, S.; Liu, N. Q.; Lo Cascio, C.; Moschini, G.; Sussi, P. L.
1996-04-01
At least two enzymes are involved in metabolism of thyroid hormones. GSHPx protects thyrocyte from high H 2O 2 levels that are required for iodination of prohormones to form T4 in thyroid cell. Type I iodothyronine 5'-deiodinase (5'-D) catalyzes the deiodination of L-thyroxin (T4) to the biologically active thyroid hormone 3,3'-5-triiodothyronine (T 3) in liver, in kidney and in thyroid tissues. Circulating thyroid hormones, plasma Se levels, GSHPx activities in platelets and in plasma were investigated in 29 human individuals with increased thyroid mass. PIXE was applied to measure Se in 1 ml of plasma because we supposed patients were in a marginal carential status for Se. Plasma Se concentrations were compared with those of normal individuals. Correlation studies between plasma Se level and both GSHPx activities were carried out as well as between platelets and plasma GSHPx activities to verify the hypothesis of a marginal Se deficiency in patients. Significance of circulating thyroid hormones levels will be discussed.
... involves the brain Liver failure Thyroid conditions that cause low thyroid hormone levels or very high thyroid hormone levels Brain disorders or injury, such as: Dementia or Alzheimer disease Head trauma Seizure Stroke Infections that affect ...
Hyperthyroidism and the Heart.
Osuna, Patricia Mejia; Udovcic, Maja; Sharma, Morali D
2017-01-01
Thyroid hormones have a significant impact on cardiac function and structure. Excess thyroid hormone affects cardiovascular hemodynamics, leading to high-output heart failure and, in late stages, dilated cardiomyopathy. In this review, we discuss how hyperthyroidism affects cardiovascular pathophysiology and molecular mechanisms and examine the complications caused by excess thyroid hormone, such as heart failure and atrial fibrillation.
2013-01-01
Background Thyroid hormones have been shown to regulate breast cancer cells growth, the absence or reduction of thyroid hormones in cells could provoke a proliferation arrest in G0-G1 or weak mitochondrial activity, which makes cells insensitive to therapies for cancers through transforming into low metabolism status. This biological phenomenon may help explain why treatment efficacy and prognosis vary among breast cancer patients having hypothyroid, hyperthyroid and normal function. Nevertheless, the abnormal thyroid function in breast cancer patients has been considered being mainly caused by thyroid diseases, few studied influence of chemotherapy on thyroid function and whether its alteration during chemotherapy can influence the respose to chemotherapy is still unclear. So, we aimed to find the alterations of thyroid function and non-thyroidal illness syndrome (NTIS) prevalence druing chemotherapy in breast cancer patients, and investigate the influence of thyroid hormones on chemotherapeutic efficacy. Methods Thyroid hormones and NTIS prevalence at initial diagnosis and during chemotherapy were analyzed in 685 breast diseases patients (369 breast cancer, 316 breast benign lesions). The influence of thyroid hormones on chemotherapeutic efficacy was evaluated by chemosensitization test, to compare chemotherapeutic efficacy between breast cancer cells with chemotherapeutics plus triiodothyronine (T3) and chemotherapeutics only. Results In breast cancer, NTIS prevalence at the initial diagnosis was higher and increased during chemotherapy, but declined before the next chemotherapeutic course. Thyroid hormones decreased signigicantly during chemotherapy. T3 can enhance the chemosensitivity of MCF-7 to 5-Fu and taxol, with progression from G0-G1 phase to S phase. The similar chemosensitization role of T3 were found in MDA-MB-231. We compared chemotherapeutic efficacy among groups with different usage modes of T3, finding pretreatment with lower dose of T3, using higher dose of T3 together with 5-Fu or during chemotherapy with 5-Fu were all available to achieve chemosensitization, but pretreatment with lower dose of T3 until the end of chemotherapy may be a safer and more efficient therapy. Conclusions Taken together, thyroid hormones decreasing during chemotherapy was found in lots of breast cancer patients. On the other hand, thyroid hormones can enhance the chemotherapeutic efficacy through gatherring tumor cells in actively proliferating stage, which may provide a new adjuvant therapy for breast cancer in furture, especially for those have hypothyroidism during chemotherapy. PMID:23829347
Asymptomatic hyperthyroidism in older adults: is it a distinct clinical and laboratory entity?
Mooradian, Arshag D
2008-01-01
Hyperthyroidism is the result of increased serum free thyroid hormone levels and is associated with a well recognized set of clinical signs and symptoms. However, older patients who develop hyperthyroidism tend to have fewer hyperadrenergic signs and an increased incidence of weight loss, cardiac arrhythmias and, occasionally, apathetic mood. This article highlights the paucity of clinical signs and symptoms of hyperthyroidism in older people and reviews the potential biochemical changes in thyroid hormone physiology that may account for an altered clinical presentation in older people with hyperthyroidism. First, a brief vignette from our own clinical practice is described to highlight an unusual presentation of hyperthyroidism in an older woman. The subject is then reviewed on the basis of relevant articles identified through a MEDLINE search of the English literature, using the key words 'hyperthyroidism' and 'aging'. The available evidence indicates that the clinical syndrome of asymptomatic hyperthyroidism in older adults appears to be distinct from the more widely recognized syndromes of apathetic hyperthyroidism or thyroid hormone resistance. Age-related changes in thyroid hormone economy and reduced cellular uptake of thyroid hormone as well as changes in thyroid hormone regulation of gene expression may account for reduced manifestations of hyperthyroidism in older adults. Thus, in addition to the well known changes in thyroid gland anatomy and function with aging, there may be an age-related resistance to thyroid hormone action. Asymptomatic hyperthyroidism may well be a syndrome that is currently under-diagnosed.
A case of thyroid storm with multiple organ failure effectively treated with plasma exchange.
Sasaki, Kazuki; Yoshida, Akira; Nakata, Yukiko; Mizote, Isamu; Sakata, Yasushi; Komuro, Issei
2011-01-01
We describe a 48-year-old man with thyroid storm presenting with heart failure. He presented severely impaired left ventricular wall motion and a marked increase in the liver enzymes. He developed disseminated intravascular coagulation on day 2. Due to elevated serum thyroid hormone level, anti-thyroid hormone receptor antibody positivity, and his clinical symptoms, he was diagnosed as thyroid storm due to untreated Graves' disease. His condition did not improve even after 6 days of conventional therapy including steroids. After therapeutic plasma exchange was carried out, his thyroid hormone level decreased markedly. Consequently, his condition recovered gradually, and he was discharged at day 43.
Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).
Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li
2016-02-01
Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015. Published by Elsevier B.V.
2014-01-01
Introduction Clear cell carcinomas of the thyroid gland with normal thyroid-stimulating hormone value are very rare, but clear cell changes are described in most reported cases of thyroidal lesions. Case presentation In this report, we describe the case of a 50-year-old Caucasian woman with a normal thyroid-stimulating hormone level who underwent surgery to treat a multi-nodular goiter. The pathology was a clear cell variant of follicular thyroid carcinoma. The tumor was 1cm in diameter and consisted of pure clear cells. Conclusion Clear cell variants of follicular thyroid carcinoma are rarely seen, especially it is misdiagnosed with metastatic renal cell carcinoma. In this report, we describe the case of a patient with a clear cell variant of follicular thyroid carcinoma with an interesting pathology. PMID:24884725
Mazzoccoli, G; Giuliani, A; Carughi, S; De Cata, A; Puzzolante, F; La Viola, M; Urbano, N; Perfetto, F; Tarquini, R
2004-10-01
Melatonin plays a role in the regulation of biological rhythms, body temperature presents circadian variations with lower levels during nighttime, when melatonin levels are very high, and thyroid hormones influence shiver independent thermogenesis. We have investigated on possible interactions between the hypothalamic-pituitary-thyroid axis and melatonin in the control of body temperature in humans. Peripheral blood samples for thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH), free-thyroxine (FT4), melatonin levels determination and body temperature measurements were obtained every four hours for 24-hours starting at 0600 h in a controlled temperature and light-dark environment from ten healthy males, aged 38-65 (mean age +/-s.e. 57.4+/-3.03, mean body mass index +/-s.e. 25.5+/-0.75). We calculated fractional variation and correlation on single time point hormone serum levels and tested whether the time-qualified data series showed consistent pattern of circadian variation. A statistically significant difference was evidenced for the fractional variation of daytime TSH serum levels (0600 h-1000 h vs. 1000 h-1400 h, p=0.01, 1000 h-1400 h vs. 1400 h-1800 h, p=0.0001, 1400 h-1800 h vs. 1800 h-2200 h, p=0.001) and for the fractional variation of FT4 serum levels at 1800 h-2200 h vs. 2200 h-0200 h (p=0.02). FT4 serum levels correlated positively with TRH serum levels at 1000 h (r=0.67, P=0.03) and at 1400 h (r=0.63, p=0.04), negatively with TSH serum levels at 2200 h (r=-0.67, p=0.03), negatively with melatonin serum levels at 2200 h (r=-0.64, p=0.04) and at 0200 h (r=-0.73, p=0.01). TRH serum levels correlated positively with TSH serum levels at 0200 h (r=0.65, p=0.04) and at 0600 h (r=0.64, p=0.04). Body temperature correlated positively with FT4 serum levels at 1000 h (r=0.63, p=0.04) and negatively with melatonin serum levels at 0200 h (r=-0.64, p=0.04). A clear circadian rhythm was validated for body temperature (with acrophase in the morning) and melatonin, TRH and TSH secretion (with acrophase at night), while FT4 serum level changes presented ultradian periodicity (with acrophase in the morning). Changes of TSH serum levels are smaller and those of FT4 are greater at night, when melatonin levels are higher, so that the response of anterior pituitary to hypothalamic TRH and of thyroid to hypophyseal TSH may be influenced by the pineal hormone that may modulate the hypothalamic-pituitary-thyroid axis function and influence the circadian rhythm of body temperature.
PCBs Alter Dopamine Mediated Function in Aging Workers
2007-01-01
Thyroid Hormone Function Analysis of serum samples collected for thyroid hormone function (T3, T4, free T3, free T4, and TSH levels) has been conducted by...Thyroid Hormone Measure Mean sem Mean sem TSH 2.06 0.13 2.55 0.36 T4 7.94 0.18 8.72 0.22 Free T4 1.23 0.02 1.22 0.03 T3 133 3.05 122 2.74...FreeT3 5.31 0.08 4.56 0.08 TSH = Thyroid Stimulating Hormone T4 = Thyroxine T3 = 3,5,3-Triidothyronine Investigators Meetings and
Korevaar, Tim I M; Tiemeier, Henning; Peeters, Robin P
2018-04-24
Thyroid hormone is an important regulator of early brain development, particularly during early stages of gestation during which foetal thyroid hormone availability depends on the maternal transfer of thyroid hormones. There is a wide range of experimental studies showing that low maternal thyroid hormone availability is associated with suboptimal brain development parameters. While few clinical studies have shown that overt maternal hypothyroidism is associated with lower child IQ, the question whether more subclinical changes in maternal thyroid function could also lead to suboptimal foetal brain development. In this review, we put the latter studies in perspective and discuss their interpretation from an epidemiological and clinical perspective. Furthermore, we extend this discussion to also include future perspective and identify important knowledge gaps in the field. © 2018 John Wiley & Sons Ltd.
Follow-up of congenital heart disease patients with subclinical hypothyroidism.
Martínez-Quintana, Efrén; Rodríguez-González, Fayna
2015-08-01
Subclinical hypothyroidism or mild thyroid failure is a common problem in patients without known thyroid disease. Demographic and analytical data were collected in 309, of which 181 were male and 128 were female, congenital heart disease (CHD) patients. CHD patients with thyroid-stimulating hormone above 5.5 mIU/L were also followed up from an analytical point of view to determine changes in serum glucose, cholesterol, N-terminal pro b-type natriuretic peptide, and C-reactive protein concentrations. Of the CHD patients, 35 (11.3%) showed thyroid-stimulating hormone concentration above 5.5 mIU/L. Of them, 27 were followed up during 2.4±1.2 years - 10 were under thyroid hormone replacement treatment, and 17 were not. Of the 27 patients (25.9%), 7 with subclinical hypothyroidism had positive anti-thyroid peroxidase, and 3 of them (42.8%) with positive anti-thyroid peroxidase had Down syndrome. Down syndrome and hypoxaemic CHD patients showed higher thyroid-stimulating hormone concentrations than the rest of the congenital patients (p<0.001). No significant differences were observed in serum thyroxine, creatinine, uric acid, lipids, C-reactive protein, or N-terminal pro b-type natriuretic peptide concentrations before and after the follow-up in those CHD patients with thyroid-stimulating hormone above 5.5 mIU/L whether or not they received levothyroxine therapy. CHD patients with subclinical hypothyroidism showed no significant changes in serum thyroxine, cholesterol, C-reactive protein, or N-terminal pro b-type natriuretic peptide concentrations whether or not they were treated with thyroid hormone replacement therapy.
Müller, M J; Seitz, H J
1984-01-02
The effect of thyroid hormones on mitochondrial respiration are summarized: T3 directly stimulates mitochondrial respiration and the synthesis of adenosine 5'-triphosphate (ATP). Cytosolic ATP availability is increased by a thyroid hormone-induced increase in adenine nucleotide translocation across the mitochondrial membrane; the steady state ATP concentration and the cytosolic ATP/adenosine 5'-diphosphate (ADP) ratio is even decreased in hyperthyroid tissues because of the simultaneous stimulation of the synthesis and consumption of ATP. With regard to the thyroid hormone-induced energy wasting processes, heart work, intra- and interorgan futile cycling and Na+/K+-ATPase are involved to varying degrees. As a consequence of the thyroid hormone-induced hydrolysis of ATP, thermogenesis is increased in hyper- and decreased in hypothyroidism. Despite an increased rate of glucose utilization, clinical and experimental hyperthyroidism is often characterized by an abnormal oral glucose tolerance test. This finding is due to the thyroid hormone-induced increase in intestinal glucose absorption as well as the still enhanced endogenous glucose production in the liver. Hypothyroid patients show a reduced glucose tolerance test because of a decrease in intestinal glucose absorption and a sometimes reduced glucose turnover. The thyroid hormone-induced alterations in glucose metabolism are most probably not due to alterations in serum insulin levels and/or to a peripheral insulin resistance at the receptor level.
Efficacy of a food supplement in patients with hashimoto thyroiditis.
Nordio, M; Basciani, S
2015-01-01
Thyroid inflammation has been commonly seen in recent decades, due to a series of factors and is considered as the most frequent thyroid illness. It is characterized by some distinctive traits, which include morphological and hormonal modifications, often in association with an elevated anti-thyroid autoantibody title. The aim of the therapy is to improve symptoms as fast as possible, treating inflammation and subsequent hypothyroidism, when present. Therefore, we evaluated the efficacy of a Food Supplement (FS) containing enzymes which is commonly used in various inflammatory processes and is able to modulate immune reactions during inflammation in a very rapid and efficacious way. An open, controlled study was then designed and 45 patients with Hashimoto thyroiditis were enrolled and divided into 3 groups (FS alone; thyroid hormones alone; FS plus thyroid hormones). Blood, morphological and subjective parameters were considered. The results obtained indicate that the FS used in our study is efficacious and safe when used alone and/or in combination with thyroid hormones in the treatment of autoimmune thyroiditis, as documented by the improvement of the majority of the parameters considered. The efficacy was considered faster than thyroid hormones alone as far as subjective symptomatology is considered. In conclusion, the use of the food supplement evaluated herein during inflammation may be considered an additional tool in clinicians hands, when facing patients with autoimmune thyroiditis, especially in presence of subjective symptomatology, in order to rapidly alleviate it.
Many developmental events are regulated at least in part by thyroid hormones. It was hypothesized that tissue biomarkers of thyroid status would be more accurate predictors of neurotoxicity than serum biomarkers in rats treated with the goitrogen propylthiouracil (PTU). Over seve...
Prenatal and Neonatal Thyroid Stimulating Hormone Levels and Autism Spectrum Disorders
ERIC Educational Resources Information Center
Yau, Vincent M.; Lutsky, Marta; Yoshida, Cathleen K.; Lasley, Bill; Kharrazi, Martin; Windham, Gayle; Gee, Nancy; Croen, Lisa A.
2015-01-01
Thyroid hormones are critical for normal brain development. This study examined autism spectrum disorders (ASD) and thyroid stimulating hormone (TSH) levels measured in mid-pregnancy maternal serum and infant blood after birth. Three groups of children born in Orange County, CA in 2000-2001 were identified: ASD (n = 78), developmental delay…
Osuna, Patricia Mejia; Udovcic, Maja; Sharma, Morali D.
2017-01-01
Thyroid hormones have a significant impact on cardiac function and structure. Excess thyroid hormone affects cardiovascular hemodynamics, leading to high-output heart failure and, in late stages, dilated cardiomyopathy. In this review, we discuss how hyperthyroidism affects cardiovascular pathophysiology and molecular mechanisms and examine the complications caused by excess thyroid hormone, such as heart failure and atrial fibrillation. PMID:28740583
Unexplained high thyroid stimulating hormone: a "BIG" problem.
Mendoza, Heidi; Connacher, Alan; Srivastava, Rajeev
2009-01-01
Macro-hormones and macro-enzymes are high molecular weight conjugates of hormones or enzymes, respectively, often with immunoglobulins. These are referred to as macromolecular complexes, and may cause artefactually elevated biochemical tests results. Macro enzymes of the most commonly measured serum enzymes have been identified and are recognised as a source of elevated measurements that may cause diagnostic confusion; macro-creatine kinase and macro-amylase are the two better known macro-enzymes in clinical practice. Literature on macro-hormones is largely restricted to macro-prolactin. We present a case of a clinically euthyroid patient, who had persistently elevated thyroid stimulating hormone (TSH) but free thyroxine within the reference limits. She underwent repeated thyroid investigations and thyroid hormone interference studies, until macro-TSH was identified as the most likely cause of unexplained elevated TSH. Following the identification and characterisation of this biochemical abnormality, she is no longer subject to repeated blood tests for assessment of thyroid function; the patient currently remains clinically euthyroid.
Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.
Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana
2014-01-01
Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.
Hallen, André; Cooper, Arthur J L; Jamie, Joanne F; Karuso, Peter
2015-06-01
Mammalian ketimine reductase is identical to μ-crystallin (CRYM)-a protein that is also an important thyroid hormone binding protein. This dual functionality implies a role for thyroid hormones in ketimine reductase regulation and also a reciprocal role for enzyme catalysis in thyroid hormone bioavailability. In this research we demonstrate potent sub-nanomolar inhibition of enzyme catalysis at neutral pH by the thyroid hormones L-thyroxine and 3,5,3'-triiodothyronine, whereas other thyroid hormone analogues were shown to be far weaker inhibitors. We also investigated (a) enzyme inhibition by the substrate analogues pyrrole-2-carboxylate, 4,5-dibromopyrrole-2-carboxylate and picolinate, and (b) enzyme catalysis at neutral pH of the cyclic ketimines S-(2-aminoethyl)-L-cysteine ketimine (owing to the complex nomenclature trivial names are used for the sulfur-containing cyclic ketimines as per the original authors' descriptions) (AECK), Δ(1)-piperideine-2-carboxylate (P2C), Δ(1)-pyrroline-2-carboxylate (Pyr2C) and Δ(2)-thiazoline-2-carboxylate. Kinetic data obtained at neutral pH suggests that ketimine reductase/CRYM plays a major role as a P2C/Pyr2C reductase and that AECK is not a major substrate at this pH. Thus, ketimine reductase is a key enzyme in the pipecolate pathway, which is the main lysine degradation pathway in the brain. In silico docking of various ligands into the active site of the X-ray structure of the enzyme suggests an unusual catalytic mechanism involving an arginine residue as a proton donor. Given the critical importance of thyroid hormones in brain function this research further expands on our knowledge of the connection between amino acid metabolism and regulation of thyroid hormone levels.
Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha
2011-01-01
Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T3 administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh+/LacZ mice. Further, acute T3 treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T3 administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone. PMID:21363934
Establishment and culture optimization of a new type of pituitary immortalized cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokubu, Yuko; Asashima, Makoto; Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577
The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells undermore » sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.« less
Samuels, Mary; DiStefano, Joseph J.
2008-01-01
Background We upgraded our recent feedback control system (FBCS) simulation model of human thyroid hormone (TH) regulation to include explicit representation of hypothalamic and pituitary dynamics, and updated TH distribution and elimination (D&E) parameters. This new model greatly expands the range of clinical and basic science scenarios explorable by computer simulation. Methods We quantified the model from pharmacokinetic (PK) and physiological human data and validated it comparatively against several independent clinical data sets. We then explored three contemporary clinical issues with the new model: combined triiodothyronine (T3)/thyroxine (T4) versus T4-only treatment, parenteral levothyroxine (L-T4) administration, and central hypothyroidism. Results Combined T3/T4 therapy—In thyroidectomized patients, the L-T4–only replacement doses needed to normalize plasma T3 or average tissue T3 were 145 μg L-T4/day or 165 μgL-T4/day, respectively. The combined T4 + T3 dosing needed to normalize both plasma and tissue T3 levels was 105 μg L-T4 + 9 μgT3 per day. For all three regimens, simulated mean steady-state plasma thyroid-stimulating hormone (TSH), T3, and T4 was within normal ranges (TSH: 0.5–5 mU/L; T4: 5–12 μg/dL; T3: 0.8–1.9 ng/mL). Parenteral T4 administration—800 μg weekly or 400 μg twice weekly normalized average tissue T3 levels both for subcutaneous (SC) and intramuscular (IM) routes of administration. TSH, T3, and T4 levels were maintained within normal ranges for all four of these dosing schemes (1× vs. 2× weekly, SC vs. IM). Central hypothyroidism—We simulated steady-state plasma T3,T4, and TSH concentrations in response to varying degrees of central hypothyroidism, reducing TSH secretion from 50% down to 0.1% of normal. Surprisingly, TSH, T3, and T4 plasma concentrations remained within normal ranges for TSH secretion as low as 25% of normal. Conclusions Combined T3/T4 treatment—Simulated standard L-T4–only therapy was sufficient to renormalize average tissue T3 levels and maintain normal TSH, T3, and T4 plasma levels, supporting adequacy of standard L-T4–only treatment. Parenteral T4 administration—TSH, T3, and T4 levels were maintained within normal ranges for all four of these dosing schemes (1× vs. 2× weekly, SC vs. IM), supporting these therapeutic alternatives for patients with compromised L-T4 gut absorption. Central hypothyroidism—These results highlight how highly nonlinear feedback in the hypothalamic-pituitary-thyroid axis acts to maintain normal hormone levels, even with severely reduced TSH secretion. PMID:18844475
Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C; Ramenofsky, Marilyn
2018-01-01
Most seasonal species rely on the annual change in day length as the primary cue to appropriately time major spring events such as pre-nuptial molt and breeding. Thyroid hormones are thought to be involved in the regulation of both of these spring life history stages. Here we investigated the effects of chemical inhibition of thyroid hormone production using methimazole, subsequently coupled with either triiodothyronine (T3) or thyroxine (T4) replacement, on the photostimulation of pre-nuptial molt and breeding in Gambel's white-crowned sparrows (Zonotrichia leuchophrys gambelii). Suppression of thyroid hormones completely prevented pre-nuptial molt, while both T3 and T4 treatment restored normal patterns of molt in thyroid hormone-suppressed birds. Testicular recrudescence was blocked by methimazole, and restored by T4 but not T3, in contrast to previous findings demonstrating central action of T3 in the photostimulation of breeding. Methimazole and replacement treatments elevated plasma luteinizing hormone levels compared to controls. These data are partially consistent with existing theories on the role of thyroid hormones in the photostimulation of breeding, while highlighting the possibility of additional feedback pathways. Thus we suggest that regulation of the hypothalamic pituitary gonad axis that controls breeding may be more complex than previously considered. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT
ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...
Thyroid hormones and female reproduction.
Silva, Juneo F; Ocarino, Natália M; Serakides, Rogéria
2018-05-14
Thyroid hormones are vital for the proper functioning of the female reproductive system, since they modulate the metabolism and development of ovarian, uterine and placental tissues. Therefore, hypo- and hyperthyroidism may result in subfertility or infertility in both women and animals. Other well-documented sequelae of maternal thyroid dysfunctions include menstrual/estral irregularity, anovulation, abortion, preterm delivery, preeclampsia, intrauterine growth restriction, postpartum thyroiditis, and mental retardation in children. Several studies have been carried out involving prospective and retrospective studies of women with thyroid dysfunction, as well as in vivo and in vitro assays of hypo- and hyperthyroidism using experimental animal models and/or ovarian, uterine and placental cell culture. These studies have sought to elucidate the mechanisms by which thyroid hormones influence reproduction to better understand the physiology of the reproductive system and to provide better therapeutic tools for reproductive dysfunctions that originate from thyroid dysfunctions. Therefore, this review aims to summarize and update the available information related to the role of thyroid hormones in the morphophysiology of the ovary, uterus and placenta in women and animals and the effects of hypo- and hyperthyroidism on the female reproductive system.
Butler, Peter W.; Smith, Sheila M.; Linderman, Joyce D.; Brychta, Robert J.; Alberobello, Anna Teresa; Dubaz, Ornella M.; Luzon, Javier A.; Skarulis, Monica C.; Cochran, Craig S.; Wesley, Robert A.; Pucino, Frank
2010-01-01
Background The common Thr92Ala D2 polymorphism has been associated with changes in pituitary–thyroid axis homeostasis, but published results are conflicting. To investigate the effects of the Thr92Ala polymorphism on intrathyroidal thyroxine (T4) to triiodothyronine (T3) conversion, we designed prospective pharmacogenomic intervention aimed to detect differences in T3 levels after thyrotropin (TSH)-releasing hormone (TRH)–mediated TSH stimulation of the thyroid gland. Methods Eighty-three healthy volunteers were screened and genotyped for the Thr92Ala polymorphism. Fifteen volunteers of each genotype (Thr/Thr, Thr/Ala, and Ala/Ala) underwent a 500 mcg intravenous TRH stimulation test with serial measurements of serum total T3 (TT3), free T4, and TSH over 180 minutes. Results No differences in baseline thyroid hormone levels were seen among the study groups. Compared to the Thr/Thr group, the Ala/Ala group showed a significantly lower TRH-stimulated increase in serum TT3 at 60 minutes (12.07 ± 2.67 vs. 21.07 ± 2.86 ng/dL, p = 0.029). Thr/Ala subjects showed an intermediate response. Compared to Thr/Thr subjects, the Ala/Ala group showed a blunted rate of rise in serum TT3 as measured by mean time to 50% maximum delta serum TT3 (88.42 ± 6.84 vs. 69.56 ± 6.06 minutes, p = 0.028). Subjects attained similar maximal (180 minutes) TRH-stimulated TT3 levels. TRH-stimulated TSH and free T4 levels were not significantly different among the three genotype groups. Conclusions The commonly occurring Thr92Ala D2 variant is associated with a decreased rate of acute TSH-stimulated T3 release from the thyroid consistent with a decrease in intrathyroidal deiodination. These data provide a proof of concept that the Thr92Ala polymorphism is associated with subtle changes in thyroid hormone homeostasis. PMID:21054208
2013-01-01
Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties. PMID:23394545
Gholap, S; Kar, A
2003-06-01
The efficacy of Inula racemosa (root) and Gymnema sylvestre (leaf) extracts either alone or in combination was evaluated in the amelioration of corticosteroid-induced hyperglycaemia in mice. Simultaneously thyroid hormone levels were estimated by radio-immunoassay (RIA) in order to ascertain whether the effects are mediated through thyroid hormones or not. While the corticosteroid (dexamethasone) administration increased the serum glucose concentration, it decreased serum concentrations of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Administration of the two plant extracts either alone or in combination decreased the serum glucose concentration in dexamethasone induced hyperglycaemic animals. However, the administration of Inula racemosa and Gymnema sylvestre extracts in combination proved to be more effective than the individual extracts. These effects were comparable to a standard corticosteroid-inhibiting drug, ketoconazole. As no marked changes in thyroid hormone concentrations were observed by the administration of any of the plant extracts in dexamethasone treated animals, it is further suggested that these plant extracts may not prove to be effective in thyroid hormone mediated type II diabetes, but for steroid induced diabetes.
Teshima, Jin; Doi, Hideyuki; Fujimori, Keisei; Watanabe, Michio; Nakajima, Noriaki; Nakano, Tomoyuki; Takahashi, Yoshio; Ohuchi, Noriaki; Satomi, Susumu
2013-06-01
Poorly differentiated thyroid carcinoma (PDTC) is a newly recognized histological type of malignant thyroid tumor, accounting for about 2 - 13% of all thyroid carcinomas. PDTC is considered as a morphologically and biologically intermediate stage between well-differentiated thyroid carcinoma and anaplastic thyroid carcinoma. PDTC preferentially manifests bone metastases. We here established a cell line from a resected tumor specimen from a 70-year-old male patient with PDTC who presented with multiple bone metastases. This new thyroid tumor cell line was designated as DH-14-3 and was subsequently grown in culture for several years. DH-14-3 cells express thyroglobulin in the cytoplasm and thyroid transcription factor-1 in the nuclei, both proteins of which are specific markers for the thyroid gland. Importantly, triiodothyronine (T3) was detected in the cultured medium of DH-14-3 cells, in which, however, thyroxine (T4) was undetectable. Moreover, DH-14-3 cells secreted interleukin-8, transforming growth factor-β1, vascular endothelial growth factor, matrix metalloproteinase-1 and parathyroid hormone-related protein, all of which may be responsible for the aggressiveness or bone metastasis of PDTC. Thus, the production of these proteins may reflect the metastatic potential of this cell line. DH-14-3 cells also express CXC chemokine receptor-4 and epidermal growth factor receptor, and carry a missense mutation in the p53 tumor suppressor gene. In fact, transplantation of DH-14-3 cells into the back of nude mice resulted in the formation of tumors, thereby confirming the capability of tumorigenesis. DH-14-3 cells may be useful for investigating the biological features of PDTC and will contribute to the therapeutic study of thyroid cancer.
Lee, Jung Eun
2017-01-01
Thyroid hormones play crucial roles in normal neurodevelopment of fetus and child. Many chemicals can affect control and homeostasis of thyroid hormones, and eventually lead to various adverse health effects including neurodevelopmental disorders. Perfluoroalkyl substances (PFASs) are among the thyroid disrupting chemicals that can be encountered among general human population. Due to their unique physicochemical characteristics, PFASs have been used as surfactants and surface coating materials in many applications. Therefore, PFASs have been frequently detected in humans and environment worldwide. In cross-sectional studies using nationally representative general human populations of United States, several PFASs have shown significant associations with thyroid hormones. Moreover, among pregnant women and their infants, not only major PFASs such as perfluorooctane sulfonic acid and perfluorooctanoic acid, but also those with shorter or longer carbon chains showed significant associations with thyroid hormones. Often demographic characteristics such as sex, age, and disease status appear to influence the associations between PFASs exposure and thyroid hormones. In general, major PFASs showed hypothyroidism effects among pregnant women and infants. As 8 carbon based PFASs have been phased out, those with shorter or longer carbon chains have been used in growing amount as replacement. However, only limited information is available for their occurrences and toxicity among humans. Further investigations on these substituting PFASs are required. In addition, efforts are warranted to identify sources of and mitigate exposure to these thyroid disrupting chemicals especially during pregnancy and early stages of life. PMID:28443254
Ueki, I; Abiru, N; Kobayashi, M; Nakahara, M; Ichikawa, T; Eguchi, K; Nagayama, Y
2011-01-01
Graves' disease is a B cell-mediated and T cell-dependent autoimmune disease of the thyroid which is characterized by overproduction of thyroid hormones and thyroid enlargement by agonistic anti-thyrotrophin receptor (TSHR) autoantibody. In addition to antibody secretion, B cells have recently been recognized to function as antigen-presenting/immune-modulatory cells. The present study was designed to evaluate the efficacy of B cell depletion by anti-mouse (m) CD20 monoclonal antibody (mAb) on Graves' hyperthyroidism in a mouse model involving repeated injection of adenovirus expressing TSHR A-subunit (Ad-TSHR289). We observe that a single injection of 250 µg/mouse anti-mCD20 mAb eliminated B cells efficiently from the periphery and spleen and to a lesser extent from the peritoneum for more than 3 weeks. B cell depletion before immunization suppressed an increase in serum immunoglobulin (Ig)G levels, TSHR-specific splenocyte secretion of interferon (IFN)-γ, anti-TSHR antibody production and development of hyperthyroidism. B cell depletion 2 weeks after the first immunization, a time-point at which T cells were primed but antibody production was not observed, was still effective at inhibiting antibody production and disease development without inhibiting splenocyte secretion of IFN-γ. By contrast, B cell depletion in hyperthyroid mice was therapeutically ineffective. Together, these data demonstrate that B cells are critical not only as antibody-producing cells but also as antigen-presenting/immune-modulatory cells in the early phase of the induction of experimental Graves' hyperthyroidism and, although therapeutically less effective, B cell depletion is highly efficient for preventing disease development. PMID:21235532
Ueki, I; Abiru, N; Kobayashi, M; Nakahara, M; Ichikawa, T; Eguchi, K; Nagayama, Y
2011-03-01
Graves' disease is a B cell-mediated and T cell-dependent autoimmune disease of the thyroid which is characterized by overproduction of thyroid hormones and thyroid enlargement by agonistic anti-thyrotrophin receptor (TSHR) autoantibody. In addition to antibody secretion, B cells have recently been recognized to function as antigen-presenting/immune-modulatory cells. The present study was designed to evaluate the efficacy of B cell depletion by anti-mouse (m) CD20 monoclonal antibody (mAb) on Graves' hyperthyroidism in a mouse model involving repeated injection of adenovirus expressing TSHR A-subunit (Ad-TSHR289). We observe that a single injection of 250 µg/mouse anti-mCD20 mAb eliminated B cells efficiently from the periphery and spleen and to a lesser extent from the peritoneum for more than 3 weeks. B cell depletion before immunization suppressed an increase in serum immunoglobulin (Ig)G levels, TSHR-specific splenocyte secretion of interferon (IFN)-γ, anti-TSHR antibody production and development of hyperthyroidism. B cell depletion 2 weeks after the first immunization, a time-point at which T cells were primed but antibody production was not observed, was still effective at inhibiting antibody production and disease development without inhibiting splenocyte secretion of IFN-γ. By contrast, B cell depletion in hyperthyroid mice was therapeutically ineffective. Together, these data demonstrate that B cells are critical not only as antibody-producing cells but also as antigen-presenting/immune-modulatory cells in the early phase of the induction of experimental Graves' hyperthyroidism and, although therapeutically less effective, B cell depletion is highly efficient for preventing disease development. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
Fang, Heng-hu; Zeng, Gui-ying; Nie, Qing; Kang, Jing-bo; Ren, Dong-qing; Zhou, Jia-xing; Li, Yun-ming
2010-12-07
To investigate the exposure effect of electromagnetic pulse (EMP) on the structure and secretion of pituitary gland in rats. Forty-eight male SD rats were randomly divided into eight groups. Four groups were subject to the EMP exposure of 200 kV/m and the others received a sham exposure. At different time points (12, 24, 48 & 96 h) post-exposure, the pathological changes of pituitary gland were observed by light and transmission electron microscope. And the serum levels of prolactin (PRL), growth hormone (GH), adrenocorticotropic hormone (ACTH), thyroid stimulating hormone (TSH) and luteinizing hormone (LH) were measured dynamically by radioimmunoassay. At 12 h post-exposure, swollen mitochondria with cristae loss, dilatation of Golgi complex and diffusive lysosomes were found in endocrine cells of pituitary gland. The above changes became gradually worse. Mitochondrial vacuolization, the formation of myelin figures, distinct dilatation of endoplasmic reticulum, the occurrence of numerous secondary lysosomes and the clustering of heterochromatin under the nuclear membranes could be observed at 48 h. These lesions were alleviated to some degree at 96 h. The serum levels of PRL and ACTH both increased significantly at 12 h (P < 0.01, P < 0.05) and returned to normal at 24 h. The level of GH decreased significantly at 12 h and then returned gradually to normal at 48 h. The level of TSH decreased at 12 h and reached the lowest point at 24 h, then returned to normal at 96 h. LH increased significantly from 24 h to 96 h. The EMP exposure of 200 kV/m may induce the changes of the structure and secretion of pituitary gland in rats.
[Rare differential diagnosis of hyperthyroidism].
Besemer, Britta; Müssig, Karsten
2016-06-01
A 54-year-old female patient is admitted for evaluation of her thyroid function after two cycles of ipilimumab therapy. The decision for the anti-cytotoxic-T-lymphocyte-antigen-4-therapy (anti-CTLA-4) was made two months earlier because of malignant melanoma with pulmonary metastases. The patient was euthyroid before initiation of treatment and without known thyroid disease. The laboratory reveals thyrotoxicosis with elevated anti-thyroid peroxidase and anti-thyroglobulin antibody levels. The anti-thyroid stimulating hormone receptor antibody levels are within the normal range. Thyroid ultrasound shows a normal-sized, inhomogenous, hypoechogenic thyroid gland, consistent with autoimmune thyroiditis. Diagnosis of hyperthyroidism due to ipilimumab-induced autoimmune thyroiditis is made. The patient does not receive any thyroid-specific medication, with regular control of the thyroid hormone levels. When the patient becomes euthyroid, the ipilimumab therapy is continued. Three weeks later, the patient develops hypothyroidism and a supplementation with L-thyroxine is initiated. An anti-CTLA-4 therapy may cause thyroid dysfunction. Therefore, before initiation and in the course of the treatment, regular controls of the thyroid hormone levels are required. © Georg Thieme Verlag KG Stuttgart · New York.
Role of Thyroid Hormones in Skeletal Development and Bone Maintenance
Bassett, J. H. Duncan
2016-01-01
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art. PMID:26862888
Update on subclinical hyperthyroidism.
Donangelo, Ines; Braunstein, Glenn D
2011-04-15
Subclinical hyperthyroidism is defined by low or undetectable serum thyroid-stimulating hormone levels, with normal free thyroxine and total or free triiodothyronine levels. It can be caused by increased endogenous production of thyroid hormone (as in Graves disease or toxic nodular goiter), administration of thyroid hormone for treatment of malignant thyroid disease, or unintentional excessive thyroid hormone therapy. The rate of progression to overt hyperthyroidism is higher in persons who have suppressed thyroid-stimulating hormone levels compared with those who have low but detectable levels. Subclinical hyperthyroidism is associated with an increased risk of atrial fibrillation in older adults, and with decreased bone mineral density in postmenopausal women; however, the effectiveness of treatment in preventing these conditions is unknown. There is lesser-quality evidence suggesting an association between subclinical hyperthyroidism and other cardiovascular effects, including increased heart rate and left ventricular mass, and increased bone turnover markers. Possible associations between subclinical hyperthyroidism and quality of life parameters, cognition, and increased mortality rates are controversial. Prospective randomized controlled trials are needed to address the effects of early treatment on potential morbidities to help determine whether screening should be recommended in the asymptomatic general population.
Photoperiodic and circadian bifurcation theories of depression and mania
Kripke, Daniel F.; Elliott, Jeffrey A.; Welsh, David K.; Youngstedt, Shawn D.
2015-01-01
Seasonal effects on mood have been observed throughout much of human history. Seasonal changes in animals and plants are largely mediated through the changing photoperiod (i.e., the photophase or duration of daylight). We review that in mammals, daylight specifically regulates SCN (suprachiasmatic nucleus) circadian organization and its control of melatonin secretion. The timing of melatonin secretion interacts with gene transcription in the pituitary pars tuberalis to modulate production of TSH (thyrotropin), hypothalamic T3 (triiodothyronine), and tuberalin peptides which modulate pituitary production of regulatory gonadotropins and other hormones. Pituitary hormones largely mediate seasonal physiologic and behavioral variations. As a result of long winter nights or inadequate illumination, we propose that delayed morning offset of nocturnal melatonin secretion, suppressing pars tuberalis function, could be the main cause for winter depression and even cause depressions at other times of year. Irregularities of circadian sleep timing and thyroid homeostasis contribute to depression. Bright light and sleep restriction are antidepressant and conversely, sometimes trigger mania. We propose that internal desynchronization or bifurcation of SCN circadian rhythms may underlie rapid-cycling manic-depressive disorders and perhaps most mania. Much further research will be needed to add substance to these theories. PMID:26180634
Armer, Jane; Giles, Diane; Lancaster, Ian; Brownbill, Kathryn
2017-09-01
Background Thyroid-stimulating hormone (TSH) is used as the first-line test of thyroid function. Siemens Healthcare Diagnostics recommend that Siemens Centaur reagents must be protected from light in the assay information and on reagent packaging. We have compared the effect of light exposure on results using Siemens TSH-3Ultra and follicle-stimulating hormone reagents. The thyroid-stimulating hormone reagent includes fluoroscein thiocyanate whereas the follicle-stimulating hormone reagent does not. Methods Three levels of quality controls were analysed using SiemensTSH-3Ultra and follicle-stimulating hormone reagent packs that had been kept protected from light or exposed to light at 6-h intervals for 48 h and then at 96 h. Results Thyroid-stimulating hormone results were significantly lower after exposure of TSH-3Ultra reagent packs to light. Results were >15% lower at all three levels of quality control following 18 h of light exposure and continued to decrease until 96 h. There was no significant difference in follicle-stimulating hormone results whether reagents had been exposed to or protected from light. Conclusions Thyroid-stimulating hormone results but not follicle-stimulating hormone results are lowered after exposure of reagent packs to light. Laboratories must ensure that TSH-3Ultra reagents are not exposed to light and analyse quality control samples on every reagent pack to check that there has not been light exposure prior to delivery. The labelling on TSH-3Ultra reagent packs should reflect the significant effect of light exposure compared with the follicle-stimulating hormone reagent. We propose that the effect of light exposure on binding of fluoroscein thiocyanate to the solid phase antibody causes the falsely low results.
Winther, Kristian Hillert; Wichman, Johanna Eva Märta; Bonnema, Steen Joop; Hegedüs, Laszlo
2017-02-01
By a systematic review and meta-analysis to investigate clinically relevant effects of selenium supplementation in patients with chronic autoimmune thyroiditis. Controlled trials in adults (≥18 years) with autoimmune thyroiditis, comparing selenium with or without levothyroxine substitution, versus placebo and/or levothyroxine substitution, were eligible for inclusion. Identified outcomes were serum thyrotropin (thyroid stimulating hormone) levels in LT4-untreated patients, thyroid ultrasound and health-related quality of life. Eleven publications, covering nine controlled trials, were included in the systematic review. Random effects model meta-analyses were performed in weighted mean difference for thyroid stimulating hormone, ultrasound and health-related quality of life. Quality of evidence was assessed per outcome, using GRADE. Meta-analyses showed no change in thyroid stimulating hormone, or improvements in health-related quality of life or thyroid echogenicity (ultrasound), between levothyroxine substitution-untreated patients assigned to selenium supplementation or placebo. Three trials found some improvement in wellbeing in patients receiving levothyroxine substitution, but could not be synthesized in a meta-analysis. The quality of evidence ranged from very low to low for thyroid stimulating hormone as well as ultrasound outcomes, and low to moderate for health-related quality of life, and was generally downgraded due to small sample sizes. We found no effect of selenium supplementation on thyroid stimulating hormone, health-related quality of life or thyroid ultrasound, in levothyroxine substitution-untreated individuals, and sporadic evaluation of clinically relevant outcomes in levothyroxine substitution-treated patients. Future well-powered RCTs, evaluating e.g. disease progression or health-related quality of life, are warranted before determining the relevance of selenium supplementation in autoimmune thyroiditis.
Lin, Shi-lei; Wang, Cong-wu; Tan, Si-ran; Liang, Yang; Yao, Hai-dong; Zhang, Zi-wei; Xu, Shi-wen
2014-12-01
Selenium (Se) influences the metabolism of thyroid hormones in mammals. However, the role of Se deficiency in the regulation of thyroid hormones in chickens is not well known. In the present study, we examined the levels of thyroidal triiodothyronine (T3), thyroidal thyroxine (T4), free triiodothyronine, free thyroxine (FT4), and thyroid-stimulating hormone in the serum and the mRNA expression levels of 25 selenoproteins in chicken thyroids. Then, principal component analysis (PCA) was performed to analyze the relationships between the selenoproteins. The results indicated that Se deficiency influenced the conversion of T4 to T3 and induced the accumulation of T4 and FT4. In addition, the mRNA expression levels of the selenoproteins were generally decreased by Se deficiency. The PCA showed that eight selenoproteins (deiodinase 1 (Dio1), Dio2, Dio3, thioredoxin reductase 2 (Txnrd2), selenoprotein i (Seli), selenoprotein u (Selu), glutathione peroxidase 1 (Gpx1), and Gpx2) have similar trends, which indicated that they may play similar roles in the metabolism of thyroid hormones. The results showed that Se deficiency inhibited the conversion of T4 to T3 and decreased the levels of the crucial metabolic enzymes of the thyroid hormones, Dio1, Dio2, and Dio3, in chickens. In addition, the decreased selenoproteins (Dio1, Dio2, Dio3, Txnrd2, Seli, Selu, Gpx1, and Gpx2) induced by Se deficiency may indirectly limit the conversion of T4 to T3 in chicken thyroids. The information presented in this study is helpful to understand the role of Se in the thyroid function of chickens.
Maggio, Marcello; De Vita, Francesca; Fisichella, Alberto; Lauretani, Fulvio; Ticinesi, Andrea; Ceresini, Graziano; Cappola, Anne; Ferrucci, Luigi; Ceda, Gian Paolo
2015-01-01
Anemia is a multifactorial condition whose prevalence increases in both sexes after the fifth decade of life. It is a highly represented phenomenon in older adults and in one-third of cases is “unexplained.” Ageing process is also characterized by a “multiple hormonal dysregulation” with disruption in gonadal, adrenal, and somatotropic axes. Experimental studies suggest that anabolic hormones such as testosterone, IGF-1, and thyroid hormones are able to increase erythroid mass, erythropoietin synthesis, and iron bioavailability, underlining a potential role of multiple hormonal changes in the anemia of aging. Epidemiological data more consistently support an association between lower testosterone and anemia in adult-older individuals. Low IGF-1 has been especially associated with anemia in the pediatric population and in a wide range of disorders. There is also evidence of an association between thyroid hormones and abnormalities in hematological parameters under overt thyroid and euthyroid conditions, with limited data on subclinical statuses. Although RCTs have shown beneficial effects, stronger for testosterone and the GH-IGF-1 axis and less evident for thyroid hormones, in improving different hematological parameters, there is no clear evidence for the usefulness of hormonal treatment in improving anemia in older subjects. Thus, more clinical and research efforts are needed to investigate the hormonal contribution to anemia in the older individuals. PMID:26779261
Maggio, Marcello; De Vita, Francesca; Fisichella, Alberto; Lauretani, Fulvio; Ticinesi, Andrea; Ceresini, Graziano; Cappola, Anne; Ferrucci, Luigi; Ceda, Gian Paolo
2015-01-01
Anemia is a multifactorial condition whose prevalence increases in both sexes after the fifth decade of life. It is a highly represented phenomenon in older adults and in one-third of cases is "unexplained." Ageing process is also characterized by a "multiple hormonal dysregulation" with disruption in gonadal, adrenal, and somatotropic axes. Experimental studies suggest that anabolic hormones such as testosterone, IGF-1, and thyroid hormones are able to increase erythroid mass, erythropoietin synthesis, and iron bioavailability, underlining a potential role of multiple hormonal changes in the anemia of aging. Epidemiological data more consistently support an association between lower testosterone and anemia in adult-older individuals. Low IGF-1 has been especially associated with anemia in the pediatric population and in a wide range of disorders. There is also evidence of an association between thyroid hormones and abnormalities in hematological parameters under overt thyroid and euthyroid conditions, with limited data on subclinical statuses. Although RCTs have shown beneficial effects, stronger for testosterone and the GH-IGF-1 axis and less evident for thyroid hormones, in improving different hematological parameters, there is no clear evidence for the usefulness of hormonal treatment in improving anemia in older subjects. Thus, more clinical and research efforts are needed to investigate the hormonal contribution to anemia in the older individuals.
Thyroid storm: an updated review.
Chiha, Maguy; Samarasinghe, Shanika; Kabaker, Adam S
2015-03-01
Thyroid storm, an endocrine emergency first described in 1926, remains a diagnostic and therapeutic challenge. No laboratory abnormalities are specific to thyroid storm, and the available scoring system is based on the clinical criteria. The exact mechanisms underlying the development of thyroid storm from uncomplicated hyperthyroidism are not well understood. A heightened response to thyroid hormone is often incriminated along with increased or abrupt availability of free hormones. Patients exhibit exaggerated signs and symptoms of hyperthyroidism and varying degrees of organ decompensation. Treatment should be initiated promptly targeting all steps of thyroid hormone formation, release, and action. Patients who fail medical therapy should be treated with therapeutic plasma exchange or thyroidectomy. The mortality of thyroid storm is currently reported at 10%. Patients who have survived thyroid storm should receive definite therapy for their underlying hyperthyroidism to avoid any recurrence of this potentially fatal condition. © The Author(s) 2013.
Wang, Yi; Zhang, Qiongyue; Yang, Jianzhi; Zhao, Xiaolong; He, Min; Shou, Xuefei; Li, Shiqi; Li, Yiming; Wang, Yongfei; Ye, Hongying
2015-09-01
Hypopituitarism is defined as the partial or complete defect of anterior pituitary hormone secretion. Patients with hypopituitarism usually need life-long hormone replacement therapy. However, in this case, we report a patient with panhypopituitarism whose hypothalamus-pituitary-adrenal (HPA) axis function was completely recovered after pregnancy and delivery. In this case study, we reported the case management and conducted a review of literature to identify the possible mechanism of pituitary function recovery. The patient who suffered from secondary amenorrhea was found a nonfunctioning pituitary macroadenoma, and the hormone test showed serum cortisol, FT3, FT4, thyrotropic hormone, and prolactin were at normal range. After surgical removal of the tumor which invasion in the sellar region, the patient had panhypopituitarism confirmed by the routine hormone test. Though spontaneous pregnancy is impossible in female patients with panhypopituitarism, the patient was restored fertility by the help of artificial reproductive techniques. After the confirmation of the pregnancy, levothyroixine was increased to 75 μg daily and readjusted to 150 μg daily before delivery according to the monthly measurement thyroid function. Hydrocortisone 10 mg daily replaced cortisone acetate; the dose was increased according to the symptoms of morning sickness. A single stress dose of hydrocortisone (200 mg) was used before elective cesarean delivery and was tapered to the dose of 10 mg per day in 1 week. Levothyroixine was reduced to 75 μg daily after delivery. During follow-up, her hypothalamus-pituitary-adrenal (HPA) axis function was completely recovered. The peak serum cortisol level could increase to 19.08 μg/dL by insulin-induced hypoglycemia. However, growth hormone remained unresponsive to the insulin-tolerance test, and thyroid hormone still needed exogenous supplementation. Hormone replacement therapy needed closely followed by endocrinologist and multidisciplinary cooperation during the pregnancy of patients with hypopituitarism. This case indicates that the pituitary function may partially recover after pregnancy in panhypopituitarism patients.
Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research
Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is
Age impact on autoimmune thyroid disease in females
NASA Astrophysics Data System (ADS)
Stoian, Dana; Craciunescu, Mihalea; Timar, Romulus; Schiller, Adalbert; Pater, Liana; Craina, Marius
2013-10-01
Thyroid autoimmune disease, a widespread phenomenon in female population, impairs thyroid function during pregnancy. Identifying cases, which will develop hypothyroidism during pregnancy, is crucial in the follow-up process. The study group comprised 108 females, with ages between 20-40 years; with known inactive autoimmune thyroid disease, before pregnancy that became pregnant in the study follow-up period. They were monitored by means of clinical, hormonal and immunological assays. Supplemental therapy with thyroid hormones was used, where needed. Maternal age and level of anti-thyroid antibodies were used to predict thyroid functional impairment.
Yao, Xuan; Sa, Rina; Ye, Cheng; Zhang, Duo; Zhang, Shengjie; Xia, Hongfeng; Wang, Yu-cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao
2015-01-01
Symptoms of cardiovascular diseases are frequently found in patients with hypothyroidism and hyperthyroidism. However, it is unknown whether arachidonic acid metabolites, the potent mediators in cardiovascular system, are involved in cardiovascular disorders caused by hyperthyroidism and hypothyroidism. To answer this question, serum levels of arachidonic acid metabolites in human subjects with hypothyroidism, hyperthyroidism and mice with hypothyroidism or thyroid hormone treatment were determined by a mass spectrometry-based method. Over ten arachidonic acid metabolites belonging to three catalytic pathways: cyclooxygenases, lipoxygenases, and cytochrome P450, were quantified simultaneously and displayed characteristic profiles under different thyroid hormone status. The level of 20-hydroxyeicosatetraenoic acid, a cytochrome P450 metabolite, was positively correlated with thyroid hormone level and possibly contributed to the elevated blood pressured in hyperthyroidism. The increased prostanoid (PG) I2 and decreased PGE2 levels in hypothyroid patients might serve to alleviate atherosclerosis associated with dyslipidemia. The elevated level of thromboxane (TX) A2, as indicated by TXB2, in hyperthyroid patients and mice treated with thyroid hormone might bring about pulmonary hypertension frequently found in hyperthyroid patients. In conclusion, our prospective study revealed that arachidonic acid metabolites were differentially affected by thyroid hormone status. Certain metabolites may be involved in cardiovascular disorders associated with thyroid diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Peng, Ying; Qi, Yicheng; Huang, Fengjiao; Chen, Xinxin; Zhou, Yulin; Ye, Lei; Wang, Weiqing; Ning, Guang; Wang, Shu
2016-11-29
Resistin, belongs to cysteine-rich secretory protein, is mainly produced by circulating leukocytes, such as neutrophils monocytes and macrophages in humans. To date, few but controversial studies have reported about resistin concentrations in hyperthyroid patients, especially in Graves' disease (GD). We undertaked a controlled, prospective study to explore the serum resistin concentration in GD patients before and after -MMI treatment. In addition, we also investigated the main influencing factor on serum resistin level and discuessed the potential role of serum resistin plays in GD patients. 39 untreated GD (uGD) patients, including 8 males and 31 females, were enrolled in our investigation. All of these patients were prescribed with MMI treatment, in addition to 25 healthy controls. Anthropometric parameters and hormone assessment were measured. Enzyme-linked immunosorbent assay was used to detect serum resistin concentration in different stages of GD patients. Furthermore, neutrophil cell line NB4 with or without T3 treatment to detect the effect of thyroid hormones on resistin expression. The serum resistin level and neutrophil counts in untreated GD patients were significantly declined. And all of these parameters were recovered to normal after MMI treatment in ethyroid GD (eGD) and TRAb-negative conversion (nGD) patients. Resistin concentration exhibited a negative correlation with FT3 and FT4, but a positive correlation with absolute number of neutrophiles in uGD patients, whereas did not correlate with thyroid autoimmune antibodies and BMI. Neutrophile cell line, NB4, produced decreased expression of resistin when stimulated with T3. Our study showed a decrease of serum resistin level in GD patients and we suggested that the serum resistin might primarily secreted from circulating neutrophils and down-regulated by excessive thyroid hormones in GD patients.
Peter, Valsa S; Peter, M C Subhash
2011-12-01
Endocrines, the chief components of chemical centers which produce hormones in tune with intrinsic and extrinsic clues, create a chemical bridge between the organism and the environment. In fishes also hormones integrate and modulate many physiologic functions and its synthesis, release, biological actions and metabolic clearance are well regulated. Consequently, thyroid hormones (THs) and cortisol, the products of thyroid and interrenal axes, have been identified for their common integrative actions on metabolic and osmotic functions in fish. On the other hand, many anthropogenic chemical substances, popularly known as endocrine disrupting chemicals, have been shown to disrupt the hormone-receptor signaling pathways in a number fish species. These chemicals which are known for their ability to induce endocrine disruption particularly on thyroid and interrenals can cause malfunction or maladaptation of many vital processes which are involved in the development, growth and reproduction in fish. On the contrary, evidence is presented that the endocrine interrupting agents (EIAs) can cause interruption of thyroid and interrenals, resulting in physiologic compensatory mechanisms which can be adaptive, though such hormonal interactions are less recognized in fishes. The EIAs of physical, chemical and biological origins can specifically interrupt and modify the hormonal interactions between THs and cortisol, resulting in specific patterns of inter-hormonal interference. The physiologic analysis of these inter-hormonal interruptions during acclimation and post-acclimation to intrinsic or extrinsic EIAs reveals that combinations of anti-hormonal, pro-hormonal or stati-hormonal interference may help the fish to fine-tune their metabolic and osmotic performances as part of physiologic adaptation. This novel hypothesis on the phenomenon of inter-hormonal interference and its consequent physiologic interference during thyroid and interrenal interruption thus forms the basis of physiologic acclimation. This interfering action of TH and cortisol during hormonal interruption may subsequently promote ecological adaptation in fish as these physiologic processes ultimately favor them to survive in their hostile environment. Copyright © 2011 Elsevier Inc. All rights reserved.
Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats
Salgueiro, Rafael Barrera; Vitzel, Kaio Fernando; Pantaleão, Thiago; Corrêa da Costa, Vânia Maria
2017-01-01
Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial. Therefore, this study aimed to investigate the impact of IE exposure during pregnancy and lactation periods on maternal hypothalamus–pituitary–thyroid axis. IE-exposed dams presented reduced serum TH concentration and increased serum thyrotropin (TSH) levels. Moreover, maternal IE exposure increased the hypothalamic expression of Trh and the pituitary expression of Trhr, Dio2, Tsha and Tshb mRNA, while reduced the Gh mRNA content. Additionally, IE-exposed dams presented thyroid morphological alterations, increased thyroid oxidative stress and decreased expression of thyroid genes/proteins involved in TH synthesis, secretion and metabolism. Furthermore, Dio1 mRNA expression and D1 activity were reduced in the liver and the kidney of IE-treated animals. Finally, the mRNA expression of Slc5a5 and Slc26a4 were reduced in the mammary gland of IE-exposed rats. The latter results are in accordance with the reduction of prolactin expression and serum levels in IE-treated dams. In summary, our study indicates that the exposure to IE during pregnancy and lactation induces primary hypothyroidism in rat dams and impairs iodide transfer to the milk. PMID:28814477
Chebab, Samira; Mekircha, Fatiha; Leghouchi, Essaid
2017-12-01
The purpose of this study was to evaluate the protective effect of Pistacia lentiscus oil (PLO), known for its antioxidant properties, on chlorpyrifos (CPF)-induced alterations in the thyroid, reproductive hormone levels, and oxidative damage in the ovaries and thyroid of adult Wistar rats. The animals were treated with orally administered PLO (2 mL/kg), CPF (6.75 mg/kg), and a combination of CPF and PLO for 30 days. Serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (Pg), estradiol (E 2 ), triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) were assessed using chemiluminescence assay. Malondialdehyde (MDA), protein carbonyl (PC), and reduced glutathione (GSH) levels were examined in the ovaries and thyroid glands. The oil principal volatile compounds detected by gas chromatography analysis were: myrcene, α-pinene and limonene (26.21, 22.66 and 10.33%, respectively). No significant differences were observed between serum concentrations of TSH and FSH in the examined experimental groups. However, serum concentrations of LH, E 2 , Pg, T3, and T4 decreased significantly in CPF-treated rats in comparison with the controls. The body weight and relative weight of ovaries and thyroids in this group were also significantly reduced. The MDA and PC content increased significantly, while the GSH content was markedly depressed in the thyroid and ovaries of rats treated with CPF. Co-administration of PLO and CPF effectively ameliorated the adverse effects; the oxidative damage was reduced and the levels of thyroid and reproductive hormones restored to a normal range. In conclusion, it appears that PLO substantially alleviates the CPF-induced oxidative damage and hormonal alterations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study.
Zhang, Qiongyue; Miao, Qing; Ye, Hongying; Zhang, Zhaoyun; Zuo, Chuantao; Hua, Fengchun; Guan, Yihui; Li, Yiming
2014-09-01
Brown adipose tissue (BAT) is important for energy expenditure through thermogenesis, although its regulatory factors are not well known in humans. There is evidence suggesting that thyroid hormones affect BAT functions in some mammals, but the effects of thyroid hormones on BAT activity in humans are still unclear. The aim of this study was to investigate the effects of thyroid hormones on glucose metabolism of BAT and other organs in humans. Nine Graves' disease-caused hyperthyroid patients who were newly diagnosed and untreated were studied. Putative brown adipose tissue activity was determined by the integrated ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron-emission tomography and computed tomography (PET-CT). All hyperthyroid patients were treated with methimazole and had been monitored until their symptoms disappeared and thyroid hormone levels returned to normal. At the end, a second PET-CT scan was performed. The average follow-up period was 77 days. Meanwhile, compared with a group of seventy-five brown adipose tissue-negative controls, thyroid hormones of seventy-five BAT-positive healthy subjects were measured. Active brown adipose tissue was not present in any of the hyperthyroid patients. However, one patient with normalized thyroid function showed active BAT after therapy. The free T3 levels and free T4 levels were significantly lower in the 75 BAT-positive subjects than in the BAT-negative subjects. All hyperthyroid patients showed symmetrically increased uptake of fluorodeoxyglucose in skeletal muscles before treatment, whereas, the standardized uptake value was substantially decreased after treatment. Abnormally high circulating thyroid hormone levels may not increase brown adipose tissue activity, which may be limited by the increased obligatory thermogenesis of muscle in adult humans. Copyright © 2014 John Wiley & Sons, Ltd.
Maternal thyroid hormone trajectories during pregnancy and child behavioral problems.
Endendijk, Joyce J; Wijnen, Hennie A A; Pop, Victor J M; van Baar, Anneloes L
2017-08-01
There is ample evidence demonstrating the importance of maternal thyroid hormones, assessed at single trimesters in pregnancy, for child cognition. Less is known, however, about the course of maternal thyroid hormone concentrations during pregnancy in relation to child behavioral development. Child sex might be an important moderator, because there are sex differences in externalizing and internalizing behavioral problems. The current study examined the associations between maternal thyroid hormone trajectories versus thyroid assessments at separate trimesters of pregnancy and child behavioral problems, as well as sex differences in these associations. In 442 pregnant mothers, serum levels of TSH and free T4 (fT4) were measured at 12, 24, and 36weeks gestation. Both mothers and fathers reported on their children's behavioral problems, between 23 and 60months of age. Latent growth mixture modeling was used to determine the number of different thyroid hormone trajectories. Three trajectory groups were discerned: 1) highest and non-increasing TSH with lowest fT4 that decreased least of the three trajectories; 2) increasing TSH and decreasing fT4 at intermediate levels; 3) lowest and increasing TSH with highest and decreasing fT4. Children of mothers with the most flattened thyroid hormone trajectories (trajectory 1) showed the most anxiety/depression symptoms. The following trimester-specific associations were found: 1) lower first-trimester fT4 was associated with more child anxiety/depression, 2) higher first-trimester TSH levels were related to more attention problems in boys only. A flattened course of maternal thyroid hormone concentrations during pregnancy was a better predictor of child anxiety/depression than first-trimester fT4 levels. Copyright © 2017 Elsevier Inc. All rights reserved.
Higuchi, Yukito
2016-01-01
Studies on growth hormone therapy in children have shown that height velocity is greater in summer than in winter and that this difference increases with latitude. It is hypothesized that summer daylight is a causative factor and that geographical distribution of body height will approximate the distribution of summer day length over time. This is an ecological analysis of prefecture-level data on the height of Japanese youth. Mesh climatic data of effective day length were collated. While height velocity was greatest during the summer, the height of Japanese youth was strongly and negatively correlated with the distribution of winter effective day length. Therefore, it is anticipated that summer height velocity is greater according to winter day length (dark period). This may be due to epigenetic modifications, involving reversible DNA methylation and thyroid hormone regulation found in the reproductive system of seasonal breeding vertebrates. If the function is applicable to humans, summer height growth may quantitatively increase with winter day length, and height growth seasonality can be explained by thyroid hormone activities that-induced by DNA methylation-change depending on the seasonal difference in day length. Moreover, geographical differences in body height may be caused by geographical differences in effective day length, which could influence melatonin secretion among subjects who spend a significant time indoors.
Shiel, R E; Pinilla, M; McAllister, H; Mooney, C T
2012-05-01
To assess the value of thyroid scintigraphy to determine thyroid status in dogs with hypothyroidism and various non-thyroidal illnesses. Thyroid hormone concentrations were measured and quantitative thyroid scintigraphy performed in 21 dogs with clinical and/or clinicopathological features consistent with hypothyroidism. In 14 dogs with technetium thyroidal uptake values consistent with euthyroidism, further investigations supported non-thyroidal illness. In five dogs with technetium thyroidal uptake values within the hypothyroid range, primary hypothyroidism was confirmed as the only disease in four. The remaining dog had pituitary-dependent hyperadrenocorticism. Two dogs had technetium thyroidal uptake values in the non-diagnostic range. One dog had iodothyronine concentrations indicative of euthyroidism. In the other, a dog receiving glucocorticoid therapy, all iodothyronine concentrations were decreased. Markedly asymmetric technetium thyroidal uptake was present in two dogs. All iodothyronine concentrations were within reference interval but canine thyroid stimulating hormone concentration was elevated in one. Non-thyroidal illness was identified in both cases. In dogs, technetium thyroidal uptake is a useful test to determine thyroid function. However, values may be non-diagnostic, asymmetric uptake can occur and excess glucocorticoids may variably suppress technetium thyroidal uptake and/or thyroid hormone concentrations. Further studies are necessary to evaluate quantitative thyroid scintigraphy as a gold standard method for determining canine thyroid function. © 2012 British Small Animal Veterinary Association.
Alien/CSN2 gene expression is regulated by thyroid hormone in rat brain.
Tenbaum, Stephan P; Juenemann, Stefan; Schlitt, Thomas; Bernal, Juan; Renkawitz, Rainer; Muñoz, Alberto; Baniahmad, Aria
2003-02-01
Alien has been described as a corepressor for the thyroid hormone receptor (TR). Corepressors are coregulators that mediate gene silencing of DNA-bound transcriptional repressors. We describe here that Alien gene expression in vivo is regulated by thyroid hormone both in the rat brain and in cultured cells. In situ hybridization revealed that Alien is widely expressed in the mouse embryo and also throughout the rat brain. Hypothyroid animals exhibit lower expression of both Alien mRNAs and protein levels as compared with normal animals. Accordingly, we show that Alien gene is inducible after thyroid hormone treatment both in vivo and in cell culture. In cultured cells, the hormonal induction is mediated by either TRalpha or TRbeta, while cells lacking detectable amounts of functional TR lack hormonal induction of Alien. We have detected two Alien-specific mRNAs by Northern experiments and two Alien-specific proteins in vivo and in cell lines by Western analysis, one of the two forms representing the CSN2 subunit of the COP9 signalosome. Interestingly, both Alien mRNAs and both detected proteins are regulated by thyroid hormone in vivo and in cell lines. Furthermore, we provide evidence for the existence of at least two Alien genes in rodents. Taken together, we conclude that Alien gene expression is under control of TR and thyroid hormone. This suggests a negative feedback mechanism between TR and its own corepressor. Thus, the reduction of corepressor levels may represent a control mechanism of TR-mediated gene silencing.
Inhibition of the Thyroid Hormone Pathway in Xenopus by Mercaptobenzothiazole
Amphibian metamorphosis is a thyroid hormone-dependent process that provides a potential model system to assess chemicals for their ability to disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Several studies have demonstrated the sensitivity of this system to a variety of ...
The enzyme iodotyrosine deiodinase (dehalogenase, IYD) catalyzes iodide recycling and promotes iodide retention in thyroid follicular cells. Loss of function or chemical inhibition of IYD reduces available iodide for thyroid hormone synthesis, which leads to hormone insufficiency...
Danilovic, Debora Lucia Seguro; Mendes-Correa, Maria Cassia; Chammas, Maria Cristina; Zambrini, Heverton; Marui, Suemi
2011-01-01
OBJECTIVE: To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. INTRODUCTION: Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. METHODS: We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. RESULTS: Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH) levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. DISCUSSION: Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. CONCLUSION: Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels), which occur despite stable free T4 and TSH levels. A thyroid hormonal evaluation, including the analysis of the free T4, TSH, and antithyroid antibody levels, should be mandatory before therapy, and an early re-evaluation within three months of treatment is necessary as an appropriate follow-up. PMID:22012048
Danilovic, Debora Lucia Seguro; Mendes-Correa, Maria Cassia; Chammas, Maria Cristina; Zambrini, Heverton; Marui, Suemi
2011-01-01
To characterize thyroid disturbances induced by interferon-alpha and ribavirin therapy in patients with chronic hepatitis C. Interferon-alpha is used to treat chronic hepatitis C infections. This compound commonly induces both autoimmune and non-autoimmune thyroiditis. We prospectively selected 26 patients with chronic hepatitis C infections. Clinical examinations, hormonal evaluations, and color-flow Doppler ultrasonography of the thyroid were performed before and during antiviral therapy. Of the patients in our study, 54% had no thyroid disorders associated with the interferon-alpha therapy but showed reduced levels of total T3 along with a decrease in serum alanine aminotransferase. Total T4 levels were also reduced at 3 and 12 months, but free T4 and thyroid stimulating hormone (TSH) levels remained stable. A total of 19% of the subjects had autoimmune interferon-induced thyroiditis, which is characterized by an emerge of antithyroid antibodies or overt hypothyroidism. Additionally, 16% had non-autoimmune thyroiditis, which presents as destructive thyroiditis or subclinical hypothyroidism, and 11% remained in a state of euthyroidism despite the prior existence of antithyroidal antibodies. Thyrotoxicosis with destructive thyroiditis was diagnosed within three months of therapy, and ultrasonography of these patients revealed thyroid shrinkage and discordant change in the vascular patterns. Decreases in the total T3 and total T4 levels may be related to improvements in the hepatocellular lesions or inflammatory changes similar to those associated with nonthyroidal illnesses. The immune mechanisms and direct effects of interferon-alpha can be associated with thyroiditis. Interferon-alpha and ribavirin induce autoimmune and non-autoimmune thyroiditis and hormonal changes (such as decreased total T3 and total T4 levels), which occur despite stable free T4 and TSH levels. A thyroid hormonal evaluation, including the analysis of the free T4, TSH, and antithyroid antibody levels, should be mandatory before therapy, and an early re-evaluation within three months of treatment is necessary as an appropriate follow-up.
Plant, T. M.; Ramaswamy, S.; Bhat, G. K.; Stah, C. D.; Pohl, C. R.; Mann, D. R.
2010-01-01
The present study examined whether a transient thyroid hormone (T4) deficit during infancy in male monkeys would compromise the arrest of luteinising hormone (LH) secretion during the infant–juvenile transition, and/or interfere with the pubertal resurgence of LH. Animals were orchidectomised and thyroidectomised (n = 3; Tx) or sham Tx (n = 3) within 5 days of birth. T4 replacement was initiated in two Tx monkeys at age 19 weeks to reestablish a euthyroid condition. Blood samples were drawn weekly for hormone assay. Body weight, crown–rump length, and bone age were assessed throughout the study. Within a week of Tx, plasma T4 declined to undetectable levels and, by 6–8 weeks of age, signs of hypothyroidism were evident. Transient hypothyroidism during infancy failed to prevent either arrest of LH secretion during the infant–juvenile transition or the pubertal resurgence of LH secretion, both of which occurred at similar ages to sham Tx animals. Although body weight exhibited complete catch-up with T4 replacement, crown–rump length and bone age did not. Thus, bone age at the time of the pubertal LH resurgence in Tx animals was less advanced than that in shams. Although Tx did not influence qualitatively the pattern of gonadotrophin secretion, LH levels during infancy and after pubertal LH resurgence were elevated in Tx monkeys. This was not associated with changes in LH pulse frequency and amplitude, but half-life (53 versus 65 min) of the slow second phase of LH clearance was greater in Tx animals. These results indicate that hypothalamic mechanisms dictating the pattern of gonadotrophin-releasing hormone release from birth to puberty are not dependent on T4 action during infancy, and fail to support the notion that onset of puberty is causally coupled to skeletal maturation. They also indicate that LH renal clearance mechanisms may be programmed in a T4 dependent manner during infancy. PMID:18673410
Martin, Negin P.; Fernandez de Velasco, Ezequiel Marron; Mizuno, Fengxia; Scappini, Erica L.; Gloss, Bernd; Erxleben, Christian; Williams, Jason G.; Stapleton, Heather M.; Gentile, Saverio
2014-01-01
Several rapid physiological effects of thyroid hormone on mammalian cells in vitro have been shown to be mediated by the phosphatidylinositol 3-kinase (PI3K), but the molecular mechanism of PI3K regulation by nuclear zinc finger receptor proteins for thyroid hormone and its relevance to brain development in vivo have not been elucidated. Here we show that, in the absence of hormone, the thyroid hormone receptor TRβ forms a cytoplasmic complex with the p85 subunit of PI3K and the Src family tyrosine kinase, Lyn, which depends on two canonical phosphotyrosine motifs in the second zinc finger of TRβ that are not conserved in TRα. When hormone is added, TRβ dissociates and moves to the nucleus, and phosphatidylinositol (3, 4, 5)-trisphosphate production goes up rapidly. Mutating either tyrosine to a phenylalanine prevents rapid signaling through PI3K but does not prevent the hormone-dependent transcription of genes with a thyroid hormone response element. When the rapid signaling mechanism was blocked chronically throughout development in mice by a targeted point mutation in both alleles of Thrb, circulating hormone levels, TRβ expression, and direct gene regulation by TRβ in the pituitary and liver were all unaffected. However, the mutation significantly impaired maturation and plasticity of the Schaffer collateral synapses on CA1 pyramidal neurons in the postnatal hippocampus. Thus, phosphotyrosine-dependent association of TRβ with PI3K provides a potential mechanism for integrating regulation of development and metabolism by thyroid hormone and receptor tyrosine kinases. PMID:24932806
Xu, Juan; Ke, Zhonghe; Xia, Jianhong; He, Fang; Bao, Baolong
2016-09-15
Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes. Copyright © 2016 Elsevier Inc. All rights reserved.
Intrinsic Regulation of Thyroid Function by Thyroglobulin
Sellitti, Donald F.
2014-01-01
Background: The established paradigm for thyroglobulin (Tg) function is that of a high molecular weight precursor of the much smaller thyroid hormones, triiodothyronine (T3) and thyroxine (T4). However, speculation regarding the cause of the functional and morphologic heterogeneity of the follicles that make up the thyroid gland has given rise to the proposition that Tg is not only a precursor of thyroid hormones, but that it also functions as an important signal molecule in regulating thyroid hormone biosynthesis. Summary: Evidence supporting this alternative paradigm of Tg function, including the up- or downregulation by colloidal Tg of the transcription of Tg, iodide transporters, and enzymes employed in Tg iodination, and also the effects of Tg on the proliferation of thyroid and nonthyroid cells, is examined in the present review. Also discussed in detail are potential mechanisms of Tg signaling in follicular cells. Conclusions: Finally, we propose a mechanism, based on experimental observations of Tg effects on thyroid cell behavior, that could account for the phenomenon of follicular heterogeneity as a highly regulated cycle of increasing and decreasing colloidal Tg concentration that functions to optimize thyroid hormone production through the transcriptional activation or suppression of specific genes. PMID:24251883
Thyroid hormone use: trends in the United States from 1960 through 1988.
Kaufman, S C; Gross, T P; Kennedy, D L
1991-01-01
Thyroid hormone preparations comprised over 1% of all prescriptions filled by retail pharmacies during 1988 in the conterminous United States, i.e., the 48 contiguous states. Their large market share gives the patterns of their use substantial public health importance. This article describes prescription thyroid hormone use in the United States from 1960 through 1988, using pharmaceutical marketing research data collected from panels of retail pharmacies and office-based physicians. Although the use of natural products has declined by over 50% since 1960, about one fourth of all thyroid hormone prescriptions were for natural preparations as recently as 1988. Per capita thyroid mentions (i.e., patient-physician contacts during which a thyroid agent of any kind was recommended, prescribed, dispensed, administered, ordered to be given by a hospital, or given as a sample) doubled during this period among those over 59 years old. Per capita mentions for synthetic thyroid products increased fourfold and tenfold among men and women in this age group, respectively. Use for weight loss, despite the label's boxed warning indicating it to be ineffective and potentially dangerous, has diminished but persists. Obesity was second only to hypothyroidism among the diagnoses underlying thyroid product mentions.
Wang, Lina; Li, Hao; Yang, Zhongyuan; Guo, Zhuming; Zhang, Quan
2015-07-01
This study was designed to assess the efficiency of the serum thyrotropin to thyroglobulin ratio for thyroid nodule evaluation in euthyroid patients. Cross-sectional study. Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China. Retrospective analysis was performed for 400 previously untreated cases presenting with thyroid nodules. Thyroid function was tested with commercially available radioimmunoassays. The receiver operating characteristic curves were constructed to determine cutoff values. The efficacy of the thyrotropin:thyroglobulin ratio and thyroid-stimulating hormone for thyroid nodule evaluation was evaluated in terms of sensitivity, specificity, positive predictive value, positive likelihood ratio, negative likelihood ratio, and odds ratio. In receiver operating characteristic curve analysis, the area under the curve was 0.746 for the thyrotropin:thyroglobulin ratio and 0.659 for thyroid-stimulating hormone. With a cutoff point value of 24.97 IU/g for the thyrotropin:thyroglobulin ratio, the sensitivity, specificity, positive predictive value, positive likelihood ratio, and negative likelihood ratio were 78.9%, 60.8%, 75.5%, 2.01, and 0.35, respectively. The odds ratio for the thyrotropin:thyroglobulin ratio indicating malignancy was 5.80. With a cutoff point value of 1.525 µIU/mL for thyroid-stimulating hormone, the sensitivity, specificity, positive predictive value, positive likelihood ratio, and negative likelihood ratio were 74.0%, 53.2%, 70.8%, 1.58, and 0.49, respectively. The odds ratio indicating malignancy for thyroid-stimulating hormone was 3.23. Increasing preoperative serum thyrotropin:thyroglobulin ratio is a risk factor for thyroid carcinoma, and the correlation of the thyrotropin:thyroglobulin ratio to malignancy is higher than that for serum thyroid-stimulating hormone. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Goodman, Julie E; Kerper, Laura E; Boyce, Catherine Petito; Prueitt, Robyn L; Rhomberg, Lorenz R
2010-10-01
Thyroid hormones play a critical role in the proper development of brain function and cell growth. Several epidemiological studies have been conducted to assess potential associations between pre- and post-natal exposure to dioxins or dioxin-like compounds (DLCs) and the levels of circulating thyroid hormones during early development. Dioxins and DLCs include chlorinated dibenzo-p-dioxins, chlorinated dibenzofurans, and mono- and non-ortho polychlorinated biphenyls (PCBs). We identified a total of 23 relevant epidemiological studies (21 cohort studies and 1 case-control study) that measured exposures to various types of dioxins and DLCs as well as markers of thyroid function, such as thyroid stimulating hormone (TSH), total thyroxine (T4), free T4, total triiodothyroxine (T3), free T3, and thyroid-binding globulin concentrations in cord blood or circulation. While some of the studies reported associations between concentrations of dioxins and/or DLCs and some biomarkers of thyroid function, the majority of the observed associations were not statistically significant. Moreover, there were no clear and consistent effects across studies for any of the hormone levels examined, and while a number of studies showed a statistically significant association with exposure for a given marker of thyroid function, other studies showed either no change or changes in the opposite direction for the same thyroid function marker. Similarly, when the results were analyzed considering developmental stage, there generally were no clear and consistent effects at any age from birth through 12 years of age. The absence of a clear correlation between background exposures to dioxins and DLCs and thyroid function biomarkers during development is not consistent with the hypothesis that background exposures to these chemicals cause effects on thyroid function during development. Copyright (c) 2010 Elsevier Inc. All rights reserved.
... beats. All of these activities are your body's metabolism. Thyroid problems include Goiter - enlargement of the thyroid gland Hyperthyroidism - when your thyroid gland makes more thyroid hormones ...
Kim, Sujin; Kim, Sunmi; Won, Sungho; Choi, Kyungho
2017-10-01
Epidemiological studies have shown that thyroid hormone balances can be disrupted by chemical exposure. However, many association studies have often failed to consider multiple chemicals with possible common sources of exposure, rendering their conclusions less reliable. In the 2007-2008 National Health and Nutrition Examination Survey (NHANES) from the U.S.A., urinary levels of environmental phenols, parabens, and phthalate metabolites as well as serum thyroid hormones were measured in a general U.S. population (≥12years old, n=1829). Employing these data, first, the chemicals or their metabolites associated with thyroid hormone measures were identified. Then, the chemicals/metabolites with possible common exposure sources were included in the analytical model to test the sensitivities of their association with thyroid hormone levels. Benzophenone-3 (BP-3), bisphenol A (BPA), and a metabolite of di(2-ethylhexyl) phthalate (DEHP) were identified as significant determinants of decreased serum thyroid hormones. However, significant positive correlations were detected (p-value<0.05, r=0.23 to 0.45) between these chemicals/metabolites, which suggests that they might share similar exposure sources. In the subsequent sensitivity analysis, which included the chemicals/metabolite with potentially similar exposure sources in the model, we found that urinary BP-3 and DEHP exposure were associated with decreased thyroid hormones among the general population but BPA exposure was not. In association studies, the presence of possible common exposure sources should be considered to circumvent possible false-positive conclusions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perfluorooctanesulfonate (PFOS) is widely distributed and persistent in humans and wildlife. Prior toxicological studies have reported decreased total and free thyroid hormones in serum without a major compensatory rise in thyrotropin (TSH) or altered thyroid gland histology. Alt...
Johnson, Kaitlin M; Lema, Sean C
2011-07-01
In fish as in other vertebrates, the diverse functions of thyroid hormones are mediated at the peripheral tissue level through iodothyronine deiodinase (dio) enzymes and thyroid hormone receptor (tr) proteins. In this study, we examined thyroid hormone regulation of mRNAs encoding the three deiodinases dio1, dio2 and dio3 - as well as three thyroid hormone receptors trαA, trαB and trβ - in initial phase striped parrotfish (Scarus iseri). Parrotfish were treated with dissolved phase T(3) (20 nM) or methimazole (3 mM) for 3 days. Treatment with exogenous T(3) elevated circulating T(3), while the methimazole treatment depressed plasma T(4). Experimentally-induced hyperthyroidism increased the relative abundance of transcripts encoding trαA and trβ in the liver and brain, but did not affect trαB mRNA levels in either tissue. In both sexes, methimazole-treated fish exhibited elevated dio2 transcripts in the liver and brain, suggesting enhanced outer-ring deiodination activity in these tissues. Accordingly, systemic hyperthyroidism elevated relative dio3 transcript levels in these same tissues. In the gonad, however, patterns of transcript regulation were distinctly different with elevated T(3) increasing mRNAs encoding dio2 in testicular and ovarian tissues and dio3, trαA and trαB in the testes only. Thyroid hormone status did not affect dio1 transcript abundance in the liver, brain or gonads. Taken as a whole, these results demonstrate that thyroidal status influences relative transcript abundance for dio2 and dio3 in the liver, provide new evidence for similar patterns of dio2 and dio3 mRNA regulation in the brain, and make evident that fish exhibit tr subtype-specific transcript abundance changes to altered thyroid status. Copyright © 2011 Elsevier Inc. All rights reserved.
Irisin levels increase after treatment in patients with newly diagnosed Hashimoto thyroiditis.
Uc, Z A; Gorar, S; Mizrak, S; Gullu, S
2018-05-18
Irisin is a newly identified myokine secreted by skeletal muscle and has significant effects on body metabolism. Thyroidal functional state has a profound influence on the metabolism of human body. Therefore, the aim of this study was to investigate the possible changes in serum irisin concentrations before and after treatment in hypothyroid subjects. The study included 26 patients with overt hypothyroidism due to Hashimoto thyroiditis and 19 healthy subjects. Baseline serum thyroid function tests and presence of thyroid autoantibodies and levels of creatine kinase (CK) and irisin were measured in both groups. All measurements in the hypothyroid group were repeated after euthyroidism was achieved. Serum irisin levels were significantly lower in the hypothyroid groups than the control group (p < 0.001). Negative correlation between irisin and thyroid stimulating hormone and CK levels (r = - 0.623, p < 0.001 and r = - 0.389, p = 0.008, respectively) and a positive correlation between irisin and free thyroxine (fT4) levels (r = 0.570, p < 0.001) was found. Serum CK levels decreased significantly after treatment (p < 0.001). Serum irisin levels significantly increased (from 57.4 to 99.8 U/L, p < 0.001) when the hypothyroid patients were treated to achieve euthyroidism. To the best of our knowledge, this is the first study providing insight that low serum irisin levels significantly increased following treatment to euthyroid state in overt hypothyroid patients with Hashimoto thyroiditis. Larger scale studies are needed to confirm these results and to ensure irisin as a possible biomarker of Hashimoto's thyroiditis.
Thyroid and adrenal relationships
Parsons, Victor; Ramsay, Ian
1968-01-01
A brief review of the actions of adrenal medullary and thyroid hormones is presented and the ways in which they interact are examined. It is concluded that thyroid hormone produces the necessary intracellular environment without which the steady state and emergency actions of cathecholamines would be vitiated. In hyperthyroidism the increased concentration of thyroid hormones results in a lowering of the threshold for catecholamine action. For this reason it is possible to alleviate many of the symptoms of thyrotoxicosis by means of drugs which block β-adrenergic receptors. Attention is also drawn to the simultaneous occurrence of thyroid and adrenal disease, in the hope that this will encourage the search for further links in this field of endocrinology. PMID:5655216
Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand
2018-06-01
Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.
Endocrine disruptors can decrease thyroid hormone levels via the induction of hepatic uridinediphosphate-glucoronosyltransferases (UGTs) and sulfotransferases (SULTs). Due to their ability to catalyze glucuronidation and sulfation of hormones and xenobiotics, UGTs and SULTs play ...
Arauchi, Ayumi; Shimizu, Tatsuya; Yamato, Masayuki; Obara, Takao; Okano, Teruo
2009-12-01
For hormonal deficiency caused by endocrine organ diseases, continuous oral hormone administration is indispensable to supplement the shortage of hormones. In this study, as a more effective therapy, we have tried to reconstruct the three-dimensional thyroid tissue by the cell sheet technology, a novel tissue engineering approach. The cell suspension obtained from rat thyroid gland was cultured on temperature-responsive culture dishes, from which confluent cells detach as a cell sheet simply by reducing temperature without any enzymatic treatment. The 8-week-old Lewis rats were exposed to total thyroidectomy as hypothyroidism models and received thyroid cell sheet transplantation 1 week after total thyroidectomy. Serum levels of free triiodothyronine (fT(3)) and free thyroxine (fT(4)) significantly decreased 1 week after total thyroidectomy. On the other hand, transplantation of the thyroid cell sheets was able to restore the thyroid function 1 week after the cell sheet transplantation, and improvement was maintained for 4 weeks. Moreover, morphological analyses showed typical thyroid follicle organization, and anti-thyroid-transcription-factor-1 antibody staining demonstrated the presence of follicle epithelial cells. The presence of functional microvessels was also detected within the engineered thyroid tissues. In conclusion, our results indicate that thyroid cell sheets transplanted in a model of total thyroidectomy can reorganize histologically to resemble a typical thyroid gland and restore thyroid function in vivo. In this study, we are the first to confirm that engineered thyroid tissue can repair hypothyroidism models in rats and, therefore, cell sheet transplantation of endocrine organs may be suitable for the therapy of hormonal deficiency.
Thyroid hormones (TH) are essential for normal brain development. Even subclinical hypothyroidism experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular func...
Analysis of thyroid hormones in gland and serum using liquid chromatography-tandem mass spectrometry
Thyroid hormones (THs), which are critical for growth and development in all vertebrates, can be impacted through chemical perturbation of the hypothalamic-pituitary-thyroid (HPT)-axis. Amphibian and mammalian models are being used to address this research priority within US EPA...
Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...
Adequate levels of thyroid hormones (TH) are needed for proper brain development and deficiencies lead to adverse neurological outcomes in humans and in animal models. Environmental chemicals have been shown to disrupt TH levels, yet the relationship between developmental exposur...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaolin; Ye, Li; Wang, Xiaoxiang
2012-12-15
Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 andmore » non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.« less
Vascular and renal function in experimental thyroid disorders.
Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín
2006-02-01
This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowyer, J.F.; Latendresse, J.R.; Delongchamp, R.R.
Acrylamide (AA) is an important industrial chemical that is neurotoxic in rodents and humans and carcinogenic in rodents. The observation of cancer in endocrine-responsive tissues in Fischer 344 rats has prompted hypotheses of hormonal dysregulation, as opposed to DNA damage, as the mechanism for tumor induction by AA. The current investigation examines possible evidence for disruption of the hypothalamic-pituitary-thyroid axis from 14 days of repeated exposure of male Fischer 344 rats to doses of AA that range from one that is carcinogenic after lifetime exposure (2.5 mg/kg/d), an intermediate dose (10 mg/kg/d), and a high dose (50 mg/kg/d) that ismore » neurotoxic for this exposure time. The endpoints selected include: serum levels of thyroid and pituitary hormones; target tissue expression of genes involved in hormone synthesis, release, and receptors; neurotransmitters in the CNS that affect hormone homeostasis; and histopathological evaluation of target tissues. These studies showed virtually no evidence for systematic alteration of the hypothalamic-pituitary-thyroid axis and do not support hormone dysregulation as a plausible mechanism for AA-induced thyroid cancer in the Fischer 344 rat. Specifically, there were no significant changes in: 1) mRNA levels in hypothalamus or pituitary for TRH, TSH, thyroid hormone receptor {alpha} and {beta}, as well 10 other hormones or releasing factors; 2) mRNA levels in thyroid for thyroglobulin, thyroid peroxidase, sodium iodide symporter, or type I deiodinases; 3) serum TSH or T3 levels (T4 was decreased at high dose only); 4) dopaminergic tone in the hypothalamus and pituitary or importantly 5) increased cell proliferation (Mki67 mRNA and Ki-67 protein levels were not increased) in thyroid or pituitary. These negative findings are consistent with a genotoxic mechanism of AA carcinogenicity based on metabolism to glycidamide and DNA adduct formation. Clarification of this mechanistic dichotomy may be useful in human cancer risk assessments for AA.« less
New Insights into Thyroid Hormone Action
Mendoza, Arturo; Hollenberg, Anthony N.
2017-01-01
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) concentrations in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling. PMID:28174093
Prolonged weightlessness effect on postflight plasma thyroid hormones
NASA Technical Reports Server (NTRS)
Leach, C. S.; Johnson, P. C.; Driscoll, T. B.
1977-01-01
Blood drawn before and after spaceflight from the nine Skylab astronauts showed a statistically significant increase in mean plasma thyroxine (T-4) of 1.4 micro g/dl and in thyroid-stimulating hormone (TSH) of 4 microunits ml. Concurrent triiodothyronine (T-3) levels decreased 27 ng/dl indicating inhibited conversion of T-4 to T-3. The T-3 decrease is postulated to be a result of the increased cortisol levels noted during and following each mission. These results confirm the thyroidal changes noted after the shorter Apollo flights and show that thyroid hormone levels change during spaceflight.
Magnetic storms and variations in hormone levels among residents of North Polar area - Svalbard
NASA Astrophysics Data System (ADS)
Breus, T. K.; Boiko, E. R.; Zenchenko, T. A.
2015-01-01
In the present work four examinations (January, March, June, October 1991-1992) of the blood concentration of adrenal hormones (cortisol) and thyroid hormones (triiodothyronine (T3) and thyroxine T4) and their dependence on space and terrestrial weather parameters have been done for large groups of healthy inhabitants of high latitudes (Svalbard, the most northerly in the world year-round inhabited settlements). The aim of this study was to find the possible sensitivity of these biochemical parameters to variations of external natural factors at high latitudes in three independent groups of people living in this region (miners and people working underground (364 samples), the men working on the ground (274 samples) and women working on the ground (280 samples)). The obtained data indicate that the most expressed dependence of concentration of the three studied hormones is on the level of geomagnetic activity (GMA) - Kp, Ap, Kpmax - 3h. For two of the four seasons (June and October) with increasing levels of GMA a significant (p < 0.05) increase in cortisol concentration in all three independent groups of people was observed. Range of increases in cortisol concentration in different groups were about 30% of the observed variation in the average intragroup concentration in June and from 16% to 38% in October. For T3 dependence was found only in June: drop in hormone secretion with increasing levels of GMA from 18 to 30% of the average range of intragroup variations. Thus it was shown for the first time that at high geographical latitudes with increased level of GMA a significant change in the level of secretion of several hormones leads to the type of adaptive stress reaction.
Magnetic storms and variations in hormone levels among residents of North Polar area--Svalbard.
Breus, T K; Boiko, E R; Zenchenko, T A
2015-01-01
In the present work four examinations (January, March, June, October 1991-1992) of the blood concentration of adrenal hormones (cortisol) and thyroid hormones (triiodothyronine (T3) and thyroxine T4) and their dependence on space and terrestrial weather parameters have been done for large groups of healthy inhabitants of high latitudes (Svalbard, the most northerly in the world year-round inhabited settlements). The aim of this study was to find the possible sensitivity of these biochemical parameters to variations of external natural factors at high latitudes in three independent groups of people living in this region (miners and people working underground (364 samples), the men working on the ground (274 samples) and women working on the ground (280 samples)). The obtained data indicate that the most expressed dependence of concentration of the three studied hormones is on the level of geomagnetic activity (GMA) - Kp, Ap, Kpmax - 3h. For two of the four seasons (June and October) with increasing levels of GMA a significant (p<0.05) increase in cortisol concentration in all three independent groups of people was observed. Range of increases in cortisol concentration in different groups were about 30% of the observed variation in the average intragroup concentration in June and from 16% to 38% in October. For T3 dependence was found only in June: drop in hormone secretion with increasing levels of GMA from 18 to 30% of the average range of intragroup variations. Thus it was shown for the first time that at high geographical latitudes with increased level of GMA a significant change in the level of secretion of several hormones leads to the type of adaptive stress reaction. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vickers, Alison E.M., E-mail: vickers_alison@allergan.com; Heale, Jason; Sinclair, John R.
Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24–48 h) and human (24 h) with ≥ 10 μM MMI. Thyroidmore » from rats treated with single doses of MMI (30–1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (∼ 15–84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24 h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ∼ 2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24 h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. -- Highlights: ► Novel model of rat thyroid or human thyroid slices to evaluate pathways of injury. ► TPO inhibition by MMI or PTU altered hormone synthesis and release genes. ► Rat thyroid was more sensitive to the drug effects than human tissue.« less
Central hypothyroidism - a neglected thyroid disorder.
Beck-Peccoz, Paolo; Rodari, Giulia; Giavoli, Claudia; Lania, Andrea
2017-10-01
Central hypothyroidism is a rare and heterogeneous disorder that is characterized by a defect in thyroid hormone secretion in an otherwise normal thyroid gland due to insufficient stimulation by TSH. The disease results from the abnormal function of the pituitary gland, the hypothalamus, or both. Moreover, central hypothyroidism can be isolated or combined with other pituitary hormone deficiencies, which are mostly acquired and are rarely congenital. The clinical manifestations of central hypothyroidism are usually milder than those observed in primary hypothyroidism. Obtaining a positive diagnosis for central hypothyroidism can be difficult from both a clinical and a biochemical perspective. The diagnosis of central hypothyroidism is based on low circulating levels of free T 4 in the presence of low to normal TSH concentrations. The correct diagnosis of both acquired (also termed sporadic) and congenital (also termed genetic) central hypothyroidism can be hindered by methodological interference in free T 4 or TSH measurements; routine utilization of total T 4 or T 3 measurements; concurrent systemic illness that is characterized by low levels of free T 4 and normal TSH concentrations; the use of the sole TSH-reflex strategy, which is the measurement of the sole level of TSH, without free T 4 , if levels of TSH are in the normal range; and the diagnosis of congenital hypothyroidism based on TSH analysis without the concomitant measurement of serum levels of T 4 . In this Review, we discuss current knowledge of the causes of central hypothyroidism, emphasizing possible pitfalls in the diagnosis and treatment of this disorder.
Disruption of thyroid hormone (TH) homeostasis is a known effect of environmental contaminants. Although animal models of developmental TH deficiency can predict the impact of severe insults to the thyroid system, the effects of moderate TH insufficiencies have not been adequatel...
Disruption of thyroid hormone signaling is a form of endocrine disruption that is of concern to both human health and ecosystems. Research is being conducted to define the biological targets chemicals may interact with to disrupt thyroid hormone signaling and the stages in develo...
Thyroid hormone (TH) disrupting compounds interfere with both thyroidal and extrathyroidal mechanisms to decrease circulating thyroxine (T4). This research tested the hypothesis that serum T4 concentrations of rodents exposed to a mixture of both TH synthesis inhibitors (pesticid...
HPLC-ICP/MS Analysis of Thyroid Hormone and Related Iodinated Compounds in Tissues and Media
Quantifying thyroid hormone (TH) and the synthetic precursors and metabolic products of TH is important for developing models of the hypothalamic-pituitary-thyroid (HPT) axis as well as for understanding the effects of xenobiotics on HPT axis function. In this study, the developm...
The US EPA has been charged to evaluate chemicals for their ability to disrupt endocrine pathways including estrogen, androgen, and thyroid hormone. Amphibian metamorphosis, which is regulated by thyroid hormone, is an ideal model system for investigating disruption of the thyroi...
Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea.
Sharlin, David S; Visser, Theo J; Forrest, Douglas
2011-12-01
Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr(-/-) mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development.
Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone
Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio
1999-01-01
We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589
Kang, Hong Soon; Kumar, Dhirendra; Liao, Grace; Lichti-Kaiser, Kristin; Gerrish, Kevin; Liao, Xiao-Hui; Refetoff, Samuel; Jothi, Raja; Jetten, Anton M.
2017-01-01
Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division–related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development. PMID:29083325
Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim
2017-06-01
Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.
Yao, Hui-Yuan; Han, Yan; Gao, Hui; Huang, Kun; Ge, Xing; Xu, Yuan-Yuan; Xu, Ye-Qing; Jin, Zhong-Xiu; Sheng, Jie; Yan, Shuang-Qin; Zhu, Peng; Hao, Jia-Hu; Tao, Fang-Biao
2016-08-01
Animal and human studies have suggested that phthalate alters thyroid hormone concentrations. This study investigated the associations between phthalate exposure during the first trimester and thyroid hormones in pregnant women and their newborns. Pregnant women were enrolled from the prospective Ma'anshan Birth Cohort study in China. A standard questionnaire was completed by the women at the first antenatal visit. Seven phthalate metabolites were measured in one-spot urine at enrolment (10.0 ± 2.1 gestational weeks), as were thyroid hormone levels in maternal and cord sera. Multivariable linear regression showed that 1-standard deviation (SD) increase in natural log (ln)-transformed mono(2-ethylhexyl) phthalate (MEHP) and mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was associated with 0.163 μg/dL (p = 0.001) and 0.173 μg/dL (p = 0.001) decreases in maternal total thyroxine (TT4). Both MEHP and MEHHP were negatively associated with maternal free thyroxine (FT4; β: -0.013, p < 0.001 and β: -0.011, p = 0.001, respectively) and positively associated with maternal thyroid-stimulating hormone (β: 0.101, p < 0.001; β: 0.132, p < 0.001, respectively). An inverse association was observed between monobenzyl phthalate and maternal TT4 and FT4. A 1-SD increase in ln-transformed monoethyl phthalate was inversely associated with maternal TT4 (β: -0.151, p = 0.002). By contrast, the concentrations of phthalate metabolites in urine were not associated with those of thyroid hormone in cord serum. Our analysis suggested that phthalate exposure during the first trimester disrupts maternal thyroid hormone levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3 years.
Vuong, Ann M; Braun, Joseph M; Webster, Glenys M; Thomas Zoeller, R; Hoofnagle, Andrew N; Sjödin, Andreas; Yolton, Kimberly; Lanphear, Bruce P; Chen, Aimin
2018-08-01
Polybrominated diphenyl ethers (PBDEs) reduce serum thyroid hormone concentrations in animal studies, but few studies have examined the impact of early-life PBDE exposures on thyroid hormone disruption in childhood. We used data from 162 mother-child pairs from the Health Outcomes and Measures of the Environment Study (2003-2006, Cincinnati, OH). We measured PBDEs in maternal serum at 16 ± 3 weeks gestation and in child serum at 1-3 years. Thyroid hormones were measured in serum at 3 years. We used multiple informant models to investigate associations between prenatal and early-life PBDE exposures and thyroid hormone levels at age 3 years. Prenatal PBDEs were associated with decreased thyroid stimulating hormone (TSH) levels at age 3 years. A 10-fold increase in prenatal ∑PBDEs (BDE-28, -47, -99, -100, and -153) was associated with a 27.6% decrease (95% CI -40.8%, -11.3%) in TSH. A ten-fold increase in prenatal ∑PBDEs was associated with a 0.25 pg/mL (0.07, 0.43) increase in free triiodothyronine (FT 3 ). Child sex modified associations between prenatal PBDEs and thyroid hormones, with significant decrements in TSH among females and decreased free T 4 (FT 4 ) in males. Prenatal ∑PBDEs were not associated with TT 4 , FT 4 , or total T 3 . These findings suggest an inverse relationship between prenatal ∑PBDEs and TSH at 3 years. Associations may be sexually dimorphic, with an inverse relationship between prenatal BDE-47 and -99 and TSH in females and null associations among males. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thyroid hormones states and brain development interactions.
Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G
2008-04-01
The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.
Omidi, Arash; Sajedi, Zhila; Montazer Torbati, Mohammad Bagher; Ansari Nik, Hossein
2014-04-01
Changes in lipid metabolism have been shown to occur during pregnancy. The thyroid hormones affect lipid metabolism. The present study was carried out to find out whether the last trimester of pregnancy affects thyroid hormones, thyroid-stimulating hormone (TSH), lipid, and lipoprotein profile in healthy dromedary camels. Twenty clinical healthy dromedary camels aged between 4-5 years were divided into two equal groups: (1) pregnant camels in their last trimester of pregnancy and (2) non-pregnant age-matched controls. Thyroid function tests were carried out by measuring serum levels of TSH, free thyroxin (fT4), total thyroxin (T4), free triiodothyronine (fT3), and total triiodothyronine (T3) by commercially available radio immunoassay kits. Total cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL) cholesterol were analyzed using enzymatic/spectrophotometric methods while low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL), and total lipid (TL) were calculated using Friedewald's and Raylander's formula, respectively. Serum levels of TSH and thyroid hormones except fT4 did not show any significant difference between pregnant and non-pregnant camels. fT4 level was lower in the pregnant camels (P < 0.05). Serum levels of total cholesterol, triglyceride, total lipid, LDL cholesterol, HDL cholesterol, and VLDL did not show significant difference between pregnant and non-pregnant camels. All of these variables in pregnant camels were higher than non-pregnant. Based on the results of this study, the fetus load may not alter the thyroid status of the camel and the concentrations of thyroid hormones were not correlated with TSH and lipid profile levels in the healthy pregnant camels.
Paradigm Shift in Thyroid Hormone Mechanism of Action | Center for Cancer Research
Thyroid hormone (TH) is one of the primary endocrine regulators of human metabolism and homeostasis. Acting through three forms of the thyroid hormone receptor (THR; alpha-1, beta-1, and beta-2), TH regulates target gene expression in nearly every cell in the body, modulating fundamental processes, such as basal metabolic rate, long bone growth, and neural maturation. TH is also essential for proper development and differentiation of all cells of the human body.
Sowa, Jan-Peter; Manka, Paul; Katsounas, Antonios; Syn, Wing-Kin; Führer, Dagmar; Gieseler, Robert K.; Bechmann, Lars P.; Gerken, Guido; Moeller, Lars C.; Canbay, Ali
2015-01-01
Introduction Changes in thyroid hormone levels, mostly as non-thyroidal illness syndrome (NTIS), have been described in many diseases. However, the relationship between acute liver failure (ALF) and thyroid hormone levels has not yet been clarified. The present study evaluates potential correlations of select thyroid functional parameters with ALF. Methods 84 consecutively recruited ALF patients were grouped according to the outcome of ALF (spontaneous recovery: SR; transplantation or death: NSR). TSH, free thyroxine (fT4), free triiodothyronine (fT3), T4, and T3 were determined. Results More than 50% of patients with ALF presented with abnormal thyroid parameters. These patients had greater risk for an adverse outcome than euthyroid patients. SR patients had significantly higher TSH, T4, and T3 concentrations than NSR patients. Albumin concentrations were significantly higher in SR than in NSR. In vitro T3 treatment was not able to rescue primary human hepatocytes from acetaminophen induced changes in mRNA expression. Conclusions In patients with ALF, TSH and total thyroid hormone levels differed significantly between SR patients and NSR patients. This might be related to diminished liver-derived transport proteins, such as albumin, in more severe forms of ALF. Thyroid parameters may serve as additional indicators of ALF severity. PMID:26147961
Anastasiou, Olympia; Sydor, Svenja; Sowa, Jan-Peter; Manka, Paul; Katsounas, Antonios; Syn, Wing-Kin; Führer, Dagmar; Gieseler, Robert K; Bechmann, Lars P; Gerken, Guido; Moeller, Lars C; Canbay, Ali
2015-01-01
Changes in thyroid hormone levels, mostly as non-thyroidal illness syndrome (NTIS), have been described in many diseases. However, the relationship between acute liver failure (ALF) and thyroid hormone levels has not yet been clarified. The present study evaluates potential correlations of select thyroid functional parameters with ALF. 84 consecutively recruited ALF patients were grouped according to the outcome of ALF (spontaneous recovery: SR; transplantation or death: NSR). TSH, free thyroxine (fT4), free triiodothyronine (fT3), T4, and T3 were determined. More than 50% of patients with ALF presented with abnormal thyroid parameters. These patients had greater risk for an adverse outcome than euthyroid patients. SR patients had significantly higher TSH, T4, and T3 concentrations than NSR patients. Albumin concentrations were significantly higher in SR than in NSR. In vitro T3 treatment was not able to rescue primary human hepatocytes from acetaminophen induced changes in mRNA expression. In patients with ALF, TSH and total thyroid hormone levels differed significantly between SR patients and NSR patients. This might be related to diminished liver-derived transport proteins, such as albumin, in more severe forms of ALF. Thyroid parameters may serve as additional indicators of ALF severity.
Dunn, Donna; Turner, Carla
2016-01-01
Hypothyroidism, a disease in which the thyroid gland does not make enough thyroid hormone, is the second most common endocrine disorder among women. Symptoms of hypothyroidism include fatigue, weight gain, alteration in cognition, infertility, and menstrual abnormalities. The most common cause of hypothyroidism in the United States is Hashimoto's thyroiditis. The American Thyroid Association recommends an initial screening for thyroid disease at age 35years and every 5years thereafter. Thyroid-stimulating hormone is highly sensitive to thyroid dysfunction and is used to evaluate thyroid disorders. Monotherapy with levothyroxine is the standard for treating hypothyroidism. Diagnosing hypothyroidism requires appropriate diagnostic tests to facilitate prompt diagnosis and treatment. © 2016 AWHONN, the Association of Women’s Health, Obstetric and Neonatal Nurses.
Peh, Priscilla; Lim, Natalie Sheng Jie; Blocki, Anna; Chee, Stella Min Ling; Park, Heyjin Chris; Liao, Susan; Chan, Casey; Raghunath, Michael
2015-07-15
Blend emulsion electrospinning is widely perceived to destroy the bioactivity of proteins, and a blend emulsion of water-soluble and nonsoluble molecules is believed to be thermodynamically unstable to electrospin smoothly. Here we demonstrate a method to retain the bioactivity of disparate fragile biomolecules when electrospun. Using bovine serum albumin as a carrier protein; water-soluble vitamin C, fat soluble vitamin D3, steroid hormone hydrocortisone, peptide hormone insulin, thyroid hormone triiodothyronine (T3), and peptide epidermal growth factor (EGF) were simultaneously blend-spun into PLGA-collagen nanofibers. Upon release, vitamin C maintained the ability to facilitate Type I collagen secretion by fibroblasts, EGF stimulated skin fibroblast proliferation, and insulin potentiated adipogenic differentiation. Transgenic cell reporter assays confirmed the bioactivity of vitamin D3, T3, and hydrocortisone. These factors concertedly increased keratinocyte and fibroblast proliferation while maintaining keratinocyte basal state. This method presents an elegant solution to simultaneously deliver disparate bioactive biomolecules for wound healing applications.
Xenopus laevis deiodinase 3 expression for in vitro screening of potential chemical inhibitors
Thyroid hormones are essential for normal sequential development and metamorphosis of amphibian tissues and organs. Critical to this process are the deiodinase (DIO) enzymes which catalyze the removal of an iodine from thyroid hormones to either activate or inactivate the hormone...
Shakir, Mohamed K M; Krook, Linda S; Schraml, Frank V; Hays, James H; Clyde, Patrick W
2008-07-01
Strategies to improve I131 uptake in thyroid carcinoma include levothyroxine (LT4) withdrawal or thyrotropin (TSH) administration along with a low-iodine diet. We report five patients with papillary or follicular thyroid carcinoma who developed symptomatic hyponatremia during LT4 withdrawal and low-iodine diet. Four patients had pulmonary and/or brain metastases. All had restricted iodine intakes during LT4 withdrawal. Presenting complaints included weakness, dizziness, fainting spells, lethargy, and/or nausea. Baseline serum sodium levels while on LT4 suppression were normal. During presentation all were hypothyroid and serum sodium ranged from 110 to 121 mmol/L (normal 135-148). Despite hyponatremia, the plasma renin activity and serum aldosterone levels were suppressed, indicating volume expansion. The hyponatremia responded to fluid restriction and normalized after LT4 replacement. Low sodium intake, inappropriate antidiuretic hormone secretion syndrome (SIADH)-like disorder secondary to hypothyroidism and/or lung or cerebral metastases may have contributed to hyponatremia. The development of hyponatremia during LT4 withdrawal and low-iodine diet in otherwise healthy patients with thyroid carcinoma is extremely rare. However, elderly patients with metastatic thyroid carcinoma need observation during LT4 withdrawal combined with a low-iodine diet and should receive instruction to take iodine-free sodium chloride. Free water restriction may be necessary in some patients.
Chatzitomaris, Apostolos; Hoermann, Rudolf; Midgley, John E.; Hering, Steffen; Urban, Aline; Dietrich, Barbara; Abood, Assjana; Klein, Harald H.; Dietrich, Johannes W.
2017-01-01
The hypothalamus–pituitary–thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions. PMID:28775711
No obvious sympathetic excitation after massive levothyroxine overdose: A case report.
Xue, Jianxin; Zhang, Lei; Qin, Zhiqiang; Li, Ran; Wang, Yi; Zhu, Kai; Li, Xiao; Gao, Xian; Zhang, Jianzhong
2018-06-01
Thyrotoxicosis from an overdose of medicinal thyroid hormone is a condition that may be associated with a significant delay in onset of toxicity. However, limited literature is available regarding thyrotoxicosis attributed to excessive ingestion of exogenous thyroid hormone and most cases described were pediatric clinical researches. Herein, we presented the course of a patient who ingested a massive amount of levothyroxine with no obvious sympathetic excited symptoms exhibited and reviewed feasible treatment options for such overdoses. A 41-year-old woman patient with ureteral calculus ingested a massive amount of levothyroxine (120 tablets, equal to 6 mg in total) during her hospitalization. Her transient vital signs were unremarkable after ingestion except for significantly accelerated breathing rate of 45 times per minute. Initial laboratory findings revealed evidently elevated serum levels of thyroxine (T4) >320 nmol/L, free triiodothyronine (fT3) 10.44 pmol/L, and free thyroxine (fT4) >100 pmol/L. The patient had a history of hypothyroidism, which was managed with thyroid hormone replacement (levothyroxine 100 μg per day). Besides, she also suffered from systemic lupus erythematosus and chronic pancreatitis. This is a case of excessive ingestion of exogenous thyroid hormone in an adult. The interventions included use propranolol to prevent heart failure; utilize hemodialysis to remove redundant thyroid hormone from blood; closely monitor the vital signs, basal metabolic rate, blood biochemical indicators, and serum levels of thyroid hormone. The woman had no obvious symptoms of thyrotoxicosis. After 4 weeks, the results of thyroid function indicated that serum thyroid hormone levels were completely recovered to pre-ingestion levels. Accordingly, the levothyroxine was used again as before. Adults often exhibit more severe symptoms after intaking overdose levothyroxine due to their complex medical history and comorbidities than children. As for them, hemodialysis should be considered as soon as possible. Besides, diverse treatments according to specific symptoms and continuously monitoring were indispensable.
[Iodine and thyroid gland with or without nuclear catastrophe].
Dilas, Ljiljana Todorović; Bajkin, Ivana; Icin, Tijana; Paro, Jovanka Novaković; Zavisić, Branka Kovacev
2012-01-01
Iodine, as a trace element, is a necessary and limiting substrate for thyroid gland hormone synthesis. It is an essential element that enables the thyroid gland to produce thyroid hormones thyroxine (T4) and triiodothyronine (T3). Synthesis of Thyroid Hormones and Iodine Metabolism. Three iodine molecules are added to make triiodothyronine, and four for thyroxine - the two key hormones produced by the thyroid gland. Iodine deficiency The proper daily amount of iodine is required for optimal thyroid function. Iodine deficiency can cause hypothyroidism, developmental brain disorders and goiter. Iodine deficiency is the single most common cause of preventable mental retardation and brain damage in the world. It also decreases child survival, causes goiters, and impairs growth and development. Iodine deficiency disorders in pregnant women cause miscarriages, stillbirths, and other complications. Children with iodine deficiency disorders can grow up stunted, apathetic, mentally retarded, and incapable of normal movements, speech or hearing. Excessive Iodine Intake. Excessive iodine intake, which can trigger a utoimmune thyroid disease and dysfunction. is on the other side. Iodine use in Case of Nuclear Catastrophe. In addition to other severe consuquences of radioactivity, high amount of radioactive iodine causes significant increase in incidence of thyroid gland carcinoma after some of the nuclear catastrophes (Hiroshima, Nagasaki, Chernobyl, Fukushima). The incidence of thyroid carcinoma was increased mostly in children. This paper was aimed at clarifying some of the possibilities of prevention according to the recommendations given by the World Health Organization.
Disruption of normal thyroid function by xenobiotic chemicals is an important ecological issue. Theoretically, normal thyroid hormone (TH) homeostasis and action can be disrupted at several sites in the synthetic and elimination pathways. Indeed, xenobiotic chemicals, which are k...
Disruption of thyroid hormone signaling is a form of endocrine disruption that is of concern to both human health and ecosystems. Research is being conducted to define the biological targets chemicals may interact with to disrupt thyroid hormone signaling and the stages in develo...
Methyltestosterone-induced transient hyperthyroidism in a hypothyroid patient.
Krysiak, R; Okopien, B
2013-01-01
In this paper we report different effects of methyltestosterone administration on thyroid function in two twin brothers, one of whom suffered from hypothyroidism, while the other was apparently healthy. Methyltestosterone, which is a non-aromatisable androgen, resulted in a marked reduction of thyroxine-binding globulin (TBG), irrespectively of the patient's hormonal status, while the impact on free thyroid hormones depended on baseline thyroid function. Our research shows that a possibility of the use of non-aromatisable androgens or other drugs affecting TBG levels should be taken into consideration in all hypothyroid patients receiving levothyroxine, in whom thyroid hormone status suddenly changes without any apparent reason.
Sakai, Y; Yamashina, S; Furudate, S I
2000-05-01
Previous studies on the rdw rat have suggested that its dwarfism is caused primarily by dysfunction of the thyroid gland. In this study, rat thyroid glands were analyzed endocrinologically and morphologically to clarify the primary cause of dwarfism in the rdw rat. The rdw rat showed lowered thyroid hormone (T4 and T3) levels but elevated TSH in serum. The rdw thyroid gland was almost proportional in size and it was not goiter in gross inspection. Our histological investigation produced three results that may lend important evidence in understanding the problem in the thyroid gland of rdw rats. First of all, secretory granules could not be detected in the follicular epithelial cells of the rdw. Secondly, thyroglobulin was found at very low levels in the follicular lumen by immunohistochemical analysis. In contrast, it could be detected in a substantial quantity inside the dilated rER and in the huge vacuoles that are formed by swelling of the rough endoplasmic reticulum (rER) at the basal side of the follicular epithelial cells. Additionally, the nucleus of the follicular epithelial cells was pressed to the luminal side by the enlarged rER. These morphological changes would indicate that the transport of thyroglobulin is stopped at or before the formation of the secretory granules and thyroglobulin is not secreted into the follicular lumen. The rdw characterization strongly supports that rdw dwarfism is induced by hypothyroidism due to some defect(s) in the thyroid gland. Copyright 2000 Wiley-Liss, Inc.
... thyroid surgery, requiring treatment with thyroid hormone (see Hypothyroidism brochure ). This is especially true if you had ... Disease Graves’ Eye Disease Hashimoto’s Thyroiditis Hyperthyroidism (Overactive) Hypothyroidism (Underactive) Iodine Deficiency Low Iodine Diet Medullary Thyroid ...
Effect of thyrotropin-releasing factor on serum thyroid-stimulating hormone
Costom, Bruce H.; Grumbach, Melvin M.; Kaplan, Selna L.
1971-01-01
To test the hypothesis that the primary defect in some patients with idiopathic hypopituitary dwarfism is failure to secrete hypothalamic hypophysiotropic-releasing factors, synthetic thyrotropin-releasing factor (TRF), 500 μg, wa given intravenously, and timed venous samples obtained for determination of the concentration of plasma TSH by radioimmunoassay in three groups of subjects: (a) 11 patients without evidence of endocrine or systemic disease, (group I) (b) 8 with isolated growth hormone deficiency and normal thyroid function, (group II) and (c) 9 patients with idiopathic hypopituitary dwarfism and thyroid-stimulating hormone (TSH) deficiency (group III). The mean fasting plasma TSH value was 4.1 μU/ml in group I, and 3.9 μU/ml in group II; in both groups there was a brisk rise in plasma TSH to peak levels of 12-45 μU/ml at 30-45 min, and a fall toward base line levels at 120 min. All children in group III had basal TSH levels of < 1.5 μU/ml; one failed to respond to TRF; eight exhibited a rise in plasma TSH with peak values comparable with those in groups I and II. In four of eight children in group III who responded to TRF, the TSH response was delayed and the initial rise in plasma TSH was not detectable until 10-60 min. In these four patients, plasma TSH levels continued to rise at 120 min. The mean fasting concentration of plasma thyroxine iodide (T4) in subjects with normal thyroid function (groups I and II) was 5.6 μg/100 ml, and the mean plasma T4 level at 120 min was 6.6 μg/100 ml. This difference between fasting and postTRF plasma T4 was significant (P < 0.001) by paired analysis. Mean fasting plasma T4 concentration in group III patients was 1.3 μg/100 ml; after TRF a significant rise in T4 concentration was not detected in this group. The results indicate that TRF test is useful in distinguishing between primary hypothalamic and pituitary forms of TSH deficiency. In light of the evidence of TRF deficiency in eight of nine patients with idiopathic hypopituitary dwarfism, it seems likely that in these patients, other pituitary hormone deficiencies may be attributable to deficiency of their respective releasing factors. Images PMID:4330007
behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).
Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-...
Thyroid hormone (TH) deficiencies during development produce deleterious effects on brain structure and function. The degree to which TH must be perturbed to induce neurotoxicity remains unclear. The present study was conducted as part of a Cooperative Agreement between US EPA, U...
Exposure to PFDoA causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae.
Zhang, Shengnan; Guo, Xiaochun; Lu, Shaoyong; Sang, Nan; Li, Guangyu; Xie, Ping; Liu, Chunsheng; Zhang, Liguo; Xing, Yi
2018-04-01
Perfluorododecanoic acid (PFDoA), a kind of perfluorinated carboxylic acid (PFCA) with 12 carbon atoms, has an extensive industrial utilization and is widespread in both wildlife and the water environment, and was reported to have the potential to cause a disruption in the thyroid hormone system homeostasis. In this study, zebrafish embryos/larvae were exposed to different concentrations of PFDoA (0, 0.24, 1.2, 6 mg/L) for 96 h post-fertilization (hpf). PFDoA exposure caused obvious growth restriction connected with the reduced thyroid hormones (THs) contents in zebrafish larvae, strengthening the interference effect on the growth of fish larvae. The transcriptional level of genes within the hypothalamic-pituitary-thyroid (HPT) axis was analyzed. The gene expression levels of thyrotropin-releasing hormone (trh) and corticotrophin-releasing hormone (crh) were upregulated upon exposure to 6 mg/L of PFDoA, and iodothyronine deiodinases (dio2) was upregulated in the 1.2 mg/L PFDoA group. The transcription of thyroglobulin (tg) and thyroid receptor (trβ) were significantly downregulated upon exposure to 1.2 mg/L and 6 mg/L of PFDoA. PFDoA could also decrease the levels of sodium/iodide symporter (nis) and transthyretin (ttr) gene expression in a concentration-dependent manner after exposure. A significant decrease in thyroid-stimulating hormoneβ (tshβ), uridinediphosphate-glucuronosyltransferase (ugt1ab) and thyroid receptor (trα) gene expression were observed at 6 mg/L PFDoA exposure. Upregulation and downregulation of iodothyronine deiodinases (dio1) gene expression were observed upon the treatment of 1.2 mg/L and 6 mg/L PFDoA, respectively. All the data demonstrated that gene expression in the HPT axis altered after different PFDoA treatment and the potential mechanisms of the disruption of thyroid status could occur at several steps in the process of synthesis, regulation, and action of thyroid hormones. Copyright © 2018 Elsevier Ltd. All rights reserved.
Teixeira, Rayane Brinck; Zimmer, Alexsandra; de Castro, Alexandre Luz; Carraro, Cristina Campos; Casali, Karina Rabello; Dias, Ingrid Gonçalves Machuca; Godoy, Alessandra Eifler Guerra; Litvin, Isnard Elman; Belló-Klein, Adriane; da Rosa Araujo, Alex Sander
2018-03-01
This study aimed to investigate whether beneficial effects of thyroid hormones are comparable to those provided by the aerobic exercise training, to verify its applicability as a therapeutic alternative to reverse the pathological cardiac remodeling post-infarction. Male rats were divided into SHAM-operated (SHAM), myocardial infarction (MI), MI subjected to exercise training (MIE), and MI who received T3 and T4 treatment (MIH) (n = 8/group). MI, MIE and MIH groups underwent an infarction surgery while SHAM was SHAM-operated. One-week post-surgery, MIE and MIH groups started the exercise training protocol (moderate intensity on treadmill), or the T3 (1.2 μg/100 g/day) and T4 (4.8 μg/100 g/day) hormones treatment by gavage, respectively, meanwhile SHAM and MI had no intervention for 9 weeks. The groups were accompanied until 74 days after surgery, when all animals were anesthetized, left ventricle echocardiography and femoral catheterization were performed, followed by euthanasia and left ventricle collection for morphological, oxidative stress, and intracellular kinases expression analysis. Thyroid hormones treatment was more effective in cardiac dilation and infarction area reduction, while exercise training provided more protection against fibrosis. Thyroid hormones treatment increased the lipoperoxidation and decreased GSHPx activity as compared to MI group, increased the t-Akt2 expression as compared to SHAM group, and increased the vascular parasympathetic drive. Thyroid hormones treatment provided differential benefits on the LV function and autonomic modulation as compared to the exercise training. Nevertheless, the redox unbalance induced by thyroid hormones highlights the importance of more studies targeting the ideal duration of this treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
2013-09-30
physiological processes driven by the GCs are essential for an individual’s ability to respond and adapt to stress, prolonged elevation of GC hormones...capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid, testosterone, progesterone) have been routinely...ACE) Basin, also in South Carolina. Laboratory Analyses Hormone concentrations (cortisol, aldosterone , reproductive and thyroid hormones) in
Analysis of iodine-131-induced early thyroid hormone variations in Graves' disease.
Xu, Feng; Gu, Aichun; Pan, Yifan; Yang, Liwen; Ma, Yubo
2016-11-01
This prospective study aimed to assess iodine-131 (I)-induced early thyroid hormone variations in Graves' disease (GD) and determine the associated factors. One hundred and seventy-one GD patients treated with I were evaluated (47 men, 124 women). I was administered at 9.0±4.9 mCi on average. Serum free triiodothyronine and free thyroxin were measured within 24 h before treatment and 8 (3-14) days after treatment. Patients were divided into increase, no change, and decrease groups, respectively, on the basis of hormone variations after treatment. χ-Test, analysis of variance, and the Kruskal-Wallis test were used to compare groups in terms of sex, age, course of disease, thyroid stimulating hormone receptor antibodies, antithyroid drug (ATD) pretreatment time, time of ATD discontinuation before I treatment, 24 h thyroid I uptake, thyroid weight, I activity, and I activity/thyroid weight (μCi/g). The Spearman method was used for correlation analyses. Twenty-seven, 20, and 124 cases were assigned to increase, no change, and decrease groups, respectively. Significant differences were found among groups in the time of ATD discontinuation before I treatment [the median duration for methimazole was 11 (5-26), 16 (10-30), and 21 (1-30) days, P=0.000, the median duration for propylthiouracil was 12.5 (5-24), 22 (11-26), and 26 (21-30) days, P=0.000], thyroid weight (93.5±33.6, 90.3±48.8, and 74.1±26.0 g, P=0.003), and μCi/g (84.8±11.8, 100.4±24.9, and 121.1±44.0 μCi/g, P=0.000). Interestingly, μCi/g was negatively and positively correlated to the possibility of hormone increase and decrease, respectively. No significant differences were found in the other parameters assessed. At the early stage of I treatment for GD, few patients showed increased thyroid hormone levels. Key factors may include time of ATD discontinuation before I treatment and μCi/g. High μCi/g might decrease thyroid hormone levels in early treatment, making it safe.
Reindl, Martin; Feistritzer, Hans-Josef; Reinstadler, Sebastian Johannes; Mueller, Lukas; Tiller, Christina; Brenner, Christoph; Mayr, Agnes; Henninger, Benjamin; Mair, Johannes; Klug, Gert; Metzler, Bernhard
2018-04-01
Adverse left ventricular remodeling is one of the major determinants of heart failure and mortality in patients surviving ST-segment elevation myocardial infarction (STEMI). The hypothalamic-pituitary-thyroid axis is a key cardiovascular regulator; however, the relationship between hypothalamic-pituitary-thyroid status and post-STEMI left ventricular remodeling is unclear. We aimed to investigate the association between thyroid-stimulating hormone concentrations and the development of left ventricular remodeling following reperfused STEMI. In this prospective observational study of 102 consecutive STEMI patients, thyroid-stimulating hormone levels were measured at the first day after infarction and 4 months thereafter. Cardiac magnetic resonance scans were performed within the first week as well as at 4 months follow-up to determine infarct characteristics, myocardial function and as primary endpoint left ventricular remodeling, defined as a 20% or greater increase in left ventricular end-diastolic volume. Patients with left ventricular remodeling ( n=15, 15%) showed significantly lower concentrations of baseline (1.20 [0.92-1.91] vs. 1.73 [1.30-2.60] mU/l; P=0.02) and follow-up (1.11 [0.86-1.28] vs. 1.51 [1.15-2.02] mU/l; P=0.002) thyroid-stimulating hormone. The association between baseline thyroid-stimulating hormone and left ventricular remodeling remained significant after adjustment for major clinical (peak high-sensitivity cardiac troponin T and C-reactive protein, heart rate; odds ratio (OR) 5.33, 95% confidence interval (CI) 1.52-18.63; P=0.01) and cardiac magnetic resonance predictors of left ventricular remodeling (infarct size, microvascular obstruction, ejection fraction; OR 4.59, 95% CI 1.36-15.55; P=0.01). Furthermore, chronic thyroid-stimulating hormone was related to left ventricular remodeling independently of chronic left ventricular remodeling correlates (infarct size, ejection fraction, left ventricular end-diastolic volume, left ventricular end-systolic volume; OR 9.22, 95% CI 1.69-50.22; P=0.01). Baseline and chronic thyroid-stimulating hormone concentrations following STEMI were independently associated with left ventricular remodeling, proposing a novel pathophysiological axis in the development of post-STEMI left ventricular remodeling.
Capuco, A V; Connor, E E; Wood, D L
2008-10-01
Thyroid hormones are galactopoietic and help to establish the mammary gland's metabolic priority during lactation. Expression patterns for genes that can alter tissue sensitivity to thyroid hormones and thyroid hormone activity were evaluated in the mammary gland and liver of cows at 53, 35, 20, and 7 days before expected parturition, and 14 and 90 days into the subsequent lactation. Transcript abundance for the three isoforms of iodothyronine deiodinase, type I (DIO1), type II (DIO2) and type III (DIO3), thyroid hormone receptors alpha1 (TRalpha1), alpha2 (TRalpha2) and beta1 (TRbeta1), and retinoic acid receptors alpha (RXRalpha) and gamma (RXRgamma), which act as coregulators of thyroid hormone receptor action, were evaluated by quantitative RT-PCR. The DIO3 is a 5-deiodinase that produces inactive iodothyronine metabolites, whereas DIO1 and DIO2 generate the active thyroid hormone, triiodothyronine, from the relatively inactive precursor, thyroxine. Low copy numbers of DIO3 transcripts were present in mammary gland and liver. DIO2 was the predominant isoform expressed in mammary gland and DIO1 was the predominant isoform expressed in liver. Quantity of DIO1 mRNA in liver tissues did not differ with physiological state, but tended to be lowest during lactation. Quantity of DIO2 mRNA in mammary gland increased during lactation (P < 0.05), with copy numbers at 90 days of lactation 6-fold greater than at 35 and 20 days prepartum. When ratios of DIO2/DIO3 mRNA were evaluated, the increase was more pronounced (>100-fold). Quantity of TRbeta1 mRNA in mammary gland increased with onset of lactation, whereas TRalpha1 and TRalpha2 transcripts did not vary with physiological state. Conversely, quantity of RXRalpha mRNA decreased during late gestation to low levels during early lactation. Data suggest that increased expression of mammary TRbeta1 and DIO2, and decreased RXRalpha, provide a mechanism to increase thyroid hormone activity within the mammary gland during lactation.
Low thyroid function is not associated with an accelerated deterioration in renal function.
Meuwese, Christiaan L; van Diepen, Merel; Cappola, Anne R; Sarnak, Mark J; Shlipak, Michael G; Bauer, Douglas C; Fried, Linda P; Iacoviello, Massimo; Vaes, Bert; Degryse, Jean; Khaw, Kay-Tee; Luben, Robert N; Åsvold, Bjørn O; Bjøro, Trine; Vatten, Lars J; de Craen, Anton J M; Trompet, Stella; Iervasi, Giorgio; Molinaro, Sabrina; Ceresini, Graziano; Ferrucci, Luigi; Dullaart, Robin P F; Bakker, Stephan J L; Jukema, J Wouter; Kearney, Patricia M; Stott, David J; Peeters, Robin P; Franco, Oscar H; Völzke, Henry; Walsh, John P; Bremner, Alexandra; Sgarbi, José A; Maciel, Rui M B; Imaizumi, Misa; Ohishi, Waka; Dekker, Friedo W; Rodondi, Nicolas; Gussekloo, Jacobijn; den Elzen, Wendy P J
2018-04-18
Chronic kidney disease (CKD) is frequently accompanied by thyroid hormone dysfunction. It is currently unclear whether these alterations are the cause or consequence of CKD. This study aimed at studying the effect of thyroid hormone alterations on renal function in cross-sectional and longitudinal analyses in individuals from all adult age groups. Individual participant data (IPD) from 16 independent cohorts having measured thyroid stimulating hormone, free thyroxine levels and creatinine levels were included. Thyroid hormone status was defined using clinical cut-off values. Estimated glomerular filtration rates (eGFR) were calculated by means of the four-variable Modification of Diet in Renal Disease (MDRD) formula. For this IPD meta-analysis, eGFR at baseline and eGFR change during follow-up were computed by fitting linear regression models and linear mixed models in each cohort separately. Effect estimates were pooled using random effects models. A total of 72 856 individuals from 16 different cohorts were included. At baseline, individuals with overt hypothyroidism (n = 704) and subclinical hypothyroidism (n = 3356) had a average (95% confidence interval) -4.07 (-6.37 to -1.78) and -2.40 (-3.78 to -1.02) mL/min/1.73 m2 lower eGFR as compared with euthyroid subjects (n = 66 542). In (subclinical) hyperthyroid subjects (n = 2254), average eGFR was 3.01 (1.50-4.52) mL/min/1.73 m2 higher. During 329 713 patient years of follow-up, eGFR did not decline more rapidly in individuals with low thyroid function compared with individuals with normal thyroid function. Low thyroid function is not associated with a deterioration of renal function. The cross-sectional association may be explained by renal dysfunction causing thyroid hormone alterations.
Perrotta, Cristiana; Buldorini, Marcella; Assi, Emma; Cazzato, Denise; De Palma, Clara; Clementi, Emilio; Cervia, Davide
2014-01-01
The endocrine system participates in regulating macrophage maturation, although little is known about the modulating role of the thyroid hormones. In vitro results demonstrate a negative role of one such hormone, triiodothyronine (T3), in triggering the differentiation of bone marrow-derived monocytes into unpolarized macrophages. T3-induced macrophages displayed a classically activated (M1) signature. A T3-induced M1-priming effect was also observed on polarized macrophages because T3 reverses alternatively activated (M2) activation, whereas it enhances that of M1 cells. In vivo, circulating T3 increased the content of the resident macrophages in the peritoneal cavity, whereas it reduced the content of the recruited monocyte-derived cells. Of interest, T3 significantly protected mice against endotoxemia induced by lipopolysaccharide i.p. injection; in these damaged animals, decreased T3 levels increased the recruited (potentially damaging) cells, whereas restoring T3 levels decreased recruited and increased resident (potentially beneficial) cells. These data suggest that the anti-inflammatory effect of T3 is coupled to the modulation of peritoneal macrophage content, in a context not fully explained by the M1/M2 framework. Thyroid hormone receptor expression analysis and the use of different thyroid hormone receptor antagonists suggest thyroid hormone receptor β1 as the major player mediating T3 effects on macrophages. The novel homeostatic link between thyroid hormones and the pathophysiological role of macrophages opens new perspectives on the interactions between the endocrine and immune systems. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Developmental and Cell-Specific Expression of Thyroid Hormone Transporters in the Mouse Cochlea
Sharlin, David S.; Visser, Theo J.
2011-01-01
Thyroid hormone is essential for the development of the cochlea and auditory function. Cochlear response tissues, which express thyroid hormone receptor β (encoded by Thrb), include the greater epithelial ridge and sensory epithelium residing inside the bony labyrinth. However, these response tissues lack direct blood flow, implying that mechanisms exist to shuttle hormone from the circulation to target tissues. Therefore, we investigated expression of candidate thyroid hormone transporters L-type amino acid transporter 1 (Lat1), monocarboxylate transporter (Mct)8, Mct10, and organic anion transporting polypeptide 1c1 (Oatp1c1) in mouse cochlear development by in situ hybridization and immunofluorescence analysis. L-type amino acid transporter 1 localized to cochlear blood vessels and transiently to sensory hair cells. Mct8 localized to the greater epithelial ridge, tympanic border cells underlying the sensory epithelium, spiral ligament fibrocytes, and spiral ganglion neurons, partly overlapping with the Thrb expression pattern. Mct10 was detected in a highly restricted pattern in the outer sulcus epithelium and weakly in tympanic border cells and hair cells. Organic anion transporting polypeptide 1c1 localized primarily to fibrocytes in vascularized tissues of the spiral limbus and spiral ligament and to tympanic border cells. Investigation of hypothyroid Tshr−/− mice showed that transporter expression was delayed consistent with retardation of cochlear tissue maturation but not with compensatory responses to hypothyroidism. The results demonstrate specific expression of thyroid hormone transporters in the cochlea and suggest that a network of thyroid hormone transport underlies cochlear development. PMID:21878515
Thyroid hormones regulate anxiety in the male mouse.
Buras, Alexander; Battle, Loxley; Landers, Evan; Nguyen, Tien; Vasudevan, Nandini
2014-02-01
Thyroid hormone levels are implicated in mood disorders in the adult human but the mechanisms remain unclear partly because, in rodent models, more attention has been paid to the consequences of perinatal hypo and hyperthyroidism. Thyroid hormones act via the thyroid hormone receptor (TR) α and β isoforms, both of which are expressed in the limbic system. TR's modulate gene expression via both unliganded and liganded actions. Though the thyroid hormone receptor (TR) knockouts and a transgenic TRα1 knock-in mouse have provided us valuable insight into behavioral phenotypes such as anxiety and depression, it is not clear if this is because of the loss of unliganded actions or liganded actions of the receptor or due to locomotor deficits. We used a hypothyroid mouse model and supplementation with tri-iodothyronine (T3) or thyroxine (T4) to investigate the consequences of dysthyroid hormone levels on behaviors that denote anxiety. Our data from the open field and the light-dark transition tests suggest that adult onset hypothyroidism in male mice produces a mild anxiogenic effect that is possibly due to unliganded receptor actions. T3 or T4 supplementation reverses this phenotype and euthyroid animals show anxiety that is intermediate between the hypothyroid and thyroid hormone supplemented groups. In addition, T3 but not T4 supplemented animals have lower spine density in the CA1 region of the hippocampus and in the central amygdala suggesting that T3-mediated rescue of the hypothyroid state might be due to lower neuronal excitability in the limbic circuit. Copyright © 2013 Elsevier Inc. All rights reserved.
Löf, Christoffer; Sukumaran, Pramod; Viitanen, Tero; Vainio, Minna; Kemppainen, Kati; Pulli, Ilari; Näsman, Johnny; Kukkonen, Jyrki P.
2012-01-01
Transient receptor potential (TRP) cation channels are widely expressed and function in many physiologically important processes. Perturbations in the expression or mutations of the channels have implications for diseases. Many thyroid disorders, as excessive growth or disturbed thyroid hormone production, can be a result of dysregulated TSH signaling. In the present study, we found that of TRP canonicals (TRPCs), only TRPC2 was expressed in Fischer rat thyroid low-serum 5% cells (FRTL-5 cells). To investigate the physiological importance of the channel, we developed stable TRPC2 knockdown cells using short hairpin RNA (shTRPC2 cells). In these cells, the ATP-evoked entry of calcium was significantly decreased. This led to increased cAMP production, because inhibitory signals from calcium to adenylate cyclase 5/6 were decreased. Enhanced cAMP signaling projected to Ras-related protein 1-MAPK kinase 1 (MAPK/ERK kinase 1) pathway leading to phosphorylation of ERK1/2. The activated ERK1/2 pathway increased the expression of the TSH receptor. In contrast, secretion of thyroglobulin was decreased in shTRPC2 cells, due to improper folding and glycosylation of the protein. We show here a novel role for TRPC2 in regulating thyroid cell function. PMID:23015753
Association between genetic polymorphism and levothyroxine bioavailability in hypothyroid patients.
Arici, Merve; Oztas, Ezgi; Yanar, Fatih; Aksakal, Nihat; Ozcinar, Beyza; Ozhan, Gul
2018-03-28
Thyroid hormones play a vital role in the human body for growth and differentiation, regulation of energy metabolism, and physiological function. Hypothyroidism is a common endocrine disorder, which generally results from diminished normal circulating concentrations of serum thyroxine (fT4) and triiodothyronine (fT3). The primary choice in hypothyroidism treatment is oral administration of levothyroxine (L-T4), a synthetic T4 hormone, as approximately 100-125 μg/day. Generally, dose adjustment is made by trial and error approach. However, there are several factors which might influence bioavailability of L-T4 treatment. Genetic background could be an important factor in hypothyroid patients as well as age, gender, concurrent medications and patient compliance. The concentration of thyroid hormones in tissue is regulated by both deiodinases enzyme and thyroid hormone transporters. In the present study, it was aimed to evaluate the effects of genetic differences in the proteins and enzymes (DIO1, DIO2, TSHR, THR and UGT) which are efficient in thyroid hormone metabolism and bioavailability of L-T4 in Turkish population. According to our findings, rs225014 and rs225015 variants in DIO2, which catalyses the conversion of thyroxine (pro-hormone) to the active thyroid hormone, were associated with TSH levels. It should be given lower dose to the patients with rs225014 TT and rs225015 GG genotypes in order to provide proper treatment with higher effectivity and lower toxicity.
Carrera, M P; Ramírez-Expósito, M J; Valenzuela, M T; García, M J; Mayas, M D; Arias de Saavedra, J M; Sánchez, R; Pérez, M C; Martínez-Martos, J M
2005-02-01
Pyrrolidon carboxypeptidase is an omega-peptidase that hydrolyses N-terminal pyroglutamyl residues from biologically active peptides such as gonadotropin-releasing and thyrotrophin-releasing hormones. We previously described a decrease in both rat and human pyrrolidon carboxypeptidase activity with breast cancer, suggesting that gonadotropin-releasing hormone may be an important local intracrine, autocrine and/or paracrine hormonal factor in the pathogenesis of breast cancer while playing a role in the tumoral process. However, the other susceptible substrate of pyrrolidon carboxypeptidase, thyrotrophin-releasing hormone, may also be modified with breast cancer, supporting an association between breast cancer and thyroid disorders. The present work analyses soluble and membrane-bound pyrrolidon carboxypeptidase activities in the hypothalamus-pituitary-thyroid and hypothalamus-pituitary-ovary axes in N-methyl nitrosourea-induced breast cancer in rats. Our aim was to determine the possible relationship between gonadotropin-releasing hormone and thyrotrophin-releasing hormone regulation through pyrrolidon carboxypeptidase activity. We propose that pyrrolidon carboxypeptidase activity dysregulation at various local and systemic levels may participate in the initiation, promotion and progression of breast cancer induced in rat by N-methyl nitrosourea through the increase in gonadotropin-releasing hormone. Since pyrrolidon carboxypeptidase activity also acts on thyrotrophin-releasing hormone, the dysregulation of this enzyme's activity could indirectly affect hypothalamus-pituitary-thyroid axis function, and thus potentially represent a link between the diseases of thyroid and breast cancer.
Endocrine System (For Parents)
... the thyroid gland through surgery or radiation treatments. Hypothyroidism. Hypothyroidism is when the levels of thyroid hormones in ... hormone production, is the most common cause of hypothyroidism in kids. Infants can also be born with ...
The adrenocortical response of tufted puffin chicks to nutritional deficits
Kitaysky, A.S.; Romano, Marc D.; Piatt, John F.; Wingfield, J.C.; Kikuchi, M.
2005-01-01
In several seabirds, nutritional state of a nest-bound chick is negatively correlated with the activity of its hypothalamus-pituitary-adrenal (HPA) axis. Increased corticosterone (cort) secretion has been shown to facilitate changes in behavior that allow hungry chicks to obtain more food from parents. However, if parents are not willing/able to buffer their young from temporary food shortages, increased cort secretion could be detrimental to undernourished chicks. In a system where parents are insensitive to chick demands, low benefits and high costs of activation of the HPA-axis in hungry chicks should lead to a disassociation of the nutritional state of the young and the activity of its HPA-axis. We tested this novel hypothesis for the tufted puffin (Fratercula cirrhata), a seabird with intermittent provisioning of a nest-bound semi-precocial chick. We examined the HPA-axis activity of captive chicks exposed to the following: (1) a short-term (24 h) food deprivation; and (2) an array of prolonged (3 weeks) restrictions in feeding regimens. We found that in response to a short-term food deprivation chicks decreased baseline levels of cort and thyroid hormones. In response to prolonged restrictions, food-limited chicks exhibited signs of nutritional deficit: they had lower body mass, endogenous lipid reserves, and thyroid hormone titers compared to chicks fed ad libitum. However, baseline and maximum acute stress-induced levels of cort were also lower in food-restricted chicks compared to those of chicks fed ad libitum. These results support a major prediction of the study hypothesis that puffin chicks suppress HPA-axis activity in response to short- and long-term nutritional deficits. This physiological adaptation may allow a chick to extend its development in the nest, while eluding detrimental effects of chronic cort elevation.
Korevaar, Tim I M; Muetzel, Ryan; Medici, Marco; Chaker, Layal; Jaddoe, Vincent W V; de Rijke, Yolanda B; Steegers, Eric A P; Visser, Theo J; White, Tonya; Tiemeier, Henning; Peeters, Robin P
2016-01-01
Thyroid hormone is involved in the regulation of early brain development. Since the fetal thyroid gland is not fully functional until week 18-20 of pregnancy, neuronal migration and other crucial early stages of intrauterine brain development largely depend on the supply of maternal thyroid hormone. Current clinical practice mostly focuses on preventing the negative consequences of low thyroid hormone concentrations, but data from animal studies have shown that both low and high concentrations of thyroid hormone have negative effects on offspring brain development. We aimed to investigate the association of maternal thyroid function with child intelligence quotient (IQ) and brain morphology. In this population-based prospective cohort study, embedded within the Generation R Study (Rotterdam, Netherlands), we investigated the association of maternal thyroid function with child IQ (assessed by non-verbal intelligence tests) and brain morphology (assessed on brain MRI scans). Eligible women were those living in the study area at their delivery date, which had to be between April 1, 2002, and Jan 1, 2006. For this study, women with available serum samples who presented in early pregnancy (<18 weeks) were included. Data for maternal thyroid-stimulating hormone, free thyroxine, thyroid peroxidase antibodies (at weeks 9-18 of pregnancy), and child IQ (assessed at a median of 6·0 years of age [95% range 5·6-7·9 years]) or brain MRI scans (done at a median of 8·0 years of age [6·2-10·0]) were obtained. Analyses were adjusted for potential confounders including concentrations of human chorionic gonadotropin and child thyroid-stimulating hormone and free thyroxine. Data for child IQ were available for 3839 mother-child pairs, and MRI scans were available from 646 children. Maternal free thyroxine concentrations showed an inverted U-shaped association with child IQ (p=0·0044), child grey matter volume (p=0·0062), and cortex volume (p=0·0011). For both low and high maternal free thyroxine concentrations, this association corresponded to a 1·4-3·8 points reduction in mean child IQ. Maternal thyroid-stimulating hormone was not associated with child IQ or brain morphology. All associations remained similar after the exclusion of women with overt hypothyroidism and overt hyperthyroidism, and after adjustment for concentrations of human chorionic gonadotropin, child thyroid-stimulating hormone and free thyroxine or thyroid peroxidase antibodies (continuous or positivity). Both low and high maternal free thyroxine concentrations during pregnancy were associated with lower child IQ and lower grey matter and cortex volume. The association between high maternal free thyroxine and low child IQ suggests that levothyroxine therapy during pregnancy, which is often initiated in women with subclinical hypothyroidism during pregnancy, might carry the potential risk of adverse child neurodevelopment outcomes when the aim of treatment is to achieve high-normal thyroid function test results. The Netherlands Organisation for Health Research and Development (ZonMw) and the European Community's Seventh Framework Programme. Copyright © 2016 Elsevier Ltd. All rights reserved.
Johnson, Elizabeth O; Kamilaris, Themis C; Calogero, Aldo E; Gold, Philip W; Chrousos, George P
2005-07-01
Previous studies on the effects of altered thyroid function on the secretion and metabolism of adrenocortical hormones suggest a degree of adrenocortical hyperactivity in hyperthyroidism. We have previously shown that experimentally-induced hyperthyroidism is associated with significant alterations in pituitary-adrenal responsiveness to synthetic ovine corticotropin-releasing hormone (oCRH) that are contingent upon the duration of the altered thyroid function. The purpose of this study was to assess the time-dependent effects of hyperthyroidism on the functional integrity of the hypothalamic-pituitary-adrenal (HPA) axis by in vivo stimulation of the hypothalamic CRH neuron and adrenal cortex. The functional integrity of the HPA axis was examined in vivo in sham-thyroidectomized male Sprague-Dawley rats given placebo or in thyroidectomized rats given 50 mug of thyroxine every day for 7 or 60 days. Responses to insulin-induced hypoglycemia and IL-1alpha stimulation were used to assess the hypothalamic CRH neuron. Adrenocortical reserve was assessed in response to low-dose adrenocorticotropic hormone (ACTH), following suppression of the HPA axis with dexamethasone. Adrenal and thymus tissue weight, in addition to basal plasma ACTH, corticosterone and thyroid indices were also determined. Basal plasma corticosterone and corticosterone binding globulin (CBG) concentrations were significantly increased in short- and long-term hyperthyroid rats, and by 60 days, cerebrospinal fluid (CSF) corticosterone levels were significantly increased. Basal plasma ACTH levels were similar to controls. Although plasma ACTH responses to hypoglycemic stress and IL-1alpha administration in both short- and long-term hyperthyroidism were normal, corticosterone responses to the ACTH release during the administration of these stimuli were significantly increased. The adrenal reserve was significantly elevated in short-term hyperthyroidsim. Long-term hyperthyroidism, however, was associated with a significant reduction in adrenocortical reserve. A significant increase in adrenal weights and a decrease in thymus weights were observed in both short- and long-term hyperthyroidism. The available data confirms that hyperthyroidism is associated with hypercorticosteronemia, although the locus that is principally affected still remains unclear. Despite the sustained hyperactivity of the HPA axis, long-term experimentally-induced hyperthyroidism is associated with diminished adrenal functional reserve. The alterations in HPA function in states of disturbed thyroid function were found to be somewhat more pronounced as the duration of thyroid dysfunction increased.
Molecular Aspects of Thyroid Hormone Actions
Cheng, Sheue-Yann; Leonard, Jack L.; Davis, Paul J.
2010-01-01
Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T3 via transcriptional regulation. Two TR genes, α and β, encode four T3-binding receptor isoforms (α1, β1, β2, and β3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T3, transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T3 target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T3-dependent manner. In the absence of T3, corepressors act to repress the basal transcriptional activity, whereas in the presence of T3, coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRβ gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T3. Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin αvβ3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na+/H+ exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T4 is an agonist at the plasma membrane without conversion to T3. Tetraiodothyroacetic acid is a T4 analog that inhibits the actions of T4 and T3 at the integrin, including angiogenesis and tumor cell proliferation. T3 can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin αvβ3. Downstream consequences of phosphatidylinositol 3-kinase activation by T3 include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T3 and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T4 and rT3, but not T3, is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRα1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton. PMID:20051527
Leptin as a Modulator of Neuroendocrine Function in Humans
Khan, Sami M.; Hamnvik, Ole-Petter R.; Brinkoetter, Mary
2012-01-01
Leptin, a peptide hormone secreted by adipocytes in proportion of the amount of energy stored in fat, plays a central role in regulating human energy homeostasis. In addition, leptin plays a significant permissive role in the physiological regulation of several neuroendocrine axes, including the hypothalamic-pituitary-gonadal, -thyroid, -growth hormone, and -adrenal axes. Decreased levels of leptin, also known as hypoleptinemia, signal to the brain a state of energy deprivation. Hypoleptinemia can be a congenital or acquired condition, and is associated with alterations of the aforementioned axes aimed at promoting survival. More specifically, gonadotropin levels decrease and become less pulsatile under conditions of energy deprivation, and these changes can be at least partially reversed through leptin administration in physiological replacement doses. Similarly, leptin deficiency is associated with thyroid axis abnormalities including abnormal levels of thyrotropin-releasing hormone, and leptin administration may at least partially attenuate this effect. Leptin deficiency results in decreased insulin-like growth factor 1 levels which can be partially ameliorated through leptin administration, and leptin appears to have a much more pronounced effect on the growth of rodents than that of humans. Similarly, adrenal axis function is regulated more tightly by low leptin in rodents than in humans. In addition to congenital leptin deficiency, conditions that may be associated with decreased leptin levels include hypothalamic amenorrhea, anorexia nervosa, and congenital or acquired lipodystrophy syndromes. Accumulating evidence from proof of concept studies suggests that leptin administration, in replacement doses, may ameliorate neuroendocrine abnormalities in individuals who suffer from these conditions. PMID:22665330
Avian endocrine responses to environmental pollutants
Rattner, B.A.; Eroschenko, V.P.; Fox, G.A.; Fry, D.M.; Gorsline, J.
1984-01-01
Many environmental contaminants are hazardous to populations of wild birds. Chlorinated hydrocarbon pesticides and industrial pollutants are thought to be responsible for population declines of several species of predatory birds through eggshell thinning. Studies have demonstrated that these contaminants have estrogenic potency and may affect the functioning of the gonadal and thyroidal endocrine subsystems. Petroleum crude oil exerts toxicity externally, by oiling of plumage, and internally, by way of ingestion of oil while feeding or preening. Extensive ultrastructural damage to the inner zone of the adrenal, diminished adrenal responsiveness to adrenocorticotrophic hormone, and reduced corticosterone secretion rate suggest that low levels of plasma corticosterone reflect a direct effect of petroleum on the adrenal gland. Suppressive effects of oil on the ovary and decreases in circulating prolactin have been associated with impaired reproductive function. Large-scale field studies of free-living seabirds have confirmed some of the inhibitory effects of oil on reproduction that have been observed in laboratory studies. Organophosphorus insecticides, representing the most widely used class of pesticides in North America, have been shown to impair reproductive function, possibly by altering secretion of luteinizing hormone and progesterone. Relevant areas of future research on the effects of contaminants on avian endocrine function are discussed.
Kuznik, B I; Pateyuk, A V; Rusaeva, N S; Baranchugova, L M; Obydenko, V I
2011-02-01
Hypophysectomy in 5-days chickens and old hens was followed by hormonal disturbances and structural changes in the thyroid gland. Administration of peptides Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly synthesized on the basis the amino acid composition of extracts from the anterior and posterior lobes of the pituitary gland, respectively, to hypophysectomized birds for 40 days significantly reduced the degree of these changes. The normalizing effect of synthetic peptides on the concentration of thyrotrophic hormone and thyroid hormones in old hens was less pronounced than in chickens.
Goto-Inoue, Naoko; Sato, Tomohiko; Morisasa, Mizuki; Kashiwagi, Akihiko; Kashiwagi, Keiko; Sugiura, Yuki; Sugiyama, Eiji; Suematsu, Makoto; Mori, Tsukasa
2018-02-01
Thyroid hormones are not only responsible for thermogenesis and energy metabolism in animals, but also have an important role in cell differentiation and development. Amphibian metamorphosis provides an excellent model for studying the remodeling of the body. This metamorphic organ remodeling is induced by thyroid hormones, and a larval body is thus converted into an adult one. The matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) imaging technology is expected to be a suitable tool for investigating small bioreactive molecules. The present study describes the distribution of the thyroid hormones, i.e., triiodothyronine (T3) and thyroxine (T4) and their inactive form reverse T3 (rT3) in Xenopus tropicalis tadpoles using two different types of imaging techniques, MS/MS and Fourier transform (FT)-MS imaging. As a result of MS/MS imaging, we demonstrated that T3 was mainly distributed in the gills. T4 was faintly localized in the eyes, inner gills, and intestine during metamorphosis. The intensity of T3 in the gills and the intensity of T4 in the body fluids were increased during metamorphosis. Moreover, the localization of the inactive form rT3 was demonstrated to be separate from T3, namely in the intestine and muscles. In addition, FT-MS imaging could utilize simultaneous imaging including thyroid hormone. This is the first report to demonstrate the molecular distribution of thyroid hormones themselves and to discriminate T3, T4, and rT3 in animal tissues.
Thyroid is used to treat the symptoms of hypothyroidism (a condition where the thyroid gland does not produce enough thyroid hormone). Symptoms of hypothyroidism include lack of energy, depression, constipation, weight gain, ...
Trends in thyroid hormone prescribing and consumption in the UK
Mitchell, Anna L; Hickey, Bryan; Hickey, Janis L; Pearce, Simon HS
2009-01-01
Background Thyroid hormone replacement is one of the most commonly prescribed and cost effective treatments for a chronic disease. There have been recent changes in community prescribing policies in many areas of the UK that have changed patient access to necessary medications. This study aimed to provide a picture of thyroid hormone usage in the UK and to survey patient opinion about current community prescribing policies for levothyroxine. Methods Data on community prescriptions for thyroid hormones in England between 1998 and 2007, provided by the Department of Health, were collated and analysed. A survey of UK members of a patient support organisation (the British Thyroid Foundation) who were taking levothyroxine was carried out. Results The amount of prescribed thyroid hormones used in England has more than doubled, from 7 to almost 19 million prescriptions, over the last 10 years. The duration of prescriptions has reduced from 60 to 45 days, on average over the same time. Two thousand five hundred and fifty one responses to the patient survey were received. Thirty eight percent of levothyroxine users reported receiving prescriptions of 28 days' duration. 59% of respondents reported being dissatisfied with 28-day prescribing. Conclusion Amongst users of levothyroxine, there is widespread patient dissatisfaction with 28-day prescription duration. Analysis of the full costs of 28-day dispensing balanced against the potential savings of reduced wastage of thyroid medications, suggests that this is unlikely to be an economically effective public health policy. PMID:19432950
Conversion of autoimmune hypothyroidism to hyperthyroidism.
Furqan, Saira; Haque, Naeem-ul; Islam, Najmul
2014-08-03
Graves' disease and Hashimoto's thyroiditis are the two autoimmune spectrum of thyroid disease. Cases of conversion from hyperthyroidism to hypothyroidism have been reported but conversion from hypothyroidism to hyperthyroidism is very rare. Although such cases have been reported rarely in the past we are now seeing such conversions from hypothyroidism to hyperthyroidism more frequently in clinical practice. We are reporting three cases of middle aged Asian females who presented with classical symptoms of hypothyroidism and the investigations showed elevated thyroid stimulating hormone with positive thyroid antibodies. Diagnosis of autoimmune hypothyroidism was made and thyroxine replacement therapy was initiated. Patients became asymptomatic with normalization of thyroid stimulating hormone level. After few years they developed symptoms of hyperthyroidism with suppressed thyroid stimulating hormone level. Over replacement of thyroxine was considered and the dose of thyroxine was decreased, but they remain symptomatic. After gradual decrease in the dose of thyroxine it was stopped finally. Even after few months of stopping thyroxine, the symptoms of hyperthyroidism did not improve and the biochemical and imaging modalities confirmed that the patients have developed hyperthyroidism. Anti-thyroid treatment was then started and the patients became symptom free. High index of suspicion should be there for possible conversion of hypothyroidism to hyperthyroidism if a patient with primary hypothyroidism develops persistent symptoms of hyperthyroidism. Otherwise it can be missed easily considering it as an over replacement with thyroid hormone.
Conversion of autoimmune hypothyroidism to hyperthyroidism
2014-01-01
Background Graves’ disease and Hashimoto’s thyroiditis are the two autoimmune spectrum of thyroid disease. Cases of conversion from hyperthyroidism to hypothyroidism have been reported but conversion from hypothyroidism to hyperthyroidism is very rare. Although such cases have been reported rarely in the past we are now seeing such conversions from hypothyroidism to hyperthyroidism more frequently in clinical practice. Case presentation We are reporting three cases of middle aged Asian females who presented with classical symptoms of hypothyroidism and the investigations showed elevated thyroid stimulating hormone with positive thyroid antibodies. Diagnosis of autoimmune hypothyroidism was made and thyroxine replacement therapy was initiated. Patients became asymptomatic with normalization of thyroid stimulating hormone level. After few years they developed symptoms of hyperthyroidism with suppressed thyroid stimulating hormone level. Over replacement of thyroxine was considered and the dose of thyroxine was decreased, but they remain symptomatic. After gradual decrease in the dose of thyroxine it was stopped finally. Even after few months of stopping thyroxine, the symptoms of hyperthyroidism did not improve and the biochemical and imaging modalities confirmed that the patients have developed hyperthyroidism. Anti-thyroid treatment was then started and the patients became symptom free. Conclusion High index of suspicion should be there for possible conversion of hypothyroidism to hyperthyroidism if a patient with primary hypothyroidism develops persistent symptoms of hyperthyroidism. Otherwise it can be missed easily considering it as an over replacement with thyroid hormone. PMID:25086829
Thyroid hormone (TH) signaling and homeostasis is dependent upon coordination of multiple key events including thyroidal iodide uptake and hormone synthesis, and peripheral metabolism and elimination. Deiodinase enzymes play an essential role in converting the pro-hormone thyroxi...
Yang, Gui-Zhen; Xue, Fu-Shan; Liu, Ya-Yang; Li, Hui-Xian; Liu, Qing; Liao, Xu
2018-04-01
The available evidence shows that perioperative oral thyroid hormone can significantly attenuate the postoperative decline in the serum hormone level and improve postoperative hemodynamic and prognostic parameters. However, there has been no study assessing the effects of preoperative oral different-dose thyroid hormone on serum hormone levels and myocardial ischemia-reperfusion injury (IRI) after cardiac surgery. Forty-eight healthy Wistar rats, aged 35 days, were randomly allocated into six groups: Group BC, Group C and four pretreatment groups in which the rats were given levothyroxine-sodium of 10 μg, 20 μg, 40 μg and 80 μg/100 g. On the eighth day, the serum thyroid hormone levels were determined and then an isolated heart ischemia-reperfusion model was established with a Langendorff apparatus. Compared with Groups BC and C, serum thyroid hormone levels on the eighth day did not significantly change in Group 10 μg, but were significantly increased in Groups 20 μg, 40 μg and 80 μg. The cardiac enzyme myocardial-bound creatine kinase levels in the coronary effluent during reperfusion were significantly lower in Groups 10 μg and 20 μg and 40 μg than in Group C. The recovery rates of + dp/dt max and - dp/dt max at 30 min during reperfusion were significantly lower in Groups 40 μg and 80 μg than in Groups 10 μg and 20 μg. Compared with Group C, myocardial expressions of heat shock protein 70 and myosin heavy chain α were increased in the four experiment groups and myocardial expression of thyroid hormone receptor α1 was significantly increased in Groups 20 μg, 40 μg and 80 μg. The pretreatment with enterally smaller doses levothyroxine-sodium does not significantly affect serum thyroid hormone levels and produces protection against myocardial IRI, whereas pretreatment with enterally larger doses of levothyroxine-sodium can only provide an attenuated or insignificant cardioprotection because of hyperthyroxinemia. Cardioprotection by levothyroxine-sodium pretreatment is probably attributable to increased myocardial expression of heat shock protein 70 and myosin heavy chain α.
Liu, G; Liang, L; Bray, G A; Qi, L; Hu, F B; Rood, J; Sacks, F M; Sun, Q
2017-06-01
The role of thyroid hormones in diet-induced weight loss and subsequent weight regain is largely unknown. To examine the associations between thyroid hormones and changes in body weight and resting metabolic rate (RMR) in a diet-induced weight loss setting. Data analysis was conducted among 569 overweight and obese participants aged 30-70 years with normal thyroid function participating in the 2-year Prevention of Obesity Using Novel Dietary Strategies (POUNDS) LOST randomized clinical trial. Changes in body weight and RMR were assessed during the 2-year intervention. Thyroid hormones (free triiodothyronine (T3), free thyroxine (T4), total T3, total T4 and thyroid-stimulating hormone (TSH)), anthropometric measurements and biochemical parameters were assessed at baseline, 6 months and 24 months. Participants lost an average of 6.6 kg of body weight during the first 6 months and subsequently regained an average of 2.7 kg of body weight over the remaining period from 6 to 24 months. Baseline free T3 and total T3 were positively associated, whereas free T4 was inversely associated, with baseline body weight, body mass index and RMR. Total T4 and TSH were not associated with these parameters. Higher baseline free T3 and free T4 levels were significantly associated with a greater weight loss during the first 6 months (P<0.05) after multivariate adjustments including dietary intervention groups and baseline body weight. Comparing extreme tertiles, the multivariate-adjusted weight loss±s.e. was -3.87±0.9 vs -5.39±0.9 kg for free T3 (P trend =0.02) and -4.09±0.9 vs -5.88±0.9 kg for free T4 (P trend =0.004). The thyroid hormones did not predict weight regain in 6-24 months. A similar pattern of associations was also observed between baseline thyroid hormones and changes in RMR. In addition, changes in free T3 and total T3 levels were positively associated with changes in body weight, RMR, body fat mass, blood pressure, glucose, insulin, triglycerides and leptin at 6 months and 24 months (all P<0.05). In this diet-induced weight loss setting, higher baseline free T3 and free T4 predicted more weight loss, but not weight regain among overweight and obese adults with normal thyroid function. These findings reveal a novel role of thyroid hormones in body weight regulation and may help identify individuals more responsive to weight loss diets.
The assessment of thyroid autoantibody levels in euthyroid polycystic ovary syndrome patients.
Hepşen, Sema; Karaköse, Melia; Çakal, Erman; Öztekin, Sanem; Ünsal, İlknur; Akhanlı, Pınar; Uçan, Bekir; Özbek, Mustafa
2018-04-27
Thyroid hormone abnormalities are commonly seen in polycystic ovary syndrome (PCOS) and have considerable effects on comorbidities. The association with PCOS and thyroid autoimmunity which lead to thyroid pathologies are not revealed clearly. We targeted to commentate anti-thyroid peroxidase (anti-TPO), anti-thyroglobulin (anti-TG) antibody levels and thyroid autoimmunity in PCOS. 184 patients who got the diagnosis of PCOS regard to the revised 2003 Rotterdam criteria were embodied in this study. 106 age-matched female volunteers were included in the control group. Characteristics, biochemical parameters, thyroid hormone and autoantibody levels of groups were investigated. Although; we did not find out a statistically significant difference in TSH and sT4 levels between two groups (p>0.05), anti-TPO and anti-TG antibody levels were determined higher in PCOS group significantly (p<0.001). Anti-TPO Ab and anti-TG Ab positivity prevalence of PCOS patients were significantly higher as against to controls (p<0.001; p=0.01). Not only thyroid hormone levels but also thyroid autoantibody levels should be screened during the investigation of PCOS and the patients with positive results need to be followed up carefully in the long run.
Chen, Rui; Yuan, Lilai; Zha, Jinmiao; Wang, Zijian
2017-04-01
In the present study, to evaluate embryonic toxicity and the thyroid-disrupting effects of 2,4-dichloro-6-nitrophenol (DCNP), embryos and adults of Chinese rare minnow (Gobiocypris rarus) were exposed to 2, 20, and 200μg/L DCNP. In the embryo-larval assay, increased percentages of mortality and occurrence of malformations, decreased percentage of hatching, and decreased body length and body weight were observed after DCNP treatment. Moreover, the whole-body T3 levels were significantly increased at 20 and 200μg/L treatments, whereas the T4 levels were markedly decreased significantly (p<0.05) for all DCNP concentrations. In the adult fish assay, plasma T3 levels were significantly increased whereas plasma T4 levels were significantly reduced in the fish treated with 20 and 200μg/L (p<0.05). In addition, DCNP exposure significantly changed the transcription levels of thyroid system related genes, including dio1, dio2, me, nis, tr, and ttr. The increased responsiveness of thyroid hormone and mRNA expression levels of thyroid system related genes suggested that DCNP could disrupt the thyroid hormone synthesis and transport pathways. Therefore, our findings provide new insights of DCNP as a thyroid hormone-disrupting chemical. Copyright © 2017 Elsevier B.V. All rights reserved.
Rhee, Connie M.; Brent, Gregory A.; Kovesdy, Csaba P.; Soldin, Offie P.; Nguyen, Danh; Budoff, Matthew J.; Brunelli, Steven M.; Kalantar-Zadeh, Kamyar
2015-01-01
Thyroid functional disease, and in particular hypothyroidism, is highly prevalent among chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. In the general population, hypothyroidism is associated with impaired cardiac contractility, endothelial dysfunction, atherosclerosis and possibly higher cardiovascular mortality. It has been hypothesized that hypothyroidism is an under-recognized, modifiable risk factor for the enormous burden of cardiovascular disease and death in CKD and ESRD, but this has been difficult to test due to the challenge of accurate thyroid functional assessment in uremia. Low thyroid hormone levels (i.e. triiodothyronine) have been associated with adverse cardiovascular sequelae in CKD and ESRD patients, but these metrics are confounded by malnutrition, inflammation and comorbid states, and hence may signify nonthyroidal illness (i.e. thyroid functional test derangements associated with underlying ill health in the absence of thyroid pathology). Thyrotropin is considered a sensitive and specific thyroid function measure that may more accurately classify hypothyroidism, but few studies have examined the clinical significance of thyrotropin-defined hypothyroidism in CKD and ESRD. Of even greater uncertainty are the risks and benefits of thyroid hormone replacement, which bear a narrow therapeutic-to-toxic window and are frequently prescribed to CKD and ESRD patients. In this review, we discuss mechanisms by which hypothyroidism adversely affects cardiovascular health; examine the prognostic implications of hypothyroidism, thyroid hormone alterations and exogenous thyroid hormone replacement in CKD and ESRD; and identify areas of uncertainty related to the interplay between hypothyroidism, cardiovascular disease and kidney disease requiring further investigation. PMID:24574542
Periods of sensitivity to thyroid hormone during the development of the organ of Corti.
Uziel, A
1986-01-01
Cochlear structures are sensitive to the morphogenetic effect of thyroid hormone during the whole duration of maturation. For each structure, there exists a period of maximal sensitivity to thyroid hormone which corresponds to the period of development during which the structure of interest undergoes its main morphological changes (6 to 13 days for the inner sulcus epithelium, 6 to 10 days for the pillars, the 2nd and a part of the 3rd postnatal week for OHCs and their efferent innervation in rats). These periods of sensitivity can be considered as critical periods because cochlear structures are maximally vulnerable to thyroid deficiency during these periods.
Barmpari, Maria E; Savvidis, Christos; Dede, Anastasia D; Markogiannakis, Haridimos; Dikoglou, Christina; Xekouki, Paraskevi; Stratakis, Constantine A; Manouras, Andreas; Malaktari-Skarantavou, Sofia
2016-04-01
Adrenal masses usually represent benign and nonfunctional adrenal adenomas; however, primary or metastatic malignancy should also be considered. Discovery of an adrenal mass needs further evaluation in order to exclude malignancy and hormonal secretion. We present a rare case of a possibly primary adrenal malignant melanoma with imaging and biochemical features of a pheochromocytoma. A 61-year-old male farmer was referred for evaluation of a mass in the right supraclavicular region and a left adrenal lesion. The patient had a history of a multifocal papillary and medullary thyroid carcinoma. Laboratory tests revealed increased 24hour urinary dopamine and also increased serum calcitonin and neuron specific enolase. A pathology report of the resected right supraclavicular mass and left adrenal showed a malignant melanoma. This is a case of a possibly primary adrenal malignant melanoma with imaging and biochemical features of a pheochromocytoma. Although this case is very rare and there are rigid diagnostic criteria for the diagnosis of primary adrenal melanoma, it underlines the fact that the differential diagnosis of a dopamine secreting adrenal mass should include primary or metastatic malignant melanoma in order to determine the best diagnostic approach for the patient and select the most appropriate surgical management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milcou, S.M.; Costiner, E. et al.
To evaluate the action of the pineal body hormone on thyroid function, hyperactivity of the epiphysis was experimentally induced by administering pineal body hormone four hours before the experiment and then every four hours during the experiment. Iodine tagging was achieved by the intraperltoneal injection of carrierless'' I/sup 131/. The animals, which had been divided into batches of 10, were sacrificed every 2 hours until 48 hours had elapsed following the radioactive tagging. Measurements on the radioactivity of the thyroid and of the blood were carried out in vitro. The values obtained were used in order to draw up simultaneousmore » radioactivity curves applicable to the total radioactivity and to that attributable to inorganic and organic iodine, respectively. The curves showing the variation in the radioactivity reveal a delayed action of the pineal gland hormone which is different according to whether the functional thyroid units have a large or small time constant. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negosscou, I.; Bojinescuu, Al.; Cocou, Fl.
1959-10-31
The phosphorus uptake by several endocrine glands after the administration of epiphysis hormone was studied by a tracer technique. After ten days of daily injections of the hormone into male albino rats, the rats received an injection of P/sup 32/. The hormone was again given 6, 12, and 18 hours after the P/sup 32/ injection. Some animals were killed 8 hours after the administration of phosphorus and the rest after 24 hours. The radioactivity of the epiphysis, hypophysis, thyroid, suprarenals, testicles, and seminal vesicles was determined. The results showed a functional inhibition of the phosphorus uptake in the thyroid, suprarenals,more » testicles, and seminal vesicles. A decrease in the phosphorus uptake by the hypophysis was also observed. (J.S.R.)« less
Early Phthalates Exposure in Pregnant Women Is Associated with Alteration of Thyroid Hormones
Tsai, Chih-Hsin; Liang, Wei-Yen; Li, Sih-Syuan; Huang, Han-Bin
2016-01-01
Introduction Previous studies revealed that phthalate exposure could alter thyroid hormones during the last trimester of pregnancy. However, thyroid hormones are crucial for fetal development during the first trimester. We aimed to clarify the effect of phthalate exposure on thyroid hormones during early pregnancy. Method We recruited 97 pregnant women who were offered an amniocentesis during the early trimester from an obstetrics clinic in southern Taiwan from 2013 to 2014. After signing an informed consent form, we collected amniotic fluid and urine samples from pregnant women to analyze 11 metabolites, including mono-ethyl phthalate (MEP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono-(2-ethylhexyl) phthalate (MEHP), mono-butyl phthalate (MnBP), of 9 phthalates using liquid chromatography/ tandem mass spectrometry. We collected blood samples from each subject to analyze serum thyroid hormones including thyroxine (T4), free T4, and thyroid-binding globulin (TBG). Results Three phthalate metabolites were discovered to be >80% in the urine samples of the pregnant women: MEP (88%), MnBP (81%) and MECPP (86%). Median MnBP and MECPP levels in pregnant Taiwanese women were 21.5 and 17.6 μg/g-creatinine, respectively, that decreased after the 2011 Taiwan DEHP scandal. Results of principal component analysis suggested two major sources (DEHP and other phthalates) of phthalates exposure in pregnant women. After adjusting for age, gestational age, TBG, urinary creatinine, and other phthalate metabolites, we found a significantly negative association between urinary MnBP levels and serum T4 (β = –5.41; p-value = 0.012; n = 97) in pregnant women using Bonferroni correction. Conclusion We observed a potential change in the thyroid hormones of pregnant women during early pregnancy after DnBP exposure. Additional study is necessitated to clarify these associations. PMID:27455052
Influence of obesity and surgical weight loss on thyroid hormone levels.
Chikunguwo, Silas; Brethauer, Stacy; Nirujogi, Vijaya; Pitt, Tracy; Udomsawaengsup, Suthep; Chand, Bipan; Schauer, Philip
2007-01-01
The pathophysiologic relationship between morbid obesity and thyroid hormones is not well understood. The goal of this study was to evaluate the influence of obesity and weight reduction after bariatric surgery on thyroid hormone levels. Patients who underwent gastric bypass or adjustable gastric banding at our institution, had no previous diagnosis of thyroid disorder, were not taking medication that could affect the thyroid function evaluation, and who were nonsmokers were included in this retrospective evaluation. The association between the thyroid-stimulating hormone (TSH) and free thyroxine (T(4)) levels and body mass index (BMI), and the influence of weight loss after bariatric surgery on these hormones were investigated at different points (preoperatively and 6 and 12 months after bariatric surgery). A total of 86 patients met the study criteria. The TSH levels correlated positively with BMI (P <.001, r = .91) within the BMI range of 30-67 kg/m(2). The mean BMI change from 49 to 32 kg/m(2) after bariatric surgery was associated with a mean reduction in the TSH level from 4.5 to 1.9 microU/mL. Free T(4) showed no association with BMI and was not significantly influenced by weight loss. Before bariatric surgery, 10.5% of the subjects had laboratory values consistent with subclinical hypothyroidism. After bariatric surgery, 100% of these patients experienced significant weight reduction with simultaneous resolution of their subclinical hypothyroidism. The results of our study have demonstrated a statistically significant positive association between serum TSH within the normal range and BMI. No association was found between BMI and free T(4) serum levels. The prevalence of subclinical hypothyroidism in study group was 10.5%. Weight loss after bariatric surgery improved or normalized thyroid hormone levels.
Wirth, Eva K.; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich
2015-01-01
Background The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). Objective: To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). Methods We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Results Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Conclusions Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated. PMID:26601078
Wirth, Eva K; Rijntjes, Eddy; Meyer, Franziska; Köhrle, Josef; Schweizer, Ulrich
2015-09-01
The Allan-Herndon-Dudley syndrome is a severe psychomotor retardation accompanied by specific changes in circulating thyroid hormone levels (high T3, low T4). These are caused by mutations in the thyroid hormone transmembrane transport protein monocarboxylate transporter 8 (MCT8). To test the hypothesis that circulating low T4 and high T3 levels are caused by enhanced conversion of T4 via increased activity of hepatic type I deiodinase (Dio1). We crossed mice deficient in Mct8 with mice lacking Dio1 activity in hepatocytes. Translation of the selenoenzyme Dio1 was abrogated by hepatocyte-specific inactivation of selenoprotein biosynthesis. Inactivation of Dio1 activity in the livers of global Mct8-deficient mice does not restore normal circulating thyroid hormone levels. Our data suggest that although hepatic Dio1 activity is increased in Mct8-deficient mice, it does not cause the observed abnormal circulating thyroid hormone levels. Since global inactivation of Dio1 in Mct8-deficient mice does normalize circulating thyroid hormone levels, the underlying mechanism and relevant tissues involved remain to be elucidated.
Thyroid Hormone Indices in Computer Workers with Emphasis on the Role of Zinc Supplementation.
Amin, Ahmed Ibrahim; Hegazy, Noha Mohamed; Ibrahim, Khadiga Salah; Mahdy-Abdallah, Heba; Hammouda, Hamdy A A; Shaban, Eman Essam
2016-06-15
This study aimed to investigate the effects of computer monitor-emitted radiation on thyroid hormones and the possible protective role of zinc supplementation. The study included three groups. The first group (group B) consisted of 42 computer workers. This group was given Zinc supplementation in the form of one tablet daily for eight weeks. The second group (group A) comprised the same 42 computer workers after zinc supplementation. A group of 63 subjects whose job does not entail computer use was recruited as a control Group (Group C). All participants filled a questionnaire including detailed medical and occupational histories. They were subjected to full clinical examination. Thyroid stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4) and zinc levels were measured in all participants. TSH, FT3, FT4 and zinc concentrations were decreased significantly in group B relative to group C. In group A, all tested parameters were improved when compared with group B. The obtained results revealed that radiation emitted from computers led to changes in TSH and thyroid hormones (FT3 and FT4) in the workers. Improvement after supplementation suggests that zinc can ameliorate hazards of such radiation on thyroid hormone indices.
NASA Astrophysics Data System (ADS)
Yang, Lin; Li, Jingguang; Lai, Jianqiang; Luan, Hemi; Cai, Zongwei; Wang, Yibaina; Zhao, Yunfeng; Wu, Yongning
2016-02-01
Perfluoroalkyl substances (PFASs) have been detected in wildlife and human samples worldwide. Toxicology research showed that PFASs could interfere with thyroid hormone homeostasis. In this study, eight PFASs, fifteen PFAS precursors and five thyroid hormones were analyzed in 157 paired maternal and cord serum samples collected in Beijing around delivery. Seven PFASs and two precursors were detected in both maternal and cord sera with significant maternal-fetal correlations (r = 0.336 to 0.806, all P < 0.001). The median ratios of major PFASs concentrations in fetal versus maternal serum were from 0.25:1 (perfluorodecanoic acid, PFDA) to 0.65:1 (perfluorooctanoic acid, PFOA). Spearman partial correlation test showed that maternal thyroid stimulating hormone (TSH) was negatively correlated with most maternal PFASs (r = -0.261 to -0.170, all P < 0.05). Maternal triiodothyronin (T3) and free T3 (FT3) showed negative correlations with most fetal PFASs (r = -0.229 to -0.165 for T3; r = -0.293 to -0.169 for FT3, all P < 0.05). Our results suggest prenatal exposure of fetus to PFASs and potential associations between PFASs and thyroid hormone homeostasis in humans.
Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells
Suhane, Sonal; Ramanujan, V Krishnan
2011-01-01
Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435
78 FR 37803 - Agency Information Collection Activities; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... identify substances that have the potential to interact with the estrogen, androgen, or thyroid hormone... or thyroid hormone systems may proceed to Tier 2, which is designed to identify any adverse endocrine...
Li, Hui; Ganta, Suhasini; Fong, Peying
2010-01-01
Subclinical hypothyroidism has been linked to Cystic Fibrosis (CF), and the cystic fibrosis transmembrane conductance regulator (CFTR) shown to be expressed in the thyroid. The thyroid epithelium secretes Cl− and absorbs Na+ in response to cAMP. Chloride secretion may provide a counter-ion for the SLC26A4 (Pendrin)-mediated I− secretion which is required for the first step of thyroid hormonogenesis, thyroglobulin iodination. In contrast, few models exist to explain a role for Na+ absorption. Whether CFTR mediates the secretory Cl− current in thyroid epithelium has not been directly addressed. We used thyroids from a novel pig CFTR−/− model, generated primary pig thyroid epithelial cell cultures (pThECs), analyzed these cultures for preservation of thyroid-specific transcripts and proteins, and monitored 1) the Cl− secretory response to the cAMP agonist, isoproterenol and 2) the amiloride-sensitive Na+ current. Baseline short-circuit current (Isc) did not differ between CFTR+/+ and CFTR−/− cultures. Serosal isoproterenol increased Isc in CFTR+/+, but not CFTR−/−, monolayers. Compared to CFTR+/+ thyroid cultures, amiloride-sensitive Na+ absorption measured in CFTR−/− pThECs represented a greater fraction of the resting Isc. However, levels of transcripts encoding ENaC subunits did not differ between CFTR+/+ and CFTR−/− pThECs. Immunoblot analysis verified ENaC subunit protein expression, but quantification indicated no difference in expression levels. Our studies definitively demonstrate that CFTR mediates cAMP-stimulated Cl− secretion in a well-differentiated thyroid culture model, and that knockout of CFTR promotes increased Na+ absorption by a mechanism other than increased ENaC expression. These findings suggest several models for the mechanism of CF-associated hypothyroidism. PMID:20729267
Rodríguez-Castelán, J; Corona-Pérez, A; Nicolás-Toledo, L; Martínez-Gómez, M; Castelán, F; Cuevas-Romero, E
2017-03-01
Hypothyroidism is associated with the development of non-alcoholic steatohepatitis, but cellular mechanisms have been scarcely analyzed. Thyroid hormones regulate the synthesis and secretion of bile acids that are endogenous ligands of the farnesoid receptor (FXRα), which have been involved in the development of non-alcoholic steatohepatitis. However, the relationship between thyroid hormones and FXRα expression in the liver is yet unknown. Control ( n =6) and methimazole-induced hypothyroid ( n =6) female rabbits were used to evaluate the amount of lipids and glycogen, vascularization, hepatocytes proliferation, immune cells infiltration, and expression of FXRα. Student- t or Mann-Whitney U tests were carried out to determine significant differences. Hypothyroidism induced steatosis, glycogen loss, fibrosis, and a minor vascularization in the liver. In contrast, hypothyroidism increased the proliferation of hepatocytes and the infiltration of mast cells, but did not modify the number of immune cells into sinusoids. These changes were associated with a minor anti-FXRα immunoreactivity of periportal hepatocytes and pericentral immune cells. Our results suggest that hypothyroidism induces a moderate non-alcoholic steatohepatitis, alllowing the hepatic regeneration. The FXRα may be involved in the development of non-alcoholic steatohepatitis in hypothyroid subjects. © Georg Thieme Verlag KG Stuttgart · New York.
Kuznik, B I; Pateiuk, A V; Rusaeva, N S; Baranchugova, L M; Obydenko, V I
2011-01-01
The aim of the paper was to investigate effects of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly peptides which were designed and synthesized on the basis of amino acid study of the hypophyseal anterior and posterior lobe peptides on the thyroid morphology and hormonal activity in mature chicken and old birds. Hypophysectomy was established to produce atrophic changes in the thyroid gland and development of secondary hypothyrosis. Administration of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly tetrapeptides significantly prevented these impairments by increasing the levels of the thyroid-stimulating hormone (TSH) as well as T3 and T4. Restoration of the thyroid functions and morphology was registered to be greater in one-year-old chicken as compared to five-year-old ones.
(−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β
2015-01-01
Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984
Pathak, R; Dhawan, D; Pathak, A
2011-05-01
The influence of zinc (Zn) on the serum levels of triiodothyronine (T(3)), thyroxine (T(4)), thyroid-stimulating hormone (TSH) and sodium (Na), potassium (K), and calcium (Ca) was evaluated following ethanol toxicity to the rats. To achieve this, male Wistar rats (150-195 g) were given 3 ml of 30% ethanol orally, and zinc was given in the form of zinc sulfate (227 mg/l) in their drinking water daily for 8 weeks. Ethanol feeding resulted in a slight decrease in T(3) and T(4) levels and a significant increase in thyroid-stimulating hormone concentration, which may be due to the direct stimulatory effect of ethanol on thyroid. Interestingly, when zinc was given to these rats, all the above levels were brought quite close to their normal levels, thus indicating the positive role of zinc in thyroid hormone metabolism. Serum Zn and Ca levels were found to be reduced, but Na levels were raised upon ethanol feeding. Restoration of normal levels of these metals upon zinc supplementation to ethanol fed rats confirms that zinc has potential in alleviating some of the altered thyroid functions following ethanol administration.
Hypothalamic-Pituitary-Thyroid Axis Perturbations in Male Mice by CNS-Penetrating Thyromimetics.
Ferrara, Skylar J; Bourdette, Dennis; Scanlan, Thomas S
2018-07-01
Thyromimetics represent a class of experimental drugs that can stimulate tissue-selective thyroid hormone action. As such, thyromimetics should have effects on the hypothalamic-pituitary-thyroid (HPT) axis, but details of this action and the subsequent effects on systemic thyroid hormone levels have not been reported to date. Here, we compare the HPT-axis effects of sobetirome, a well-studied thyromimetic, with Sob-AM2, a newly developed prodrug of sobetirome that targets sobetirome distribution to the central nervous system (CNS). Similar to endogenous thyroid hormone, administration of sobetirome and Sob-AM2 suppress HPT-axis gene transcript levels in a manner that correlates to their specific tissue distribution properties (periphery vs CNS, respectively). Dosing male C57BL/6 mice with sobetirome and Sob-AM2 at concentrations ≥10 μg/kg/d for 29 days induces a state similar to central hypothyroidism characterized by depleted circulating T4 and T3 and normal TSH levels. However, despite the systemic T4 and T3 depletion, the sobetirome- and Sob-AM2-treated mice do not show signs of hypothyroidism, which may result from the presence of the thyromimetic in the thyroid hormone-depleted background.
Efficacy of a Home-Based Exercise Program After Thyroidectomy for Thyroid Cancer Patients.
Kim, Kyunghee; Gu, Mee Ock; Jung, Jung Hwa; Hahm, Jong Ryeal; Kim, Soo Kyoung; Kim, Jin Hyun; Woo, Seung Hoon
2018-02-01
The objective of this study was to determine the effect of a home-based exercise program on fatigue, anxiety, quality of life (QoL), and immune function of thyroid cancer patients taking thyroid hormone replacement after thyroidectomy. This quasi-experimental study with a non-equivalent control group included 43 outpatients taking thyroid hormone replacement after thyroidectomy (22 in the experimental group and 21 in the control group). After education about the home-based exercise program, subjects in the experimental group underwent 12 weeks of aerobic, resistance, and flexibility exercise. A comparative analysis was conducted between the two groups. Patients in the experimental group were significantly less fatigued or anxious (p < 0.01). They reported significantly improved QoL (p < 0.05) compared to those in the control group. Natural killer cell activity was significantly higher in the exercise group compared to that in the control group (p < 0.05). A home-based exercise program is effective in reducing fatigue and anxiety, improving QoL, and increasing immune function in patients taking thyroid hormone replacement after thyroidectomy. Therefore, such a home-based exercise program can be used as an intervention for patients who are taking thyroid hormone replacement after thyroidectomy.
Deal, Cheri; Hasselmann, Caroline; Pfäffle, Roland W; Zimmermann, Alan G; Quigley, Charmian A; Child, Christopher J; Shavrikova, Elena P; Cutler, Gordon B; Blum, Werner F
2013-01-01
Magnetic resonance imaging (MRI) is used to investigate the etiology of growth hormone deficiency (GHD). This study examined relationships between MRI findings and clinical/hormonal phenotypes in children with GHD in the observational Genetics and Neuroendocrinology of Short Stature International Study, GeNeSIS. Clinical presentation, hormonal status and first-year GH response were compared between patients with pituitary imaging abnormalities (n = 1,071), patients with mutations in genes involved in pituitary development/GH secretion (n = 120) and patients with idiopathic GHD (n = 7,039). Patients with hypothalamic-pituitary abnormalities had more severe phenotypes than patients with idiopathic GHD. Additional hormonal deficiencies were found in 35% of patients with structural abnormalities (thyroid-stimulating hormone > adrenocorticotropic hormone > luteinizing hormone/follicle-stimulating hormone > antidiuretic hormone), most frequently in patients with septo-optic dysplasia (SOD). Patients with the triad [ectopic posterior pituitary (EPP), pituitary aplasia/hypoplasia and stalk defects] had a more severe phenotype and better response to GH treatment than patients with isolated abnormalities. The sex ratio was approximately equal for patients with SOD, but there was a significantly higher proportion of males (approximately 70%) in the EPP, pituitary hypoplasia, stalk defects, and triad categories. This large, international database demonstrates the value of classification of GH-deficient patients by the presence and type of hypothalamic-pituitary imaging abnormalities. This information may assist family counseling and patient management. Copyright © 2013 S. Karger AG, Basel.
Vickers, Alison E M; Heale, Jason; Sinclair, John R; Morris, Stephen; Rowe, Josh M; Fisher, Robyn L
2012-04-01
Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24-48 h) and human (24 h) with ≥ 10 μM MMI. Thyroid from rats treated with single doses of MMI (30-1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (~15-84 μM), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24h with MMI (≥ 10 μM) and PTU (100 μM). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ~2-fold) and only at higher MMI concentrations (≥ 1500 μM, 24h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. Copyright © 2012 Elsevier Inc. All rights reserved.
Moran, Carla; Habeb, Abdelhadi M; Kahaly, George J; Kampmann, Christoph; Hughes, Marina; Marek, Jan; Rajanayagam, Odelia; Kuczynski, Adam; Vargha-Khadem, Faraneh; Morsy, Mofeed; Offiah, Amaka C; Poole, Ken; Ward, Kate; Lyons, Greta; Halsall, David; Berman, Lol; Watson, Laura; Baguley, David; Mollon, John; Moore, Anthony T; Holder, Graham E; Dattani, Mehul; Chatterjee, Krishna
2017-09-01
Resistance to thyroid hormone β (RTH β ) due to homozygous THRB defects is exceptionally rare, with only five kindreds reported worldwide. Cardiac dysfunction, which can be life-threatening, is recognized in the disorder. Here we describe the clinical, metabolic, ophthalmic, and cardiac findings in a 9-year-old boy harboring a biallelic THRB mutation (R243Q), along with biochemical, physiologic, and cardiac responses to carbimazole and triiodothyroacetic acid (TRIAC) therapy. The patient exhibits recognized features (goiter, nonsuppressed thyroid-stimulating hormone levels, upper respiratory tract infections, hyperactivity, low body mass index) of heterozygous RTH β , with additional characteristics (dysmorphic facies, winging of scapulae) and more markedly elevated thyroid hormone levels, associated with the homozygous form of the disorder. Notably, an older sibling with similar clinical features and probable homozygous RTH β had died of cardiac failure at age 13 years. Features of early dilated cardiomyopathy in our patient prompted combination treatment with carbimazole and TRIAC. Careful titration of therapy limited elevation in TSH levels and associated increase in thyroid volume. Subsequently, sustained reduction in thyroid hormones with normal TSH levels was reflected in lower basal metabolic rate, gain of lean body mass, and improved growth and cardiac function. A combination of antithyroid drug and TRIAC therapy may prevent thyrotoxic cardiomyopathy and its decompensation in homozygous or even heterozygous RTH β in which life-threatening hyperthyroid features predominate.
Pérez, Jonathan H; Furlow, J David; Wingfield, John C; Ramenofsky, Marilyn
2016-08-01
Appropriate timing of migratory behavior is critical for migrant species. For many temperate zone birds in the spring, lengthening photoperiod is the initial cue leading to morphological, physiological and behavior changes that are necessary for vernal migration and breeding. Strong evidence has emerged in recent years linking thyroid hormone signaling to the photoinduction of breeding in birds while more limited information suggest a potential role in the regulation of vernal migration in photoperiodic songbirds. Here we investigate the development and expression of the vernal migratory life history stage in captive Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) in a hypothyroidic state, induced by chemical inhibition of thyroid hormone production. To explore possible variations in the effects of the two thyroid hormones, triiodothyronine and thyroxine, we subsequently performed a thyroid inhibition coupled with replacement therapy. We found that chemical inhibition of thyroid hormones resulted in complete abolishment of mass gain, fattening, and muscle hypertrophy associated with migratory preparation as well as resulting in failure to display nocturnal restlessness behavior. Replacement of thyroxine rescued all of these elements to near control levels while triiodothyronine replacement displayed partial or delayed rescue. Our findings support thyroid hormones as being necessary for the expression of changes in morphology and physiology associated with migration as well as migratory behavior itself. Copyright © 2016 Elsevier Inc. All rights reserved.
Stannard, B S; Gesundheit, N; Thotakura, N R; Gyves, P W; Ronin, C; Weintraub, B D
1989-12-15
We examined the effect of various inhibitors of oligosaccharide processing on the content and secretion of newly synthesized thyroid-stimulating hormone (TSH) from dispersed hypothyroid rodent pituitary cells. 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin, both inhibitors of glucosidases I and II, decreased intracellular TSH (to 60-76% of control) and secreted TSH (to 60-63% of control) after a 1-hour incubation (pulse) with [35S]methionine and an 8-hour incubation (chase) in isotope-free media. In contrast, deoxymannojirimycin and swainsonine, inhibitors of mannosidase I and II, respectively, increased both intracellular TSH (to 267-309% of control) and secreted TSH (to 192% of control) at 8 hours. TSH oligosaccharides synthesized in the presence of these glucosidase and mannosidase inhibitors were largely sensitive to endo-beta-N-acetylglucosaminidase H (endo H), confirming inhibition of processing. Despite differences in oligosaccharide structure, the in vitro bioactivities of these secreted TSH isoforms were nearly identical. These data confirm and extend previous work performed with 1-deoxynojirimycin suggesting that glucosylated high mannose forms of TSH are more susceptible to intracellular degradation. The novel finding that deoxymannojirimycin and swainsonine increase secreted and total TSH above control levels suggests that non-glucosylated high mannose forms as well as hybrid-type oligosaccharides may facilitate secretion and direct TSH away from a natural degradation pathway.
Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus
2009-10-01
Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.
Predictors of Malignancy in Patients with Cytologically Suspicious Thyroid Nodules
Espiritu, Rachel P.; Bahn, Rebecca S.; Henry, Michael R.; Gharib, Hossein; Caraballo, Pedro J.; Morris, John C.
2011-01-01
Background Fine needle aspiration (FNA), although very reliable for cytologically benign and malignant thyroid nodules, has much lower predictive value in the case of suspicious or indeterminate nodules. We aimed to identify clinical predictors of malignancy in the subset of patients with suspicious FNA cytology. Methods We reviewed the electronic medical records of 462 patients who had FNA of thyroid nodules at our institution with a suspicious cytological diagnosis, and underwent surgery at Mayo Clinic between January 2004 and September 2008. Demographic data including age, gender, history of exposure to radiation and use of thyroid hormone was collected. The presence of single versus multiple nodules by ultrasonography, nodule size, and serum thyroid-stimulating harmone (TSH) level before thyroid surgery were recorded. Analysis of the latter was limited to patients not taking thyroid hormone or antithyroid drugs at the time of FNA. Results Of the 462 patients, 327 had lesions suspicious for follicular neoplasm (S-FN) or Hürthle cell neoplasm (S-HCN), 125 had cytology suspicious for papillary carcinoma (S-PC) and 10 had a variety of other suspicious lesions (medullary cancer, lymphoma and atypical). Malignancy rate for suspicious neoplastic lesions (FN+HCN) was ∼15%, whereas malignancy rate for lesions S-PC was 77%. Neither age, serum TSH level, or history of radiation exposure were associated with increased malignancy risk. The presence of multiple nodules (41.1% vs. 26.4%, p=0.0014) or smaller nodule size (2.6±1.8 cm vs. 2.9±1.6 cm, p=0.008) was associated with higher malignancy risk. In patients with cytology suspicious for neoplasm (FN, HCN) malignancy risk was higher in those receiving thyroid hormone therapy than in nonthyroid hormone users (37.7% vs. 16.5%, p=0.0004; odds ratio: 3.1), although serum TSH values did not differ significantly between thyroid hormone users and nonusers. Conclusion In patients with cytologically suspicious thyroid nodules, the presence of multiple nodules or smaller nodule size was associated with increased risk of malignancy. In addition, our study demonstrates for the first time, an increased risk of malignancy in patients with nodules suspicious for neoplasm who are taking thyroid hormone therapy. The reason for this association is unknown. PMID:22007937
Hoermann, Rudolf; Midgley, John E. M.; Larisch, Rolf; Dietrich, Johannes W.
2017-01-01
In thyroid health, the pituitary hormone thyroid-stimulating hormone (TSH) raises glandular thyroid hormone production to a physiological level and enhances formation and conversion of T4 to the biologically more active T3. Overstimulation is limited by negative feedback control. In equilibrium defining the euthyroid state, the relationship between TSH and FT4 expresses clusters of genetically determined, interlocked TSH–FT4 pairs, which invalidates their statistical correlation within the euthyroid range. Appropriate reactions to internal or external challenges are defined by unique solutions and homeostatic equilibria. Permissible variations in an individual are much more closely constrained than over a population. Current diagnostic definitions of subclinical thyroid dysfunction are laboratory based, and do not concur with treatment recommendations. An appropriate TSH level is a homeostatic concept that cannot be reduced to a fixed range consideration. The control mode may shift from feedback to tracking where TSH becomes positively, rather than inversely related with FT4. This is obvious in pituitary disease and severe non-thyroid illness, but extends to other prevalent conditions including aging, obesity, and levothyroxine (LT4) treatment. Treatment targets must both be individualized and respect altered equilibria on LT4. To avoid amalgamation bias, clinically meaningful stratification is required in epidemiological studies. In conclusion, pituitary TSH cannot be readily interpreted as a sensitive mirror image of thyroid function because the negative TSH–FT4 correlation is frequently broken, even inverted, by common conditions. The interrelationships between TSH and thyroid hormones and the interlocking elements of the control system are individual, dynamic, and adaptive. This demands a paradigm shift of its diagnostic use. PMID:29375474
Effect of propranolol on thyroid homeostasis of healthy volunteers.
Wilkins, M. R.; Franklyn, J. A.; Woods, K. L.; Kendall, M. J.
1985-01-01
The effect of propranolol on thyroid status was investigated by administering the drug in 2 therapeutic doses (80 mg b.d. and 120 mg b.d.) to 8 healthy volunteers and serially measuring total and free thyroid hormones and their major binding protein. Mean free T3 fell by 1.2 pmol/l (P less than 0.05) whilst mean free T4 and mean rT3 rose by 3.3 pmol/l (P less than 0.01) and 0.16 nmol/l (P less than 0.01) respectively. Mean thyroxine binding globulin (TBG) fell by 1.2 mg/l (P less than 0.001). Despite the change in free hormone levels there was no significant change in TSH. For the first time the effect of propranolol on circulating thyroid hormones and binding proteins in healthy subjects is apparent within one study. The biological significance of the change in free hormone levels is discussed. PMID:3927277
Elnakish, Mohammad T.; Ahmed, Amany A. E.; Mohler, Peter J.; Janssen, Paul M. L.
2015-01-01
Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models. PMID:26146529
Gauthé, Mathieu; Sarfati, Julie; Bourcigaux, Nathalie; Christin-Maitre, Sophie; Talbot, Jean-Noël; Montravers, Françoise
2017-06-01
Thyrotropin-secreting pituitary adenomas are very rare tumors, known to present overexpression of somatostatin receptor subtype 2 and which may consequently demonstrate abnormal uptake on Ga-DOTA-TOC PET/CT. A 67-year-old woman with a history of operated pituitary macroadenoma presented with symptoms of hyperthyroidism including a large goiter. Her serum thyroid hormone levels were in favor of central hyperthyroidism. Pituitary MRI depicted an empty sella but visualized an ambiguous lesion centered on the left sphenoidal sinus. Complementary Ga-DOTA-TOC PET/CT finally demonstrated intense uptake by the sphenoidal lesion, confirming recurrence of the pituitary adenoma.
Functional central hypothyroidism in the elderly.
Sell, Maren A; Schott, Matthias; Tharandt, Lutz; Cissewski, Klaus; Scherbaum, Werner A; Willenberg, Holger S
2008-06-01
Previous studies have shown that blood concentrations of free thyroxin and basal thyroid-stimulating hormone (TSH) decrease during adult life. Suggested mechanisms include reduced thyroid activity resulting from decreased serum TSH concentrations, impairment of peripheral 5'-deiodinase, and an increase in reverse 3,5,3'-triiodothyronine due to non-thyroidal illness. However, testing of pituitary reserves leads to contradictory results and has infrequently been evaluated in studies. We investigated whether the response of TSH to thyrotropin-releasing hormone (TRH) is preserved during aging. This was tested in a cohort of 387 subjects aged 13 to 100 years in whom thyroid disease was excluded by normal thyroid ultrasound, normal values for free thyroxin, free triiodothyronin, TSH, and negative thyroid peroxidase antibodies. Serum concentrations of free thyroxin remained almost unchanged, whereas free triiodothyronin and TSH levels were lower in older subjects. In addition, the TSH response to TRH was blunted in older subjects, especially in male individuals. There is evidence that the decreased thyroid hormone levels observed in aging are due to lower TSH concentrations, and that lower TSH concentrations may be linked to an impaired pituitary activity.
Takabayashi, Shuji; Umeki, Kazumi; Yamamoto, Etsuko; Suzuki, Tohru; Okayama, Akihiko; Katoh, Hideki
2006-10-01
Recently, we found a novel dwarf mutation in an ICR closed colony. This mutation was governed by a single autosomal recessive gene. In novel dwarf mice, plasma levels of the thyroid hormones, T3 and T4, were reduced; however, TSH was elevated. Their thyroid glands showed a diffuse goiter exhibiting colloid deficiency and abnormal follicle epithelium. The dwarfism was improved by adding thyroid hormone in the diet. Gene mapping revealed that the dwarf mutation was closely linked to the thyroid peroxidase (Tpo) gene on chromosome 12. Sequencing of the Tpo gene of the dwarf mice demonstrated a C to T substitution at position 1508 causing an amino acid change from arginine (Arg) to cysteine (Cys) at codon 479 (Arg479Cys). Western blotting revealed that TPO protein of the dwarf mice was detected in a microsomal fraction of thyroid tissue, but peroxidase activity was not detected. These findings suggested that the dwarf mutation caused a primary congenital hypothyroidism by TPO deficiency, resulting in a defect of thyroid hormone synthesis.
Rohmer, V; Ligeard-Ducoroy, A; Perdrisot, R; Beldent, V; Jallet, P; Bigorgne, J C
1990-05-12
Highly sensitive TSH assays make it easier to diagnose thyroid diseases. During one year, we performed 5,300 sensitive TSH assays (normal range: 0.15-4 mU/l) in various patients. The purpose of this work was to test the value of the low TSH plasma concentrations found in 580 patients. In 99.7 percent of the cases, low TSH levels were the consequence of a thyroid disorder or a treatment by thyroid hormones; non thyroidal illnesses were detected in only 0.3 percent. However, not all TSH values below 0.15 mU/l were associated with overt or occult thyrotoxicosis. When TSH was undetectable (less than 0.04 mU/l), and excluding thyroid hormone-treated patients, thyrotoxicosis was present in 97 percent of the cases. On the other hand, when TSH values were between 0.04 and 0.15 mU/l, 41 percent of the patients failed to show any sign or symptom of hyperthyroidism, although they had functioning thyroid nodules, multinodular goitre or iodine overload, or they received thyroid hormones.
Interaction of thyroid state and denervation on skeletal myosin heavy chain expression
NASA Technical Reports Server (NTRS)
Haddad, F.; Arnold, C.; Zeng, M.; Baldwin, K.
1997-01-01
The goal of this study was to examine the effects of altered thyroid state and denervation (Den) on skeletal myosin heavy chain (MHC) expression in the plantaris and soleus muscles. Rats were subjected to unilateral denervation (Den) and randomly assigned to one of three groups: (1) euthyroid; (2) hyperthyroid; (3) and hypothyroid. Denervation caused severe muscle atrophy and muscle-type specific MHC transformation. Denervation transformed the soleus to a faster muscle, and its effects required the presence of circulating thyroid hormone. In contrast, denervation transformed the plantaris to a slower muscle independently of thyroid state. Furthermore, thyroid hormone effects did not depend upon innervation status in the soleus, while they required the presence of the nerve in the plantaris. Collectively, these findings suggest that both thyroid hormone and intact nerve (a) differentially affect MHC transformations in fast and slow muscle; and (b) are important factors in regulating the optimal expression of both type I and IIB MHC genes. This research suggests that for patients with nerve damage and/or paralysis, both muscle mass and biochemical properties can also be affected by the thyroid state.
Thyroid hormone analogs for the treatment of dyslipidemia: past, present, and future.
Delitala, Alessandro P; Delitala, Giuseppe; Sioni, Paolo; Fanciulli, Giuseppe
2017-11-01
Treatment of dyslipidemia is a major burden for public health. Thyroid hormone regulates lipid metabolism by binding the thyroid hormone receptor (TR), but the use of thyroid hormone to treat dyslipidemia is not indicated due to its deleterious effects on heart, bone, and muscle. Thyroid hormone analogs have been conceived to selectively activate TR in the liver, thus reducing potential side-effects. The authors searched the PubMed database to review TR and the action of thyromimetics in vitro and in animal models. Then, all double-blind, placebo controlled trials that analyzed the use of thyroid hormone analog for the treatment of dyslipidemia in humans were included. Finally, the ongoing research on the use of TR agonists was searched, searching the US National Institutes of Health Registry and the WHO International Clinical Trial Registry Platform (ICTRP). Thyromimetics were tested in humans for the treatment of dyslipidemia, as a single therapeutic agent or as an add-on therapy to the traditional lipid-lowering drugs. In most trials, thyromimetics lowered total cholesterol, low-density lipoprotein cholesterol, and triglycerides, but their use has been associated with adverse side-effects, both in pre-clinical studies and in humans. The use of thyromimetics for the treatment of dyslipidemia is not presently recommended. Future possible clinical applications might include their use to promote weight reduction. Thyromimetics might also represent an interesting alternative, both for the treatment of non-alcoholic steatohepatitis, and type 2 diabetes due to their positive effects on insulin sensitivity. Finally, additional experimental and clinical studies are needed for a better comprehension of the effect(s) of a long-term therapy.
Bufalo, N E; Dos Santos, R B; Marcello, M A; Piai, R P; Secolin, R; Romaldini, J H; Ward, L S
2015-05-01
Intronic thyroid-stimulating hormone receptor polymorphisms have been associated with the risk for both Graves' disease and Graves' ophthalmopathy, but results have been inconsistent among different populations. We aimed to investigate the influence of thyroid-stimulating hormone receptor intronic polymorphisms in a large well-characterized population of GD patients. We studied 279 Graves' disease patients (231 females and 48 males, 39.80 ± 11.69 years old), including 144 with Graves' ophthalmopathy, matched to 296 healthy control individuals. Thyroid-stimulating hormone receptor genotypes of rs179247 and rs12885526 were determined by Real Time PCR TaqMan(®) SNP Genotyping. A multivariate analysis showed that the inheritance of the thyroid-stimulating hormone receptor AA genotype for rs179247 increased the risk for Graves' disease (OR = 2.821; 95 % CI 1.595-4.990; p = 0.0004), whereas the thyroid-stimulating hormone receptor GG genotype for rs12885526 increased the risk for Graves' ophthalmopathy (OR = 2.940; 95 % CI 1.320-6.548; p = 0.0083). Individuals with Graves' ophthalmopathy also presented lower mean thyrotropin receptor antibodies levels (96.3 ± 143.9 U/L) than individuals without Graves' ophthalmopathy (98.3 ± 201.9 U/L). We did not find any association between the investigated polymorphisms and patients clinical features or outcome. We demonstrate that thyroid-stimulating hormone receptor intronic polymorphisms are associated with the susceptibility to Graves' disease and Graves' ophthalmopathy in the Brazilian population, but do not appear to influence the disease course.
Chen, Wei-Jan; Yeh, Yung-Hsin; Lin, Kwang-Huei; Chang, Gwo-Jyh; Kuo, Chi-Tai
2011-03-01
Atrial fibrillation (AF) is a common complication in hyperthyroidism. Earlier studies demonstrate that thyroid hormone decreases L-type calcium channel (LCC) current expression with resultant shortening of action potential duration (APD), providing a substrate for AF. The aim of this study was to investigate the potential mechanism underlying the regulatory effect of thyroid hormone on LCC. In a hyperthyroid rat model, thyroid hormone (triiodothyronine [T3]) administration down-regulated atrial LCC expression. In vitro, treatment of murine atrial myocytes (HL-1) with T3 decreased the expression of LCC and its current, resulting in abbreviation of APD. Furthermore, T3 inhibited the activation of cyclic AMP response element (CRE)-binding protein (CREB), including phosphorylation at Ser133 and its nuclear translocation. Transient transfection studies in HL-1 cells indicated that T3 reduced LCC promoter activity. Deletion and mutation analysis of the LCC promoter region along with chromatin immunoprecipitation using anti-CREB antibody showed that CRE was essential for T3-mediated LCC gene expression. Transfection of dominant-negative CREB (mutated Ser133) and mutant thyroid hormone receptor (TR, mutated Cys51) abolished the T3-dependent effects, suggesting an association between both transcriptional factors. Co-immunoprecipitation documented an increased binding of TR with CREB after T3 treatment. The transcriptional cross-talk 3 between TR and CREB bound to CRE mediates T3-inhibited CREB activity and LCC expression. Thyroid hormone-induced TR binding of CREB inhibits CREB activity and LCC current expression, which may contribute to AF. These findings provide an important mechanistic insight into hyperthyroidism-induced AF.
Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...
Diagnosis and management of congenital hypothyroidism.
Harrell, G B; Murray, P D
1998-03-01
Thyroid hormones are integral to the development and maturation of the central nervous system as well as normal growth and development. Comprehensive knowledge of the maturation and function of the thyroid gland is essential to understanding the pathophysiology of thyroid dysfunction. Early diagnosis and appropriate treatment in thyroid disease are imperative for normalization of thyroid hormone ratios. Optimal management includes early introduction and strict adherence to a regimen of L-thyroxine and routine monitoring of thyroid levels throughout life. Parents need to understand the importance of consistent medication administration and daily assessment of well-being because these actions are crucial to the attainment of an optimal level of development for infants with congenital hypothyroidism.
Localisation of the neuropeptide PACAP and its receptors in the rat parathyroid and thyroid glands.
Fahrenkrug, Jan; Hannibal, Jens
2011-03-01
PACAP (pituitary adenylate cyclase activating polypeptide) is widely distributed neuropeptide acting via three subtypes of receptors, PAC(1), VPAC(1) and VPAC(2). Here we examined the localisation and nature of PACAP-immunoreactive nerves in the rat thyroid and parathyroid glands and defined the distribution of PAC(1), VPAC(1) and VPAC(2) receptor mRNA's. In the parathyroid gland a large number of nerve fibres displaying PACAP-immunoreactivity were distributed beneath the capsule, around blood vessels and close to glandular cells. Most of the PACAP-nerves were sensory, since they co-stored CGRP (calcitonin-gene-related peptide) and were sensitive to capsaicin-treatment. mRNA's for PAC(1) and VPAC(2) receptors occurred in the parathyroid gland, mainly located in the glandular cells. In the thyroid gland PACAP-immunoreactive nerve fibres were associated with blood vessels, thyroid follicles and parafollicular C-cells. A high degree of co-existence between PACAP and VIP (vasoactive intestinal polypeptide) was observed in the intrathyroid nerve fibres and cell bodies of the thyroid ganglion indicating a common origin for the two peptides. A minor population of PACAP-immunoreactive nerve fibres with relation to blood vessels co-stored NPY (neuropeptide Y), whereas only a few fibres co-stored CGRP. PAC(1) and VPAC(1) receptor mRNA's occurred in follicular cells and blood vessels, whereas the expression of the VPAC(2) receptor was low. The findings suggest that PACAP plays a role in the regulation of parathyroid and thyroid blood flow and hormone secretion. Copyright © 2010 Elsevier Inc. All rights reserved.
Is it possible to diagnose canine hypothyroidism?
Panciera, D L
1999-04-01
A definitive diagnosis of hypothyroidism can be difficult because of the many clinical abnormalities associated with thyroid hormone deficiency, and the lack of readily available diagnostic tests with high sensitivity and specificity. Thyroid function tests should be performed only in dogs with clinical findings consistent with hypothyroidism. Measurement of serum total thyroxine (T4) concentration is a useful initial screening test since most hypothyroid dogs have values below the reference range. Serum free T4 concentration measured by equilibrium dialysis is a more sensitive and specific test of thyroid function than total T4 and is particularly useful in dogs with non-thyroidal illness or atypical clinical signs. Measurement of serum endogenous thyroid-stimulating hormone concentration is also helpful, but many hypothyroid dogs have normal results. The gold standard for diagnosis of hypothyroidism remains the thyroid-stimulating hormone response test. It should be used to confirm hypothyroidism when other tests do not agree with the clinical impression or if atypical signs or non-thyroidal illness exist or there has been administration of drugs known to alter thyroid function tests. Ultimately, a positive response to treatment is expected in hypothyroid dogs treated appropriately with levothyroxine.
Changes in the role of the thyroid axis during metamorphosis of the Japanese eel, Anguilla japonica.
Sudo, Ryusuke; Okamura, Akihiro; Kuroki, Mari; Tsukamoto, Katsumi
2014-08-01
To clarify the role of thyroid function during metamorphosis from leptocephalus to glass eel in the Japanese eel, we examined the histology of the thyroid gland and measured whole-body concentrations of thyroid hormones, thyroxine (T4) and triiodothyronine (T3), and thyroid stimulating hormone β-subunit TSH (TSHβ) mRNA expression levels in five stages of artificially hatched eels (leptocephalus, early-metamorphosis, late-metamorphosis, glass eel, and elver). During metamorphosis, the inner colloid of thyroid follicles showed positive immunoreactivity for T4, and both T4 and T3 levels were significantly increased, whereas a small peak of TSHβ mRNA level was observed at the early-metamorphosis stage. Similarly, TSHβ mRNA levels were highest in the glass eel stage, and then decreased markedly in the elver stage. In contrast to TSHβ mRNA expression, thyroid hormones (both T4 and T3) increased further from the glass eel to elver stages. These results indicated that thyroid function in the Japanese eel was active both during and after metamorphosis. Therefore, the thyrotropic axis may play important roles not only in metamorphosis but also in subsequent inshore or upstream migrations. © 2014 Wiley Periodicals, Inc.
Gold, Ellen B; Blount, Benjamin C; O'Neill Rasor, Marianne; Lee, Jennifer S; Alwis, Udeni; Srivastav, Anup; Kim, Kyoungmi
2013-07-01
Perchlorate is a widely occurring contaminant, which can competitively inhibit iodide uptake and thus thyroid hormone production. The health effects of chronic low dose perchlorate exposure are largely unknown. In a community-based study, we compared thyroid function and disease in women with differing likelihoods of prior and current perchlorate exposure. Residential blocks were randomly selected from areas: (1) with potential perchlorate exposure via drinking water; (2) with potential exposure to environmental contaminants; and (3) neighboring but without such exposures. Eligibility included having lived in the area for ≥6 months and aged 20-50 years during 1988-1996 (during documented drinking water well contamination). We interviewed 814 women and collected blood samples (assayed for thyroid stimulating hormone and free thyroxine) from 431 interviewed women. Daily urine samples were assayed for perchlorate and iodide for 178 premenopausal women with blood samples. We performed multivariable regression analyses comparing thyroid function and disease by residential area and by urinary perchlorate dose adjusted for urinary iodide levels. Residential location and current perchlorate dose were not associated with thyroid function or disease. No persistent effect of perchlorate on thyroid function or disease was found several years after contaminated wells were capped.
Post-translational modifications of transthyretin affect the triiodonine-binding potential
Henze, Andrea; Homann, Thomas; Serteser, Mustafa; Can, Ozge; Sezgin, Ozlem; Coskun, Abdurrahman; Unsal, Ibrahim; Schweigert, Florian J; Ozpinar, Aysel
2015-01-01
Transthyretin (TTR) is a visceral protein, which facilitates the transport of thyroid hormones in blood and cerebrospinal fluid. The homotetrameric structure of TTR enables the simultaneous binding of two thyroid hormones per molecule. Each TTR subunit provides a single cysteine residue (Cys10), which is frequently affected by oxidative post-translational modifications. As Cys10 is part of the thyroid hormone-binding channel within the TTR molecule, PTM of Cys10 may influence the binding of thyroid hormones. Therefore, we analysed the effects of Cys10 modification with sulphonic acid, cysteine, cysteinylglycine and glutathione on binding of triiodothyronine (T3) by molecular modelling. Furthermore, we determined the PTM pattern of TTR in serum of patients with thyroid disease by immunoprecipitation and mass spectrometry to evaluate this association in vivo. The in silico assays demonstrated that oxidative PTM of TTR resulted in substantial reorganization of the intramolecular interactions and also affected the binding of T3 in a chemotype- and site-specific manner with S-glutathionylation as the most potent modulator of T3 binding. These findings were supported by the in vivo results, which indicated thyroid function-specific patterns of TTR with a substantial decrease in S-sulphonated, S-cysteinylglycinated and S-glutathionylated TTR in hypothyroid patients. In conclusion, this study provides evidence that oxidative modifications of Cys10 seem to affect binding of T3 to TTR probably because of the introduction of a sterical hindrance and induction of conformational changes. As oxidative modifications can be dynamically regulated, this may represent a sensitive mechanism to adjust thyroid hormone availability. PMID:25311081
Increased sensitivity of thyroid hormone-mediated signaling despite prolonged fasting.
Martinez, Bridget; Scheibner, Michael; Soñanez-Organis, José G; Jaques, John T; Crocker, Daniel E; Ortiz, Rudy M
2017-10-01
Thyroid hormones (TH) can increase cellular metabolism. Food deprivation in mammals is typically associated with reduced thyroid gland responsiveness, in an effort to suppress cellular metabolism and abate starvation. However, in prolonged-fasted, elephant seal pups, cellular TH-mediated proteins are up-regulated and TH levels are maintained with fasting duration. The function and contribution of the thyroid gland to this apparent paradox is unknown and physiologically perplexing. Here we show that the thyroid gland remains responsive during prolonged food deprivation, and that its function and production of TH increase with fasting duration in elephant seals. We discovered that our modeled plasma TH data in response to exogenous thyroid stimulating hormone predicted cellular signaling, which was corroborated independently by the enzyme expression data. The data suggest that the regulation and function of the thyroid gland in the northern elephant seal is atypical for a fasted animal, and can be better described as, "adaptive fasting". Furthermore, the modeling data help substantiate the in vivo responses measured, providing unique insight on hormone clearance, production rates, and thyroid gland responsiveness. Because these unique endocrine responses occur simultaneously with a nearly strict reliance on the oxidation of lipid, these findings provide an intriguing model to better understand the TH-mediated reliance on lipid metabolism that is not otherwise present in morbidly obese humans. When coupled with cellular, tissue-specific responses, these data provide a more integrated assessment of thyroidal status that can be extrapolated for many fasting/food deprived mammals. Copyright © 2017 Elsevier Inc. All rights reserved.
Thyroid hormones (TH) are critical for normal brain development. Environmental chemicals may disrupt TH homeostasis through a variety of physiological systems including membrane transporters, serum transporters, synthesis and catabolic enzymes, and nuclear receptors. Current comp...
RISK ASSESSMENT OF THYROID HORMONE DISRUPTION AND MIXTURES IN MARINE BIOTA
Varieties of chemicals alter thyroid hormones (THs) in vertabrates. The importance of THs during neurodevelopment, suggest that these chemicals would likely be developmental neurotoxicants. A number of epidemiological studies have demonstrated associations between exposure to p...
Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance.
López, Miguel; Varela, Luis; Vázquez, María J; Rodríguez-Cuenca, Sergio; González, Carmen R; Velagapudi, Vidya R; Morgan, Donald A; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; Martínez de Morentin, Pablo Blanco; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher; Gallego, Rosalía; Oresic, Matej; Chatterjee, Krishna; Saha, Asish K; Rahmouni, Kamal; Diéguez, Carlos; Vidal-Puig, Antonio
2010-09-01
Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.
Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance
López, Miguel; Varela, Luis; Vázquez, María J.; Rodríguez-Cuenca, Sergio; González, Carmen R.; Velagapudi, Vidya R.; Morgan, Donald A.; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; de Morentin, Pablo Blanco Martínez; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher; Gallego, Rosalía; Orešič, Matej; Chatterjee, Krishna; Saha, Asish K.; Rahmouni, Kamal; Diéguez, Carlos; Vidal-Puig, Antonio
2010-01-01
Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here, we demonstrate that either whole body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly inhibition of thyroid hormone receptors (TRs) in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation as genetic ablation of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid-hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is an important regulator of energy homeostasis. PMID:20802499
Trimester specific reference intervals for thyroid function tests in normal Indian pregnant women.
Sekhri, Tarun; Juhi, Juhi Agarwal; Wilfred, Reena; Kanwar, Ratnesh S; Sethi, Jyoti; Bhadra, Kuntal; Nair, Sirimavo; Singh, Satveer
2016-01-01
Accurate assessment of thyroid function during pregnancy is critical, for initiation of thyroid hormone therapy, as well as for adjustment of thyroid hormone dose in hypothyroid cases. We evaluated pregnant women who had no past history of thyroid disorders and studied their thyroid function in each trimester. 86 normal pregnant women in the first trimester of pregnancy were selected for setting reference intervals. All were healthy, euthyroid and negative for thyroid peroxidase antibody (TPOAb). These women were serially followed throughout pregnancy. 124 normal nonpregnant subjects were selected for comparison. Thyrotropin (TSH), free thyroxine (FT4), free triiodothyronine (FT3) and anti-TPO were measured using Roche Elecsys 1010 analyzer. Urinary iodine content was determined by simple microplate method. The 2.5th and 97.5th percentiles were calculated as the reference intervals for thyroid hormone levels during each trimester. SPSS (version 14.0, SPSS Inc., Chicago, IL, USA) was used for data processing and analysis. The reference intervals for the first, second and third trimesters for the following parameters: TSH 0.09-6.65, 0.51-6.66, 0.91-4.86 µIU/mL, FT4 9.81-18.53, 8.52-19.43, 7.39-18.28 pM/L and FT3 3.1-6.35, 2.39-5.12, 2.57-5.68 pM/L respectively. Thyroid hormone concentrations significantly differed during pregnancy at different stages of gestation. The pregnant women in the study had median urinary iodine concentration of 150-200 µg/l during each trimester. The trimester-specific reference intervals for thyroid tests during pregnancy have been established for pregnant Indian women serially followed during pregnancy using 2.5th and 97.5th percentiles.