Sample records for tibia

  1. Foam-reinforced elderly human tibia approximates young human tibia better than porcine tibia: a study of the structural properties of three soft tissue fixation devices.

    PubMed

    Bailey, Shana B; Grover, Dustin M; Howell, Stephen M; Hull, Maury L

    2004-01-01

    Because there is an insufficient supply of young human knees, an alternative is needed for evaluating anterior cruciate ligament reconstructions. The authors determined whether an elderly human tibia reinforced with foam is a better substitute for a young human tibia than a porcine tibia in this study of the tibialfixation of a soft tissue anterior cruciate ligament graft using 3 devices. A foam-reinforced elderly human tibia more closely approximates the performance of a young human tibia than porcine tibia. Biomechanical study. Failure mode, stiffness, yield, and slippage were determined for a double-looped tendon graft fixed with either an interference screw, WasherLoc, or tandem washers in young human tibiae, foam-reinforced tibiae from elderly humans, and porcine tibiae. The stiffness and yield of interference screw and WasherLoc fixation in foam-reinforced tibiae more closely approximate those in young human tibiae than in porcine tibiae. Slippage of all combinations of tibiae and fixation devices was similar A foam-reinforced human tibia more closely approximates the performance of a young human tibia than that of porcine tibia in this study. Fixation devices should be tested in foam-reinforced tibiae from elderly humans rather than tibiae from large farm animals when the supply of young human knees is insufficient.

  2. Modeling and analysis of elastic fields in tibia and fibula

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Chowdhury, B. U.; Parvej, M. S.; Afsar, A. M.

    2017-12-01

    In this study, stress analysis of tibia and fibula subjected to body weight in static condition was carried out. The tibia and fibula were fabricated by casting process. A 3-D solid model of tibia and fibula was developed in SolidWorks by using the geometry of cross sections at different locations of the fabricated tibia and fibula. The 3-D model was analyzed by ANSYS to evaluate the stress, strain, and deformation for identifying the critical sections of tibia and fibula. It is found that, in terms of deformation, the critical zone is the contact zone between tibia-fibula and patella. However, in terms of stress, the critical zone is located on fibula between 25% and 40% height from the lower mating portion of the tibia and fibula.

  3. Injury tolerance of tibia for the car-pedestrian impact.

    PubMed

    Mo, Fuhao; Arnoux, Pierre Jean; Jure, Jean Jaques; Masson, Catherine

    2012-05-01

    Lower limbs are normally the first contacted body region during car-pedestrian accidents, and easily suffer serious injuries. The previous tibia bending tolerances for pedestrian safety were mainly developed from three-point bending tests on tibia mid-shaft. The tibia tolerances of other locations are still not investigated enough. In addition, tibia loading condition under the car-pedestrian impact should be explored to compare with the three-point bending. This work aims to investigate the injury tolerance of tibia fracture with combined experimental data and numerical simulation. Eleven new reported quasi-static bending tests of tibia mid-shaft, and additional eleven dynamic mid-shaft bending test results in the previous literature were used to define injury risk functions. Furthermore, to investigate the influence of tibia locations on bending tolerance, finite element simulations with lower limb model were implemented according to three-point bending and pedestrian impact conditions. The regressive curve of tibia bending tolerance was obtained from the simulations on the different impact locations, and indicated that tibia fracture tolerance could vary largely due to the impact locations for the car-pedestrian crash. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. External torsion in a proximal tibia and internal torsion in a distal tibia occur independently in varus osteoarthritic knees compared to healthy knees.

    PubMed

    Mochizuki, Tomoharu; Tanifuji, Osamu; Koga, Yoshio; Hata, Ryosuke; Mori, Takahiro; Nishino, Katsutoshi; Sato, Takashi; Kobayashi, Koichi; Omori, Go; Sakamoto, Makoto; Tanabe, Yuji; Endo, Naoto

    2017-05-01

    The relative torsional angle of the distal tibia is dependent on a deformity of the proximal tibia, and it is a commonly used torsional parameter to describe deformities of the tibia; however, this parameter cannot show the location and direction of the torsional deformity in the entire tibia. This study aimed to identify the detailed deformity in the entire tibia via a coordinate system based on the diaphysis of the tibia by comparing varus osteoarthritic knees to healthy knees. In total, 61 limbs in 58 healthy subjects (age: 54 ± 18 years) and 55 limbs in 50 varus osteoarthritis (OA) subjects (age: 72 ± 7 years) were evaluated. The original coordinate system based on anatomic points only from the tibial diaphysis was established. The evaluation parameters were 1) the relative torsion in the distal tibia to the proximal tibia, 2) the proximal tibial torsion relative to the tibial diaphysis, and 3) the distal tibial torsion relative to the tibial diaphysis. The relative torsion in the distal tibia to the proximal tibia showed external torsion in both groups, while the external torsion was lower in the OA group than in the healthy group (p < 0.0001). The proximal tibial torsion relative to the tibial diaphysis had a higher external torsion in the OA group (p = 0.012), and the distal tibial torsion relative to the tibial diaphysis had a higher internal torsion in the OA group (p = 0.004) in comparison to the healthy group. The reverse torsional deformity, showing a higher external torsion in the proximal tibia and a higher internal torsion in the distal tibia, occurred independently in the OA group in comparison to the healthy group. Clinically, this finding may prove to be a pathogenic factor in varus osteoarthritic knees. Level Ⅲ. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  5. Time course of epiphyseal growth plate fusion in rat tibiae

    NASA Technical Reports Server (NTRS)

    Martin, E. A.; Ritman, E. L.; Turner, R. T.

    2003-01-01

    Although the rat is the most common animal model used in studying osteoporosis, it is often used inappropriately. Osteoporosis is a disease that most commonly occurs in humans long after growth plate fusion with the associated cessation of longitudinal bone growth, but there has been a question as to when or to what extent the rat growth plate fuses. To investigate this question, we used microcomputed X-ray tomography, at voxel resolutions ranging from (5.7 micro m)(3) to (11 micro m)(3), to image the proximal epiphyseal growth plates of both male (n = 19) and female (n = 15) rat tibiae, ranging in age from 2 to 25 months. The three-dimensional images were used to evaluate fusion of the epiphyseal growth plate by quantitating the amount of cancellous bone that has bridged across the growth plate. The results suggest that the time course of fusion of the epiphyseal growth plate follows a sigmoidal pattern, with 10% of the maximum number of bridges having formed by 3.9 months in the male tibiae and 5.8 months in the female tibiae, 50% of the maximum number of bridges having formed by 5.6 months in the male tibiae and 5.9 months in the female tibiae, and 90% of the total maximum of bridges have formed by 7.4 months for the males and 6.5 months for the females. The total volume of bridges per tibia at the age at which the maximum number of bridges per tibia has first formed is 0.99 mm(3)/tibia for the males and 0.40 mm(3)/tibia for the females. After the maximum number of bridges (-290 for females, -360 for males) have formed the total volume of bridges per tibia continues to increase for an additional 7.0 months in the males and 17.0 months for the females until they reach maximum values (-1.5 mm(3)/tibia for the males and -2.2 mm(3)/tibia for the females).

  6. Comparison of metal concentrations in rat tibia tissues with various metallic implants.

    PubMed

    Okazaki, Yoshimitsu; Gotoh, Emiko; Manabe, Takeshi; Kobayashi, Kihei

    2004-12-01

    To compare metal concentrations in tibia tissues with various metallic implants, SUS316L stainless steel, Co-Cr-Mo casting alloy, and Ti-6Al-4V and V-free Ti-15Zr-4Nb-4Ta alloys were implanted into the rat tibia for up to 48 weeks. After the implant was removed from the tibia by decalcification, the tibia tissues near the implant were lyophilized. Then the concentrations of metals in the tibia tissues by microwave acid digestion were determined by inductively coupled plasma-mass spectrometry. Fe concentrations were determined by graphite-furnace atomic absorption spectrometry. The Fe concentration in the tibia tissues with the SUS316L implant was relatively high, and it rapidly increased up to 12 weeks and then decreased thereafter. On the other hand, the Co concentration in the tibia tissues with the Co-Cr-Mo implant was lower, and it increased up to 24 weeks and slightly decreased at 48 weeks. The Ni concentration in the tibia tissues with the SUS316L implant increased up to 6 weeks and then gradually decreased thereafter. The Cr concentration tended to be higher than the Co concentration. This Cr concentration linearly increased up to 12 weeks and then decreased toward 48 weeks in the tibia tissues with the SUS316L or Co-Cr-Mo implant. Minute quantities of Ti, Al and V in the tibia tissues with the Ti-6Al-4V implant were found. The Ti concentration in the tibia tissues with the Ti-15Zr-4Nb-4Ta implant was lower than that in the tibia tissues with the Ti-6Al-4V implant. The Zr, Nb and Ta concentrations were also very low. The Ti-15Zr-4Nb-4Ta alloy with its low metal release in vivo is considered advantageous for long-term implants.

  7. Effect of step width manipulation on tibial stress during running.

    PubMed

    Meardon, Stacey A; Derrick, Timothy R

    2014-08-22

    Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (p<0.001 for all). The data from this study suggests that stresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Moderate tibia axial loading promotes discordant response of bone composition parameters and mechanical properties in a hindlimb unloading rat model.

    PubMed

    Yang, Peng-Fei; Huang, Ling-Wei; Nie, Xiao-Tong; Yang, Yue; Wang, Zhe; Ren, Li; Xu, Hui-Yun; Shang, Peng

    2018-06-01

    The purpose of the present study was to characterize the dynamic alterations of bone composition parameters and mechanical properties to disuse and mechanical intervention. A tail suspension hindlimb unloading model and an in vivo axial tibia loading model in rats were used. A moderate mechanical loading that was capable of engendering 800 µε tibia strain was applied to the right tibia of rats in both control and hindlimb unloading group across 28 days of the experimental period. The contralateral tibia served as control. Hindlimb unloading led to bone loss in tibia from day 14. Bone mineral density, mineral content and mechanical properties responded differently with microstructure to disuse in timing course. Mechanical loading of 800 µε tibia strain failed to alter the bone of the control group, but minimized the detrimental effects of unloading by completely prohibiting the decrease of bone mineral content and main mechanical properties after 28 days. Less obvious influence of mechanical loading on bone microstructure was found. The moderate mechanical loading is not able to stimulate the mechanical response of healthy tibia, but indeed lead to discordant recovery of bone composition parameters and mechanical properties.

  9. Radiographic evidence of disuse osteoporosis in the monkey /M. nemestrina/

    NASA Technical Reports Server (NTRS)

    Young, D. R.; Schneider, V. S.

    1981-01-01

    Radiological techniques were utilized for monitoring progressive changes in compact bone in the tibia of monkeys during experimentally induced osteopenia. Bone mass loss in the tibia during restraint was evaluated from radiographs, from bone mineral analysis, and from images reconstructed from gamma ray computerized tomography. The losses during 6 months of restraint tended to occur predominantly in the proximal tibia and were characterized by subperiosteal bone loss, intracortical striations, and scalloped endosteal surfaces. Bone mineral content in the cross section of the tibia declined 17-21%. In 6 months of recovery, the mineral content of the proximal tibia remained depressed.

  10. Outcomes of tibia shaft fractures caused by low energy gunshot wounds.

    PubMed

    Su, Charles A; Nguyen, Mai P; O'Donnell, Jeffrey A; Vallier, Heather A

    2018-05-16

    The purpose of this project was to compare the rates of infections, nonunions, malunions, and secondary operations in tibia fractures resultant from low energy GSWs versus those seen in open and closed tibia fractures resultant from blunt trauma. A secondary objective was to assess the utility of using the traditional Gustilo-Anderson classification system for open fractures to describe fractures secondary to low energy GSW. A retrospective review of 327 patients with tibia shaft fractures was conducted at our level I trauma center. Patients underwent a variety of interventions depending on their injury. Standard fixation techniques were utilized. Outcome measures include: mechanism of injury, rates of superficial and deep infection, nonunion, malunion, and secondary operations. Deep infection after low energy GSW tibia fractures was uncommon and seen in only 2.3% of patients. Rates of infection after low energy GSWs were similar to low and high energy closed tibia fractures resultant from blunt trauma, but significantly less than that seen in open type II (25%, p < 0.05), type IIIA (19.5%, p < 0.05), and type IIIB fractures (47%, p < 0.01). There were no nonunions following GSW fractures, versus 3.7% after closed tibia fractures from blunt trauma (p = 0.2). Nonunions were more common after open fractures from blunt trauma (11%, p < 0.05) versus GSWs. Differences in infection and nonunion were associated with more secondary operations (18%, p < 0.01) in the open tibia fracture group compared with GSWs (2.3%) and closed fractures (7.9% p = 0.19). While GSWs are traditionally thought of as open injuries, low energy GSW tibia fractures had a low rate of infection and no nonunions, and resulted in a reoperation rate similar to closed blunt tibia shaft fractures and significantly lower than open tibia fractures. Copyright © 2018. Published by Elsevier Ltd.

  11. The anterior tilt angle of the proximal tibia epiphyseal plate: a significant radiological finding in young children with trampoline fractures.

    PubMed

    Stranzinger, Enno; Leidolt, Lars; Eich, Georg; Klimek, Peter Michael

    2014-08-01

    Evaluation of the anterior tilt angle of the proximal tibia epiphyseal plate in young children, which suffered a trampoline fracture in comparison with a normal population. 62 children (31 females, 31 males) between 2 and 5 years of age (average 2 years 11 months, standard deviation 11 months) with radiographs in two views of the tibia were included in this retrospective study. 25 children with proximal tibia fractures were injured with a history of jumping on a trampoline. All other causes for tibia fractures were excluded. A normal age-mapped control cohort of 37 children was compared. These children had neither evidence of a trampoline related injury nor a fracture of the tibia. The anterior tilt angle of the epiphyseal plate of the tibia was defined as an angle between the proximal tibia physis and the distal tibia physis on a lateral view. Two radiologists evaluated all radiographs for fractures and measured the anterior tilt angle in consensus. An unpaired Student's t-test was used for statistical analysis (SPSS). Original reports were reviewed and compared with the radiological findings and follow-up radiographs. In the normal control group, the average anterior tilt angle measured -3.2°, SD ± 2.8°. The children with trampoline fractures showed an anterior tilt of +4.4°, SD ± 2.9°. The difference was statistically significant, P<0.0001. In 6 patients (24% of all patients with confirmed fractures) the original report missed to diagnose the proximal tibial fracture. Young children between 2 and 5 years of age are at risk for proximal tibia fractures while jumping on a trampoline. These fractures may be very subtle and difficult to detect on initial radiographs. Measurement of the anterior tilt angle of the proximal tibia epiphyseal plate on lateral radiographs is supportive for interpreting correctly trampoline fractures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. A New Measurement Technique of the Characteristics of Nutrient Artery Canals in Tibias Using Materialise's Interactive Medical Image Control System Software

    PubMed Central

    Li, Jiantao; Zhang, Hao; Yin, Peng; Su, Xiuyun; Zhao, Zhe; Zhou, Jianfeng; Li, Chen; Li, Zhirui; Zhang, Lihai; Tang, Peifu

    2015-01-01

    We established a novel measurement technique to evaluate the anatomic information of nutrient artery canals using Mimics (Materialise's Interactive Medical Image Control System) software, which will provide full knowledge of nutrient artery canals to assist in the diagnosis of longitudinal fractures of tibia and choosing an optimal therapy. Here we collected Digital Imaging and Communications in Medicine (DICOM) format of 199 patients hospitalized in our hospital. All three-dimensional models of tibia in Mimics were reconstructed. In 3-matic software, we marked five points in tibia which located at intercondylar eminence, tibia tuberosity, outer ostium, inner ostium, and bottom of medial malleolus. We then recorded Z-coordinates values of the five points and performed statistical analysis. Our results indicate that foramen was found to be absent in 9 (2.3%) tibias, and 379 (95.2%) tibias had single nutrient foramen. The double foramina was observed in 10 (2.5%) tibias. The mean of tibia length was 358 ± 22 mm. The mean foraminal index was 31.8%  ± 3%. The mean distance between tibial tuberosity and foramen (TFD) is 66 ± 12 mm. Foraminal index has significant positive correlation with TFD (r = 0.721, P < 0.01). Length of nutrient artery canals has significant negative correlation with TFD (r = −0.340, P < 0.01) and has significant negative correlation with foraminal index (r = −0.541, P < 0.01). PMID:26788498

  13. Natural tibialization of fibula in non-union tibia: Two cases.

    PubMed

    Prabhat, Vinay; Vargaonkar, Gauresh S; Mallojwar, Sunil R; Kumar, Ramesh

    2016-01-01

    Non-union of tibia is known to be a common complication after fracture both bones of leg treated conservatively. During the course of natural healing, fibula usually unites early as it had more soft tissue attachment and vascular supply. Due to early union of fibula and absence of axial force across the tibia, it undergoes non-union. Two cases, a 32-year-old male and 65-year-old female treated conservatively for fracture both bones of leg long years back, presented to us with mild calf pain on and off. On radiological examination, there was non-union of tibia along with compensatory fibular hypertrophy to the extent that fibula became main weight bearing bone. In both the cases, we observed gross fibular hypertrophy in presence of non-union of tibia. In conservatively treated cases of fracture, both bones of leg, non-union of tibia may coexist with compensatory hypertrophy of fibula to the extent that, it becomes main weight bearing bone of the leg. We are presenting here two cases of natural tibialization of fibula along with nonunion tibia. Our article supports the theory of Wolff's law.

  14. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  15. Load transfer in the proximal tibia following implantation with a unicompartmental knee replacement: a static snapshot.

    PubMed

    Simpson, D J; Kendrick, B J L; Dodd, C A F; Price, A J; Gill, H S; Murray, D W

    2011-05-01

    Unicompartmental knee replacement (UKR) is an appealing alternative to total knee replacement when the patient has isolated medial compartment osteoarthritis. A common observation post-operatively is radiolucency between the tibial tray wall and the bone. In addition, some patients complain of persistent pain over the proximal tibia antero-medially; this may be related to elevated bone strains in the tibia. Currently, there is no intentionally made mechanical bond between the vertical wall of an Oxford UKR and the adjacent bone; whether one exists or not will influence the load transmission in the proximal tibia and may affect the elevated tibia strain. The aim of this study was to investigate how introducing a mechanical tie between the tibial tray wall and the adjacent bone might alter the load carried into the tibia for both cemented and cementless UKRs. Strain energy density in the region of bone adjacent to the tray wall was considerably increased when a mechanical tie was introduced; this has the potential of reducing the likelihood of a radiolucency occurring in that region. Moreover, a mechanical tie had the effect of reducing proximal tibia strain, which may decrease the incidence of pain following implantation with a UKR.

  16. Polyaxial Screws in Locked Plating of Tibial Pilon Fractures.

    PubMed

    Yenna, Zachary C; Bhadra, Arup K; Ojike, Nwakile I; Burden, Robert L; Voor, Michael J; Roberts, Craig S

    2015-08-01

    This study examined the axial and torsional stiffness of polyaxial locked plating techniques compared with fixed-angle locked plating techniques in a distal tibia pilon fracture model. The effect of using a polyaxial screw to cross the fracture site was examined to determine its ability to control relative fracture site motion. A laboratory experiment was performed to investigate the biomechanical stiffness of distal tibia fracture models repaired with 3.5-mm anterior polyaxial distal tibial plates and locking screws. Sawbones Fourth Generation Composite Tibia models (Pacific Research Laboratories, Inc, Vashon, Washington) were used to model an Orthopaedic Trauma Association 43-A1.3 distal tibia pilon fracture. The polyaxial plates were inserted with 2 central locking screws at a position perpendicular to the cortical surface of the tibia and tested for load as a function of axial displacement and torque as a function of angular displacement. The 2 screws were withdrawn and inserted at an angle 15° from perpendicular, allowing them to span the fracture and insert into the opposing fracture surface. Each tibia was tested again for axial and torsional stiffness. In medial and posterior loading, no statistically significant difference was found between tibiae plated with the polyaxial plate and the central screws placed in the neutral position compared with the central screws placed at a 15° position. In torsional loading, a statistically significant difference was noted, showing greater stiffness in tibiae plated with the polyaxial plate and the central screws placed at a 15° position compared with tibiae plated with the central screws placed at a 0° (or perpendicular) position. This study showed that variable angle constructs show similar stiffness properties between perpendicular and 15° angle insertions in axial loading. The 15° angle construct shows greater stiffness in torsional loading. Copyright 2015, SLACK Incorporated.

  17. Associations among slipped capital femoral epiphysis, tibia vara, and type 2 juvenile diabetes.

    PubMed

    Bowen, James Richard; Assis, Morcello; Sinha, Kumar; Hassink, Sandra; Littleton, Aaron

    2009-06-01

    Clinical consequences of obesity are numerous and include slipped capital epiphysis of the femur, tibia vara, impaired mobility, insufficient muscle strength, glucose intolerance, type 2 diabetes, hyperlipidemia, nonalcoholic fatty liver disease, cholelithiasis, hypertension, sleep apnea, polycystic ovary disease, increased cardiorespiratory effort, and pseudotumor cerebri, among others. Because slipped capital femoral epiphysis, tibia vara, and type 2 diabetes are observed commonly in obese children, a degree of multiple disease occurrence in a patient would be anticipated; however, the senior author has never observed an obese adolescent who presented at the initial diagnosis with a coexistence of slipped capital femora epiphysis, tibia vara, or type 2 diabetes, so, possibly, these constellations of comorbidities may represent unique obesity phenotypes. We reviewed the population consisting of all consecutive patients with newly diagnosed slipped capital femoral epiphysis or tibia vara from 2000 to 2006 and a selected group of patients with type 2 diabetes treated at the Alfred I. duPont Hospital for Children, Wilmington, DE. There were 57 cases of slipped capital femoral epiphysis, 41 cases of tibia vara, and 53 cases of type 2 diabetes. The tibia vara group had the highest body mass index (BMI; 40.81 [13.01]); the diabetes group (BMI, 35.76 [7.04]) and the slipped capital femoral epiphysis group (BMI, 29.08 [7.07]) had the lowest BMI. There was no significant difference in age at the disease onset and height between groups. There was no overlap of disease at initial presentation among slipped capital femoral epiphysis, adolescent tibia vara, and type 2 diabetes. We observed 3 separate obesity-related phenotypes in adolescents with no overlap of disease at initial presentation among slipped capital femoral epiphysis, adolescent tibia vara, and type 2 diabetes.

  18. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging.

    PubMed

    Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M

    2017-12-08

    Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p < .05), suggesting delayed mineralization. In vivo strain gauge measurement and finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Onset of mandible and tibia osteoradionecrosis – a comparative pilot study in the rat

    PubMed Central

    Damek-Poprawa, Monika; Both, Stefan; Wright, Alexander C.; Maity, Amit; Akintoye, Sunday O.

    2012-01-01

    Objectives Osteoradionecrosis (ORN) is common in the jaws following radiotherapy. We hypothesized that mandible is more susceptible to ORN than tibia based on site-disparity in hypoxic-hypocellular-hypovascular tissue breakdown. Study Design Twelve rats received 50 Gy irradiation to mandible or tibia; 4 of 12 rats further received minor surgical trauma to the irradiated sites. Structural and cellular skeletal changes were assessed with computer tomography, histology and immunostaining. Results Mandible developed ORN with 70% mean bone loss 10 weeks post-irradiation (p < 0.05) while tibia was structurally and radiological intact for 20 weeks post-irradiation. Hypocellularity, hypoxia and oxidative stress were higher in irradiated mandible (p < 0.001) than tibia (p < 0.01) but vascular damage was similar at both skeletal sites. Combined effects of radiation and minor trauma promoted mandibular alveolar bone loss and tibial fracture Conclusion ORN has a more rapid onset in mandible relative to tibia in the rat PMID:23254371

  20. Parametric analysis of occupant ankle and tibia injuries in frontal impact

    PubMed Central

    Mo, Fuhao; Jiang, Xiaoqing; Duan, Shuyong; Xiao, Zhi; Shi, Wei

    2017-01-01

    Objective Non-fatal tibia and ankle injuries without proper protection from the restraint system has gotten wide attention from researchers. This study aimed to investigate occupant tibia and ankle injuries under realistic frontal impact environment that is rarely considered in previous experimental and simulant studies. Methods An integrated occupant-vehicle model was established by coupling an isolated car cab model and a hybrid occupant model with a biofidelic pelvis-lower limb model, while its loading conditions were extracted from the realistic full-frontal impact test. A parametric study was implemented concerning instrument panel (IP) design and pedal intrusion/rotation parameters. Results The significant influences of the IP angle, pedal intrusion and pedal rotation on tibia axial force, tibia bending moment and ankle dorsiflexion angle are noted. By coupling their effects, a new evaluation index named CAIEI (Combined Ankle Injury Evaluation Index) is established to evaluate ankle injury (including tibia fractures in ankle region) risk and severity in robustness. Conclusions Overall results and analysis indicate that ankle dorsiflexion angle should be considered when judging the injury in lower limb under frontal impact. Meanwhile, the current index with coupling effects of tibia axial force, bending moment and ankle dorsiflexion angle is in a good correlation with the simulation injury outcomes. PMID:28910377

  1. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments.

    PubMed

    Fang, Juan; Gong, He; Kong, Lingyan; Zhu, Dong

    2013-12-20

    Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis.

  2. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments

    PubMed Central

    2013-01-01

    Background Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. Methods The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. Results The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. Conclusions It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis. PMID:24359345

  3. Regional bone geometry of the tibia in triathletes and stress reactions--an observational study.

    PubMed

    Newsham-West, Richard J; Lyons, Brett; Milburn, Peter D

    2014-03-01

    The association between tibial morphology and tibial stress fractures or tibial stress syndrome was examined in triathletes with an unusually high incidence of these injuries. A cross-sectional study design examined associations between tibial geometry from MRI images and training and injury data between male and female triathletes and between stress fracture (SF) and non-stress fracture (NSF) groups. Fifteen athletes (7 females, 8 males) aged 17-23 years who were currently able to train and race were recruited from the New Zealand Triathlete Elite Development Squad. Geometric measurements were taken at 5 zones along the tibia using MRI and compared between symptomatic and asymptomatic tibiae subjects. SF tibiae displayed either oedema within the cancellous bone and/or stress fracture on MRI. When collapsed across levels, symptomatic tibiae had thicker medial cortices (F1,140=9.285, p=0.003), thicker lateral cortices (F1,140=10.129, p=0.002) and thinner anterior cortices (F1,140=14.517, p=0.000) than NSF tibiae. Only medial cortex thickness in SF tibia was significantly different (F4,140=3.358, p=0.012) at different levels. Follow-up analysis showed that athletes showing oedema within the cancellous bone and/or stress fracture on MRI had, within 2 years of analysis, subsequently taken time off training and racing due a tibial stress fracture. The thinner anterior cortex in SF tibiae is associated with a stress reaction in these triathletes. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Low Preoperative BMD Is Related to High Migration of Tibia Components in Uncemented TKA-92 Patients in a Combined DEXA and RSA Study With 2-Year Follow-Up.

    PubMed

    Andersen, Mikkel R; Winther, Nikkolaj S; Lind, Thomas; Schrøder, Henrik M; Flivik, Gunnar; Petersen, Michael M

    2017-07-01

    The fixation of uncemented tibia components in total knee arthroplasty may rely on the bone quality of the tibia; however, no previous studies have shown convincing objective proof of this. Component migration is relevant as it has been shown to predict aseptic loosening. We performed 2-year follow-up of 92 patients who underwent total knee arthroplasty surgery with an uncemented tibia component. Bone mineral density (BMD; g/cm 2 ) of the tibia host bone was measured preoperatively using dual energy X-ray absorptiometry. The proximal tibia was divided into 2 regions of interest (ROI) in the part of the tibia bone where the components were implanted. Radiostereometric analysis was performed postoperatively and after 3, 6, 12, and 24 months. The primary outcome was maximum total point motion (MTPM; mm). Regression analysis was performed to evaluate the relation between preoperative BMD and MTPM. We found low preoperative BMD in ROI1 to be significantly related to high MTPM at all follow-ups: after 3 months (R 2  = 20%, P BMD  = 0.017), 6 months (R 2  = 29%, P BMD  = 0.003), 12 months (R 2  = 33%, P BMD  = 0.001), and 24 months (R 2  = 27%, P BMD  = 0.001). We also found a significant relation for low BMD in ROI2 and high MTPM: 3 months (R 2  = 19%, P BMD  = 0.042), 6 months (R 2  = 28%, P BMD  = 0.04), 12 months (R 2  = 32%, P BMD  = 0.004), and 24 months (R 2  = 24%, P BMD  = 0.005). Low preoperative BMD in the tibia is related to high MTPM. Thus, high migration of uncemented tibia components is to be expected in patients with poor bone quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo.

    PubMed

    Yang, Peng-Fei; Kriechbaumer, Andreas; Albracht, Kirsten; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Shang, Peng; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2015-02-05

    The mechanical relationship between bone and muscle has been long recognized. However, it still remains unclear how muscles exactly load on bone. In this study, utilizing an optical segment tracking technique, the in vivo tibia loading regimes in terms of tibia segment deformation in humans were investigated during walking, forefoot and rear foot stair ascent and running and isometric plantar flexion. Results suggested that the proximal tibia primarily bends to the posterior aspect and twists to the external aspect with respect to the distal tibia. During walking, peak posterior bending and peak torsion occurred in the first half (22%) and second half (76%) of the stance phase, respectively. During stair ascent, two noticeable peaks of torsion were found with forefoot strike (38% and 82% of stance phase), but only one peak of torsion was found with rear foot strike (78% of stance phase). The torsional deformation angle during both stair ascent and running was larger with forefoot strike than rear foot strike. During isometric plantar flexion, the tibia deformation regimes were characterized more by torsion (maximum 1.35°) than bending (maximum 0.52°). To conclude, bending and torsion predominated the tibia loading regimes during the investigated activities. Tibia torsional deformation is closely related to calf muscle contractions, which further confirm the notion of the muscle-bone mechanical link and shift the focus from loading magnitude to loading regimes in bone mechanobiology. It thus is speculated that torsion is another, yet under-rated factor, besides the compression and tension, to drive long bone mechano-adaptation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Intestinal pH and Absorption and Deposition of Ca 47 in the Rachitic Chick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasserman, R H; Taylor, A N

    The effect of pH of the dosing solution on the relative tibia deposition of Ca 47 absorbed from the duodenum of rachitic and vit. D-treated chicks was examined. Vit. D had its usual enhancing effect on Ca 47 absorption; however, it was observed that the percent absorbed Ca47 deposited in tibia varied with intraduodenal pH and vit. D-status of the chick. At low pH values (1.9, 2.0), there were no differences in the percent of duodenally absorbed Ca 47 accumulated by tibia in rachitic or vit. D-treated chicks whereas, at high pH values, proportionally less of the absorbed Ca 47more » was deposited in rachitic tibia; pH was without effect on uptake of Ca 47 by tibia in the vit. D-treated birds.« less

  7. [Intramedullary nailing of the distal tibia illustrated with the Expert(TM) tibia nail].

    PubMed

    El Attal, R; Hansen, M; Rosenberger, R; Smekal, V; Rommens, P M; Blauth, M

    2011-12-01

    Restoration of axis, length, and rotation of the lower leg. Sufficient primary stability of the osteosynthesis for functional aftercare and to maintain joint mobility. Good bony healing in closed and open fractures. Closed and open fractures of the tibia and complete lower leg fractures distal to the isthmus (AO 42), extraarticular fractures of the distal tibia (AO 43 A1/A2/A3), segmental fractures of the tibia with a fracture in the distal tibia, and certain intraarticular fractures of the distal tibia without impression of the joint line with the use of additional implants (AO 43 C1) Patient in reduced general condition (e.g., bed ridden), flexion of the knee of less than 90°, patients with knee arthroplasty of the affected leg, infection in the area of the nail's insertion, infection of the tibial cavity, complex articular fractures of the proximal or distal tibia with joint depression. Closed reduction of the fracture preferably on a fracture table or using a distractor or an external fixation frame. If necessary, use pointed reduction clamps or sterile drapery. In some cases, additional implants like percutaneous small fragment screws, poller screws or k-wires are helpful. Open reduction is rarely necessary and must be avoided. Opening of the proximal tibia in line with the medullary canal. Canulated insertion of the Expert(TM) tibia nail (ETN; Synthes GmbH, Oberdorf, Switzerland) with reaming of the medullary canal. Control of axis, length, and rotation. Distal interlocking with the radiolucent drill and proximal interlocking with the targeting device. Immediate mobilization of ankle and knee joint. Mobilization with 20 kg weight-bearing with crutches. X-ray control 6 weeks postoperatively and increased weight-bearing depending on the fracture status. In cases with simple fractures, good bony contact, or transverse fracture pattern, full weight-bearing at the end of week 6 is targeted. Between July 2004 and May 2005, 180 patients were included in a multicenter study. The follow-up rate was 81% after 1 year. Of these, 91 fractures (50.6%) were located in the distal third of the tibia. In this segment, the rate of delayed union was 10.6%. Malalignment of > 5° was observed in 5.4%. A secondary malalignment after initial good reduction was detected in only 1.1% of all cases. The implant-specific risk for screw breakage was 3.2%. One patient sustained a deep infection. If additional fibula plating was performed an 8-fold higher risk for delayed bone healing was observed (95%CI: 2.9-21.2, p< 0.001). If the fracture of the fibula was at the same height as on the tibia, the risk for delayed healing was even 14-fold (95% CI: 3.4-62.5, p< 0.001). Biomechanically plating of the fibula does not increase stability in suprasyndesmal distal tibia-fibular fractures treated with an intramedullary nail. Using the ETN with its optimized locking options, fibula plating is not recommended, thus, avoiding soft tissue problems and potentially delayed bone healing.

  8. Effect of the starting point of half-pin insertion on the insertional torque of the pin at the tibia.

    PubMed

    Kim, Sung Jae; Kim, Sung Hwan; Kim, Young Hwan; Chun, Yong Min

    2015-01-01

    The authors have observed a failure to achieve secure fixation in elderly patients when inserting a half-pin at the anteromedial surface of the tibia. The purpose of this study was to compare two methods for inserting a half-pin at tibia diaphysis in elderly patients. Twenty cadaveric tibias were divided into Group C or V. A half-pin was inserted into the tibias of Group C via the conventional method, from the anteromedial surface to the interosseous border of the tibia diaphysis, and into the tibias of Group V via the vertical method, from the anterior border to the posterior surface at the same level. The maximum insertion torque was measured during the bicortical insertion with a torque driver. The thickness of the cortex was measured by micro-computed tomography. The relationship between the thickness of the cortex engaged and the insertion torque was investigated. The maximum insertion torque and the thickness of the cortex were significantly higher in Group V than Group C. Both groups exhibited a statistically significant linear correlation between torque and thickness by Spearman's rank correlation analysis. Half-pins inserted by the vertical method achieved purchase of more cortex than those inserted by the conventional method. Considering that cortical thickness and insertion torque in Group V were significantly greater than those in Group C, we suggest that the vertical method of half-pin insertion may be an alternative to the conventional method in elderly patients.

  9. Anterior iliac crest, posterior iliac crest, and proximal tibia donor sites: a comparison of cancellous bone volumes in fresh cadavers.

    PubMed

    Engelstad, Mark E; Morse, Timothy

    2010-12-01

    The anterior iliac crest, posterior iliac crest, and proximal tibia are common cancellous donor sites used for autogenous bone grafting. Donor site selection is partly dependent on the expected volume of available bone, but reports of cancellous bone volumes at each of these sites are variable. The goal of this study was to compare the volumes of cancellous bone harvested from donor sites within the same cadaver. Within each of 10 fresh frozen cadavers, cancellous bone was harvested from 3 donor sites-anterior iliac crest, posterior iliac crest, and proximal tibia-using established surgical techniques. Bone volumes were measured by fluid displacement. Mean compressed cancellous bone volumes from the 3 donor sites were compared among cadavers. Within each cadaver, the 3 donor sites were given a volume rank score from 1 (least volume) to 3 (most volume). Among cadavers, mean compressed cancellous bone volumes from the proximal tibia (11.3 mL) and posterior iliac crest (10.1 mL) were significantly greater than the anterior iliac crest (7.0 mL). Within cadavers, the mean volume rank score of the proximal tibia (mean rank, 2.7) was statistically greater than that for the posterior iliac crest (mean rank, 2.0), which was statistically greater than that for the anterior iliac crest (mean rank, 1.2). Strong correlations in bone volume existed between the proximal tibia and iliac crests (r = 0.67) and between the anterior iliac crest and posterior iliac crest (r = 0.93). The proximal tibia and posterior iliac crest yielded a significantly greater mean volume of compressed cancellous bone than the anterior iliac crest. Within individual cadaver skeletons, the proximal tibia was most likely to yield the largest cancellous volume, whereas the anterior iliac crest was most likely to yield the smallest cancellous volume. Although the proximal tibia contains relatively large volumes of cancellous bone, further investigation is required to determine how much cancellous bone can safely be harvested. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Freezing of Rat Tibiae at -20°C Does Not Affect the Mechanical Properties of Intramedullary Bone/Implant-Interface: Brief Report

    PubMed Central

    Diefenbeck, Michael; Mückley, Thomas; Zankovych, Sergiy; Bossert, Jörg; Jandt, Klaus D; Schrader, Christian; Schmidt, Jürgen; Finger, Ulrich; Faucon, Mathilde

    2011-01-01

    Background: The effects of freezing-thawing cycles on intramedullary bone-implant interfaces have been studied in a rat model in mechanical pull-out tests. Implants: Twenty TiAl6V4 rods (Ø 0.8 mm, length 10 mm) implanted in rat tibiae Methods: 10 rats underwent bilateral tibial implantation of titanium rods. At eight weeks, the animals were sacrificed and tibiae harvested for biomechanical testing. Eight tibiae were frozen and stored at -20°C for 14 days, the remaining eight were evaluated immediately post-harvest. Pull-out tests were used to determine maximum force and interfacial shear strength. Results: There were no significant differences between fresh and those of the frozen-thawed group in maximum force or in interfacial shear strength. Conclusion: Frozen Storage of rat tibiae containing implants at -20° C has no effects on the biomechanical properties of Bone/ Implant interface. PMID:21760868

  11. Changes in geometrical and biomechanical properties of immature male and female rat tibia

    NASA Technical Reports Server (NTRS)

    Zernicke, Ronald F.; Hou, Jack C.-H.; Vailas, Arthur C.; Nishimoto, Mitchell; Patel, Sanjay

    1990-01-01

    The differences in the geometry and mechanical properties of immature male and female rat tibiae were detailed in order to provide comparative data for spaceflight, exercise, or disease experiments that use immature rats as an animal model. The experiment focuses on the particularly rapid period of growth that occurs in the Sprague-Dawley rat between 40 and 60 d of age. Tibial length and middiaphysical cross-sectional data were analyzed for eight different groups of rats according to age and sex, and tibial mechanical properties were obtained via three-point bending tests to failure. Results indicate that, during the 15 d period of rapid growth, changes in rat tibial geometry are more important than changes in bone material properties for influencing the mechanical properties of the tibia. Male tibiae changed primarily in structural properties, while in the female rats major changes in mechanical properties of the tibia were only attributable to changes in the structural properties of the bone.

  12. Identification tibia and fibula bone fracture location using scanline algorithm

    NASA Astrophysics Data System (ADS)

    Muchtar, M. A.; Simanjuntak, S. E.; Rahmat, R. F.; Mawengkang, H.; Zarlis, M.; Sitompul, O. S.; Winanto, I. D.; Andayani, U.; Syahputra, M. F.; Siregar, I.; Nasution, T. H.

    2018-03-01

    Fracture is a condition that there is a damage in the continuity of the bone, usually caused by stress, trauma or weak bones. The tibia and fibula are two separated-long bones in the lower leg, closely linked at the knee and ankle. Tibia/fibula fracture often happen when there is too much force applied to the bone that it can withstand. One of the way to identify the location of tibia/fibula fracture is to read X-ray image manually. Visual examination requires more time and allows for errors in identification due to the noise in image. In addition, reading X-ray needs highlighting background to make the objects in X-ray image appear more clearly. Therefore, a method is required to help radiologist to identify the location of tibia/fibula fracture. We propose some image-processing techniques for processing cruris image and Scan line algorithm for the identification of fracture location. The result shows that our proposed method is able to identify it and reach up to 87.5% of accuracy.

  13. Progress in Finite Element Modeling of the Lower Extremities

    DTIC Science & Technology

    2015-06-01

    bending and subsequent injury , e.g., the distal tibia motion results in bending of the tibia rather than the tibia rotating about the knee joint...layers, rich anisotropy, and wide variability. Developing a model for predictive injury capability, therefore, needs to be versatile and flexible to... injury capability presents many challenges, the first of which is identifying the types of conditions where injury prediction is needed. Our focus

  14. Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury

    PubMed Central

    Dudley-Javoroski, S.; Shields, R.K.

    2009-01-01

    The purpose of this report is to examine longitudinal bone mineral density (BMD) changes in individuals with spinal cord injury (SCI) who began unilateral soleus electrical stimulation early after injury. Twelve men with SCI and seven without SCI underwent peripheral quantitative computed tomography assessment of distal tibia BMD. After 4.5 to 6 years of training, average trained limb BMD was 27.5% higher than untrained limb BMD. The training effect was more pronounced in the central core of the tibia cross-section (40.5% between-limb difference). No between-limb difference emerged in the anterior half of the tibia (19.2 mg/cm3 difference, p>0.05). A robust between-limb difference emerged in the posterior half of the tibia (76.1 mg/cm3 difference, p=0.0439). The posterior tibia BMD of one subject remained within the range of non-SCI values for 3.8 years post-SCI. The results support that the constrained orientation of soleus mechanical loads, administered over several years, elicited bone-sparing effects in the posterior tibia. This study provides a demonstration of the bone-protective potential of a carefully controlled dose of mechanical load. The specific orientation of applied mechanical loads may strongly influence the manifestation of BMD adaptations in humans with SCI. PMID:18799855

  15. Derivation and application of a mathematical model for long bone growth.

    PubMed

    Seetharam, Suneil; Bhatia, Sujata K

    2012-01-01

    The objective of this work was to develop a mathematical model of long bone growth and to gain insights regarding growth disorders. A cell balance (mass balance of moving cells) assessment was performed on the three regions of the growth plate, to determine the variables (including number of proliferating cells, and division rate of proliferating cells) that influence tibia growth rate. Once this relationship was established, clinical data were used to understand how tibia growth rate and number of proliferating cells change with time. These equations were then inserted into the model to determine how cell division rate changes with time. The model was utilized to determine the influence of growth time, and to measure changes in vitamin C deficiency, Indian hedgehog (IHH) expression, and bone morphogenetic protein-2 (BMP-2) implants on tibia length. According to the model, a 10-month discrepancy in growth time between the two tibias is required to produce clinically significant leg asymmetry. In addition, vitamin C deficiency, IHH overexpression, and BMP-2 implants can all affect tibia length. These bioactive molecules have the greatest effect on tibia growth rate when these perturbations occur early in life for extended periods of time. The results are significant for modeling and predicting the effects of perturbations, including bioactive implants, on long bone growth.

  16. Effects of feeding different concentration and forms of zinc on the performance and tissue mineral status of broiler chicks.

    PubMed

    Ao, T; Pierce, J L; Pescatore, A J; Cantor, A H; Dawson, K A; Ford, M J; Paul, M

    2011-08-01

    1. Two studies were conducted to investigate the effect of feeding different concentration and forms of zinc (Zn) on the performance and tibia Zn status of broiler chicks. 2. In Experiment 1, chicks fed on the control or the diet supplemented with 12?mg of Zn as sulphate had lower feed intake, weight gain and tibia Zn content than other treatment groups. Chicks given 12 and 24 mg of organic Zn in starter and grower phases, respectively, had the same performance and tibia Zn content as those fed 40 mg of Zn as sulphate and the same performance but higher tibia Zn content than those given 12 mg of Zn as organic over the 42 d. 3. In Experiment 2, chicks given 24 mg organic Zn had greater weight gain than chicks fed on the other treatment diets in the starter period. Chicks fed on the control diet had lower tibia Zn content than chicks fed other treatment diets. Chicks given 80 mg Zn as sulphate had higher tibia Zn content than chicks fed the other treatment diets except those given 40 mg of Zn as sulphate. 4. The results from these trials indicate that feeding lower concentration of Zn as organic form may better promote the growth performance of broiler chicks.

  17. The effect of retained intramedullary nails on tibial bone mineral density.

    PubMed

    Allen, J C; Lindsey, R W; Hipp, J A; Gugala, Z; Rianon, N; LeBlanc, A

    2008-07-01

    Intramedullary nailing has become a standard treatment for adult tibial shaft fractures. Retained intramedullary nails have been associated with stress shielding, although their long-term effect on decreasing tibial bone mineral density is currently unclear. The purpose of this study was to determine if retained tibial intramedullary nails decrease tibial mineral density in patients with successfully treated fractures. Patients treated with statically locked intramedullary nails for isolated, unilateral tibia shaft fractures were studied. Inclusion required that fracture had healed radiographically and that the patient returned to the pre-injury activity level. Data on patient demographic, fracture type, surgical technique, implant, and post-operative functional status were tabulated. Dual energy X-ray absorptiometry was used to measure bone mineral density in selected regions of the affected tibia and the contralateral intact tibia. Image reconstruction software was employed to ensure symmetry of the studied regions. Twenty patients (mean age 43; range 22-77 years) were studied at a mean of 29 months (range 5-60 months) following intramedullary nailing. There was statistically significant reduction of mean bone mineral density in tibiae with retained intramedullary nails (1.02 g/cm(2) versus 1.06 g/cm(2); P=0.04). A significantly greater decrease in bone mineral density was detected in the reamed versus non-reamed tibiae (-7% versus +6%, respectively; P<0.05). The present study demonstrates a small, but statistically significant overall bone mineral density decrease in healed tibiae with retained nails. Intramedullary reaming appears to be a factor potentiating the reduction of tibia bone mineral density in long-term nail retention.

  18. Longitudinal shapes of the tibia and femur are unrelated and variable.

    PubMed

    Howell, Stephen M; Kuznik, Kyle; Hull, Maury L; Siston, Robert A

    2010-04-01

    In general practice, short films of the knee are used to assess component position and define the entry point for intramedullary femoral alignment in TKAs; however, whether it is justified to use the short film commonly used in research settings and everyday practice as a substitute for the whole leg view is controversial and needs clarification. In 138 long leg CT scanograms we measured the angle formed by the anatomic axis of the proximal fourth of the tibia and the mechanical axis of the tibia, the angle formed by the anatomic axis of the distal fourth of the femur and the mechanical axis of the femur, the "bow" of the tibia (as reflected by the offset of the anatomic axis from the center of the talus), and the "bow" of the femur (as reflected by the offset of the anatomic axis from the center of the femoral head). Because the angle formed by these axes and the bow of the tibia and femur have wide variability in females and males, a short film of the knee should not be used in place of the whole leg view when accurate assessment of component position and limb alignment is essential. A previous study of normal limbs found that only 2% of subjects have a neutral hip-knee-ankle axis, which can be explained by the wide variability of the bow in the tibia and femur and the lack of correlation between the bow of the tibia and femur in a given limb as shown in the current study.

  19. Effect of a novel microbial phytase on production performance and tibia mineral concentration in broiler chickens given low-calcium diets.

    PubMed

    Singh, A; Walk, C L; Ghosh, T K; Bedford, M R; Haldar, S

    2013-01-01

    1. In a 42-d feeding trial, 264 one-d-old, as hatched, Cobb 400 broiler chickens (6 pens per group, n = 11 per pen in a 2 × 2 factorial arrangement) were fed on two concentrations of dietary calcium (Ca) (9.0 and 7.5 g/kg in starter, 7.5 and 6 g/kg in grower phases) and supplemental phytase (0 and 500 U/kg diet). 2. During d 0-21, the high Ca + phytase diet improved body weight. During d 0-42, feed intake was increased by the low Ca diet and decreased by phytase supplementation. Feed conversion ratio during d 0-21 was improved by the high Ca + phytase diet. 3. At d 42, Ca in duodenal digesta was reduced by low dietary Ca and supplemental phytase. High dietary Ca reduced P in duodenal and jejunal digesta. Phytase reduced digesta P and increased serum P concentration. 4. Relative tibia length decreased with low dietary Ca and increased with phytase. The robusticity index of tibia was improved by the low Ca diet and phytase supplementation. Phytase supplementation increased tibia ash and concentrations of Ca, magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn) and iron (Fe) in tibia. The low Ca diet increased Mg, Mn and Fe and reduced Cu and Zn in tibia. 5. It was concluded that 7.5 g Ca/kg during weeks 0-3 and 6 g Ca/kg during weeks 3-6 sustained broiler performance and bone ash, while phytase supplementation facilitated tibia mineralisation, particularly during the grower phase.

  20. Wrapping grafting for congenital pseudarthrosis of the tibia

    PubMed Central

    Yan, An; Mei, Hai-Bo; Liu, Kun; Wu, Jiang-Yan; Tang, Jin; Zhu, Guang-Hui; Ye, Wei-Hua

    2017-01-01

    Abstract Objective: Treatment of congenital pseudarthrosis of the tibia (CPT) remains a challenge. The autogenic iliac bone graft is important consistent of treatment for CPT. The purpose of this study was to investigate the role of wrapping autogenic iliac bone graft in improvement of the curing opportunities of CPT. Methods: We combined Ilizarov fixator with intramedullary rodding of the tibia and wrapping autogenic iliac bone graft for treatment 51 cases of CPT between 2007 and 2010. The mean age is 3.2 years at index operation, of which 31 patients (61%) were below 3 years old. According to Crawford classification, 5 tibia had type-II morphology; 3, type-III; 43, type-IV. Results: In the postoperative follow-up of 3.5 months (range from 3 to 4.5 months), all cases were found that the bone graft sites of pseudarthrosis of the tibia showed a significant augmentation and spindle-shaped expansion as obvious change. All cases of this series have been followed-up, average followed-up time were 1.6 years (range from 7 to 3.1 years), of which 19 cases were more than 2 years. The average time of removed the Ilizarov ring fixator was 3.5 months (range from 3 to 4.5 months). According to Johnston Clinical evaluation system, 26 cases had grade I, 21 cases, grade II, 4 cases, grade III. Following the Ohnishi X-ray evaluation criteria, union of pseudarthrosis of the tibia were 42 cases, delayed union 5 cases, nonunion 4 cases. Conclusion: Autogenic iliac bone graft is able to offer the activity of osteoblasts and osteogenesis induced by bone morphogenetic protein (BMP) and glycoprotein, meanwhile enclosing bone graft could help keep cancellous bone fragments in close contact around pseudarthrosis of the tibia, allowing the formation of high concentration of glycoprotein and BMP induced by chemical factors because of established the sealing environment in location, all of which could enhance the healing of pseudarthrosis of the tibia. PMID:29310362

  1. Bone pulsating metastasis due to renal cell carcinoma.

    PubMed

    Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz

    2010-11-01

    Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding.

  2. Multiple Tibial Insufficiency Fractures in the Same Tibia

    PubMed Central

    Defoort, Saartje; Mertens, Peter

    2011-01-01

    Stress fractures were first described by Briethaupt in 1855. Since then, there have been many discussions in the literature concerning stress fractures, which have been described in both weight-bearing and non-weight-bearing bones. Currently, the tibia is the most frequent location, but multiple stress fractures in the same tibia are rare. This paper presents an unusual case of a 60-year-old woman with multiple tibial stress fractures of spontaneous onset. PMID:23569673

  3. A potential means of improving the evaluation of deformity corrections with Taylor spatial frames over time by using volumetric imaging: preliminary results.

    PubMed

    Starr, Vanessa; Olivecrona, H; Noz, M E; Maguire, G Q; Zeleznik, M P; Jannsson, Karl-åke

    2009-01-01

    In this study we explore the possibility of accurately and cost-effectively monitoring tibial deformation induced by Taylor Spatial Frames (TSFs), using time-separated computed tomography (CT) scans and a volume fusion technique to determine tibial rotation and translation. Serial CT examinations (designated CT-A and CT-B, separated by a time interval of several months) of two patients were investigated using a previously described and validated volume fusion technique, in which user-defined landmarks drive the 3D registration of the two CT volumes. Both patients had undergone dual osteotomies to correct for tibial length and rotational deformity. For each registration, 10 or more landmarks were selected, and the quality of the fused volume was assessed both quantitatively and via 2D and 3D visualization tools. First, the proximal frame segment and tibia in CT-A and CT-B were brought into alignment (registered) by selecting landmarks on the frame and/or tibia. In the resulting "fused" volume, the proximal frame segment and tibia from CT-A and CT-B were aligned, while the distal frame segment and tibia from CT-A and CT-B were likely not aligned as a result of tibial deformation or frame adjustment having occurred between the CT scans. Using the proximal fused volume, the distal frame segment and tibia were then registered by selecting landmarks on the frame and/or tibia. The difference between the centroids of the final distal landmarks was used to evaluate the lengthening of the tibia, and the Euler angles from the registration were used to evaluate the rotation. Both the frame and bone could be effectively registered (based on visual interpretation). Movement between the proximal frame and proximal bone could be visualized in both cases. The spatial effect on the tibia could be both visually assessed and measured: 34 mm, 10 degrees in one case; 5 mm, 1 degrees in the other. This retrospective analysis of spatial correction of the tibia using Taylor Spatial Frames shows that CT offers an interesting potential means of quantitatively monitoring the patient's treatment. Compared with traditional techniques, modern CT scans in conjunction with image processing provide a high-resolution, spatially correct, and three-dimensional measurement system which can be used to quickly and easily assess the patient's treatment at low cost to the patient and hospital.

  4. Repeated irradiation from micro-computed tomography scanning at 2, 4 and 6 months of age does not induce damage to tibial bone microstructure in male and female CD-1 mice.

    PubMed

    Sacco, Sandra M; Saint, Caitlin; Longo, Amanda B; Wakefield, Charles B; Salmon, Phil L; LeBlanc, Paul J; Ward, Wendy E

    2017-01-01

    Long-term effects of repeated i n vivo micro-computed tomography (μCT) scanning at key stages of growth and bone development (ages 2, 4 and 6 months) on trabecular and cortical bone structure, as well as developmental patterns, have not been studied. We determined the effect of repetitive μCT scanning at age 2, 4 and 6 months on tibia bone structure of male and female CD-1 mice and characterized developmental changes. At 2, 4 and 6 months of age, right tibias were scanned using in vivo μCT (Skyscan 1176) at one of three doses of radiation per scan: 222, 261 or 460 mGy. Left tibias of the same mice were scanned only at 6 months to serve as non-irradiated controls to determine whether recurrent radiation exposure alters trabecular and cortical bone structure at the proximal tibia. In males, eccentricity was lower ( P <0.05) in irradiated compared with non-irradiated tibias (222 mGy group). Within each sex, all other structural outcomes were similar between irradiated and non-irradiated tibias regardless of dose. Trabecular bone loss occurred in all mice due to age while cortical development continued to age 6 months. In conclusion, repetitive μCT scans at various radiation doses did not damage trabecular or cortical bone structure of proximal tibia in male and female CD-1 mice. Moreover, scanning at 2, 4 and 6 months of age highlight the different developmental time course between trabecular and cortical bone. These scanning protocols can be used to investigate longitudinal responses of bone structures to an intervention.

  5. Fatigue Failure in Extra-Articular Proximal Tibia Fractures: Locking Intramedullary Nail Versus Double Locking Plates-A Biomechanical Study.

    PubMed

    Kandemir, Utku; Herfat, Safa; Herzog, Mary; Viscogliosi, Paul; Pekmezci, Murat

    2017-02-01

    The goal of this study is to compare the fatigue strength of a locking intramedullary nail (LN) construct with a double locking plate (DLP) construct in comminuted proximal extra-articular tibia fractures. Eight pairs of fresh frozen cadaveric tibias with low bone mineral density [age: 80 ± 7 (SD) years, T-score: -2.3 ± 1.2] were used. One tibia from each pair was fixed with LN, whereas the contralateral side was fixed with DLP for complex extra-articular multifragmentary metaphyseal fractures (simulating OTA 41-A3.3). Specimens were cyclically loaded under compression simulating single-leg stance by staircase method out to 260,000 cycles. Every 2500 cycles, localized gap displacements were measured with a 3D motion tracking system, and x-ray images of the proximal tibia were acquired. To allow for mechanical settling, initial metrics were calculated at 2500 cycles. The 2 groups were compared regarding initial construct stiffness, initial medial and lateral gap displacements, stiffness at 30,000 cycles, medial and lateral gap displacements at 30,000 cycles, failure load, number of cycles to failure, and failure mode. Failure metrics were reported for initial and catastrophic failures. DLP constructs exhibited higher initial stiffness and stiffness at 30,000 cycles compared with LN constructs (P < 0.03). There were no significant differences between groups for loads at failure or cycles to failure. For the fixation of extra-articular proximal tibia fractures, a LN provides a similar fatigue performance to double locked plates. The locked nail could be safely used for fixation of proximal tibia fractures with the advantage of limited extramedullary soft tissue damage.

  6. Fibular fixation as an adjuvant to tibial intramedullary nailing in the treatment of combined distal third tibia and fibula fractures: a biomechanical investigation.

    PubMed

    Morin, Paul M; Reindl, Rudolf; Harvey, Edward J; Beckman, Lorne; Steffen, Thomas

    2008-02-01

    Distal third tibia fractures have classically been treated with standard plating, but intramedullary (IM) nailing has gained popularity. Owing to the lack of interference fit of the nail in the metaphyseal bone of the distal tibia, it may be beneficial to add rigid plating of the fibula to augment the overall stability of fracture fixation in this area. This study sought to assess the biomechanical effect of adding a fibular plate to standard IM nailing in the treatment of distal third tibia and fibula fractures. Eight cadaveric tibia specimens were used. Tibial fixation consisted of a solid titanium nail locked with 3 screws distally and 2 proximally, and fibular fixation consisted of a 3.5 mm low-contact dynamic compression plate. A section of tibia and fibula was removed. Testing was accomplished with an MTS machine. Each leg was tested 3 times; with and without a fibular plate and with a repetition of the initial test condition. Vertical displacements were tested with an axial load up to 500 N, and angular rotation was tested with torques up to 5 N*m. The difference in axial rotation was the only statistically significant finding (p = 0.003), with fibular fixation resulting in 1.1 degrees less rotation through the osteotomy site (17.96 degrees v. 19.10 degrees ). Over 35% of this rotational displacement occurred at the nail-locking bolt interface with the application of small torsional forces. Fibular plating in addition to tibial IM fixation of distal third tibia and fibula fractures leads to slightly increased resistance to torsional forces. This small improvement may not be clinically relevant.

  7. Customized Knee Prosthesis in Treatment of Giant Cell Tumors of the Proximal Tibia: Application of 3-Dimensional Printing Technology in Surgical Design.

    PubMed

    Luo, Wenbin; Huang, Lanfeng; Liu, He; Qu, Wenrui; Zhao, Xin; Wang, Chenyu; Li, Chen; Yu, Tao; Han, Qing; Wang, Jincheng; Qin, Yanguo

    2017-04-07

    BACKGROUND We explored the application of 3-dimensional (3D) printing technology in treating giant cell tumors (GCT) of the proximal tibia. A tibia block was designed and produced through 3D printing technology. We expected that this 3D-printed block would fill the bone defect after en-bloc resection. Importantly, the block, combined with a standard knee joint prosthesis, provided attachments for collateral ligaments of the knee, which can maintain knee stability. MATERIAL AND METHODS A computed tomography (CT) scan was taken of both knee joints in 4 patients with GCT of the proximal tibia. We developed a novel technique - the real-size 3D-printed proximal tibia model - to design preoperative treatment plans. Hence, with the application of 3D printing technology, a customized proximal tibia block could be designed for each patient individually, which fixed the bone defect, combined with standard knee prosthesis. RESULTS In all 4 cases, the 3D-printed block fitted the bone defect precisely. The motion range of the affected knee was 90 degrees on average, and the soft tissue balance and stability of the knee were good. After an average 7-month follow-up, the MSTS score was 19 on average. No sign of prosthesis fracture, loosening, or other relevant complications were detected. CONCLUSIONS This technique can be used to treat GCT of the proximal tibia when it is hard to achieve soft tissue balance after tumor resection. 3D printing technology simplified the design and manufacturing progress of custom-made orthopedic medical instruments. This new surgical technique could be much more widely applied because of 3D printing technology.

  8. Validation of a measuring technique with computed tomography for cement penetration into trabecular bone underneath the tibial tray in total knee arthroplasty on a cadaver model

    PubMed Central

    2014-01-01

    Background In total knee arthroplasty (TKA), cement penetration between 3 and 5 mm beneath the tibial tray is required to prevent loosening of the tibia component. The objective of this study was to develop and validate a reliable in vivo measuring technique using CT imaging to assess cement distribution and penetration depth in the total area underneath a tibia prosthesis. Methods We defined the radiodensity ranges for trabecular tibia bone, polymethylmethacrylate (PMMA) cement and cement-penetrated trabecular bone and measured the percentages of cement penetration at various depths after cementing two tibia prostheses onto redundant femoral heads. One prosthesis was subsequently removed to examine the influence of the metal tibia prostheses on the quality of the CT images. The percentages of cement penetration in the CT slices were compared with percentages measured with photographs of the corresponding transversal slices. Results Trabecular bone and cement-penetrated trabecular bone had no overlap in quantitative scale of radio-density. There was no significant difference in mean HU values when measuring with or without the tibia prosthesis. The percentages of measured cement-penetrated trabecular bone in the CT slices of the specimen were within the range of percentages that could be expected based on the measurements with the photographs (p = 0.04). Conclusions CT scan images provide valid results in measuring the penetration and distribution of cement into trabecular bone underneath the tibia component of a TKA. Since the proposed method does not turn metal elements into artefacts, it enables clinicians to assess the width and density of the cement mantle in vivo and to compare the results of different cementing methods in TKA. PMID:25158996

  9. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    PubMed

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  10. Infection Reduces Return-to-duty Rates for Soldiers with Type III Open Tibia Fractures

    DTIC Science & Technology

    2014-09-01

    Infection reduces return-to-duty rates for soldiers with Type III open tibia fractures Matthew A. Napierala, MD, Jessica C. Rivera, MD, Travis C... Type III open tibia fracture and tabulated the prevalence of infectious complications.We searched the Physical Evaluation Board database to determine...were not infected ( p 0.1407). Soldiers who experienced any type of infectious complication ( p 0.0470) and having osteomyelitis ( p 0.0335) had a lower

  11. Can the contralateral limb be used as a control during the growing period in a rodent model?

    PubMed

    Mustafy, Tanvir; Londono, Irène; Villemure, Isabelle

    2018-05-12

    The contralateral limb is often used as a control in various clinical, forensic and anthropological studies. However, no studies have been performed to determine if the contra-lateral limb is a suitable control during the bone development period. The aim of this study was to determine the bilateral symmetry of growing rat tibiae in terms of geometric shape, mechanical strength and bone morphological parameters with developmental stages. Left and right tibias of 18 male Sprague-Dawley rats at 4, 8 and 12 weeks of age were scanned with micro-CT for bone-morphometric evaluation and for 3D deviation analysis to quantify the geometric shape variations between left and right tibiae. Overall tibial lengths and curvatures were also measured, and bone mechanical strength was investigated using three-point bending tests. Deviation distributions between bilateral tibiae remained below 0.5 mm for more than 80% of the geometry for all groups. Tibial lengths, longitudinal tibial curvatures, bone-morphometric parameters and mechanical strengths changed significantly during the growing period but kept a strong degree of symmetry between bilateral tibiae. These results suggest that bilateral tibiae can be considered symmetrical in nature and that contralateral limb can be used as a control during the growing period in different experimental scenarios. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  13. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    PubMed Central

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  14. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality.

    PubMed

    Okagbare, Paul I; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A; Morris, Michael D

    2012-09-01

    We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies.

  15. A biomechanical model for actively controlled snow ski bindings.

    PubMed

    Hull, M L; Ramming, J E

    1980-11-01

    Active control of snow ski bindings is a new design concept which potentially offers improved protection from lower extremity injury. Implementation of this concept entails measuring physical variables and calculating loading and/or deformation in injury prone musculoskeletal components. The subject of this paper is definition of a biomechanical model for calculating tibia torsion based on measurements of torsion loading between the boot and ski. Previous control schemes have used leg displacement only to indicate tibia torsion. The contributions of both inertial and velocity-dependent torques to tibia loading are explored and it is shown that both these moments must be included in addition to displacement-dependent moments. A new analog controller design which includes inertia, damping, and stiffness terms in the tibia load calculation is also presented.

  16. [Intramedullary nailing of the tibia with the expert tibia nail].

    PubMed

    Hansen, Matthias; El Attal, René; Blum, Jochen; Blauth, Michael; Rommens, Pol Maria

    2009-12-01

    Restoration of axis, length, and rotation of the lower leg. Sufficient primary stability of the osteosynthesis for functional aftercare. Early functional aftercare to maintain joint mobility. Good bony healing in closed and open fractures. All closed and open fractures of the tibia and complete lower leg fractures (AO 42). Certain extraarticular fractures of the proximal and distal tibia (AO 41 A2/A3; AO 43 A1/A2/A3). Segmental fractures of the tibia. Certain intraarticular fractures of the tibia with use of additional implants (AO 41 C1/C2; AO 43 C1/C2). Stabilization during and after segmental bone transport or callus distraction of the tibia. Patients in poor general condition (e.g., bedridden). Flexion of the knee of less than 90 degrees . Infection in the nail's insertion area. Infection of the tibial cavity. Complex articular fractures of the proximal or distal tibia with joint depression. Closed reduction of the fracture. If necessary, use of reduction clamps through additional stab incisions or open surgical procedures. In some cases, additional osteosynthesis procedures are necessary (e.g., screws). Positioning of the patient may be performed on a radiolucent table or a traction table. Opening of the proximal tibia in line with the medullary canal. Cannulated or noncannulated insertion of the Expert Tibia Nail((R)) with or without reaming of the medullary canal depending on the fracture type and soft-tissue condition. Control of axis, length, and rotation. Distal interlocking with the radiolucent drill and proximal interlocking with the targeting device. Immediate mobilization of ankle joint and knee joint. Depending on the type of fracture, mobilization with 20 kg partial weight bearing or pain-dependent full weight bearing with crutches. X-ray control 6 weeks postoperatively and increased weight bearing depending on the fracture status. In a prospective, international multicentric study, 181 patients with 186 fractures were included between July 2004 and May 2005. 57 of these fractures (30.7%) initially were graded open, 15 of them grade I, 32 grade II, and ten grade III. Most of the fractures (36%) were shaft fractures. After 1 year, 146 patients (81%) could be evaluated clinically and radiologically. The overall pseudarthrosis rate was 12.2% (18.2% for open and 9.7% for closed fractures). The risk for secondary operations or revisions (including dynamization of the nail) was 18.8%. Without consideration of dynamization procedures, revisions were necessary in only 5.4% of all patients. The risk for varus, valgus or antecurvation malalignment of more than 5 degrees in any plane on radiologic long leg views was 4.3% for shaft fractures, 1.5% for distal fractures, and 13.6% for proximal fractures. The implant-specific risk for bolt breakage was 3.2%.

  17. Evaluation of functional outcome of the floating knee injury using multivariate analysis.

    PubMed

    Yokoyama, Kazuhiko; Tsukamoto, Tatsuro; Aoki, Shinichi; Wakita, Ryuji; Uchino, Masataka; Noumi, Takashi; Fukushima, Nobuaki; Itoman, Moritoshi

    2002-11-01

    The objective of this study is to evaluate significant contributing factors affecting the functional prognosis of floating knee injuries using multivariate analysis. A total of 68 floating knee injuries (67 patients) were treated at Kitasato University Hospital from 1986 to 1999. Both the femoral fractures and the tibial fractures were managed surgically by various methods. The functional results of these injuries were evaluated using the grading system of Karlström and Olerud. Follow-up periods ranged from 2 to 19 years (mean 50.2 months) after the original injury. We defined satisfactory (S) outcomes as those cases with excellent or good results and unsatisfactory (US) outcomes as those cases with acceptable or poor results. Logistic regression analysis was used as a multivariate analysis, and the dependent variables were defined as a satisfactory outcome or as an unsatisfactory outcome. The explanatory variables were predicting factors influencing the functional outcome such as age at trauma, gender, severity of soft-tissue injury in the femur and the tibia, AO fracture grade in the femur and the tibia, Fraser type (type I or type II), Injury Severity Score (ISS), and fixation time after injury (less than 1 week or more than 1 week) in the femur and the tibia. The final functional results were as follows: 25 cases had excellent results, 15 cases good results, 16 cases acceptable results, and 12 cases poor results. The predictive logistic regression equation was as follows: Log 1-p/p = 3.12-1.52 x Fraser type - 1.65 x severity of soft-tissue injury in the tibia - 1.31 x fixation time after injury in the tibia - 0.821 x AO fracture grade in the tibia + 1.025 x fixation time after injury in the femur - 0.687 x AO fracture grade in the femur ( p=0.01). Among the variables, Fraser type and the severity of soft-tissue injury in the tibia were significantly related to the final result. The multivariate analysis showed that both the involvement of the knee joint and the severity grade of soft-tissue injury in the tibia represented significant risk factors of poor outcome in floating knee injuries in this study.

  18. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents.

    PubMed

    Leonard, Mary B; Zemel, Babette S; Wrotniak, Brian H; Klieger, Sarah B; Shults, Justine; Stallings, Virginia A; Stettler, Nicolas

    2015-04-01

    Childhood obesity is associated with biologic and behavioral characteristics that may impact bone mineral density (BMD) and structure. The objective was to determine the association between obesity and bone outcomes, independent of sexual and skeletal maturity, muscle area and strength, physical activity, calcium intake, biomarkers of inflammation, and vitamin D status. Tibia and radius peripheral quantitative CT scans were obtained in 91 obese (BMI>97th percentile) and 51 non-obese adolescents (BMI>5th and <85th percentiles). Results were converted to sex- and race-specific Z-scores relative to age. Cortical structure, muscle area and muscle strength (by dynamometry) Z-scores were further adjusted for bone length. Obese participants had greater height Z-scores (p<0.001), and advanced skeletal maturity (p<0.0001), compared with non-obese participants. Tibia cortical section modulus and calf muscle area Z-scores were greater in obese participants (1.07 and 1.63, respectively, both p<0.0001). Tibia and radius trabecular and cortical volumetric BMD did not differ significantly between groups. Calf muscle area and strength Z-scores, advanced skeletal maturity, and physical activity (by accelerometry) were positively associated with tibia cortical section modulus Z-scores (all p<0.01). Adjustment for muscle area Z-score attenuated differences in tibia section modulus Z-scores between obese and non-obese participants from 1.07 to 0.28. After multivariate adjustment for greater calf muscle area and strength Z-scores, advanced maturity, and less moderate to vigorous physical activity, tibia section modulus Z-scores were 0.32 (95% CI -0.18, 0.43, p=0.06) greater in obese, vs. non-obese participants. Radius cortical section modulus Z-scores were 0.45 greater (p=0.08) in obese vs. non-obese participants; this difference was attenuated to 0.14 with adjustment for advanced maturity. These findings suggest that greater tibia cortical section modulus in obese adolescents is attributable to advanced skeletal maturation and greater muscle area and strength, while less moderate to vigorous physical activities offset the positive effects of these covariates. The impact of obesity on cortical structure was greater at weight bearing sites. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity.

    PubMed

    Brzóska, M M; Majewska, K; Moniuszko-Jakoniuk, J

    2005-10-01

    The influence of exposure to cadmium (Cd) during skeletal development on the risk of bone fractures at the stage of skeletal maturity was investigated on a female rat model of human exposure. The tibias of rats treated with 1, 5 or 50 mg Cd/l in drinking water for 3, 6, 9 and 12 months (since weaning) were used. The exposure to Cd dose- and time-dependently influenced the tibia bone mineral density (BMD) and chemical composition. In skeletally matured animals, at each level of the exposure to Cd, the BMD at the whole tibia and its diaphysis as well as the percentage of minerals content in the bone, including the content of zinc, copper and iron, were decreased compared to control. Moreover, in the 50 mg Cd/l group, the percentage of organic components content increased. The Cd-induced changes, at all levels of exposure, resulted in weakening in the yield strength and fracture strength of the tibia (a three-point bending test of the diaphysis and compression test with vertical loading) of the skeletally matured females. A very important and clinically useful finding of this study is that a decrease (even by several percent) in the tibia BMD results in weakness in the bone biomechanical properties and that the BMD may predict the risk of its fracture at the exposure to Cd. Moreover, the results together with our previous findings seem to suggest that tibia, due to higher vulnerability of its diaphysis, compared to the femoral diaphysis, to damage by Cd may be more useful than femur to investigate the effect of Cd on the cortical bone. The present study revealed that a low exposure to Cd (1 mg Cd/l), corresponding to low human environmental exposure, during the skeletal development affects the tibia mineral status leading to weakening in its mechanical properties at the skeletal maturity. The findings allow for the conclusion that environmental exposure to Cd during childhood and adolescence may enhance the risk of low BMD and fractures at adulthood.

  20. Stress fracture as a complication of autogenous bone graft harvest from the distal tibia.

    PubMed

    Chou, Loretta B; Mann, Roger A; Coughlin, Michael J; McPeake, William T; Mizel, Mark S

    2007-02-01

    Autogenous bone graft from the distal tibia provides cancellous bone graft for foot and ankle operations, and it has osteogenic and osteoconductive properties. The site is in close proximity to the foot and ankle, and published retrospective studies show low morbidity from the procedure. One-hundred autografts were obtained from the distal tibia between 2000 and 2003. In four cases the distal tibial bone graft harvest resulted in a stress fracture. There were three women and one man. The average time of diagnosis of the stress fracture from the operation was 1.8 months. All stress fractures healed with a short course (average 2.4 months) of cast immobilization. This study demonstrated that a stress fracture from the donor site of autogenous bone graft of the distal tibia occurs and can be successfully treated nonoperatively.

  1. Novel implant for peri-prosthetic proximal tibia fractures.

    PubMed

    Tran, Ton; Chen, Bernard K; Wu, Xinhua; Pun, Chung Lun

    2018-03-01

    Repair of peri-prosthetic proximal tibia fractures is very challenging in patients with a total knee replacement or arthroplasty. The tibial component of the knee implant severely restricts the fixation points of the tibial implant to repair peri-prosthetic fractures. A novel implant has been designed with an extended flange over the anterior of tibial condyle to provide additional points of fixation, overcoming limitations of existing generic locking plates used for proximal tibia fractures. Furthermore, the screws fixed through the extended flange provide additional support to prevent the problem of subsidence of tibial component of knee implant. The design methodology involved extraction of bone data from CT scans into a flexible CAD format, implant design and structural evaluation and optimisation using FEM as well as prototype development and manufacture by selective laser melting 3D printing technology with Ti6Al4 V powder. A prototype tibia implant was developed based on a patient-specific bone structure, which was regenerated from the CT images of patient's tibia. The design is described in detail and being applied to fit up to 80% of patients, for both left and right sides based on the average dimensions and shape of the bone structure from a wide range of CT images. A novel tibial implant has been developed to repair peri-prosthetic proximal tibia fractures which overcomes significant constraints from the tibial component of existing knee implant. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Limb saving surgery for Ewing's sarcoma of the distal tibia: a case report.

    PubMed

    Mizoshiri, Naoki; Shirai, Toshiharu; Terauchi, Ryu; Tsuchida, Shinji; Mori, Yuki; Katsuyama, Yusei; Hayashi, Daichi; Oka, Yoshinobu; Kubo, Toshikazu

    2018-05-02

    Ewing's sarcoma is a primary malignant tumor of bone occurring mostly in childhood. Few effective reconstruction techniques are available after wide resection of Ewing's sarcoma at the distal end of the tibia. Reconstruction after wide resection is especially difficult in children, as it is necessary to consider the growth and activity of the lower limbs. A 12-year-old Japanese boy had presented with right lower leg pain at age 8 years. Imaging examination showed a bone tumor accompanied by a large extra-skeletal mass in the distal part of his tibia. The tumor was histologically diagnosed as Ewing's sarcoma. The patient received chemotherapy, followed by wide resection. Reconstruction consisted of a bone transport method involving external fixation of Taylor Spatial Frame. To prevent infection after surgery, the external fixation pin was coated with iodine. One year after surgery, the patient showed poor consolidation of bone, so iliac bone transplantation was performed on the extended bones and docking site of the distal tibia. After 20 months, tibia formation was good. Three years after surgery, there was no evidence of tumor recurrence or metastases; bone fusion was good, and he was able to run. The bone transport method is an effective surgical method of reconstruction after wide resection of a bone tumor at the distal end of the tibia, if a pin can be inserted into the distal bone fragment. Coating external fixation pins with iodine may prevent postoperative infection.

  3. Repeatability testing of a new Hybrid III 6-year-old ATD lower extremity.

    PubMed

    Boucher, Laura C; Ryu, Yeonsu; Kang, Yun-Seok; Bolte, John H

    2017-05-29

    Vehicle safety is improving, thus decreasing the number of life-threatening injuries and increasing the need for research in other areas of the body. The current child anthropomorphic test device (ATD) does not have the capabilities or instrumentation to measure many of the potential interactions between the lower extremity and the vehicle interior. A prototype Hybrid III 6-year-old ATD lower extremity (ATD-LE) was developed and contains a tibia load cell and a more biofidelic ankle. The repeatability of the device has not yet been assessed; thus, the objective was to evaluate the repeatability of the ATD-LE. Additionally, a dynamic assessment was conducted to quantify injury threshold values. A pneumatic ram impactor was used at 2 velocities to evaluate repeatability. The ATD-LE was fixed to a table and impacted on the plantar aspect of the forefoot. Three repeated trials at 1.3 and 2.3 m/s without shoes and 2.3 m/s with shoes were conducted. The consistency of tibia force (N), bending moment (Nm), ankle range of motion (ROM, °), and stiffness (Nm/°) were quantified. A dynamic assessment using knee bolster airbag (KBA) tests was also conducted. The ATD-LE was positioned to mimic 3 worst-case scenarios: toes touching the mid-dashboard, touching the lower dashboard, and flat on the floor prior to airbag deployment. The impact responses in the femur and tibia were directly collected and compared with published injury threshold values. Ram impact testing indicated primarily excellent repeatability for the variables tested. For all 3 conditions the coefficients of variance (CV) were as follows: tibia force, 1.9-2.7%; tibia moment, 1.0-2.2%; ROM, 1.3-1.4%; ankle stiffness, 4.8-15.6%. The shoe-on condition resulted in a 25% reduction in tibia force and a 56% reduction in tibia bending moment. The KBA tests indicate that the highest injury risk may be when the toes touch the lower dashboard, due to the high bending moments recorded in the tibia at 76.2 Nm, which was above the injury threshold. The above work has demonstrated that the repeatability of the ATD-LE was excellent for tibia force, bending moment, and ankle ROM. The ATD-LE has the ability to provide new information to engineers and researchers due to its ability to directly evaluate the crash response of the ankle and leg. New information on injury mechanism and injury tolerance may lead to injury reduction and thus help advance the safety of children.

  4. Allograft-prosthesis composites after bone tumor resection at the proximal tibia.

    PubMed

    Biau, David Jean; Dumaine, Valérie; Babinet, Antoine; Tomeno, Bernard; Anract, Philippe

    2007-03-01

    The survival of irradiated allograft-prosthesis composites at the proximal tibia is mostly unknown. However, allograft-prosthesis composites have proved beneficial at other reconstruction sites. We presumed allograft-prosthesis composites at the proximal tibia would improve survival and facilitate reattachment of the extensor mechanism compared with that of conventional (megaprostheses) reconstructions. We retrospectively reviewed 26 patients who underwent resection of proximal tibia tumors followed by reconstruction with allo-graft-prosthesis composites. Patients received Guepar massive custom-made fully constrained prostheses. Allografts were sterilized with gamma radiation, and the stems were cemented into the allograft and host bone. The minimum followup was 6 months (median, 128 months; range, 6-195 months). Fourteen patients had one or more components removed. The median allograft-prosthesis composite survival was 102 months (95% confidence interval, 64.2-infinity). Of the 26 allografts, seven fractured, six showed signs of partial resorption, and six had infections develop. Seven allografts showed signs of fusion with the host bone. Six extensor mechanism reconstructions failed. Allograft-prosthesis composites sterilized by gamma radiation yielded poor results for proximal tibial reconstruction as complications and failures were common. We do not recommend irradiated allograft-prosthesis composites for proximal tibia reconstruction.

  5. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    PubMed

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  6. Minimally invasive plate osteosynthesis with locking compression plate for distal diametaphyseal tibia fracture.

    PubMed

    Shrestha, D; Acharya, B M; Shrestha, P M

    2011-01-01

    Distal diametaphyseal tibia fracture though requires operative treatment is difficult to manage. Conventional osteosynthesis is not suitable because distal tibia is subcutaneous bone with poor vascularity. Closed reduction and minimally invasive plate osteosynthesis (MIPO) with locking compression plate (LCP) has emerged as an alternative treatment option because it respects biology of distal tibia and fracture hematoma and also provides biomechanicaly stable construct. To find out suitability of MIPO with LCP for distal diametaphyseal tibia fracture including union time and complicatios and compare wih other available management options in literature. Twenty patients with closed distal diametaphyseal tibia fracture with or without intra articular extension (AO classification: 12 type 43A1, 4 type 43A2, 2 type 43A3 and 2 type 43B1) treated with MIPO with LCP were prospectively followed for average duration of 18.45 months (range 5-30 months). Average duration of injury-hospital and injury-surgery interval was 12.8 hrs (range 2-44 hrs) and 4.45 days (range 1-10 days) respectively. All fractures got united with an average duration of 18.5 weeks (range14-28weeks) except one case of delayed union which was managed with percutaneous bone marrow injection. Two patients had union with valgus angulation less than 5 degees but no nonunion was found. There were two superficial and one deep post operative wound infection. All infections healed with extended period of intravenous antibiotics besides repeated debridemet for deep infection. Implants were removed in eight patients among whom six (30%) had malleolar skin irritation and pain due to prominent hardware. The present case series shows that MIPO with LCP is an effective treatment method in terms of union time and complications rate for distal diametaphyseal tibia fracture. Malleolar skin irritation is common problem because of prominent hardware.

  7. 'Trampoline fracture' of the proximal tibia in children: report of 3 cases and review of literature.

    PubMed

    Bruyeer, E; Geusens, E; Catry, F; Vanstraelen, L; Vanhoenacker, F

    2012-01-01

    We present three cases of fracture of the proximal tibia in young children who were jumping on a trampoline. The typical radiological findings and the underlying mechanism of trauma are discussed. The key radiological features are: a transverse hairline fracture of the upper tibia often accompanied by a buckle fracture of the lateral or medial tibial cortex, buckling of the anterior upper tibial cortex and anterior tilting of the epiphyseal plate. New types of injuries related to specific recreational activities are recognized. It is often helpful to associate a typical injury with a particular activity. Trampoline related injuries have increased dramatically over the last years. The most common lesions are fractures and ligamentous injuries, in particular a transverse fracture of the proximal tibia. However the radiological findings can be very subtle and easily overlooked. It is therefore important to be aware of the typical history and radiological findings.

  8. [The accuracy of palpation from orientation points for the navigated implantation of knee prostheses].

    PubMed

    Fuiko, R; Kotten, B; Zettl, R; Ritschl, P

    2004-03-01

    Cinematic and pointing procedures are used for non-image based navigated implantation during total knee replacement. Pointing procedures require an exact knowledge of the landmarks. In this anatomical study, landmarks are defined and repeatedly referenced. Precision and reproducibility are evaluated by means of an inter- and an intra-observer study. The axes of the femur and tibia are calculated using the landmarks. The specific landmarks of 30 femurs and 27 tibias were palpated by three surgeons and digitised by means of a photogrammetric system, as used intra-operatively. The recorded data were statistically evaluated. The specific landmarks can be referenced with great precision. The vectors that influence the implant position show a mean femoral deviation of 0.9 mm and a mean tibial deviation of 1.0 mm. The repeating accuracy of every observer was 1.5 mm femoral and 1.0 mm tibial. The calculated long axes at the femur and tibia thus reach a precision of 0.1 degrees (min.-max.: 0-0.9 degrees) at the femur and 0.2 degrees (.0-1.1 degrees) at the tibia. The short axes at the distal femur and proximal tibia exhibit an average deviation of from 0.7 degrees to 1.9 degrees (0-11.3 degrees). Long axes (mechanical axes) can be determined exactly but the precision of the short axes (rotational axes) is unsatisfactory, although palpation of landmarks was accurate. Therefore, palpation of more than one rotational axis at the femur and tibia is mandatory and should be visualized on the monitor during surgery.

  9. Cumulative exposure to lead and cognition in persons with Parkinson’s disease

    PubMed Central

    Weuve, Jennifer; Press, Daniel Z.; Grodstein, Francine; Wright, Robert O.; Hu, Howard; Weisskopf, Marc G.

    2012-01-01

    Background Dementia is an important consequence of Parkinson’s disease (PD), with few known modifiable risk factors. Cumulative exposure to lead, at levels experienced in the community, may exacerbate PD-related neural dysfunction, resulting in impaired cognition. Methods Among 101 persons with PD (“cases”) and, separately, 50 persons without PD (“controls”), we evaluated cumulative lead exposure, gauged via tibia and patella bone lead concentrations, in relation to cognitive function, assessed using a telephone battery developed and validated in a separate sample of PD patients. We also assessed the interaction between lead and case-control status. Results After multivariable adjustment, higher tibia bone lead concentration among PD cases was associated with worse performance on all of the individual telephone tests. In particular, tibia lead levels corresponded to significantly worse performance on a telephone analogue of the Mini-Mental State Examination and tests of working memory and attention. Moreover, higher tibia bone lead concentration was associated with significantly worse global composite score encompassing all the cognitive tests (P=0.04). The magnitude of association per standard deviation increment in tibia bone lead level was equivalent to the difference in global scores among controls in our study who were about seven years apart in age. The tibia lead-cognition association was notably stronger within cases than within controls (Pdifference=0.06). Patella bone lead concentration was not consistently associated with performance on the tests. Conclusions These data provide evidence suggesting that cumulative exposure to lead may result in worsened cognition among persons with PD. PMID:23143985

  10. Cumulative exposure to lead and cognition in persons with Parkinson's disease.

    PubMed

    Weuve, Jennifer; Press, Daniel Z; Grodstein, Francine; Wright, Robert O; Hu, Howard; Weisskopf, Marc G

    2013-02-01

    Dementia is an important consequence of Parkinson's disease (PD), with few known modifiable risk factors. Cumulative exposure to lead, at levels experienced in the community, may exacerbate PD-related neural dysfunction, resulting in impaired cognition. Among 101 persons with PD ("cases") and, separately, 50 persons without PD ("controls"), we evaluated cumulative lead exposure, gauged by tibia and patella bone lead concentrations, in relation to cognitive function, assessed using a telephone battery developed and validated in a separate sample of PD patients. We also assessed the interaction between lead and case-control status. After multivariable adjustment, higher tibia bone lead concentration among PD cases was associated with worse performance on all of the individual telephone tests. In particular, tibia lead levels corresponded to significantly worse performance on a telephone analog of the Mini-Mental State Examination and tests of working memory and attention. Moreover, higher tibia bone lead concentration was associated with significantly worse global composite score encompassing all the cognitive tests (P = 0.04). The magnitude of association per standard deviation increment in tibia bone lead level was equivalent to the difference in global scores among controls in our study, who were approximately 7 years apart in age. The tibia lead-cognition association was notably stronger within cases than within controls (P(difference) = 0.06). Patella bone lead concentration was not consistently associated with performance on the tests. These data provide evidence suggesting that cumulative exposure to lead may result in worsened cognition among persons with PD. Copyright © 2012 Movement Disorders Society.

  11. Bone stress in runners with tibial stress fracture.

    PubMed

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Pullout strength of bone-patellar tendon-bone allograft bone plugs: a comparison of cadaver tibia and rigid polyurethane foam.

    PubMed

    Barber, F Alan

    2013-09-01

    To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. Evidence for differential control of tibial position in perturbed unilateral stance after acute ACL rupture.

    PubMed

    Chmielewski, T L; Ramsey, D K; Snyder-Mackler, L

    2005-01-01

    Functional outcomes in anterior cruciate ligament-deficient "potential copers" and "non-copers" may be related to their knee stabilization strategies. Therefore, the purpose of this study was to differentiate dynamic knee stabilization strategies of potential copers and non-copers through analysis of sagittal plane knee angle and tibia position during disturbed and undisturbed unilateral standing. Ten uninjured potential coper and non-coper subjects stood in unilateral stance on a platform that translated anteriorly, posteriorly and laterally. Knee angle and tibia position with reference to the femur were calculated before and after platform movement. During perturbation trials, potential copers maintained kinematics that were similar to uninjured subjects across conditions. Conversely, non-copers stood with greater knee flexion than uninjured subjects and a tibia position that was more posterior than the other groups. Both non-copers and potential copers demonstrated small changes in tibia position following platform movement, but direction of movement was not similar. The similarities between the knee kinematics of potential copers and uninjured subjects suggest that potential copers compensated well from their injury by utilizing analogous dynamic knee stabilization strategies. In comparison to the other groups, by keeping the knee in greater flexion and the tibia in a more posterior position, non-copers appear to constrain the tibia in response to a challenging task, which is consistent with a "stiffening strategy". Based on the poor functional outcomes of non-copers, a stiffening strategy does not lead to dynamic knee stability, and the strategy may increase compressive forces which could contribute to or exacerbate articular cartilage degeneration.

  14. [Correlation analysis on the disorders of patella-femoral joint and torsional deformity of tibia].

    PubMed

    Sun, Zhen-Jie; Yuan, Yi; Liu, Rui-Bo

    2015-03-01

    To reveal the possible mechanism involved in patella-femoral degenerative arthritis (PFDA) in- duced by torsion-deformity of tibia via analyzing the relationship between torsion-deformity of the tibia in patients with PFDA and the disorder of patella-femoral joint under the static and dynamic conditions. From October 2009 to October 2010, 50 patients (86 knees, 24 knees of male patients and 62 knees of female patients) with PFDA were classified as disease group and 16 people (23 knees, 7 knees of males and 16 knees of females) in the control group. The follow indexes were measured: the torsion-angle of tibia on CT scanning imagings, the patella-femoral congruence angle and lateral patella-femoral angle under static and dynamic conditions when the knee bent at 30 degrees of flexion. Based on the measurement results, the relationship between the torsion-deformity of tibias and the disorders of patella-femoral joints in patients with PFDA were analyzed. Finally,the patients were divided into three groups including large torsion-angle group, small torsion-angle group and normal group according to the size of torsion-angle, in order to analyze the relationship between torsion-deformity and disorders of patella-femoral joint, especially under the dynamic conditions. Compared with patients without PFDA, the ones with PFDA had bigger torsion-angle (30.30 ± 7.11)° of tibia, larger patella-femoral congruence angle (13.20 ± 3.94)° and smaller lateral patella-femoral angle (12.30 ± 3.04)°. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had statistical differences respectively in both too-big torsion-angle group and too-small torsion-angle group. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had no statistical differences in normal torsion-angle group. Torsion-deformity of tibia is the main reason for disorder of patella-femoral joint in the patients with PFDA. Torsion-deformity of tibia is always accompanied by instability of patella-femoral joint,especially under the dynamic condition, thus causing PFDA. It can not only provide arrangement information and degenerative condition of patella-femoral joint,but also provide guidance through the analysis on the relationship for better clinical prevention and early treatment of degenerative bone and joint disease.

  15. The application of micro-CT in monitoring bone alterations in tail-suspended rats in vivo

    NASA Astrophysics Data System (ADS)

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; McClean, Colin J.; Fan, Yu-Bo

    2014-06-01

    Osteopenia is a pathological process that affects human skeletal health not only on earth but also in long-time spaceflight. Micro-computed tomography (micro-CT) is a nondestructive method for assessing both bone quantity and bone quality. To investigate the characteristics of micro-CT on evaluating the microgravity-induced osteopenia (e.g. early detection time and the sensitive parameters), the bone loss process of tail-suspended rats was monitored by micro-CT in this study. 8-Week-old female Sprague Dawley rats were divided into two groups: tail suspension (TS) and control (CON). Volumetric bone mineral density (vBMD) and microstructure of the femur and tibia were evaluated in vivo by micro-CT at 0, 7, 14, 22 days. Biomechanical properties of the femur and tibia were determined by three-point bending test. The ash weight of bone was also investigated. The results showed that (1) bone loss in the proximal tibia appeared earlier than in the distal femur. (2) On day 7, the percent bone volume (BV/TV) of the tibia 15.44% decreased significantly, and the trabecular separation (Tb.Sp) 30.29% increased significantly in TS group, both of which were detected earlier than other parameters. (3) Biomechanical properties (e.g. femur, -22.4% maximum load and -23.75% Young’s modulus vs. CON) and ash weight of the femur and tibia decreased significantly in the TS group in comparison to CON group. (4) vBMD of the femur and tibia were clearly related to bone ash and dry weight (r = 0.75-0.87, p < 0.05). (5) BV/TV of both femur and tibia were clearly related to maximum load and Young’s modulus (r = 0.66-0.87, p < 0.05). Similarly, trabecular vBMD and BV/TV of the femur and tibia were clearly related to Young’s modulus (r = 0.73-0.89, p < 0.05). These indicated that BV/TV and Tb.Sp were more sensitive than other parameters for evaluating bone loss induced by tail suspension, moreover, trabecular vBMD and other parameters might be used to evaluate bone strength. Therefore, micro-CT is a reliable and sensitive method for predicting unloading-induced bone loss in small animals.

  16. The use of a robotic tibial rotation device and an electromagnetic tracking system to accurately reproduce the clinical dial test.

    PubMed

    Stinton, S K; Siebold, R; Freedberg, H; Jacobs, C; Branch, T P

    2016-03-01

    The purpose of this study was to: (1) determine whether a robotic tibial rotation device and an electromagnetic tracking system could accurately reproduce the clinical dial test at 30° of knee flexion; (2) compare rotation data captured at the footplates of the robotic device to tibial rotation data measured using an electromagnetic sensor on the proximal tibia. Thirty-two unilateral ACL-reconstructed patients were examined using a robotic tibial rotation device that mimicked the dial test. The data reported in this study is only from the healthy legs of these patients. Torque was applied through footplates and was measured using servomotors. Lower leg motion was measured at the foot using the motors. Tibial motion was also measured through an electromagnetic tracking system and a sensor on the proximal tibia. Load-deformation curves representing rotational motion of the foot and tibia were compared using Pearson's correlation coefficients. Off-axis motions including medial-lateral translation and anterior-posterior translation were also measured using the electromagnetic system. The robotic device and electromagnetic system were able to provide axial rotation data and translational data for the tibia during the dial test. Motion measured at the foot was not correlated to motion of the tibial tubercle in internal rotation or in external rotation. The position of the tibial tubercle was 26.9° ± 11.6° more internally rotated than the foot at torque 0 Nm. Medial-lateral translation and anterior-posterior translation were combined to show the path of the tubercle in the coronal plane during tibial rotation. The information captured during a manual dial test includes both rotation of the tibia and proximal tibia translation. All of this information can be captured using a robotic tibial axial rotation device with an electromagnetic tracking system. The pathway of the tibial tubercle during tibial axial rotation can provide additional information about knee instability without relying on side-to-side comparison between knees. The translation of the proximal tibia is important information that must be considered in addition to axial rotation of the tibia when performing a dial test whether done manually or with a robotic device. Instrumented foot position cannot provide the same information. IV.

  17. Impact of response criteria (tibia ash weight vs. percent) on phytase relative non phytate phosphorus equivalance.

    PubMed

    Li, W; Angel, R; Kim, S-W; Jiménez-Moreno, E; Proszkowiec-Weglarz, M; Plumstead, P W

    2015-09-01

    The current study was conducted to evaluate the impacts of using tibia ash percentage or ash weight as the response criteria on estimated phytase relative equivalence. Straight run broilers were fed treatment (Trt) diets from 7 to 21 d age (6 birds/pen, 8 pens/Trt). The corn-soy based Trt were formulated to contain 0.80% Ca and 4 non-phytate phosphorus (nPP) concentrations (0.20, 0.27, 0.34, and 0.40%). Monocalcium phosphate was the inorganic phosphate source added to achieve 4 different dietary nPP concentrations and against which the nPP relative equivalence of phytase was determined. A 6-phytase (Danisco Animal Nutrition, DuPont Industrial Biosciences, Marlborough, UK) was added at 500 or 1,000 phytase unit ( FTU: )/kg to the 0.20% nPP diet resulting 6 total Trts. Tibia ash was determined at 21 d age. Phytase fed at 500 or 1,000 FTU/kg increased tibia ash weight and ash percentage compared to that of birds fed 0.20% nPP diet without phytase (P<0.05). Graded nPP were log transformed and regressed against tibia ash (weight and percentage) to calculate phytase nPP relative equivalence. The R2 obtained from pen value regressions were 0.81 and 0.84, for tibia ash weight and percentage, respectively. Ash percentage from birds fed 500 and 1,000 FTU phytase/kg fell within the range obtained with the MCP additions. Ash weight (842 mg/tibia) from birds fed 1,000 FTU phytase/kg exceeded (P<0.05) maximum weight (773 mg/tibia) measured in birds fed the greatest nPP Trt (0.40%), thus the nPP relative equivalence was only calculated in birds fed 500 FTU phytase/kg Trt. The nPP relative equivalence in birds fed 500 FTU phytase/kg were 0.117 and 0.168% based on ash percentage and weight, respectively (P<0.05). The nPP relative equivalence in birds fed 1,000 FTU phytase/kg was 0.166% for ash percentage. Results suggested that ash weight better reflects the amount of bone mineralization as compared to ash percentage and using ash percentage may lead to an underestimation of phytase efficacy. © 2015 Poultry Science Association Inc.

  18. The interplay of dietary nutrient specification and varying calcium to total phosphorus ratio on efficacy of a bacterial phytase: 1. Growth performance and tibia mineralization.

    PubMed

    Olukosi, O A; Fru-Nji, F

    2014-12-01

    A 14-d experiment was conducted to study the effects of 2 dietary variables on efficacy of a 6-phytase from Citrobacter braakii on broiler growth performance and tibia mineralization. Diets were formulated with or without nutrient matrix values for phytase as negative or positive control (NC or PC, respectively) and with 2 Ca:total P (tP; 2:1 or 2.5:1). The diets were supplemented with 0, 1,000, or 2,000 phytase units (FYT)/kg, thus producing a 2 × 2 × 3 factorial arrangement. Birds and feed were weighed on d 7 and 21, and tibia bones were collected from all the birds on d 21. The main effects of nutrient matrix, Ca:tP, and phytase supplementation were significant (P < 0.05) for all the growth performance responses (except for G:F for which there was no effect of matrix). The Ca:tP × phytase and matrix × phytase interactions were significant (P < 0.05) for weight gain. In the PC diets, phytase increased weight gain (P < 0.05) relative to the control only in diets with 2,000 FYT/kg, whereas in NC diets weight gain increased (P < 0.01) only from 0 to 1,000 FYT/kg levels. Broilers consuming diets with 2.5:1 Ca:tP had lower (P < 0.05) tibia ash, whereas phytase increased (P < 0.01) tibia ash, Ca, P, and Zn but decreased (P < 0.01) tibia K. Phytase supplementation of diets with 2:1 Ca:tP increased (P < 0.05) tibia P in birds receiving 1,000 FYT/kg relative to the control with no further increase at 2,000 FYT/kg, whereas each level of phytase supplementation increased (P < 0.05) tibia P in the diets with 2.5:1 Ca:tP. It was concluded that the best response to lower phytase supplementation (1,000 FYT/kg) was in NC diets with narrow Ca:tP, whereas the best response to higher level of phytase supplementation (2,000 FYT/kg) was achieved in diets in PC diets with wide Ca:tP. ©2014 Poultry Science Association Inc.

  19. [Structural changes in the tibial bones from an excessive load].

    PubMed

    Moshiashvili, B I

    1977-10-01

    80 cases of pathological reconstruction of the tibia in young men at the age of 18--20 are described. The pathology developed as a result of intense regular physical exercise. In 53 patients the process was localized in the upper third of the tibia, in 20--in the middle third and in 7--in the lower third of the bone. In 6 cases the fracture of the tibial proximal metaphysis happened against the background of pathological reconstruction of the tibia; 3 of them sustained simultaneously a fracture of the fibular head. Some recommendations of practical importance are suggested.

  20. Molecular development of fibular reduction in birds and its evolution from dinosaurs

    PubMed Central

    Botelho, João Francisco; Smith‐Paredes, Daniel; Soto‐Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O.

    2016-01-01

    Birds have a distally reduced, splinter‐like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid‐related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis‐like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo–tibial disparity. PMID:26888088

  1. Peripheral Quantitative Computed Tomography: Measurement Sensitivity in Persons With and Without Spinal Cord Injury

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Boaldin, Kathryn M.; Corey, Trent A.; Fog, Daniel B.; Ruen, Jacquelyn M.

    2012-01-01

    Objectives To determine (1) the error attributable to external tibia-length measurements by using peripheral quantitative computed tomography (pQCT) and (2) the effect these errors have on scan location and tibia trabecular bone mineral density (BMD) after spinal cord injury (SCI). Design Blinded comparison and criterion standard in matched cohorts. Setting Primary care university hospital. Participants Eight able-bodied subjects underwent tibia length measurement. A separate cohort of 7 men with SCI and 7 able-bodied age-matched male controls underwent pQCT analysis. Interventions Not applicable. Main Outcome Measures The projected worst-case tibia-length–measurement error translated into a pQCT slice placement error of ±3mm. We collected pQCT slices at the distal 4% tibia site, 3mm proximal and 3mm distal to that site, and then quantified BMD error attributable to slice placement. Results Absolute BMD error was greater for able-bodied than for SCI subjects (5.87mg/cm3 vs 4.5mg/cm3). However, the percentage error in BMD was larger for SCI than able-bodied subjects (4.56% vs 2.23%). Conclusions During cross-sectional studies of various populations, BMD differences up to 5% may be attributable to variation in limb-length–measurement error. PMID:17023249

  2. Physiological joint line total knee arthroplasty designs are especially sensitive to rotational placement - A finite element analysis.

    PubMed

    Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N

    2018-01-01

    Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.

  3. The effects of tibia profile, distraction angle, and knee load on wedge instability and hinge fracture: A finite element study.

    PubMed

    Weng, Pei-Wei; Chen, Chia-Hsien; Luo, Chu-An; Sun, Jui-Sheng; Tsuang, Yang-Hwei; Cheng, Cheng-Kung; Lin, Shang-Chih

    2017-04-01

    Several plate systems for high tibial osteotomy (HTO) have been developed to stabilize the opening wedge of an osteotomized tibia. Among them, the TomoFix system, having a quasi-straight and T-shaped design, has been widely adopted in the literature. However, this system is implemented by inserting a lag (i.e., cortical) screw through the proximal combi-hole, to deform the plate and pull the distal tibia toward the plate. This process potentially induces plate springback and creates an elastic preload on the osteotomized tibia, especially at the lateral hinge of the distracted wedge. Using the finite-element method, this study aims to investigate the contoured effect of lag-screw application on the biomechanical behavior of the tibia-plate construct. Two tibial profiles (normal and more concave), three distraction angles (6°, 9°, and 12°), and three knee loads (intraoperative: contouring plate; postoperative: weight and nonweight bearing) are systematically varied in this study. The wedge instability and fracture risk at the lateral hinge are chosen as the comparison indices. The results show the necessity of preoperative planning for a precontoured procedure, rather than elastic deformation using a lag screw. Within the intraoperative period, a more concave tibial profile and/or reduced distraction angle (i.e., 6° or 9°) necessitate a higher compressive load to elastically deform the plate, thereby deteriorating the lateral-hinge fracture risk. A precontoured plate is recommended in the case that the proximal tibia is highly concave and the distraction angle is insufficient to stretch the tibial profile. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Stunting, adiposity, and the individual-level "dual burden" among urban lowland and rural highland Peruvian children.

    PubMed

    Pomeroy, Emma; Stock, Jay T; Stanojevic, Sanja; Miranda, J Jaime; Cole, Tim J; Wells, Jonathan C K

    2014-01-01

    The causes of the "dual burden" of stunting and obesity remain unclear, and its existence at the individual level varies between populations. We investigate whether the individual dual burden differentially affects low socioeconomic status Peruvian children from contrasting environments (urban lowlands and rural highlands), and whether tibia length can discount the possible autocorrelation between adiposity proxies and height due to height measurement error. Stature, tibia length, weight, and waist circumference were measured in children aged 3-8.5 years (n = 201). Height and body mass index (BMI) z scores were calculated using international reference data. Age-sex-specific centile curves were also calculated for height, BMI, and tibia length. Adiposity proxies (BMI z score, waist circumference-height ratio (WCHtR)) were regressed on height and also on tibia length z scores. Regression model interaction terms between site (highland vs. lowland) and height indicate that relationships between adiposity and linear growth measures differed significantly between samples (P < 0.001). Height was positively associated with BMI among urban lowland children, and more weakly with WCHtR. Among rural highland children, height was negatively associated with WCHtR but unrelated to BMI. Similar results using tibia length rather than stature indicate that stature measurement error was not a major concern. Lowland and rural highland children differ in their patterns of stunting, BMI, and WCHtR. These contrasts likely reflect environmental differences and overall environmental stress exposure. Tibia length or knee height can be used to assess the influence of measurement error in height on the relationship between stature and BMI or WCHtR. Copyright © 2014 Wiley Periodicals, Inc.

  5. Limb lengthening in achondroplasia.

    PubMed

    Chilbule, Sanjay K; Dutt, Vivek; Madhuri, Vrisha

    2016-01-01

    Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. Nine patients aged five to 25 years (mean age 10.2 years) underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%), 9.9 cm (52.8%) and 9.6 cm (77.9%), respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3(rd) percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment). Healing index was not affected by age or bone segment. Extensive limb lengthening (more than 50% over initial length) carries significant risk and should be undertaken only after due consideration.

  6. A Novel microCT Method for Bone and Marrow Adipose Tissue Alignment Identifies Key Differences Between Mandible and Tibia in Rats.

    PubMed

    Coutel, Xavier; Olejnik, Cécile; Marchandise, Pierre; Delattre, Jérôme; Béhal, Hélène; Kerckhofs, Greet; Penel, Guillaume

    2018-01-30

    Bone homeostasis is influenced by the bone marrow adipose tissue (BMAT). BMAT distribution varies from one anatomical location in the skeleton to another. We developed an advanced microfocus computed tomography imaging and analysis protocol that allows accurate alignment of both the BMAT distribution and bone micro-architecture as well as calculation of the distance of the BMAT adipocytes from the bone surface. Using this protocol, we detected a different spatial BMAT distribution between the rat tibia and mandible: in the proximal metaphysis of the tibia a large amount of BMAT (~ 20% of the total BMAT) was located close to the bone surface (< 20 µm), whereas in the alveolar ridge ~ 30% of the total BMAT was located between 40 and 60 µm from the bone surface. In the alveolar ridge of rats, the trabecular bone volume was 48.3% higher compared to the proximal metaphysis of the tibia (p < 0.0001) and the percentage of adiposity determined to the relative marrow volume was lower (1.5%) compared to the proximal metaphysis of the tibia (9%, p = 0.0002). Interestingly, in the tibia a negative correlation was found between the percentage of adiposity in the total volume and the trabecular thickness (r =- 0.74, p = 0.037). The present study highlights that in comparison to tibial proximal metaphysis, the mandibular bone exhibits a massive trabecular network and a low BMAT content with almost no contact with the bone surface. These findings are of great interest because of the importance of the fat-bone interaction and its potential relevance to several resorptive bone diseases.

  7. The Anteroposterior Axis of the Proximal Tibia Can Change After Tibial Resection in Total Knee Arthroplasty: Computer Simulation Using Asian Osteoarthritis Knees.

    PubMed

    Ushio, Tetsuro; Mizu-Uchi, Hideki; Okazaki, Ken; Ma, Yuan; Kuwashima, Umito; Iwamoto, Yukihide

    2017-03-01

    We evaluated the effect of cutting surface on the anteroposterior (AP) axis of the proximal tibia using a 3-dimensional (3D) bone model to ensure proper tibial rotational alignment in total knee arthroplasty. 3D bone models were reconstructed from the preoperative computed tomography data of 93 Japanese osteoarthritis knees with varus deformity. The AP axis was defined as the perpendicular bisector of the medial and lateral condylar centers in a 3D coordinate system. Bone cutting of the proximal tibia was performed with various tibial posterior slopes (0°, 3°, 7°) to the mechanical axis, and we compared the AP axes before and after bone cutting. The AP axis before bone cutting crossed a point at about 16% (one-sixth) of the distance from the medial edge of the patellar tendon at its tibial attachment. The AP axis after bone cutting was significantly internally rotated at all posterior slopes: 4.1° at slope 0°, 3.0° at slope 3°, and 2.1° at slope 7°. The percentages of cases with differences of more than 3° or 5° were 66.7% and 34.4% at slope 0°, 53.8% and 24.7% at slope 3°, and 38.3% and 11.8% at slope 7°, respectively. The AP axis of the proximal tibia may be rotated internally after resection of the proximal tibia in total knee arthroplasty. Hence, surgeons should recognize the effect of changes in the cutting surface on rotational alignment of the proximal tibia. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effect of strontium ranelate on fracture healing in rat tibia.

    PubMed

    Cebesoy, Oguz; Tutar, Ediz; Kose, Kamil Cagri; Baltaci, Yasemin; Bagci, Cahit

    2007-12-01

    Various anti-osteoporotic agents are available for clinical use. In contrast to other anti-osteoporotic drugs, strontium ranelate has anti-resorptive and bone-forming effects (dual action). Our objective in the present study is to investigate the efficacy of strontium ranelate (SR) on fracture healing in rat tibia. Forty-two male Wistar rats randomized into two groups (groups 1 and 2, n=21 for each). Left tibiae of all animals were broken in a closed manner using a manual three-point bending technique through mid-tibia following deep anesthesia with ketamine. The animals in group 1 were fed 25g/day specially produced food containing 450mg/kg SR starting from the first post-operative day. Group 2 were given 25g/day normal food. The animals were sacrificed on the 2nd, 3rd and 4th post-operative weeks (each week 7 animals were sacrificed from each group) and the broken tibiae were removed. The tibiae were examined first radiographically and second, histopathologically. Radiologically, callus maturity and bone union increased with time in both groups. But no significant differences were found regarding callus maturity and bone union in weekly comparisons (p=0.52, p=0.19, p=0.74). Histopathologically, it was seen that the fractures remarkably healed steadily in both groups on the 2nd, 3rd and 4th post-operative weeks. But no significant differences were found regarding the progression of fracture callus in weekly comparison (p=1.0, p=0.52, p=1.0). In the present study, we were unable to find any beneficial or harmful effects of strontium ranelate on fracture healing.

  9. The Contribution of SPECT/CT in the Diagnosis of Stress Fracture of the Proximal Tibia.

    PubMed

    Okudan, Berna; Coşkun, Nazım; Arıcan, Pelin

    2018-02-01

    Stress fractures are injuries most commonly seen in the lower limbs and are usually caused by repetitive stress. While the distal and middle third of the tibia is the most frequent site for stress fractures (almost 50%), stress fractures of the proximal tibia is relatively rare and could be confused with other types of tibial fractures, thus altering management plans for the clinician. Early diagnosis of stress fractures is also important to avoid complications. Imaging plays an important role in the diagnosis of stress fractures, especially bone scan. Combined with single-photon emission computed tomography/computed tomography (SPECT/CT) it is an important imaging technique for stress fractures in both upper and lower extremities, and is widely preferred over other imaging techniques. In this case, we present the case of a 39-year-old male patient diagnosed with stress fracture of the proximal tibia and demonstrate the contribution of CT scan fused with SPECT imaging in the early diagnosis of stress fracture prior to other imaging modalities.

  10. The immediate effect of neuromuscular joint facilitation on the rotation of the tibia during walking.

    PubMed

    Li, Desheng; Huang, Qiuchen; Huo, Ming; Hiiragi, Yukinobu; Maruyama, Hitoshi

    2017-01-01

    [Purpose] The aim of this study was to investigate the change in tibial rotation during walking among young adults after neuromuscular joint facilitation therapy. [Subjects and Methods] The subjects were twelve healthy young people (6 males, 6 females). A neuromuscular joint facilitation intervention and nonintervention were performed. The interventions were performed one after the other, separated by a 1-week interval. The order of the interventions was completely randomized. The rotation of the tibia during walking was evaluated before and after treatment. [Results] The neuromuscular joint facilitation group demonstrated increased lateral rotation of the tibia in the overall gait cycle and stance phase, and decreased medial rotation of the tibia in the overall gait cycle, stance phase, and swing phase after the neuromuscular joint facilitation intervention. In the control group, there were no significant differences. [Conclusion] These results suggest neuromuscular joint facilitation intervention has an immediate effect on the rotational function of the knee.

  11. Reanalysis of the Trotter Tibia Quandary and its Continued Effect on Stature Estimation of Past-Conflict Service Members.

    PubMed

    Lynch, Jeffrey James; Brown, Carrie; Palmiotto, Andrea; Maijanen, Heli; Damann, Franklin

    2018-04-23

    Forensic casework from past-conflicts relies on the corrected historical Trotter data for stature estimation in Fordisc. For roughly 10 years', stature estimation using this data has produced point estimates for the tibia that are on average 1.25 inches less than the other long bones. This issue was identified after applying the equations derived from Fordisc to the USS Oklahoma commingled assemblage. Reevaluation of Fordisc revealed that a correction factor of 20 mm, instead of 10 mm, was mistakenly applied to the Trotter tibia data. Historical forensic anthropology reports written at the Defense POW/MIA Accounting Agency were utilized to identify that the overcorrection is isolated to Fordisc 3 with an error rate of 5% of known antemortem statures falling outside of the prediction intervals that relied on the tibia. Further evaluation of the Oklahoma sample indicates the 10 mm correction is still producing point estimates less than the other long bones. © 2018 American Academy of Forensic Sciences.

  12. Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes during Walking and Running

    PubMed Central

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase. PMID:24732724

  13. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.

    PubMed

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.

  14. Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age.

    PubMed

    Liu, S B; Liao, X D; Lu, L; Li, S F; Wang, L; Zhang, L Y; Jiang, Y; Luo, X G

    2017-01-01

    An experiment was conducted to investigate the effect of dietary non-phytate phosphorus (NPP) level on growth performance, bone characteristics and phosphorus metabolism-related gene expressions, so as to evaluate the dietary NPP requirement of broiler chicks fed a conventional corn-soybean meal diet from 1 to 21 d of age. A total of 540 day-old Arbor Acres male chicks were randomly allocated to one of nine treatments with six replicate cages of 10 birds per cage in a completely randomized design, and fed a basal corn-soybean meal diet (containing 0.08% of NPP) supplemented with 0.10, 0.15, 0.25, 0.30, 0.35, 0.40, 0.45, or 0.50% of inorganic phosphorus in the form of CaHPO 4 ·2H 2 O, respectively. Each diet contained the constant calcium content of about 1.0%. The results showed that daily weight gain, serum inorganic P, tibia bone strength, tibia ash percentage, tibia bone mineral content (BMC) and density (BMD), middle toe ash percentage, middle toe BMC and BMD were affected (P < 0.0001) by dietary NPP level, and increased linearly (P < 0.0001) and quadraticly (P < 0.004) as dietary NPP levels increased. The gene expression of type IIb sodium-phosphate cotransporter (NaPi-IIb) in the duodenum was affected (P < 0.03) and decreased linearly (P < 0.002) as dietary NPP levels increased. Dietary NPP requirements estimated based on fitted broken-line models (P < 0.0001) of the sensitive indices including daily weight gain, tibia bone strength, tibia ash percentage, tibia BMC and BMD as well as middle toe ash percentage were 0.34∼0.39%. The results from this study indicate that tibia BMC and BMD might be new, sensitive, and noninvasive criteria to evaluate the dietary NPP requirements of broilers, and the dietary NPP requirement is 0.39% for broiler chicks fed a conventional corn-soybean meal diet from 1 to 21 d of age. © 2016 Poultry Science Association Inc.

  15. Epidemiology of open tibia fractures in a population-based database: update on current risk factors and clinical implications.

    PubMed

    Weber, Christian David; Hildebrand, Frank; Kobbe, Philipp; Lefering, Rolf; Sellei, Richard M; Pape, Hans-Christoph

    2018-02-02

    Open tibia fractures usually occur in high-energy mechanisms and are commonly associated with multiple traumas. The purposes of this study were to define the epidemiology of open tibia fractures in severely injured patients and to evaluate risk factors for major complications. A cohort from a nationwide population-based prospective database was analyzed (TraumaRegister DGU ® ). Inclusion criteria were: (1) open or closed tibia fracture, (2) Injury Severity Score (ISS) ≥ 16 points, (3) age ≥ 16 years, and (4) survival until primary admission. According to the soft tissue status, patients were divided either in the closed (CTF) or into the open fracture (OTF) group. The OTF group was subdivided according to the Gustilo/Anderson classification. Demographic data, injury mechanisms, injury severity, surgical fracture management, hospital and ICU length of stay and systemic complications (e.g., multiple organ failure (MOF), sepsis, mortality) were collected and analyzed by SPSS (Version 23, IBM Inc., NY, USA). Out of 148.498 registered patients between 1/2002 and 12/2013; a total of 4.940 met the inclusion criteria (mean age 46.2 ± 19.4 years, ISS 30.4 ± 12.6 points). The CTF group included 2000 patients (40.5%), whereas 2940 patients (59.5%) sustained open tibia fractures (I°: 49.3%, II°: 27.5%, III°: 23.2%). High-energy trauma was the leading mechanism in case of open fractures. Despite comparable ISS and NISS values in patients with closed and open tibia fractures, open fractures were significantly associated with higher volume resuscitation (p < 0.001), more blood (p < 0.001), and mass transfusions (p = 0.006). While the rate of external fixation increased with the severity of soft tissue injury (37.6 to 76.5%), no major effect on mortality and other major complications was observed. Open tibia fractures are common in multiple trauma patients and are therefore associated with increased resuscitation requirements, more surgical procedures and increased in-hospital length of stay. However, increased systemic complications are not observed if a soft tissue adapted surgical protocol is applied.

  16. Ultrasound-Diagnosed Tibia Stress Fracture: A Case Report.

    PubMed

    Amoako, Adae; Abid, Ayesha; Shadiack, Anthony; Monaco, Robert

    2017-01-01

    Stress fractures are a frequent cause of lower extremity pain in athletes, and especially in runners. Plain imaging has a low sensitivity. Magnetic resonance imaging (MRI) or bone scan scintigraphy is the criterion standard, but expensive. We present the case of a young female distance runner with left shin pain. Plain radiography was unremarkable. Ultrasound showed focal hyperechoic elevation of the periosteum with irregularity over the distal tibia and increased flow on Doppler. These findings were consistent with a distal tibia stress fracture and confirmed by MRI. Examination of our case will highlight the utility of considering an ultrasound for diagnosis of tibial stress fracture.

  17. Posttraumatic tibia valga: a case demonstrating asymmetric activity at the proximal growth plate on technetium bone scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zionts, L.E.; Harcke, H.T.; Brooks, K.M.

    1987-07-01

    Posttraumatic tibia valga is a well-recognized complication following fracture of the upper tibial metaphysis in young children. We present a case of a child who developed a valgus deformity following fracture of the proximal tibia and fibula in which quantitative bone scintigraphy at 5 months after injury demonstrated increased uptake at the proximal tibial growth plate with proportionally greater uptake on the medial side. This finding suggests that the valgus deformity in this patient was due to a relative increase in vascularity and consequent overgrowth of the medial portion of the proximal tibial physis.

  18. Outcome of bone recycling using liquid nitrogen as bone reconstruction procedure in malignant and recurrent benign aggressive bone tumour of distal tibia: A report of four cases.

    PubMed

    Gede, Eka Wiratnaya I; Ida Ayu, Arrisna Artha; Setiawan I Gn, Yudhi; Aryana Ign, Wien; I Ketut, Suyasa; I Ketut, Siki Kawiyana; Putu, Astawa

    2017-01-01

    Amputation still considered as primary choice of malignancy treatment in distal tibia. Bone recycling with liquid nitrogen for reconstruction following resection of malignant bone tumours offers many advantages. We presented four patients with osteosarcoma, Ewing sarcoma, adamantinoma and recurrent giant cell tumour over distal tibia. All of the patients underwent wide excision and bone recycling using liquid nitrogen as bone reconstruction. The mean functional Musculoskeletal Tumor Society (MSTS) score was 75% with no infection and local recurrent. The reconstruction provides good local control and functional outcome.

  19. Ultrasound-Diagnosed Tibia Stress Fracture: A Case Report

    PubMed Central

    Amoako, Adae; Abid, Ayesha; Shadiack, Anthony; Monaco, Robert

    2017-01-01

    Stress fractures are a frequent cause of lower extremity pain in athletes, and especially in runners. Plain imaging has a low sensitivity. Magnetic resonance imaging (MRI) or bone scan scintigraphy is the criterion standard, but expensive. We present the case of a young female distance runner with left shin pain. Plain radiography was unremarkable. Ultrasound showed focal hyperechoic elevation of the periosteum with irregularity over the distal tibia and increased flow on Doppler. These findings were consistent with a distal tibia stress fracture and confirmed by MRI. Examination of our case will highlight the utility of considering an ultrasound for diagnosis of tibial stress fracture. PMID:28469488

  20. Effects of stocking density on growth performance, meat quality and tibia development of Pekin ducks.

    PubMed

    Zhang, Ya Ru; Zhang, Lu Shuang; Wang, Zhong; Liu, Yang; Li, Fu Huang; Yuan, Jian Min; Xia, Zhao Fei

    2018-06-01

    This study was performed to investigate the effects of stocking density on performance, meat quality and tibia development in Pekin ducks reared on a plastic wire floor. A total of 372 healthy, 21-day-old, male ducks with similar body weight (BW) were randomly allotted to stocking densities of five (low), eight (medium) and 11 (high) birds/m 2 . Each group had six replicates. Results showed that compared with the low density group, medium and high stocking density caused a decrease in final BW at 42 days old, and in average daily gain, European performance index (p < .01) and meat pH at 45 min postmortem (p < .001), and an increase of meat drip loss (p < .01). High stocking density resulted in an increase of feed/gain ratio (p < .001), but a decrease of tibia calcium (p < .01) and phosphorus content (p < .05). Meat color, shear force values, tibia size (weight, length, and width) and breaking strength were not significantly influenced by stocking density. In conclusion, stocking density over eight birds/m 2 negatively affects growth performance, but meat quality and tibia development are not dramatically influenced. Based on this study, the stocking density of male Pekin ducks should be adjusted between five and eight birds/m 2 . © 2018 Japanese Society of Animal Science.

  1. Molecular development of fibular reduction in birds and its evolution from dinosaurs.

    PubMed

    Botelho, João Francisco; Smith-Paredes, Daniel; Soto-Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O

    2016-03-01

    Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo-tibial disparity. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  2. The distal tibia of Hispanopithecus laietanus: more evidence for mosaic evolution in Miocene apes.

    PubMed

    Tallman, Melissa; Almécija, Sergio; Reber, Samantha L; Alba, David M; Moyà-Solà, Salvador

    2013-05-01

    IPS18800 is a partial skeleton attributed to the fossil great ape Hispanopithecus laietanus, and dated to 9.6 Ma (millions of years ago). Previous studies on the postcranial anatomy of this taxon have shown that it displayed a derived, extant great ape-like orthograde body plan with suspensory adaptations, uniquely coupled with adaptations for above-branch pronograde locomotion. Here, for the first time, we describe and analyze in detail the distal tibia of the IPS18800 skeleton of Hispanopithecus with the aid of three-dimensional geometric morphometrics based on 53 landmarks and semilandmarks collected on a broad sample of extant catarrhines and fossil hominoids. Results of principal components and canonical variate analyses reveal that the distal tibia of Hispanopithecus occupies a unique position in the morphospace, similar in some respects to pronograde monkeys, and in other respects to extant apes. The IPS18800 distal tibia combines adaptations for above branch quadrupedalism, such as a keeled trochlear surface and strong intercollicular groove, with adaptations for vertical climbing, such as an anteroposteriorly flattened shaft, enlarged fibular facet and a tibial stop. These results on the distal tibia agree with those from other anatomical regions, indicating that this taxon displayed a locomotor repertoire unlike any extant ape, combining vertical climbing and clambering with above-branch quadrupedalism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia.

    PubMed

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for last one month and after imaging studies posterior longitudinal tibial stress fracture was detected on his left tibia. After six months the patient was admitted to our clinic with the same type of complaints in his right leg. All imaging modalities and blood counts were performed and as a result longitudinal posterior tibial stress fractures were detected on his right tibia. Treatment of tibial stress fracture includes rest and modified activity, followed by a graded return to activity commensurate with bony healing. We have applied the same treatment protocol and our results were acceptable but our follow up time short for this reason our study is restricted for separate stress fractures of the posterior tibia. Although the main localization of tibial stress fractures were unilateral, anterior and transverse pattern, rarely, like in our case, the unusual bilateral posterior localization and longitudinal pattern can be seen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Thermoelastic stress analysis to validate tibial fixation technique in total ankle prostheses - a pilot study.

    PubMed

    Ficklscherer, Andreas; Wegener, Bernd; Niethammer, Thomas; Pietschmann, Matthias F; Müller, Peter E; Jansson, Volkmar; Trouillier, Hans-Heinrich

    2013-03-01

    Recent literature has shown a persistently high rate of aseptic loosening of the tibial component in total ankle prostheses. We analyzed the interface between the tibial bone and tibial component with a thermoelastic stress analysis to demonstrate load transmission onto the distal tibia. In this regard, we used two established ankle prostheses, which were implanted in two human cadaveric and in two third-generation composite tibia bones (Sawbones®, Sweden). Subsequently, the bones were attached to a hydropulser and a sinusoidal load of 700 N was applied. Both prostheses had an inhomogeneous load transmission onto the distal tibia. Instead of distributing load equally to the subarticular bone, forces were focused around the bolting stem, accumulating as stress maxima with forces up to 90 MPa. Furthermore, we were able to demonstrate load transmission into the metaphysis of the bone. As demonstrated in this study, anchoring systems with stems used in all established total ankle prostheses lead to an inhomogeneous load transmission onto the distal tibia, and furthermore, to a distribution of load into the weaker metaphyseal bone. For these reasons, we favor a prosthetic design with minimal bone resection and without any stem or stem-like anchoring system, which facilitates a homogeneous load transmission onto the distal tibia. Thermoelastic stress analysis proved to be a fast and easy-to-perform method to visualize load transmission.

  5. Precision of pQCT-measured total, trabecular and cortical bone area, content, density and estimated bone strength in children

    PubMed Central

    Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.

    2017-01-01

    Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412

  6. Patient-Based Outcomes After Tibia Fracture in Children and Adolescents

    PubMed Central

    Sabatini, Coleen S; Curtis, Tracy A; Mahan, Susan T

    2014-01-01

    Introduction : Tibia fractures are common in pediatric patients and time necessary to return to normal function may be underappreciated. The purpose of this study was to assess functional recovery in pediatric patients who sustain tibia fractures, utilizing the Pediatrics Outcome Data Collection Instrument (PODCI), in order to provide evidence-based information on post-injury functional limitations and anticipated recovery times. Methods : 84patients (out of 264 eligible patients, response rate 32%) age 1.5-18 years treated for a tibia fracture at a large children's hospital between 1/07 and 4/08 completed a PODCI questionnaire at 6 and 12 months post-injury. PODCI questionnaires were compared to previously reportednormal controls using Student's t-test in six categories. Results : At 6 months after injury, the Sports functioning PODCI score was significantly less than healthy controls in both the parent reports for adolescent (mean 88.71 versus 95.4) and adolescent self-report (mean 90.44 versus 97.1); these showed no difference at 12 months. Discussion : For adolescents who sustain fractures of the tibia, there remains a negative impact on their sports functioning after 6 months that resolves by 12 months. Physicians can counsel their patients that although they may be limited in their sports function for some time after injury, it is anticipated that this will resolve by one year from the time of injury. Level of Evidence : Level II. PMID:24627732

  7. Ankle arthrodesis with bone graft after distal tibia resection for bone tumors.

    PubMed

    Campanacci, Domenico Andrea; Scoccianti, Guido; Beltrami, Giovanni; Mugnaini, Marco; Capanna, Rodolfo

    2008-10-01

    Treatment of distal tibial tumors is challenging due to the scarce soft tissue coverage of this area. Ankle arthrodesis has proven to be an effective treatment in primary and post-traumatic joint arthritis, but few papers have addressed the feasibility and techniques of ankle arthrodesis in tumor surgery after long bone resections. Resection of the distal tibia and reconstruction by ankle fusion using non-vascularized structural bone grafts was performed in 8 patients affected by malignant (5 patients) or aggressive benign (3 patients) tumors. Resection length of the tibia ranged from 5 to 21 cm. Bone defects were reconstructed with cortical structural autografts (from contralateral tibia) or allografts or both, plus autologous bone chips. Fixation was accomplished by antegrade nailing (6 cases) or plating (2~cases). All the arthrodesis successfully healed. At followup ranging from 23 to 113 months (average 53.5), all patients were alive. One local recurrence was observed with concomitant deep infection (a below-knee amputation was performed). Mean functional MSTS score of the seven available patients was 80.4% (range, 53 to 93). Resection of the distal tibia and arthrodesis of the ankle with non-vascularized structural bone grafts, combined with autologous bone chips, can be an effective procedure in bone tumor surgery with durable and satisfactory functional results. In shorter resections, autologous cortical structural grafts can be used; in longer resections, allograft structural bone grafts are needed.

  8. Maternal Consumption of Hesperidin and Naringin Flavanones Exerts Transient Effects to Tibia Bone Structure in Female CD-1 Offspring

    PubMed Central

    Sacco, Sandra M.; Saint, Caitlin; LeBlanc, Paul J.; Ward, Wendy E.

    2017-01-01

    Hesperidin (HSP) and naringin (NAR), flavanones rich in citrus fruits, support skeletal integrity in adult and aging rodent models. This study determined whether maternal consumption of HSP and NAR favorably programs bone development, resulting in higher bone mineral density (BMD) and greater structure and biomechanical strength (i.e., peak load) in female offspring. Female CD-1 mice were fed a control diet or a HSP + NAR diet five weeks before pregnancy and throughout pregnancy and lactation. At weaning, female offspring were fed a control diet until six months of age. The structure and BMD of the proximal tibia were measured longitudinally using in vivo micro-computed tomography at 2, 4, and 6 months of age. The trabecular bone structure at two and four months and the trabecular BMD at four months were compromised at the proximal tibia in mice exposed to HSP and NAR compared to the control diet (p < 0.001). At six months of age, these differences in trabecular structure and BMD at the proximal tibia had disappeared. At 6 months of age, the tibia midpoint peak load, BMD, structure, and the peak load of lumbar vertebrae and femurs were similar (p > 0.05) between the HSP + NAR and control groups. In conclusion, maternal consumption of HSP and NAR does not enhance bone development in female CD-1 offspring. PMID:28282882

  9. A Novel Shape Memory Plate Osteosynthesis for Noninvasive Modulation of Fixation Stiffness in a Rabbit Tibia Osteotomy Model

    PubMed Central

    Müller, Christian W.; Pfeifer, Ronny; Meier, Karen; Decker, Sebastian; Reifenrath, Janin; Gösling, Thomas; Wesling, Volker; Krettek, Christian; Krämer, Manuel

    2015-01-01

    Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery. PMID:26167493

  10. Case report 732. Gout presenting as a large pseudo tumor (tophus) in the proximal end of the tibia.

    PubMed

    Cope, R; Marsan, R; Castelli, M J

    1992-01-01

    A case of a large, lytic, tophaceous defect in the upper end of the tibia has been reported in a 44-year-old man as a solitary lesion. The term "gouty tophus" should not be confused with the geode or subchondral bone cyst.

  11. Extensive limb lengthening in Ollier's disease: 25-year follow-up.

    PubMed

    Märtson, Aare; Haviko, Tiit; Kirjanen, Kaur

    2005-01-01

    A case of extensive lower limb lengthening (32 cm) in a 14-year-old male patient with Ollier's disease is reported. A varus deformity of the femur and a valgus deformity of the tibia were evident. The femur was successfully lengthened 22 cm by metaphyseal distraction, and the tibia was lengthened 10 cm by two-stage distraction-compression method with a cylindrical bone allograft. Ilizarov's distraction device was used. Radiologically, a good bone regenerate was formed. Host bone has incorporated (like sarcophagi) the allograft of tibia. No evidence of vascular or neural disturbances was found. The lengthening indices were counted for femur 22.5 days per centimeter and for tibia 21 days per centimeter, altogether 15.5 days per centimeter. Bone lengthening was performed through the Ollier's disease foci. Fine needle biopsy investigation showed that most embryonic cartilage cells had been replaced with bone tissue. After five years and a 25-year follow-up the patient was satisfied with the result. The function of the knee joint was limited, but the limb was fully weight-bearing. Signs of knee osteoarthritis were found.

  12. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: II. Sex, age, side differences.

    PubMed

    Ruff, C B; Hayes, W C

    1983-03-01

    Intra-populational variation in cross-sectional geometric properties of the femur and tibia are investigated in the Pecos Pueblo skeletal sample. Sex differences in geometric parameters suggest that male lower limb bones are more adapted for A-P bending, females for M-L bending. Proposed explanations for this finding include sexual dimorphism in pelvic structure and culturally prescribed sex-related activities at Pecos. With aging, both males and females undergo endosteal resorption and cortical thinning, greater among females. Both sexes also demonstrate an increase with age in subperiosteal area and second moments of area, supporting results reported in some studies of modern population samples. Sex and site-specific remodeling of the femur and tibia with aging also occur. These localized remodeling changes appear to selectively conserve more compact cortical bone in areas of high mechanical stress. Side differences in cross-sectional geometric properties indicate that left lower limb bones are generally larger than right lower limb bones, with asymmetry greater among females. In particular, left femora and tibiae are relatively stronger in A-P bending, again more so in females.

  13. Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia.

    PubMed

    Lu, Minxun; Li, Yongjiang; Luo, Yi; Zhang, Wenli; Zhou, Yong; Tu, Chongqi

    2018-03-06

    Currently, it is challenging to treat massive bone defects of proximal tibia. Although numerous methods are available for reconstruction with epiphysis preservation, limitations in knee function and complications are noted with these methods. Our paper describes our attempt to reconstruct a marked defect in the proximal tibia with an uncemented three-dimensional (3D)-printed prosthesis and to evaluate the prosthesis design and short-term outcomes. A 15-year-old boy with metaphyseal osteosarcoma of the tibia underwent intercalary allograft reconstruction following wide tumour resection with epiphysis preservation. However, chronic allograft rejection and/or infection occurred after the surgery and a sinus tract was formed. The rejection and/or infection process was successfully stopped by the removal of the graft and implantation of an antibiotic-loaded cement spacer; however, the limb function was poor. Because of the irregular shape of the defect and the excessively short length of the residual proximal tibia, we used the 3D printing technology to design and fabricate a personalised prosthesis to reconstruct the defect, with the preservation of the knee joint. At the last follow-up at 26 months, the patient had satisfactory limb function. The 3D-printed prosthesis may be a feasible option in the reconstruction of tibial metaphyseal defects with the preservation of the knee joint. Moreover, it can result in good postoperative function and low complication rates. However, a long-term follow-up is required to clarify its long-term outcomes.

  14. Limb Lengthening in Patients with Achondroplasia

    PubMed Central

    Park, Kwang-Won; Garcia, Rey-an Niño; Rejuso, Chastity Amor; Choi, Jung-Woo

    2015-01-01

    Purpose Although bilateral lower-limb lengthening has been performed on patients with achondroplasia, the outcomes for the tibia and femur in terms of radiographic parameters, clinical results, and complications have not been compared with each other. We proposed 1) to compare the radiological outcomes of femoral and tibial lengthening and 2) to investigate the differences of complications related to lengthening. Materials and Methods We retrospectively reviewed 28 patients (average age, 14 years 4 months) with achondroplasia who underwent bilateral limb lengthening between 2004 and 2012. All patients first underwent bilateral tibial lengthening, and at 9-48 months (average, 17.8 months) after this procedure, bilateral femoral lengthening was performed. We analyzed the pixel value ratio (PVR) and characteristics of the callus of the lengthened area on serial radiographs. The external fixation index (EFI) and healing index (HI) were computed to compare tibial and femoral lengthening. The complications related to lengthening were assessed. Results The average gain in length was 8.4 cm for the femur and 9.8 cm for the tibia. The PVR, EFI, and HI of the tibia were significantly better than those of the femur. Fewer complications were found during the lengthening of the tibia than during the lengthening of the femur. Conclusion Tibial lengthening had a significantly lower complication rate and a higher callus formation rate than femoral lengthening. Our findings suggest that bilateral limb lengthening (tibia, followed by femur) remains a reasonable option; however, we should be more cautious when performing femoral lengthening in selected patients. PMID:26446651

  15. Limb Lengthening in Patients with Achondroplasia.

    PubMed

    Park, Kwang-Won; Garcia, Rey-an Niño; Rejuso, Chastity Amor; Choi, Jung-Woo; Song, Hae-Ryong

    2015-11-01

    Although bilateral lower-limb lengthening has been performed on patients with achondroplasia, the outcomes for the tibia and femur in terms of radiographic parameters, clinical results, and complications have not been compared with each other. We proposed 1) to compare the radiological outcomes of femoral and tibial lengthening and 2) to investigate the differences of complications related to lengthening. We retrospectively reviewed 28 patients (average age, 14 years 4 months) with achondroplasia who underwent bilateral limb lengthening between 2004 and 2012. All patients first underwent bilateral tibial lengthening, and at 9-48 months (average, 17.8 months) after this procedure, bilateral femoral lengthening was performed. We analyzed the pixel value ratio (PVR) and characteristics of the callus of the lengthened area on serial radiographs. The external fixation index (EFI) and healing index (HI) were computed to compare tibial and femoral lengthening. The complications related to lengthening were assessed. The average gain in length was 8.4 cm for the femur and 9.8 cm for the tibia. The PVR, EFI, and HI of the tibia were significantly better than those of the femur. Fewer complications were found during the lengthening of the tibia than during the lengthening of the femur. Tibial lengthening had a significantly lower complication rate and a higher callus formation rate than femoral lengthening. Our findings suggest that bilateral limb lengthening (tibia, followed by femur) remains a reasonable option; however, we should be more cautious when performing femoral lengthening in selected patients.

  16. External fixation using locking plate in distal tibial fracture: a finite element analysis.

    PubMed

    Zhang, Jingwei; Ebraheim, Nabil; Li, Ming; He, Xianfeng; Schwind, Joshua; Liu, Jiayong; Zhu, Limei

    2015-08-01

    External fixation of tibial fractures using a locking plate has been reported with favorable results in some selected patients. However, the stability of external plate fixation in this fracture pattern has not been previously demonstrated. We investigated the stability of external plate fixation with different plate-bone distances. In this study, the computational processing model of external fixation of a distal tibial metaphyseal fracture utilizing the contralateral femoral less invasive stabilization system plate was analyzed. The plate was placed on the anteromedial aspect of tibia with different plate-bone distances: 1, 10, 20, and 30 mm. Under axial load, the stiffness of construct in all groups was higher than intact tibia. Under axial load with an internal rotational force, the stiffness of construct with 1 and 10 mm plate-bone distances was similar to that of an intact tibia and the stiffness of the construct with 20 and 30 mm distances was lower than that of an intact tibia. Under axial load with an external rotational force, the stiffness of the construct in all groups was lower than that of an intact tibia. The maximum plate stresses were concentrated at the two most distal screws and were highest in the construct with the 10 mm plate-bone distance, and least in the construct with a 1 mm plate-bone distance. To guarantee a stable external plate fixation in distal tibial fracture, the plate-bone distance should be less than 30 mm.

  17. Treatment of open tibial fracture with bone defect caused by high velocity missiles: a case report.

    PubMed

    Golubović, Zoran; Vukajinović, Zoran; Stojiljković, Predrag; Golubović, Ivan; Visnjić, Aleksandar; Radovanović, Zoran; Najman, Stevo

    2013-01-01

    Tibia fracture caused by high velocity missiles is mostly comminuted and followed by bone defect which makes their healing process extremely difficult and prone to numerous complications. A 34-year-old male was wounded at close range by a semi-automatic gun missile. He was wounded in the distal area of the left tibia and suffered a massive defect of the bone and soft tissue. After the primary treatment of the wound, the fracture was stabilized with an external fixator type Mitkovic, with convergent orientation of the pins. The wound in the medial region of the tibia was closed with the secondary stitch, whereas the wound in the lateral area was closed with the skin transplant after Thiersch. Due to massive bone defect in the area of the rifle-missile wound six months after injury, a medical team placed a reconstructive external skeletal fixator type Mitkovic and performed corticotomy in the proximal metaphyseal area of the tibia. By the method of bone transport (distractive osteogenesis), the bone defect of the tibia was replaced. After the fracture healing seven months from the secondary surgery, the fixator was removed and the patient was referred to physical therapy. Surgical treatment of wounds, external fixation, performing necessary debridement, adequate antibiotic treatment and soft and bone tissue reconstruction are essential in achieving good results in patients with the open tibial fracture with bone defect caused by high velocity missiles. Reconstruction of bone defect can be successfully treated by reconstructive external fixator Mitkovic.

  18. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events.

    PubMed

    McKay, Brian J; Bir, Cynthia A

    2009-11-01

    Anti-vehicular (AV) landmines and improvised explosive devices (IED) have accounted for more than half of the United States military hostile casualties and wounded in Operation Iraqi Freedom (OIF) (Department of Defense Personnel & Procurement Statistics, 2009). The lower extremity is the predominantly injured body region following an AV mine or IED blast accounting for 26 percent of all combat injuries in OIF (Owens et al., 2007). Detonations occurring under the vehicle transmit high amplitude and short duration axial loads onto the foot-ankle-tibia region of the occupant causing injuries to the lower leg. The current effort was initiated to develop lower extremity injury criteria for occupants involved in underbelly blast impacts. Eighteen lower extremity post mortem human specimens (PMHS) were instrumented with an implantable load cell and strain gages and impacted at one of three incrementally severe AV axial loading conditions. Twelve of the 18 PMHS specimens sustained fractures of the calcaneus, talus, fibula and/or tibia. The initiation of skeletal injury was precisely detected by strain gages and corresponded with local peak axial tibia force. Survival analysis identified peak axial tibia force and impactor velocity as the two best predictors of incapacitating injury. A tibia axial force of 5,931 N and impactor velocity of 10.8 m/s corresponds with a 50 percent risk of an incapacitating injury. The criteria may be utilized to predict the probability of lower extremity incapacitating injury in underbelly blast impacts.

  19. The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.

    PubMed

    Wilson, J A

    1979-01-01

    Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.

  20. Pes anserinus and anserine bursa: anatomical study

    PubMed Central

    Lee, Je-Hun; Kim, Kyung-Jin; Jeong, Young-Gil; Lee, Nam Seob; Han, Seung Yun; Lee, Chang Gug; Kim, Kyung-Yong

    2014-01-01

    This study investigated the boundary of anserine bursa with the recommended injection site and shape on the insertion area of pes anserinus (PA), with the aim of improving clinical practice. Eighty six legs from 45 Korean cadavers were investigated. The mixed gelatin solution was injected to identify the shape of anserine bursa, and then the insertion site of the PA tendons was exposed completely and carefully dissected to identify the shape of the PA. The sartorius was inserted into the superficial layer and gracilis, and the semitendinosus was inserted into the deep layer on the medial surface of the tibia. The number of the semitendinosus tendons at the insertion site varied: 1 in 66% of specimens, 2 in 31%, and 3 in 3%. The gracilis and semitendinosus tendons were connected to the deep fascia of leg. Overall, the shape of the anserine bursa was irregularly circular. Most of the anserine bursa specimens reached the proximal line of the tibia, and some of the specimens reached above the proximal line of the tibia. In the medial view of the tibia, the anserine bursa was located posteriorly and superiorly from the tibia's midline, and it followed the lines of the sartorius muscle. The injection site for anserine bursa should be carried out at 20° from the vertical line medially and inferiorly, 15 or 20 mm deeply, and at the point of about 20 mm medial and 12 mm superior from inferomedial point of tibial tuberosity. PMID:24987549

  1. Exercise-Induced Changes in the Cortical Bone of Growing Mice Are Bone and Gender Specific

    PubMed Central

    Wallace, Joseph M.; Rajachar, Rupak M.; Allen, Matthew R.; Bloomfield, Susan A.; Robey, Pamela G.; Young, Marian F.; Kohn, David H.

    2009-01-01

    Fracture risk and mechanical competence of bone are functions of bone mass and tissue quality, which in turn are dependent on the bone’s mechanical environment. Male mice have a greater response to non weight-bearing exercise than females, resulting in larger, stronger bones compared with control animals. The aim of this study was to test the hypothesis that short-term weight-bearing running during growth (21 days starting at 8 weeks of age; 30 minutes/day; 12 meters/minute; 5° incline; 7 days/week) would similarly have a greater impact on cross sectional geometry and mechanical competence in the femora and tibiae of male mice versus females. Based on the orientation of the legs during running and the proximity of the tibia to the point of impact, this response was hypothesized to be greatest in the tibia. Exercise-related changes relative to controls were assayed by four-point bending tests, while volumetric bone mineral density and cross-sectional geometry were also assessed. The response to running was bone and gender-specific, with male tibiae demonstrating the greatest effects. In male tibiae, periosteal perimeter, endocortical perimeter, cortical area, medial-lateral width and bending moment of inertia increased versus control mice suggesting that while growth is occurring in these mice between 8 and 11 weeks of age, exercise accelerated this growth resulting in a greater increase in bone tissue over the 3 weeks of the study. Exercise increased tissue-level strain-to-failure and structural post-yield deformation in the male tibiae, but these post-yield benefits came at the expense of decreased yield deformation, structural and tissue-level yield strength and tissue-level ultimate strength. These results suggest that exercise superimposed upon growth accelerated growth-related increases in tibial cross-sectional dimensions. Exercise also influenced the quality of this forming bone, significantly impacting structural and tissue-level mechanical properties. PMID:17240210

  2. Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia-a randomized placebo-controlled trial.

    PubMed

    Chapurlat, R D; Laroche, M; Thomas, T; Rouanet, S; Delmas, P D; de Vernejoul, M-C

    2013-01-01

    We have examined the effect of oral monthly ibandronate on distal radius and tibia microarchitecture with high-resolution peripheral quantitative tomography compared with placebo, in women with osteopenia, and found that ibandronate did not significantly affect trabecular bone but improved cortical density and thickness at the tibia. We have examined the effect of ibandronate on bone microarchitecture with peripheral high-resolution quantitative computed tomography (HR-pQCT) in a randomized placebo-controlled trial among 148 women with osteopenia. Patients received either oral 150 mg monthly ibandronate or placebo over 24 months. Bone microarchitecture was assessed at baseline, 6, 12, and 24 months, using HR-pQCT at the distal radius and tibia; areal bone mineral density (aBMD) was measured with DXA at the spine, hip, and radius. At 12 months, there was no significant difference in trabecular bone volume at the radius (the primary end point) between women on ibandronate (10.8 ± 2.5%) and placebo (10.5 ± 2.9%), p = 0.25. There was no significant difference in other radius trabecular and cortical microarchitecture parameters at 12 and 24 months. In contrast, at the tibia, cortical vBMD in the ibandronate group was significantly greater than in the placebo group at 6, 12, and 24 months, with better cortical thickness at 6, 12, and 24 months. With ibandronate, aBMD was significantly increased at the hip and spine at 12 and 24 months but at the radius was significantly superior to placebo only at 24 months. Most of the adverse events related to ibandronate were expected with bisphosphonate use, and none of them were serious. We conclude that 12 months of treatment with ibandronate in women with osteopenia did not affect trabecular bone microarchitecture, but improved cortical vBMD at the tibia at 12 and 24 months, and preserved cortical thickness at the tibia.

  3. Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

    PubMed Central

    Lin, Cheng-Yung; Hsu, Jenn-Chung; Wan, Tien-Chun

    2012-01-01

    An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05) lower in capons after 12 wks of age (caponized treatment after 4 wks) than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05) higher in intact males, while capons had higher (p<0.05) plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05) with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. PMID:25049655

  4. Nutritional Programming of Bone Structure in Male Offspring by Maternal Consumption of Citrus Flavanones.

    PubMed

    Sacco, Sandra M; Saint, Caitlin; LeBlanc, Paul J; Ward, Wendy E

    2018-06-01

    Maternal exposure to hesperidin (HSP) and naringin (NAR) during pregnancy and lactation transiently compromised bone mineral density (BMD) and bone structure at the proximal tibia in female CD-1 offspring. We examined whether maternal consumption of HSP + NAR during pregnancy and lactation compromises BMD, bone structure, and bone strength in male CD-1 offspring. Male CD-1 offspring, from mothers fed a control diet (CON, n = 10) or a 0.5% HSP + 0.25% NAR diet (HSP + NAR, n = 8) for 5 weeks before mating and throughout pregnancy and lactation, were weaned and fed CON until 6 months of age. In vivo micro-computed tomography (µCT) measured tibia BMD and structure at 2, 4, and 6 months of age. Ex vivo µCT measured femur and lumbar vertebrae (LV) structure at age 6 months. Ex vivo BMD (femur, LV) and biomechanical strength (femur and tibia midpoint, femur neck) were assessed at age 6 months by dual energy x-ray absorptiometry and strength testing, respectively. At all ages, HSP + NAR offspring had greater (p < 0.05) proximal tibia cortical structure compared to CON offspring. At age 4 months, proximal tibia trabecular structure was greater (p < 0.05) than CON offspring. At age 6 months, femur neck and LV trabecular structure were greater (p < 0.05) than CON offspring. Our results demonstrate that unlike our previous study of female offspring, maternal consumption of HSP + NAR resulted in greater bone structure at the proximal tibia in male CD-1 offspring that persisted to 6 months of age. Thus, maternal programming of offspring BMD and bone structure from consumption of HSP + NAR occurred as a sex-specific response.

  5. Limb lengthening in achondroplasia

    PubMed Central

    Chilbule, Sanjay K; Dutt, Vivek; Madhuri, Vrisha

    2016-01-01

    Background: Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. Materials and Methods: Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. Results: Nine patients aged five to 25 years (mean age 10.2 years) underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%), 9.9 cm (52.8%) and 9.6 cm (77.9%), respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3rd percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment). Healing index was not affected by age or bone segment. Conclusion: Extensive limb lengthening (more than 50% over initial length) carries significant risk and should be undertaken only after due consideration. PMID:27512222

  6. What are the important surgical factors affecting the wound healing after primary total knee arthroplasty?

    PubMed

    Harato, Kengo; Tanikawa, Hidenori; Morishige, Yutaro; Kaneda, Kazuya; Niki, Yasuo

    2016-01-13

    Wound condition after primary total knee arthroplasty (TKA) is an important issue to avoid any postoperative adverse events. Our purpose was to investigate and to clarify the important surgical factors affecting wound score after TKA. A total of 139 knees in 128 patients (mean 73 years) without severe comorbidity were enrolled in the present study. All primary unilateral or bilateral TKAs were done using the same skin incision line, measured resection technique, and wound closure technique using unidirectional barbed suture. In terms of the wound healing, Hollander Wound Evaluation Score (HWES) was assessed on postoperative day 14. We performed multiple regression analysis using stepwise method to identify the factors affecting HWES. Variables considered in the analysis were age, sex, body mass index (kg/m(2)), HbA1C (%), femorotibial angle (degrees) on plain radiographs, intraoperative patella eversion during the cutting phase of the femur and the tibia in knee flexion, intraoperative anterior translation of the tibia, patella resurfacing, surgical time (min), tourniquet time (min), length of skin incision (cm), postoperative drainage (ml), patellar height on postoperative lateral radiographs, and HWES. HWES was treated as a dependent variable, and others were as independent variables. The average HWES was 5.0 ± 0.8 point. According to stepwise forward regression test, patella eversion during the cutting phase of the femur and the tibia in knee flexion and anterior translation of the tibia were entered in this model, while other factors were not entered. Standardized partial regression coefficient was as follows: 0.57 in anterior translation of the tibia and 0.38 in patella eversion. Fortunately, in the present study using the unidirectional barbed suture, major wound healing problem did not occur. As to the surgical technique, intraoperative patella eversion and anterior translation of the tibia should be avoided for quality cosmesis in primary TKA.

  7. Phosphorus utilization in finishing broiler chickens: effects of dietary calcium and microbial phytase.

    PubMed

    Rousseau, X; Létourneau-Montminy, M P; Même, N; Magnin, M; Nys, Y; Narcy, A

    2012-11-01

    A decrease in dietary P, especially in finishing broilers (21 to 38 d old), is a crucial issue in poultry production from an environmental and economic point of view. Nevertheless, P must be considered together with other dietary components such as Ca and microbial phytase. Different corn and soybean meal-based diets varying in Ca [low (LCa) 0.37, medium (MCa) 0.57, and high (HCa) 0.77%], and nonphytate P [nPP; low (LnPP) 0.18 and high (HnPP) 0.32%] content were tested with and without microbial phytase [0 or 500 phytase units (FTU)/kg]. Feed intake, BW gain, bone mineralization, and mineral retention were examined in 144 Ross PM3 broilers (22 to 38 d old) reared in individual cages. Growth performance was not significantly affected by the treatments. Nevertheless, a numerical decrease of ADG and ADFI was observed in HCa-LnPP and LCa-HnPP associated with an increase of feed conversion ratio. Decreased dietary Ca reduced tibia ash content (Ca, linear: P < 0.001; quadratic: P = 0.034) and tibia ash weight for the highest level of nPP (Ca × nPP; P = 0.035). In parallel, increasing dietary Ca reduced the flow of retained P (P = 0.022) but also tibia ash weight in LnPP diets (Ca × nPP; P = 0.035). The responses of the animals in terms of tibia ash content and P retention were improved by the addition of microbial phytase especially for the lowest P diets (nPP × phytase, P = 0.021 and P = 0.009; respectively). Phytase increased dry tibia weight, bone breaking strength, and tibia diameter in broilers fed the highest Ca diets (Ca × phytase; P < 0.05). We conclude that is possible to decrease P levels in finishing broilers, if the Ca content is appropriate. Nevertheless, decreasing the dietary P and Ca cannot allow a maximization of bone mineralization, but the optimal threshold remains to be determined.

  8. The healing stages of an intramedullary implanted tibia: A stress strain comparative analysis of the calcification process

    PubMed Central

    Filardi, Vincenzo

    2015-01-01

    Aims The extended usage of unreamed tibial nailing resulted in reports of an increased rate of complications, especially for the distal portion of the tibia. Unreamed nailing favours biology at the expense of the achievable mechanical stability, it is therefore of interest to define the limits of the clinical indications for this method. Extra-articular fractures of the distal tibial metaphysis, meta-diaphyseal junction, and adjacent diaphysis are distinct in their management from impaction derived ‘‘pilon’’ type fractures and mid-diaphyseal fractures. The goals of this work were to gain a thorough understanding of the load-sharing mechanism between unreamed nail and bones in a fractured tibia. With this purpose a complete model of the human leg was realised, simulating a mid-diaphyseal fracture, classified as A2 type 1, according to the AO classification. The analysis of the entire chain allows to have a complete picture of the stress distribution and of the most stressed bones and soft tissues, but, more importantly can overcome problems connected with boundary conditions imposed at single bony components. Methods Model consists of six bony structures: pelvis, femur, patella, fibula, tibia, and a simplified lump of the feet, configured in a standing up position. Their articular cartilage layers, were simulated by 3D membranes of opportune stiffness connecting the different segments. Moreover an unreamed intra-medullary nail Expert Tibial Nail (DePuy Synthes®) stabilized the fractured tibia. A load of 700 N has been applied at the top of pelvis and a part the feet, at the tip, was rigidly fixed. Five different contact interfaces have been imposed at the different bony surfaces in contact. Results Three different conditions were analysed: the initially healthy tibia, the A2 type 1 fractured tibia with the Expert tibial nail implanted, and the follow up stage after complete healing of tibia. Non-linear finite element analysis of the models were performed with Abaqus version 5.4 (Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI) using the geometric non linearity and automatic time stepping options. Conclusion The obtained results reveal interesting consequences deriving by taking into account how the stress shielding can influence the integrity and resistance of bones, in order to identify the mechanical reasons for the unfavourable clinical results, and to identify borderline indications due to biomechanical factors. The evolution of treatment options for these fractures has been closely linked to developments in implant technology and surgical technique. Further developments in this area, particularly with respect to minimally invasive plating techniques and nail design are ongoing. PMID:26719629

  9. Adamantinoma with plasmacytoid features: expanding the spectrum of a diagnostically challenging entity.

    PubMed

    Walters, Matthew P; Baynes, Keith; Carrera, Guillermo F; King, David M; Wang, Dian; Charlson, John; Zambrano, Eduardo

    2011-10-01

    Adamantinoma is a rare neoplasm that characteristically involves the tibia. In many instances, typical location within the tibia, very slow course, and a typical radiographic appearance can strongly suggest the correct diagnosis. We present a case that has both unusual radiographic findings and uncharacteristic histology. In this case, radiologic imaging showed a poorly defined lytic lesion within the distal, lateral tibia extending to the joint with central necrosis, overlying periosteal reaction and possible tumor spread into soft tissue. The histology of this lesion showed pronounced vascularity and surrounding large neoplastic cells with plasmacytoid morphology. The combination of these features led to an initial misdiagnosis as metastatic carcinoma from unknown primary. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Gorham's disease of the proximal tibia successfully treated with local administration of OK-432, followed by reconstruction with distraction osteogenesis: a case report.

    PubMed

    Yamagishi, Eiki; Takeda, Akira; Konno, Shinichi; Takeda, Koichiro; Hagino, Seita; Hakozaki, Michiyuki

    2016-01-01

    Gorham's disease (GD) is a rare and intractable disease characterized by marked progression of osteolysis associated with lymphangioma and/or hemangioma. Here, we describe a case of GD of the proximal tibia occurring in a 10-year-old boy. Although we could not correctly diagnose it at first, we finally diagnosed him as having GD. Progression of osteolysis of the tibia stopped 3 months after the local administration of OK-432. Thereafter, the huge bone defect with varus and extension deformity was reconstructed successfully by distraction osteogenesis using the Ilizarov method. The present case suggests that local administration of OK-432, followed by distraction osteogenesis is a treatment option for GD.

  11. Effect of GaAs Laser at 904 nm in the Pain Threshold in Tibia and Tolerance in Deltoid Evaluated by Pressure Algometry

    NASA Astrophysics Data System (ADS)

    Soares, Luiz G. P.; Sato, Sidney K.; Silveira, Landulfo; Aimbire, Flávio; Moreira, Leonardo M.; Pinheiro, Antônio L. B.

    2011-08-01

    The use of LLLT in pain relief is a controversial issue in Physiotherapy, with the efficacy of LLLT associated to pain relief still requiring significant study. Objective. This work focuses on the evaluation of the effect of low power GaAs laser at 904 nm in pressure pain threshold and tolerance in tibia and deltoid muscle, respectively. A total of 17 subjects were divided in two groups: active and sham laser. Measurements were taken before and after laser irradiation in healthy individuals using a pressure algometry, first verifying the viability of algometry to evaluate the pain threshold and tolerance inter individuals and comparing the differences of right and left sides in the same patients, and finally evaluating the pain threshold and tolerance before and after a single laser application. Laser energy density was of 4.0 J/cm2 with power density of 137 mW/cm2. Comparing algometry values of active laser group and the sham group, the pain tolerance in the deltoid muscle did not change among groups after laser irradiation, while it was also encountered a statistically significant difference in the pain threshold in tibia when comparing the laser active and sham laser (p<0.05). It was found that the active laser was effective in maintaining the pain threshold in tibia. The effective laser action in raising the pain threshold in tibia upon healthy individuals can suggest that the laser could be applied not only as curative but also with preventive purpose.

  12. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  13. Tibiotalocalcaneal arthrodesis with a retrograde intramedullary nail: a biomechanical analysis of the effect of nail length.

    PubMed

    Noonan, Timothy; Pinzur, Michael; Paxinos, Odysseas; Havey, Robert; Patwardhin, Avinash

    2005-04-01

    Fatigue fractures of the tibia have been observed at the level of the proximal end of the nail after successful tibiocalcaneal arthrodesis with a retrograde intramedullary device. To study the effect of nail length, five matched pairs of cadaver tibiae were instrumented with strain gauges and potted in methylmethacrylate from a level 3 cm proximal to the distal medial malleolus to simulate a successful tibiocalcaneal arthrodesis. A standard length (15 cm) ankle arthrodesis nail and an identical longer device terminating in the proximal tibial metaphysis were inserted in each paired tibia using appropriate technique. The strain of the posterior cortex of the tibia was recorded under bending moments of up to 50 Nm for each intact specimen after nail insertion and after proximal locking of the nail. The nails were then exchanged between the specimens of the same pairs and the experiment was repeated to insure uniformity. The standard length locked nail increased the principal strain of the posterior cortex of the tibia at the level of the proximal screw holes 5.3 times more than the locked long nail (353 and 67 microstrains), respectively. This stress concentration was not observed when the proximal extent of the nail terminated within the proximal tibial metaphysis. A successful tibiocalcaneal arthrodesis with a standard length locked intramedullary nail creates stress concentration around the proximal screw holes that may be responsible for the fractures observed clinically. This study supports the use of a "long" retrograde locked intramedullary nail for tibiocalcaneal arthrodesis in patients with systemic or localized osteopenia.

  14. Distal tibia fractures: locked or non-locked plating? A systematic review of outcomes.

    PubMed

    Khalsa, Amrit S; Toossi, Nader; Tabb, Loni P; Amin, Nirav H; Donohue, Kenneth W; Cerynik, Douglas L

    2014-06-01

    Although plating is considered to be the treatment of choice in distal tibia fractures, controversies abound regarding the type of plating for optimal fixation. We conducted a systematic review to evaluate and compare the outcomes of locked plating and non-locked plating in treatment of distal tibia fractures. A systematic review was conducted using PubMed to identify articles on the outcomes of plating in distal tibia fractures that were published up to June 2012. We included English language articles involving a minimum of 10 adult cases with acute fractures treated using single-plate, minimally invasive techniques. Study-level binomial regression on the pooled data was conducted to determine the effect of locking status on different outcomes, adjusted for age, sex, and other independent variables. 27 studies met the inclusion criteria and were included in the final analysis of 764 cases (499 locking, 265 non-locking). Based on descriptive analysis only, delayed union was reported in 6% of cases with locked plating and in 4% of cases with non-locked plating. Non-union was reported in 2% of cases with locked plating and 3% of cases with non-locked plating. Comparing locked and non-locked plating, the odds ratio (OR) for reoperation was 0.13 (95% CI: 0.03-0.57) and for malalignment it was 0.10 (95% CI: 0.02-0.42). Both values were statistically significant. This study showed that locked plating reduces the odds of reoperation and malalignment after treatment for acute distal tibia fracture. Future studies should accurately assess causality and the clinical and economic impact of these findings.

  15. Bone Implant Interface Investigation by Synchrotron Radiation X-Ray Microfluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calasans-Maia, M.; Sales, E.; Lopes, R. T.

    2010-04-06

    Zinc is known to play a relevant role in growth and development; it has stimulatory effects on in vitro and in vivo bone formation and an inhibitory effect on in vitro osteoclastic bone resorption. The inorganic component of the bone tissue is nonstoichiometric apatite; changes in the composition of hidroxyapatite are subject of studies in order to improve the tissue response after implantation. The objective of this study was to investigate the effect of 0.5% zinc-containing hydroxyapatite in comparison to hydroxyapatite on osseous repair of rabbit's tibia. Cylinders (2x6 mm) of both materials were produced according to the specification ofmore » the International Organization for Standardization. Ethics Commission on Teaching and Research in Animals approved this project (HUAP-195/06). Fifteen White New Zealand rabbits were submitted to general anesthesia and two perforations (2 mm) were made in each tibia for implantation of zinc-containing hydroxyapatite cylinders (left tibia) and hydroxyapatite cylinders (right tibia). After 1, 2 and 4 weeks, the animals were killed and one fragment of each tibia with the cylinder was collected and embedded in a methacrylate-based resin and cut into slices (approx200 {mu}m thickness), parallel to the implant's long axis with a precision diamond saw for Synchrotron Radiation X-ray Microfluorescence investigation. The accomplishment of the standard procedures helped the planning, execution and the comparative analysis of the results. The chemical and physical properties of the biomaterials were modified after its implantation and the incorporation of zinc. Both materials are biocompatible and promote osteoconduction and favored bone repair.« less

  16. Computer-assisted oblique single-cut rotation osteotomy to reduce a multidirectional tibia deformity: case report.

    PubMed

    Dobbe, J G G; du Pré, K J; Blankevoort, L; Streekstra, G J; Kloen, P

    2017-08-01

    The correction of multiplanar deformity is challenging. We describe preoperative 3-D planning and treatment of a complex tibia malunion using an oblique single-cut rotation osteotomy to correct deformity parameters in the sagittal, coronal and transverse plane. At 5 years postoperatively, the patient ambulates without pain with a well-aligned leg.

  17. Evaluation of the Mangled Extremity Severity Score in Combat-Related Type III Tibia Fracture

    DTIC Science & Technology

    2014-09-01

    Return to duty rates of amputee soldiers in the current conflicts in Afghanistan and Iraq. J Trauma. 2010; 68:1476–1479. 5. Johansen K, Daines M, Howey T...severity score (MESS) in combat related type III tibia fracture. J Orthop Trauma. 2013. 4. Johansen K, Daines M, Howey T, et al. Objective criteria

  18. Joint angles of the ankle, knee, and hip and loading conditions during split squats.

    PubMed

    Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2014-06-01

    The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed < 25% when split squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.

  19. Autologous platelet lysates local injections for treatment of tibia non-union with breakage of the nickelclad: a case report.

    PubMed

    Jiang, Hong-Jiang; Tan, Xun-Xiang; Ju, Hai-Yang; Su, Jin-Ping; Yan, Wei; Song, Xiu-Gang; Qin, Li-Wu; Ju, Chang-Jun; Wang, Ling-Shuang; Zou, De-Bao

    2016-01-01

    Nonunions of the tibia represent challenging orthopedic problems, which require the surgeon to analyze numerous factors and choose an appropriate treatment. This article presents a case report of tibia and fibula fracture patient who failed the internal fixation surgery and successfully recovered after one course of percutaneous autologous platelet lysates injection. The patient received an internal nickelclad breakage at 9 months post-surgery but reluctant to accept a second surgery, then autologous platelet lysates (APL) injection which is a less invasive method was recommended. The injections were carried once a week for three times. Radiologic evaluation was conducted every month until recovery. To the best of our knowledge, this is the first reported case of tibia delayed union with breakage of the plate resolved with APL injection. Improved clinical evidence was observed at 4 and 6 months after injection. The patient got good bony union at 8 months post-injection. The patient didn't feel any discomfort postinjection, no complications such as infection, refracture etc. were observed. APL percutaneous injection could be a new therapeutic option for the treatment of nonunion or delayed healing fractures.

  20. Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F

    2010-01-01

    The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.

  1. [Tibia reconstruction using cross-leg pedicled fibular flaps: report of two cases].

    PubMed

    Molski, M

    2000-01-01

    The paper presents the results of treatment of two children with cross-leg pedicle fibular flaps. A boy (10 years old) was operated because of an extensive defect of the proximal tibial shaft (15 cm) and soft tissue deficit due to osteosarcoma. He had been previously operated several times: tumor resection with chemiotherapy, bone reconstruction using allografts and two other procedures because of inflammatory complications. The second case was a 9-year old girl who underwent an extensive excision of congenital pseudoarthrosis of the tibia due to neurofibroma and reconstruction of the further fragment of the tibia. Vascularized fibula was nailed deep into the tibial shaft, beyond the previously implanted metal elements. This allowed to maintain a correct axis of the limb, a firm stabilization of the transplant and probably evoked a quick periosteal reaction of the tibia. Plaster of Paris was used to immobilize the limb. Postoperative course showed no complications. The flap pedicle was cut off after 3-4 weeks. Progressive bone healing followed by bony hypertrophy was observed after 8 weeks. The children were able to fully load the operated extremities and ambulate without crutches (the boys 12 months post-surgery and the girl 6 months post-surgery).

  2. Synchronous symmetrical atypical osteoid osteoma of tibia: a case report.

    PubMed

    Sreenivas, T; Menon, Jagdish; Nataraj, A R

    2012-11-01

    We report a case of synchronous symmetrical osteoid osteoma of tibia which was atypical in its appearance on imaging. Our patient was a 30-year-old woman presented with 2 years history of bilateral leg pain more on the right side. The pain was more during night and relieved on taking salicylates. Laboratory investigations were within normal limits. Radiographs and computed tomography revealed bilateral focal irregular cortical sclerosis with narrowing of medullary canal of mid tibia. The lesion on right side was excised enbloc followed by the lesion on left side 3 months later and histologically confirmed as osteoid osteoma. Initially, we thought it was stress fracture or subacute osteomyelitis but it was in fact histopathology which showed osteoid osteoma. Patient was completely asymptomatic postoperatively.

  3. Tibial tunnel aperture irregularity after drilling with 5 reamer designs: a qualitative micro-computed tomography analysis.

    PubMed

    Geeslin, Andrew G; Jansson, Kyle S; Wijdicks, Coen A; Chapman, Mark A; Fok, Alex S; LaPrade, Robert F

    2011-04-01

    There is limited information in the literature on comparisons of antegrade versus retrograde reaming techniques and the effect on the creation of anterior cruciate ligament (ACL) tibial tunnel entry and exit apertures. Proximal and distal apertures of ACL tibial tunnels, as created with different reamers, will be affected by type of reamer design. Controlled laboratory study. Forty skeletally mature porcine tibias with bone mineral density values comparable with a young athletic population were included in this study. Five 9-mm reamer models were used (3 antegrade: A1, smooth-bore reamer; A2, acorn-head reamer; A3, flat-head reamer; 2 retrograde: R1, retrograde acorn reamer; R2, single-blade retrograde reamer), and a new reamer was used for each tibia (8 reamer-tibia pairs per reamer model). All specimens underwent micro-computed tomography scanning, and images were reconstructed and analyzed using 3-dimensional image analysis software. Aperture rim fractures were graded on a 0-IV scale that described the proportion of the fractured aperture circumference. Specimens with incomplete apertures were also recorded. Because of the unique characteristics of various tunnels, intratunnel characteristics were observed and recorded. In sum, 1 proximal and 7 distal aperture rim fractures were found; 3, 0, and 4 distal aperture rim fractures were found with groups A1, A2, and A3, respectively. Incomplete apertures were more commonly found at the distal aperture (n = 15) than the proximal aperture (n = 8); there were no tibias with this finding at both apertures. All incomplete distal apertures occurred with the retrograde technique, and all incomplete proximal apertures occurred with the antegrade technique, most commonly with reamer design A3. An added finding of tunnel curvature at the distal aspect of the tunnel was observed in all 8 tibias with R1 reamers and 5 tibias with R2 reamers. This phenomenon was not observed in any of the tibias reamed with the antegrade technique. Anterior cruciate ligament tibial tunnel aperture characteristics were highly dependent on reamer design. Optimal proximal aperture characteristics were produced by the retrograde reamers, whereas optimal distal aperture characteristics were obtained with the antegrade reamers. In addition, a phenomenon of tunnel curvature in retrograde-type reamers was found, which may have effects on ACL graft or screw fixation. Differences in tunnel aperture shapes and fractures depend on reamer design. This information is important for the creation of ACL reconstruction tunnels with different reamer designs.

  4. Description of osteomyelitis lesions associated with Actinomyces pyogenes infection in the proximal tibia of adult male turkeys.

    PubMed

    Brinton, M K; Schellberg, L C; Johnson, J B; Frank, R K; Halvorson, D A; Newman, J A

    1993-01-01

    Actinomyces pyogenes was isolated from osteomyelitis lesions from the proximal tibia of mature tom turkeys. Gram-stained impression smears of the lesions resulted in bacteria that appeared as club-shaped, gram-positive pleomorphic rods. The bacteria grew better in a reduced-oxygen environment. The lesions were well demarcated and cavernous, ranging from purulent to caseous in consistency.

  5. Feedback Control for Functional Electrical Stimulation of Paralyzed Muscle.

    DTIC Science & Technology

    1981-03-01

    and pubic symphysis. Insertion - tibia and fascia of shank. Action - adducts the leg. 3. Iliopsoas - a triangular shaped muscle which is caudal to the...first caudal vertebrae. Insertion - fascia lata and greater throchanter of femur. Action - abducts thigh. 6. Caudofemoralis - band of muscle posterior...and extends shank. 7. Biceps femoris - very broad mscle posterior to the fascia lata. Origin - tiiherositv of ishium. Insertion - patella, tibia, and

  6. Development of a Novel Synthetic Drug for Osteoporosis and Fracture Healing

    DTIC Science & Technology

    2015-11-01

    Four-point bending setup for mechanical testing. (C & D) X-ray images of the fractured tibiae. Of note, a stainless steel rod was inserted in the...respectively. Figure 15. Mechanical strength 4 weeks after fracture induction for experiment 1. (A) Force- displacement relationship for the hydrogel...University Purdue University Indianapolis, Indianapolis, IN 46202, USA Keywords: bone fracture , tibia, salubrinal, hydrogel, mechanical test Running

  7. Bilateral trampoline fracture of the proximal tibia in a child.

    PubMed

    Arkink, Enrico B; van der Plas, Annelies; Sneep, Ruth W; Reijnierse, Monique

    2017-12-01

    Trampoline fractures are transversely oriented impaction fractures of the proximal tibia sustained by young children jumping on a trampoline. Unaware of the mechanism of this specific nontraumatic fracture, physicians may fail to detect these fractures on plain radiographs, as radiological findings may be very subtle. In this case report, we present a rare case of bilateral trampoline fractures with an explanation of the trauma mechanism.

  8. Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization.

    PubMed

    Holm, Erik; Aubin, Jane E; Hunter, Graeme K; Beier, Frank; Goldberg, Harvey A

    2015-02-01

    Bone sialoprotein (BSP) is an anionic phosphoprotein in the extracellular matrix of mineralized tissues, and a promoter of biomineralization and osteoblast development. Previous studies on the Bsp-deficient mouse (Bsp(-/-)) have demonstrated a significant bone and periodontal tissue phenotype in adulthood. However, the role of BSP during early long bone development is not known. To address this, early endochondral ossification in the Bsp(-/-) mouse was studied. Embryonic day 15.5 (E15.5) wild-type (WT) tibiae showed early stages of ossification that were absent in Bsp(-/-) mice. At E16.5, mineralization had commenced in the Bsp(-/-) mice, but staining for mineral was less intense and more dispersed compared with that in WT controls. Tibiae from Bsp(-/-) mice also demonstrated decreased mineralization and shortened length at postnatal day 0.5 (P0.5) compared to WT bones. There was no detectable difference in the number of tartrate-resistant acid phosphatase-positive foci at P0.5, although the P0.5 Bsp(-/-) tibiae had decreased Vegfα expression compared with WT tissue. Due to the shortened tibiae the growth plates were examined and determined to be of normal overall length. However, the length of the resting zone was increased in P0.5 Bsp(-/-) tibiae whereas that of the proliferative zone was decreased, with no change in the hypertrophic zone length of Bsp(-/-) mice. A reduction in cells positive for Ki-67, an S-phase cell-cycle marker, was noted in the proliferative zone. Decreased numbers of TUNEL-positive hypertrophic chondrocytes were also apparent in the Bsp(-/-) tibial growth plates, suggesting decreased apoptosis. Expression of the osteogenic markers Alp1, Col1a1, Sp7, Runx2, and Bglap was reduced in the endochondral bone of the neonatal Bsp(-/-) compared to WT tibiae. These results suggest that BSP is an important and multifaceted protein that regulates both chondrocyte proliferation and apoptosis as well as transition from cartilage to bone during development of endochondral bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen receptor α and disuse

    PubMed Central

    Zaman, Gul; Saxon, Leanne K.; Sunters, Andrew; Hilton, Helen; Underhill, Peter; Williams, Debbie; Price, Joanna S.; Lanyon, Lance E.

    2010-01-01

    Loading-related changes in gene expression in resident cells in the tibia of female mice in the contexts of normality (WT), estrogen deficiency (WT-OVX), absence of estrogen receptor α (ERα−/−) and disuse due to sciatic neurectomy (WT-SN) were established by microarray. Total RNA was extracted from loaded and contra-lateral non-loaded tibiae at selected time points after a single, short period of dynamic loading sufficient to engender an osteogenic response. There were marked changes in the expression of many genes according to context as well as in response to loading within those contexts. In WT mice at 3, 8, 12 and 24 h after loading the expression of 642, 341, 171 and 24 genes, respectively, were differentially regulated compared with contra-lateral bones which were not loaded. Only a few of the genes differentially regulated by loading in the tibiae of WT mice have recognized roles in bone metabolism or have been linked previously to osteogenesis (Opn, Sost, Esr1, Tgfb1, Lrp1, Ostn, Timp, Mmp, Ctgf, Postn and Irs1, BMP and DLX5). The canonical pathways showing the greatest loading-related regulation were those involving pyruvate metabolism, mitochondrial dysfunction, calcium-induced apoptosis, glycolysis/gluconeogenesis, aryl hydrocarbon receptor and oxidative phosphorylation. In the tibiae from WT-OVX, ERα−/− and WT-SN mice, 440, 439 and 987 genes respectively were differentially regulated by context alone compared to WT. The early response to loading in tibiae of WT-OVX mice involved differential regulation compared to their contra-lateral non-loaded pair of fewer genes than in WT, more down-regulation than up-regulation and a later response. This was shared by WT-SN. In tibiae of ERα−/− mice, the number of genes differentially regulated by loading was markedly reduced at all time points. These data indicate that in resident bone cells, both basal and loading-related gene expression is substantially modified by context. Many of the genes differentially regulated by the earliest loading-related response were primarily involved in energy metabolism and were not specific to bone. PMID:19857613

  10. Infection after fracture fixation of the tibia: Analysis of healthcare utilization and related costs.

    PubMed

    Metsemakers, Willem-Jan; Smeets, Bart; Nijs, Stefaan; Hoekstra, Harm

    2017-06-01

    One of the most challenging complications in musculoskeletal trauma surgery is the development of infection after fracture fixation (IAFF). It can delay healing, lead to permanent functional loss, or even amputation of the affected limb. The main goal of this study was to investigate the total healthcare costs and length-of-stay (LOS) related to the surgical treatment of tibia fractures and furthermore identify the subset of clinical variables driving these costs within the Belgian healthcare system. The hypothesis was that deep infection would be the most important driver for total healthcare costs. Overall, 358 patients treated operatively for AO/OTA type 41, 42, and 43 tibia fractures between January 1, 2009 and January 1, 2014 were included in this study. A total of 26 clinical and process variables were defined. Calculated costs were limited to hospital care covered by the Belgian healthcare financing system. The five main cost categories studied were: honoraria, materials, hospitalization, day care admission, and pharmaceuticals. Multivariate analysis showed that deep infection was the most significant characteristic driving total healthcare costs and LOS related to the surgical treatment of tibia fractures. Furthermore, this complication resulted in the highest overall increase in total healthcare costs and LOS. Treatment costs were approximately 6.5-times higher compared to uninfected patients. This study shows the enormous hospital-related healthcare costs associated with IAFF of the tibia. Treatment costs for patients with deep infection are higher than previously mentioned in the literature. Therefore, future research should focus more on prevention rather than treatment strategies, not only to reduce patient morbidity but also to reduce the socio-economic impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) andmore » bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.« less

  12. Effect on dynamic mechanical stability and interfragmentary movement of angle-stable locking of intramedullary nails in unstable distal tibia fractures: a biomechanical study.

    PubMed

    Gueorguiev, Boyko; Wähnert, Dirk; Albrecht, Daniel; Ockert, Ben; Windolf, Markus; Schwieger, Karsten

    2011-02-01

    Unstable distal tibia fractures are challenging injuries that require surgery. Increasingly, intramedullary nails are being used. However, fracture site anatomy may cause distal-fragment stabilization and fixation problems and lead to malunion/nonunion. We studied the influence of angle-stable nail locking on fracture gap movement and other biomechanical parameters. Eight pairs of fresh human cadaver tibiae were used. The bone mineral density (BMD) was determined. All tibiae were nailed with a Synthes Expert tibial nail. Within each pair, one tibia was randomized to receive conventional locking screws; the other, angle-stable screws with sleeves. A 7-mm osteotomy was created 10 mm above the upper distal locking screw, to simulate an AO 42-A3 fracture. Biomechanical testing involved nondestructive mediolateral and anteroposterior pure bending, followed by cyclic combined axial and torsional loading to catastrophic failure. The neutral zone was determined. Fracture gap movement was monitored with 3-D motion tracking. The angle-stable locked constructs had a significantly smaller mediolateral neutral zone (mean: 0.04 degree; p=0.039) and significantly smaller fracture gap angulation (p=0.043). The number of cycles to failure did not differ significantly between the locking configurations. BMD was a significant covariate affecting the number of cycles to failure (p=0.008). However, over the first 20,000 cycles, there was no significant correlation in the angle-stable construct. Angle-stable locking of the Expert tibial nail was associated with a significant reduction in the mediolateral neutral zone and in fracture gap movement. Angle-stable fixation also reduced the influence of BMD over the first 20,000 cycles.

  13. [Ankle arthrodesis for congenital absence of the fibula].

    PubMed

    Exner, G Ulrich

    2005-10-01

    Bilateral congenital absence of the fibula in a 10-year-old boy. A marked valgus malalignment at the left ankle and a foot with three rays caused pain during standing and walking. Ortheses did not help. Therefore, various treatment options were considered such as amputation of the foot, a supramalleolar correction osteotomy, and a tibiotalar arthrodesis. Correction of malalignment and ankle arthrodesis stabilized with an external mini-fixator while sparing the distal tibial physis. Two skin incisions: one on the medial side visualizing the flexor tendons and the neurovascular bundle while sparing the sural nerve and the small saphenous vein. Exposure of the medial malleolus after division of its ligamentous and capsular attachments. Localization of the ankle joint. The second incision on the lateral side. Z-lengthening of the sole peroneal tendon. Opening of the ankle joint at the lateral and anterior aspect. Resection of the articular surfaces of tibia and talus based on a preoperatively made drawing that showed an alignment of the hindfoot with the longitudinal axis of the tibia and the foot in 90 degrees in relation to the leg. Temporary insertion of a Kirschner wire from the sole of the foot into the tibia to maintain the obtained correction. Placement of a mini-fixator: one threaded Kirschner wire crosses the talocalcaneal synostosis, the second the distal tibial epiphysis, and the third one the proximal third of the tibia. Once the frame is mounted, compression of the resection surfaces and slight distraction between the proximal and middle Kirschner wires. At the age of 16 years the boy is able to use a regular shoe with an orthotic insert; he is pain-free and can participate in all daily activities. The growth of the tibia has not been affected.

  14. Impact of oral ibandronate 150 mg once monthly on bone structure and density in post-menopausal osteoporosis or osteopenia derived from in vivo μCT.

    PubMed

    Bock, Oliver; Börst, Hendrikje; Beller, Gisela; Armbrecht, Gabriele; Degner, Corina; Martus, Peter; Roth, Heinz-Jürgen; Felsenberg, Dieter

    2012-01-01

    The effect of ibandronate 150 mg/once monthly in the treatment of post-menopausal osteopenia and osteoporosis on bone micro-structure at the distal tibia and radius has not been considered to date. Seventy post-menopausal women with osteoporosis or osteopenia were recruited. All subjects received calcium and vitamin D supplementation and were randomized to either a group which took 150 mg ibandronate oral monthly or a placebo group over a 12-month period. μCT measures of the distal tibia and radius were conducted every three months, with DXA lumbar spine and hip measurements conducted only pre and post and serum markers of bone formation and resorption measured every 6 months. After 12-months no significant impact of ibandronate on the primary outcome measures bone-volume to tissue-volume and trabecular separation at the distal tibia (p≥0.15) was found. Further multiple regression analyses of the primary end-points indicated a significant effect favoring the ibandronate intervention (p=0.045). Analysis of secondary end-points showed greater increases in distal tibia cortical thickness, cortical density and total density (p≤0.043) with ibandronate and no significant effects at the distal radius, but greater increases of hip DXA-BMD and lumbar spine DXA-BMD (p≤0.017). Ibandronate use resulted in a marked reduction in bone turnover (p<0.001). While ibandronate resulted in greater mineralization of bone, this effect differed from one body region to another. There was some impact of ibandronate on bone structure (cortical thickness) at the distal tibia, but not on bone-volume to tissue-volume or trabecular separation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Differences in Mechanical Properties of the Human and Monkey Tibia

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Hutchinson, T. M.; Bakulin, A. V.; Rahkmanov, A. S.; Steele, C. R.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    A method which uses an instrument that detects the response of a long bone to a vibratory stimulus to quantify mechanical properties non-invasively was revised and validated for use in the tibia. Stored data from healthy men was reanalyzed and compared with values from non-human primates. The analysis uses the relationship K(sub b) = 48 EI/L(sup 3) where K(sub b) is the lateral stiffness of a beam with force applied midspan, E is the elastic modulus, I the geometric moment of inertia and L, the limb length. Values for stiffness (EI, Nm(sup2)), the Euler buckling load (P(sub cr) = EI (pi/L)(sup 2)), and bone sufficiency (S) which represents the axial load the bone can support, adjusted to BW (S=P(sub cr)/BW) were obtained. The interest precision of the method in relaxed men, 5.8%, and in sedated male monkeys, 4.3%, was based on repeated measures in the same subjects at 1 month intervals. The R tibias of 40 men, aged 38.6 +/- 7.3 yrs with BW 78.9 +/- 7.9 kg, showed average (+/- SD) L to be 35 +/- 2 cm, EI 222 +/- 71 Nm(sup 2), P(sub cr) 18.1 +/- 4.9 kN, and S 23.4 +/- 5.7 N. The R tibias of 24 Rhesus monkeys ranging in age from 2-12 years, BW 4.9 +/- 3 kg, showed L to be 14.7 +/- 1.9 cm, EI 6.0 +/- 4.8 Nm(sup 2), P(sub cr) 2.51 +/- 1.2 kN and S 57.3 N. These measurements indicate that the tibia of a terrestrial non-human primate, M. mulatta, has higher load carrying capacity for the level of body weights in the species than the human bone.

  16. Lower Trabecular Volumetric BMD at Metaphyseal Regions of Weight-Bearing Bones is Associated With Prior Fracture in Young Girls

    PubMed Central

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-01-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1–1.9) and 1.3 (1.0–1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. © 2011 American Society for Bone and Mineral Research. PMID:20721933

  17. [Disruption of the arteria nutricia tibiae by reamed and unreamed intramedullary nailing. Study of the vascular architecture of the human tibial intramedullary cavity].

    PubMed

    Paar, O; mon O'Dey, D; Magin, M N; Prescher, A

    2000-01-01

    By reason of the pseudarthrotic healing of fractures due to vascular complications after reamed and unreamed intramedullary nailing, the intraosseous course and branching of the tibial nutrient artery and its impairment by nailing procedures needs an actual analysis. The nutrient vessel of 24 tibiae taken from fresh corpses were prepared by injection of Technovit and lead oxide. After this procedure the medullary cavities of 12 bones were opened by a frontal cut. These specimens were subjected to routine maceration. The other 12 tibiae were naed with the unreamed (6) and the reamed nailing (6) techniques. X-rays were also taken routinely. After penetration of the tibial compact bone the main trunk of the nutrient vessel runs through a perforated osseous tunnel (pars tecta arteriae nutriciae tibiae). At its end the vessel divides into a descending branch (obligate) and two ascending branches (facultative). The descending branch lies near to the centromedial region of the medullary cavity which is termed as the pars liberal arteriae nutriciae tibiae. All branches pass through supporting horizontal osseous lamellas. Due to this topography the reamed nailing technique destroyed the nutrient vessel completely in all specimens. In contrast to this observation the unreamed nailing destroyed the vessel completely only in 1 (16.7%) and partially in 3 (50%) bones; 2 (33.3%) specimens exhibited no destruction of the vessel. The unreamed as well as the reamed nailing technique can destroy the intramedullary course of the tibial nutrient artery. Fractures as well as displacement osteotomies or corticotomies are able to diminish the medullary blood supply seriously, if they are localised within the area of the tactic an of the tibial nutrient artery.

  18. Is bone tenderness, as measured by manual algometry, associated with vitamin D deficiency?

    PubMed Central

    Dresser, Jocelyn; MacIntyre, Mike; Chisholm, Brittney; Lawson, G.E.

    2014-01-01

    Objective: To explore the relationship between serum 25-hydroxycholecalciferol (25[OH]D3) and pressure-pain thresholds, as measured by algometer, in advance of a main study to determine whether PPT is a potentially cost-effective proxy measure of 25[OH]D3 status in the general population. Methods: The cross-sectional pilot study involved a convenience sample of twenty-two subjects (10 males, 12 females), aged 18 to 67 years. All subjects consented to three trials of pressure-pain threshold readings on both tibiae and the manubrium. Serum 25[OH]D3 levels were determined from blood samples drawn post-algometry. Results: The average pressure pain thresholds were 14.92 (±6.03), 15.07(±6.07), 11.10 (±6.68) for the left and right tibia and sternum, respectively. The stability between the measurements was very high with the interclass correlation coefficient (95% CI) calculated as 0.94 (0.62–1.00), 0.9 (0.81–1.00), 0.96(0.93–1.00). The Pearson correlation coefficients were 0.03 for the left tibia, 0.17 for the right tibia and 0.20 for the sternum, J Dresser, M MacIntyre, B Chisholm, GE Lawson showing a negligible correlation for the left and right tibia, but a low positive correlation for the sternum. Conclusion: We did not find preliminary evidence of a strong or otherwise clinically meaningful correlation between bone tenderness and manual algometry in this pilot study. Only a weak linear relationship between PPT in the sternum and serum 25[OH]D3 concentrations was found. Replication of this study is warranted in larger and more representative study populations of interest. Discussion on a number of feasibility issues is provided to inform those future studies. PMID:25202161

  19. Is bone tenderness, as measured by manual algometry, associated with vitamin D deficiency?

    PubMed

    Dresser, Jocelyn; MacIntyre, Mike; Chisholm, Brittney; Lawson, G E

    2014-09-01

    To explore the relationship between serum 25-hydroxycholecalciferol (25[OH]D3) and pressure-pain thresholds, as measured by algometer, in advance of a main study to determine whether PPT is a potentially cost-effective proxy measure of 25[OH]D3 status in the general population. The cross-sectional pilot study involved a convenience sample of twenty-two subjects (10 males, 12 females), aged 18 to 67 years. All subjects consented to three trials of pressure-pain threshold readings on both tibiae and the manubrium. Serum 25[OH]D3 levels were determined from blood samples drawn post-algometry. The average pressure pain thresholds were 14.92 (±6.03), 15.07(±6.07), 11.10 (±6.68) for the left and right tibia and sternum, respectively. The stability between the measurements was very high with the interclass correlation coefficient (95% CI) calculated as 0.94 (0.62-1.00), 0.9 (0.81-1.00), 0.96(0.93-1.00). The Pearson correlation coefficients were 0.03 for the left tibia, 0.17 for the right tibia and 0.20 for the sternum, J Dresser, M MacIntyre, B Chisholm, GE Lawson showing a negligible correlation for the left and right tibia, but a low positive correlation for the sternum. We did not find preliminary evidence of a strong or otherwise clinically meaningful correlation between bone tenderness and manual algometry in this pilot study. Only a weak linear relationship between PPT in the sternum and serum 25[OH]D3 concentrations was found. Replication of this study is warranted in larger and more representative study populations of interest. Discussion on a number of feasibility issues is provided to inform those future studies.

  20. [Is there a relation between weight in rats, bone density, ash weight and histomorphometric indicators of trabecular volume and thickness in the bones of extremities?].

    PubMed

    Zák, J; Kapitola, J; Povýsil, C

    2003-01-01

    Authors deal with question, if there is possibility to infer bone histological structure (described by histomorphometric parameters of trabecular bone volume and trabecular thickness) from bone density, ash weight or even from weight of animal (rat). Both tibias of each of 30 intact male rats, 90 days old, were processed. Left tibia was utilized to the determination of histomorphometric parameters of undecalcified bone tissue patterns by automatic image analysis. Right tibia was used to the determination of values of bone density, using Archimedes' principle. Values of bone density, ash weight, ash weight related to bone volume and animal weight were correlated with histomorphometric parameters (trabecular bone volume, trabecular thickness) by Pearson's correlation test. One could presume the existence of relation between data, describing bone mass at the histological level (trabecular bone of tibia) and other data, describing mass of whole bone or even animal mass (weight). But no statistically significant correlation was found. The reason of the present results could be in the deviations of trabecular density in marrow of tibia. Because of higher trabecular bone density in metaphyseal and epiphyseal regions, the histomorphometric analysis of trabecular bone is preferentially done in these areas. It is possible, that this irregularity of trabecular tibial density could be the source of the deviations, which could influence the results of correlations determined. The values of bone density, ash weight and animal weight do not influence trabecular bone volume and vice versa: static histomorphometric parameters of trabecular bone do not reflect bone density, ash weight and weight of animal.

  1. Distal tibia fractures: locked or non-locked plating?

    PubMed Central

    Khalsa, Amrit S; Toossi, Nader; Tabb, Loni P; Amin, Nirav H; Donohue, Kenneth W; Cerynik, Douglas L

    2014-01-01

    Background and purpose Although plating is considered to be the treatment of choice in distal tibia fractures, controversies abound regarding the type of plating for optimal fixation. We conducted a systematic review to evaluate and compare the outcomes of locked plating and non-locked plating in treatment of distal tibia fractures. Patients and methods A systematic review was conducted using PubMed to identify articles on the outcomes of plating in distal tibia fractures that were published up to June 2012. We included English language articles involving a minimum of 10 adult cases with acute fractures treated using single-plate, minimally invasive techniques. Study-level binomial regression on the pooled data was conducted to determine the effect of locking status on different outcomes, adjusted for age, sex, and other independent variables. Results 27 studies met the inclusion criteria and were included in the final analysis of 764 cases (499 locking, 265 non-locking). Based on descriptive analysis only, delayed union was reported in 6% of cases with locked plating and in 4% of cases with non-locked plating. Non-union was reported in 2% of cases with locked plating and 3% of cases with non-locked plating. Comparing locked and non-locked plating, the odds ratio (OR) for reoperation was 0.13 (95% CI: 0.03–0.57) and for malalignment it was 0.10 (95% CI: 0.02–0.42). Both values were statistically significant. Interpretation This study showed that locked plating reduces the odds of reoperation and malalignment after treatment for acute distal tibia fracture. Future studies should accurately assess causality and the clinical and economic impact of these findings. PMID:24758325

  2. Site-specific transmission of a floor-based, high-frequency, low-magnitude vibration stimulus in children with spastic cerebral palsy

    PubMed Central

    Singh, Harshvardhan; Whitney, Daniel G; Knight, Christopher A; Miller, Freeman; Manal, Kurt; Kolm, Paul; Modlesky, Christopher M

    2016-01-01

    Objective To determine the degree to which a high-frequency, low-magnitude vibration (HLV) signal emitted by a floor-based platform transmits to the distal tibia and distal femur of children with spastic cerebral palsy (CP) during standing. Design Cross-sectional study Setting University research laboratory Participants 4 to 12 year-old children with spastic CP who could stand independently (n=18) and typically developing children (n=10) participated in the study. Intervention Not applicable Main outcome measures The vibration signal at the HLV platform (~33 Hz and 0.3 g), distal tibia and distal femur was measured using accelerometers. Degree of plantar flexor spasticity was assessed using the Modified Ashworth Scale. Results The HLV signal was greater (p<0.001) at the distal tibia than at the platform in children with CP (0.36±0.06 vs. 0.29±0.05 g) and controls (0.40 ± 0.09 vs. 0.24 ± 0.07 g). Although the HLV signal was also higher at the distal femur (0.35±0.09 g, p<0.001) than at the platform in controls, it was lower in children with CP (0.20±0.07 g, p<0.001). The degree of spasticity was negatively related to the HLV signal transmitted to the distal tibia (rs=−0.547) and distal femur (rs=−0.566) in children with CP (both p<0.05). Conclusions An HLV signal from a floor-based platform was amplified at the distal tibia, attenuated at the distal femur and inversely related to the degree of muscle spasticity in children with spastic CP. Whether this transmission pattern affects the adaptation of their bones to HLV requires further investigation. PMID:26392035

  3. Measurement of bone adjacent to tibial shaft fracture.

    PubMed

    Findlay, S C; Eastell, R; Ingle, B M

    2002-12-01

    Delayed union and non-union are common complications after fracture of the tibial shaft. Response of the surrounding bone as a fracture heals could be monitored using techniques currently used in the study of osteoporosis. The aims of our study were to: (1) evaluate the decrement in bone measurements made close to the fracture using dual-energy X-ray absorptiometry (DXA), quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT); (2) compare values for fractured versus non-fractured leg to determine the duration of decrement in bone measurements; and (3) calculate short-term precision in DXA, QUS and pQCT in order to calculate the ratio of decrement to precision (response ratio, RR) to determine the optimal test for monitoring changes after tibial fracture. The biggest decrement in bone measurements at the ipsilateral limb of 28 patients with tibial shaft fracture was observed at the pQCT tibial trabecular sites (distal = 19%, p<0.0001; proximal 5% = 21%, p<0.001; proximal 10% = 28%, p<0.001) and the ultradistal tibia/fibula measured by DXA (19%, p<0.0001). When comparing Z-scores, the magnitude of decrements at the ipsilateral limb was bigger for variables measured directly at the tibia, both proximal and distal to the fracture. The magnitude of the decrement in ultradistal tibia/fibula BMD decreased as the time since fracture increased ( r = 0.55). When response ratios are considered, pQCT measurements at the distal tibia (RR 6-8) and proximal 5% and 10% trabecular sites (RR 5 and 9 respectively) were found to be the most sensitive to change. Therefore, pQCT of the trabecular regions of either the proximal or distal tibia should prove the most sensitive measurement for monitoring changes in bone adjacent to a tibial shaft fracture.

  4. Lower trabecular volumetric BMD at metaphyseal regions of weight-bearing bones is associated with prior fracture in young girls.

    PubMed

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-02-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1-1.9) and 1.3 (1.0-1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. Copyright © 2011 American Society for Bone and Mineral Research.

  5. Efficacies of Ceftobiprole Medocaril and Comparators in a Rabbit Model of Osteomyelitis Due to Methicillin-Resistant Staphylococcus aureus▿

    PubMed Central

    Yin, Li-Yan; Calhoun, Jason H.; Thomas, Jacob K.; Shapiro, Stuart; Schmitt-Hoffmann, Anne

    2008-01-01

    The pharmacokinetics and distribution into bone tissue of ceftobiprole in uninfected New Zealand White rabbits were determined after subcutaneous administration of the prodrug ceftobiprole medocaril. Serum exposure (maximum concentration of the drug in serum, trough concentration, area under the concentration-time curve) to ceftobiprole at 20 and 80 mg/kg was dose proportional, and there was no accumulation of ceftobiprole following repeated (every 6 h [q6h]) injections of the antibiotic. Ceftobiprole titers in the tibial matrix and marrow were 3.2 ± 1.3 μg/g and 11.2 ± 6.5 μg/g, respectively, in uninfected animals treated with 20 mg/kg of the antibiotic and 13.4 ± 7.3 μg/g and 66.3 ± 43.2 μg/g, respectively, in uninfected animals treated with 80 mg/kg of the antibiotic. No differences in ceftobiprole titers were observed between right and left tibiae for either bone matrix or marrow. The efficacies of 4 weeks of treatment with ceftobiprole (40 mg/kg administered subcutaneously [s.c.] q6h), vancomycin (30 mg/kg administered s.c. q12h), or linezolid (60 mg/kg administered orally q8h) were compared, using a rabbit model of methicillin-resistant Staphylococcus aureus tibial osteomyelitis. After treatment with ceftobiprole, the bacterial titers in all infected left tibiae from evaluable rabbits were below the level of detection, whereas only 73% of infected left tibiae from vancomycin- or linezolid-treated animals had bacterial titers below the level of detection; the mean titers of ceftobiprole were 3 to 5 times higher in infected left tibiae than in uninfected right tibiae. These results indicate that ceftobiprole provided effective parenteral treatment of osteomyelitis in this rabbit model. PMID:18332175

  6. Efficacies of ceftobiprole medocaril and comparators in a rabbit model of osteomyelitis due to methicillin-resistant Staphylococcus aureus.

    PubMed

    Yin, Li-Yan; Calhoun, Jason H; Thomas, Jacob K; Shapiro, Stuart; Schmitt-Hoffmann, Anne

    2008-05-01

    The pharmacokinetics and distribution into bone tissue of ceftobiprole in uninfected New Zealand White rabbits were determined after subcutaneous administration of the prodrug ceftobiprole medocaril. Serum exposure (maximum concentration of the drug in serum, trough concentration, area under the concentration-time curve) to ceftobiprole at 20 and 80 mg/kg was dose proportional, and there was no accumulation of ceftobiprole following repeated (every 6 h [q6h]) injections of the antibiotic. Ceftobiprole titers in the tibial matrix and marrow were 3.2 +/- 1.3 microg/g and 11.2 +/- 6.5 microg/g, respectively, in uninfected animals treated with 20 mg/kg of the antibiotic and 13.4 +/- 7.3 microg/g and 66.3 +/- 43.2 microg/g, respectively, in uninfected animals treated with 80 mg/kg of the antibiotic. No differences in ceftobiprole titers were observed between right and left tibiae for either bone matrix or marrow. The efficacies of 4 weeks of treatment with ceftobiprole (40 mg/kg administered subcutaneously [s.c.] q6h), vancomycin (30 mg/kg administered s.c. q12h), or linezolid (60 mg/kg administered orally q8h) were compared, using a rabbit model of methicillin-resistant Staphylococcus aureus tibial osteomyelitis. After treatment with ceftobiprole, the bacterial titers in all infected left tibiae from evaluable rabbits were below the level of detection, whereas only 73% of infected left tibiae from vancomycin- or linezolid-treated animals had bacterial titers below the level of detection; the mean titers of ceftobiprole were 3 to 5 times higher in infected left tibiae than in uninfected right tibiae. These results indicate that ceftobiprole provided effective parenteral treatment of osteomyelitis in this rabbit model.

  7. Intraoperative study on anthropometry and gender differences of the proximal tibial plateau at the arthroplasty resection surface.

    PubMed

    Yang, Bo; Yu, Jiakuo; Gong, Xi; Chen, Lianxu; Wang, Yongjian; Wang, Jian; Wang, Haijun; Zhang, Jiying

    2014-01-01

    The tibial plateau is asymmetric with a larger medial plateau. We observed from clinical practice that the shape of the tibial plateau does not always present a larger medial plateau. Tibial plateau also showed other shapes. The purpose of this study was to analyze the anthropometric data of the proximal tibia in a large group of Chinese patients undergoing total knee arthroplasty and to investigate the morphology of the resected proximal tibial surface and its gender differences. A total of 822 knees (164 males, 658 females) from the Chinese population were measured intraoperatively for medial anteroposterior (MAP) and lateral anteroposterior (LAP) dimensions of the resected proximal tibial surface. The difference of MAP and LAP (DML) was also calculated as MAP minus LAP. We then classified the data into three groups based on the DML (<-2, -2 to 2, and >2 mm) to analyze the morphology of the proximal tibia and its distribution between male and female. The shape of proximal tibial plateau was of three types: larger medial plateau type, symmetric type, and larger lateral plateau type. There were significant differences between males and females in relation to the shape distribution of the proximal tibial plateau (P < 0.05). Most of the proximal tibial plateau was asymmetric, with 517 of 822 (62.9%) tibia having a DML >2 mm and 120 of 822 (14.6%) tibia having a DML<-2 mm. Only 185 of 822 (22.5%) tibia had a DML between -2 and 2 mm. The results of this study can be used as a guideline to design tibial components with different DMLs to better match the different anthropometry of the resected tibial surface.

  8. Fractures of the distal tibia treated with polyaxial locking plating.

    PubMed

    Gao, Hong; Zhang, Chang-Qing; Luo, Cong-Feng; Zhou, Zu-Bin; Zeng, Bing-Fang

    2009-03-01

    We evaluated the healing rate, complications, and functional outcomes in 32 adult patients with very short metaphyseal fragments in fractures of the distal tibia treated with a polyaxial locking system. The average distance from the distal extent of the fracture to the tibial plafond was 11 mm. All fractures healed and the average time to union was 14 weeks. Six patients (19%) reported occasional local disturbance over the medial malleolus. There were two cases of postoperative superficial infections and evidence of delayed wound healing. Using the American Orthopaedic Foot and Ankle Society ankle score, the average functional score was 87.3 points (of 100 total possible points). Our results show the polyaxial locking plates, which offer more fixation versatility, may be a reasonable treatment option for distal tibia fractures with very short metaphyseal segments.

  9. Phosphaturic mesenchymal tumor of the tibia with oncogenic osteomalacia in a teenager.

    PubMed

    Farmakis, Shannon G; Siegel, Marilyn J

    2015-08-01

    Phosphaturic mesenchymal tumor is an uncommon cause of a paraneoplastic syndrome that can be associated with osteogenic osteomalacia. This tumor most commonly occurs in middle-aged men and women. We report a rare case of a phosphaturic mesenchymal tumor in a 16-year-old girl with multiple fractures as a result of severe osteoporosis. CT and MRI showed a mass arising from the tibia.

  10. Proceedings of the 2010 AFMS Medical Research Symposium. Volume 3. Enroute Track: Abstracts and Presentations

    DTIC Science & Technology

    2011-03-15

    comparison of proximal tibia, proximal humerus and distal femur infusion rates under high pressure using the EZ-IO Intraosseous device on an adult...contaminated complex musculoskeletal wounds. METHODS: We adapted a previously characterized caprine model. Under anesthesia , complex musculoskeletal...of proximal tibia, proximal humerus and distal femur infusion rates under high pressure using the EZ-IO Intraosseous device on an adult swine model

  11. Predictors of proximal tibia anterior shear force during a vertical stop-jump.

    PubMed

    Sell, Timothy C; Ferris, Cheryl M; Abt, John P; Tsai, Yung-Shen; Myers, Joseph B; Fu, Freddie H; Lephart, Scott M

    2007-12-01

    Anterior cruciate ligament (ACL) continues to be a significant medical issue for athletes participating in sports and recreational activities. Biomechanical analyses have determined that anterior shear force is the most direct loading mechanism of the ACL and a probable component of noncontact ACL injury. The purpose of this study was to examine the biomechanical predictors of proximal tibia anterior shear force during a stop-jump task. A biomechanical and electromyographic (EMG) analysis of the knee was conducted while subjects performed a vertical stop-jump task. The task was chosen to simulate an athletic maneuver that included a landing with a sharp deceleration and a change in direction. The final regression model indicated that posterior ground reaction force, external knee flexion moment, knee flexion angle, integrated EMG activity of the vastus lateralis, and sex (female) would significantly predict proximal tibia anterior shear force (p < 0.0001, R2 = 0.8609). Knee flexion moment had the greatest influence on proximal tibia anterior shear force. The mathematical relationships elucidated in the current study support previous clinical and basic science research examining noncontact ACL injuries. This data provides important evidence for clinicians who are examining the risk factors for these injuries and developing/validating training programs to reduce the incidence of injury. Copyright 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Autogenous cultured growth plate chondrocyte transplantation in the treatment of physeal injury in rabbits.

    PubMed

    Tomaszewski, R; Bohosiewicz, J; Gap, A; Bursig, H; Wysocka, A

    2014-11-01

    The aim of this experimental study on New Zealand's white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics. An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group. Histological examinations showed that the grafted right tibia presented the regular shape of the plate growth with hypertrophic maturation, chondrocyte columniation and endochondral calcification. Radiological study shows that the mean tibial deformity at the left angle was 20.29° (6.25 to 33) and 7.21° (5 to 10) in the right angle. This study has demonstrated that grafting of autogenous cultured growth plate cells into a defect of the medial aspect of the proximal tibial physis can prevent bone bridge formation, growth arrest and the development of varus deformity. Cite this article: Bone Joint Res 2014;3:310-16. ©2014 The British Editorial Society of Bone & Joint Surgery.

  13. Closing wedge retrotubercular tibial osteotomy and TKA for posttraumatic osteoarthritis with angular deformity.

    PubMed

    Meehan, John P; Khadder, Mohammad A; Jamali, Amir A; Trauner, Kenneth B

    2009-05-01

    Posttraumatic osteoarthritis of the knee can be associated with angular deformities and alterations in the joint line as a result of the initial trauma and subsequent surgical procedures. These deformities can be characterized as extra-articular or intra-articular or can involve aspects of both. Conversion to total knee arthroplasty (TKA) may require either a staged or a simultaneous corrective osteotomy to restore the limb alignment and proper knee function. This article describes a closing wedge retrotubercular tibia osteotomy performed concurrently with TKA in an effort to correct an extra-articular varus deformity and to improve the patella tendon height in relation to the reconstructed joint line. A 57-year-old man previously treated for a Schatzker type 6 tibia plateau fracture presented with symptoms of arthritis pain and instability as a result of a varus thrust with weight bearing. Radiographs revealed posttraumatic osteoarthritis, a 35 degrees varus deformity, and patella infera. Maintaining the tibia tubercle continuity with the distal tibia allowed for correction of the varus deformity and improvement in the patella tendon height relative to the joint line. At 5-year follow-up, the patient had osteotomy healing, clinically neutral limb alignment, and improvement in joint line biomechanics with resolution of symptoms of pain and instability.

  14. A New Device for Percutaneous Elevation of the Depressed Fractures of Tibial Condyles

    PubMed Central

    Ravindranath, V.S.; Kumar, Madhusudan; Murthy, G.V.S.

    2012-01-01

    Introduction: Monocondylar tibia plateau fractures with non-comminuted fragments can be treated using percutaneous screws. Currently indirect methods of reduction are used and thus the technique is limited to fragments with less than 5 mm depression. The first author has designed a device for direct elevation and reduction of the fragments thus potentially expanding the indications of percutaneous screws to fragments with >5mm depression Technical Note: A total of ten cases were treated by this method of percutaneous elevation of the depressed fractures of lateral condyles of the Tibia using this device. Device was inserted through a bony window on the anteromedial surface of tibia. The inner piston of the device in slowly hammered inside thus elevating the depressed fragment. Elevation of fragment could be achieved in all the cases. The fractures were fixed with cancellous screws applied percutaneously. There were no cases with loss of fixation or subsidence of the fragment. All cases achieved radiological union and have good knee function at follow up Conclusion: The new device is able to elevate unicondylar tibia plateau fragments with no subsidence or loss of fixation in our series. A longer follow up in a larger sample will be needed to establish the technique. PMID:27298860

  15. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    PubMed

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  16. Allometric relationships among body mass, MUZZLE-tail length, and tibia length during the growth of Wistar rats.

    PubMed

    Santiago, Hildemberg Agostinho Rocha de; De Pierro, Lucas Rodolfo; Reis, Rafael Menezes; Caluz, Antônio Gabriel Ricardo Engracia; Ribeiro, Victor Barbosa; Volpon, José Batista

    2015-11-01

    To investigate allometric relationships among body mass (BM), muzzle-tail length (MTL), and tibia length (TL) in Wistar rats and establish their growth rate change parameters. Eighteen male and 18 female Wistar rats were studied from the 3rd to the 21st week of age. BM, MTL, and TL were measured daily, and relative growth was compared using allometry. A positive correlation between BM and MTL (p<0.05) and BM and TL (p<0.05) was observed. Males and females showed comparable curves; however, females had turning points at a younger age. The allometric relationship between BM and MTL presented a regular increase until reaching a mass of 351 g (males) and 405 g (females). BM and TL showed an initial increase until 185 g (males) and 182 g (females), and then reached a plateau that finished at 412 g (males) and 334 g (females), to display another increase. The allometric relationship of body mass with animal length and tibia length was comparable for male and female rats, with female rats maturing earlier. Animal longitudinal growth occurred in a single stage. In contrast, tibia length depicted two stages of accelerated growth with an intermediate period of deceleration.

  17. Bone microarchitecture is more severely affected in patients on hemodialysis than in those receiving peritoneal dialysis.

    PubMed

    Pelletier, Solenne; Vilayphiou, Nicolas; Boutroy, Stéphanie; Bacchetta, Justine; Sornay-Rendu, Elisabeth; Szulc, Pawel; Arkouche, Walid; Guebre-Egziabher, Fitsum; Fouque, Denis; Chapurlat, Roland

    2012-09-01

    We used high-resolution quantitative computed tomography to study the microarchitecture of bone in patients with chronic kidney disease on dialysis. We compared bone characteristics in 56 maintenance hemodialysis (21 women, 14 post-menopausal) and 23 peritoneal dialysis patients (9 women, 6 post-menopausal) to 79 healthy men and women from two cohorts matched for age, body mass index, gender, and menopausal status. All underwent dual-energy X-ray absorptiometry of the spine and hip to measure areal bone mineral density, and high-resolution peripheral quantitative computed tomography of the radius and tibia to measure volumetric bone mineral density and microarchitecture. When compared to their matched healthy controls, patients receiving hemodialysis and peritoneal dialysis had a significantly lower areal bone mineral density in the hip. Hemodialysis patients had significantly lower total, cortical, and trabecular volumetric bone mineral density at both sites. Hemodialysis patients had significantly lower trabecular volumetric bone mineral density and microarchitecture at the tibia than the peritoneal dialysis patients. Overall, peritoneal dialysis patients were less affected, their cortical thickness at the distal tibia being the only significant difference versus controls. Thus, we found more severe trabecular damage at the weight-bearing tibia in hemodialysis compared to peritoneal dialysis patients, but this latter finding needs confirmation in larger cohorts.

  18. [The Postero-Lateral Approach--An Alternative to Closed Anterior-Posterior Screw Fixation of a Dislocated Postero-Lateral Fragment of the Distal Tibia in Complex Ankle Fractures].

    PubMed

    von Rüden, C; Hackl, S; Woltmann, A; Friederichs, J; Bühren, V; Hierholzer, C

    2015-06-01

    The dislocated posterolateral fragment of the distal tibia is considered as a key fragment for the successful reduction of comminuted ankle fractures. The reduction of this fragment can either be achieved indirectly by joint reduction using the technique of closed anterior-posterior screw fixation, or directly using the open posterolateral approach followed by plate fixation. The aim of this study was to compare the outcome after stabilization of the dislocated posterolateral tibia fragment using either closed reduction and screw fixation, or open reduction and plate fixation via the posterolateral approach in complex ankle fractures. In a prospective study between 01/2010 and 12/2012, all mono-injured patients with closed ankle fractures and dislocated posterolateral tibia fragments were assessed 12 months after osteosynthesis. Parameters included: size of the posterolateral tibia fragment relative to the tibial joint surface (CT scan, in %) as an indicator of injury severity, unreduced area of tibial joint surface postoperatively, treatment outcome assessed by using the "Ankle Fracture Scoring System" (AFSS), as well as epidemiological data and duration of the initial hospital treatment. In 11 patients (10 female, 1 male; age 51.6 ± 2.6 years [mean ± SEM], size of tibia fragment 42.1 ± 2.5 %) the fragment fixation was performed using a posterolateral approach. Impaired postoperative wound healing occurred in 2 patients of this group. In the comparison group, 12 patients were treated using the technique of closed anterior-posterior screw fixation (10 female, 2 male; age 59.5 ± 6.7 years, size of tibia fragment 45.9 ± 1.5 %). One patient of this group suffered an incomplete lesion of the superficial peroneal nerve. Radiological evaluation of the joint surface using CT scan imaging demonstrated significantly less dislocation of the tibial joint surface following the open posterolateral approach (0.60 ± 0.20 mm) compared to the closed anterior-posterior screw fixation (1.03 ± 0.08 mm; p < 0.05). Assessment of the treatment outcome using the AFSS demonstrated a significantly higher score of 97.4 ± 6.4 in the group with a posterolateral approach compared to a score of 74.4 ± 12.1 (p < 0.05) in the group with an anterior-posterior screw fixation. In comparison to the anterior-posterior screw fixation, open reduction and fixation of the dislocated, posterolateral key fragment of the distal tibia using a posterolateral approach resulted in a more accurate fracture reduction and significantly better functional outcome 12 months after surgery. In addition, no increased rate of postoperative complications, or extended hospital stay was observed but there was less severe post-traumatic joint arthritis. The results of this study suggest that in complex ankle factures the open fixation of the dislocated posterolateral fragment is recommended as an alternative surgical procedure and may be beneficial for both clinical and radiological long-term outcomes. Georg Thieme Verlag KG Stuttgart · New York.

  19. Aseptic nonunion of the tibia treated by intramedullary osteosynthesis.

    PubMed

    Gualdrini, G; Rollo, G; Montanari, A; Zinghi, G F

    1996-01-01

    The authors report 52 cases of aseptic nonunion of the tibia treated by intramedullary osteosynthesis. The means of synthesis used were the Küntscher nail, the Eiffel Tower Rush nail, and the Grosse-Kempf nail. Which means of synthesis was used depended on the site and the features of the nonunion. Healing occurred in all of the cases after an average of 5 months. Mean follow-up was 4.5 years.

  20. Influences of Nutrition and Physical Forces on Bone Structure/Function Properties

    DTIC Science & Technology

    2005-10-01

    weeks old. The mice were humanely euthanized at 20 wks of age, the left femur and eighth caudal vertebrae were dissected free of soft tissue and...regime, mice were humanely euthanized and the right tibiae were removed and dissected free of soft tissue and frozen in LRS. The right tibiae...Feld MS (1998) Histopathology of human coronary artherosclerosis by quantifying its chemical composition with Raman spectr- oscopy. Circulation 97:878

  1. Insufficiency fractures of the distal tibia misdiagnosed as cellulitis in three patients with rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straaton, K.V.; Lopez-Mendez, A.; Alarcon, G.S.

    We describe 3 patients with rheumatoid arthritis who presented with diffuse pain, swelling, and erythema of the distal aspect of the lower extremity, suggestive of either cellulitis or thrombophlebitis, but were found to have insufficiency fractures of the distal tibia. The value of technetium-99m diphosphonate bone scintigraphy in the early recognition of these fractures and a possible explanation for the associated inflammatory symptoms are discussed.

  2. The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age.

    PubMed Central

    Bacon, G E; Goodship, A E

    1991-01-01

    The direction of preferred orientation of the hydroxyapatite crystals in both the tibia and radius of the sheep is close to the long axis of the bone, notwithstanding the angle of about 30 degrees which, for the tibia, exists between the long axis and the direction of principal dynamic strain during locomotion. For both bones the orientation of the cranial cortex, which is a tension surface during locomotion, is about 40% larger than the caudal. The variation with age of the magnitude of the preferred orientation for the sheep bones is contrasted with what has been reported earlier for the human femur. Notably, for the sheep, both bones show substantial orientation at birth--having increased steadily during gestation--so that the animal is able to stand and walk at the outset. PMID:1817133

  3. The uptake by the canine tibia of the bone-scanning agent 99mTc-MDP before and after an osteotomy.

    PubMed

    Hughes, S; Khan, R; Davies, R; Lavender, P

    1978-11-01

    The residue and extraction of technetium-labelled methylene diphosphonate (99mTc-MDP), a substance used in bone scanning, was examined in the canine tibia and found to be low. Examination of washout curves suggested that there were four compartments in cortical bone, a vascular, a perivascular, a bone fluid and a bone compartment. After an osteotomy in the canine tibia the residue of 99mTc-MDP increased. This was believed to be due to an increase in the blood supply to the bone and to an associated increase in new bone available for exchange. Bone scanning in a fracture is therefore a reflection of the vascular status of the bone being examined and of the uptake by bone. This is dependent on there being an adequate blood supply to the bone and an increased number of mineral-binding sites.

  4. Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae

    PubMed Central

    Kim, Hong-Kyun; Woo, Kyung mi; Shon, Won-Jun; Ahn, Jin-Soo; Cha, Seunghee; Park, Young-Seok

    2017-01-01

    The aim of this study was to compare osseointegration and surface characteristics of zirconia implants made by the powder injection molding (PIM) technique and made by the conventional milling procedure in rabbit tibiae. Surface characteristics of 2 types of implant were evaluated. Sixteeen rabbits received 2 types of external hex implants with similar geometry, machined zirconia implants and PIM zirconia implants, in the tibiae. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined zirconia implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined zirconia implants (P < 0.001). The osseointegration of the PIM zirconia implant is promising, and PIM, using the roughened mold etching technique, can produce substantially rough surfaces on zirconia implants. PMID:26235717

  5. Periosteal ganglion: a report of three new cases including MRI findings and a review of the literature.

    PubMed

    Okada, K; Unoki, E; Kubota, H; Abe, E; Taniwaki, M; Morita, M; Sato, K

    1996-02-01

    To clarify the clinicopathological features of periosteal ganglion. Three patients with periosteal ganglion were studied clinicopathologically. One patient was selected from the files of our institute and two from a consultation file. All three lesions were located over the medial aspect of the tibia. Plain radiographs showed cortical erosions of varying degrees and mild periosteal reaction of the medial side of the tibia. MR images demonstrated well-circumscribed lesions overlying the cortical bone of the tibia, shown as low-intensity areas on T1-weighted images. On T2-weighted images, lesions were homogeneous, lobulated, and showed a characteristic markedly increased signal intensity. These findings are helpful in making a diagnosis of periosteal ganglion. Each patient had an uneventful clinical course after an excision involving the wall of the ganglion, the adjoining periosteum, and the underlying sclerotic cortical bone.

  6. Brown tumours of the tibia and second metacarpal bone in a woman with severe vitamin D deficiency.

    PubMed

    Al-Sharafi, Butheinah A; Al-Imad, Shafiq A; Shamshair, Amani M; Al-Faqeeh, Derhim H

    2015-08-03

    Brown tumours caused by vitamin D deficiency are rare. Most cases are caused by primary hyperparathyroidism, and are rarely caused by secondary hyperparathyroidism in cases of renal failure. We present a case of Brown tumours of the tibia and second metacarpal bone in a 50-year-old woman who had a low dietary intake of vitamin D and had worn a veil for most of her adult life. The Brown tumours were caused by vitamin D deficiency and secondary hyperparathyroidism. The patient improved on treatment with vitamin D3 and calcium supplements. This is a rare case and the first, to our knowledge, with a Brown tumour of the tibia caused by vitamin D deficiency due to decreased dietary intake and decreased exposure to sunlight. The course of treatment and investigations of the patient are described. 2015 BMJ Publishing Group Ltd.

  7. Opportunities for exercise during pullet rearing, Part II: Long-term effects on bone characteristics of adult laying hens at the end-of-lay.

    PubMed

    Casey-Trott, T M; Korver, D R; Guerin, M T; Sandilands, V; Torrey, S; Widowski, T M

    2017-08-01

    Osteoporosis in laying hens has been a production and welfare concern for several decades. The objective of this study was to determine whether differing opportunities for exercise during pullet rearing influences long-term bone quality characteristics in end-of-lay hens. A secondary objective was to assess whether differing opportunities for exercise in adult housing systems alters bone quality characteristics in end-of-lay hens. Four flock replicates of 588 Lohmann Selected Leghorn-Lite pullets were reared in either conventional cages (Conv) or an aviary rearing system (Avi) and placed into conventional cages (CC), 30-bird furnished cages (FC-S), or 60-bird furnished cages (FC-L) for adult housing. Wing and leg bones were collected at the end-of-lay to quantify bone composition and strength using quantitative computed tomography and bone breaking strength (BBS). At the end-of-lay, Avi hens had greater total and cortical cross-sectional area (P < 0.05) for the radius and tibia, greater total bone mineral content of the radius (P < 0.001), and greater tibial cortical bone mineral content (P = 0.029) than the Conv hens; however, total bone mineral density of the radius (P < 0.001) and cortical bone mineral density of the radius and tibia (P < 0.001) were greater in the Conv hens. Hens in the FC-L had greater total bone mineral density for the radius and tibia (P < 0.05) and greater trabecular bone mineral density for the radius (P = 0.027), compared to hens in the FC-S and CC. Total bone mineral content of the tibia (P = 0.030) and cortical bone mineral content of the radius (P = 0.030) and tibia (P = 0.013) were greater in the FC-L compared to the CC. The humerus of Conv hens had greater BBS than the Avi hens (P < 0.001), and the tibiae of FC-L and FC-S hens had greater BBS than CC hens (P = 0.006). Increased opportunities for exercise offered by the aviary rearing system provided improved bone quality characteristics lasting through to the end-of-lay. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  8. Distraction by a monotube fixator to achieve limb lengthening: predictive factors for tibia trauma

    PubMed Central

    2013-01-01

    Background Management of post trauma tibia bone gap varied with orthopedic surgeons’ experience and tools available. Study aims to determine predictive factors for distraction by a monotube fixator (DMF) outcome in post tibia trauma limb length discrepancy. Methods A prospective descriptive cross sectional study of post traumatized tibia bone gap and limb length discrepancy patients at tertiary hospitals. Patient’s informed consent and institutional ethical committee approval were obtained. Bio-data, clinical and healing indexes were documented. DMF was applied for patient that met inclusion criteria. The Statistic tests used included the Chi-square, the Student’s two-tailed t test, and the Wilcox on rank-sum test when appropriate. Mantel-Haenszel Common Odds Ratio (OR) and 95% confidence intervals for poor outcome potential risk factors were recorded. Bivariate correlation and logistic regression were evaluated. Significance level was set at a p value <0.05. Results Thirty-six patients with mean age, 37.2 ± 10.3 year and male/female ratio of 1:1.25 had DMF applied. Motorcycle accident accounted for 50.0% of patients and diaphyseal segment was most commonly affected 25 (69.4%). The mean bone lengthened was 10.1 ± 4.0 cm (range: 5-21 cm) and mean duration of bone transport was 105.6 ± 38.2 days. The means of rate of distraction, healing index and percentage of lengthening were 0.99 ± 0.14 mm/day, 15.6 ± 4.3 days/cm and 38.0 ± 14.3 respectively. The mean follow up was 9.7 ±4.9 months (range: 2–17.0). Per operative complications varied and outcome was satisfactory in 30 (83.3%). Obesity (p <0.0001), multiple surgery (p = 0.012) and transfusion (p = 0.001) correlated to poor outcome. Percentage lengthening ≥ 50%, bone gap >10 cm, anemia, blood transfusion, general anesthesia administration, distraction rate >1 mm/day, osteomyelitis and prolong partial weight bearing were significant predictive factors for poor outcome in post traumatic tibia distraction. Conclusion Distraction by a monotube fixator appears effective in achieving correction >38.0% original tibia lengthening following traumatic bone gap. Predictive factors for poor outcome were useful for prognostication. PMID:23672599

  9. Appendicular and whole body lean mass outcomes are associated with finite element analysis-derived bone strength at the distal radius and tibia in adults aged 40years and older.

    PubMed

    Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M

    2017-10-01

    The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength, particularly failure load, at the distal radius and tibia, and may contribute to preservation of bone strength in middle-to-late adulthood. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Maternal and genetic effects on broiler bone properties during incubation period.

    PubMed

    Yair, R; Cahaner, A; Uni, Z; Shahar, R

    2017-07-01

    In order to examine the differences in bone properties between fast-growing and slow-growing broiler embryos and to understand the effects of genotype and egg size on these differences, fast- and slow-growing hens and males were reciprocally crossed to create 4 egg groups: FST (laid by fast-growing hens, inseminated by fast-growing males), H-FST (fast-growing hens and slow-growing males), H-SLW (slow-growing hens and fast-growing males), and SLW (slow-growing hens and slow-growing males). Embryos (n = 8) from these 4 groups were sacrificed and weighed, and both tibiae were harvested on embryonic d (E) 17, 19, and 21. Left tibiae were tested for their whole-bone mechanical properties using a micromechanical device. Cortical bone structure and bone mineral density (BMD) were examined by micro-computed tomography of the left tibiae. Bone mineralization was evaluated by measuring BMD and ash content, while the rate and location of mineralization were evaluated by fluorochrome labeling. Osteoclastic activity and osteocyte density were evaluated by histological stains [TRAP (Tartrate resistant acid phosphatase) and H&E (Hematoxylin and Eosin), respectively]. Groups with larger eggs (FST and H-FST) had higher BW and tibia weight than groups with smaller eggs (SLW and H-SLW); however, they had a lower ratio of tibia weight to BW. Between groups with similar egg weight, stiffness, maximal load, and yield load of the bones were higher in the SLW than the H-SLW, while no differences were found between the FST and H-FST. Additionally, the tibiae of the SLW were stiffer and their osteocyte density higher than in the FST on E21 and their periosteal mineralization rate was higher between E19 and E21. No differences were found between the groups in cortical bone structure. This study demonstrates that faster growing hatchlings, especially those that hatch from relatively small eggs, have inferior bone mechanical properties in comparison to slower growing hatchlings, and suggests that fast-growing chicks hatching from small eggs are at a higher risk for developing bone pathologies. Accordingly, selection for increased egg size may lead to improved mechanical performance of the skeleton of fast-growing broilers. © 2017 Poultry Science Association Inc.

  11. Validation of Long Bone Mechanical Properties from Densitometry

    NASA Technical Reports Server (NTRS)

    Whalen, R.; Katz, B.; Cleek, T.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    The objective of this study was to assess whether cross-sectional areal properties, calculated from densitometry, correlate to the true flexural properties. Right and left male embalmed tibiae were used in the study. Prior to scanning, the proximal end of each tibia was potted in a fixture with registration pins, flushed thoroughly with water under pressure to remove trapped air, and then placed in a constant thickness water bath attached to a precision indexer. Two sets of three scans of the entire tibia were taken with an Hologic QDR 1000/W densitometer at rotations of 0, 45, and 90 degrees about the tibia long axis. An aluminum step phantom and a bone step phantom, machined from bovine cortical bone, were also in the bath and scanned separately. Pixel attenuation data from the two sets of scans were averaged to reduce noise. Pixel data from the high energy beam were then converted to equivalent thicknesses using calibration equations. Cross-sectional areal properties (centroid, principal area moments and principal angle) along the length were computed from the three registered scans using methods developed in our laboratory. Flexural rigidities. Four strain gages were bonded around the circumference of each of 5 cross-sections encompassing the entire diaphysis. A known transverse load was then applied to the distal end and the bone was rotated 360 degrees in eight increments of 45 degrees each. Strains from the eight orientations were analyzed along with the known applied bending moments at each section to compute section centroids, curvatures, principal flexural rigidities and principal angle. Reference axes between the two methods were maintained within +/- 0.5 degrees using an electronic inclinometer. Principal angles (flexural - areal) differed by -2.0 +/- 4.0 degrees, and 1.0 +/- 2.5 degrees for the right and left tibia, respectively. Section principal flexural rigidities were highly correlated to principal areal moments (right: r(sup 2)= 0.997; left: r(sup 2)= 0.978) indicating a nearly constant effective flexural modulus. Right and left tibia exhibited a very high degree of symmetry when comparing either flexural or areal properties. To our knowledge this is the first study to validate the use of densitometry (DXA) to predict three dimensional structural properties of long bones. Our initial results support the conclusion that bone mineral and its distribution are the primary determinants of flexural modulus and rigidity.

  12. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    PubMed Central

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but greater partitioning of lead in blood versus bone revealed more dramatic effects on both microstructure and volumetric BMD. PMID:25986335

  13. Tibia shaft fractures: costly burden of nonunions.

    PubMed

    Antonova, Evgeniya; Le, T Kim; Burge, Russel; Mershon, John

    2013-01-26

    Tibia shaft fractures (TSF) are common for men and women and cause substantial morbidity, healthcare use, and costs. The impact of nonunions on healthcare use and costs is poorly described. Our goal was to investigate patient characteristics and healthcare use and costs associated with TSF in patients with and without nonunion. We retrospectively analyzed medical claims in large U.S. managed care claims databases (Thomson Reuters MarketScan®, 16 million lives). We studied patients ≥ 18 years old with a TSF diagnosis (ICD-9 codes: 823.20, 823.22, 823.30, 823.32) in 2006 with continuous pharmaceutical and medical benefit enrollment 1 year prior and 2 years post-fracture. Nonunion was defined by ICD-9 code 733.82 (after the TSF date). Among the 853 patients with TSF, 99 (12%) had nonunion. Patients with nonunion had more comorbidities (30 vs. 21, pre-fracture) and were more likely to have their TSF open (87% vs. 70%) than those without nonunion. Patients with nonunion were more likely to have additional fractures during the 2-year follow-up (of lower limb [88.9% vs. 69.5%, P < 0.001], spine or trunk [16.2% vs. 7.2%, P = 0.002], and skull [5.1% vs. 1.3%, P = 0.008]) than those without nonunion. Nonunion patients were more likely to use various types of surgical care, inpatient care (tibia and non-tibia related: 65% vs. 40%, P < 0.001) and outpatient physical therapy (tibia-related: 60% vs. 42%, P < 0.001) than those without nonunion. All categories of care (except emergency room costs) were more expensive in nonunion patients than in those without nonunion: median total care cost $25,556 vs. $11,686, P < 0.001. Nonunion patients were much more likely to be prescribed pain medications (99% vs. 92%, P = 0.009), especially strong opioids (90% vs. 76.4%, P = 0.002) and had longer length of opioid therapy (5.4 months vs. 2.8 months, P < 0.001) than patients without nonunion. Tibia fracture patterns in men differed from those in women. Nonunions in TSF's are associated with substantial healthcare resource use, common use of strong opioids, and high per-patient costs. Open fractures are associated with higher likelihood of nonunion than closed ones. Effective screening of nonunion risk may decrease this morbidity and subsequent healthcare resource use and costs.

  14. Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report.

    PubMed

    Skiadas, Vasilios; Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios

    2009-09-16

    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented.

  15. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs.

    PubMed

    Cubo, Jorge; Woodward, Holly; Wolff, Ewan; Horner, John R

    2015-01-01

    Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.

  16. Biomechanics of jumping in the flea.

    PubMed

    Sutton, Gregory P; Burrows, Malcolm

    2011-03-01

    It has long been established that fleas jump by storing and releasing energy in a cuticular spring, but it is not known how forces from that spring are transmitted to the ground. One hypothesis is that the recoil of the spring pushes the trochanter onto the ground, thereby generating the jump. A second hypothesis is that the recoil of the spring acts through a lever system to push the tibia and tarsus onto the ground. To decide which of these two hypotheses is correct, we built a kinetic model to simulate the different possible velocities and accelerations produced by each proposed process and compared those simulations with the kinematics measured from high-speed images of natural jumping. The in vivo velocity and acceleration kinematics are consistent with the model that directs ground forces through the tibia and tarsus. Moreover, in some natural jumps there was no contact between the trochanter and the ground. There were also no observable differences between the kinematics of jumps that began with the trochanter on the ground and jumps that did not. Scanning electron microscopy showed that the tibia and tarsus have spines appropriate for applying forces to the ground, whereas no such structures were seen on the trochanter. Based on these observations, we discount the hypothesis that fleas use their trochantera to apply forces to the ground and conclude that fleas jump by applying forces to the ground through the end of the tibiae.

  17. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs

    PubMed Central

    Cubo, Jorge; Woodward, Holly; Wolff, Ewan; Horner, John R.

    2015-01-01

    Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older. PMID:26153689

  18. Multi-segment foot kinematics after total ankle replacement and ankle arthrodesis during relatively long-distance gait.

    PubMed

    Rouhani, H; Favre, J; Aminian, K; Crevoisier, X

    2012-07-01

    This study aimed to investigate the influence of ankle osteoarthritis (AOA) treatments, i.e., ankle arthrodesis (AA) and total ankle replacement (TAR), on the kinematics of multi-segment foot and ankle complex during relatively long-distance gait. Forty-five subjects in four groups (AOA, AA, TAR, and control) were equipped with a wearable system consisting of inertial sensors installed on the tibia, calcaneus, and medial metatarsals. The subjects walked 50-m twice while the system measured the kinematic parameters of their multi-segment foot: the range of motion of joints between tibia, calcaneus, and medial metatarsals in three anatomical planes, and the peaks of angular velocity of these segments in the sagittal plane. These parameters were then compared among the four groups. It was observed that the range of motion and peak of angular velocities generally improved after TAR and were similar to the control subjects. However, unlike AOA and TAR, AA imposed impairments in the range of motion in the coronal plane for both the tibia-calcaneus and tibia-metatarsals joints. In general, the kinematic parameters showed significant correlation with established clinical scales (FFI and AOFAS), which shows their convergent validity. Based on the kinematic parameters of multi-segment foot during 50-m gait, this study showed significant improvements in foot mobility after TAR, but several significant impairments remained after AA. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Effects of manganese deficiency on the microstructure of proximal tibia and OPG/RANKL gene expression in chicks.

    PubMed

    Liu, Ran; Jin, Cong; Wang, Zhenyong; Wang, Zhaojun; Wang, Jian; Wang, Lin

    2015-03-01

    Manganese (Mn) deficiency can result in perosis in chicks, but the mechanism of Mn deficiency on tibia development remains poorly understood. Ninety one-day-old Arbor Acres male broiler chickens administered with control diet (60 mg Mn/kg) and Mn-deficient diets (40 mg Mn/kg, 8.7 mg Mn/kg) to investigate the effects of Mn deficiency on morphology of tibia and related signal transduction pathways in broiler chickens. At the age of 42 days, the bone trabecula, damaged osteoblasts and OPG/RANKL mRNA expression levels were investigated by histological assessment, electron microscopic examination and real-time quantitative PCR analysis, respectively. Results of histological observations showed that decreased trabecular thickness, trabecular number and trabecular bone area (%) together with increased trabecular bone separation were involved in perosis induced by Mn deficiency. The most striking ultrastructural modifications involved disruption of nuclear membrane and mitochondria outer membrane, loss of mitochondrion cristae and alteration in endoplasmic reticulum in osteoblasts of the Mn-deficient groups. Likewise, Mn deficiency results in a significant (P < 0.05) decrease in the relative mRNA expression levels of OPG and RANKL with a significantly higher RANKL/OPG ratio (P < 0.05). In conclusion, Mn deficiency can affect the development of tibia in broiler chickens, leading to metaphyseal osteoporosis which may be due to decreased OPG/RANKL mRNA expression.

  20. Effects of 1alpha-hydroxycholecalciferol on growth performance, parameters of tibia and plasma, meat quality, and type IIb sodium phosphate cotransporter gene expression of one- to twenty-one-day-old broilers.

    PubMed

    Han, J C; Yang, X D; Zhang, T; Li, H; Li, W L; Zhang, Z Y; Yao, J H

    2009-02-01

    This experiment was conducted to investigate the effects of 1alpha-hydroxycholecalciferol (1alpha-OH D3) on the growth performance, tibia and plasma parameters, nutrient utilization, meat quality of the breast and thigh, and type IIb sodium phosphate cotranspoter gene expression of broilers. A total of 96 males of 1-d-old Arbor Acres broilers were randomly assigned to 8 cages of 12 birds each. Two dietary treatments were applied to 4 cages each. Diet 1 was prepared as the basal diet (nonphytate phosphorus, 0.21%), whereas diet 2 was the basal diet supplemented with 5 microg/kg of 1alpha-OH D3. Results showed that supplementation of the basal diet with 1alpha-OH D3 increased growth performance, tibia ash and strength, plasma inorganic phosphate concentration, utilization of total phosphorus and nonphytate phosphorus, lightness and yellowness of the breast and thigh meat, and intestinal type IIb sodium phosphate cotranspoter mRNA expression, whereas it decreased the shear force and water-holding capacity of the thigh meat. These data suggest that the addition of 1alpha-OH D3 might improve growth performance, tibia development, and meat quality in 1- to 21-d-old broilers by increasing the absorption and retention of phosphorus.

  1. Validation of multiple subject-specific finite element models of unicompartmental knee replacement.

    PubMed

    Tuncer, Mahmut; Cobb, Justin P; Hansen, Ulrich N; Amis, Andrew A

    2013-10-01

    Accurate computer modelling of the fixation of unicompartmental knee replacements (UKRs) is a valuable design tool. However, models must be validated with in vitro mechanical tests to have confidence in the results. Ten fresh-frozen cadaveric knees with differing bone densities were CT-scanned to obtain geometry and bone density data, then implanted with cementless medial Oxford UKRs by an orthopaedic surgeon. Five strain gauge rosettes were attached to the tibia and femur of each knee and the bone constructs were mechanically tested. They were re-tested following implanting the cemented versions of the implants. Finite element models of four UKR tibiae and femora were developed. Sensitivity assessments and convergence studies were conducted to optimise modelling parameters. The cemented UKR pooled R(2) values for predicted versus measured bone strains were 0.85 and 0.92 for the tibia and femur respectively. The cementless UKR pooled R(2) values were slightly lower at 0.62 and 0.73 which may have been due to the irregularity of bone resections. The correlation of the results was attributed partly to the improved material property prediction method used in this project. This study is the first to validate multiple UKR tibiae and femora for bone strain across a range of specimen bone densities. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. A comparison of long bone development in historical and contemporary ducks.

    PubMed

    Van Wyhe, R C; Applegate, T J; Lilburn, M S; Karcher, D M

    2012-11-01

    The selection for growth and carcass traits in poultry meat species has contributed to increased interest in understanding and characterizing skeletal growth as the birds struggle to balance skeletal development with increased BW and muscle mass. The objective of this study was to compare the physical characteristics and mineralization of the tibia and femur from commercial Pekin ducks representing circa 1993 and 2010 commercial strains. In 1993, the femur and tibia were collected from 8 ducks at 11 ages between 11 and 53 d. A similar study was done in 2010 in which the femur and tibia were collected from 8 ducks at 12 sample ages between 10 and 49 d. All bones were weighed and the length and width at 50% of length were measured. Each bone was subsequently cut into epiphyseal (top 25% of length) and diaphyseal (midregion at 50% of length) sections. Each bone segment was extracted with ether, hot weighed, and ashed. The 2010 contemporary ducks reached market weight faster than the 1993 ducks. Therefore, statistical comparisons were made at common BW as well as at common ages. The mean tibia length of the 2010 duck was 0.75 cm greater (P < 0.05) at similar ages and similar BW. The percentage ash in the diaphyseal region of the tibia was 3% greater (P < 0.05) in the 2010 versus 1993 ducks. The percentage epiphyseal ash in the femur was 10% lower (P < 0.01) at 10 d and 14 d in the 2010 ducks but there were no significant differences by 18 d of age. The lower epiphyseal ash values at both younger ages and smaller BW in the 2010 contemporary ducks suggests that it is critical to monitor those factors that influence bone mineralization in contemporary ducklings that can achieve market BW at earlier chronological ages.

  3. Bone geometry, volumetric bone mineral density, microarchitecture and estimated bone strength in Caucasian females with systemic lupus erythematosus. A cross-sectional study using HR-pQCT.

    PubMed

    Hansen, Stinus; Gudex, Claire; Åhrberg, Fabian; Brixen, Kim; Voss, Anne

    2014-12-01

    Patients with systemic lupus erythematosus (SLE) have an increased risk of fracture. We used high resolution peripheral quantitative computed tomography (HR-pQCT) to measure bone geometry, volumetric bone mineral density (vBMD), cortical and trabecular microarchitecture and estimated bone strength by finite element analysis (FEA) at the distal radius and tibia to assess bone characteristics beyond BMD that may contribute to the increased risk of fracture. Thirty-three Caucasian women with SLE (median age 48, range 21-64 years) and 99 controls (median age 45, range 21-64 years) were studied. Groups were comparable in radius regarding geometry and vBMD, but SLE patients had lower trabecular number (-7%, p < 0.05), higher trabecular separation (13%, p < 0.05) and lower FEA-estimated failure load compared to controls (-10%, p < 0.05). In tibia, SLE patients had lower total vBMD (-11%, p < 0.01), cortical area (-14%, p < 0.001) and cortical thickness (-16%, p < 0.001) and higher trabecular area (8%, p < 0.05). In subgroup analyses of the premenopausal participants (SLE n = 21, controls n = 63), SLE patients had significantly lower trabecular bone volume fraction [(BV/TV); -17%, p < 0.01], trabecular number (-9%, p < 0.01), trabecular thickness (-9%, p < 0.05) and higher trabecular separation (13%, p < 0.01) and trabecular network inhomogeneity (14%, p < 0.05) in radius along with lower BV/TV (-15%, p < 0.01) and higher trabecular separation (11%, p < 0.05) in tibia. FEA-estimated bone strength was lower in both radius (-11%, p < 0.01) and tibia (-10%, p < 0.05). In conclusion, Caucasian women with SLE compared to controls had fewer and more widely separated trabeculae and lower estimated bone strength in radius and lower total vBMD, cortical area and thickness in tibia.

  4. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    PubMed

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (p<0.05). These findings indicate that estimated bone strength at the mid-tibia and mean pkZ GRFs are lower in runners with a history of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  5. Tibial stress changes in new combat recruits for special forces: patterns and timing at MR imaging.

    PubMed

    Hadid, Amir; Moran, Daniel S; Evans, Rachel K; Fuks, Yael; Schweitzer, Mark E; Shabshin, Nogah

    2014-11-01

    To characterize the incidence, location, grade, and patterns of magnetic resonance (MR) imaging findings in the tibia in asymptomatic recruits before and after 4-month basic training and to investigate whether MR imaging parameters correlated with pretraining activity levels or with future symptomatic injury. This study was approved by three institutional review boards and was conducted in compliance with HIPAA requirements. Volunteers were included in the study after they signed informed consent forms. MR imaging of the tibia of 55 men entering the Israeli Special Forces was performed on recruitment day and after basic training. Ten recruits who did not perform vigorous self-training prior to and during service served as control subjects. MR imaging studies in all recruits were evaluated for presence, type, length, and location of bone stress changes in the tibia. Anthropometric measurements and activity history data were collected. Relationships between bone stress changes, physical activity, and clinical findings and between lesion size and progression were analyzed. Bone stress changes were seen in 35 of 55 recruits (in 26 recruits at time 0 and in nine recruits after basic training). Most bone stress changes consisted of endosteal marrow edema. Approximately 50% of bone stress changes occurred between the middle and distal thirds of the tibia. Lesion size at time 0 had significant correlation with progression. All endosteal findings smaller than 100 mm resolved or did not change, while most findings larger than 100 mm progressed. Of 10 control subjects, one had bone stress changes at time 0, and one had bone stress changes at 4 months. Most tibial bone stress changes occurred before basic training, were usually endosteal, occurred between the middle and distal thirds of the tibia, were smaller than 100 mm, and did not progress. These findings are presumed to represent normal bone remodeling.

  6. Proximal tibia stress fracture with Osteoarthritis of knee − Radiological and functional analysis of one stage TKA with long stem

    PubMed Central

    Soundarrajan, Dhanasekaran; Rajkumar, Natesan; Dhanasekararaja, Palanisamy; Rajasekaran, Shanmuganathan

    2018-01-01

    Introduction: Proximal tibia stress fractures with knee osteoarthritis pose a challenging situation. We evaluated the radiological and functional outcome of one-stage total knee arthroplasty (TKA) and long stem for patients with varied grades of knee arthritis and proximal tibia stress fractures.  Methods: We analysed 20 patients from April 2012 to March 2017 with proximal tibia stress fractures associated with knee osteoarthritis of varied grades. Out of 20 patients, five were acute fresh fractures. The mean age was 64 years (range, 52–78) which includes three men and 17 women. Previous surgery in the same limb, rheumatoid arthritis, valgus deformity were excluded. All patients were treated with posterior stabilised TKA with long stem, of which, four patients had screw augmentation for medial tibial bone defect and two patients with malunited fracture at stress fracture site required osteotomy, plating and bone grafting. Two patients had two level stress fracture of tibia in the same leg. Results: The mean follow-up period was 28 (range, 6–60) months. The mean tibiofemoral angle improved from 18.27° varus to 1.8° valgus. The mean knee society score improved from 21.9 (range, −10 to 45) to 82.8 (range, 15–99) [p < 0.05]. The mean Knee Society functional score improved from 15.5 (range, −10 to 40) to 76.8 (range, 10–100) [p < 0.05]. All fractures got united at the last follow-up. One patient had infection and wound dehiscence at six months for which debridement done and had poor functional outcome. Conclusion: TKA with long stem gives excellent outcome, irrespective of severity of arthritis associated with stress fracture. By restoring limb alignment and bypassing the fracture site, it facilitates fracture healing. Early detection and prompt intervention is necessary to prevent the progression to recalcitrant non-union or malunion. PMID:29667926

  7. Prediction of risk of fracture in the tibia due to altered bone mineral density distribution resulting from disuse: a finite element study.

    PubMed

    Gislason, Magnus K; Coupaud, Sylvie; Sasagawa, Keisuke; Tanabe, Yuji; Purcell, Mariel; Allan, David B; Tanner, K Elizabeth

    2014-02-01

    The disuse-related bone loss that results from immobilisation following injury shares characteristics with osteoporosis in post-menopausal women and the aged, with decreases in bone mineral density leading to weakening of the bone and increased risk of fracture. The aim of this study was to use the finite element method to: (i) calculate the mechanical response of the tibia under mechanical load and (ii) estimate of the risk of fracture; comparing between two groups, an able-bodied group and spinal cord injury patients group suffering from varying degrees of bone loss. The tibiae of eight male subjects with chronic spinal cord injury and those of four able-bodied age-matched controls were scanned using multi-slice peripheral quantitative computed tomography. Images were used to develop full three-dimensional models of the tibiae in Mimics (Materialise) and exported into Abaqus (Simulia) for calculation of stress distribution and fracture risk in response to specified loading conditions - compression, bending and torsion. The percentage of elements that exceeded a calculated value of the ultimate stress provided an estimate of the risk of fracture for each subject, which differed between spinal cord injury subjects and their controls. The differences in bone mineral density distribution along the tibia in different subjects resulted in different regions of the bone being at high risk of fracture under set loading conditions, illustrating the benefit of creating individual material distribution models. A predictive tool can be developed based on these models, to enable clinicians to estimate the amount of loading that can be safely allowed onto the skeletal frame of individual patients who suffer from extensive musculoskeletal degeneration (including spinal cord injury, multiple sclerosis and the ageing population). The ultimate aim is to reduce fracture occurrence in these vulnerable groups.

  8. Proximal tibia stress fracture with Osteoarthritis of knee - Radiological and functional analysis of one stage TKA with long stem.

    PubMed

    Soundarrajan, Dhanasekaran; Rajkumar, Natesan; Dhanasekararaja, Palanisamy; Rajasekaran, Shanmuganathan

    2018-01-01

    Proximal tibia stress fractures with knee osteoarthritis pose a challenging situation. We evaluated the radiological and functional outcome of one-stage total knee arthroplasty (TKA) and long stem for patients with varied grades of knee arthritis and proximal tibia stress fractures.  Methods: We analysed 20 patients from April 2012 to March 2017 with proximal tibia stress fractures associated with knee osteoarthritis of varied grades. Out of 20 patients, five were acute fresh fractures. The mean age was 64 years (range, 52-78) which includes three men and 17 women. Previous surgery in the same limb, rheumatoid arthritis, valgus deformity were excluded. All patients were treated with posterior stabilised TKA with long stem, of which, four patients had screw augmentation for medial tibial bone defect and two patients with malunited fracture at stress fracture site required osteotomy, plating and bone grafting. Two patients had two level stress fracture of tibia in the same leg. The mean follow-up period was 28 (range, 6-60) months. The mean tibiofemoral angle improved from 18.27° varus to 1.8° valgus. The mean knee society score improved from 21.9 (range, -10 to 45) to 82.8 (range, 15-99) [p < 0.05]. The mean Knee Society functional score improved from 15.5 (range, -10 to 40) to 76.8 (range, 10-100) [p < 0.05]. All fractures got united at the last follow-up. One patient had infection and wound dehiscence at six months for which debridement done and had poor functional outcome. TKA with long stem gives excellent outcome, irrespective of severity of arthritis associated with stress fracture. By restoring limb alignment and bypassing the fracture site, it facilitates fracture healing. Early detection and prompt intervention is necessary to prevent the progression to recalcitrant non-union or malunion. © The Authors, published by EDP Sciences, 2018.

  9. Site-Specific Transmission of a Floor-Based, High-Frequency, Low-Magnitude Vibration Stimulus in Children With Spastic Cerebral Palsy.

    PubMed

    Singh, Harshvardhan; Whitney, Daniel G; Knight, Christopher A; Miller, Freeman; Manal, Kurt; Kolm, Paul; Modlesky, Christopher M

    2016-02-01

    To determine the degree to which a high-frequency, low-magnitude vibration signal emitted by a floor-based platform transmits to the distal tibia and distal femur of children with spastic cerebral palsy (CP) during standing. Cross-sectional study. University research laboratory. Children with spastic CP who could stand independently (n=18) and typically developing children (n=10) (age range, 4-12y) participated in the study (N=28). Not applicable. The vibration signal at the high-frequency, low-magnitude vibration platform (approximately 33Hz and 0.3g), distal tibia, and distal femur was measured using accelerometers. The degree of plantar flexor spasticity was assessed using the Modified Ashworth Scale. The high-frequency, low-magnitude vibration signal was greater (P<.001) at the distal tibia than at the platform in children with CP (.36±.06g vs .29±.05g) and controls (.40±.09g vs .24±.07g). Although the vibration signal was also higher at the distal femur (.35±.09g, P<.001) than at the platform in controls, it was lower in children with CP (.20±.07g, P<.001). The degree of spasticity was negatively related to the vibration signal transmitted to the distal tibia (Spearman ρ=-.547) and distal femur (Spearman ρ=-.566) in children with CP (both P<.05). A high-frequency, low-magnitude vibration signal from a floor-based platform was amplified at the distal tibia, attenuated at the distal femur, and inversely related to the degree of muscle spasticity in children with spastic CP. Whether this transmission pattern affects the adaptation of the bones of children with CP to high-frequency, low-magnitude vibration requires further investigation. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking.

    PubMed

    Xu, Chun; Silder, Amy; Zhang, Ju; Hughes, Julie; Unnikrishnan, Ginu; Reifman, Jaques; Rakesh, Vineet

    2016-10-01

    Prior studies have assessed the effects of load carriage on the tibia. Here, we expand on these studies and investigate the effects of load carriage on joint reaction forces (JRFs) and the resulting spatiotemporal stress/strain distributions in the tibia. Using full-body motion and ground reaction forces from a female subject, we computed joint and muscle forces during walking for four load carriage conditions. We applied these forces as physiological loading conditions in a finite-element (FE) analysis to compute strain and stress. We derived material properties from computed tomography (CT) images of a sex-, age-, and body mass index-matched subject using a mesh morphing and mapping algorithm, and used them within the FE model. Compared to walking with no load, the knee JRFs were the most sensitive to load carriage, increasing by as much as 26.2% when carrying a 30% of body weight (BW) load (ankle: 16.4% and hip: 19.0%). Moreover, our model revealed disproportionate increases in internal JRFs with increases in load carriage, suggesting a coordinated adjustment in the musculature functions in the lower extremity. FE results reflected the complex effects of spatially varying material properties distribution and muscular engagement on tibial biomechanics during walking. We observed high stresses on the anterior crest and the medial surface of the tibia at pushoff, whereas high cumulative stress during one walking cycle was more prominent in the medioposterior aspect of the tibia. Our findings reinforce the need to include: (1) physiologically accurate loading conditions when modeling healthy subjects undergoing short-term exercise training and (2) the duration of stress exposure when evaluating stress-fracture injury risk. As a fundamental step toward understanding the instantaneous effect of external loading, our study presents a means to assess the relationship between load carriage and bone biomechanics.

  11. Reproducibility of Direct Quantitative Measures of Cortical Bone Micro-architecture of the Distal Radius and Tibia by HR-pQCT

    PubMed Central

    Burghardt, Andrew J.; Buie, Helen R.; Laib, Andres; Majumdar, Sharmila; Boyd, Steven K.

    2010-01-01

    Quantitative cortical micro-architectural endpoints are important for understanding structure-function relations in the context of fracture risk and therapeutic efficacy. This technique study details new image-processing methods to automatically segment and directly quantify cortical density, geometry, and micro-architecture from HR-pQCT images of the distal radius and tibia. An automated segmentation technique was developed to identify the periosteal and endosteal margins of the distal radius and tibia, and detect intra-cortical pore space morphologically consistent with Haversian canals. The reproducibility of direct quantitative cortical bone indices based on this method was assessed in a pooled dataset of 56 subjects with two repeat acquisitions for each site. The in vivo precision error was characterized using root mean square coefficient of variation (RMSCV%) from which, the least significant change (LSC) was calculated. Bland-Altman plots were used to characterize bias in the precision estimates. The reproducibility of cortical density and cross-sectional area measures was high (RMSCV <1% and <1.5%, respectively) with good agreement between young and elder medians. The LSC for cortical porosity (Ct.Po) was somewhat smaller in the radius (0.58%) compared with the distal tibia (0.84%) and significantly different between young and elder medians in the distal tibia (LSC: 0.75% vs. 0.92%; p<0.001). The LSC for pore diameter and distribution (Po.Dm and Po.Dm.SD) ranged between 15 and 23μm. Bland-Altman analysis revealed moderate bias for integral measures of area and volume, but not density nor microarchitecture. This study indicates HR-pQCT measures of cortical bone density and architecture can be measured in vivo with high reproducibility and limited bias across a biologically relevant range of values. The results of this study provide informative data for the design of future clinical studies of bone quality. PMID:20561906

  12. Adaptations in tibial cortical thickness and total volumetric bone density in postmenopausal South Asian women with small bone size.

    PubMed

    Darling, Andrea L; Hakim, Ohood A; Horton, Khim; Gibbs, Michelle A; Cui, Liang; Berry, Jacqueline L; Lanham-New, Susan A; Hart, Kathryn H

    2013-07-01

    There is some evidence that South Asian women may have an increased risk of osteoporosis compared with Caucasian women, although whether South Asians are at increased risk of fracture is not clear. It is unknown whether older South Asian women differ from Caucasian women in bone geometry. This is the first study, to the authors' knowledge, to use peripheral Quantitative Computed Tomography (pQCT) to measure radial and tibial bone geometry in postmenopausal South Asian women. In comparison to Caucasian women, Asian women had smaller bone size at the 4% (-18% p<0.001) and 66% radius (-15% p=0.04) as well as increased total density at the 4% (+13% p=0.01) radius. For the tibia, they had a smaller bone size at the 4% (-16% p=0.005) and 14% (-38% p=0.002) sites. Also, Asians had increased cortical thickness (-17% p=0.04) at the 38% tibia, (in proportion to bone size (-30% p=0.003)). Furthermore, at the 4% and 14% tibia there were increased total densities (+12% to +29% p<0.01) and at the 14% tibia there was increased cortical density (+5% p=0.005) in Asians. These differences at the 14% and 38% (but not 4%) remained statistically significant after adjustment for Body Mass Index (BMI). These adaptations are similar to those seen previously in Chinese women. Asian women had reduced strength at the radius and tibia, evidenced by the 20-40% reduction in both polar Strength Strain Index (SSIp) and fracture load (under bending). Overall, the smaller bone size in South Asians is likely to be detrimental to bone strength, despite some adaptations in tibial cortical thickness and tibial and radial density which may partially compensate for this. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The Efficacy of Low-intensity Vibration to Improve Bone Health in Patients with End-stage Renal Disease Is Highly Dependent on Compliance and Muscle Response.

    PubMed

    Rajapakse, Chamith S; Leonard, Mary B; Kobe, Elizabeth A; Slinger, Michelle A; Borges, Kelly A; Billig, Erica; Rubin, Clinton T; Wehrli, Felix W

    2017-11-01

    Low intensity vibration (LIV) may represent a nondrug strategy to mitigate bone deficits in patients with end-stage renal disease. Thirty end-stage renal patients on maintenance hemodialysis were randomized to stand for 20 minutes each day on either an active or placebo LIV device. Analysis at baseline and completion of 6-month intervention included magnetic resonance imaging (tibia and fibula stiffness; trabecular thickness, number, separation, bone volume fraction, plate-to-rod ratio; and cortical bone porosity), dual-energy X-ray absorptiometry (hip and spine bone mineral density [BMD]), and peripheral quantitative computed tomography (tibia trabecular and cortical BMD; calf muscle cross-sectional area). Intention-to-treat analysis did not show any significant changes in outcomes associated with LIV. Subjects using the active device and with greater than the median adherence (70%) demonstrated an increase in distal tibia stiffness (5.3%), trabecular number (1.7%), BMD (2.3%), and plate-to-rod ratio (6.5%), and a decrease in trabecular separation (-1.8%). Changes in calf muscle cross-sectional area were associated with changes in distal tibia stiffness (R = 0.85), trabecular bone volume/total volume (R = 0.91), number (R = 0.92), and separation (R = -0.94) in the active group but not in the placebo group. Baseline parathyroid hormone levels were positively associated with increased cortical bone porosity over the 6-month study period in the placebo group (R = 0.55) but not in the active group (R = 0.01). No changes were observed in the nondistal tibia locations for either group except a decrease in hip BMD in the placebo group (-1.7%). Outcomes and adherence thresholds identified from this pilot study could guide future longitudinal studies involving vibration therapy. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Effects of Spaceflight on the Attachment of Muscle to the Tibia, Fibula and Calcaneus

    NASA Technical Reports Server (NTRS)

    Johnson, R. B.; Tsao, A. K.; St.John, K. R.; Betcher, R. A.; Tucci, M. A.; Parsell, D. E.; Dai, X.; Zardiackas, L. D.; Benghuzzi, H. A.

    1999-01-01

    Microgravity significantly reduces transmission of ground-reaction forces to bones, promoting atrophy. There is little information available concerning the effects of microgravity on bones at sites where anti-gravity muscles are attached (tendon-bone junctions). This study evaluates the effects of microgravity on the origin and insertion sites of anti-gravity muscles on the rat tibia, fibula and calcaneus. Changes in the strength of those tendon-bone junctions could predispose the animal to injury following spaceflight.

  15. Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report

    PubMed Central

    Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios

    2009-01-01

    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented. PMID:19918488

  16. Immobilization-associated osteoporosis in primates

    NASA Technical Reports Server (NTRS)

    Young, D. R.; Niklowitz, W. J.; Brown, R. J.; Jee, W. S. S.

    1986-01-01

    Osteopenic changes in the tibial compact bone of fifteen adult male monkeys immobilized for up to 7 months are examined histologically. Osteonal formation in the proximal tibia is analyzed. The analysis reveals the loss of haversian bone in the proximal tibia, increased activation with excessive depth of penetration of osteoclastic activity, rapid bone loss, and resorption cavities of irregular size and orientation. Osteonal formation following reambulation is examined; the recovery of cortical is a repair and rejuvenation process characterized by refilling of resorption cavities and remodeling activities.

  17. Improved Healing of Large, Osseous, Segmental Defects by Reverse Dynamization: Evaluation in a Sheep Model

    DTIC Science & Technology

    2014-10-01

    initiated. One such fixator has been tested on a cadaveric sheep tibia. In the unlocked, loose position, the axial stiffness of the tibia and fixator...suggested by our previous studies using rats. This aspect of the project is the present focus of attention, and additional cadaver legs will be tested...characterize external fixators). A 3 mm tibial defect was created in the leg of a cadaveric sheep, and stabilized with an experimental external

  18. Significant bone microarchitecture impairment in premenopausal women with active celiac disease.

    PubMed

    Zanchetta, María Belén; Costa, Florencia; Longobardi, Vanesa; Longarini, Gabriela; Mazure, Roberto Martín; Moreno, María Laura; Vázquez, Horacio; Silveira, Fernando; Niveloni, Sonia; Smecuol, Edgardo; Temprano, María de la Paz; Hwang, Hui Jer; González, Andrea; Mauriño, Eduardo César; Bogado, Cesar; Zanchetta, Jose R; Bai, Julio César

    2015-07-01

    Patients with active celiac disease (CD) are more likely to have osteoporosis and increased risk of fractures. High-resolution peripheral quantitative computed tomography (HR-pQCT) permits three-dimensional exploration of bone microarchitectural characteristics measuring separately cortical and trabecular compartments, and giving a more profound insight into bone disease pathophysiology and fracture. We aimed to determine the volumetric and microarchitectural characteristics of peripheral bones-distal radius and tibia-in an adult premenopausal cohort with active CD assessed at diagnosis. We prospectively enrolled 31 consecutive premenopausal women with newly diagnosed CD (median age 29 years, range: 18-49) and 22 healthy women of similar age (median age 30 years, range 21-41) and body mass index. Compared with controls, peripheral bones of CD patients were significantly lower in terms of total volumetric density mg/cm(3) (mean ± SD: 274.7 ± 51.7 vs. 324.7 ± 45.8, p 0.0006 at the radius; 264.4 ± 48.7 vs. 307 ± 40.7, p 0.002 at the tibia), trabecular density mg/cm(3) (118.6 ± 31.5 vs. 161.9 ± 33.6, p<0.0001 at the radius; 127.9 ± 28.7 vs. 157.6 ± 15.6, p < 0.0001 at the tibia); bone volume/trabecular volume ratio % (9.9 ± 2.6 vs. 13.5 ± 2.8, p<0.0001 at the radius; 10.6 ± 2.4 vs. 13.1 ± 1.3, p < 0.0001 at the tibia); number of trabeculae 1/mm (1.69 ± 0.27 vs. 1.89 ± 0.26, p 0.009 at the radius; 1.53 ± 0.32 vs. 1.80 ± 0.26, p 0.002 at the tibia); and trabecular thickness mm (0.058 ± 0.010 vs. 0.071 ± 0.008, p < 0.0001 at the radius with no significant difference at the tibia). Cortical density was significantly lower in both regions (D comp mg/cm(3) 860 ± 57.2 vs. 893.9 ± 43, p 0.02; 902.7 ± 48.7 vs. 932.6 ± 32.6, p 0.01 in radius and tibia respectively). Although cortical thickness was lower in CD patients, it failed to show any significant inter-group difference (a-8% decay with p 0.11 in both bones). Patients with symptomatic CD (n = 22) had a greater bone microarchitectural deficit than those with subclinical CD. HR-pQCT was used to successfully identify significant deterioration in the microarchitecture of trabecular and cortical compartments of peripheral bones. Impairment was characterized by lower trabecular number and thickness-which increased trabecular network heterogeneity-and lower cortical density and thickness. In the prospective follow-up of this group of patients we expect to be able to assess whether bone microarchitecture recovers and to what extend after gluten-free diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Island osteoperiosteal flap vitality when isolated from basal bone by silicone interposition: an experimental study in rabbit tibia.

    PubMed

    Laviv, Amir; Ringeman, Jason; Debecco, Meir; Jensen, Ole T; Casap, Nardy

    2014-01-01

    This study sought to confirm, through histologic evaluation, the vitality and viability of the island osteoperiosteal flap (i-flap) in a rabbit tibia model. In four rabbits, an osteotomy was performed on the tibial aspect of the right leg. A bone flap was raised, but the periosteal attachment was kept intact. The free-floating i-flap was separated from the rest of the bone by a silicone sheet. The rabbits were to be sacrificed after 1, 2, 4, and 8 weeks and histologic samples examined. All surgeries were accomplished successfully; however, three animals showed fractured tibiae within a few days after surgery and were sacrificed immediately after the fractures were discovered. The fourth rabbit was sacrificed at 4 weeks. Histologic specimens showed vital new bone in the i-flap area and signs of remodeling in the transition zone and the original basal bone. The i-flap remained vital. This suggests potential for use in bone augmentation strategies, particularly for the alveolar split procedure.

  20. Desmoplastic fibroma of the distal tibia: A case report of a minimally invasive histological diagnosis

    PubMed Central

    Levrini, Gabriele; Pattacini, Pierpaolo

    2016-01-01

    Desmoplastic fibroma (DF) is a benign, rare fibroblastic intraosseous neoplasm histologically resembling a desmoid soft tissue tumor. Although classified as benign, DF frequently exhibits an aggressive behavior, has a moderate-to-high recurrence rate, and often causes pathological fractures and extensive bone destruction. This case report presents an incidentally detected DF of the tibia, which was diagnosed using a minimally invasive approach. A 36-year-old African female patient was referred to the Department of Diagnostic Imaging of Arcispedale Santa Maria Nuova-IRCCS (Reggio Emilia, Italy), to be examined by a computed tomography scan on an outpatient basis, after an x-ray examination of the tibia, which was performed after an injury to exclude the presence of a fracture, revealed a hyperlucency of unknown origin. The aim of this study was to discuss the clinical, histological, immunohistochemical and radiographic characteristics of this rare neoplasm, with a focus on image-guided bone biopsy. PMID:27882239

  1. The Content of Structural and Trace Elements in the Knee Joint Tissues.

    PubMed

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena

    2017-11-23

    Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.

  2. The Content of Structural and Trace Elements in the Knee Joint Tissues

    PubMed Central

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Mitko, Krzysztof; Jakóbik-Kolon, Agata; Konieczny, Magdalena; Babuśka-Roczniak, Magdalena

    2017-01-01

    Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead. PMID:29168758

  3. Mechanical vibration testing of a tibia in vivo and finite element analysis of the shank resonant properties

    NASA Astrophysics Data System (ADS)

    Maslov, Leonid B.

    2003-10-01

    Recent clinical studies clearly indicate that the resonant frequencies can be used to assess the healing state of a fractured long bone. Although these studies clearly show a certain relation between the resonant frequencies and the stiffness of the bone, the nature of this relation has not yet studied very well. The attempt of considering the locomotion system of a human shank in complex is firstly presented in this paper. The finite element model of the soft and hard tissues composed of the human shank is developed and the vibration numerical analysis is performed. The values of the resonant frequencies for the isolated tibia and for the complex biomechanical system formed by tibia, fibula, achilles tendon and principal shank muscles are obtained during finite element analysis. The obtained result can be used as theoretical fundament to developing low-frequency resonant methods for testing and diagnostics of the physiological conditions of soft and hard tissue during medical treatment and rehabilitation time period after surgery operation.

  4. Effect of simvastatin versus low level laser therapy (LLLT) on bone regeneration in rabbit's tibia

    NASA Astrophysics Data System (ADS)

    Gheith, Mostafa E.; Khairy, Maggie A.

    2014-02-01

    Simvastatin is a cholesterol lowering drug which proved effective on promoting bone healing. Recently low level laser therapy (LLLT) proved its effect as a biostimulator promoting bone regeneration. This study aims to compare the effect of both Simvastatin versus low level laser on bone healing in surgically created bone defects in rabbit's tibia. Material and methods: The study included 12 New Zealand white rabbits. Three successive 3mm defects were created in rabbits tibia first defect was left as control, second defect was filled with Simvastatin while the third defect was acted on with Low Level Laser (optical fiber 320micrometer). Rabbits were sacrificed after 48 hours, 1 week and 2 weeks intervals. Histopathology was conducted on the three defects Results: The histopathologic studies showed that the bony defects treated with the Low Level Laser showed superior healing patterns and bone regeneration than those treated with Simvastatin. While the control defect showed the least healing pattern.

  5. Tibial lengthening using a reamed type intramedullary nail and an Ilizarov external fixator

    PubMed Central

    Kim, Hayoung; Kim, Kap Jung; Ahn, Jae Hoon; Choy, Won Sik; Kim, Yong In; Koo, Jea Yun

    2008-01-01

    The aim of this study was to evaluate the efficacy of tibial lengthening using a reamed type intramedullary nail and an Ilizarov external fixator for the treatment of leg length discrepancy or short stature. This retrospective study was performed on 18 tibiae (13 patients) in which attempts were made to reduce complications. We used an Ilizarov external fixator and a nail (10 mm diameter in 17 tibiae and 11 mm in one tibia) in combination. Average limb lengthening was 4.19 cm (range, 2.5–5.5). The mean duration of external fixation was 12.58 days per centimetre gain in length, and the mean consolidation index was 40.53 (range, 35.45–51.85). All distracted segments healed spontaneously without refracture or malalignment. Gradual limb lengthening using a reamed type intramedullary nail and circular external fixation in combination was found to be reliable and effective and reduced external fixation time with fewer complications. PMID:18415098

  6. Changes in bone structure of Corriedale sheep with inherited rickets: a peripheral quantitative computed tomography assessment.

    PubMed

    Dittmer, Keren E; Firth, Elwyn C; Thompson, Keith G; Marshall, Jonathan C; Blair, Hugh T

    2011-03-01

    An inherited skeletal disease with gross and microscopic features of rickets has been diagnosed in Corriedale sheep in New Zealand. The aim of this study was to quantify the changes present in tibia from sheep with inherited rickets using peripheral quantitative computed tomography. In affected sheep, scans in the proximal tibia, where metaphysis becomes diaphysis, showed significantly greater trabecular bone mineral content (BMC) and bone mineral density (BMD). The sheep with inherited rickets had significantly greater BMC and bone area in the mid-diaphysis of the proximal tibia compared to control sheep. However, BMD in the mid-diaphysis was significantly less in affected sheep than in controls, due to the greater cortical area and lower voxel density values in affected sheep. From this it was concluded that the increased strain on under-mineralised bone in sheep with inherited rickets led to increased bone mass in an attempt to improve bone strength. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Medial Tibial Stress Syndrome: Muscles Located at the Site of Pain

    PubMed Central

    Brown, Ato Ampomah

    2016-01-01

    Objective. The purpose of this study was to examine the relationship between the location of the MTSS pain (posteromedial border of tibia) and the muscles that originate from that site. Method. The study was conducted in the Department of Anatomy of the School of Medical Sciences, University of Cape Coast, and involved the use of 22 cadaveric legs (9 paired and 4 unpaired) from 11 males and 2 females. Findings. The structures that were thus observed to attach directly to the posteromedial border of the tibia were the soleus, the flexor digitorum longus, and the deep crural fascia. The soleus and flexor digitorum longus muscles were observed to attach directly to the posteromedial border of the tibia. The tibialis posterior muscle had no attachment to this site. Conclusion. The findings of this study suggest that if traction is the cause of MTSS then soleus and the flexor digitorum muscles and not the tibialis posterior muscle are the likely cause of MTSS. PMID:27066291

  8. Anthropometry of Arabian Arthritic Knees: Comparison to Other Ethnic Groups and Implant Dimensions.

    PubMed

    Hafez, Mahmoud A; Sheikhedrees, Sharafeldin M; Saweeres, Emad S B

    2016-05-01

    We aim to measure the proximal tibia and distal femur of the osteoarthritic knees of Arab patients and to compare these measurements with data on other ethnic groups available in literature and with the dimensions of 6 knee implants. Anteroposterior and mediolateral measurements of tibia and femur were done on 3-dimensional computed tomography reconstructions of 124 osteoarthritic knees undergoing total knee arthroplasty with patient-specific instruments. Average mediolateral and anteroposterior dimensions of the tibia for Arab knees were 74.36 ± 6 mm and 48.94 ± 4.57 mm, respectively, whereas for femur, 72.04 ± 6.6 and 68.1 ± 7.75, respectively. Average aspect ratio for tibial was 152.62 ± 12.66 and for femur 106.37 ± 14.34. The size of Arab knees was generally smaller than Caucasian and larger than Asian. There is significant asymmetry of proximal tibial plateau and femur condyles. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effect of β-hydroxy-β-methylbutyrate (HMB) administration on volumetric bone mineral density, and morphometric and mechanical properties of tibia in male turkeys.

    PubMed

    Tatara, M R

    2009-12-01

    This study was performed to investigate the effects of β-hydroxy-β-methylbutyrate (HMB) administration on skeletal system properties in turkeys. Thirty-two males were randomly divided into two groups at the age of 35 days of life. The first group included control turkeys (n = 16) treated with placebo, while the second group of birds (HMB group; n = 16) was administered orally with calcium salt of HMB during the last 15 weeks of life. The turkeys were sacrificed at the age of 20 weeks and tibia was isolated for analysis of bone geometrical parameters, volumetric bone mineral density (vBMD) and mechanical properties. Furthermore, assessment of free amino acid concentrations in plasma was performed. The results showed a 6.3% increase of vBMD of tibia in response to HMB treatment (p < 0.01). Cross-sectional area, second moment of inertia, maximum elastic strength and ultimate strength of tibia were significantly increased in HMB-treated turkeys by 21.3%, 49.0%, 27.2% and 28.3%, respectively (p ≤ 0.01). β-hydroxy-β-methylbutyrate administration increased plasma concentrations of proline,glutamate, leucine, isoleucine, valine, alanine, aspartate, phenylalanine and cysteic acid (p < 0.05). These results indicate that long-term administration of HMB improves vBMD, and geometrical and mechanical properties of skeletal system in turkeys, and that these effects are associated with improved plasma amino acid concentrations.

  10. Using Patient Demographics and Statistical Modeling to Predict Knee Tibia Component Sizing in Total Knee Arthroplasty.

    PubMed

    Ren, Anna N; Neher, Robert E; Bell, Tyler; Grimm, James

    2018-06-01

    Preoperative planning is important to achieve successful implantation in primary total knee arthroplasty (TKA). However, traditional TKA templating techniques are not accurate enough to predict the component size to a very close range. With the goal of developing a general predictive statistical model using patient demographic information, ordinal logistic regression was applied to build a proportional odds model to predict the tibia component size. The study retrospectively collected the data of 1992 primary Persona Knee System TKA procedures. Of them, 199 procedures were randomly selected as testing data and the rest of the data were randomly partitioned between model training data and model evaluation data with a ratio of 7:3. Different models were trained and evaluated on the training and validation data sets after data exploration. The final model had patient gender, age, weight, and height as independent variables and predicted the tibia size within 1 size difference 96% of the time on the validation data, 94% of the time on the testing data, and 92% on a prospective cadaver data set. The study results indicated the statistical model built by ordinal logistic regression can increase the accuracy of tibia sizing information for Persona Knee preoperative templating. This research shows statistical modeling may be used with radiographs to dramatically enhance the templating accuracy, efficiency, and quality. In general, this methodology can be applied to other TKA products when the data are applicable. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    PubMed Central

    Han, Pingping; Lu, Shifeier; Zhou, Yinghong; Moromizato, Karine; Du, Zhibin; Friis, Thor; Xiao, Yin

    2016-01-01

    Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla. PMID:27338361

  12. Correlations between iron content in knee joint tissues and chosen indices of peripheral blood morphology.

    PubMed

    Brodziak-Dopierała, Barbara; Roczniak, Wojciech; Jakóbik-Kolon, Agata; Kluczka, Joanna; Koczy, Bogdan; Kwapuliński, Jerzy; Babuśka-Roczniak, Magdalena

    2017-10-01

    Iron as a cofactor of enzymes takes part in the synthesis of the bone matrix. Severe deficiency of iron reduces the strength and mineral density of bones, whereas its excess may increase oxidative stress. In this context, it is essential to determine the iron content in knee joint tissues. The study objective was to determine the level of iron in the tissues of the knee joint, i.e., in the femoral bone, tibia and meniscus. Material for analysis was obtained during endoprosthetic surgery of the knee joint. Within the knee joint, the tibia, femur and meniscus were analyzed. Samples were collected from 50 patients, including 36 women and 14 men. The determination of iron content was performed with the ICP-AES method, using Varian 710-ES. The lowest iron content was in the tibia (27.04 μg/g), then in the meniscus (38.68 μg/g) and the highest in the femur (41.93 μg/g). Statistically significant differences were noted in the content of iron in knee joint tissues. In patients who underwent endoprosthesoplasty of the knee joint, statistically significant differences were found in the levels of iron in various components of the knee joint. The highest iron content was found in the femoral bone of the knee joint and then in the meniscus, the lowest in the tibia. The differences in iron content in the knee joint between women and men were not statistically significant.

  13. Proximal Tibia Medial Biplanar Retrotubercle Open Wedge Osteotomy for Varus Knees with Medial Gonarthrosis

    PubMed Central

    Türkmen, İsmail; Esenkaya, İrfan; Ünay, Koray; Türkmensoy, Fatih; Özkut, Afşar Timuçin

    2014-01-01

    Objectives: The purpose of this study is to evaluate the early results of proximal tibia medial biplanar retrotubercle open wedge osteotomy for varus gonarthrosis and compare the results with the literatüre. Methods: The results of proximal tibia medial biplanar retrotubercle open wedge osteotomy for 23 knees of 22 patients with medial gonarthrosis were evaluated clinically and radiologically. Results: Twenty of the patients were female and two were male. Mean age of the patients was 56.24; mean boy mass index was 31.95 and preoperative HSS (Hospital for Special Surgery) score was 68.7. Mean tibiofemoral axis was 186.39° and mean Insall-Salvatti index value was 1.04 preoperatively. Mean follow up period was 30.19 months. Mean HSS score was 86.48, femorotibial anatomic axis angle was 175° and Insall-Salvati index value 1.06 during the last follow-up. The improvement of the HSS score and the femorotibial anatomic axis angle was statistically significant. However, the change in Insall Salvati index values was statistically insignificant. Nonfatal pulmonary embolus in 1 patient, and deep vein thrombosis that occured one year after the procedure in 1 patient, rhabdomyolysis in 1 patient and loss of correction (relapse) in 1 patient were encountered as complications. Conclusion: Our results show that proximal tibia medial biplanar retrotubercle open wedge osteotomy improves the frontal and sagittal plane deformities without changing the patellar tendon length. Hence, possible patellofemoral problems are prevented and the clinical results are improved.

  14. Air pollution and heart rate variability: effect modification by chronic lead exposure.

    PubMed

    Park, Sung Kyun; O'Neill, Marie S; Vokonas, Pantel S; Sparrow, David; Wright, Robert O; Coull, Brent; Nie, Huiling; Hu, Howard; Schwartz, Joel

    2008-01-01

    Outdoor air pollution and lead exposure can disturb cardiac autonomic function, but the effects of both these exposures together have not been studied. We examined whether higher cumulative lead exposures, as measured by bone lead, modified cross-sectional associations between air pollution and heart rate variability among 384 elderly men from the Normative Aging Study. We used linear regression, controlling for clinical, demographic, and environmental covariates. We found graded, significant reductions in both high-frequency and low-frequency powers of heart rate variability in relation to ozone and sulfate across the quartiles of tibia lead. Interquartile range increases in ozone and sulfate were associated respectively, with 38% decrease (95% confidence interval = -54.6% to -14.9%) and 22% decrease (-40.4% to 1.6%) in high frequency, and 38% decrease (-51.9% to -20.4%) and 12% decrease (-28.6% to 9.3%) in low frequency, in the highest quartile of tibia lead after controlling for potential confounders. We observed similar but weaker effect modification by tibia lead adjusted for education and cumulative traffic (residuals of the regression of tibia lead on education and cumulative traffic). Patella lead modified only the ozone effect on heart rate variability. People with long-term exposure to higher levels of lead may be more sensitive to cardiac autonomic dysfunction on high air pollution days. Efforts to understand how environmental exposures affect the health of an aging population should consider both current levels of pollution and history of lead exposure as susceptibility factors.

  15. Leg lengthening in patients with congenital fibular hemimelia.

    PubMed

    Jasiewicz, Barbara; Kacki, Wojciech; Koniarski, Arkadiusz; Kasprzyk, Marcin; Zarzycka, Maja; Tesiorowski, Maciej

    2002-08-30

    Background. Anisomelia in patients with congenital fibular deficiencies is a difficult orthopedic problem due to concomitant deformities of the angle and knee. The goal of the present study was to analyze outcomes of tibia lengthening in these patients. Material and methods. In the period 1989-2001 we performed lengthening of 26 limbs in 21 patients with congenital fibular deficiency (11 female, 10 male, average age 10.1 years). Under the Achterman-Kalamchi classification, 8 tibiae were Type 1, 3 were Type 1b, and 10 were Type 2 (including one case with bilateral defect). The average baseline shortening was 4.6 cm, i.e. 15.3%. The Ilizarov method was used in 24 cases, chondrial lengthening in the others. We measured time of lengthening, time of stabilization, total healing time, amount of lengthening, and the lengthening index, as well as the range of ankle and knee movement, the positioning of the foot, and the axis of the tibia at each stage. Problems and complications were classified according to Paley. The average follow-up was 4.9 years Results. The mean time of lengthening was 101 days, stabilization time 177 days, total healing time 269 days, mean lengthening 5.6 cm (22.9%). As of the last examination only 7 patients did not require follow-up surgery, 6 with Type 1a and 1 with Type 1b. Conclusions. Tibia lengthening with axis correction constitutes an alternative to amputation in congenital fibular deficiency. It is a difficult procedure, however, encumbered by a significant risk of complications.

  16. Biomechanical study of prophylactic internal fixation of the radial osteocutaneous donor site using the sheep tibia model.

    PubMed

    Avery, C M E; Best, A; Patterson, P; Rolton, J; Ponter, A R S

    2007-09-01

    This study investigated the strengthening effect of different types of plate and position after osteotomy of the sheep tibia, which is a model for the radial osteocutaneous donor site. Fifty matched pairs of adult sheep tibias were tested in torsion and four-point bending. Firstly, the weakening effect of an osteotomy was compared with the intact bone. Then pairs of bones with an osteotomy were compared with and without reinforcement with different types of 3.5mm plate. The plate was placed in either the anterior (over the defect) or posterior (on the intact cortex) position. In torsion the mean strength of the intact bone was 45% greater than after osteotomy (P=0.02). The reinforced bone was on average 61% stronger than the unreinforced bone (P<0.001). In bending the mean strength of the intact bone was 188% greater than after osteotomy (P=0.02). The reinforced bone was on average 184% stronger then the unreinforced bone (P<0.001). The tibia was able to withstand much greater loads in bending. The dynamic compression plate was the strongest reinforcement in both torsion and bending. The position of the plate did not alter the strengthening effect in torsion but the posterior position resisted greater bending loads (P=0.01). This may not be relevant in clinical practice as the radius is likely to fracture first as a result of lower torsional forces.

  17. A Comparative 68Ga-Citrate and 68Ga-Chloride PET/CT Imaging of Staphylococcus aureus Osteomyelitis in the Rat Tibia

    PubMed Central

    Lankinen, Petteri; Noponen, Tommi; Autio, Anu; Luoto, Pauliina; Löyttyniemi, Eliisa; Hakanen, Antti J.

    2018-01-01

    There may be some differences in the in vivo behavior of 68Ga-chloride and 68Ga-citrate leading to different accumulation profiles. This study compared 68Ga-citrate and 68Ga-chloride PET/CT imaging under standardized experimental models. Methods. Diffuse Staphylococcus aureus tibial osteomyelitis and uncomplicated bone healing rat models were used (n = 32). Two weeks after surgery, PET/CT imaging was performed on consecutive days using 68Ga-citrate or 68Ga-chloride, and tissue accumulation was confirmed by ex vivo analysis. In addition, peripheral quantitative computed tomography and conventional radiography were performed. Osteomyelitis was verified by microbiological analysis and specimens were also processed for histomorphometry. Results. In PET/CT imaging, the SUVmax of 68Ga-chloride and 68Ga-citrate in the osteomyelitic tibias (3.6 ± 1.4 and 4.7 ± 1.5, resp.) were significantly higher (P = 0.0019 and P = 0.0020, resp.) than in the uncomplicated bone healing (2.7 ± 0.44 and 2.5 ± 0.49, resp.). In osteomyelitic tibias, the SUVmax of 68Ga-citrate was significantly higher than the uptake of 68Ga-chloride (P = 0.0017). In animals with uncomplicated bone healing, no difference in the SUVmax of 68Ga-chloride or 68Ga-citrate was seen in the operated tibias. Conclusions. This study further corroborates the use of 68Ga-citrate for PET imaging of osteomyelitis. PMID:29681785

  18. Minimally invasive locked plating of distal tibia fractures is safe and effective.

    PubMed

    Ronga, Mario; Longo, Umile Giuseppe; Maffulli, Nicola

    2010-04-01

    Distal tibial fractures are difficult to manage. Limited soft tissue and poor vascularity impose limitations for traditional plating techniques that require large exposures. The nature of the limitations for traditional plating techniques is intrinsic to the large exposure required to approach distal tibia, a bone characterized by limited soft tissue coverage and poor vascularity. The locking plate (LP) is a new device for treatment of fractures. We assessed the bone union rate, deformity, leg-length discrepancy, ankle range of motion, return to preinjury activities, infection, and complication rate in 21 selected patients who underwent minimally invasive osteosynthesis of closed distal tibia fractures with an LP. According to the AO classification, there were 12 Type A, 5 Type B, and 4 Type C fractures. The minimum followup was 2 years (average, 2.8 years; range, 2-4 years). Two patients were lost to followup. Union was achieved in all but one patient by the 24th postoperative week. Four patients had angular deformity less than 7 degrees . No patient had a leg-length discrepancy more than 1.1 cm. Five patients had ankle range of motion less than 20 degrees compared with the contralateral side. Sixteen patients had not returned to their preinjury sporting or leisure activities. Three patients developed a delayed infection. We judge the LP a reasonable device for treating distal tibia fractures. The level of physical activities appears permanently reduced in most patients. Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  19. Changes in biochemical markers after lower limb fractures.

    PubMed

    Stoffel, Karl; Engler, Hanna; Kuster, Markus; Riesen, Walter

    2007-01-01

    The bone remodeling sequence after bone fracture changes the concentrations of biochemical bone markers, but the relationships of fracture size and of healing time to changes in biomarkers are unclear. The present pilot study was undertaken to determine the changes found in serum bone markers after plate osteosynthesis of closed distal tibial and malleolar fractures during a study period of 24 weeks. We measured tatrate-resistant acid phosphatase (TRACP 5b), collagen type I C-terminal telopeptide (ICTP), bone-specific alkaline phosphatase (bone ALP), osteocalcin (OC), procollagen type I C-terminal propeptide (PICP), procollagen type III N-terminal propeptide (PIIINP), and human cartilage glycoprotein 39 (YKL-40) in 20 patients with lower limb fractures (10 malleolar, 10 tibia). A physical examination and radiographs were completed to assess evidence of union. All malleolar fractures healed within 6 weeks, whereas 2 tibial fractures did not show complete bone healing after 24 weeks. Changes were comparable but more pronounced in the tibia group, and marker concentrations remained increased at the end of study (bone ALP, 86 vs 74 U/L; OC, 14.9 vs 7.7 microg/L; ICTP: 5.6 vs 3.3 microg/L at day 84 after osteosynthesis, P <0.05 in tibia; 80 vs 70 U/L, 8 vs 5.2 microg/L, and 3.5 vs 3.2 microg/L, respectively, in the malleolar fracture group). In normal bone healing, changes in bone turnover markers were primarily dependent on the fracture size. Delayed tibia fracture healing may involve a disturbance in bone remodeling.

  20. Models of tibial fracture healing in normal and Nf1-deficient mice.

    PubMed

    Schindeler, Aaron; Morse, Alyson; Harry, Lorraine; Godfrey, Craig; Mikulec, Kathy; McDonald, Michelle; Gasser, Jürg A; Little, David G

    2008-08-01

    Delayed union and nonunion are common complications associated with tibial fractures, particularly in the distal tibia. Existing mouse tibial fracture models are typically closed and middiaphyseal, and thus poorly recapitulate the prevailing conditions following surgery on a human open distal tibial fracture. This report describes our development of two open tibial fracture models in the mouse, where the bone is broken either in the tibial midshaft (mid-diaphysis) or in the distal tibia. Fractures in the distal tibial model showed delayed repair compared to fractures in the tibial midshaft. These tibial fracture models were applied to both wild-type and Nf1-deficient (Nf1+/-) mice. Bone repair has been reported to be exceptionally problematic in human NF1 patients, and these patients can also spontaneously develop tibial nonunions (known as congenital pseudarthrosis of the tibia), which are recalcitrant to even vigorous intervention. pQCT analysis confirmed no fundamental differences in cortical or cancellous bone in Nf1-deficient mouse tibiae compared to wild-type mice. Although no difference in bone healing was seen in the tibial midshaft fracture model, the healing of distal tibial fractures was found to be impaired in Nf1+/- mice. The histological features associated with nonunited Nf1+/- fractures were variable, but included delayed cartilage removal, disproportionate fibrous invasion, insufficient new bone anabolism, and excessive catabolism. These findings imply that the pathology of tibial pseudarthrosis in human NF1 is complex and likely to be multifactorial.

  1. Effect of tibial positioning on the diagnosis of posterolateral rotatory instability in the posterior cruciate ligament-deficient knee.

    PubMed

    Strauss, Eric J; Ishak, Charbel; Inzerillo, Christopher; Walsh, Michael; Yildirim, Gokce; Walker, Peter; Jazrawi, Laith; Rosen, Jeffrey

    2007-08-01

    To determine whether positioning of the tibia affects the degree of tibial external rotation seen during a dial test in the posterior cruciate ligament (PCL)-posterolateral corner (PLC)-deficient knee. Laboratory investigation. Biomechanics laboratory. An anterior force applied to the tibia in the combined PCL-PLC-deficient knee will yield increased tibial external rotation during a dial test. The degree of tibial external rotation was measured with 5 Nm of external rotation torque applied to the tibia at both 30 degrees and 90 degrees of knee flexion. Before the torque was applied, an anterior force, a posterior force, or neutral (normal, reduced control) force was applied to the tibia. External rotation measurements were repeated after sequential sectioning of the PCL, the posterolateral structures and the fibular collateral ligament (FCL). Baseline testing of the intact specimens demonstrated a mean external rotation of 18.6 degrees with the knee flexed to 30 degrees (range 16.1-21.0 degrees ), and a mean external rotation of 17.3 degrees with the knee flexed to 90 degrees (range 13.8-20.0 degrees ). Sequential sectioning of the PCL, popliteus and popliteofibular ligament, and the FCL led to a significant increase in tibial external rotation compared with the intact knee for all testing scenarios. After sectioning of the popliteus and popliteofibular ligament, the application of an anterior force during testing led to a mean tibial external rotation that was 5 degrees greater than during testing in the neutral position and 7.5 degrees greater than during testing with a posterior force. In the PCL, popliteus/popliteofibular ligament and FCL-deficient knee, external rotation was 9 degrees and 12 degrees greater with the application of an anterior force during testing compared with neutral positioning and the application of a posterior force, respectively. An anterior force applied to the tibia during the dial test in a combined PCL-PLC-injured knee increased the overall amount of observed tibial external rotation during the dial test. The anterior force reduced the posterior tibial subluxation associated with PCL injury, which is analogous to what is observed when the dial test is performed with the patient in the prone position. Reducing the tibia with either an anterior force when the patient is supine or performing the dial test with the patient in the prone position increases the ability of an examiner to detect a concomitant PLC injury in the setting of a PCL-deficient knee.

  2. Experimental and finite element analysis of tibial stress fractures using a rabbit model.

    PubMed

    Franklyn, Melanie; Field, Bruce

    2013-01-01

    To determine if rabbit models can be used to quantify the mechanical behaviour involved in tibial stress fracture (TSF) development. Fresh rabbit tibiae were loaded under compression using a specifically-designed test apparatus. Weights were incrementally added up to a load of 30 kg and the mechanical behaviour of the tibia was analysed using tests for buckling, bone strain and hysteresis. Structural mechanics equations were subsequently employed to verify that the results were within the range of values predicted by theory. A finite element (FE) model was developed using cross-sectional computer tomography (CT) images scanned from one of the rabbit bones, and a static load of 6 kg (1.5 times the rabbit's body weight) was applied to represent running. The model was validated using the experimental strain gauge data, then geometric and elemental convergence tests were performed in order to find the minimum number of cross-sectional scans and elements respectively required for convergence. The analysis was then performed using both the model and the experimental results to investigate the mechanical behaviour of the rabbit tibia under compressive load and to examine crack initiation. The experimental tests showed that under a compressive load of up to 12 kg, the rabbit tibia demonstrates linear behaviour with little hysteresis. Up to 30 kg, the bone does not fail by elastic buckling; however, there are low levels of tensile stress which predominately occur at and adjacent to the anterior border of the tibial midshaft: this suggests that fatigue failure occurs in these regions, since bone under cyclic loading initially fails in tension. The FE model predictions were consistent with both mechanics theory and the strain gauge results. The model was highly sensitive to small changes in the position of the applied load due to the high slenderness ratio of the rabbit's tibia. The modelling technique used in the current study could have applications in the development of human FE models of bone, where, unlike rabbit tibia, the model would be relatively insensitive to very small changes in load position. However, the rabbit model itself is less beneficial as a tool to understand the mechanical behaviour of TSFs in humans due to the small size of the rabbit bone and the limitations of human-scale CT scanning equipment. The current modelling technique could be used to develop human FE models. However, the rabbit model itself has significant limitations in understanding human TSF mechanics.

  3. Outcome of Distal Both Bone Leg Fractures Fixed by Intramedulary Nail for Fibula & MIPPO in Tibia.

    PubMed

    Gupta, Anil; Anjum, Rashid; Singh, Navdeep; Hackla, Shafiq

    2015-04-01

    Fractures of the distal third of the tibia are mostly associated with a fibular fracture that often requires fixation. The preferred treatment of distal tibial fracture is the minimally invasive percutaneous plate osteosynthesis (MIPPO) procedure. However, there are no clear cut guidelines on fixation of the fibular fracture and currently most orthopedic surgeons use a plate osteosynthesis for the fibula as well. A common complication associated with dual plating is an increased chance of soft tissue necrosis, infection, and in some cases resulting in an exposed implant. We conducted a prospective study to analyze the results of fractures of the distal in both leg bones managed by the MIPPO procedure for tibial fractures and a rush nail for fibular fractures. The study was conducted in a tertiary care hospital from November 2012 to May 2014, a total of 30 fractures in 30 patients (18 males, 12 females) with a mean age of 42.4 years (26-60 years) were treated in our institution in the aforesaid time period with MIPPO for tibia and rush nail for fibular fractures. All the cases were operated on by a single surgeon in emergency within 24 hours. The patients with skin blistering and compound fractures were excluded from this study. Rehabilitative measures were proceeded as per patient's pain profile, isometric and isotonic exercises were started on the first post-operative day, with full weight bearing at 10-12 weeks after assessing clinical and radiological union. Regular follow up of patients was done, radiographs were taken at the immediate post-operative period and at 3, 6, 12 and 24 weeks. All the patients were available for regular follow up. Radiological and clinical union proceeded normally in all the patients, no patients had signs of any deep infection, delayed union or nonunion, three patients had a superficial infection of the tibial incision that healed with a change in antibiotic. The use of dual plating for fixation of the lower tibia and fibula fractures is often associated with soft tissue complications, exposed implant, and increased risk of infection. We conclude that in fractures of the distal tibia and fibula it is better to use a rush nail for the fibula with a concurrent MIPPO for the tibia for the reasons cited above. Moreover, with the use of rush nail the cost of implant is also reduced, which is a very important factor in developing countries.

  4. Bone response to collagenized xenografts of porcine origin (mp3(®) ) and a bovine bone mineral grafting (4BONE(™) XBM) grafts in tibia defects: experimental study in rabbits.

    PubMed

    Calvo-Guirado, José Luis; Aguilar-Salvatierra, Antonio; Ramírez-Fernández, Maria P; Maté Sánchez de Val, José E; Delgado-Ruiz, Rafael Arcesio; Gómez-Moreno, Gerardo

    2016-08-01

    This study aimed to carry out the evaluation of bone response of new bone formation to two different xenografts (bovine and porcine) biomaterials inserted in rabbit tibiae. The study used a total of 20 male New Zealand albino rabbits. They received a total of 40 grafts in the proximal metaphyseal areas of both tibiae. Two biomaterials were evaluated: 20 porcine xenografts, as a bone granulate (OsteoBiol(®) MP3(®) ; Tecnoss srl, Giaveno, Italy), were placed in the proximal metaphyseal area of the right tibia, 20 anorganic bovine bone mineral grafting (4BONE(™) XBM, MIS Implants Inc., BARLEV, Israel) were placed in the left tibia. Following graft insertion, the animals were sacrificed in two groups of 10 animals, after 1 and 4 months, respectively. For each group, biomaterials were analyzed: newly formed bone, residual graft materials and the connective tissue. Histomorphometric, EDX analysis and element mapping were performed at 1 and 4 months after graft insertion. At 4 months after treatment, the bone defects displayed radiological images that showed complete repair of osseous defects. Histomorphometric evaluation showed that for the porcine xenograft, the study averages for newly formed bone represented 84.23 ± 2.9%, while bovine matrix was 79.34 ± 2.1%. For residual graft material, the porcine biomaterial had 11.23 ± 1.7% and the bovine graft 31.56 ± 2.3%. Finally, the connective tissue for MP3 was 10.33 ± 1.8%, while for the 4BONE(™) XBM we obtained 14.34 ± 2.9%. Element analysis revealed higher percentages of Ca (54 ± 9%) and P (35 ± 6%) in the group B than group A and control group (P < 0.05). Defects of a critical size in a rabbit tibia model can be sealed using a bovine porous biphasic calcium phosphate and MP3 material; this supports new bone formation, creates a bridge between borders, and facilitates bone ingrowth in both biomaterials. Furthermore, this study observed partial dissolution of the mineral phase of four bone graft and complete resorption of porcine MP3 biomaterial and its incorporation into the surrounding bone. Depending on clinical needs, each biomaterial could be useful in daily clinical practice. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Bone loss during partial weight bearing (1/6th gravity) is mitigated by resistance and aerobic exercise in mice

    NASA Astrophysics Data System (ADS)

    Boudreaux, R. D.; Metzger, C. E.; Macias, B. R.; Shirazi-Fard, Y.; Hogan, H. A.; Bloomfield, S. A.

    2014-06-01

    Astronauts on long duration missions continue to experience bone loss, as much as 1-2% each month, for up to 4.5 years after a mission. Mechanical loading of bone with exercise has been shown to increase bone formation, mass, and geometry. The aim of this study was to compare the efficacy of two exercise protocols during a period of reduced gravitational loading (1/6th body weight) in mice. Since muscle contractions via resistance exercise impart the largest physiological loads on the skeleton, we hypothesized that resistance training (via vertical tower climbing) would better protect against the deleterious musculoskeletal effects of reduced gravitational weight bearing when compared to endurance exercise (treadmill running). Young adult female BALB/cBYJ mice were randomly assigned to three groups: 1/6 g (G/6; n=6), 1/6 g with treadmill running (G/6+RUN; n=8), or 1/6 g with vertical tower climbing (G/6+CLB; n=9). Exercise was performed five times per week. Reduced weight bearing for 21 days was achieved through a novel harness suspension system. Treadmill velocity (12-20 m/min) and daily run time duration (32-51 min) increased incrementally throughout the study. Bone geometry and volumetric bone mineral density (vBMD) at proximal metaphysis and mid-diaphysis tibia were assessed by in vivo peripheral quantitative computed tomography (pQCT) on days 0 and 21 and standard dynamic histomorphometry was performed on undemineralized sections of the mid-diaphysis after tissue harvest. G/6 caused a significant decrease (P<0.001) in proximal tibia metaphysis total vBMD (-9.6%). These reductions of tibia metaphyseal vBMD in G/6 mice were mitigated in both G/6+RUN and G/6+CLB groups (P<0.05). After 21 days of G/6, we saw an absolute increase in tibia mid-diaphysis vBMD and in distal metaphysis femur vBMD in both G/6+RUN and G/6+CLB mice (P<0.05). Substantial increases in endocortical and periosteal mineralizing surface (MS/BS) at mid-diaphysis tibia in G/6+CLB demonstrate that bone formation can be increased even in the presence of reduced weight bearing. These data suggest that moderately vigorous endurance exercise and resistance training, through treadmill running or climb training mitigates decrements in vBMD during 21 days of reduced weight bearing. Consistent with our hypothesis, tower climb training, most pronounced in the tibia mid-diaphysis, provides a more potent osteogenic response compared to treadmill running.

  6. Tibia shaft fractures: costly burden of nonunions

    PubMed Central

    2013-01-01

    Background Tibia shaft fractures (TSF) are common for men and women and cause substantial morbidity, healthcare use, and costs. The impact of nonunions on healthcare use and costs is poorly described. Our goal was to investigate patient characteristics and healthcare use and costs associated with TSF in patients with and without nonunion. Methods We retrospectively analyzed medical claims in large U.S. managed care claims databases (Thomson Reuters MarketScan®, 16 million lives). We studied patients ≥ 18 years old with a TSF diagnosis (ICD-9 codes: 823.20, 823.22, 823.30, 823.32) in 2006 with continuous pharmaceutical and medical benefit enrollment 1 year prior and 2 years post-fracture. Nonunion was defined by ICD-9 code 733.82 (after the TSF date). Results Among the 853 patients with TSF, 99 (12%) had nonunion. Patients with nonunion had more comorbidities (30 vs. 21, pre-fracture) and were more likely to have their TSF open (87% vs. 70%) than those without nonunion. Patients with nonunion were more likely to have additional fractures during the 2-year follow-up (of lower limb [88.9% vs. 69.5%, P < 0.001], spine or trunk [16.2% vs. 7.2%, P = 0.002], and skull [5.1% vs. 1.3%, P = 0.008]) than those without nonunion. Nonunion patients were more likely to use various types of surgical care, inpatient care (tibia and non-tibia related: 65% vs. 40%, P < 0.001) and outpatient physical therapy (tibia-related: 60% vs. 42%, P < 0.001) than those without nonunion. All categories of care (except emergency room costs) were more expensive in nonunion patients than in those without nonunion: median total care cost $25,556 vs. $11,686, P < 0.001. Nonunion patients were much more likely to be prescribed pain medications (99% vs. 92%, P = 0.009), especially strong opioids (90% vs. 76.4%, P = 0.002) and had longer length of opioid therapy (5.4 months vs. 2.8 months, P < 0.001) than patients without nonunion. Tibia fracture patterns in men differed from those in women. Conclusions Nonunions in TSF’s are associated with substantial healthcare resource use, common use of strong opioids, and high per-patient costs. Open fractures are associated with higher likelihood of nonunion than closed ones. Effective screening of nonunion risk may decrease this morbidity and subsequent healthcare resource use and costs. PMID:23351958

  7. Method for fusing bone

    DOEpatents

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1996-03-12

    The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  8. Central physeal arrests as a manifestation of hypervitaminosis A.

    PubMed

    Saltzman, Matthew D; King, Erik C

    2007-01-01

    Vitamin A is necessary for synthesis of visual pigments and required in appropriate amounts for membrane stability. Acute hypervitamin A intoxication can lead to increased intracranial pressure, vomiting, and lethargy. Chronic excessive intake of vitamin A can lead to pruritus, muscle and bone tenderness, and failure to thrive. Reported effects of hypervitamin A intoxication on bone include osteoporosis, fracture, cortical thickening, and metaphyseal irregularity. We are reporting on a case of central physeal arrest in the distal femur, proximal tibia, and distal tibia after excessive intake of vitamin A.

  9. Lower limb replantation. A report of nine cases.

    PubMed

    Kutz, J E; Jupiter, J B; Tsai, T M

    1983-01-01

    An analysis of nine replantations of completely amputated lower limbs is presented in this paper. Four cases were successful, including two at the level of the distal third of the tibia, one through the midfoot, and one at the proximal third of the tibia. The latter case involved the replantation of the shortened limb followed by a Syme's amputation of the foot to preserve a functional below-knee amputation level. In each successful case protective sensibility, bony union, and a stable stance and functional gait has been achieved, thereby eliminating a prosthetic requirement.

  10. [In vitro analysis of the continuous active patellofemoral kinematics of the normal and prosthetic knee].

    PubMed

    Jenny, J-Y; Lefèbvre, Y; Vernizeau, M; Lavaste, F; Skalli, W

    2002-12-01

    In vitro experiments are particularly useful for studying kinematic changes from the normal knee to experimental conditions simulating different disease states. We developed an experimental protocol allowing a kinematic analysis of the femorotibial and femoropatellar joints in the healthy knee and after implantation of a knee prosthesis, according to the central pivot during simulated active loaded movement from the standing to sitting position. An experimental device was designed to apply force to the femur of a cadaveric specimen including the femur, the patella and the tibia. The tibia was angled in the sagittal plane and the femur was free to move in space in response to the geometric movement of the knee joint, the capsuloligamentary structures, the quadriceps tendon and gravity. Variation in the length of the quadriceps tendon controlled the flexion-extension movement. The experimental setup included computer-controlled activation allowing continuous coordinated movement of the femur relative to the tibia and of the tibia relative to the ground. Standard activations simulated movement from the standing to the sitting position. Five pairs of fresh-frozen cadaver specimens including the entire femur, patella, tibia and fibula, the capsuloligamentary and intra-articular structures of the knee, the superior and inferior tibiofibular ligaments and the quadriceps tendon were studied. The quadriceps tendon was connected to the computer-guided activation device. Reflectors were fixed onto the anterior aspect of the femur, the superior tibial epiphysis and the center of the patella. Anatomic landmarks on the femur, the tibia, and the patella were identified to determine the plane of movement of each bone in the three rotation axes and the three translation directions. Three infrared cameras recorded movements of the reflectors fixed on the bony segments and, by mathematical transformation, the movement of the corresponding bony segment, displayed in time-course curves. The patella moved in continuous fashion over the femur, directly following the angle of knee flexion with a ratio of about 60%, which was constant for all knees studied and for all configurations. The patella of healthy knees and knees implanted with a unicompartmental prosthesis exhibited medial rotation during the first 30 degrees of flexion, with a movement of about of 10 degrees, then a lateral rotation of about 10 degrees to 20 degrees when the flexion reached 90 degrees; implantation of a total knee prosthesis led to a medial rotation which was continuous from 5 degrees to 15 degrees. There was a trend towards continuous abduction of about 10 degrees. The patella exhibited a continuous anterior translation of 10 to 20 mm from the tibia with increasing knee flexion, in both normal and prosthetic knees (unicompartmental prosthesis); knees implanted with a total knee prosthesis exhibited 5 to 10 mm anterior translation from 0 degrees to 50 degrees flexion, then an equivalent posterior translation for 50 degrees to 90 degrees flexion. The patella made a continuous 5 to 10 mm medial translation movement over the tibia in both normal and prosthetic (unicompartmental) knees; knees implanted with a total knee prosthesis exhibited 0 to 5 mm lateral translation starting after 50 degrees flexion. The patella also exhibited a continuous distal translation over the tibia of about 20 to 30 mm, for all configurations. The experimental set up enables a comparison of the kinetics of a normal knee with the kinetics observed after implantation of a prosthesis on the same knee. Implantation of a unicompartmental medial prosthesis, leaving the posterior cruciate ligament intact and irrespective of the status of the anterior cruciate ligament, did not, in these experimental conditions, exhibit any significant difference in the femorotibial or femoropatellar kinetics compared with the same normal knee. Implantation of a total knee prosthesis had a significant effect on the femoropatellar kinematics, compared with the same knee before implantation. The main anomalies were related to the medial-lateral rotation of the patella which exhibited an abnormal lateral rotation, possibly favorable for subluxation; these changes were directly related to femorotibial rotation after implantation of the total prosthesis and appeared to be related to the symmetry of the femoral condyles of the prosthesis model studied, perturbing the normal automatic rotation of the knee. There is thus a strong relationship between femorotibial and femoropatellar kinetics in the total knee prosthesis.

  11. Ability of modern distal tibia plates to stabilize comminuted pilon fracture fragments: Is dual plate fixation necessary?

    PubMed

    Penny, Phillip; Swords, Michael; Heisler, Jason; Cien, Adam; Sands, Andrew; Cole, Peter

    2016-08-01

    The purpose of this study was to examine the screw trajectory of ten commercially available distal tibia plates and compare them to common fracture patterns seen in OTA C type pilon fractures to determine their ability to stabilize the three most common fracture fragments while buttressing anterolateral zones of comminution. We hypothesized that a single plate for the distal tibia would fail to adequately stabilize all three main fracture fragments and zones of comminution in complex pilon fractures. Ten synthetic distal tibia sawbones models were used in conjunction with ten different locking distal tibia plate designs from three manufacturers (Depuy Synthes, J&J Co, Paoli, PA; Smith & Nephew, Memphis, TN; and Stryker, Mawa, NJ). Both medial and anterolateral plates from each company were utilized and separately applied to an individual sawbone model. Three implants allowing variable angle screw placement were used. The location of the locking screws and buttress effect 1cm above the articular surface was noted for each implant using axial computed tomography (CT). The images were then compared to a recently published "pilon fracture map" using an overlay technique to establish the relationship between screw location and known common fracture lines and areas of comminution. Each of the three main fragments was considered "captured" by a screw if it was purchased by at least two screws thereby controlling rotational forces on each fragment. Three of four anterolateral plates lacked stable fixation in the medial fragment. Of the 4 anterolateral plates used, only the variable angle anterolateral plate by Depuy Synthes captured the medial fragment with two screws. All four anterolateral plates buttressed the area of highest comminution and had an average of 1.25 screws in the medial fragment and an average of 3 screws in the posterolateral fragment. All five direct medial plates had variable fixation within anterolateral and posterolateral fragments with an average of 1.8 screws in the anterolateral fragment and an average of 1.3 screws in the posterolateral fragment. The Depuy Synthes variable angle anterolateral plate allowed for fixation of the medial fragment with two screws while simultaneously buttressing the zone of highest comminution and capturing both the anterolateral and posterolateral fragments with five and three screws respectively. The variable angle anteromedial plate by Depuy Synthes captured all three main fracture fragments but it did not buttress the anterolateral zone of comminution. In OTA 43C type pilon fractures, 8 out of 10 studied commercially available implants precontoured for the distal tibia, do not adequately stabilize the three primary fracture fragments typically seen in these injuries. Anterolateral plates were superior in addressing the coronal primary fracture line across the apex of the plafond, and buttressing the zone of comminution. None of the available plates can substitute for an understanding of the fracture planes and fragments typically seen in complex intra-articular tibia fractures and the addition of a second plate is necessary for adequate stability. Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Case-control study on effects of external fixation combined with limited internal fixation for the treatment of Pilon fractures of Rüedi-Allgower type III].

    PubMed

    Duan, Da-Peng; You, Wu-Lin; Ji, Le; Zhang, Yong-Tao; Dang, Xiao-Qian; Wang, Kun-Zheng

    2014-01-01

    To analyze the effects of three surgical operations in the treatment of Pilon fracture of Rüedi-Allgower type III, and put forward the best therapeutic method. The clinical data of 33 patients with Pilon fracture who received surgical operations (plaster immobilization group, 10 cases; distal tibia anatomical plate group, 11 cases; external fixation with limited internal fixation group, 12 cases) from October 2009 to January 2012 were analyzed. There were 5 males and 5 females, ranging in age from 24 to 61 years in the plaster immobilization group. There were 7 males and 4 females, ranging in age from 21 to 64 years in the distal tibia anatomical plate group. There were 7 males and 5 females, ranging in age from 23 to 67 years in the external fixation with limited internal fixation group. The Ankle X-ray of Pilon fracture after operation, ankle score, early and late complications were collected. Bourne system was used to evaluate ankle joint function. After 8 months to 3 years follow-up, it was found that three kinds of treatment had significant differences in the outcomes and complications (P < 0.05): the external fixation with limited internal fixation group got the best results. The number of anatomic reduction cases in the external fixation with limited internal fixation group (7 cases) and the distal tibia anatomical plate group (8 cases) was more than the plaster immobilization group (2 cases). According to the ankle score, 8 patients got an excellent result, 3 good and 1 poor in the limited internal fixation group ,which was better than those of distal tibia anatomical plate group (5 excellent, 4 good and 2 poor) and the plaster immobilization group (3 excellent, 4 good and 3 poor). The number of early and late complications in the external fixation with limited internal fixation group was more than those in the plaster immobilization group and the distal tibia anatomical plate group (P< 0.05). Treatment of external fixation with limited internal fixation in the treatment of Pilon fracture of Rüedi-Allgower type III is effective and safe.

  13. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    PubMed

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc. All rights reserved.

  14. Effect of Denosumab on Peripheral Compartmental Bone Density, Microarchitecture and Estimated Bone Strength in De Novo Kidney Transplant Recipients.

    PubMed

    Bonani, Marco; Meyer, Ursina; Frey, Diana; Graf, Nicole; Bischoff-Ferrari, Heike A; Wüthrich, Rudolf P

    2016-01-01

    In a randomized controlled clinical trial in kidney transplant recipients (NCT01377467) we have recently shown that RANKL inhibition with denosumab significantly improved areal bone mineral density (aBMD) when given during the first year after transplantation. The effect of denosumab on skeletal microstructure and bone strength in kidney transplant recipients is not known. The purpose of the present bone microarchitecture ancillary study was to investigate high-resolution peripheral quantitative computed tomography (HRpQCT) data from the distal tibia and distal radius in 24 study patients that had been randomized to receive either two injections of denosumab 60 mg at baseline and after 6 months (n=10) or no treatment (n=14). Consistent with the full trial findings, denosumab reduced biomarkers of bone turnover, and significantly increased aBMD at the lumbar spine (median difference of 4.7%; 95% confidence interval [CI] 2.6 - 7.8; p<0.001). Bone quality as assessed by total and cortical volumetric bone mineral density (Tot. vBMD, Ct.vBMD) and cortical thickness (Ct.Th) increased significantly at the tibia, while changes at the radius were less pronounced. The trabecular volumetric BMD (Tb.vBMD), thickness (Tb. Th), separation (Tb.Sp) and number (Tb.N) and the cortical porosity (Ct.Po) at the tibia and the radius did not significantly change in both treatment groups. Micro-finite element analysis (µFEA) showed that bone stiffness increased significantly at the tibia (median difference 5.6%; 95% CI 1.8% - 9.2%; p=0.002) but not at the radius (median difference 2.9%, 95% CI -3.7% - 9.1%; p=0.369). Likewise, failure load increased significantly at the tibia (median difference 5.1%; 95% CI 2.1% - 8.1%; p=0.002) but not at the radius (median difference 2.4%, 95% CI -3.2% - 8.5%; p=0.336). These findings demonstrate that denosumab improves bone density and bone quality in first-year kidney transplant recipients at risk to develop osteoporosis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Bone geometry in young male and female football players: a peripheral quantitative computed tomography (pQCT) study.

    PubMed

    Lozano-Berges, Gabriel; Matute-Llorente, Ángel; Gómez-Bruton, Alejandro; González-Agüero, Alex; Vicente-Rodríguez, Germán; Casajús, José A

    2018-05-08

    The present study shows that football practice during growth may improve bone geometry in male and female football players. However, only females had better bone strength in comparison with controls. The aim of this study was to compare bone geometry in adolescent football players and controls. A total of 107 football players (71 males/36 females; mean age 12.7 ± 0.6/12.7 ± 0.6 years) and 42 controls (20 males/22 females; mean age 13.1 ± 1.4/12.7 ± 1.3 years) participated in this study. Total and trabecular volumetric bone mineral content (Tt.BMC/Tb.BMC), cross-sectional area (Tt.Ar/Tb.Ar), and bone strength index (BSI) were measured at 4% site of the non-dominant tibia by peripheral quantitative computed tomography (pQCT). Moreover, Tt.BMC, cortical BMC (Ct.BMC), Tt.Ar, cortical Ar (Ct.Ar), cortical thickness (Ct.Th), periosteal circumference (PC), endosteal circumference (EC), fracture load in X-axis, and polar strength strain index (SSIp) were measured at 38% site of the tibia. Multivariate analyses of covariance were used to compare bone pQCT variables between football players and controls using the tibia length and maturity offset as covariates. Female football players demonstrated 13.8-16.4% higher BSI, Ct.Th, fracture load in X-axis, and SSIp than controls (p < .0036). Males showed no significant differences in bone strength when compared to controls (p > .0036). In relation to bone mineral content and area, male football players showed 8.8% higher Tt.Ar and Tb.Ar at the 4% site of the tibia when compared to controls; whereas 13.8-15.8% higher Tt.BMC, Ct.BMC, and Ct.Ar at the 38% site of the tibia were found in female football players than controls (p < .0036). In this study, female adolescent football players presented better bone geometry and strength values than controls. In contrast, only bone geometry was higher in male football players than controls.

  16. Longitudinal relationships between whole body and central adiposity on weight-bearing bone geometry, density, and bone strength: a pQCT study in young girls

    PubMed Central

    Farr, Joshua N.; Laudermilk, Monica J.; Lee, Vinson R.; Blew, Robert M.; Stump, Craig; Houtkooper, Linda; Lohman, Timothy G.; Going, Scott B.

    2015-01-01

    Summary Longitudinal relationships between adiposity (total body and central) and bone development were assessed in young girls. Total body and android fat masses were positively associated with bone strength and density parameters of the femur and tibia. These results suggest adiposity may have site-specific stimulating effects on the developing bone. Introduction Childhood obesity may impair bone development, but the relationships between adiposity and bone remain unclear. Failure to account for fat pattern may explain the conflicting results. Purpose Longitudinal associations of total body fat mass (TBFM) and android fat mass (AFM) with 2-year changes in weight-bearing bone parameters were examined in 260 girls aged 8–13 years at baseline. Peripheral quantitative computed tomography was used to measure bone strength index (BSI, square milligrams per quartic millimeter), strength–strain index (SSI, cubic millimeters), and volumetric bone mineral density (vBMD, milligrams per cubic centimeter) at distal metaphyseal and diaphyseal regions of the femur and tibia. TBFM and AFM were assessed by dual-energy x-ray absorptiometry. Results Baseline TBFM and AFM were positively associated with the change in femur BSI (r =0.20, r =0.17, respectively) and femur trabecular vBMD (r =0.19, r =0.19, respectively). Similarly, positive associations were found between TBFM and change in tibia BSI and SSI (r =0.16, r =0.15, respectively), and femur total and trabecular vBMD (r =0.12, r =0.14, respectively). Analysis of covariance showed that girls in the middle thirds of AFM had significantly lower femur trabecular vBMD and significantly higher tibia cortical vBMD than girls in the highest thirds of AFM. All results were significant at p <0.05. Conclusions Whereas baseline levels of TBFM and AFM are positive predictors of bone strength and density at the femur and tibia, higher levels of AFM above a certain level may impair cortical vBMD growth at weight-bearing sites. Future studies in obese children will be needed to test this possibility. NIH/NICHD #HD-050775. PMID:24113839

  17. The effect of feeding calcium- and phosphorus-deficient diets to broiler chickens during the starting and growing-finishing phases on carcass quality.

    PubMed

    Driver, J P; Pesti, G M; Bakalli, R I; Edwards, H M

    2006-11-01

    There is considerable data on the effect of reducing inorganic Ca and P in broiler finisher diets on carcass quality. However, there is limited information on the effect of reducing dietary Ca and P during the different phases of growout. Two experiments were conducted from 0 to 35 d in floor pens. In both experiments, at least 4 replicates per treatment (50 chicks per replicate) were used. Corn-soybean meal and soybean oil-based diets deficient in Ca and P were fed. During the starter phase (ST), from 0 to 18 d, chicks were fed a 23% CP diet containing 0.60% Ca and 0.47% total P (tP). During the grower-finisher phase (GF), from 19 to 35 d, birds were fed a 19% CP diet containing 0.30% Ca and 0.37% tP. A combination of 1,000 phytase units/kg of Natuphos phytase and 5 microg/kg of 1alpha-hydroxycholecalciferol (P + 1alpha) was supplemented to some of the feed during the ST and GF. Diets containing adequate Ca and P were also fed during the ST (0.90% Ca and 0.68% tP) and GF (0.80% Ca and 0.67% tP). The level of tibia ash and the incidence of bone disease were measured at 18 and 35 d. At the end of the experiments, birds were processed and evaluated for muscle hemorrhages and broken bones. In both experiments, broilers fed diets that were not P + 1alpha supplemented demonstrated poor bone mineralization, considerable leg problems, and a high incidence of broken bones after processing. Broilers fed P + 1alpha throughout had more broken clavicles and femurs compared with birds fed the adequate diets. Day-18 tibia ash was significantly correlated to broken tibias and femurs during processing. Day-35 tibia ash was better correlated to bloody breast meat than to broken bones. It is concluded that carcass quality depends on the levels of Ca and P fed and the age of the bird. Tibia ash, traditionally used as an indication of bone strength, was better correlated to the incidence of bloody breasts.

  18. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects.

    PubMed

    Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence

    2013-07-01

    Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that the skeleton is frequency-scalable, thus highlighting the importance of WBV regimen conditions and suggesting that cautions are required for frequencies less than 10 Hz, at least in rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Obesity and type 2 diabetes, not a diet high in fat, sucrose, and cholesterol, negatively impacts bone outcomes in the hyperphagic Otsuka Long Evans Tokushima Fatty rat.

    PubMed

    Ortinau, Laura C; Linden, Melissa A; Dirkes, Rebecca; Rector, R Scott; Hinton, Pamela S

    2017-12-01

    Obesity and type 2 diabetes (T2D) increase fracture risk; however, the association between obesity/T2D may be confounded by consumption of a diet high in fat, sucrose, and cholesterol (HFSC). The study objective was to determine the main and interactive effects of obesity/T2D and a HFSC diet on bone outcomes using hyperphagic Otuska Long Evans Tokushima Fatty (OLETF) rats and normophagic Long Evans Tokushima Otsuka (LETO) controls. At 8weeks of age, male OLETF and LETO rats were randomized to either a control (CON, 10 en% from fat as soybean oil) or HFSC (45 en% from fat as soybean oil/lard, 17 en% sucrose, and 1wt%) diet, resulting in four treatment groups. At 32weeks, total body bone mineral content (BMC) and density (BMD) and body composition were measured by dual-energy X-ray absorptiometry, followed by euthanasia and collection of blood and tibiae. Bone turnover markers and sclerostin were measured using ELISA. Trabecular microarchitecture of the proximal tibia and geometry of the tibia mid-diaphysis were measured using microcomputed tomography; whole-bone and tissue-level biomechanical properties were evaluated using torsional loading of the tibia. Two-factor ANOVA was used to determine main and interactive effects of diet (CON vs. HFSC) and obesity/T2D (OLETF vs. LETO) on bone outcomes. Hyperphagic OLEFT rats had greater final body mass, body fat, and fasting glucose than normophagic LETO, with no effect of diet. Total body BMC and serum markers of bone formation were decreased, and bone resorption and sclerostin were increased in obese/T2D OLETF rats. Trabecular bone volume and microarchitecture were adversely affected by obesity/T2D, but not diet. Whole-bone and tissue-level biomechanical properties of the tibia were not affected by obesity/T2D; the HFSC diet improved biomechanical properties only in LETO rats. Obesity/T2D, regardless of diet, negatively impacted the balance between bone formation and resorption and trabecular bone volume and microarchitecture in OLETF rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A longitudinal study of bone area, content, density, and strength development at the radius and tibia in children 4-12 years of age exposed to recreational gymnastics.

    PubMed

    Jackowski, S A; Baxter-Jones, A D G; Gruodyte-Raciene, R; Kontulainen, S A; Erlandson, M C

    2015-06-01

    This study investigated the long-term relationship between the exposure to childhood recreational gymnastics and bone measures and bone strength parameters at the radius and tibia. It was observed that individuals exposed to recreational gymnastics had significantly greater total bone content and area at the distal radius. No differences were observed at the tibia. This study investigated the relationship between exposure to early childhood recreational gymnastics with bone measures and bone strength development at the radius and tibia. One hundred twenty seven children (59 male, 68 female) involved in either recreational gymnastics (gymnasts) or other recreational sports (non-gymnasts) between 4 and 6 years of age were recruited. Peripheral quantitative computed tomography (pQCT) scans of their distal and shaft sites of the forearm and leg were obtained over 3 years, covering the ages of 4-12 years at study completion. Multilevel random effects models were constructed to assess differences in the development of bone measures and bone strength measures between those exposed and not exposed to gymnastics while controlling for age, limb length, weight, physical activity, muscle area, sex, and hours of training. Once age, limb length, weight, muscle area, physical activity, sex, and hours of training effects were controlled, it was observed that individuals exposed to recreational gymnastics had significantly greater total bone area (18.0 ± 7.5 mm(2)) and total bone content (6.0 ± 3.0 mg/mm) at the distal radius (p < 0.05). This represents an 8-21 % benefit in ToA and 8-15 % benefit to ToC from 4 to 12 years of age. Exposure to recreational gymnastics had no significant effect on bone measures at the radius shaft or at the tibia (p > 0.05). Exposure to early life recreational gymnastics provides skeletal benefits to distal radius bone content and area. Thus, childhood recreational gymnastics exposure may be advantageous to bone development at the wrist.

  1. Functional Brace in ACL Surgery: Force Quantification in an In Vivo Study

    PubMed Central

    LaPrade, Robert F.; Venderley, Melanie B.; Dahl, Kimi D.; Dornan, Grant J.; Turnbull, Travis Lee

    2017-01-01

    Background: A need exists for a functional anterior cruciate ligament (ACL) brace that dynamically supports the knee joint to match the angle-dependent forces of a native ACL, especially in the early postoperative period. Purpose/Hypothesis: The purpose of this study was to quantify the posteriorly directed external forces applied to the anterior proximal tibia by both a static and a dynamic force ACL brace. The proximal strap forces applied by the static force brace were hypothesized to remain relatively constant regardless of knee flexion angle compared with those of the dynamic force brace. Study Design: Controlled laboratory study. Methods: Seven healthy adult males (mean age, 27.4 ± 3.4 years; mean height, 1.8 ± 0.1 m; mean body mass, 84.1 ± 11.3 kg) were fitted with both a static and a dynamic force ACL brace. Participants completed 3 functional activities: unloaded extension, sit-to-stand, and stair ascent. Kinematic data were collected using traditional motion-capture techniques while posteriorly directed forces applied to the anterior aspect of both the proximal and distal tibia were simultaneously collected using a customized pressure-mapping technique. Results: The mean posteriorly directed forces applied to the proximal tibia at 30° of flexion by the dynamic force brace during unloaded extension (80.2 N), sit-to-stand (57.5 N), and stair ascent (56.3 N) activities were significantly larger, regardless of force setting, than those applied by the static force brace (10.1 N, 9.5 N, and 11.9 N, respectively; P < .001). Conclusion: The dynamic force ACL brace, compared with the static force brace, applied significantly larger posteriorly directed forces to the anterior proximal tibia in extension, where the ACL is known to experience larger in vivo forces. Further studies are required to determine whether the physiological behavior of the brace will reduce anterior knee laxity and improve long-term patient outcomes. Clinical Relevance: ACL braces that dynamically restrain the proximal tibia in a manner similar to physiological ACL function may improve pre- and postoperative treatment. PMID:28748195

  2. Age-related differences in volumetric bone mineral density, microarchitecture, and bone strength of distal radius and tibia in Chinese women: a high-resolution pQCT reference database study.

    PubMed

    Hung, V W Y; Zhu, T Y; Cheung, W-H; Fong, T-N; Yu, F W P; Hung, L-K; Leung, K-S; Cheng, J C Y; Lam, T-P; Qin, L

    2015-06-01

    In a cohort of 393 Chinese women, by using high-resolution peripheral quantitative computed tomography (HR-pQCT), we found that significant cortical bone loss occurred after midlife. Prominent increase in cortical porosity began at the fifth decade but reached a plateau before the sixth decade. Trabecular bone loss was already evident in young adulthood and continued throughout life. This study aimed to investigate age-related differences in volumetric bone mineral density (vBMD), microarchitecture, and estimated bone strength at peripheral skeleton in Chinese female population. In a cross-sectional cohort of 393 Chinese women aged 20-90 years, we obtained vBMD, microarchtecture, and micro-finite element-derived bone strength at distal radius and tibia using HR-pQCT. The largest predictive age-related difference was found for cortical porosity (Ct.Po) which showed over four-fold and two-fold differences at distal radius and tibia, respectively, over the adulthood. At both sites, cortical bone area, vBMD, and thickness showed significant quadratic association with age with significant decrease beginning after midlife. Change of Ct.Po became more prominent between age of 50 and 57 (0.26 %/year at distal radius, 0.54 %/year at distal tibia, both p ≤ 0.001) but thereafter, reached a plateau (0.015 and 0.028 %/year, both p > 0.05). In contrast, trabecular vBMD and microarchitecture showed linear association with age with significant deterioration observed throughout adulthood. Estimated age of peak was around age of 20 for trabecular vBMD and microarchitecture and Ct.Po and age of 40 for cortical vBMD and microarchitecture. Estimated stiffness and failure load peaked at mid-30s at the distal radius and at age 20 at distal tibia. Age-related differences in vBMD and microarchitecture in Chinese women differed by bone compartments. Significant cortical bone loss occurred after midlife. Prominent increase in Ct.Po began at the fifth decade but appeared to be arrested before the sixth decade. Loss of trabecular bone was already evident in young adulthood and continued throughout life.

  3. Differences in egg nutrient availability and embryo development in white layer breeder genotypes.

    PubMed

    Onbasilar, E E; Kahraman, M; Ahlat, O; Güngör, Ö F; Çalik, A; Taban, S; Yalçin, S

    2017-10-01

    Because of consumers' preferences and also due to changes in production systems, the importance of pure breeds has increased again. There are a lot of differences among breeds which have been studied extensively, however, the differences during the incubation period are not yet fully known. Therefore, the present study was conducted to evaluate the composition of the egg parts, absorption of nutrients, and development of embryos from different genotypes. A total of 354 fresh hatching eggs were obtained from one hybrid (Lohman White, LW) and two pure breeds (Denizli and Gerze). Hatching eggs from each genotype were examined on the day of setting for egg analysis and then at the beginning of the embryonic d 19 (E19) and embryonic d 21 (E21) for egg, embryo, jejunum, and tibia analysis. On d 21 of incubation, the healthy chicks were removed and weighed. Egg weight, shell thickness, percentages of albumen, and some parameters of albumen composition (dry matter, water, ash, protein, energy, Na, Ca, K, and Mg) were higher in fresh eggs obtained from LW hens. Furthermore, the relative yolk sac and embryo weight, some yolk parameters (dry matter, water, protein, fat, and energy) and some shell parameters (dry matter, ash, Na, Ca, and K) were also higher in eggs obtained from LW hens during incubation. However, tibia deformation and villus width were lower in LW embryos than the other genotypes. Relative chick weights were 68.9, 72.0, and 68.0% in LW, Denizli, and Gerze genotypes, respectively. During incubation, differences in all examined parameters were significant except thickness and weight of shell, tibia deformation, and crypt depth. Yolk sac weight, some yolk composition parameters, K level in the shell, Cu level in the tibia, and villus height were also affected by genotype and period interaction. Based on these results, LW was found advantageous in terms of egg composition, however, regarding villus development and tibia deformation in embryos during incubation, pure breeds showed better results. © 2017 Poultry Science Association Inc.

  4. UK Fixation of Distal Tibia Fractures (UK FixDT): protocol for a randomised controlled trial of ‘locking’ plate fixation versus intramedullary nail fixation in the treatment of adult patients with a displaced fracture of the distal tibia

    PubMed Central

    Achten, Juul; Parsons, Nicholas R; McGuinness, Katie R; Petrou, Stavros; Lamb, Sarah E; Costa, Matthew L

    2015-01-01

    Introduction The treatment of displaced, extra-articular fractures of the distal tibia remains controversial. These injuries are difficult to manage due to limited soft tissue cover, poor vascularity of the area and proximity to the ankle joint. Surgical treatment options are expanding and include locked intramedullary nails, plate and screw fixation and external fixator systems. The nail and plate options are most commonly used in the UK, but controversy exists over which treatment is most clinically and cost-effective. In this multicentre randomised controlled trial we aim to assess ratings of disability 6 months postinjury in patients who have sustained a distal tibia fracture treated with either an intramedullary nail or plate and locking screw fixation. Methods and analysis Adult patients presenting at trial centres with an acute fracture of the distal tibia will be considered for inclusion. A total of 320 patients will provide 90% power to detect a difference of 8 points in Disability Rating Index (DRI) score at 6 months at the 5% level. The randomisation sequence is stratified by trial centre and age, and administered via web-based service with 1:1 treatment allocation. Baseline demographic and pre-injury functional data and radiographs will be collected using the DRI, Olerud and Molander, and EuroQol EQ-5D questionnaire. Clinical assessment, early complications and radiographs will be recorded at 6–8 weeks. Functional outcome, health-related quality of life and resource use will be collected at 3, 6 and 12 months postoperatively. The main analysis will investigate differences in DRI 6 months postsurgery, between the two treatment groups, on an intention-to-treat basis. Tests will be two-sided and considered to provide evidence for a significant difference if p values are <0.05. Ethics and dissemination NRES Committee West-Midlands, 6/11/2012 (ref:12/WM/0340). The results of the trial will be disseminated via peer-reviewed publications and presentations at relevant conferences. Trial registration number ISRCTN99771224. PMID:26384729

  5. Effects of incubator temperature and oxygen concentration during the plateau stage of oxygen consumption on Turkey embryo long bone development.

    PubMed

    Oviedo-Rondón, E O; Small, J; Wineland, M J; Christensen, V L; Grimes, J L; Funderburk, S V L; Ort, D T; Mann, K M

    2008-08-01

    Temperature (TEM) and O(2) concentrations during the plateau stage of oxygen consumption are known to affect yolk utilization, tissue development, and thyroid metabolism in turkey embryos. Three experiments were conducted to evaluate these incubation effects on long bone development. Fertile eggs of Nicholas turkeys were used. In each trial, standard incubation conditions were used to 24 d, when the eggs containing viable embryos were randomly divided into 4 groups. Four experimental cabinets provided 4 TEM (36, 37, 38, or 39 degrees C) or 4 O(2) concentrations (17, 19, 21, or 23% O(2)). In the third experiment, 2 temperatures (36 and 39 degrees C) and 2 O(2) concentrations (17 and 23%) were evaluated in a 2 x 2 factorial design. Body and residual yolk weights were obtained. Both legs were dissected, and shanks, femur, and tibia weights, length, and thickness were recorded. Relative asymmetry of each leg section was calculated. Chondrocyte density was evaluated in slides stained with hematoxylin and eosin. Immunofluorescence was used to evaluate the presence of collagen type X and transforming growth factor beta. Hot TEM caused reduction of tibia weights and increase of shank weight when compared with cool TEM. The lengths of femur, tibia, and shanks were reduced by 39 degrees C. The relative asymmetry of leg weights were increased at 38 and 39 degrees C. Poult body and part weights were not affected by O(2) concentrations, but poults on 23% O(2) had bigger shanks and heavier tibias than the ones on 17% O(2). High TEM depressed the fluorescence of collagen type X and transforming growth factor beta. The O(2) concentrations did not consistently affect the immunofluorescence of these proteins. The chondrocyte density was affected by TEM and O(2) in resting and hypertrophic zones. In the third experiment, high TEM depressed BW, leg muscle weights, and shank length. Low O(2) reduced tibia and shanks as a proportion of the whole body. We concluded that incubation conditions affect long bone development in turkeys.

  6. Dairy product intake and bone properties in 70-year-old men and women.

    PubMed

    Hallkvist, Olle M; Johansson, Jonas; Nordström, Anna; Nordström, Peter; Hult, Andreas

    2018-01-29

    In the present population-based study including 70-year-old men and women, total dairy product intake was associated with a weak positive association with tibia trabecular and cortical cross-sectional areas. Milk consumption has recently been suggested to increase fracture risk. Therefore, we aimed to investigate associations between dairy product consumption and peripheral bone properties. Furthermore, we explored whether consumption of milk and fermented dairy products affected bone properties differently. The Healthy Aging Initiative is a population-based, cross-sectional study investigating the health of 70-year-old men and women. Out of the 2904 individuals who met the inclusion criteria, data on self-reported daily dairy product consumption (dl/day), peripheral quantitative computed tomography (pQCT) examinations at the 4 and 66% scan sites of the tibia and radius, and dual-energy X-ray absorptiometry (DXA) scans were collected from 2040 participants. Associations between dairy product consumption and bone properties were examined using multiple linear regression models adjusted for sex, muscle area, meal size, dietary protein proportion, current smoking status, and objectively measured physical activity. Total dairy product intake was associated with larger trabecular (2.296 (95% CI, 0.552-4.039) mm 2 , per dl/day increase, p = 0.01) and cortical cross-sectional areas (CSAs) in the tibia (1.757 (95% CI, 0.683-2.830 mm 2 , p = 0.001) as measured by pQCT and higher areal bone mineral density (aBMD) of the radius (3.231 (95% CI, 0.764-5.698) mg/cm 2 , p = 0.01) as measured by DXA. No other measurement in the tibia, radius, femoral neck, or lower spine was associated significantly with dairy product intake. Bone properties did not differ according to the type of dairy product consumed. No evidence of a negative association between dairy product consumption and bone health was found. Furthermore, total dairy product consumption was associated with increased CSAs in the tibia, regardless of dairy product type. Collectively, our findings indicate the existence of a weak but significant positive association between dairy product consumption bone properties in older adults.

  7. Bone shape difference between control and osteochondral defect groups of the ankle joint.

    PubMed

    Tümer, N; Blankevoort, L; van de Giessen, M; Terra, M P; de Jong, P A; Weinans, H; Tuijthof, G J M; Zadpoor, A A

    2016-12-01

    The etiology of osteochondral defects (OCDs), for which the ankle (talocrural) joint is one of the common sites, is not yet fully understood. In this study, we hypothesized that bone shape plays a role in development of OCDs. Therefore, we quantitatively compared the morphology of the talus and the distal tibia between an OCD group and a control group. The shape variations of the talus and distal tibia were described separately by constructing two statistical shape models (SSMs) based on the segmentation of the bones from ankle computed tomography (CT) scans obtained from control (i.e., 35 CT scans) and OCD (i.e., 37 CT scans) groups. The first five modes of shape variation for the SSM corresponding to each bone were statistically compared between control and OCD groups using an analysis of variance (ANOVA) corrected with the Bonferroni for multiple comparisons. The first five modes of variation in the SSMs respectively represented 49% and 40% of the total variance of talus and tibia. Less than 5% of the variance per mode was described by the higher modes. Mode 5 of the talus (P = 0.004) primarily describing changes in the vertical neck angle and Mode 1 of the tibia (P < 0.0001) representing variations at the medial malleolus, showed statistically significant difference between the control and OCD groups. Shape differences exist between control and OCD groups. This indicates that a geometry modulated biomechanical behavior of the talocrural joint may be a risk factor for OCD. Copyright © 2016. Published by Elsevier Ltd.

  8. Disregarding population specificity: its influence on the sex assessment methods from the tibia.

    PubMed

    Kotěrová, Anežka; Velemínská, Jana; Dupej, Ján; Brzobohatá, Hana; Pilný, Aleš; Brůžek, Jaroslav

    2017-01-01

    Forensic anthropology has developed classification techniques for sex estimation of unknown skeletal remains, for example population-specific discriminant function analyses. These methods were designed for populations that lived mostly in the late nineteenth and twentieth centuries. Their level of reliability or misclassification is important for practical use in today's forensic practice; it is, however, unknown. We addressed the question of what the likelihood of errors would be if population specificity of discriminant functions of the tibia were disregarded. Moreover, five classification functions in a Czech sample were proposed (accuracies 82.1-87.5 %, sex bias ranged from -1.3 to -5.4 %). We measured ten variables traditionally used for sex assessment of the tibia on a sample of 30 male and 26 female models from recent Czech population. To estimate the classification accuracy and error (misclassification) rates ignoring population specificity, we selected published classification functions of tibia for the Portuguese, south European, and the North American populations. These functions were applied on the dimensions of the Czech population. Comparing the classification success of the reference and the tested Czech sample showed that females from Czech population were significantly overestimated and mostly misclassified as males. Overall accuracy of sex assessment significantly decreased (53.6-69.7 %), sex bias -29.4-100 %, which is most probably caused by secular trend and the generally high variability of body size. Results indicate that the discriminant functions, developed for skeletal series representing geographically and chronologically diverse populations, are not applicable in current forensic investigations. Finally, implications and recommendations for future research are discussed.

  9. Analysis of the independent power of age-related, anthropometric and mechanical factors as determinants of the structure of radius and tibia in normal adults. A pQCT study.

    PubMed

    Reina, P; Cointry, G R; Nocciolino, L; Feldman, S; Ferretti, J L; Rittweger, J; Capozza, R F

    2015-03-01

    To compare the independent influence of mechanical and non-mechanical factors on bone features, multiple regression analyses were performed between pQCT indicators of radius and tibia bone mass, mineralization, design and strength as determined variables, and age or time since menopause (TMP), body mass, bone length and regional muscles' areas as selected determinant factors, in Caucasian, physically active, untrained healthy men and pre- and post-menopausal women. In men and pre-menopausal women, the strongest influences were exerted by muscle area on radial features and by both muscle area and bone length on the tibia. Only for women, was body mass a significant factor for tibia traits. In men and pre-menopausal women, mass/design/strength indicators depended more strongly on the selected determinants than the cortical vBMD did (p<0.01-0.001 vs n.s.), regardless of age. However, TMP was an additional factor for both bones (p<0.01-0.001). The selected mechanical factors (muscle size, bone lengths) were more relevant than age/TMP or body weight to the development of allometrically-related bone properties (mass/design/strength), yet not to bone tissue 'quality' (cortical vBMD), suggesting a determinant, rather than determined role for cortical stiffness. While the mechanical impacts of muscles and bone levers on bone structure were comparable in men and pre-menopausal women, TMP exerted a stronger impact than allometric or mechanical factors on bone properties, including cortical vBMD.

  10. Mandibular Reconstruction with Lateral Tibial Bone Graft: An Excellent Option for Oral and Maxillofacial Surgery.

    PubMed

    Miceli, Ana Lucia Carpi; Pereira, Livia Costa; Torres, Thiago da Silva; Calasans-Maia, Mônica Diuana; Louro, Rafael Seabra

    2017-12-01

    Autogenous bone grafts are the gold standard for reconstruction of atrophic jaws, pseudoarthroses, alveolar clefts, orthognathic surgery, mandibular discontinuity, and augmentation of sinus maxillary. Bone graft can be harvested from iliac bone, calvarium, tibial bone, rib, and intraoral bone. Proximal tibia is a common donor site with few reported problems compared with other sites. The aim of this study was to evaluate the use of proximal tibia as a donor area for maxillofacial reconstructions, focusing on quantifying the volume of cancellous graft harvested by a lateral approach and to assess the complications of this technique. In a retrospective study, we collected data from 31 patients, 18 women and 13 men (mean age: 36 years, range: 19-64), who were referred to the Department of Oral and Maxillofacial Surgery at the Servidores do Estado Federal Hospital. Patients were treated for sequelae of orthognathic surgery, jaw fracture, nonunion, malunion, pathology, and augmentation of bone volume to oral implant. The technique of choice was lateral access of proximal tibia metaphysis for graft removal from Gerdy tubercle under general anesthesia. The mean volume of bone harvested was 13.0 ± 3.7 mL (ranged: 8-23 mL). Only five patients (16%) had minor complications, which included superficial infection, pain, suture dehiscence, and unwanted scar. However, none of these complications decreases the result and resolved completely. We conclude that proximal tibia metaphysis for harvesting cancellous bone graft provides sufficient volume for procedures in oral and maxillofacial surgery with minimal postoperative morbidity.

  11. Factors influencing interlocking screw failure in unreamed small diameter nails--a biomechanical study using a distal tibia fracture model.

    PubMed

    Weninger, Patrick; Schueller, Michael; Jamek, Michael; Stanzl-Tschegg, Stefanie; Redl, Heinz; Tschegg, Elmar K

    2009-05-01

    Unreamed tibia nails with small diameters are increasingly used for fracture fixation. However, little is known about the fatigue strength of proximal and distal interlocking screws in those nails. To date, no data are available reporting on mechanical differences of solid compared to cannulated tibial nails. The aim of this study was to assess the fatigue strength of proximal and distal interlocking screws of solid and cannulated small diameter tibia nails. We created a distal tibia fracture model (AO/OTA 43 A3) using 16 Sawbones. After fracture stabilization with one of four different nail types (Expert Tibial Nail, VersaNail, T2 Tibial Nailing System, Connex), mechanical testing was performed in three loading series (40,000 cycles each) with incremental loads. Timing and type of interlocking screw failure were assessed. Interlocking screw failure was observed significantly earlier (after a mean interval of 57,042 cycles) in cannulated tibial nails (VersaNail, T2) compared to solid nails (after a mean interval of 88,415 cycles; P < 0.001). Proximal interlocking screw failure was recorded if oblique screws were used proximally (VersaNail, T2, Connex). No distal interlocking screw failure was recorded in the Connex nail. Two- and three-part fractures of proximal or distal interlocking screws were observed in all specimen. Proximal and distal interlocking screw failure has to be considered in small diameter nails in case of delayed fracture healing. To support our results, further experimental studies and clinical series are necessary.

  12. Changes in cortical bone channels network and osteocyte organization after the use of zoledronic acid.

    PubMed

    Rabelo, Gustavo Davi; Travençolo, Bruno Augusto Nassif; Oliveira, Marcio Augusto; Beletti, Marcelo Emílio; Gallottini, Marina; Silveira, Fernando Ricardo Xavier da

    2015-12-01

    The aim of this study was to evaluate the effects of zoledronic acid (ZA) on the cortical bone channels network (CBCN) and osteocyte organization in relation to the bone channels. Eighteen male Wistar rats were divided into control (CG) and test groups (TG). Twelve animals from TG received 3 ZA doses (7.5 µg/kg), and 6 animals from CG did not receive any medication. TG animals were euthanized at 14 (n = 6) and 75 (n = 6) dadys after drug injection. CBCN was analyzed in mandibles and tibias using computational routines. The osteocyte organization was qualitatively evaluated in tibias using a three-dimensional reconstruction of images from serial histological sections. Significant differences in CBCN of tibia were found between the treated and untreated rats, with a wider range of sizes and shapes of the channels after the use of ZA (channels area p = 0.0063, channels area SD p = 0.0276) and less bone matrix (bone volume p = 0.0388). The alterations in the channels' morphology were more evident at 75 days after the drug injection (channels perimeter p = 0.0286). No differences were found in mandibles CBCN. The osteocyte distribution revealed more variable patterns of cell distribution in ZA groups, with non-homogeneous distribution of cells in relation to the bone channels. Zoledronic acid induces structural changes in CBCN and modifies the osteocyte arrangement in cortical bone in the tibia; also, the variability in the morphology of bone channels became more evident after a certain time of the use of the drug.

  13. A Comparative Study on the Kinematic Biomechanical Effects of Tibia Vara in the Healthy and Diseased Individuals

    NASA Astrophysics Data System (ADS)

    Shahmohammadi, Mehrdad; Karami, Hossein; Bani, Milad Salimi; Zadeh, Hossein Bahreini; Karimi, Alireza; Navidbakhsh, Mahdi

    2016-08-01

    BACKGROUND: Malalignment about the knee leads to a pathological-mechanical load that may cause early osteoarthritis of the knee joint and high degree of deformity which may need surgical treatment. Analysis of the leg movements in the experimental cases and comparing acquired results to the normal ones during the gait is used as a practical method to evaluate the effects of the disease. METHOD: In this study, gait differences between the patients with tibia vara and normal people were studied according to the data obtained from a three-dimensional (3D) motion analyzer. Various parameters, including positions, linear and angular velocities, linear and angular accelerations, total velocity, total acceleration, and path length at different angels were extracted and processed via a 3D motion analyzer. Then the results of the patient and control groups were compared to identify the differences. RESULTS: The maximum and average values as well as sample entropy were also calculated for all the mentioned parameters. Among all, only nine remarkable differences between these two groups were observed. The results revealed that the great difference between the patients with tibia vara compared to the normal ones in gait cycle lies on the abnormal movement of fibula bone and less irregularities along the z-axis. CONCLUSIONS: These findings may have implications not only for understanding the differences between the tibia vara in the healthy and diseased individuals, but also for providing a practical understanding for the medical and orthopedic experts to propose a better treatment method.

  14. Use of micro-CT-based finite element analysis to accurately quantify peri-implant bone strains: a validation in rat tibiae.

    PubMed

    Torcasio, Antonia; Zhang, Xiaolei; Van Oosterwyck, Hans; Duyck, Joke; van Lenthe, G Harry

    2012-05-01

    Although research has been addressed at investigating the effect of specific loading regimes on bone response around the implant, a precise quantitative understanding of the local mechanical response close to the implant site is still lacking. This study was aimed at validating micro-CT-based finite element (μFE) models to assess tissue strains after implant placement in a rat tibia. Small implants were inserted at the medio-proximal site of 8 rat tibiae. The limbs were subjected to axial compression loading; strain close to the implant was measured by means of strain gauges. Specimen-specific μFE models were created and analyzed. For each specimen, 4 different models were created corresponding to different representations of the bone-implant interface: bone and implant were assumed fully osseointegrated (A); a low stiffness interface zone was assumed with thickness of 40 μm (B), 80 μm (C), and 160 μm (D). In all cases, measured and computational strains correlated highly (R (2) = 0.95, 0.92, 0.93, and 0.95 in A, B, C, and D, respectively). The averaged calculated strains were 1.69, 1.34, and 1.15 times higher than the measured strains for A, B, and C, respectively, and lower than the experimental strains for D (factor = 0.91). In conclusion, we demonstrated that specimen-specific FE analyses provide accurate estimates of peri-implant bone strains in the rat tibia loading model. Further investigations of the bone-implant interface are needed to quantify implant osseointegration.

  15. Character, Incidence, and Predictors of Knee Pain and Activity After Infrapatellar Intramedullary Nailing of an Isolated Tibia Fracture.

    PubMed

    Obremskey, William; Agel, Julie; Archer, Kristin; To, Philip; Tornetta, Paul

    2016-03-01

    To study the activity and incidence of knee pain after sustaining an isolated tibia fracture treated with an infrapatellar intramedullary nail at 1 year. Retrospective review of prospective cohort. Multicenter Academic and Community hospitals. Four hundred thirty-seven patients with an isolated tibia fracture completed a 12-month assessment on pain and self-reported activity. Infrapatellar intramedullary nail. Demographic information, comorbid conditions, injury characteristics, and surgical technique were recorded. Knee pain was defined on a 1-7 scale with 1 being "no pain" and 7 being a "very great deal of pain." Knee pain >4 was considered clinically significant. Patients reported if they were "able," "able with difficulty," or "unable" to perform the following activities: kneel, run, climb stairs, and walk prolonged. Variables were tested in multilevel multivariable regression analyses. In knee pain, 11% of patients reported a "good deal" to a "very great deal" of pain (>4), and 52% of patients reported "no" or "very little" pain at 12 months. In activity at 12 months, 26% and 29% of patients were unable to kneel or run, respectively, and 31% and 35% of patients, respectively, stated they were able with difficulty or unable to use stairs or walk. Clinically significant knee pain (>4/7) was present in 11% of patients 1 year after a tibia fracture. Of note, 31%-71% of patients had difficulty performing or were unable to perform routine daily activities of kneeling, running, and stair climbing, or walking prolonged distances. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  16. Effect of tibial plateau leveling on stability of the canine cranial cruciate-deficient stifle joint: an in vitro study.

    PubMed

    Reif, Ullrich; Hulse, Donald A; Hauptman, Joe G

    2002-01-01

    To evaluate the effect of tibial plateau leveling on joint motion in canine stifle joints in which the cranial cruciate ligament (CCL) had been severed. In vitro cadaver study. Six canine cadaver hind legs. Radiographs of the stifle joints were made to evaluate the tibial plateau angle with respect to the long axis of the tibia. The specimens were mounted in a custom-made testing device to measure cranio-caudal translation of the tibia with respect to the femur. An axial load was applied to the tibia, and its position was recorded in the normal stifle, after transection of the CCL, and after tibial plateau leveling. Further, the amount of caudal tibial thrust was measured in the tibial plateau leveled specimen while series of eight linearly increasing axial tibial loads were applied. Transection of the CCL resulted in cranial tibial translation when axial tibial load was applied. After tibial plateau leveling, axial loading resulted in caudal translation of the tibia. Increasing axial tibial load caused a linear increase in caudal tibial thrust in all tibial plateau-leveled specimens. After tibial plateau leveling, axial tibial load generates caudal tibial thrust, which increases if additional axial load is applied. Tibial plateau leveling osteotomy may prevent cranial translation during weight bearing in dogs with CCL rupture by converting axial load into caudal tibial thrust. The amount of caudal tibial thrust seems to be proportional to the amount of weight bearing. Copyright 2002 by The American College of Veterinary Surgeons

  17. Densitometric and biochemical values of broiler tibias at different ages.

    PubMed

    Barreiro, F R; Sagula, A L; Junqueira, O M; Pereira, G T; Baraldi-Artoni, S M

    2009-12-01

    The objective of this experiment was to determine the normal values of bone radiographic density (BRD) by using the optical densitometry in radiographic images and the biochemical values represented by serum calcium, ash percentage, and minerals (calcium, phosphorus, and magnesium) from tibia ash of Cobb broilers at 8, 22, and 43 d of age. A total of 14 broilers were used for densitometric analysis, and 15 were used for biochemical dosages. The BRD values increased (P < 0.05) with age and in all tibia regions (proximal epiphysis, diaphysis, and distal epiphysis), concluding that growth was a determinative factor for bone performance, demanding a higher BRD during broiler development. Tibia proximal epiphysis presented higher BRD values in relation to the other bone regions (P < 0.05), as a result of a possible biomechanical adaptation to ligaments and tension of the muscle tendons at this region, allowing the support of the muscle mass increase. The serum calcium values were kept constant, as a result of the appropriate nutritional levels of the diet that supported the animal homeostasis. The bone ash and mineral percentage increased (P < 0.05) at 22 d of age, due to the higher mineral requirement in this age. The correlation between bone densitometry and the invasive techniques showed that the bone densitometry can substitute the determination of mineral percentage in the ash. This experiment presented normal values of the noninvasive and invasive methods more used in aviculture, allowing us to compare, subsequently, pathological and physiological values or results of broilers fed with different diets.

  18. The estimation of the rates of lead exchange between body compartments of smelter employees.

    PubMed

    Behinaein, Sepideh; Chettle, David R; Egden, Lesley M; McNeill, Fiona E; Norman, Geoff; Richard, Norbert; Stever, Susan

    2014-07-01

    The overwhelming proportion of the mass of lead (Pb) is stored in bone and the residence time of Pb in bone is much longer than that in other tissues. Hence, in a metabolic model that we used to solve the differential equations governing the transfer of lead between body compartments, three main compartments are involved: blood (as a transfer compartment), cortical bone (tibia), and trabecular bone (calcaneus). There is a bidirectional connection between blood and the other two compartments. A grid search chi-squared minimization method was used to estimate the initial values of lead transfer rate values from tibia (λTB) and calcaneus (λCB) to blood of 209 smelter employees whose bone lead measurements are available from 1994, 1999, and 2008, and their blood lead level from 1967 onwards (depending on exposure history from once per month to once per year), and then the initial values of kinematic parameters were used to develop multivariate models in order to express λTB and λCB as a function of employment time, age, body lead contents and their interaction. We observed a significant decrease in the transfer rate of lead from bone to blood with increasing body lead contents. The model was tested by calculating the bone lead concentration in 1999 and 2008, and by comparing those values with the measured ones. A good agreement was found between the calculated and measured tibia/calcaneus lead values. Also, we found that the transfer rate of lead from tibia to blood can be expressed solely as a function of cumulative blood lead index.

  19. Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents.

    PubMed

    Wang, Diya; Zhong, Hui; Zhai, Yu; Hu, Hong; Jin, Bowen; Wan, Mingxi

    2016-02-01

    The aim of this study was to elucidate the linear and non-linear responses of ultrasound contrast agent (UCA) to frequency-dispersive guided waves from the tibia cortex, particularly two individual modes, S0 (1.23 MHz) and A1 (2.06 MHz). The UCA responses to guided waves were illustrated through the Marmottant model derived from measured guided waves, and then verified by continuous infusion experiments in a vessel-tibia flow phantom. These UCA responses were further evaluated by the enhanced ratio of peak values and the resolutions of UCA backscattered echoes. Because of the individual modes S0 and A1 in the tibia, the peak values of the UCA backscattered echoes were enhanced by 83.57 ± 7.35% (p < 0.05) and 80.77 ± 6.60% (p < 0.01) in the UCA subharmonic frequency and subharmonic imaging, respectively. However, corresponding resolutions were 0.78 ± 0.07 (p < 0.05) and 0.72 ± 0.12 (p < 0.01) times those without guided wave disturbances, respectively. Even though the resolution was partly degenerated, the subharmonic detection sensitivity of UCA was improved by the guided waves. Thus, UCA responses to the double-frequency guided waves should be further explored to benefit the detection of capillary perfusion in tissue layers near the bone cortex, particularly for perfusion imaging in the free flaps and skeletal muscles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Bone-to-bone Fixation Enhances Functional Healing of the Porcine Anterior Cruciate Ligament Using a Collagen-Platelet Composite

    PubMed Central

    Murray, Martha M.; Magarian, Elise; Zurakowski, David; Fleming, Braden C.

    2010-01-01

    Purpose The purpose of this study was to determine if providing bony stabilization between the tibia and femur would improve the structural properties of an “enhanced” ACL repair using a collagen-platelet composite when compared to the traditional (Marshall) suture technique. Methods Twelve pigs underwent unilateral ACL transection and were treated with sutures connecting the bony femoral ACL attachment site to the distal ACL stump (LIGAMENT group), or to the tibia via a bone tunnel (TIBIA group). A collagen-platelet composite was placed around the sutures to enhance the biologic repair in both groups. Anteroposterior (AP) knee laxity and the graft structural properties were measured after 15 weeks of healing in both the ACL-repaired and contralateral ACL-intact joints. Results Enhanced ACL repair with bone-to-bone fixation significantly improved yield load and linear stiffness of the ACL repairs (p<0.05) after 15 weeks of healing. However, laxity values of the knees were similar in both groups of repaired knees (p>0.10). Conclusions Using an enhanced ACL suture repair technique that includes bone-to-bone fixation to protect the repair in the initial healing stages resulted in an ACL with improved structural properties after 15 weeks in the porcine model. Clinical Relevance The healing response of an ACL suture repair using a collagen-platelet composite can be enhanced by providing bony stabilization between the tibia and femur to protect the graft during the initial healing process in a translational model. PMID:20810092

  1. Risk of injury to the sural nerve during posterolateral approach to the distal tibia: An ultrasound simulation study.

    PubMed

    Mizia, Ewa; Pękala, Przemysław A; Chomicki-Bindas, Piotr; Marchewka, Wojciech; Loukas, Marios; Zayachkowski, Alexander G; Tomaszewski, Krzysztof A

    2018-05-08

    Introduction When surgeons operate on the foot and ankle, the most common complication that may arise is injury of the cutaneous nerves. The sural nerve (SN) is potentially at risk of being injured when treating fractures involving the distal tibia using the posterolateral approach. The aim of this study was to evaluate how differences in length and position of the surgical treatment of fractures involving the distal tibia can affect the risk of SN injury. Materials and Methods The study involved 40 healthy volunteers (n=80 lower limbs). Ultrasound simulation of each potential surgical incision site was used to locate the SN and to assess the risk of injury. Results The study showed that the SN predominantly travels more posteriorly at levels more proximal from the tip of the lateral malleolus. At these more proximal points of the SN's course, it was proven that there was an overall increased incidence of iatrogenic injury to the SN in incisions made closer to the Achilles tendon. Based on these results, a quasi 3 dimensional figure was created showing the anatomical structures of this region to identify areas at high risk for SN injury. Conclusions By revealing how length and position of the surgical incision can influence the risk of SN injury, we hope to provide information to surgeons on the optimal technique to avoid iatrogenic SN injury while operating on the distal tibia via a posterolateral approach. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  2. Character, Incidence, and Predictors of Knee Pain and Activity after Infrapatellar Intramedullary Nailing of an Isolated Tibia Fracture

    PubMed Central

    Obremskey, William; Agel, Julie; Archer, Kristin; To, Philip; Tornetta, Paul

    2015-01-01

    Objective To study the activity and incidence of knee pain after sustaining a isolated tibia fracture treated with an infrapatellar intramedullary nail at one year. Design Retrospective review of prospective cohort Setting Multicenter Academic and Community hospitals Patients 437 patients with an isolated tibia fracture completed a 12 month assessment on pain and self-reported activity. Intervention Infrapatellar Intramedullary Nail Outcomes Demographic information co-morbid conditions, injury characteristics, and surgical technique were recorded. Knee pain was defined on a 1-7 scale with 1 being “no pain” and 7 being a “very great deal of pain.” Knee pain > 4 was considered clinically significant. Patients reported if they were “able”, “able with difficulty” or “unable” to perform the following activities: kneel, run, climb stairs, and walk prolonged. Variables were tested in multilevel multivariable regression analyses. Results Knee Pain: 11% percent of patients reported a “good deal” to a “very great deal” of pain (> 4). 52% of patients reported “no” or “very little” pain at 12 months. Activity at 12 months: 26% and 29% of patients were unable to kneel or run, respectively. 31% and 35% of patients respectively stated they were able with difficulty or unable to use stairs or walk. Conclusion Clinically significant knee pain (>4/7) was present in 11% of patients one year after a tibia fracture. 31%-71% of patients had difficulty performing or were unable to perform routine daily activities of kneeling, running, and stair climbing or walking prolonged distances. PMID:26496180

  3. Peri-implant bone formation and surface characteristics of rough surface zirconia implants manufactured by powder injection molding technique in rabbit tibiae.

    PubMed

    Park, Young-Seok; Chung, Shin-Hye; Shon, Won-Jun

    2013-05-01

    To evaluate osseointegration in rabbit tibiae and to investigate surface characteristics of novel zirconia implants made by powder injection molding (PIM) technique, using molds with and without roughened inner surfaces. A total of 20 rabbits received three types of external hex implants with identical geometry on the tibiae: machined titanium implants, PIM zirconia implants without mold etching, and PIM zirconia implants with mold etching. Surface characteristics of the three types of implant were evaluated. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined titanium implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined titanium implants (P < 0.001). The PIM zirconia implants using roughened mold showed significantly higher removal torque values than PIM zirconia implants without using roughened mold (P < 0.001). It is concluded that the osseointegration of PIM zirconia implant is promising and PIM using roughened mold etching technique can produce substantially rough surfaces on zirconia implants. © 2012 John Wiley & Sons A/S.

  4. A new enigmatic Late Miocene mylodontoid sloth from northern South America

    PubMed Central

    Rincón, Ascanio D.; McDonald, H. Gregory; Solórzano, Andrés; Flores, Mónica Núñez; Ruiz-Ramoni, Damián

    2015-01-01

    A new genus and species of sloth (Eionaletherium tanycnemius gen. et sp. nov.) recently collected from the Late Miocene Urumaco Formation, Venezuela (northern South America) is herein described based on a partial skeleton including associated femora and tibiae. In order to make a preliminary analysis of the phylogenetic affinities of this new sloth we performed a discriminate analysis based on several characters of the femur and tibia of selected Mylodontoidea and Megatherioidea sloths. The consensus tree produced indicates that the new sloth, E. tanycnemius, is a member of the Mylodontoidea. Surprisingly, the new taxon shows some enigmatic features among Neogene mylodontoid sloths, e.g. femur with a robust lesser trochanter that projects medially and the straight distinctly elongated tibia. The discovery of E. tanycnemius increases the diversity of sloths present in the Urumaco sequence to ten taxa. This taxon supports previous studies of the sloth assemblage from the Urumaco sequence as it further indicates that there are several sloth lineages present that are unknown from the better sampled areas of southern South America. PMID:26064594

  5. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  6. Effects of chair restraint on the strength of the tibia in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Hutchinson, T. M.; Bakulin, A. V.; Rakhmanov, A. S.; Martin, R. B.; Steele, C. R.; Arnaud, S. B.

    2001-01-01

    To determine the effects of the relative inactivity and unloading on the strength of the tibias of monkeys, Macaca mulatta, we used a non-invasive test to measure bending stiffness, or EI (Nm2), a mechanical property. The technique was validated by comparisons of in vivo measurements with standard measures of EI in the same bones post-mortem (r2 = 0.95, P < 0.0001). Inter-test precision was 4.28+/-1.4%. Normative data in 24 monkeys, 3.0+/-0.7 years and 3.6+/-0.6 kg, revealed EI to be 16% higher in the right than left tibia (4.4+/-1.6 vs. 3.7+/-1.6 Nm2, P < 0.05). Five monkeys, restrained in chairs for 14 days, showed decreases in EI. There were no changes in EI in two chaired monkeys that lost weight during a 2-week space flight. The factors that account for both the decreases in bone mechanical properties after chair restraint at 1 g and lack of change after microgravity remain to be identified. Metabolic factors associated with body weight changes are suggested by our results.

  7. Blast effect on the lower extremities and its mitigation: a computational study.

    PubMed

    Dong, Liqiang; Zhu, Feng; Jin, Xin; Suresh, Mahi; Jiang, Binhui; Sevagan, Gopinath; Cai, Yun; Li, Guangyao; Yang, King H

    2013-12-01

    A series of computational studies were performed to investigate the response of the lower extremities of mounted soldiers under landmine detonation. A numerical human body model newly developed at Wayne State University was used to simulate two types of experimental studies and the model predictions were validated against test data in terms of the tibia axial force as well as bone fracture pattern. Based on the validated model, the minimum axial force causing tibia facture was found. Then a series of parametric studies was conducted to determine the critical velocity (peak velocity of the floor plate) causing tibia fracture at different upper/lower leg angles. In addition, to limit the load transmission through the vehicular floor, two types of energy absorbing materials, namely IMPAXX(®) foam and aluminum alloy honeycomb, were selected for floor matting. Their performances in terms of blast effect mitigation were compared using the validated numerical model, and it has been found that honeycomb is a more efficient material for blast injury prevention under the loading conditions studied. © 2013 Elsevier Ltd. All rights reserved.

  8. Tibial changes in experimental disuse osteoporosis in the monkey

    NASA Technical Reports Server (NTRS)

    Young, D. R.; Niklowitz, W. J.; Steele, C. R.

    1983-01-01

    The mechanical properties and structural changes in the monkey tibia with disuse osteoporosis and during subsequent recovery are investigated. Bone mending stiffness is evaluated in relation to microscopic changes in cortical bone and Norland bone mineral analysis. Restraint in the semireclined position is found to produce regional losses of bone most obviously in the anterior-proximal tibiae. After six months of restraint, the greatest losses of bone mineral in the proximal tibiae range from 23 percent to 31 percent; the largest changes in bone stiffness range from 36 percent to 40 percent. Approximately eight and one-half months of recovery are required to restore the normal bending properties. Even after 15 months of recovery, however, the bone mineral content does not necessarily return to normal levels. Histologically, resorption cavities in cortical bone are seen within one month of restraint; by two and one-half months of restraint there are large resorption cavities subperiosteally, endosteally, and intracortically. After 15 months of recovery, the cortex consists mainly of first-generation haversian systems. After 40 months, the cortex appears normal, with numerous secondary and tertiary generations of haversian systems.

  9. Gentamicin-loaded borate bioactive glass eradicates osteomyelitis due to Escherichia coli in a rabbit model.

    PubMed

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang; Zhang, Changqing

    2013-07-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli.

  10. Gentamicin-Loaded Borate Bioactive Glass Eradicates Osteomyelitis Due to Escherichia coli in a Rabbit Model

    PubMed Central

    Xie, Zongping; Cui, Xu; Zhao, Cunju; Huang, Wenhai; Wang, Jianqiang

    2013-01-01

    The treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillus Escherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluated in vitro and in vivo for the treatment of osteomyelitis induced by Escherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli. PMID:23629702

  11. Method for fusing bone

    DOEpatents

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  12. Bone optical spectroscopy for the measurement of hemoglobin content

    NASA Astrophysics Data System (ADS)

    Hollmann, Joseph L.; Arambel, Paula; Piet, Judith; Shefelbine, Sandra; Markovic, Stacey; Niedre, Mark; DiMarzio, Charles A.

    2014-05-01

    Osteoporosis is a common side effect of spinal cord injuries. Blood perfusion in the bone provides an indication of bone health and may help to evaluate therapies addressing bone loss. Current methods for measuring blood perfusion of bone use dyes and ionizing radiation, and yield qualitative results. We present a device capable of measuring blood oxygenation in the tibia. The device illuminates the skin directly over the tibia with a white light source and measures the diffusely reflected light in the near infrared spectrum. Multiple source-detector distances are utilized so that the blood perfusion in skin and bone may be differentiated.

  13. Properties of shoe insert materials related to shock wave transmission during gait.

    PubMed

    Forner, A; García, A C; Alcántara, E; Ramiro, J; Hoyos, J V; Vera, P

    1995-12-01

    The influence of the mechanical characteristics of certain insole materials in the generation and transmission of heel strike impacts while walking was studied. Three insole materials were selected according to their mechanical characteristics under heel strike impacts. The selection of materials has made it possible to distinguish the effect of rigidity and loss tangent in the transmission of heel strike impacts. A lower rigidity and a high loss tangent have been shown to reduce the transmission of impacts to the tibia. A low rigidity was seen to significantly increase the transmission of impacts from tibia to forehead.

  14. Major surgery in an osteosarcoma patient refusing blood transfusion: case report.

    PubMed

    Dhanoa, Amreeta; Singh, Vivek A; Shanmugam, Rukmanikanthan; Rajendram, Raja

    2010-11-08

    We describe an unusual case of osteosarcoma in a Jehovah's Witness patient who underwent chemotherapy and major surgery without the need for blood transfusion. This 16-year-old girl presented with osteosarcoma of the right proximal tibia requiring proximal tibia resection, followed by endoprosthesis replacement. She was successfully treated with neoadjuvant chemotherapy and surgery with the support of haematinics, granulocyte colony-stimulating factor, recombinant erythropoietin and intraoperative normovolaemic haemodilution. This case illustrates the importance of maintaining effective, open communication and exploring acceptable therapeutic alternative in the management of these patients, whilst still respecting their beliefs.

  15. AGUA TIBIA PRIMITIVE AREA, CALIFORNIA.

    USGS Publications Warehouse

    Irwin, William P.; Thurber, Horace K.

    1984-01-01

    The Agua Tibia Primitive Area in southwestern California is underlain by igneous and metamorphic rocks that are siilar to those widely exposed throughout much of the Peninsular Ranges. To detect the presence of any concealed mineral deposits, samples of stream sediments were collected along the various creeks that head in the mountain. As an additional aid in evaluating the mineral potential, an aeromagnetic survey was made and interpreted. A search for records of past or existing mining claims within the primitive area was made but none was found. Evidence of deposits of metallic or nonmetallic minerals was not seen during the study.

  16. Medial tibial pain. A prospective study of its cause among military recruits.

    PubMed

    Milgrom, C; Giladi, M; Stein, M; Kashtan, H; Margulies, J; Chisin, R; Steinberg, R; Swissa, A; Aharonson, Z

    1986-12-01

    In a prospective study of 295 infantry recruits during 14 weeks of basic training, 41% had medial tibial pain. Routine scintigraphic evaluation in cases of medial tibial bone pain showed that 63% had abnormalities. A stress fracture was found in 46%. Only two patients had periostitis. None had ischemic medial compartment syndrome. Physical examination could not differentiate between cases with medial tibial bone pain secondary to stress fractures and those with scintigraphically normal tibias. When both pain and swelling were localized in the middle one-third of the tibia, the lesion most likely proved to be a stress fracture.

  17. Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171V High Bone Mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it

    PubMed Central

    Saxon, Leanne K.; Jackson, Brendan F.; Sugiyama, Toshihiro; Lanyon, Lance E.; Price, Joanna S.

    2011-01-01

    Introduction To investigate the role of the low-density lipoprotein receptor-related protein 5 (Lrp5) in bones' responses to loading, we analysed changes in multiple measures of bone architecture in tibias subjected to loading or disuse in male and female mice with the Lrp5 loss of function mutation (Lrp5−/−) or heterozygous for the Lrp5 G171V High Bone Mass (HBM) mutation (Lrp5HBM+). Materials and methods The right tibias of these 17 week old male and female mice and their Wild Type (WT) littermates were subjected to short periods of loading three days a week for two weeks. Each tibia was loaded for 40 cycles, to produce peak strains at the midshaft within the low, medium or high physiological range (~ 1500, 2400 and 3000 microstrain, respectively). In similar groups of mice the right sciatic nerve was severed causing disuse of the right tibia for 3 weeks. Data from microCT of loaded, neurectomised and contra-lateral control tibias were analysed to quantify changes in the cortical and cancellous regions of the bone in the absence of functional strains and in response to graded strains in addition to those derived from function. Results and conclusion Male WT+/+ controls showed significant strain:response curves for cortical area and trabecular thickness, but Lrp5−/− mice showed no detectable strain:response in those same outcomes. Female mice of either WT+/+ or Lrp5−/− genotype did not show significant strain:response curves for cortical or trabecular parameters, the one exception being Tb.Th in Lrp5−/− mice. Since female WT+/+ mice did not respond to loading in a significant dose:responsive manner, the similar lack of responsiveness of the Lrp5−/− females could not be ascribed to their Lrp5 status. Cortical bone loss associated with disuse showed no differences between Lrp5−/− mice and WT+/+ controls, but in cancellous bone of both male and females of these mice, there was a greater loss than in WT+/+ controls. In contrast, the tibias of male and female mice heterozygous for the Lrp5 G171V HBM mutation showed greater osteogenic responsiveness to loading and less bone loss associated with disuse than their WTHBM− controls. These data indicate that the presence of the Lrp5 G171V HBM mutation is associated with an increased osteogenic response to loading but support only a marginal gender-related role for normal Lrp5 function in this loading-related response. PMID:21419885

  18. Angle and Base of Gait Long Leg Axial and Intraoperative Simulated Weightbearing Long Leg Axial Imaging to Capture True Frontal Plane Tibia to Calcaneus Alignment in Valgus and Varus Deformities of the Rearfoot and Ankle.

    PubMed

    Boffeli, Troy J; Waverly, Brett J

    2016-01-01

    The long leg axial view is primarily used to evaluate the frontal plane alignment of the calcaneus in relation to the long axis of the tibia when standing. This view allows both angular measurement and assessment for the apex of varus and valgus deformity of the rearfoot and ankle with clinical utility in the preoperative, intraoperative, and postoperative settings. The frontal plane alignment of the calcaneus to the long axis of the tibia is rarely fixed in the varus or valgus position because of the inherent flexibility of the foot and ankle, which makes patient positioning critical to obtain accurate and reproducible images. Inconsistent patient positioning and imaging techniques are commonly encountered with the long leg axial view for a variety of reasons, including the lack of a standardized or validated protocol. This angle and base of gait imaging protocol involves positioning the patient to align the tibia with the long axis of the foot, which is represented by the second metatarsal. Non-weightbearing long leg axial imaging is commonly performed intraoperatively, which requires a modified patient positioning technique to capture simulated weightbearing long leg axial images. A case series is presented to demonstrate our angle and base of gait long leg axial and intraoperative simulated weightbearing long leg axial imaging protocols that can be applied throughout all phases of patient care for various foot and ankle conditions. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity.

    PubMed

    Vilayphiou, Nicolas; Boutroy, Stephanie; Sornay-Rendu, Elisabeth; Van Rietbergen, Bert; Chapurlat, Roland

    2016-02-01

    The high resolution peripheral computed tomography (HR-pQCT) technique has seen recent developments with regard to the assessment of cortical porosity. In this study, we investigated the role of cortical porosity on bone strength in a large cohort of women. The distal radius and distal tibia were scanned by HR-pQCT. We assessed bone strength by estimating the failure load by microfinite element analysis (μFEA), with isotropic and homogeneous material properties. We built a multivariate model to predict it, using a few microarchitecture variables including cortical porosity. Among 857 Caucasian women analyzed with μFEA, we found that cortical and trabecular properties, along with the failure load, impaired slightly with advancing age in premenopausal women, the correlations with age being modest, with |rage| ranging from 0.14 to 0.38. After the onset of the menopause, those relationships with age were stronger for most parameters at both sites, with |rage| ranging from 0.10 to 0.64, notably for cortical porosity and failure load, which were markedly deteriorated with increasing age. Our multivariate model using microarchitecture parameters revealed that cortical porosity played a significant role in bone strength prediction, with semipartial r(2)=0.22 only at the tibia in postmenopausal women. In conclusion, in our large cohort of women, we observed a small decline of bone strength at the tibia before the onset of menopause. We also found an age-related increase of cortical porosity at both scanned sites in premenopausal women. In postmenopausal women, the relatively high increase of cortical porosity accounted for the decline in bone strength only at the tibia. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Prediction of bone strength at the distal tibia by HR-pQCT and DXA.

    PubMed

    Popp, Albrecht W; Windolf, Markus; Senn, Christoph; Tami, Andrea; Richards, R Geoff; Brianza, Stefano; Schiuma, Damiano

    2012-01-01

    Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength. Anatomical tibiae were examined ex vivo by DXA (aBMD) and HR-pQCT (volumetric BMD (vBMD) and bone microstructural parameters). Cortical thickness (CTh) and polar moment of inertia (pMOI) were derived from DXA measurements. Finally, an index combining material (BMD) and mechanical property (polar moment of inertia, pMOI) was defined and analyzed for correlation with torque at failure and stiffness values obtained by biomechanical testing. Areal BMD predicted the vBMD at T-EPI and T-DIA. A high correlation was found between aBMD and microstructural parameters at T-EPIas well as between aBMD and CTh at T-DIA. Finally, at T-DIA both indexes combining BMD and pMOI were strongly and comparably correlated with torque at failure and bone stiffness. Ex vivo, at the distal tibial diaphysis, a novel index combining BMD and pMOI, which can be calculated directly from a single DXA measurement, predicted bone strength and stiffness better than either parameter alone and with an order of magnitude comparable to that of HR-pQCT. Whether this index is suitable for better prediction of fracture risk in vivo deserves further investigation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Bisphosphonate-ciprofloxacin bound to Skelite is a prototype for enhancing experimental local antibiotic delivery to injured bone.

    PubMed

    Buxton, T B; Walsh, D S; Harvey, S B; McPherson, J C; Hartmann, J F; Plowman, K M

    2004-09-01

    The risk of osteomyelitis after open bone fracture may be reduced by locally applied antibiotics. ENC-41-HP (E41), which comprises ciprofloxacin linked to a 'bone seeking' bisphosphonate, loaded on to carrier Skelite calcium phosphate granules (E41-Skelite) has favourable in vitro characteristics for application to wounded bone. This study assessed E41-Skelite in a rat model of acute tibial osteomyelitis. Mechanically induced tibial troughs were contaminated with approximately log10 4 colony forming units (c.f.u.) of Staphylococcus aureus (Cowan 1 strain) 'resistant' to E41 (minimum inhibitory concentration 8-16 microg/ml), lavaged and packed with Skelite alone, or with E41-Skelite slurry. Animals were killed at 24 h (n = 62), 72 h (n = 46) or 14 days (n = 12), and each tibia was assessed for S. aureus load (c.f.u./g tibia) and histological appearance (14 days only). At 24 and 72 h, the tibias of rats treated with E41-Skelite (n = 54) had a significantly lower mean (s.e.m.) load of S. aureus than animals that received Skelite alone (n = 54): log10 3.6(0.2) versus 6.4(0.1) c.f.u./g respectively at 24 h (P < 0.001, Mann-Whitney rank sum test) and log10 4.4(0.2) versus 6.6(0.1) c.f.u./g at 72 h (P < 0.001). At 14 days, E41-Skelite-treated tibias had fewer bacteria, no signs of osteomyelitis and histological signs of healing. E41-Skelite, a prototype granulated topical antibiotic delivery system, reduced the development of infection in experimental bone wounds. Copyright 2004 British Journal of Surgery Society Ltd.

  2. Sagittal plane kinematics of passive dorsiflexion of the foot in adolescent athletes.

    PubMed

    Gatt, Alfred; Chockalingam, Nachiappan; Falzon, Owen

    2013-01-01

    Although assessment of passive maximum foot dorsiflexion angle is performed routinely, there is a paucity of information regarding adolescents' foot and foot segment motion during this procedure. There are currently no trials investigating the kinematics of the adolescent foot during passive foot dorsiflexion. A six-camera optoelectronic motion capture system was used to collect kinematic data using the Oxford Foot Model. Eight female amateur gymnasts 11 to 16 years old (mean age, 13.2 years; mean height, 1.5 m) participated in the study. A dorsiflexing force was applied to the forefoot until reaching maximum resistance with the foot placed in the neutral, pronated, and supinated positions in random order. The maximum foot dorsiflexion angle and the range of movement of the forefoot to hindfoot, tibia to forefoot, and tibia to hindfoot angles were computed. Mean ± SD maximum foot dorsiflexion angles were 36.3° ± 7.2° for pronated, 36.9° ± 4.0° for neutral, and 33.0° ± 4.9° for supinated postures. One-way repeated-measures analysis of variance results were nonsignificant among the 3 groups (P = .70), as were the forefoot to tibia angle and hindfoot to tibia angle variations (P = .091 and P = .188, respectively). Forefoot to hindfoot angle increased with the application of force, indicating that in adolescents, the forefoot does not lock at any particular posture as portrayed by the traditional Rootian paradigm. Participants had very flexible foot dorsiflexion, unlike those in another study assessing adolescent athletes. This finding, together with nonsignificant statistical results, implies that foot dorsiflexion measurement may be performed at any foot posture without notably affecting results.

  3. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running.

    PubMed

    Giandolini, Marlene; Horvais, Nicolas; Rossi, Jérémy; Millet, Guillaume Y; Samozino, Pierre; Morin, Jean-Benoît

    2016-06-14

    Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR). Twenty-three trail runners performed a 6.5-km DTR (1264m of negative elevation change) as fast as possible. Four tri-axial accelerometers were attached to the heel, metatarsals, tibia and sacrum. Accelerations were continuously recorded at 1344Hz and analyzed over six sections (~400 steps per subject). Heel and metatarsal accelerations were used to identify the FSP. Axial, transverse and resultant peak accelerations, median frequencies and shock attenuation within the impact-related frequency range (12-20Hz) were assessed between tibia and sacrum. Multiple linear regressions showed that anterior (i.e. forefoot) FSPs were associated with higher peak axial acceleration and median frequency at the tibia, lower transverse median frequencies at the tibia and sacrum, and lower transverse peak acceleration at the sacrum. For resultant acceleration, higher tibial median frequency but lower sacral peak acceleration were reported with forefoot striking. FSP therefore differently affects the components of impact shock acceleration. Although a forefoot strike reduces impact severity and impact frequency content along the transverse axis, a rearfoot strike decreases them in the axial direction. Globally, the attenuation of axial and resultant impact-related vibrations was improved using anterior FSPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia.

    PubMed

    Iwaniec, Urszula T; Turner, Russell T

    2013-03-01

    A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kit(W/W-v)) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to the development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kit(W/W-v) mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kit(W/W-v) mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kit(W/W-v) mice. However, ovx in WT and kit(W/W-v) mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Unblinded randomized control trial on prophylactic antibiotic use in gustilo II open tibia fractures at Kenyatta National Hospital, Kenya.

    PubMed

    Ondari, Joshua Nyaribari; Masika, Moses Muia; Ombachi, Richard Bwana; Ating'a, John Ernest

    2016-10-01

    To determine the difference in infection rate between 24h versus five days of prophylactic antibiotic use in management of Gustilo II open tibia fractures. Unblinded randomized control trial. Accident and Emergency, orthopedic wards and outpatient clinics at Kenyatta National Hospital (KNH). The study involved patients aged 18-80 years admitted through accident and emergency department with Gustilo II traumatic open tibia fractures. Patients were randomized into either 24hour or five day group and antibiotics started for 24hours or five days after surgical debridement. The wounds were exposed and scored using ASEPSIS wound scoring system for infection after 48h, 5days and at 14days. The main outcomes of interest were presence of infection at days 2, 5 and 14 and effect of duration to antibiotic administration on infection rate. There was no significant difference in infection rates between 24-hour and 5-day groups with infection rates of 23% (9/40) vs. 19% (7/37) respectively (p=0.699). The infection rate was significantly associated with time lapsed before administration of antibiotics (p=0.004). In the use of prophylactic antibiotics for the management of Gustilo II traumatic open tibia fractures, there is no difference in infection rate between 24hours and five days regimen but time to antibiotic administration correlates with infection rate. Antibiotic use for 24hours only has proven adequate prophylaxis against infection. This is underlined in our study which we hope shall inform practice in our setting. A larger, more appropriately controlled study would be useful. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Morphological differences among egg nests and adult individuals of Cicadatra persica (Hemiptera, Cicadidae), distributed in Erneh, Syria

    PubMed Central

    Dardar, Marah A.; Belal, Hamzeh MR.

    2013-01-01

    Abstract The aim of this study is determining the different patterns of egg nests and the morphological differences between the specimens of Cicadatra persica Kirkalidy, 1909 (Hemiptera: Cicadidae) distributed in fruit orchards in Erneh located on AL-Sheikh mountain south west of Syria. The appearance of 80 egg nests was studied, and the results showed that there were two basic patterns of egg nests laid by Cicadatra persica, 90% of the egg nests were of the first pattern (consists of several adjacent slits), while 10% of them were of the second pattern (consists of several divergent slits). A random sample consisting of 300 specimens (150 males and 150 females) were also studied concentrating on the differences in the color of the supra-antennal plate and in the number of spurs on the tibia of the hind legs. The results showed that there were two basic patterns of individuals based on the differences in the color of supra-antennal plate. The first pattern (individuals with yellow supra-antennal plates), constituted more than 90%, and the second one (individuals with black supra-antennal plates) constituted less than 10%. The results also showed that there were 27 different patterns based on the number of spurs on the tibia of the hind legs. One of them was a common pattern (2, 3) whose individuals have 2 spurs on the upper side of the tibia of the hind legs and 3 spurs on the lateral side of the tibia of the hind legs. The total percent of this common pattern was 76%. The other 26 patterns were different from each other, and the total percent of all these different patterns was 24%. PMID:24039508

  7. The use of tibial tuberosity-trochlear groove indices based on joint size in lower limb evaluation.

    PubMed

    Ferlic, Peter Wilhelm; Runer, Armin; Dirisamer, Florian; Balcarek, Peter; Giesinger, Johannes; Biedermann, Rainer; Liebensteiner, Michael Christian

    2018-05-01

    The correlation between tibial tuberosity-trochlear groove distance (TT-TG) and joint size, taking into account several different parameters of knee joint size as well as lower limb dimensions, is evaluated in order to assess whether TT-TG indices should be used in instead of absolute TT-TG values. This study comprised a retrospective analysis of knee CT scans, including 36 cases with patellofemoral instability (PFI) and 30 controls. Besides TT-TG, five measures of knee joint size were evaluated in axial CT slices: medio-lateral femur width, antero-posterior lateral condylar height, medio-lateral width of the tibia, width of the patella and the proximal-distal joint size (TT-TE). Furthermore, the length of the femur, the tibia and the total leg length were measured in the CT scanogram. Correlation analysis of TT-TG and the other parameters was done by calculating the Spearman correlation coefficient. In the PFI group lateral condylar height (r = 0.370), tibia width (r = 0.406) and patella width (r = 0.366) showed significant moderate correlations (p < 0.03) with TT-TG. Furthermore, we found a significant correlation between TT-TG and tibia length (r = 0.371) and total leg length (r = 381). The control group showed no significant correlation between TT-TG and knee joint size or between TT-TG and measures of lower limb length. Tibial tuberosity-trochlear groove distance correlates with several parameters of knee joint size and leg length in patients with patellofemoral instability. Application of indices determining TT-TG as a ratio of joint size could be helpful in establishing the indication for medial transfer of the tibial tuberosity in patients with PFI. Level III.

  8. Effects of Radiation and a High Iron Load on Bone Mineral Density

    NASA Technical Reports Server (NTRS)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  9. The Protective Effects of Exclusive Enteral Nutrition Formulas on Growth Factor Expression and the Proximal Tibial Epiphyseal Growth Plate in a TNBS-Induced IBD Rat Model.

    PubMed

    Shi, Jieru; Huang, Zhiheng; Wang, Yuhuan; Huang, Ying

    2015-07-01

    This study aimed to evaluate the effectiveness of different types of nutritional formulas in a rat model of TNBS-induced IBD. IBD was induced with TNBS in 4-week-old rats that were then fed different exclusive enteral nutrition diets for 7 days. The length of the tibia and the number of chondrocytes in the proximal tibias were analyzed at 7 days after supplementation. Immunohistochemical analysis, ELISA and real-time PCR were performed to evaluate the levels of growth hormone receptor (GHR) and insulin-like growth factor-I receptor (IGF-IR), the growth factors IGF-I and insulin-like growth factor-binding protein-3 (IGFBP3) , bone morphogenetic protein (BMP)-2 and BMP-6 respectively. The results demonstrated that the tibia length of the peptide formula group was longer than that of the IBD-Modulen(®) formula and normal diet groups (P < 0.05). Furthermore, the number of chondrocytes of the proximal tibial was more pronounced in the peptide formula group compared to the other groups (P < 0.05). The peptide formula was also more effective in increasing the expression of GHR compared to the other groups (P < 0.05), while the expression of IGF-IR was not significantly different (P > 0.05). In addition, the IGF-I and IGFBP3 levels were more pronounced in the peptide formula supplement group (P < 0.05), and the expression of BMP-2 and BMP-6 mRNA in the proximal tibia growth plate from the peptide formula group was higher than that in the ordinary formula and normal diet groups (P < 0.05). EEN, and particularly a peptide formula, exerted protective effects on the proximal tibial epiphyseal growth plate in a TNBS-induced IBD model.

  10. Bilateral diaphyseal bone cysts of the tibia mimicking shin splints in a young professional athlete--a case report and depiction of a less-invasive surgical technique.

    PubMed

    Toepfer, Andreas; Harrasser, Norbert; Lenze, Ulrich; Liska, Franz; Mühlhofer, Heinrich; von Eisenhart-Rothe, Rüdiger; Banke, Ingo J

    2015-08-23

    Medial tibial stress syndrome is one of the most common causes of exertional leg pain in runners whereas musculoskeletal tumors and tumor-like lesions are rare encounters in orthopedic sports medicine practice. Unicameral (simple) bone cyst is a well-known tumor-like lesions of the bone typically affecting children and adolescents. Bilateral occurrence is very rare though and has never been reported before in both tibiae. Failing to accurately diagnose a tumorous lesion can entail far-reaching consequences for both patients and physicians. We report the case of large bilateral unicameral bone cysts of the diaphyseal tibiae mimicking medial tibial stress syndrome in a 17-year old professional athlete. This is the first report of symmetric tibial unicameral bone cysts in the literature. The patient complained about persisting shin splint-like symptoms over 5 months despite comprehensive conservative treatment before MRI revealed extensive osteolytic bone lesions in both diaphyseal tibiae. The patient-tailored, less-invasive surgical procedure, allowing the patient to return to his competitive sports level symptom-free 3 months after surgery and to eventually qualify for this years Biathlon Junior World Championships, is outlined briefly. Pathogenesis and various treatment options for this entity will be discussed. This report will help to raise awareness for musculoskeletal tumors as differential diagnosis for therapy-refractory symptoms in young athletes and encourage medical staff involved in sports medicine and athlete support to perform early high quality imaging and initiate sufficient surgical treatment in similar cases. Moreover, our less-invasive surgical procedure aiming for a fast return to sports might be an optimal compromise between traditional open curettage with low risk of recurrence and a soft tissue-saving and bone-sparing minimal-invasive technique.

  11. Quantifying Leisure Physical Activity and Its Relation to Bone Density and Strength

    PubMed Central

    SHEDD, KRISTINE M.; HANSON, KATHY B.; ALEKEL, D. LEE; SCHIFERL, DANIEL J.; HANSON, LAURA N.; VAN LOAN, MARTA D.

    2010-01-01

    Purpose Compare three published methods of quantifying physical activity (total activity, peak strain, and bone-loading exposure (BLE) scores) and identify their associations with areal bone mineral density (aBMD), volumetric BMD (vBMD), and bone strength. Methods Postmenopausal women (N = 239; mean age: 53.8 yr) from Iowa (ISU) and California (UCD) completed the Paffenbarger Physical Activity Questionnaire, which was scored with each method. Dual energy x-ray absorptiometry assessed aBMD at the spine, hip, and femoral neck, and peripheral quantitative computed tomography (pQCT) measured vBMD and bone strength properties at the distal tibia and midshaft femur. Results UCD women had higher total activity scores and hours per week of leisure activity. All scoring methods were correlated with each other. No method was associated with aBMD. Peak strain score was negatively associated with polar moment of inertia and strength–strain index at the tibia, and total activity score was positively associated with cortical area and thickness at the femur. Separating by geographic site, the peak strain and hip BLE scores were negatively associated with pQCT measures at the tibia and femur among ISU subjects. Among UCD women, no method was significantly associated with any tibia measure, but total activity score was positively associated with measures at the femur (P < 0.05 for all associations). Conclusion Given the significantly greater hours per week of leisure activity done by UCD subjects, duration may be an important determinant of the effect physical activity has on bone. The positive association between leisure physical activity (assessed by the total activity score) and cortical bone measures in postmenopausal women may indicate a lifestyle factor that can help offset age-related bone loss. PMID:18046190

  12. Quantifying leisure physical activity and its relation to bone density and strength.

    PubMed

    Shedd, Kristine M; Hanson, Kathy B; Alekel, D Lee; Schiferl, Daniel J; Hanson, Laura N; Van Loan, Marta D

    2007-12-01

    Compare three published methods of quantifying physical activity (total activity, peak strain, and bone-loading exposure (BLE) scores) and identify their associations with areal bone mineral density (aBMD), volumetric BMD (vBMD), and bone strength. Postmenopausal women (N = 239; mean age: 53.8 yr) from Iowa (ISU) and California (UCD) completed the Paffenbarger Physical Activity Questionnaire, which was scored with each method. Dual energy x-ray absorptiometry assessed aBMD at the spine, hip, and femoral neck, and peripheral quantitative computed tomography (pQCT) measured vBMD and bone strength properties at the distal tibia and midshaft femur. UCD women had higher total activity scores and hours per week of leisure activity. All scoring methods were correlated with each other. No method was associated with aBMD. Peak strain score was negatively associated with polar moment of inertia and strength-strain index at the tibia, and total activity score was positively associated with cortical area and thickness at the femur. Separating by geographic site, the peak strain and hip BLE scores were negatively associated with pQCT measures at the tibia and femur among ISU subjects. Among UCD women, no method was significantly associated with any tibia measure, but total activity score was positively associated with measures at the femur (P < 0.05 for all associations). Given the significantly greater hours per week of leisure activity done by UCD subjects, duration may be an important determinant of the effect physical activity has on bone. The positive association between leisure physical activity (assessed by the total activity score) and cortical bone measures in postmenopausal women may indicate a lifestyle factor that can help offset age-related bone loss.

  13. Blood lead is a predictor of homocysteine levels in a population-based study of older adults.

    PubMed

    Schafer, Jyme H; Glass, Thomas A; Bressler, Joseph; Todd, Andrew C; Schwartz, Brian S

    2005-01-01

    Lead and homocysteine are both associated with cardiovascular disease and cognitive dysfunction. We evaluated the relations among blood lead, tibia lead, and homocysteine levels by cross-sectional analysis of data among subjects in the Baltimore Memory Study, a longitudinal study of 1,140 randomly selected residents in Baltimore, Maryland, who were 50-70 years of age. Tibia lead was measured by (superscript)109(/superscript)Cd K-shell X-ray fluorescence. The subject population had a mean +/- SD age of 59.3 +/- 5.9 years and was 66.0% female, 53.9% white, and 41.4% black or African American. Mean +/- SD blood lead, tibia lead, and homocysteine levels were 3.5 +/- 2.4 microg/dL, 18.9 +/- 12.5 microg/g, and 10.0 +/- 4.1 micromol/L, respectively. In unadjusted analysis, blood lead and homocysteine were moderately correlated (Pearson's r = 0.27, p < 0.01). After adjustment for age, sex, race/ethnicity, educational level, tobacco and alcohol consumption, and body mass index using multiple linear regression, results revealed that homocysteine levels increased 0.35 micromol/L per 1.0 microg/dL increase in blood lead (p < 0.01). The relations of blood lead with homocysteine levels did not differ in subgroups distinguished by age, sex, or race/ethnicity. Tibia lead was modestly correlated with blood lead (Pearson's r = 0.12, p < 0.01) but was not associated with homocysteine levels. To our knowledge, these are the first data to reveal an association between blood lead and homocysteine. These results suggest that homocysteine could be a mechanism that underlies the effects of lead on the cardiovascular and central nervous systems, possibly offering new targets for intervention to prevent the long-term consequences of lead exposure.

  14. Comparative investigation of percutaneous plating and intramedullary nailing effects on IL-6 production in patients with tibia shaft fracture.

    PubMed

    Ebrahimpour, Adel; Okhovatpour, Mohammad-Ali; Sadighi, Mehrdad; Sarejloo, Amir-Hossein; Sajjadi, Mohammad-Reza Minator

    2017-12-01

    The aim of this study was to analyze the effect of intramedullary nailing (IMN), open plating and percutaneous plating on the induction of IL-6 in patients with tibia fractures. A total of 30 patients with tibia shaft fracture underwent either intramedullary nailing (IMN, n = 15; 14 males and 1 female; mean age: 32.1 ± 15.6), ORIF plating (n = 8; 5 males and 3 females; mean age: 60.0 ± 17.8), or percutaneous plating (n = 7; 6 males and 1 female; mean age: 43.1 ± 21.4). Serum IL-6 cytokine levels were measured prior to, and 6 and 24 h after the surgery, using a special ELISA kit. The IL-6 concentration increased to peak levels at 6 h in both IMN and percutaneous plating groups, and at 24 h in ORIF plating group (p < 0.001). The mean IL-6 concentration of percutaneous plating group was significantly lower than that of the IMN group at 6 h following the surgery (p = 0.022). In addition, the mean IL-6 concentration of ORIF plating group was significantly higher than that of the percutaneous plating group at 24 h post operation (p = 0.009). Our results suggest that percutaneous plating compared to the IMN has lower effects on IL-6 production in patients with tibia fracture. Level III, therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  15. Tubular space truss structure for SKITTER 2 robot

    NASA Technical Reports Server (NTRS)

    Beecham, Richard; Dejulio, Linda; Delorme, Paul; Eck, Eric; Levy, Avi; Lowery, Joel; Radack, Joe; Sheffield, Randy; Stevens, Scott

    1988-01-01

    The Skitter 2 is a three legged transport vehicle designed to demonstrate the principle of a tripod walker in a multitude of environments. The tubular truss model of Skitter 2 is a proof of principal design. The model will replicate the operational capabilities of Skitter 2 including its ability to self-right itself. The project's focus was on the use of light weight tubular members in the final structural design. A strong design for the body was required as it will undergo the most intense loading. Triangular geometry was used extensively in the body, providing the required structural integrity and eliminating the need for cumbersome shear panels. Both the basic femur and tibia designs also relied on the strong geometry of the triangle. An intense literature search aided in the development of the most suitable weld techniques, joints, linkages, and materials required for a durable design. The hinge design features the use of spherical rod end bearings. In order to obtain a greater range of mobility in the tibia, a four-bar linkage was designed which attaches both to the femur and the tibia. All component designs, specifically the body, femur, and the tibia were optimized using the software package IDEAS 3.8A Supertab. The package provided essential deformation and stress analysis information on each component's design. The final structure incurred only a 0.0544 inch deflection in a maximum (worst case) loading situation. The highest stress experienced by any AL6061-T6 tubular member was 1920 psi. The structural integrity of the final design facilitated the use of Aluminum 6061-T6 tubing. The tubular truss structure of Skitter 2 is an effective and highly durable design. All facets of the design are structurally sound and cost effective.

  16. [Association between risk factors of cardiovascular diseases and osteoporosis in postmenopausal Chinese women].

    PubMed

    Xue, Wen-qiong; Deng, Juan; Li, Jing-jing; Liu, Jing; He, Li-ping; Chen, Zong-qiu; Chen, Yu-ming

    2011-06-01

    To assess the relationship between cardiovascular risk factors and osteoporosis. 2202 women aged 50 - 73 years were included in this cross-sectional study from the communities in Guangzhou, from July 2008 to January 2010. Cardiovascular risk factors including age, years since menopause, physical activity, anthropometrics, body composition, blood pressure, fasting serum lipids, glucose and uric acid, intima-media thickness (IMT) of carotid artery were assessed. Ultrasonic bone density (speed of sound) at the radius and tibia were determined. Osteoporosis was defined as T-score ≤ -2.5. Common factors for the cardiovascular risk factors were extracted using the factor analysis method. Eight common factors representing obesity, lean mass, blood triglycerides and uric acid, cholesterol, age, blood pressure, IMT and physical activity were extracted. Data from the Multivariate logistic regression showed a dose-dependent association of greater scores of age and IMT factors and lower score of lean mass factor with the increased risk of osteoporosis at the radius and tibia. As compared with the bottom quartile, the OR (95%CI) of radius and tibia osteoporosis were 0.62 (0.44 - 0.88) and 0.62 (0.48 - 0.80) for lean mass factor, 4.02 (2.72 - 5.94) and 3.68 (2.81 - 4.82) for age factor, 1.41 (1.00 - 2.00) and 1.54 (1.19 - 2.00) for IMT factors, respectively. Moreover, greater blood pressure score was associated with higher risk of radius osteoporosis while the higher obese score, was correlated with the increased risk of tibia osteoporosis. The cardiovascular-related risk factors of greater IMT, obesity, blood pressure and lower lean mass scores were associated with increased osteoporosis risks while called for more concern among the Chinese women.

  17. Better Skeletal Microstructure Confers Greater Mechanical Advantages in Chinese-American Women Versus White Women

    PubMed Central

    Liu, X Sherry; Walker, Marcella D; McMahon, Donald J; Udesky, Julia; Liu, George; Bilezikian, John P; Guo, X Edward

    2013-01-01

    Despite lower areal bone mineral density (aBMD), Chinese-American women have fewer fractures than white women. We hypothesized that better skeletal microstructure in Chinese-American women in part could account for this paradox. Individual trabecula segmentation (ITS), a novel image-analysis technique, and micro–finite-element analysis (μFEA) were applied to high-resolution peripheral quantitative computed tomography (HR-pQCT) images to determine bone microarchitecture and strength in premenopausal Chinese-American and white women. Chinese-American women had 95% and 80% higher plate bone volume fraction at the distal radius and tibia, respectively, as well as 20% and 18% higher plate number density compared with white women (p < .001). With similar rodlike characteristics, the plate-to-rod ratio was twice as high in the Chinese-American than in white trabecular bone (p < .001). Plate-rod junction density, a parameter indicating trabecular network connections, was 37% and 29% greater at the distal radius and tibia, respectively, in Chinese-American women (p < .002). Moreover, the orientation of the trabecular bone network was more axially aligned in Chinese-American women because axial bone volume fraction was 51% and 32% higher at the distal radius and tibia, respectively, than in white women (p < .001). These striking differences in trabecular bone microstructure translated into 55% to 68% (distal radius, p < .001) and 29% to 43% (distal tibia, p < .01) greater trabecular bone strength, as assessed by Young’s moduli, in the Chinese-American versus the white group. The observation that Chinese-American women have a major microstructural advantage over white women may help to explain why their risk of fracture is lower despite their lower BMD. PMID:21351150

  18. Regional variation of bone density, microarchitectural parameters, and elastic moduli in the ultradistal tibia of young black and white men and women.

    PubMed

    Unnikrishnan, Ginu; Xu, Chun; Popp, Kristin L; Hughes, Julie M; Yuan, Amy; Guerriere, Katelyn I; Caksa, Signe; Ackerman, Kathryn E; Bouxsein, Mary L; Reifman, Jaques

    2018-07-01

    Whole-bone analyses can obscure regional heterogeneities in bone characteristics. Quantifying these heterogeneities might improve our understanding of the etiology of injuries, such as lower-extremity stress fractures. Here, we performed regional analyses of high-resolution peripheral quantitative computed tomography images of the ultradistal tibia in young, healthy subjects (age range, 18 to 30 years). We quantified bone characteristics across four regional sectors of the tibia for the following datasets: white women (n = 50), black women (n = 51), white men (n = 50), black men (n = 34), and all subjects (n = 185). After controlling for potentially confounding variables, we observed statistically significant variations in most of the characteristics across sectors (p < 0.05). Most of the bone characteristics followed a similar trend for all datasets but with different magnitudes. Regardless of race or sex, the anterior sector had the lowest trabecular and total volumetric bone mineral density and highest trabecular separation (p < 0.001), while cortical thickness was lowest in the medial sector (p < 0.05). Accordingly, the anterior sector also had the lowest elastic modulus in the anterior-posterior and superior-inferior directions (p < 0.001). In all sectors, the mean anisotropy was ~3, suggesting cross-sector similarity in the ratios of loading in these directions. In addition, the bone characteristics from regional and whole-bone analyses differed in all datasets (p < 0.05). Our findings on the heterogeneous nature of bone microarchitecture in the ultradistal tibia may reflect an adaptation of the bone to habitual loading conditions. Published by Elsevier Inc.

  19. Would Interstitial Fluid Flow be Responsible for Skeletal Maintenance in Tail-Suspended Rats?

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ting; Huang, Yun-Fei; Sun, Lian-Wen; Luan, Hui-Qin; Zhu, Bao-Zhang; Fan, Yu-Bo

    2017-02-01

    Despite the fast development of manned space flight, the mechanism and countermeasures of weightlessness osteoporosis in astronauts are still within research. It is accepted that unloading has been considered as primary factor, but the precise mechanism is still unclear. Since bone's interstitial fluid flow (IFF) is believed to be significant to nutrient supply and waste metabolism of bone tissue, it may influence bone quality as well. We investigated IFF's variation in different parts of body (included parietal bone, ulna, lumbar, tibia and tailbone) of rats using a tail-suspended (TS) system. Ten female Sprague-Dawley (SD) rats were divided into two groups: control (CON) and tail-suspension (TS) group. And after 21 days' experiment, the rats were injected reactive red to observe lacuna's condition under a confocal laser scanning microscope. The variations of IFF were analyzed by the number and area of lacuna. Volumetric bone mineral density (vBMD) and microarchitecture of bones were evaluated by micro-CT. The correlation coefficients between lacuna's number/area and vBMD were also analyzed. According to our experimental results, a 21 days' tail-suspension could cause a decrease of IFF in lumbar, tibia and tailbone and an increase of IFF in ulna. But in parietal bone, it showed no significant change. The vBMD and microarchitecture parameters also decreased in lumbar and tibia and increased in ulna. But in parietal bone and tailbone, it showed no significant change. And correlation analysis showed significant correlation between vBMD and lacuna's number in lumbar, tibia and ulna. Therefore, IFF decrease may be partly contribute to bone loss in tail-suspended rats, and it should be further investigated.

  20. Lower limb lengthening in turner dwarfism.

    PubMed

    Hahn, Soo Bong; Park, Hui Wan; Park, Hong Jun; Seo, Young Jin; Kim, Hyun Woo

    2003-06-30

    The aim of this study was to review our cases of lower limb lengthening to treat Turner dwarfism, and to speculate whether or not effective limb lengthening can be achieved in this rare condition. Twelve tibiae and 2 femora were lengthened in 6 patients using the Ilizarov method for the tibia and a gradual elongation nail for the femur. The mean age at the time of surgery was 19 years, and the patients were followed up for a minimum of 2 years. The average gain in the tibial and femoral length was 6.2 cm and 6.0 cm, respectively. The average healing index of tibia and femur was 1.9 and 1.7 months. The average tibia-to-femur ratio improved from 0.68 preoperatively to 0.81 postoperatively, and leg-trunk ratios improved from 0.88 to 0.99. Seven segments (50.0 percent) had completed the lengthening protocol without complications. Two segments (14.3 percent) had an intractable pin site infection requiring a pin exchange, and four segments (35.7 percent) had twelve complications (a nonunion at the distraction site, premature consolidation, Achilles tendon contractures and planovalgus). The overall rate of complications was 100 percent for each bone lengthened. All the patients showing a nonunion at the distraction site had a reduced bone mass, which was less than 65 percent of those of the age-matched normal population. Despite the complications, all patients were satisfied with the results, and lower limb lengthening in Turner Dwarfism believed to be a valid option. However, it may require careful management in a specialist unit in order to prevent complications during the lengthening procedure. In addition, the osteopenia associated with an estrogen deficiency leading to problems in consolidation is a difficult issue to address.

  1. Injury tolerance criteria for short-duration axial impulse loading of the isolated tibia.

    PubMed

    Quenneville, Cheryl E; McLachlin, Stewart D; Greeley, Gillian S; Dunning, Cynthia E

    2011-01-01

    Impulse loading of the lower leg during events such as ejection seat landings or in-vehicle land mine blasts may result in devastating injuries. These impacts achieve higher forces over shorter durations than car crashes, from which experimental results have formed the current basis for protective measures of an axial force limit of 5.4 kN, as registered by an anthropomorphic test device (ATD). The hypotheses of this study were that the injury tolerance of the isolated tibia to short-duration axial loading is higher than that previously reported and that secondary parameters such as momentum or kinetic energy are significant for fracture tolerance, in addition to force. Seven pairs of cadaveric tibias were impacted using a pneumatic testing apparatus, replicating short-duration axial impulse events. One specimen from each pair was impacted with a light mass and the contralateral impacted with a heavy mass, to investigate the effects of momentum and kinetic energy, as well as force, on injury. Impacts were applied incrementally until failure. Force, kinetic energy, age, and height were shown to be significant factors in the probability of fracture. A 10% risk of injury corresponded to an impact force of 7.9 kN, with an average kinetic energy of 240 J. In comparison, this same impact level applied to an ATD would register a force of 16.2 kN because of the higher stiffness of the ATD. These results suggest that the current injury standard may be too conservative for the tibia during high-speed impacts such as in-vehicle land mine blasts and that factors in addition to force should be taken into consideration.

  2. Propagation of time-reversed Lamb waves in bovine cortical bone in vitro.

    PubMed

    Lee, Kang Il; Yoon, Suk Wang

    2015-01-01

    The present study aims to investigate the propagation of time-reversed Lamb waves in bovine cortical bone in vitro. The time-reversed Lamb waves were successfully launched at 200 kHz in 18 bovine tibiae through a time reversal process of Lamb waves. The group velocities of the time-reversed Lamb waves in the bovine tibiae were measured using the axial transmission technique. They showed a significant correlation with the cortical thickness and tended to follow the theoretical group velocity of the lowest order antisymmetrical Lamb wave fairly well, consistent with the behavior of the slow guided wave in long cortical bones.

  3. Stress fractures about the tibia, foot, and ankle.

    PubMed

    Shindle, Michael K; Endo, Yoshimi; Warren, Russell F; Lane, Joseph M; Helfet, David L; Schwartz, Elliott N; Ellis, Scott J

    2012-03-01

    In competitive athletes, stress fractures of the tibia, foot, and ankle are common and lead to considerable delay in return to play. Factors such as bone vascularity, training regimen, and equipment can increase the risk of stress fracture. Management is based on the fracture site. In some athletes, metabolic workup and medication are warranted. High-risk fractures, including those of the anterior tibial diaphysis, navicular, proximal fifth metatarsal, and medial malleolus, present management challenges and may require surgery, especially in high-level athletes who need to return to play quickly. Noninvasive treatment modalities such as pulsed ultrasound and extracorporeal shock wave therapy may have some benefit but require additional research.

  4. Management of knee rheumatoid arthritis and tibia nonunion with one-stage total knee arthroplasty and intramedullary nailing: A report of two cases.

    PubMed

    Erdogan, Fahri; Sarikaya, Ilker Abdullah; Can, Ata; Gorgun, Baris

    2018-01-01

    Total knee arthroplasty (TKA) is a surgical procedure which is widely used in the treatment of gonarthrosis secondary to rheumatoid arthritis (RA). The incidence of stress fractures in tibia in the patients with RA is higher compared to normal patients. In this study, we report two cases of TKA and intramedullary nailing in RA patients with severe knee arthritis and tibial nonunion. Both patients had a satisfactory clinical outcome with radiological healing of the tibial fracture. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  5. Aggressive curettage of a chondroblastoma-like osteosarcoma of the proximal end of the tibia. A case report with seven-year follow-up.

    PubMed

    Ramos Pascua, Luis Rafael; Casas Ramos, Paula; Arias Martín, Francisco; Izquierdo García, Francisco Miguel

    2018-06-01

    A chondroblastoma-like osteosarcoma (CLO) in the proximal epiphysis and metaphysis of the tibia in a 30-year-old male is presented. With a wrong diagnosis of chondroblastoma, an aggressive curettage was performed. Later, the patient refused en-bloc resection. Seven years after surgery, there has been no local recurrence, and the patient is living an ordinary and active life. CLO is a very uncommon and controversial histologic subtype of osteosarcoma that can be misdiagnosed as chondroblastoma and therefore incorrectly treated. However, aggressive curettage with its functional advantages could be a reasonable option in selected cases.

  6. Fresh-frozen Complete Extensor Mechanism Allograft versus Autograft Reconstruction in Rabbits

    PubMed Central

    Chen, Guanyin; Zhang, Hongtao; Ma, Qiong; Zhao, Jian; Zhang, Yinglong; Fan, Qingyu; Ma, Baoan

    2016-01-01

    Different clinical results have been reported in the repair of extensor mechanism disruption using fresh-frozen complete extensor mechanism (CEM) allograft, creating a need for a better understanding of fresh-frozen CME allograft reconstruction. Here, we perform histological and biomechanical analyses of fresh-frozen CEM allograft or autograft reconstruction in an in vivo rabbit model. Our histological results show complete incorporation of the quadriceps tendon into the host tissues, patellar survival and total integration of the allograft tibia, with relatively fewer osteocytes, into the host tibia. Vascularity and cellularity are reduced and delayed in the allograft but exhibit similar distributions to those in the autograft. The infrapatellar fat pad provides the main blood supply, and the lowest cellularity is observed in the patellar tendon close to the tibia in both the allograft and autograft. The biomechanical properties of the junction of quadriceps tendon and host tissues and those of the allograft patellar tendon are completely and considerably restored, respectively. Therefore, fresh-frozen CEM allograft reconstruction is viable, but the distal patellar tendon and the tibial block may be the weak links of the reconstruction. These findings provide new insight into the use of allograft in repairing disruption of the extensor mechanism. PMID:26911538

  7. Fresh-frozen Complete Extensor Mechanism Allograft versus Autograft Reconstruction in Rabbits.

    PubMed

    Chen, Guanyin; Zhang, Hongtao; Ma, Qiong; Zhao, Jian; Zhang, Yinglong; Fan, Qingyu; Ma, Baoan

    2016-02-25

    Different clinical results have been reported in the repair of extensor mechanism disruption using fresh-frozen complete extensor mechanism (CEM) allograft, creating a need for a better understanding of fresh-frozen CME allograft reconstruction. Here, we perform histological and biomechanical analyses of fresh-frozen CEM allograft or autograft reconstruction in an in vivo rabbit model. Our histological results show complete incorporation of the quadriceps tendon into the host tissues, patellar survival and total integration of the allograft tibia, with relatively fewer osteocytes, into the host tibia. Vascularity and cellularity are reduced and delayed in the allograft but exhibit similar distributions to those in the autograft. The infrapatellar fat pad provides the main blood supply, and the lowest cellularity is observed in the patellar tendon close to the tibia in both the allograft and autograft. The biomechanical properties of the junction of quadriceps tendon and host tissues and those of the allograft patellar tendon are completely and considerably restored, respectively. Therefore, fresh-frozen CEM allograft reconstruction is viable, but the distal patellar tendon and the tibial block may be the weak links of the reconstruction. These findings provide new insight into the use of allograft in repairing disruption of the extensor mechanism.

  8. Ethnic Differences in Bending Stiffness of the Ulna and Tibia

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Liang, M. T. C.; Bassin, S.; Braun, W.; Dutto, D.; Plesums, K.; Huvnh, H. T.; Cooper, D.; Wong, N.

    2004-01-01

    There is considerable information about the variations in bone mass associated with different opportunity to compare a mechanical property of bone in young college women of Caucasian, Hispanic and Asian descent who gave informed consent to participate in an exercise study. The subjects were sedentary, in good health, eumenorrheic, non-smokers and had body mass indices (BMI) less than 30. Measurements acquired were body weight, kg, and height, cm, calcaneal and wrist bone density, g/square cm (PIXI, Lunar GE) and bending stiffness (EI, Nm(exp 2)) in the ulna and tibia. E1 was determined non-invasively with an instrument called the Mechanical Response Tissue Analyzer (MRTA) that delivers a vibratory stimulus to the center of the ulna or tibia and analyzes the response curve based on the equation E1 = k(sub b) L(exp 3)/48 where k, is lateral bending stiffness, L is the length of the bone, E is Young's modulus of elasticity and I, the bending moment of inertia. The error of the test (CV) based on measurements of an aluminum rod with a known E1 was 4.8%, of calcaneal BMD, 0.54%, and of wrist bone density, 3.45%.

  9. Design and Analysis of Bionic Cutting Blades Using Finite Element Method.

    PubMed

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency.

  10. The anteroposterior axis of the tibia in Korean patients undergoing total knee replacement.

    PubMed

    Kim, C W; Seo, S S; Kim, J H; Roh, S M; Lee, C R

    2014-11-01

    The aim of this study was to find anatomical landmarks for rotational alignment of the tibial component in total knee replacement (TKR) in a CT-based study. Pre-operative CT scanning was performed on 94 South Korean patients (nine men, 85 women, 188 knees) with osteoarthritis of the knee joint prior to TKR. The tibial anteroposterior (AP) axis was defined as a line perpendicular to the femoral surgical transepicondylar axis and passing through the centre of the posterior cruciate ligament (PCL). The angles between the defined tibial AP axis and anatomical landmarks at various levels of the tibia were measured. The mean values of the angles between the defined tibial AP axis and the line connecting the anterior border of the proximal third of the tibia to the centre of the PCL was -0.2° (-17 to 14.1, sd 4.1). This was very close to the defined tibial axis, and remained so regardless of lower limb alignment and the degree of tibial bowing. Therefore, AP axis defined as described, is a reliable anatomical landmark for rotational alignment of tibial components. ©2014 The British Editorial Society of Bone & Joint Surgery.

  11. Design and Analysis of Bionic Cutting Blades Using Finite Element Method

    PubMed Central

    Li, Mo; Yang, Yuwang; Guo, Li; Chen, Donghui; Sun, Hongliang; Tong, Jin

    2015-01-01

    Praying mantis is one of the most efficient predators in insect world, which has a pair of powerful tools, two sharp and strong forelegs. Its femur and tibia are both armed with a double row of strong spines along their posterior edges which can firmly grasp the prey, when the femur and tibia fold on each other in capturing. These spines are so sharp that they can easily and quickly cut into the prey. The geometrical characteristic of the praying mantis's foreleg, especially its tibia, has important reference value for the design of agricultural soil-cutting tools. Learning from the profile and arrangement of these spines, cutting blades with tooth profile were designed in this work. Two different sizes of tooth structure and arrangement were utilized in the design on the cutting edge. A conventional smooth-edge blade was used to compare with the bionic serrate-edge blades. To compare the working efficiency of conventional blade and bionic blades, 3D finite element simulation analysis and experimental measurement were operated in present work. Both the simulation and experimental results indicated that the bionic serrate-edge blades showed better performance in cutting efficiency. PMID:27019583

  12. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  13. THE EFFECT OF THE GROWTH HORMONE FROM THE ANTERIOR LOBE OF THE PITUITARY ON BONE UNDER CONDITIONS OF IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, E.A.

    1963-05-21

    Young rats 3 to 4 days old were given an x-ray dose of 1000 r on the left hind leg. A daily dose of 200 gamma of growth hormone obtained from the pituitary of a bull was administered, until the animals were killed on the 36th, 41st, and 44th days after the irradiation. The length of the tibia in the left and right legs was determined by x rays. In the irradiated animals, the ratio of the length of the left tibia to the right tibia was about 0.50, and the introduction of growth hormone into the rat had onlymore » a slight effect on tibial growth. The bones were then fixed in a Zenkerformalin fluid, and cytological studies were carried out. These studies show that irradiation of the extremity of a four-day rat with an x-ray dose of 2000 r resulted in deep disturbances in the cartilage bone with subsequent arrest in the development of the bone. The introduction of growth hormone ameliorated the changes in bone structure, but did not result in normal bone development. (TTT)« less

  14. Kinematic analysis of total knee prosthesis designed for Asian population.

    PubMed

    Low, F H; Khoo, L P; Chua, C K; Lo, N N

    2000-01-01

    In designing a total knee replacement (TKR) prosthesis catering for the Asian population, 62 sets of femur were harvested and analyzed. The morphometrical data obtained were found to be in good agreement with dimensions typical of the Asian knee and has reaffirmed the fact that Caucasian knees are generally larger than Asian knees. Subsequently, these data when treated using a multivariate statistical technique resulted in the establishment of major design parameters for six different sizes of femoral implants. An extra-small implant size with established dimensions and geometrical shape has surfaced from the study. The differences between the Asian knees and the Caucasian knees are discussed. Employing the established femoral dimensions and motion path of the knee joint, the articulating tibia profile was generated. All the sizes of implants were modeled using a computer-aided software package. Thereupon, these models that accurately fits the local Asian knee were transported into a dynamic and kinematic analysis software package. The tibiofemoral joint was modeled successfully as a slide curve joint to study intuitively the motion of the femur when articulating on the tibia surface. An optimal tibia profile could be synthesized to mimic the natural knee path motion. Details of the analysis are presented and discussed.

  15. Open Tibia Shaft Fractures and Soft-Tissue Coverage: The Effects of Management by an Orthopaedic Microsurgical Team.

    PubMed

    VandenBerg, James; Osei, Daniel; Boyer, Martin I; Gardner, Michael J; Ricci, William M; Spraggs-Hughes, Amanda; McAndrew, Christopher M

    2017-06-01

    To compare the timing of soft-tissue (flap) coverage and occurrence of complications before and after the establishment of an integrated orthopaedic trauma/microsurgical team. Retrospective cohort study. A single level 1 trauma center. Twenty-eight subjects (13 pre- and 15 post-integration) with open tibia shaft fractures (OTA/AO 42A, 42B, and 42C) treated with flap coverage between January 2009 and March 2015. Flap coverage for open tibia shaft fractures treated before ("preintegration") and after ("postintegration") implementation of an integrated orthopaedic trauma/microsurgical team. Time from index injury to flap coverage. The unadjusted median time to coverage was 7 days (95% confidence interval, 5.9-8.1) preintegration, and 6 days (95% confidence interval, 4.6-7.4) postintegration (P = 0.48). For preintegration, 9 (69%) of the patients experienced complications, compared with 7 (47%) postintegration (P = 0.23). After formation of an integrated orthopaedic trauma/microsurgery team, we observed a 1-day decrease in median days to coverage from index injury. Complications overall were lowered in the postintegration group, although statistically insignificant. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  16. Ribbing disease: Uncommon cause of a common symptom

    PubMed Central

    Damle, Nishikant Avinash; Patnecha, Manish; Kumar, Praveen; Gadodia, Ankur; Subbarao, Kiran; Bal, Chandrasekhar

    2011-01-01

    Ribbing disease is a rare form of sclerosing dysplasia characterized by benign endosteal and periosteal bone growth confined to the diaphyses of the long bones, usually the tibiae and femora. It occurs after puberty and is more commonly seen in women. The most common presenting symptom is pain that is usually self-limited; however, progression is known. The etiology and optimal treatment for the disease are as yet undefined. We present here the case of a 31-year-old woman with clinical, radiological and bone scan manifestations of Ribbing disease corroborated by bone biopsy. Radiographs demonstrated cortical thickening of the diaphyses of both tibiae. 99mTc-methylene diphosphonate bone scan revealed intense irregular uptake in diaphyseal region of both tibiae. Magnetic resonance imaging showed cortical thickening with bone marrow edema in bilateral tibial diaphysis with minimal adjacent soft tissue edema. Bone biopsy revealed predominantly dense lamellar bone with irregular sized and spaced haversian systems. Serum and urine markers of bone metabolism were within normal limits. The patient was treated with analgesics, and had partial relief from pain. Medullary rimming is the next treatment option in case pain progresses. This report emphasizes the role of bone scan in the diagnosis of this rare condition. PMID:21969779

  17. Osteomalacia in a patient with Paget's bone disease treated with long-term etidronate.

    PubMed

    Hoppé, E; Masson, C; Laffitte, A; Chappard, D; Audran, M

    2012-08-01

    A 93 year-old woman with Paget's disease of bone had been treated with etidronate without interruption during 20 years. The daily dose was usual (5mg/kg/day) but this prescription had never been stopped by her physicians. Two fractures had already occurred in pagetic (right tibia) and non pagetic bones (right fibula) within the last 2 years, and she presented rib fractures, another right tibia fracture and right femur fracture during hospitalization time. X-rays films showed major osteolysis of left ulna and right tibia. Blood samples and technetium bone scan brought no evidence for sarcoma or lytic evolution of the disease. A transiliac bone biopsy on non pagetic bone site confirmed the diagnosis of osteomalacia (increased osteoid parameters), with secondary hyperparathyroidism (hook resorption). In Paget's disease of bone, continuous treatment by etidronate may induce generalized osteomalacia, and increase the risk of fracture in both pagetic and non-pagetic bones. Whereas physicians and pharmaceutical industry try to improve the observance of those drugs, this striking observation also points out that a prescription always needs to be updated. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Stress Fractures of Tibia Treated with Ilizarov External Fixator.

    PubMed

    Górski, Radosław; Żarek, Sławomir; Modzelewski, Piotr; Górski, Ryszard; Małdyk, Paweł

    2016-08-30

    Stress fractures are the result of cyclic loading of the bone, which gradually becomes damaged. Most often they are treated by rest or plaster cast and, in rare cases, by internal fixation. There is little published data on initial reposition followed by stabilization with the Ilizarov apparatus in such fractures. Six patients were treated with an external fixator according to the Ilizarov method for a stress fracture of the tibia between 2007 and 2015. Three patients were initially treated conservatively. Due to increasing tibial deformation, they were qualified for surgical treatment with external stabilization. In the other patients, surgery was the first-line treatment. All patients demonstrated risk factors for a stress fracture. After the surgery, they fully loaded the operated limb. No patient developed malunion, nonunion, infection or venous thrombosis. The average time from the first operation to the removal of the external fixator was 19 weeks. Radiographic and clinical outcomes were satisfactory in all patients. 1. The Ilizarov method allows for successful stabilization of stress fractures of the tibia. 2. It may be a good alternative to internal stabilization, especially in patients with multiple comorbidities which affect bone quality and may impair soft tissue healing.

  19. Spontaneous Osteoblastic Osteosarcoma in a Mongolian Gerbil (Meriones unguiculatus)

    PubMed Central

    Salyards, Gregory W; Blas-Machado, Uriel; Mishra, Sasmita; Harvey, Stephen B; Butler, Abigail M

    2013-01-01

    Spontaneous neoplasms in Mongolian gerbils have an incidence of 20% to 26.8%, but osteosarcomas occur at a much lower rate. Here we report a 1-y-old Mongolian gerbil with a spontaneous osteosarcoma at the level of the proximal tibia, with metastases to the pectoral muscles and lungs. Grossly, the tibial mass obliterated the tibia and adjacent muscles, and an axillary mass with a bloody, cavitary center expanded the pectoral muscles. Microscopically, the tibial mass was an infiltrative, osteoblastic mesenchymal neoplasm, and the axillary mass was an anaplastic mesenchymal neoplasm with hemorrhage. The lung contained multiple metastatic foci. Immunohistochemistry for osteonectin was strongly positive in the tibial, axillary, and pulmonary metastases. Although osteosarcoma is the most common primary malignant bone neoplasm that occurs spontaneously in all laboratory and domestic animal species and humans, it arises less frequently than does other neoplasms. The current case of spontaneous osteoblastic osteosarcoma of the proximal tibia and metastases to the pectoral muscles and lung in a Mongolian gerbil is similar in presentation, histology, and predilection site of both osteoblastic and telangiectatic osteosarcomas in humans. In addition, this case is an unusual manifestation of osteosarcoma in the appendicular skeleton of a Mongolian gerbil. PMID:23561939

  20. The meniscal ossicle revisited: etiology and an arthroscopic technique for treatment.

    PubMed

    Raustol, Ole A; Poelstra, Kornelis A; Chhabra, Annikar; Diduch, David R

    2006-06-01

    We describe a new arthroscopic technique for repair of meniscal ossicles in support of the theory that meniscal ossicles are traumatic in nature. Using a standard inferolateral portal, the arthroscope is passed under the posterior cruciate ligament to permit visualization of the "root" of the medial meniscus with a matching donor lesion on the tibia. A limited debridement should be performed of the donor site as well as the posterior horn of the meniscus if it has healed over with fibrocartilage to allow bone-to-bone healing. A posteromedial working portal is made at an angle amenable to the repair and a 6-mm cannula is placed. A Beath passing pin commonly used for anterior cruciate ligament reconstruction is used to pass suture for the outside-inside-out repair. The pin is passed through the cannula in the posterior medial portal. The root of the medial meniscus and the avulsed ossicle are pierced with the Beath pin and tensioned, after which the pin is drilled into the matching donor site and out through the tibia. Two passes are used to create a mattress suture through the ossicle, and the suture is tied over a bone bridge on the anterolateral tibia.

  1. [Osteogenesis imperfecta--operative treatment on lower extremities in children with osteogenesis imperfecta].

    PubMed

    Sułko, Jerzy; Radło, Wojciech

    2005-01-01

    The group of 141 children with osteogenesis imperfecta was treated in Orthopaedic Department of the University Children Hospital in Krakow, Poland. In 77 (54.6%) children from this group, we operated on lower extremities. Prophylactic operations, that were intramedullary Rush rodding, we performed in 19 cases (14 femurs and 11 tibias). Sofield-Millar procedures we performed in 58 children. We operated 321 times - there are 4 operations on average in one child. Average follow-up period was 6.7 years. We operated 473 long bones: 234 femurs and 239 tibias. We did 479 osteotomies. First operations were done at the age of 9 years on average (1.5-21 years). Further operations, 3 in each patient on average, we performed in period 37 months from one to another on tibias and 49 months on femurs. In all operated children we achieved full axis correction and their activity after operation improved. In order to assess that, we used the Bleck scale. In general, before operation, 54 (70%) children did not walk, and, in contrast, after operations 53 (69%) started walking. Operative treatment of the lower extremities in children with osteogenesis imperfecta improves their clinical physical abilities, quality of life and allows increase in activities.

  2. A Passive and Wireless Sensor for Bone Plate Strain Monitoring.

    PubMed

    Tan, Yisong; Hu, Jiale; Ren, Limin; Zhu, Jianhua; Yang, Jiaqi; Liu, Di

    2017-11-16

    This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.

  3. Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome.

    PubMed

    Miller, Ross H; Meardon, Stacey A; Derrick, Timothy R; Gillette, Jason C

    2008-08-01

    Previous research has proposed that a lack of variability in lower extremity coupling during running is associated with pathology. The purpose of the study was to evaluate lower extremity coupling variability in runners with and without a history of iliotibial band syndrome (ITBS) during an exhaustive run. Sixteen runners ran to voluntary exhaustion on a motorized treadmill while a motion capture system recorded reflective marker locations. Eight runners had a history of ITBS. At the start and end of the run, continuous relative phase (CRP) angles and CRP variability between strides were calculated for key lower extremity kinematic couplings. The ITBS runners demonstrated less CRP variability than controls in several couplings between segments that have been associated with knee pain and ITBS symptoms, including tibia rotation-rearfoot motion and rearfoot motion-thigh ad/abduction, but more variability in knee flexion/extension-foot ad/abduction. The ITBS runners also demonstrated low variability at heel strike in coupling between rearfoot motion-tibia rotation. The results suggest that runners prone to ITBS use abnormal segmental coordination patterns, particular in couplings involving thigh ad/abduction and tibia internal/external rotation. Implications for variability in injury etiology are suggested.

  4. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model.

    PubMed

    Zhang, Xin; Jia, Weitao; Gu, Yifei; Xiao, Wei; Liu, Xin; Wang, Deping; Zhang, Changqing; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Zhou, Nai

    2010-08-01

    The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men.

    PubMed

    Vilayphiou, Nicolas; Boutroy, Stephanie; Szulc, Pawel; van Rietbergen, Bert; Munoz, Francoise; Delmas, Pierre D; Chapurlat, Roland

    2011-05-01

    Few studies have investigated bone microarchitecture and biomechanical properties in men. This study assessed in vivo both aspects in a population of 185 men (aged 71 ± 10 years) with prevalent fragility fractures, compared to 185 controls matched for age, height, and weight, from the Structure of the Aging Men's Bones (STRAMBO) cohort. In this case-control study, areal BMD (aBMD) was measured by DXA, bone microarchitecture was assessed by high resolution (HR)-pQCT, and finite element (µFE) analysis was based on HR-pQCT images of distal radius and tibia. A principal component (PC) analysis (PCA) was used to study the association of synthetic PCs with fracture by computing their odds ratio (OR [95%CI]) per SD change. Specific associations with vertebral fracture (n = 100), and nonvertebral fracture (n = 85) were also computed. At both sites, areal and volumetric BMD, cortical thickness and trabecular number, separation, and distribution were significantly worse in cases than in controls, with differences ranging from -6% to 15%. µFE-derived stiffness and failure load were 8% to 9% lower in fractures (p < .01). No difference in load distribution was found between the two groups. After adjustment for aBMD, only differences of µFE-derived stresses, stiffness, and failure load at the tibia remained significant (p < .05). PCA resulted in defining 4 independent PCs, explaining 83% of the total variability of bone characteristics. Nonvertebral fractures were associated with PC1, reflecting bone quantity and strength at the radius (tibia) with OR = 1.64 [1.27-2.12] (2.21 [1.60-3.04]), and with PC2, defined by trabecular microarchitecture, with OR = 1.27 [1.00-1.61]. Severe vertebral fractures were associated with PC1, with OR = 1.56 [1.16-2.09] (2.21 [1.59-3.07]), and with PC2, with OR = 1.55 [1.17-2.06] (1.45 [1.06-1.98]). In conclusion, microarchitecture and biomechanical properties derived from µFE were associated with all types of fractures in men, showing that radius and tibia mechanical properties were relatively representative of distant bone site properties. Copyright © 2011 American Society for Bone and Mineral Research.

  6. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.

    PubMed

    Hustert, R; Baldus, M

    2010-12-01

    Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae muscles when they support the extended hindlegs against gravity forces when the body hangs over. All ballistic movements of cricket knees are elicited by a basic but variable motor pattern: knee flexions by co-contraction of the antagonists prepare catapult extensions with speeds and forces as required in the different behaviours.

  7. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls

    PubMed Central

    Farr, Joshua N.; Chen, Zhao; Lisse, Jeffrey R.; Lohman, Timothy G.; Going, Scott B.

    2010-01-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8–13 years from the “Jump-In: Building Better Bones” study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2–2.3%). In contrast, MCSA was strongly related (p < 0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p < 0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and strength in young girls, this relationship is significantly attenuated after adjustment for MCSA. Nevertheless, girls with higher TBFM relative to body mass have markedly diminished vBMD, geometry, and bone strength at metaphyseal and diaphyseal sites of the femur and tibia. PMID:20060079

  8. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.

    PubMed

    Büschges, A; Wolf, H

    1995-05-01

    1. Locusts (Locusta migratoria) and stick insects (Carausius morosus) exhibit different strategies for predator avoidance. Locusts rely primarily on walking and jumping to evade predators, whereas stick insects become cataleptic, catalepsy forming a major component of the twig mimesis exhibited by this species. The neuronal networks that control postural leg movements in locusts and stick insects are tuned differently to their specific behavioral tasks. An important prerequisite for the production of catalepsy in the stick insect is the marked velocity dependency of the control network, which appears to be generated at the level of nonspiking local interneurons. We examined interneuronal pathways in the network controlling the femur-tibia joint of the locust middle leg and compared its properties with those described for the stick insect middle leg. It was our aim to identify possible neural correlates of the species-specific behavior with regard to postural leg motor control. 2. We obtained evidence that the neuronal networks that control the femur-tibia joints in the two species consist of morphologically and physiologically similar--and thus probably homologous--interneurons. Qualitatively, these interneurons receive the same input from the femoral chordotonal organ receptors and they drive the same pools of leg motoneurons in both species. 3. Pathways that contribute to the control of the femur-tibia joint include interneurons that support both "resisting" and "assisting" responses with respect to the motoneuron activity that is actually elicited during reflex movements. Signal processing via parallel, antagonistic pathways therefore appears to be a common principle in insect leg motor control. 4. Differences between the two insect species were found with regard to the processing of velocity information provided by the femoral chordotonal organ. Interneuronal pathways are sensitive to stimulus velocity in both species. However, in the locust there is no marked velocity dependency of the interneuronal responses, whereas in the same interneurons of the stick insect it is pronounced. This characteristic was maintained at the level of the motoneurons controlling the femur-tibia joint. Pathways for postural leg motor control in the locust thus lack an important prerequisite for the generation of catalepsy, that is, a marked velocity dependency.

  9. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis

    PubMed Central

    2011-01-01

    Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo micro-CT is a non-destructive imaging technique that can track structural changes in the tibial subchondral bone in this animal model, and could also be used to track changes in bone in preclinical drug intervention studies for OA treatments. PMID:22185204

  10. [CHANGES OF SEMAPHORIN 3A EXPRESSION IN HEALING OF TIBIA FRACTURE AFTER TRAUMATIC BRAIN INJURY].

    PubMed

    Li, Zhengzheng; Zhao, Junwei; Yi, Zhigang; Luo, Wei; Li, Kang; Wang, Yuliang; Wang, Jing; An, Liping; Ma, Jinglin

    2016-10-08

    To investigate the mechanism of Semaphorin 3A (Sema3A) in fracture healing after nerve injury by observing the expression of Sema3A in the tibia fracture healing after traumatic brain injury (TBI). A total of 192 Wistar female rats, 8-10 weeks old and weighing 220-250 g, were randomly divided into tibia fracture group (group A, n =48), TBI group (group B, n =48), TBI with tibia fracture group (group C, n =48), and control group (group D, n =48). The tibia fracture model was established at the right side of group A; TBI model was made in group B by the improved Feeney method; the TBI and tibia fracture model was made in group C; no treatment was given in group D. The tissue samples were respectively collected at 3, 5, 7, 14, 21, and 28 days after operation; HE staining, immunohistochemistry staining, and Western blot method were used for the location and quantitative detection of Sema3A in callus tissue. HE staining showed that no obvious changes were observed at each time point in groups B and D. At 3 and 5 days, there was no obvious callus growth at fracture site with inflammatory cells and fibrous tissue filling in groups A and C. At 7 and 14 days, fibrous tissue grew from periosteum to fracture site in groups A and C; the proliferation of chondrocytes in exterior periosteum gradually formed osteoid callus at fracture site in groups A and C. The chondrocyte had bigger size, looser arrangement, and more osteoid in group C than group A. Group B had disorder periosteum, slight subperiosteal bone hyperplasia, and no obvious change of bone trabecula in group B when compared with group D. At 21 and 28 days, cartilage callus was gradually replaced by new bone trabecula in groups A and C. Group C had loose arrange, disorder structure, and low density of bone trabecula, big callus area and few chondrocyte and osteoid when compared with group A; group B was similar to Group D. Immunohistochemistry staining showed that Sema3A expression in chondrocytes in group C was higher than that in group A, particularly at 7, 14, and 21 day. Sema3A was significantly higher in osteoblasts of new bone trabecula in group A than group C, especially at 14 and 21 days ( P <0.05). Western blot results showed that the Sema3A had the same expression trend during fracture healing in groups A and C. However, the expression of Sema3A protein was significantly higher in group C than group A ( P <0.05) and in group B than group D ( P <0.05) at 7, 14, 21, and 28 days. Abnormal expression of Sema3A may play a role in fracture healing after nerve injury by promoting the chondrocytes proliferation and reducing the distribution of sensory nerve fibers and osteoblast differentiation.

  11. In Vivo Precision of Digital Topological Skeletonization Based Individual Trabecula Segmentation (ITS) Analysis of Trabecular Microstructure at the Distal Radius and Tibia by HR-pQCT.

    PubMed

    Zhou, Bin; Zhang, Zhendong; Wang, Ji; Yu, Y Eric; Liu, Xiaowei Sherry; Nishiyama, Kyle K; Rubin, Mishaela R; Shane, Elizabeth; Bilezikian, John P; Guo, X Edward

    2016-06-01

    Trabecular plate and rod microstructure plays a dominant role in the apparent mechanical properties of trabecular bone. With high-resolution computed tomography (CT) images, digital topological analysis (DTA) including skeletonization and topological classification was applied to transform the trabecular three-dimensional (3D) network into surface and curve skeletons. Using the DTA-based topological analysis and a new reconstruction/recovery scheme, individual trabecula segmentation (ITS) was developed to segment individual trabecular plates and rods and quantify the trabecular plate- and rod-related morphological parameters. High-resolution peripheral quantitative computed tomography (HR-pQCT) is an emerging in vivo imaging technique to visualize 3D bone microstructure. Based on HR-pQCT images, ITS was applied to various HR-pQCT datasets to examine trabecular plate- and rod-related microstructure and has demonstrated great potential in cross-sectional and longitudinal clinical applications. However, the reproducibility of ITS has not been fully determined. The aim of the current study is to quantify the precision errors of ITS plate-rod microstructural parameters. In addition, we utilized three different frequently used contour techniques to separate trabecular and cortical bone and to evaluate their effect on ITS measurements. Overall, good reproducibility was found for the standard HR-pQCT parameters with precision errors for volumetric BMD and bone size between 0.2%-2.0%, and trabecular bone microstructure between 4.9%-6.7% at the radius and tibia. High reproducibility was also achieved for ITS measurements using all three different contour techniques. For example, using automatic contour technology, low precision errors were found for plate and rod trabecular number (pTb.N, rTb.N, 0.9% and 3.6%), plate and rod trabecular thickness (pTb.Th, rTb.Th, 0.6% and 1.7%), plate trabecular surface (pTb.S, 3.4%), rod trabecular length (rTb.ℓ, 0.8%), and plate-plate junction density (P-P Junc.D, 2.3%) at the tibia. The precision errors at the radius were similar to those at the tibia. In addition, precision errors were affected by the contour technique. At the tibia, precision error by the manual contour method was significantly different from automatic and standard contour methods for pTb.N, rTb.N and rTb.Th. Precision error using the manual contour method was also significantly different from the standard contour method for rod trabecular number (rTb.N), rod trabecular thickness (rTb.Th), rod-rod and plate-rod junction densities (R-R Junc.D and P-R Junc.D) at the tibia. At the radius, the precision error was similar between the three different contour methods. Image quality was also found to significantly affect the ITS reproducibility. We concluded that ITS parameters are highly reproducible, giving assurance that future cross-sectional and longitudinal clinical HR-pQCT studies are feasible in the context of limited sample sizes.

  12. Ricinus communis-based biopolymer and epidermal growth factor regulations on bone defect repair: A rat tibia model

    NASA Astrophysics Data System (ADS)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Altuzar, V.; Tomás, S. A.

    2003-01-01

    We report the effect of the addition of an epidermal growth factor to a Ricinus communis-based biopolymer in the healing of a rat tibia model. Bone repair and osteointegration after a period of three weeks were evaluated employing photoacoustic spectroscopy and x-ray diffraction. A parallel study was performed at 1, 2, 3, 4, 5, 6, 7, and 8 weeks with energy dispersive x-ray spectroscopy. We conclude that the use of an epidermal growth factor (group EGF) in vivo accelerates the process of bony repair in comparison with other groups, and that the employment of the Ricinus communis-based biopolymer as a bone substitute decreases bone production.

  13. A rare combination of amniotic constriction band with osteogenesis imperfecta.

    PubMed

    Shah, Krupa Hitesh; Shah, Hitesh

    2015-11-11

    Amniotic constriction bands and osteogenesis imperfecta are disorders arising from a collagen defect. We report a rare association of amniotic bands with osteogenesis imperfecta in a child. The child was born with multiple amniotic bands involving the right leg, both hands and both feet. Multiple fractures of long bones of lower limbs occurred in childhood due to trivial trauma. Deformities of the femur and tibia due to malunion with osteopenia and blue sclerae were present. The patient was treated with z plasty of constriction band of the right tibia and bisphosphonate for osteogenesis imperfecta. This rare association of both collagen diseases may provide further insight for the pathogenesis of these diseases. 2015 BMJ Publishing Group Ltd.

  14. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    NASA Astrophysics Data System (ADS)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  15. Periprosthetic fracture of the proximal tibia after lateral unicompartmental knee arthroplasty.

    PubMed

    Kumar, Arun; Chambers, Iain; Wong, Paul

    2008-06-01

    We report a case of periprosthetic fracture of the proximal tibia after lateral unicompartmental knee arthroplasty following a trivial fall. At the time of surgery, the components were found to be loose; and there was a large uncontained tibial defect with bone loss and communition at the fracture site. The patient was treated by revision total knee arthroplasty and proximal structural tibial allograft, with a satisfactory result at 5-year follow up. Our case illustrates that a bone-conserving unicompartmental knee arthroplasty, if complicated by a periprosthetic fracture, can also present with a difficult surgical problem. Attention to preoperative planning and to availability of structural allograft for such difficult cases is recommended.

  16. Neurofibromatosis, gigantism, elephantiasis neuromatosa and recurrent massive subperiosteal hematoma: a new case report and review of 7 case reports from the literature.

    PubMed

    Steenbrugge, F; Poffyn, B; Uyttendaele, D; Verdonk, R; Verstraete, K

    2001-04-01

    The authors report the case of a 13-year-old patient with neurofibromatosis (NF-I), who suffered blunt trauma to the left tibia in 1993. The diagnosis of subperiosteal hematoma was made. Treatment consisted of temporary rest. There was a recurrence in 1996, and the subperiosteal hematoma was drained. In 1997, a shortening osteotomy of the left tibia was performed. However, massive gigantism with elephantiasis of the left leg remained, causing a serious functional and cosmetic problem. In 1999, the leg was amputated above the knee. The literature is reviewed and 7 case reports are compared. The pathogenesis of subperiosteal hematoma is discussed.

  17. Progressive migration of broken Kirschner wire into the proximal tibia following tension-band wiring technique of a patellar fracture--case report.

    PubMed

    Konda, Sanjit R; Dayan, Alan; Egol, Kenneth A

    2012-01-01

    Wire breakage and migration is a known complication of using a wire tension band construct to treat displaced patella fractures. We report a case of a broken K-wire that migrated from the patella completely into the proximal tibia without complication 9 years after the index surgery. This report highlights the fact that wire migration can occur long after fracture healing and be relatively asymptomatic. But because the complications of wire migration can be deadly, it requires diligence on the part of the physician to educate the patient that new knee pain after operative fixation requires formal evaluation by the treating surgeon.

  18. In vivo investigation of a new 109Cd γ-ray induced K-XRF bone lead measurement system

    NASA Astrophysics Data System (ADS)

    Nie, Huiling; Chettle, David; Luo, Liqiang; O'Meara, Joanne

    2006-01-01

    A new 109Cd γ-ray induced K-XRF bone lead measurement system using an array of four detectors has been developed. Previous results from Monte Carlo (MC) simulations and experiments with phantoms predicted that it would be about three times more sensitive than the conventional system, albeit using a more active source. A dosimetry study has been performed for this system and it demonstrated that the dose delivered to the measured individuals is acceptable even for 5-year-old children. Approval to apply this system to human studies has been received from the Research Ethics Board. In this study, 20 adult volunteers, 10 male, 10 female, were recruited to have their tibia measured with both the conventional system and the new system. The result confirmed the improvement predicted by the MC simulations and the in vitro measurements. Two other interesting points were discovered from the data. One is that the data from the new system showed a significant positive correlation between age and tibia lead concentration, while the data from the conventional system do not. The other is that 85% of the tibia lead concentrations were under the minimum detection limit when measured by the conventional system, and the proportion reduced to 50% when measured by the new system.

  19. The relationship of bone and blood lead to hypertension: Further analyses of the normative aging study data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, H.; Kim, Rokho; Korrick, S.

    1996-12-31

    In an earlier report based on participants in the Veterans Administration Normative Aging Study, we found a significant association between the risk of hypertension and lead levels in tibia. To examine the possible confounding effects of education and occupation, we considered in this study five levels of education and three levels of occupation as independent variables in the statistical model. Of 1,171 active subjects seen between August 1991 and December 1994, 563 provided complete data for this analysis. In the initial logistic regression model, acre and body mass index, family history of hypertension, and dietary sodium intake, but neither cumulativemore » smoking nor alcohol ingestion, conferred increased odds ratios for being hypertensive that were statistically significant. When the lead biomarkers were added separately to this initial logistic model, tibia lead and patella lead levels were associated with significantly elevated odds ratios for hypertension. In the final backward elimination logistic regression model that included categorical variables for education and occupation, the only variables retained were body mass index, family history of hypertension, and tibia lead level. We conclude that education and occupation variables were not confounding the association between the lead biomarkers and hypertension that we reported previously. 27 refs., 3 tabs.« less

  20. [Repairing of soft tissue defect in leg by free vascularized thoracoumbilical flap with reversed flow].

    PubMed

    Xu, Y Q; Li, Z Y; Li, J

    2000-11-01

    To investigate the clinical effect of free vascularized thoracoumbilical flap with reversal flow in repairing the soft tissue defect in leg with tibia exposure. Forty-four casting mould specimens of leg arteries were studied firstly. Then 25 cases with soft tissue defect and tibia exposure in the proximal-middle segment of leg were adopted in this study. Among them, 18 cases had long distance thrombosis of the anterior tibial vessels or posterior tibial vessels due to traumatic lesion. The maximal size of defect was 28 cm x 11 cm and the minimal size of defect was 11 cm x 9 cm. In operation, the thoracoumbilical flap which was based on the inferior epigastric vessels was anastomosed to the distal end of the anterior tibial vessels or posterior tibial vessels. Anterior tibial artery, posterior tibial artery and fibular artery had rich communication branches in foot and ankle. All the flaps survived, the color and cosmetic result of them were good. The free vascularized thoracoumbilical flap with reversed flow is practical in repairing the soft tissue defect of leg with tibia exposure. Either the anterior tibial vessels or the posterior tibial vessels is normal, and the distal end of injured blood vessels is available, this technique can be adopted.

  1. Biomechanical evaluation of macro and micro designed screw-type implants: an insertion torque and removal torque study in rabbits.

    PubMed

    Chowdhary, Ramesh; Jimbo, Ryo; Thomsen, Christian; Carlsson, Lennart; Wennerberg, Ann

    2013-03-01

    To investigate the combined effect of macro and pitch shortened threads on primary and secondary stability during healing, but before dynamic loading. Two sets of turned implants with different macro geometry were prepared. The test group possessed pitch shortened threads in between the large threads and the control group did not have thread alterations. The two implant groups were placed in both femur and tibiae of 10 lop-eared rabbits, and at the time of implant insertion, insertion torques were recorded. After 4 weeks, all implants were subjected to removal torque tests. The insertion torque values for the control and test groups for the tibia were 15.7 and 20.6 Ncm, respectively, and for the femur, 11.8, and 12.8 Ncm respectively. The removal torque values for the control and test groups in the tibia were 7.9 and 9.1 Ncm, respectively, and for the femur, 7.9 and 7.7 Ncm respectively. There was no statistically significant difference between the control and test groups. Under limited dynamic load, the addition of pitch shortened threads did not significantly improve either the primary or the secondary stability of the implants in bone. © 2011 John Wiley & Sons A/S.

  2. Collagen Peptides from Crucian Skin Improve Calcium Bioavailability and Structural Characterization by HPLC-ESI-MS/MS.

    PubMed

    Hou, Tao; Liu, Yanshuang; Guo, Danjun; Li, Bo; He, Hui

    2017-10-11

    The effects of collagen peptides (CPs), which are derived from crucian skin, were investigated in a retinoic acid-induced bone loss model. The level of serum bone alkaline phosphatase (BALP) in the model group (117.65 ± 4.66 units/L) was significantly higher than those of the other three groups (P < 0.05). After treatment with 600 and 1200 mg of CPs/kg, the level of BALP decreased to 85.26 ± 7.35 and 97.03 ± 7.21 units/L, respectively. After treatment with 600 mg of CPs/kg, the bone calcium content significantly increased by 22% (femur) and 12.38% (tibia) compared to those of the model group. In addition, the bone mineral density in the 600 mg of CPs/kg group was significantly higher (femur, 0.37 ± 0.02 g/cm 2 ; tibia, 0.33 ± 0.02 g/cm 2 ) than in the model group (femur, 0.26 ± 0.01 g/cm 2 ; tibia, 0.23 ± 0.02 g/cm 2 ). The morphology results indicated bone structure improved after the treatment with CPs. Structural characterization demonstrated that Glu, Lys, and Arg play important roles in binding calcium and promoting calcium uptake. Our results indicated that CPs could promote calcium uptake and regulate bone formation.

  3. Localized accumulation of lead within and among bones from lead-dosed goats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cretacci, Yan; Department of Environmental Health Sciences, School of Public Health, The University at Albany, P.O. Box 509, Albany, NY 12201-0509; Parsons, Patrick J., E-mail: pparsons@wadsworth.org

    2010-01-15

    The principal aim of this study was to gain a better understanding of where lead (Pb) accumulates and how it is distributed, within the bones of dosed goats. Adult goats were periodically dosed with Pb over a number of years for the primary purpose of producing blood pools containing endogenously bound Pb, for the New York State Blood Lead Proficiency Testing Program. Bone samples (e.g., primarily tibia, femur, humerus, and radius) were collected post-mortem from 11 animals and were analyzed for Pb content by acid digestion and electrothermal atomic absorption spectrometry (ETAAS or GFAAS). Average tibia Pb levels were foundmore » to correlate strongly with the cumulative Pb dose (r{sup 2}=0.81). However, the concentration of Pb in different bones and even within a small area of the same bone varied tremendously. Blood-rich trabecular (spongy) bone, such as the patella and calcaneus, were much more enriched in Pb than was cortical (compact) bone. In some dosed animals, the Pb concentration in the tibia was markedly higher at the proximal and distal ends of the bone compared to the mid-shaft. The implications of these findings with regard to the noninvasive measurement of lead in bone by XRF methods are discussed.« less

  4. A contact mechanics model for ankle implants with inclusion of surface roughness effects

    NASA Astrophysics Data System (ADS)

    Hodaei, M.; Farhang, K.; Maani, N.

    2014-02-01

    Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.

  5. Limited rotation of the mobile-bearing in a rotating platform total knee prosthesis.

    PubMed

    Garling, E H; Kaptein, B L; Nelissen, R G H H; Valstar, E R

    2007-01-01

    The hypothesis of this study was that the polyethylene bearing in a rotating platform total knee prosthesis shows axial rotation during a step-up motion, thereby facilitating the theoretical advantages of mobile-bearing knee prostheses. We examined 10 patients with rheumatoid arthritis who had a rotating platform total knee arthroplasty (NexGen LPS mobile, Zimmer Inc. Warsaw, USA). Fluoroscopic data was collected during a step-up motion six months postoperatively. A 3D-2D model fitting technique was used to reconstruct the in vivo 3D kinematics. The femoral component showed more axial rotation than the polyethylene mobile-bearing insert compared to the tibia during extension. In eight knees, the femoral component rotated internally with respect to the tibia during extension. In the other two knees the femoral component rotated externally with respect to the tibia. In all 10 patients, the femur showed more axial rotation than the mobile-bearing insert indicating the femoral component was sliding on the polyethylene of the rotating platform during the step-up motion. Possible explanations are a too limited conformity between femoral component and insert, the anterior located pivot location of the investigated rotating platform design, polyethylene on metal impingement and fibrous tissue formation between the mobile-bearing insert and the tibial plateau.

  6. Effects of salmon calcitonin on fracture healing in ovariectomized rats.

    PubMed

    Li, Xiaolin; Luo, Xinle; Yu, Nansheng; Zeng, Bingfang

    2007-01-01

    To explore the effects of salmon calcitonin on the healing process of osteoporotic fractures in ovariectomized rats. We performed this study in The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China, during the period March 2002 to December 2004. We used 120 female adult Wistar rats in this experiment, among which 90 underwent ovariectomy (OVX) and the other 30 had sham-operation. All rats had their left tibias fractured 3 months later. The 90 OVX rats were randomly divided into 3 groups with 30 in each, while the 30 sham-operated rats served as control group. After the fracture the rats had subcutaneous injection of normal saline, salmon calcitonin and estrogen, respectively. X-ray film, histological examination, bone mineral density (BMD) measurement and biomechanics testing were carried out to evaluate the fracture healing. Compared with OVX rats treated with normal saline, the rats with salmon calcitonin had significantly higher BMD values in the left tibia, higher max torque, shear stress of the left tibia 8 weeks after fracture (p<0.05), and presented with stronger callus formation, shorter fracture healing time and faster normalization of microstructure of bone trabeculae. Salmon calcitonin can, not only increase BMD in osteoporotic bone, but also enhance the bone biomechanical properties and improve the process of fracture healing in fractured osteoporotic bone.

  7. A PERSISTENT BONE GROWTH DEFICIT IN THE X-IRRADIATED RAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, R.D.; Kimeldorf, D.J.

    1964-02-10

    ABS>A critical assessment of the roentgenographic technique was made for a quantitative determination of bone and tail length in the rat. The method was found to be very reliable if error sources were controlled and minimized. The early and long term effects of x irradiation on skeletal growth were investigated with respect to the age at exposure. Rats exposed at a juvenile age (37 days) to a sublethal dose (430 rad) exhibited a retardation in femur, tibia, and tail growth within 14 days after exposure. The maximum deficit was attained within 30 days after exposure and remained approximately constant formore » the next 300 days. Femur and tibia length of animals which were exposed to x rays as young adults (101 days of age) did not differ from those of controls for the first two months after exposure. However, there was a deficit in femur and tibia length in these animals at the end of life span. The magnitude of the bone length reduction at the end of life span was dose dependent. The two major differences in response between the two age groups were the time course of the radiation effect on growth and the magnitude of the deficit. The reduction in bone length occurred faster and was greater in the younger irradiated group. (auth)« less

  8. Gender differences in normal left ventricle of adult FVB/N mice due to variation in interleukins and natriuretic peptides expression levels.

    PubMed

    Haroon, Javeria; Foureaux, Giselle; Martins, Almir S; Ferreira, Anderson J; Reis, Adelina M; Javed, Qamar

    2015-01-01

    This study examined the sex differences for physical, morphological, histological, mRNA, and protein expression levels changes for interleukins and natriuretic peptides in left ventricle (LV) of two groups of adult FVB/N mice; males (WM) and females (WF). LV morphological, histological, reverse transcription and quantitative real-time PCR (RT-PCR), and immunohistochemical (IHC) alterations were determined in FVB/N mice at 34-35 weeks on gender basis. Confirming the gender dimorphism, FVB/N males (WM) illustrated a significant reduction in ANP and IL1-A levels as well as significantly increased body weight (BW (gm)), tibia length (TL (mm)), heart weight (HW (mg)), heart weight-to-body weight (HW/BW (mg/gm)) ratio, heart weight-to-tibia length (HW/TL (mg/mm)) ratio, left ventricle weight (LV (mg)), left ventricle-to-body weight (LV/BW (mg/gm)) ratio, and left ventricle-to-tibia length (LV/TL (mg/mm)) ratio, left ventricular (LV) cardiomyocyte diameter, high BNP, NPRA, IL-1B, and IL1R1 expression in comparison with FVB/N females (WF). Gender differences in relation to left ventricle (LV) may be due to differences in the interleukins and natriuretic peptides levels as an outcome of sex related hormones. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biofidelity Evaluation of a Prototype Hybrid III 6 Year-Old ATD Lower Extremity.

    PubMed

    Boucher, Laura C; Bing, Julie; Bolte, John H

    2016-09-01

    Incomplete instrumentation and a lack of biofidelity in the extremities of the 6 year-old anthropomorphic test device (ATD) pose challenges when studying regions of the body known to interact with the vehicle interior. This study sought to compare a prototype Hybrid III 6 year-old ATD leg (ATD-LE), with a more biofidelic ankle and tibia load cell, to previously collected child volunteer data and to the current Hybrid III 6 year-old ATD (HIII). Anthropometry, range of motion (ROM), and stiffness measurements were taken, along with a dynamic evaluation of the ATD-LE using knee-bolster airbag (KBA) test scenarios. Anthropometry values were similar in eight of twelve measurements. Total ankle ROM was improved in the ATD-LE with no bumper compared to the HIII. The highest tibia moments and tibia index values were recorded in KBA scenarios when the toes were positioned in contact with the dashboard prior to airbag deployment, forcing the ankle into axial loading and dorsiflexion. While improvements in the biofidelity of the ATD-LE are still necessary, the results of this study are encouraging. Continued advancement of the 6 year-old ATD ankle is necessary to provide a tool to directly study the behavior of the leg during a motor vehicle crash.

  10. [Tensile strength of bone fixation of hydroxyapatite coated Schanz screws of the Heidelberg External Fixation System (HEFS)--comparative torque measurements in clinical use and in cadaver tibia].

    PubMed

    Placzek, R; Deuretzbacher, G; Meiss, A L

    2002-12-01

    It is claimed in the literature that hydroxyapatite(HA)-coated screws of external fixators have superior fixation strength in bone, which is postulated to lead to a substantial decrease in loosening and infection rates. We report on a study of the maximum torque values developed while inserting and removing 30 HA-coated Schanz screws of 8 Heidelberg external fixation systems applied to the tibia to correct leg length differences and axial deformities. The infection rate was determined in accordance with defined criteria, and was found to be about 20% for the HA-coated screws. Screws without infection showed an extraction torque above insertion torque, screws with infection an extraction torque below. A significant correlation (p = 0.05) was seen between infection and decrease in fixation strength (quotient: loosening torque/tightening torque). To exclude the impact of such biological processes as osteointegration and bone remodelling, the clinical results were compared with the torques measured for coated and uncoated Schanz screws in a human cadaveric tibia. A significantly higher fixation strength in bone was found for HA-coated screws in comparison with uncoated screws (p = 0.002). These data warrant a clinical study directly comparing HA-coated and uncoated Schanz screws.

  11. Bone growth and turnover in progesterone receptor knockout mice.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bonesmore » of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.« less

  12. An improved instrument for the in vivo detection of lead in bone.

    PubMed Central

    Gordon, C L; Chettle, D R; Webber, C E

    1993-01-01

    An improved instrument for the fluorescence excitation measurement of concentrations of lead in bone has been developed. This is based on a large area high purity germanium detector and a point source of 109Cd. The source is positioned in a tungsten shield at the centre of the detector face such that 88keV photons cannot enter the detector directly. In vivo measurements are calibrated with plaster of Paris phantoms. Occupationally non-exposed men show a minimum detectable concentration of about 6 micrograms/g bone mineral. Measurements of tibia lead concentrations in 30 non-occupationally exposed men between the ages of 23 and 73 showed an annual increment of 0.46 microgram/g bone mineral/year. The mean deviation from the regression of tibia lead upon age was 3.5 micrograms/g bone mineral. Tibia lead concentration in one subject with a history of exposure to lead was 69.6 (SD 3.5) micrograms/g bone mineral. The improved precision of the point source large detector system means that greater confidence can be placed on the results of in vivo measurements of lead concentration. This will allow studies of the natural history of non-occupational lead accumulation in normal subjects and should permit investigations of the efficacy of therapeutic interventions in subjects poisoned with lead. PMID:8343425

  13. New cranium of the large cercopithecid primate Theropithecus oswaldi leakeyi (Hopwood, 1934) from the paleoanthropological site of Makuyuni, Tanzania.

    PubMed

    Frost, Stephen R; Saanane, Charles; Starkovich, Britt M; Schwartz, Hilde; Schrenk, Friedemann; Harvati, Katerina

    2017-08-01

    The Pleistocene hominin site of Makuyuni, near Lake Manyara, Tanzania, is known for fossils attributable to Homo and Acheulean artifacts (Ring et al., 2005; Kaiser et al., 2010; Frost et al., 2012). Here we describe the fossil primate material from the Manyara Beds, which includes the first nearly complete female cranium of Theropithecus oswaldi leakeyi and a proximal tibia from the same taxon. The cranium is dated to between 633 and 780 Ka and the tibia to the Pleistocene. The T. oswaldi lineage is one of the most important among Neogene mammals of Africa: it is both widespread and abundant. The size of the dentition, cranium, and tibia all confirm the previously recognized trend of increasing body size in this lineage and make their taxonomic assignments secure. The morphology of this specimen provides new insights into the evolution of this lineage through time, as well as its geographic variation and sexual dimorphism. The cranium also shows damage consistent with a mammalian carnivore, most likely a felid. The identification of this material as representing T. o. leakeyi agrees with the Middle Pleistocene age estimates for the MK4 locality in particular and the Manyara Beds in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Neuromuscular plasticity in the locust after permanent removal of an excitatory motoneuron of the extensor tibiae muscle.

    PubMed

    Büschges, A; Djokaj, S; Bässler, D; Bässler, U; Rathmayer, W

    2000-01-01

    The capacity of the larval insect nervous system to compensate for the permanent loss of one of the two excitatory motoneurons innervating a leg muscle was investigated in the locust (Locusta migratoria). In the fourth instar, the fast extensor tibiae (FETi) motoneuron in the mesothoracic ganglion was permanently removed by photoinactivation with a helium-cadmium laser. Subsequently, the animals were allowed to develop into adulthood. When experimental animals were tested as adults after final ecdysis, fast-contracting fibers in the most proximal region of the corresponding extensor muscle, which are normally predominantly innervated by FETi only, uniformly responded to activity of the slow extensor tibiae (SETi) neuron. In adult operated animals, single pulses to SETi elicited large junctional responses in the fibers which resulted in twitch contractions of these fibers similar to the responses to FETi activity in control animals. The total number of muscle fibers, their properties as histochemically determined contractional types (fast and slow), and their distribution were not affected by photoinactivation of FETi. Possible mechanisms enabling the larval neuromuscular system to compensate for the loss of FETi through functionally similar innervation by a different motoneuron, i.e. SETi, are discussed. Copyright 2000 John Wiley & Sons, Inc.

  15. Allografts about the Knee in Young Patients with High-Grade Sarcoma.

    PubMed

    Brigman, Brian E; Hornicek, Francis J; Gebhardt, Mark C; Mankin, Henry J

    2004-04-01

    Reconstruction after resections for high-grade sarcomas about the knee in children and adolescents is a challenging problem because of the large soft tissue and skeletal defects, the effects of adjuvant therapy, and the potential for long-term use of the limb. One hundred sixteen patients, all 18 years or younger, with osteosarcoma or Ewing's sarcoma located between the middle femur and middle tibia, were treated with chemotherapy, resection, and allograft reconstruction. One hundred three patients with osteosarcoma and 13 patients with Ewing's sarcoma had 105 Stage II and 11 Stage III tumors. There were 72 osteoarticular grafts (39 femur, 33 tibia), 28 intercalary grafts (19 femur), seven allograft-prosthetic composites (all femur,) and nine allograft-arthrodeses (seven femur, two tibia). At latest followup, 49% of all of the allograft reconstructions were rated good or excellent, 14% were rated as fair, and 37% were failures. Sixteen percent had an infection develop. Twenty-seven percent of patients had a fracture, 34% had a nonunion, and 14 patients eventually required amputation. Reconstruction of large bone defects about the knee in young patients who are being treated with chemotherapy is difficult. Although complications significantly affect outcome, allografts are a viable option for reconstruction in children with high-grade sarcomas about the knee.

  16. A Reference Database of Cartilage 3 Tesla MRI T2 Values in Knees without Diagnostic Evidence of Cartilage Degeneration: Data from the Osteoarthritis Initiative

    PubMed Central

    Joseph, Gabby B.; McCulloch, Charles E.; Nevitt, Michael C.; Heilmeier, Ursula; Nardo, Lorenzo; Lynch, John A.; Liu, Felix; Baum, Thomas; Link, Thomas M.

    2015-01-01

    Objective The purpose of this study was 1) to establish a gender- and BMI-specific reference database of cartilage T2 values, and 2) to assess the associations between cartilage T2 values and gender, age, and BMI in knees without radiographic osteoarthritis or MRI-based (WORMS 0/1) evidence of cartilage degeneration. Design 481 subjects between the ages of 45-65 years with Kellgren-Lawrence Scores 0/1 in the study knee were selected from the Osteoarthritis Initiative database. Baseline morphologic cartilage 3T MRI readings (WORMS scoring) and T2 measurements (resolution=0.313mmx0.446mm) were performed in the medial femur, lateral femur, medial tibia, lateral tibia, and patella compartments. In order to create a reference database, a logarithmic transformation was applied to the data to obtain the 5th-95th percentile values for T2. Results Significant differences in mean cartilage T2 values were observed between joint compartments. Although females had slightly higher T2 values than males in a majority of compartments, the differences were only significant in the medial femur (p<0.0001). A weak positive association was seen between age and T2 in all compartments, and was most pronounced in the patella (3.27% increase in median T2/10 years, p=0.009). Significant associations between BMI and T2 were observed, and were most pronounced in the lateral tibia (5.33% increase in median T2/5 kg/m2 increase in BMI, p<0.0001), and medial tibia (4.81% increase in median T2 /5 kg/m2 increase in BMI, p<0.0001). Conclusions This study established the first reference database of T2 values in a large sample of morphologically normal cartilage plates in knees without radiographic knee osteoarthritis. While cartilage T2 values were weakly associated with age and gender, they had the highest correlations with BMI. PMID:25680652

  17. Comparison of intraoperative anthropometric measurements of the proximal tibia and tibial component in total knee arthroplasty.

    PubMed

    Miyatake, Naohisa; Sugita, Takehiko; Aizawa, Toshimi; Sasaki, Akira; Maeda, Ikuo; Kamimura, Masayuki; Fujisawa, Hirokazu; Takahashi, Atsushi

    2016-09-01

    Precise matching of the tibial component and resected bony surfaces and proper rotational implanting of the tibial component are crucial for successful total knee arthroplasty. We aimed to analyze the exact anthropometric proximal tibial data of Japanese patients undergoing total knee arthroplasty and correlate the measurements with the dimensions of current total knee arthroplasty systems. A total of 703 knees in 566 Japanese patients who underwent total knee arthroplasty for osteoarthritis were included. The bone resection in the proximal tibia was performed perpendicular to the tibial axis in the frontal plane. Measurements of the proximal tibia were intraoperatively obtained after proximal tibial preparation. There were significant positive correlations between the lateral anteroposterior and medial anteroposterior and mediolateral dimensions. A progressive decrease in the mediolateral/lateral anteroposterior ratio with an increasing lateral anteroposterior dimension or the mediolateral/anteroposterior ratio with an increasing anteroposterior dimension was observed. The lateral anteroposterior dimension was smaller than the medial anteroposterior dimension by a mean of 4.8 ± 2.0 mm. The proximal tibia exhibited asymmetry between the lateral and medial plateaus. A comparison of the morphological data and dimensions of the implants, one of which was a symmetric tibial component (NexGen) and the others were asymmetric (Genesis II and Persona), indicated that an asymmetric tibial component could be beneficial to maximize tibial plateau coverage. This study provided important reference data for designing a proper tibial component for Japanese people. The proximal tibial cut surface was asymmetric. There was wide dispersion in the lateral anteroposterior, medial anteroposterior, and mediolateral dimensions depending on the patient. Our data showed that the tibial components of the Genesis II and Persona rather than that of the NexGen may be preferable for Japanese people because of their asymmetric design. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  18. Ethnic differences in bone geometry between White, Black and South Asian men in the UK.

    PubMed

    Zengin, A; Pye, S R; Cook, M J; Adams, J E; Wu, F C W; O'Neill, T W; Ward, K A

    2016-10-01

    Relatively little is known about the bone health of ethnic groups within the UK and data are largely restricted to women. The aim of this study was to investigate ethnic differences in areal bone mineral density (aBMD), volumetric bone mineral density (vBMD), bone geometry and strength in UK men. White European, Black Afro-Caribbean and South Asian men aged over 40years were recruited from Greater Manchester, UK. aBMD at the spine, hip, femoral neck and whole body were measured by DXA. Bone geometry, strength and vBMD were measured at the radius and tibia using pQCT at the metaphysis (4%) and diaphysis (50% radius; 38% tibia) sites. Adjustments were made for age, weight and height. Black men had higher aBMD at the whole body, total hip and femoral neck compared to White and South Asian men independent of body size adjustments, with no differences between the latter two groups. White men had longer hip axis lengths than both Black and South Asian men. There were fewer differences in vBMD but White men had significantly lower cortical vBMD at the tibial diaphysis than Black and South Asian men (p<0.001). At the tibia and radius diaphysis, Black men had larger bones with thicker cortices and greater bending strength than the other groups. There were fewer differences between White and South Asian men. At the metaphysis, South Asian men had smaller bones (p=0.02) and lower trabecular vBMD at the tibia (p=0.003). At the diaphysis, after size-correction, South Asian men had similar sized bones but thinner cortices than White men; measures of strength were not broadly reduced in the South Asian men. Combining pQCT and DXA measurements has given insight into differences in bone phenotype in men from different ethnic backgrounds. Understanding such differences is important in understanding the aetiology of male osteoporosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Prostate Cancer Metastases Alter Bone Mineral and Matrix Composition Independent of Effects on Bone Architecture in Mice A Quantitative Study Using microCT and Raman Spectroscopy

    PubMed Central

    Bi, Xiaohong; Sterling, Julie A.; Merkel, Alyssa R.; Perrien, Daniel S.; Nyman, Jeffry; Mahadevan-Jansen, Anita

    2013-01-01

    Prostate cancer is the most common primary tumor and the second leading cause of cancer-related deaths in men in the United States. Prostate cancer bone metastases are characterized by abnormal bone remodeling processes and result in a variety of skeletal morbidities. Prevention of skeletal complications is a crucial element in prostate cancer management. This study investigated prostate cancer-induced alterations in the molecular composition and morphological structure of metastasis-bearing bones in a mouse model of prostate cancer using Raman spectroscopy and micro-computed tomography (microCT). LNCaP C4-2B prostate cancer cells were injected into the right tibiae of 5-week old male SCID mice. Upon sacrifice at 8 weeks post tumor inoculation, two out of the ten tumor-bearing tibiae showed only osteoblastic lesions in the radiographs, 4 osteolytic lesions only and 4 mixed with osteoblastic and osteolytic lesions.. Carbonate substitution was significantly increased while there was a marked reduction in the level of collagen mineralization, mineral crystallinity, and carbonate:matrix ratio in the cortex of the intact tumor-bearing tibiae compared to contralateral controls. MicroCT analysis revealed a significant reduction in bone volume/total volume, trabecular number and trabecular thickness, as well as significant increase in bone surface/volume ratio in tibiae with osteolytic lesions, suggesting active bone remodeling and bone loss. None of the changes in bone compositional properties were correlated with lesion area from radiographs or the changes in bone architecture from microCT. This study indicates that LNCaP C4-2B prostate cancer metastases alter bone tissue composition independent of changes in architecture, and altered bone quality may be an important contributor to fracture risk in these patients. Raman spectroscopy may provide a new avenue of investigation into interactions between tumor and bone microenvironment. PMID:23867219

  20. Primary Hyperparathyroidism is Associated with Abnormal Cortical and Trabecular Microstructure and Reduced Bone Stiffness in Postmenopausal Women

    PubMed Central

    Stein, Emily M; Silva, Barbara C; Boutroy, Stephanie; Zhou, Bin; Wang, Ji; Udesky, Julia; Zhang, Chiyuan; McMahon, Donald J; Romano, Megan; Dworakowski, Elzbieta; Costa, Aline G.; Cusano, Natalie; Irani, Dinaz; Cremers, Serge; Shane, Elizabeth; Guo, X Edward; Bilezikian, John P

    2013-01-01

    Typically, in the milder form of primary hyperparathyroidism (PHPT), seen in most countries now, bone density by DXA and detailed analyses of iliac crest bone biopsies by histomorphometry and µCT show detrimental effects in cortical bone, whereas the trabecular site (lumbar spine by DXA) and the trabecular compartment (by bone biopsy) appear to be relatively well preserved. Despite these findings, fracture risk at both vertebral and non-vertebral sites is increased in PHPT. Emerging technologies, such as high-resolution peripheral quantitative computed tomography (HRpQCT), may provide additional insight into microstructural features at sites such as the forearm and tibia that have heretofore not been easily accessible. Using HRpQCT, we determined cortical and trabecular microstructure at the radius and tibia in 51 postmenopausal women with PHPT and 120 controls. Individual trabecula segmentation (ITS) and micro finite element (µFE) analyses of the HRpQCT images were also performed to further understand how the abnormalities seen by HRpQCT might translate into effects on bone strength. Women with PHPT showed, at both sites, decreased volumetric densities at trabecular and cortical compartments, thinner cortices, and more widely spaced and heterogeneously distributed trabeculae. At the radius, trabeculae were thinner and fewer in PHPT. The radius was affected to a greater extent in the trabecular compartment than the tibia. ITS analyses revealed, at both sites, that plate-like trabeculae were depleted, with a resultant reduction in the plate/rod ratio. Microarchitectural abnormalities were evident by decreased plate-rod and plate-plate junctions at the radius and tibia, and rod-rod junctions at the radius. These trabecular and cortical abnormalities resulted in decreased whole bone stiffness and trabecular stiffness. These results provide evidence that in PHPT, microstructural abnormalities are pervasive and not limited to the cortical compartment. They may help to account for increased global fracture risk in PHPT. PMID:23225022

  1. Clinical characteristics of early-stage osteonecrosis of the ankle and treatment outcomes.

    PubMed

    Issa, Kimona; Naziri, Qais; Kapadia, Bhaveen H; Lamm, Bradley M; Jones, Lynne C; Mont, Michael A

    2014-05-07

    The purposes of this study were to describe the clinical manifestations of osteonecrosis involving the distal tibia and talus, to identify risk factors associated with the disease, and to evaluate the efficacy of percutaneous drilling for the treatment of ankles with early-stage symptomatic osteonecrosis. One hundred and one ankles in seventy-three patients with symptomatic osteonecrosis of the talus and/or distal tibia treated with percutaneous drilling were identified. There were eighty-one ankles in fifty-nine patients treated only at our institution and twenty ankles in fourteen patients with a failed prior core decompression at outside institutions. The parameters evaluated included demographics, disease characteristics, clinical outcomes including the American Orthopaedic Foot & Ankle Society score, Short-Form-36 scores, University of California Los Angeles activity scores, and visual analog scale pain scores, and radiographic outcomes at a mean follow-up duration of five years (range, two to nine years). Eighty-five ankles had isolated talus osteonecrosis, eleven ankles had involvement of the distal tibia and talus, and five ankles had isolated distal tibial disease. Twenty-nine patients (40%) had initially presented with symptomatic osteonecrosis of another joint, most commonly the knee (37%), the hip (29%), and the shoulder (25%). The most common identifiable risk factors included chronic corticosteroid use (49.3%), alcohol abuse (35.6%), tobacco use (29%), and hypertension (20.5%). Overall, 83% of ankles did not demonstrate further disease progression after the procedure. There were significant improvements (p < 0.05) in clinical and patient-reported outcomes after surgical treatment. The presence of human immunodeficiency virus and sickle cell disease was associated with a higher odds ratio of disease progression to joint collapse. Osteonecrosis of the distal tibia and talus was usually part of multifocal disease, and concurrent knee osteonecrosis was more common than hip osteonecrosis. The results of the present study suggest that early-stage ankle osteonecrosis can be treated successfully with percutaneous drilling.

  2. Evolution of the hominin knee and ankle.

    PubMed

    Frelat, Mélanie A; Shaw, Colin N; Sukhdeo, Simone; Hublin, Jean-Jacques; Benazzi, Stefano; Ryan, Timothy M

    2017-07-01

    The dispersal of the genus Homo out of Africa approximately 1.8 million years ago (Ma) has been understood within the context of changes in diet, behavior, and bipedal locomotor efficiency. While various morphological characteristics of the knee and ankle joints are considered part of a suite of traits indicative of, and functionally related to, habitual bipedal walking, the timing and phylogenetic details of these morphological changes remain unclear. To evaluate the timing of knee and ankle joint evolution, we apply geometric morphometric methods to three-dimensional digital models of the proximal and distal tibiae of fossil hominins, Holocene Homo sapiens, and extant great apes. Two sets of landmarks and curve semilandmarks were defined on each specimen. Because some fossils were incomplete, digital reconstructions were carried out independently to estimate missing landmarks and semilandmarks. Group shape variation was evaluated through shape-and form-space principal component analysis and fossil specimens were projected to assess variation in the morphological space computed from the extant comparative sample. We show that a derived proximal tibia (knee) similar to that seen in living H. sapiens evolved with early Homo at ∼2 Ma. In contrast, derived characteristics in the distal tibia appear later, probably with the arrival of Homo erectus. These results suggest a dissociation of the morphologies of the proximal and distal tibia, perhaps indicative of divergent functional demands and, consequently, selective pressures at these joints. It appears that longer distance dispersals that delivered the Dmanisi hominins to Georgia by 1.8 Ma and H. erectus to east-southeast Asia by 1.6 Ma were facilitated by the evolution of a morphologically derived knee complex comparable to that of recent humans and an ankle that was morphologically primitive. This research sets the foundation for additional paleontological, developmental, and functional research to better understand the mechanisms underlying the evolution of bipedalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Specific compartmental analysis of cartilage status in double-bundle ACL reconstruction patients: a comparative study using pre- and postoperative MR images.

    PubMed

    Lee, Yong Seuk; Jeong, Yu Mi; Sim, Jae Ang; Kwak, Ji Hoon; Kim, Kwang Hee; Nam, Shin Woo; Lee, Beom Koo

    2013-03-01

    The purpose of this study was to evaluate the changes in the site-specific cartilage status after a double-bundle ACL reconstruction using preoperative and follow-up MR images. Thirty-six knees that underwent a double-bundle ACL reconstruction from 2001 to 2009 with the available preoperative and follow-up magnetic resonance imaging were included. Patients with a meniscal injury were compared with those without a meniscal injury. The cartilage morphology was classified using a 6-grade scale [from 0 = normal thickness and signal, to 6 = diffuse full-thickness loss (>75 % of the region)]. The changes in cartilage status were evaluated at 14 sites. Cartilage changes were observed in all sites and were classified according to the site and degree of change. The majority of changes were grade 0 and 1, which accounted for 68 and 16.8 % of changes, respectively. The patella medial facet and anterolateral and centromedial femoral regions showed significantly more cartilage loss than the posteromedial, centrolateral, anterolateral, and anteromedial tibial regions. No significance was observed between the knees with or without combined injuries (n.s.). On the other hand, knees with or without combined injuries showed a different pattern of cartilage change, as demonstrated by different levels of grade change at sites. The change in cartilage status was minimal after a double-bundle ACL reconstruction. The patella medial facet, lateral femur anterior region, and medial femur central region showed significantly more cartilage loss than the medial tibia posterior, lateral tibia central, lateral tibia anterior, and medial tibia anterior regions. The presence of a combined injury did not affect the cartilage status changes, even though it was underpowered and too short term to assess the influence of the meniscal injury. Case series, Level IV.

  4. Three dimensional finite element analysis of the influence of posterior tibial slope on the anterior cruciate ligament and knee joint forward stability.

    PubMed

    Qi, Yong; Sun, Hongtao; Fan, Yueguang; Li, Feimeng; Wang, Yunting; Ge, Chana

    2018-03-23

    To explore the biomechanical influence of posterior tibial angle on the anterior cruciate ligament and knee joint forward stability. The left knee joint of a healthy volunteer was scanned by CT and MRI. The data were imported into Mimics software to obtain 3D models of bone, cartilage, meniscus and ligament structures, and then Geomagic software was used to modify of the image. The relative displacement between tibia and femur and the stress of ACL were recorded. ACL tension was 12.195 N in model with 2∘ PTS, 12.639 N in model with 7∘ PTS, 18.658 N in model with 12∘ PTS. the relative displacement of the tibia and femur was 2.735 mm in model with 2∘ PTS, 3.086 mm in model with 7∘ PTS, 3.881 mm in model with 12∘ PTS. In the model with 30∘ flexion, the maximum tension of ACL was 24.585 N in model with 2∘ PTS, 25.612 N in model with 7∘ PTS, 31.481 N in model with 12∘ PTS. The relative displacement of the tibia and femur was 5.590 mm in model with 2∘ PTS, 6.721 mm in model with 7∘ PTS, 6.952 mm in model with 12∘ PTS. In the 90∘ flexion models, ACL tension was 5.119 N in model with 2∘ PTS, 8.674 N in model with 7∘ PTS, 9.314 N in model with 12∘ PTS. The relative displacement of the tibia and femur was 0.276 mm in model with 2∘ PTS, 0.577 mm in model with 7∘ PTS, 0.602 mm in model with 12∘ PTS. The steeper PTS may be a risk factor in ACL injury.

  5. The treatment of infected nonunion of the tibia following intramedullary nailing by the Ilizarov method.

    PubMed

    Megas, Panagiotis; Saridis, Alkis; Kouzelis, Antonis; Kallivokas, Alkiviadis; Mylonas, Spyros; Tyllianakis, Minos

    2010-03-01

    The purpose of this study was to demonstrate the effectiveness of the Ilizarov method and circular external fixator in order to eradicate the infection and restore bone union, limb anatomy and functionality in cases with infected nonunion of the tibia following intramedullary nailing. During 7 years nine patients suffering from infected nonunion of the tibia after intramedullary nailing were treated in our department. The series comprised seven men and two women with an average age of 39.7 years (range 21-75 years). The patients had previously undergone an average of 4.8 operations (range 3-6 operations). Active purulent bone infection occurred in all nine patients. Bone defect was present in all patients with a mean size of 5 cm (range 2-12 cm). In three cases with bone defect less than 2 cm, monofocal compression osteosynthesis technique was used. In the rest cases where bone defect exceeded 2 cm, bifocal consecutive distraction-compression osteosynthesis technique was applied. Three patients required a local gastrocnemius flap. The mean follow-up period was 26.6 months (range 13-42 months). Results were evaluated using Paley's functional and radiological scoring system. Bone union was achieved in all nine patients without recurrence of infection during the follow-up period. Bone results were graded as excellent in five cases and good in the rest four cases. Functional results were graded as excellent in three cases, good in four and fare in two cases. Mean external fixation time was 187.4 days (range 89-412 days) and mean lengthening index was 32 days/cm (range 27-39 days/cm). Complications observed included eight grade II pin tract infections, axial deformity at the lengthening site in two cases and at the nonunion site in another two cases. Ankle joint stiffness was detected in five cases. The Ilizarov method may be an effective method in infected nonunions of the tibia following intramedullary nailing. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    PubMed

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors in future fracture healing studies.

  7. Effects of Multi-Deficiencies-Diet on Bone Parameters of Peripheral Bone in Ovariectomized Mature Rat

    PubMed Central

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors in future fracture healing studies. PMID:23977109

  8. [Surgical treatment of short stature of different etiology by the Ilizarov method].

    PubMed

    Koczewski, Paweł; Shadi, Milud

    2007-01-01

    To evaluate the results of surgical short stature treatment with distraction osteogenesis using Ilizarov apparatus. Since 1996 sixteen patients were treated surgically because of short stature (11 male and 5 female) at the age of 9 to 29 years (mean 15.2). The cause of short stature in 6 patients was achondroplasia, 2 - Ellis van Creveld, 2 - Ollier disease, 1 - spondylometaphyseal dysplasia, 1 - hypothyroidism, 1 - pseudoachondroplasia and constitutional short stature - in other 3 patients. The pre-operative height ranged between 103 cm to 155 cm (mean 125). 12 patients were treated by the crossing method, means in one stage lengthening of the femur and the tibia of the contralateral limb. In 4 cases lengthening and improvement of body proportion was achieved by lower leg lengthening only (one of them lengthened twice). In 9 cases treated with the crossing method complete procedure was finished, in other 3 - only the first stage. Results In all patients the planed segmental lengthening was achieved except one tibial segment in the most older patient. Achieved height increase ranged from 8 to 20 cm (mean 13.8), on femur level 6 to 10 cm (mean 8.3) while on tibia level 2 to 10.5 cm (mean 7.3). The lengthening index for the single segment ranged from 0.6 to 4.7 months/cm (mean 1.5). Severe limitation of knee joint range of motion (up to 50 degrees) needs quadriceps plasty in one case. Residual valgus deformity of the tibia in one case with Ellis van Creveld needs corrective osteotomy. Abnormal bony re-generate of the tibia in the oldest patient did not allows achieving the planed lengthening and leads to increasing the lengthening index up to 3 times. Increasing the height with Ilizarov method is effective however the treatment time is long, requiring strict patients cooperation. The risk of complications should makes the qualification to this treatment careful and precise.

  9. Gender differences of the morphology of the distal femur and proximal tibia in a Korean population.

    PubMed

    Lim, Hong-Chul; Bae, Ji-Hoon; Yoon, Ji-Yeol; Kim, Seung-Ju; Kim, Jae-Gyoon; Lee, Jae-Moon

    2013-01-01

    We conducted this study to determine whether the sizes of distal femurs and proximal tibiae in Korean men and women are different, and to assess suitability of the sizes of prostheses currently used in Korea. We performed morphological analysis of proximal tibia and distal femur on 115 patients (56 male, 59 female) using MRI to investigate a gender difference. Tibial mediolateral dimension (tMAP), tibial medial anteroposterior dimension (tMAP), tibial lateral anteroposterior dimension (tLAP) femoral mediolateral dimension (fML), femoral medial anteroposterior dimension (fMAP), and femoral lateral anteroposterior dimension (fLAP) were measured. The ratio of tMAP and tLAP to tML (plateau aspect ratio, tAP/tML×100%), and that of fMAP and fLAP to fML (condylar aspect ratio, fAP/fML×100%) were calculated. The measurements were compared with the similar dimensions of four total knee implants currently used. The tML and tAP lengths showed a significant gender difference (P<0.05). The plateau aspect ratio (tMAP/tML) revealed a significant difference between male (0.74±0.05) and female (0.68±0.04, P<0.05). For morphotype of distal femur, males were found to have significantly large values (P<0.05) in the parameters, except for fLAP. With regards to the ratio of the ML width to the AP length, the women showed a narrower ML width than the men. Both genders were distributed within the range of the dimensions of the prostheses currently used prostheses. Korean population revealed that women have smaller dimensions than male counterparts. In both genders, a relatively small size of prostheses matches distal femur and proximal tibia better among the implants currently used in Korea. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface.

    PubMed

    Shah, Furqan A; Zanghellini, Ezio; Matic, Aleksandar; Thomsen, Peter; Palmquist, Anders

    2016-02-01

    The orientation of nanoscale mineral platelets was quantitatively evaluated in relation to the shape of lacunae associated with partially embedded osteocytes (osteoblastic-osteocytes) on the surface of deproteinised trabecular bone of adult sheep. By scanning electron microscopy and image analysis, the mean orientation of mineral platelets at the osteoblastic-osteocyte lacuna (Ot.Lc) floor was found to be 19° ± 14° in the tibia and 20° ± 14° in the femur. Further, the mineral platelets showed a high degree of directional coherency: 37 ± 7% in the tibia and 38 ± 9% in the femur. The majority of Ot.Lc in the tibia (69.37%) and the femur (74.77%) exhibited a mean orientation of mineral platelets between 0° and 25°, with the largest fraction within a 15°-20° range, 17.12 and 19.8% in the tibia and femur, respectively. Energy dispersive X-ray spectroscopy and Raman spectroscopy were used to characterise the features observed on the anorganic bone surface. The Ca/P (atomic %) ratio was 1.69 ± 0.1 within the Ot.Lc and 1.68 ± 0.1 externally. Raman spectra of NaOCl-treated bone showed peaks associated with carbonated apatite: ν1, ν2 and ν4 PO4(3-), and ν1 CO3(2-), while the collagen amide bands were greatly reduced in intensity compared to untreated bone. The apatite-to-collagen ratio increased considerably after deproteinisation; however, the mineral crystallinity and the carbonate-to-phosphate ratios were unaffected. The ~19°-20° orientation of mineral platelets in at the Ot.Lc floor may be attributable to a gradual rotation of osteoblasts in successive layers relative to the underlying surface, giving rise to the twisted plywood-like pattern of lamellar bone.

  11. Papineau debridement, Ilizarov bone transport, and negative-pressure wound closure for septic bone defects of the tibia.

    PubMed

    Karargyris, Orestis; Polyzois, Vasilios D; Karabinas, Panayiotis; Mavrogenis, Andreas F; Pneumaticos, Spyros G

    2014-08-01

    Ilizarov pioneered bone transport using a circular external fixator. Papineau described a staged technique for the treatment for infected pseudarthrosis of the long bones. This article presents a single-stage Papineau technique and Ilizarov bone transport, and postoperative negative-pressure wound dressing changes for septic bone defects of the tibia. We studied the files of seven patients (mean age, 32 years) with septic bone defects of the tibia treated with a Papineau technique and Ilizarov bone transport in a single stage, followed by postoperative negative-pressure wound dressing changes. All patients had septic pseudarthrosis and skin necrosis of the tibia. The technique included a single-stage extensive surgical debridement of necrotic bone, open bone grafting with cancellous bone autograft and bone transport, and postoperative negative-pressure wound dressing changes for wound closure. The mean time from the initial injury was 6 months (range, 4-8 months). The mean follow-up was 14 months (range, 10-17 months). All patients experienced successful wound healing at a mean of 29 days. Six patients experienced successful bone regeneration and union at the docking side at a mean of 6 months. One patient experienced delayed union at the docking site, which was treated with autologous cancellous bone grafting. Two patients experienced pin track infection, which was successfully treated with antibiotics and pin site dressing changes. All patients were able to return to their work and previous levels of activity, except one patient who had a stiff ankle joint and had to change his job. No patient experienced recurrence of infection, or fracture of the regenerated or transported bone segment until the period of this study. The combined Papineau and Ilizarov bone transport technique with negative-pressure wound closure provides for successful eradication of the infection, reconstruction of the bone defect, and soft-tissue closure. A single-stage surgical treatment is feasible, without any complications.

  12. [Locked plating with minimally invasive percutaneous plate osteosynthesis versus intramedullary nailing of distal extra-articular tibial fracture: a retrospective study].

    PubMed

    Yao, Qi; Ni, Jie; Peng, Li-bin; Yu, Da-xin; Yuan, Xiao-ming

    2013-12-17

    To compare the efficacies of minimally invasive plate osteosynthesis (MIPPO) and interlocking intramedullary nailing (IMN) in the treatment of extra-articular fractures of distal tibia. Retrospective reviews were conducted for 126 patients with extra-articular distal tibia fractures. Treatment was either MIPPO (n = 61) or IMN (n = 65). The outcomes were assessed by comparing operating duration, time to union, the last follow-up American Orthopedic Foot and Ankle Society (AOFAS) score and complication rate. The average follow-up period was 23.7 (12-53) months. In the minimally invasive plate osteosynthesis group, there were deep infections (n = 2), superficial infections (n = 5), delayed union (n = 2), malunion (n = 2) and knee joint pain (n = 10) were observed. In addition, the average operating duration (85.9 ± 18.9 min), average time to union (17.3 ± 3.8 weeks) and average AOFAS (83.2 ± 11.9) were analyzed. In the interlocking intramedullary nailing group, there were delayed union (n = 3), malunion (n = 12) and knee joint pain (n = 22). And the average operating duration (83.3 ± 15.7 min), average time to union (16.5 ± 3.1 weeks) and average AOFAS (84.9 ± 12.0) were analyzed. No statistical significance existed in operating duration, time to union and the last follow-up AOFAS between two groups (P > 0.05). However, the rates of malformation and knee joint pain were higher in the intramedullary nail group than those in the plate group. And the difference was statistically significant (P = 0.015, P = 0.025). Both MIPPO and IMN are effective for extra-articular fractures of distal tibia. However, the former has the advantage of lowers rate of malformation and knee joint pain. Therefore a surgeon should consider the degree of injury while managing extra-articular fracture of distal tibia.

  13. Social inequalities in osteoporosis and fracture among community-dwelling older men and women: findings from the Hertfordshire Cohort Study.

    PubMed

    Syddall, Holly E; Evandrou, Maria; Dennison, Elaine M; Cooper, Cyrus; Sayer, Avan Aihie

    2012-01-01

    It is unknown whether osteoporosis is socially patterned. Using data from the Hertfordshire Cohort Study we found no consistent evidence for social inequalities in prevalent or incident fracture, bone mineral density or loss rates, or bone strength. Public health strategies for prevention of osteoporosis should focus on the whole population. Osteoporosis and osteoporotic fracture are major public health issues for society; the burden for the affected individual is also high. It is unclear whether osteoporosis and osteoporotic fracture are socially patterned. This study aims to analyse social inequalities in osteoporosis and osteoporotic fracture among the 3,225 community-dwelling men and women, aged 59-73 years, who participated in the Hertfordshire Cohort Study (HCS), UK. A panel of markers of bone health (fracture since 45 years of age; DXA bone mineral density and loss rate at the total femur; pQCT strength strain indices for the radius and tibia; and incident fracture) were analysed in relation to the social circumstances of the HCS participants (characterised at the individual level by: age left full time education; current social class; housing tenure and car availability). We found little strong or consistent evidence among men, or women, for social inequalities in prevalent or incident fracture, DXA bone mineral density, bone loss rates, or pQCT bone strength, with or without adjustment for age, anthropometry, lifestyle and clinical characteristics. Reduced car availability at baseline was associated with lower pQCT radius and tibia strength strain indices at follow-up among men only (p = 0.02 radius and p < 0.01 tibia unadjusted; p = 0.05 radius and p = 0.01 tibia, adjusted for age, anthropometry, lifestyle and clinical characteristics). Our results suggest that fracture and osteoporosis do not have a strong direct social gradient and that public health strategies for prevention and treatment of osteoporosis should continue to focus on the whole population.

  14. Anatomy of the proximal tibiofibular joint and interosseous membrane, and their contributions to joint kinematics in below-knee amputations.

    PubMed

    Burkhart, Timothy A; Asa, Benjamin; Payne, Michael W C; Johnson, Marjorie; Dunning, Cynthia E; Wilson, Timothy D

    2015-02-01

    A result of below-knee amputations (BKAs) is abnormal motion that occurs about the proximal tibiofibular joint (PTFJ). While it is known that joint morphology may play a role in joint kinematics, this is not well understood with respect to the PTFJ. Therefore, the purposes of this study were: (i) to characterize the anatomy of the PTFJ and statistically analyze the relationships within the joint; and (ii) to determine the relationships between the PTFJ characteristics and the degree of movement of the fibula in BKAs. The PTFJ was characterized in 40 embalmed specimens disarticulated at the knee, and amputated through the mid-tibia and fibula. Four metrics were measured: inclination angle (angle at which the fibula articulates with the tibia); tibial and fibular articular surface areas; articular surface concavity and shape. The specimens were mechanically tested by applying a load through the biceps femoris tendon, and the degree of motion about the tibiofibular joint was measured. Regression analyses were performed to determine the relationships between the different PTFJ characteristics and the magnitude of fibular abduction. Finally, Pearson correlation analyses were performed on inclination angle and surface area vs. fibular kinematics. The inclination angle measured on the fibula was significantly greater than that measured on the tibia. This difference may be attributed to differences in concavity of the tibial and fibular surfaces. Surface area measured on the tibia and fibula was not statistically different. The inclination angle was not statistically correlated to surface area. However, when correlating fibular kinematics in BKAs, inclination angle was positively correlated to the degree of fibular abduction, whereas surface area was negatively correlated. The characteristics of the PTFJ dictate the amount of fibular movement, specifically, fibular abduction in BKAs. Predicting BKA complications based on PTFJ characteristics can lead to recommendations in treatment. © 2014 Anatomical Society.

  15. Comparison of cyclic and impact-based reference point indentation measurements in human cadaveric tibia.

    PubMed

    Karim, Lamya; Van Vliet, Miranda; Bouxsein, Mary L

    2018-01-01

    Although low bone mineral density (BMD) is strongly associated with increased fracture risk, up to 50% of those who suffer fractures are not detected as high-risk patients by BMD testing. Thus, new approaches may improve identification of those at increased risk for fracture by in vivo assessment of altered bone tissue properties, which may contribute to skeletal fragility. Recently developed reference point indentation (RPI) allows for assessment of cortical bone indentation properties in vivo using devices that apply cyclic loading or impact loading, but there is little information available to assist with interpretation of RPI measurements. Our goals were to use human cadaveric tibia to determine: 1) the associations between RPI variables, cortical bone density, and morphology; 2) the association between variables obtained from RPI systems using cyclic, slow loading versus a single impact load; and 3) age-related differences in RPI variables. We obtained 20 human tibia and femur pairs from female donors (53-97years), measured total hip BMD using dual-energy X-ray absorptiometry, assessed tibial cortical microarchitecture using high-resolution peripheral quantitative computed tomography (HR-pQCT), and assessed cortical bone indentation properties at the mid-tibial diaphysis using both the cyclic and impact-based RPI systems (Biodent and Osteoprobe, respectively, Active Life Scientific, Santa Barbara, CA). We found a few weak associations between RPI variables, BMD, and cortical geometry; a few weak associations between measurements obtained by the two RPI systems; and no age-related differences in RPI variables. Our findings indicate that in cadaveric tibia from older women RPI measurements are largely independent of age, femoral BMD, and cortical geometry. Furthermore, measurements from the cyclic and impact loading RPI devices are weakly related to each other, indicating that each device reflects different aspects of cortical bone indentation properties. Copyright © 2016. Published by Elsevier Inc.

  16. Longitudinal effects of Parathyroid Hormone treatment on morphological, densitometric and mechanical properties of mouse tibia.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Liu, Yue; Bellantuono, Ilaria; Viceconti, Marco

    2017-11-01

    The use of Parathyroid Hormone (PTH) as bone anabolic is limited due to cost-benefit assessments. Preclinical studies evaluating the effects of PTH on bone have reported variable and often contradictory results. Here, we have applied a new approach using a combination of in-vivo longitudinal µCT, image processing techniques and finite element models to monitor early local changes in the whole tibia (divided in 40 compartments) and mechanical properties of female C57BL/6J mice treated with PTH 1-34, compared to controls. Compared with standard 3D bone morphometric analysis, our new approach allowed detection of much smaller and localised changes in bone mineral content (BMC) at very early time points (1 week vs 3 weeks with standard methods) and showed that changes do not occur uniformly over time and across the anatomical space. Indeed, in the PTH treated mice, significant changes in BMC were observed in the medial and posterior sectors of the proximal tibia, a week after treatment, and in the medial sector of the tibia midshaft region a week later (p < 0.05). By the third week, two thirds of the regions showed significantly higher values of BMC (p < 0.05). The effect of PTH on bone regional volume is similar to that on BMC, but there is almost no effect of PTH on bone tissue mineral density. The differences in estimated mechanical properties became significant after three weeks of treatment (p < 0.05). These results provide the first evidence of an early and localised PTH effect on murine bone, and show that our novel partitioning approach, compared to the standard evaluation protocol, allows a more precise quantification of bone changes following treatment, which would facilitate preclinical testing of novel mono- and/or combination therapies throughout the bone. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits.

    PubMed

    Beck, T J; Ruff, C B; Mourtada, F A; Shaffer, R A; Maxwell-Williams, K; Kao, G L; Sartoris, D J; Brodine, S

    1996-05-01

    A total of 626 U.S. male Marine Corps recruits underwent anthropometric measurements and dual-energy X-ray absorptiometry (DXA) scans of the femoral midshaft and the distal third of the tibia prior to a 12 week physical training program. Conventionally obtained frontal plane DXA scan data were used to measure the bone mineral density (BMD) as well as to derive the cross-sectional area, moment of inertia, section modulus, and bone width in the femur, tibia, and fibula. During training, 23 recruits (3.7%) presented with a total of 27 radiologically confirmed stress fractures in various locations in the lower extremity. After excluding 16 cases of shin splints, periostitis, and other stress reactions that did not meet fracture definition criteria, we compared anthropometric and bone structural geometry measurements between fracture cases and the remaining 587 normals. There was no significant difference in age (p = 0.8), femur length (p = 0.2), pelvic width (p = 0.08), and knee width at the femoral condyles (p = 0.06), but fracture cases were shorter (p = 0.01), lighter (p = 0.0006), and smaller in most anthropometric girth dimensions (p < 0.04). Fracture case bone cross-sectional areas (p < 0.001), moments of inertia (p < 0.001), section moduli (p < 0.001), and widths (p < 0.001) as well as BMD (p < 0.03) were significantly smaller in the tibia and femur. After correcting for body weight differences, the tibia cross-sectional area (p = 0.03), section modulus (p = 0.05), and width (p = 0.03) remained significantly smaller in fracture subjects. We conclude that both small body weight and small diaphyseal dimensions relative to body weight are factors predisposing to the development of stress fractures in this population. These results suggest that bone structural geometry measurements derived from DXA data may provide a simple noninvasive methodology for assessing the risk of stress fracture.

  18. Muscle and Myotendinous Tissue Properties at the Distal Tibia as Assessed by High-Resolution Peripheral Quantitative Computed Tomography.

    PubMed

    Erlandson, M C; Wong, A K O; Szabo, E; Vilayphiou, N; Zulliger, M A; Adachi, J D; Cheung, A M

    High-resolution peripheral quantitative computed tomography (HR-pQCT) quantifies bone microstructure and density at the distal tibia where there is also a sizable amount of myotendinous (muscle and tendon) tissue (M T ); however, there is no method for the quantification of M T . This study aimed (1) to assess the feasibility of using HR-pQCT distal tibia scans to estimate M T properties using a custom algorithm, and (2) to determine the relationship between M T properties at the distal tibia and mid-leg muscle density (MD) obtained from pQCT. Postmenopausal women from the Hamilton cohort of the Canadian Multicenter Osteoporosis Study had a single-slice (2.3 ± 0.5 mm) 66% site pQCT scan measuring muscle cross-sectional area (MCSA) and MD. A standard HR-pQCT scan was acquired at the distal tibia. HR-pQCT-derived M T cross-sectional area (M T CSA) and M T density (M T D) were calculated using a custom algorithm in which thresholds (34.22-194.32 mg HA/cm 3 ) identified muscle seed volumes and were iteratively expanded. Pearson and Bland-Altman plots were used to assess correlations and systematic differences between pQCT- and HR-pQCT-derived muscle properties. Among 45 women (mean age: 74.6 ± 8.5 years, body mass index: 25.9 ± 4.3 kg/m 2 ), M T D was moderately correlated with mid-leg MD across the 2 modalities (r = 0.69-0.70, p < 0.01). Bland-Altman analyses revealed no evidence of directional bias for M T D-MD. HR-pQCT and pQCT measures of M T CSA and MCSA were moderately correlated (r = 0.44, p < 0.01). Bland-Altman plots for M T CSA revealed that larger MCSAs related to larger discrepancy between the distal and the mid-leg locations. This is the first study to assess the ability of HR-pQCT to measure M T size, density, and morphometry. HR-pQCT-derived M T D was moderately correlated with mid-leg MD from pQCT. This relationship suggests that distal M T may share common properties with muscle throughout the length of the leg. Future studies will assess the value of HR-pQCT-derived M T properties in the context of falls, mobility, and balance. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  19. Effects of Roughly Focused Extracorporeal Shock Waves Therapy on the Expressions of Bone Morphogenetic Protein-2 and Osteoprotegerin in Osteoporotic Fracture in Rats

    PubMed Central

    Huang, Hai-Ming; Li, Xiao-Lin; Tu, Shu-Qiang; Chen, Xiao-Feng; Lu, Chang-Chun; Jiang, Liang-Hua

    2016-01-01

    Background: Roughly focused extracorporeal shock waves therapy (ESWT) is characterized by a wide focal area, a large therapy zone, easy positioning, and less pain during treatment. The purpose of this study was to investigate the effects of roughly focused ESWT on the expression of osteoprotegerin (OPG) and bone morphogenetic protein-2 (BMP-2) in osteoporotic fractures in rats. Methods: Seventy-two female Sprague-Dawley (SD) rats, 3 months old, were divided into sham-operated group (n = 6) and an ovariectomized (OVX) group (n = 66). Sixty OVX SD rats were used as a model of double proximal tibial osteotomy and inner fixation. The osteotomy site in the left tibia was treated with roughly focused ESWT once at an energy density of 0.26 mJ/mm2, 60 doses/min, and 2000 pact quantities. The contralateral right tibia was left untreated and served as a control. Expression of OPG and BMP-2 in the callus of the osteoporotic fracture area was assessed using immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blotting analysis. Results: Bone mineral density (BMD) at the proximal tibia, femur, and L5 spine was significantly reduced after ovariectomy. BMD of proximal tibia was 12.9% less in the OVX group than that in the sham-operated group. Meanwhile, bilateral oophorectomy resulted in a lower trabecular bone volume fraction (BV/TV) in the proximal tibia of the sham-OVX animals. Three months after bilateral oophorectomy, BV/TV was 14.29% of baseline BV/TV in OVX legs versus 45.91% in the sham-OVX legs (P < 0.001). These data showed that the SD rats became a suitable model of osteoporosis, 3 months after they were OVX. Immunohistochemical analysis showed higher levels of BMP-2 and OPG expression in the treatment group than those in the control group. Compared with the contralateral controls, decreased expression of OPG and BMP-2 at 3 days after roughly focused ESWT, followed by a later increase at 7 days, was indicated by real-time PCR and Western blotting analysis. The OPG messenger RNA (mRNA) expression levels peaked at 6 weeks after the shock wave treatment, paired with a much earlier (at 4 weeks) increase of BMP-2, and declined close to normal at 8 weeks. Conclusions: Roughly focused ESWT may promote the expression of OPG and BMP-2 in the osteoporotic fracture area in rats. BMP-2 and OPG may act synergistically and may lead to a significant enhancement of bone formation and remodeling. PMID:27779163

  20. MINERAL METABOLISM OF FRACTURES OF THE TIBIA IN MAN STUDIED WITH EXTERNAL COUNTING OF Sr$sup 8$$sup 5$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendberg, B.

    1961-01-01

    A study was made of 51 adult patients with tibial fractures by external counting with scintillation detectors over the thighs, knees, and tibias during a 14-day period after intravenous injection of 25 to 50 mu c Sr/sup 85/. The pattern of activity curves recorded over the fractured leg compared to those recorded over the control leg varied significantly with the age of the fracture (2 days to 9 yr). Increased uptake of Sr/sup 85/ was observed in all cases. The activity ratio fracture/control tibia obtained 14 days after injection rose during the 1st months after fracture to reach a peakmore » value 6 to 8 months after fracture. The mean 14-day fracture/ control ratios obtained 5 to 10 months after fracture was 15.5 plus or minus 7.2; then it dropped. Even 6 to 9 yr after fracture the counting rate over the fracture was higher than that over the intact tibia. No differences in activity uptake were observed between normally healing fractures and fractures showing delayed or nonunion. Activity curves obtained over the thigh, knee, and tibia of the fractured and intact legs 1 to l4 days after injection of Sr/sup 85/ could be simulated on the basis of a 2-compartment model for the kinetics of Sr in the body. Based on this kinetic analysis the externally recorded Sr/sup 85/ activity values may be interpreted as follows: The activity ratios fractured/intact leg obtained during early intervals after injection are mainly related to differences in the size of the exchangeable mineral spaces under the detector. The 14-day activity ratio of 2 anatomically comparable locations may be used as a relative index of the difference in the accretion rate (rate of irreversible deposition of bone mineral) in these locations, but is somewhat lower than the absolute dfference in the accretion rate. The bone salt laid down in the fracture callus is derived from the body fluids. The accretion rate in the fracture region is increased within a week of the fracture. It rapidly increases during the first months after fracture to reach a peak value at 6 to 8 months after fracture. The accretion rate in the entire fractured leg is increased some months after fracture. The traumatic osteopenia is caused by increased resorption and not by decreased accretion. (H.H.D.)« less

  1. The infrapatellar fat pad is a dynamic and mobile structure, which deforms during knee motion, and has proximal extensions which wrap around the patella.

    PubMed

    Stephen, Joanna M; Sopher, Ran; Tullie, Sebastian; Amis, Andrew A; Ball, Simon; Williams, Andy

    2018-04-20

    The infrapatellar fat pad (IFP) is a common cause of knee pain and loss of knee flexion and extension. However, its anatomy and behavior are not consistently defined. Thirty-six unpaired fresh frozen knees (median age 34 years, range 21-68) were dissected, and IFP attachments and volume measured. The rectus femoris was elevated, suprapatellar pouch opened and videos recorded looking inferiorly along the femoral shaft at the IFP as the knee was flexed. The patellar retinacula were incised and the patella reflected distally. The attachment of the ligamentum mucosum (LMuc) to the intercondylar notch was released from the anterior cruciate ligament (ACL), both menisci and to the tibia via meniscotibial ligaments. IFP strands projecting along both sides of the patella were elevated and the IFP dissected from the inferior patellar pole. Magnetic resonance imaging (MRI) of one knee at ten flexion angles was performed and the IFP, patella, tibia and femur segmented. In all specimens the IFP attached to the inferior patellar pole, femoral intercondylar notch (via the LMuc), proximal patellar tendon, intermeniscal ligament, both menisci and the anterior tibia via the meniscotibial ligaments. In 30 specimens the IFP attached to the anterior ACL fibers via the LMuc, and in 29 specimens it attached directly to the central anterior tibia. Proximal IFP extensions were identified alongside the patella in all specimens and visible on MRI [medially (100% of specimens), mean length 56.2 ± 8.9 mm, laterally (83%), mean length 23.9 ± 6.2 mm]. Mean IFP volume was 29.2 ± 6.1 ml. The LMuc, attached near the base of the middle IFP lobe, acting as a 'tether' drawing it superiorly during knee extension. The medial lobe consistently had a pedicle superomedially, positioned between the patella and medial trochlea. MRI scans demonstrated how the space between the anterior tibia and patellar tendon ('the anterior interval') narrowed during knee flexion, displacing the IFP superiorly and posteriorly as it conformed to the trochlear and intercondylar notch surfaces. Proximal IFP extensions are a novel description. The IFP is a dynamic structure, displacing significantly during knee motion, which is, therefore, vulnerable to interference from trauma or repetitive overload. Given that this trauma is often surgical, it may be appropriate that surgeons learn to minimize injury to the fat pad at surgery.

  2. Fat Embolism Among Patients with Hip and Long Bone Fractures in Albania

    PubMed Central

    Hysa, Elida

    2012-01-01

    Objective: The aim of this study was to assess the incidence and the effectiveness of treatment of fat embolism in patients with hip and long bone fractures (femur and tibia) in Albania. Methods: 229 patients (68% men) with combined hip and long bone fractures (femur and tibia) hospitalized at the Orthopedics-Traumatology Services of the University Center “Mother Teresa” during 2004-2006 were included in the study. Patients were classified into three groups based on astrupogram data: PaO2<60mmHg, 65mmHg75mmHg. Chi square test was used to compare fracture differences between men and women and the effectiveness of combined use of metilprednisolon and anticoagulants vs. anticoagulants alone. Results: Poly traumas combined with femur fracture were more frequent in 2005. These combined poly traumas combined were more frequent among men than women (P<0.001). Remarkably, femur fractures were more frequent among men than women (9:1). Coli femur fractures peaked in the age-group 76-85 years. In general, poly traumas were less frequent in the older age groups, with a peak between 36-55 years, being more frequent among men, but the difference was not statistically significant. Fractures of coli femur and those of tibia were more frequent in 2006, while in 2004 femur fractures were more frequent. In almost all age groups fractures of coli femur were more frequent, followed by fractures of femur and tibia. In general, poly traumas were more frequent among men than women, ranging from 6:1 for fractures of femur to 2:1 for tibia fractures. The incidence of fat embolism ranged from 4.9% to 8.9% for the period 2004-2006. Among fat embolism patients, 100% of them had tachycardia, 88.2% had petechia, 84% tachipnea, 23.5% cyanosis and blood sputum, and 41.2% obnubilation. In general, during 2004-2006 the frequency of combined use of metilprednisolon and anticoagulants has increased. Conclusions: Clinical diagnosis remains the most important element for the detection of fat embolism syndrome. The incidence of fat embolism was 8-9 times higher than the rates reported in literature. This finding is linked with trauma gravity in Albania. Combined use of metilprednisolon with anticoagulants seems to be more effective than use of anticoagulants alone in preventing fat embolism (P<0.05) and patients using the combined therapy have experienced milder forms of disease. Therefore, the combined treatment should be preferred over the single treatment for the prevention of fat embolism. PMID:23678329

  3. Fat embolism among patients with hip and long bone fractures in Albania.

    PubMed

    Hysa, Elida

    2012-01-01

    The aim of this study was to assess the incidence and the effectiveness of treatment of fat embolism in patients with hip and long bone fractures (femur and tibia) in Albania. 229 patients (68% men) with combined hip and long bone fractures (femur and tibia) hospitalized at the Orthopedics-Traumatology Services of the University Center "Mother Teresa" during 2004-2006 were included in the study. Patients were classified into three groups based on astrupogram data: PaO2<60mmHg, 65mmHg75mmHg. Chi square test was used to compare fracture differences between men and women and the effectiveness of combined use of metilprednisolon and anticoagulants vs. anticoagulants alone. Poly traumas combined with femur fracture were more frequent in 2005. These combined poly traumas combined were more frequent among men than women (P<0.001). Remarkably, femur fractures were more frequent among men than women (9:1). Coli femur fractures peaked in the age-group 76-85 years. In general, poly traumas were less frequent in the older age groups, with a peak between 36-55 years, being more frequent among men, but the difference was not statistically significant. Fractures of coli femur and those of tibia were more frequent in 2006, while in 2004 femur fractures were more frequent. In almost all age groups fractures of coli femur were more frequent, followed by fractures of femur and tibia. In general, poly traumas were more frequent among men than women, ranging from 6:1 for fractures of femur to 2:1 for tibia fractures. The incidence of fat embolism ranged from 4.9% to 8.9% for the period 2004-2006. Among fat embolism patients, 100% of them had tachycardia, 88.2% had petechia, 84% tachipnea, 23.5% cyanosis and blood sputum, and 41.2% obnubilation. In general, during 2004-2006 the frequency of combined use of metilprednisolon and anticoagulants has increased. Clinical diagnosis remains the most important element for the detection of fat embolism syndrome. The incidence of fat embolism was 8-9 times higher than the rates reported in literature. This finding is linked with trauma gravity in Albania. Combined use of metilprednisolon with anticoagulants seems to be more effective than use of anticoagulants alone in preventing fat embolism (P<0.05) and patients using the combined therapy have experienced milder forms of disease. Therefore, the combined treatment should be preferred over the single treatment for the prevention of fat embolism.

  4. Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats

    PubMed Central

    Tomaszewska, Ewa; Kurlak, Paulina; Pierzynowski, Stefan G

    2015-01-01

    Gastrectomy (Gx) leads to osteopenia/osteoporosis in humans and animals. However, little is known about the influence of Gx on the cartilage in this regard. Recent studies have demonstrated a protective effect of 2-oxoglutaric acid (2-Ox) on bone and cartilage. Hence, the purpose of this study was to investigate whether 2-Ox can mitigate eventual Gx-induced cartilage impairment. Twenty female Sprague-Dawley rats were subjected to Gx and randomly divided into two groups: Gx + 2-Ox and Gx. Another 20 rats were sham-operated (ShO) and randomly divided into two groups: ShO + 2-Ox and ShO. The daily dose of 2-Ox administered to the rats in the drinking water was 0.43 g per 100 g rat. After eight weeks, rats were euthanized and femora and tibiae were collected. Histology and histomorphometry analyses of the articular cartilage and the growth plate were done. Gx resulted in a 32% (±44.5 femur, ±35.8 tibia) decrease in overall thickness of articular cartilage in both bones (femur: ShO 279.1 ± 48.5 vs. Gx 190.2 ± 38.4 µm, tibia: ShO 222.9 ± 50.3 µm vs. Gx 151.3 ± 52.6 µm) (in some zones up to 58 ± 28.0%), and in the growth plate up to 20% (±22.4) (femur: ShO 243.0 ± 34.0 vs. Gx 207.0 ± 33.7 µm, tibia: ShO 220.0 ± 24.6 µm vs. Gx 171.1 ± 16.1 µm). Gx altered the spatial distribution of thick and thin collagen fibers, and chondrocyte shape and size. 2-Ox administration prevented the reduction in both cartilages thickness (Gx + 2-Ox: articular cartilage 265.2 ± 53.8 µm, 235.6 ± 42.7 µm, growth plate 236.7 ± 39.2 µm, 191.3 ± 16.5 µm in femur and tibia, respectively), and abolished the spatial changes in collagen distribution and structure induced by Gx. Gx affects cartilage structure and thickness, however, 2-Ox administration mitigates these effects and showed protective and stimulatory properties. Our observations suggest that dietary 2-Ox can be used to offset some of the changes in hyaline cartilage, in particular articular cartilage, following bariatric surgeries. PMID:26202375

  5. How Does Ankle-foot Orthosis Stiffness Affect Gait in Patients With Lower Limb Salvage?

    DTIC Science & Technology

    2014-05-10

    characteristics Group Age (years) Height Mass Months of IDEO use Diagnosis IDEO 1 28 1.92 96.4 3.9 R LE neuropathy 2 21 1.79 95.7 11.3 R paresis 3 30...1.78 97.3 7.5 R LE tissue loss/trauma 4 40 1.81 81.0 9.3 L ankle fracture and osteoarthritis 5 30 1.75 79.1 9.8 L tibia/fibula fracture 6 30 1.76 78.2...11.0 L LE neuropathy, crushed tibia/fibula 7 36 1.78 75.5 4.4 L LE talar fracture, multiple fractures 8 22 1.64 80.3 9.0 R LE tissue loss/trauma 9 27

  6. Surface-based haemangioma of the tibia: a case report.

    PubMed

    Di Giorgio, Luigi; Valentini, Matteo Benedetti; Mastantuono, Marco; Touloupakis, Georgios

    2008-12-01

    We present in this paper a case of surface-based haemangioma of the tibia in a 34-year-old patient which had been misdiagnosed as periostitis. X-ray examination demonstrated a periosteal reaction, confirmed by a MRI showing a soft tissue mass adjacent to bone. We performed an incisional biopsy and made a diagnosis of haemangioma only after examining the histological results. An angiographic study was performed in order to have embolisation of the vessels, but this was not possible because of the excessive number and calibre of afferent arteries. No further symptoms arose after biopsy and therefore an en bloc or radical excision was not performed. Indications for making a correct diagnosis and performing a suitable treatment are presented below.

  7. The skeletal structure of insulin-like growth factor I-deficient mice

    NASA Technical Reports Server (NTRS)

    Bikle, D.; Majumdar, S.; Laib, A.; Powell-Braxton, L.; Rosen, C.; Beamer, W.; Nauman, E.; Leary, C.; Halloran, B.

    2001-01-01

    The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (muCT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact.

  8. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential.

    PubMed

    Ferraro, Vincenza; Gaillard-Martinie, Brigitte; Sayd, Thierry; Chambon, Christophe; Anton, Marc; Santé-Lhoutellier, Véronique

    2017-04-01

    Natural collagen is easily available from animal tissues such as bones. Main limitations reported in the use of natural collagen are heterogeneity and loss of integrity during recovery. However, its natural complexity, functionality and bioactivity still remain to be achieved through synthetic and recombinant ways. Variability of physicochemical properties of collagen extracted from bovine bone by acetic acid was then investigated taking into account endogenous and exogenous factors. Endogenous: bovine's bones age (4 and 7 years) and anatomy (femur and tibia); exogenous: thermal treatments (spray-drying and lyophilisation). Scanning electron microscopy, spectroscopy (EDS, FTIR, UV/Vis and CD), differential scanning calorimetry (DSC), centesimal composition, mass spectrometry, amino acids and zeta-potential analysis were used for the purpose. Age correlated negatively with yield of recovery and positively with minerals and proteoglycans content. Comparing the anatomy, higher yields were found for tibias, and higher stability of tibias collagen in solution was noticed. Whatever the age and the anatomy, collagens were able to renature and to self-assemble into tri-dimensional structures. Nonetheless thermal stability and kinetics of renaturation were different. Variability of natural collagen with bone age and anatomy, and drying methodology, may be a crucial advantage to conceive tailor-made applications in either the biological or technical sector. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus).

    PubMed

    Nganvongpanit, Korakot; Siengdee, Puntita; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Angkawanish, Taweepoke; Thitaram, Chatchote

    2017-09-01

    This study evaluated the morphology and elemental composition of Asian elephant (Elephas maximus) bones (humerus, radius, ulna, femur, tibia, fibula and rib). Computerized tomography was used to image the intraosseous structure, compact bones were processed using histological techniques, and elemental profiling of compact bone was conducted using X-ray fluorescence. There was no clear evidence of an open marrow cavity in any of the bones; rather, dense trabecular bone was found in the bone interior. Compact bone contained double osteons in the radius, tibia and fibula. The osteon structure was comparatively large and similar in all bones, although the lacuna area was greater (P < 0.05) in the femur and ulna. Another finding was that nutrient foramina were clearly present in the humerus, ulna, femur, tibia and rib. Twenty elements were identified in elephant compact bone. Of these, ten differed significantly across the seven bones: Ca, Ti, V, Mn, Fe, Zr, Ag, Cd, Sn and Sb. Of particular interest was the finding of a significantly larger proportion of Fe in the humerus, radius, fibula and ribs, all bones without an open medullary cavity, which is traditionally associated with bone marrow for blood cell production. In conclusion, elephant bones present special characteristics, some of which may be important to hematopoiesis and bone strength for supporting a heavy body weight.

  10. Bioavailability of zinc in two zinc sulfate by-products of the galvanizing industry.

    PubMed

    Edwards, H M; Boling, S D; Emmert, J L; Baker, D H

    1998-10-01

    Two Zn depletion/repletion assays were conducted with chicks to determine the relative bioavailability (RBV) of Zn from two new by-products of the galvanizing industry. Using a soy concentrate-dextrose diet, slope-ratio methodology was employed to evaluate two different products: Fe-ZnSO4 x H2O with 20.2% Fe and 13.0% Zn, and Zn-FeSO4 x H2O with 14.2% Fe and 20.2% Zn. Feed-grade ZnSO4 x H2O was used as a standard. Weight gain, tibia Zn concentration, and total tibia Zn responded linearly (P < 0.01) to Zn supplementation from all three sources. Slope-ratio calculations based on weight gain established average Zn RBV values of 98% for Fe-ZnSO4 x H2O and 102% for Zn-FeSO4 x H2O, and these values were not different (P > 0.10) from the ZnSO4 standard (100%). Slope-ratio calculations based on total tibia Zn established average Zn RBV values of 126% for Fe-ZnSO4 x H2O and 127% for Zn-FeSO4 x H2O, and these values were greater (P < 0.01) than those of the ZnSO4 standard (100%). It is apparent that both mixed sulfate products of Fe and Zn are excellent sources of bioavailable Zn.

  11. Heat generation by two different saw blades used for tibial plateau leveling osteotomies.

    PubMed

    Bachelez, Andreas; Martinez, Steven A

    2012-01-01

    During tibial plateau leveling osteotomy (TPLO) the saw blade produces frictional heat. The purpose of this study was to evaluate and compare heat generated by two TPLO blade designs (Slocum Enterprises [SE] and New Generation Devices [NDG]), with or without irrigation, on cadaveric canine tibias. Thirty-six paired tibias were used to continuously measure bone temperatures during osteotomy through both cortices (i.e., the cis and trans cortices). Each pair was assigned to either an irrigation or nonirrigation group during osteotomy, and each tibia within a pair was osteotomized using a different saw blade design. Saw blade temperatures were recorded and temperatures were compared for all combinations of blade type, cortex, and irrigation. In the cis cortex group, the SE blade generated more bone heat than the NGD blade (P=0.0258). Significant differences in temperature generation between saw blade types were seen only when the osteotomy site was not irrigated (P=0.0156). For all variables measured, bone and saw blade temperature generation was lower with irrigation (P<0.05). None of the osteotomies performed with either saw blade produced a critical duration of damaging temperature ranges in this study. Although saw blade design and irrigation influence heat generation during the TPLO, the potential for bone thermal damage during TPLO is low. The use of the NGD blade with irrigation is recommended.

  12. Kinematic repeatability of a multi-segment foot model for dance.

    PubMed

    Carter, Sarah L; Sato, Nahoko; Hopper, Luke S

    2018-03-01

    The purpose of this study was to determine the intra and inter-assessor repeatability of a modified Rizzoli Foot Model for analysing the foot kinematics of ballet dancers. Six university-level ballet dancers performed the movements; parallel stance, turnout plié, turnout stance, turnout rise and flex-point-flex. The three-dimensional (3D) position of individual reflective markers and marker triads was used to model the movement of the dancers' tibia, entire foot, hindfoot, midfoot, forefoot and hallux. Intra and inter-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability for the first metatarsophalangeal joint in the sagittal plane. Intra-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability during flex-point-flex across all inter-segmental angles except for the tibia-hindfoot and hindfoot-midfoot frontal planes. Inter-assessor repeatability ranged from poor to excellent (0.5 > ICC ≥ 0.75) for the 3D segment rotations. The most repeatable measure was the tibia-foot dorsiflexion/plantar flexion articulation whereas the least repeatable measure was the hindfoot-midfoot adduction/abduction articulation. The variation found in the inter-assessor results is likely due to inconsistencies in marker placement. This 3D dance specific multi-segment foot model provides insight into which kinematic measures can be reliably used to ascertain in vivo technical errors and/or biomechanical abnormalities in a dancer's foot motion.

  13. Safety assessment characteristics of pedestrian legform impactors in vehicle-front impact tests.

    PubMed

    Matsui, Yasuhiro

    2014-12-01

    This study investigated the characteristics of safety assessment results of front-area vehicle impact tests carried out using the Transport Research Laboratory (TRL) legform impactor and a flexible legform impactor (FLEX legform impactor). Different types of vehicles (sedan, sport utility vehicle, high-roof K-car, and light cargo van) were examined. The impact locations in the study were the center of the bumper and an extremely stiff structure of the bumper (i.e., in front of the side member) of each tested vehicle. The measured injury criteria were normalized by injury assessment reference values of each legform impactor. The test results for center and side-member impacts indicated that there were no significant differences in ligament injury assessments derived from the normalized knee ligament injury measures between the TRL legform impactor and the FLEX legform impactor. Evaluations made using the TRL legform impactor and the FLEX legform impactor are thus similar in the vehicle safety investigation for knee ligament injury. Vehicle-center impact test results revealed that the tibia fracture assessments derived from the normalized tibia fracture measures did not significantly differ between the TRL legform impactor and the FLEX legform impactor. However, for an impact against an extremely stiff structure, there was a difference in the tibia fracture assessment between the FLEX legform impactor and the TRL legform impactor owing to their different sensor types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Morphological Anatomy of the Menisci of the Knee Joint in Human Fetuses

    PubMed Central

    Koyuncu, Esra; Özgüner, Gülnur; Öztürk, Kenan; Bilkay, Cemil; Dursun, Ahmet; Sulak, Osman

    2017-01-01

    Background: Development of the foetal period of the meniscus has been reported in different studies. Aims: Evaluation of lateral and medial meniscus development, typing and the relationship of the tibia during the foetal period. Study Design: Anatomical dissection. Methods: We evaluated 210 knee menisci obtained from 105 human foetuses ranging in age from 9 to 40 weeks’ gestation. Foetuses were divided into four groups, and the intra-articular structure was exposed. We subsequently acquired images (Samsung WB 100 26X Optical Zoom Wide, Beijing, China) of the intra-articular structures with the aid of a millimetric ruler. The images were digitized for morphometric analyses and analysed by using Netcad 5.1 Software (Ak Mühendislik, Ankara, Turkey). Results: The lateral and medial meniscal areas as well as the lateral and the medial articular surface areas of the tibia increased throughout gestation. We found that the medial articular surface areas were larger than the lateral articular surface areas, and the difference was statistically significant. The ratios of the mean lateral and medial meniscal areas to the lateral and medial articular surface areas, respectively, of the tibia decreased gradually from the first trimester to full term. The most common shape of the medial meniscus was crescentic (50%), and that of the lateral meniscus was C-shaped (61%). Conclusion: This study reveals the development of morphological changes and morphometric measurements of the menisci. PMID:28832324

  15. Growth of C57BL/6 mice and the material and mechanical properties of cortical bone from the tibia.

    PubMed

    Somerville, J M; Aspden, R M; Armour, K E; Armour, K J; Reid, D M

    2004-05-01

    Murine models are becoming increasingly important for studying skeletal growth and regulation because of the relative ease with which their genomes can be manipulated. This study measured the changes in cortical bone of tibiae from one of the more common models, the C57Bl/6, as a function of aging. A total of 97 mice, male and female, were studied at the ages of 1, 2, 3, 6, 9, and 12 months. The body weight of the animals, the length of the tibiae, the composition (in terms of mineral and organic mass fractions), and the density and modulus of the bone were measured. Peripheral quantitative computed tomography was also used to measure bone mineral density (BMD), total and cortical areas, and the cross-sectional moment of inertia. Most parameters measured followed a growth-like curve, which leveled off some time before 6 months of age. Bone composition and modulus were the same at maturity in both sexes, but there were sex-related differences in the modulus with aging. Dimensional measurements and the density of the bone showed significant differences between male and female animals at all ages, with the male mice having larger values. Skeletal maturity for most factors in C57Bl/6 mice has been reached before the age of 6 months.

  16. Hydrogen-rich saline prevents bone loss in diabetic rats induced by streptozotocin.

    PubMed

    Guo, Jialiang; Dong, Weichong; Jin, Lin; Wang, Pengcheng; Hou, Zhiyong; Zhang, Yingze

    2017-10-01

    As an antioxidant molecule, hydrogen has been received much more attention and reported to be used as the treatment strategy for various diseases. In this study, we hypothesize that systemic delivery of hydrogen saline water may improve the reservation of bone tissue in the tibias and femurs of osteoporotic rats caused by diabetes mellitus (DM), which is characterized by increased levels of oxidative stress and overproducing reactive oxygen species (ROS). The animals were divided into three groups of 12 animals and lavaged with normal saline (normal control and DM), or hydrogen saline water (DM + HRS). General status, blood glucose level, tibial and femoral mechanical strength, and micro-CT scans of the proximal tibia were recorded and analyzed. After 12 weeks, the glucose level was significantly decreased in the DM + HRS group compared with that of the DM group. Micro-CT scans showed that bone volume/total volume, connectivity density, trabecular thickness, and trabecular number were significantly increased compared with the DM group. Mechanical results of energy, stiffness and elastic modulus in the DM + HRS group were significantly higher than in the other groups for the tibia and femur. The results indicate that the systemic delivery of hydrogen saline water, which is safe and well tolerated, preserves bone volume and decreases fracture risks in streptozotocin-induced diabetic status rats, whose bone structure or inherent material properties of bone tissues are changed.

  17. Effects of local vibration and pulsed electromagnetic field on bone fracture: A comparative study.

    PubMed

    Bilgin, Hakkı Murat; Çelik, Ferhat; Gem, Mehmet; Akpolat, Veysi; Yıldız, İsmail; Ekinci, Aysun; Özerdem, Mehmet Siraç; Tunik, Selçuk

    2017-07-01

    The effectiveness of various therapeutic methods on bone fracture has been demonstrated in several studies. In the present study, we tried to evaluate the effect of local low-magnitude, high-frequency vibration (LMHFV) on rat tibia fracture in comparison with pulsed electromagnetic fields (PEMF) during the healing process. Mid-diaphysis tibiae fractures were induced in 30 Sprague-Dawley rats. The rats were assigned into groups such as control (CONT), LMHFV (15 min/day, 7 days/week), and PEMF (3.5 h/day, 7 days/week) for a three-week treatment. Nothing was applied to control group. Radiographs, serum osteocalcin levels, and stereological bone analyses of the three groups were compared. The X-rays of tibiae were taken 21 days after the end of the healing process. PEMF and LMHFV groups had more callus formation when compared to CONT group; however, the difference was not statistically significant (P = 0.375). Serum osteocalcin levels were elevated in the experimental groups compared to CONT (P ≤ 0.001). Stereological tests also showed higher osteogenic results in experimental groups, especially in LMHFV group. The results of the present study suggest that application of direct local LMHFV on fracture has promoted bone formation, showing great potential in improving fracture outcome. Bioelectromagnetics. 38:339-348, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effects of counter torque and transposition (transfer) of installed implants timing on their integration in dog tibia

    PubMed Central

    Fathi, Shima; Ghanavati, Farzin

    2015-01-01

    PURPOSE The purpose of this research was to evaluate the amount of reosseointegration after counter torquing (reverse torque) and transposing the installed implants at different times. MATERIALS AND METHODS This study was done on ten tibiae of five cross-bred dogs. At the first day one implant was installed in each tibia. After one week half of the implants were randomly counter torqued (1WCT) and the other half were explanted and reimplanted in a new juxtaposition site (transposed)(1WT). At the same time three new implants were installed in each dog, one of them was considered as one week control (1WC) and remaining two as 8 week groups (8WCT&8WT). After eight weeks the 1WCT and 1WT implants were loosened by counter torque and the quantity of needed force for liberation was measured with the digital device (BGI). At the same time one implant was installed in each dog as eight week control (8WC) and the same protocol was repeated for 8 week groups after another 8 weeks. RESULTS All implants were osseointegrated. Mean quantities of osseointegration in case groups indicated better amounts rather than control groups. CONCLUSION Counter torque or transposition of the installed implants one week or eight weeks after the implantation did lead to osseointegration. PMID:25722840

  20. Comparison between the effects of platelet-rich plasma and bone marrow concentrate on defect consolidation in the rabbit tibia

    PubMed Central

    Batista, Marco Antonio; Leivas, Tomaz Puga; Rodrigues, Consuelo Junqueira; Arenas, Géssica Cantadori Funes; Belitardo, Donizeti Rodrigues; Guarniero, Roberto

    2011-01-01

    OBJECTIVE: To perform a comparative analysis of the effects of platelet-rich plasma and centrifuged bone marrow aspirate on the induction of bone healing in rabbits. METHOD: Twenty adult, male New Zealand rabbits were randomly separated into two equal groups, and surgery was performed to create a bone defect (a cortical orifice 3.3 mm in diameter) in the proximal metaphysis of each rabbit's right tibia. In the first group, platelet-rich plasma was implanted in combination with β-tricalcium phosphate (platelet-rich plasma group), and in the second group, centrifuged bone marrow in combination with β-tricalcium phosphate (centrifuged bone marrow group) was implanted. After a period of four weeks, the animals were euthanized, and the tibias were evaluated using digital radiography, computed tomography, and histomorphometry. RESULTS: Seven samples from each group were evaluated. The radiographic evaluation confirmed the absence of fractures in the postoperative limb and identified whether bone consolidation had occurred. The tomographic evaluation revealed a greater amount of consolidation and the formation of a greater cortical bone thickness in the platelet-rich plasma group. The histomorphometry revealed a greater bone density in the platelet-rich plasma group compared with the centrifuged bone marrow group. CONCLUSION: After four weeks, the platelet-rich plasma promoted a greater amount of bone consolidation than the bone marrow aspirate concentrate. PMID:22012052

  1. Radiological, histological, and hematological evaluation of hydroxyapatite-coated resorbable magnesium alloy screws placed in rabbit tibia.

    PubMed

    Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jin-Yong; Lee, Jung-Woo; Kim, Sae-Mi; Lee, Sung-Mi; Kim, Hyoun-Ee; Lee, Jong-Ho

    2017-08-01

    Titanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties. In this research, magnesium alloy screws (WE43: Mg-Y-Nd-Zr) that have advantages of titanium and polymer were manufactured. In addition, to increase biocompatibility and control degradation rate, the Mg alloy was coated with hydroxyapatite (HA). Torsion test and corrosion test were performed in vitro. For clinical, radiological and histological evaluation, on the eight rabbits, two HA-coated screws were installed in left tibia, and two noncoated screws were installed in right tibia. Each four rabbits were sacrificed 6 and 12 weeks postoperatively. For hematological evaluation, the same type of screws were installed on both legs. Complete blood count (CBC), Mg 2+ concentrate were sampled from the ear central artery on the operation day for a control point, and at 1, 2, 4, 6, 8, and 12 weeks. Mg alloy screws have no differences of biocompatibility according to the HA coating. However, resorption of screw was slower in case of the HA coating. The hematological problem related releasing of Mg was not found. The results suggest that Mg alloy screws have feasibility for clinical application. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1636-1644, 2017. © 2016 Wiley Periodicals, Inc.

  2. Are there any advantages in using a distal aiming device for tibial nailing? Comparing the Centro Nailing System with the Unreamed Tibia Nail.

    PubMed

    Veen, Egbert J D; Ettema, Harmen B; Zuurmond, Rutger G; Mostert, Adriaan K

    2011-10-01

    The distal locking of an intramedullary tibial nail can be challenging and time consuming when performed freehand. This study was conducted to evaluate if a distal aiming device would reduce surgical time. A case-controlled study was performed between 2007 and 2009 with 30 patients receiving a reamed tibial nail (Centronail) with the use of a distal aiming device and 30 patients who were treated with an Unreamed Tibia Nail (UTN), with freehand distal locking, in the same period. The primary outcome in this study was operative time. Secondary outcomes were the need for fluoroscopy, time to consolidation and complications. Operation time was longer in the Centronail group compared with the UTN group (126 min vs. 96 min, p=0.000). Use of fluoroscopy for distal locking was needed in half of the cases (n=16) using a distal aiming device. No differences were found regarding time to consolidation, time to removal of the nail and complications. The use of an aiming device for distal locking of a tibia nail lengthens operation time rather than reducing it. Fluoroscopy was still needed in about half of the cases. No difference was seen in clinical outcomes. The use of a distal aiming device to lock a tibial nail appears to have no benefit. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Hormone replacement therapy may reduce the return of endogenous lead from bone to the circulation.

    PubMed Central

    Webber, C E; Chettle, D R; Bowins, R J; Beaumont, L F; Gordon, C L; Song, X; Blake, J M; McNutt, R H

    1995-01-01

    Hormone replacement therapy (HRT) in postmenopausal women suppresses the increase in bone resorption expected as circulating levels of endogenous estrogen decline. We tested the hypothesis that bone lead content might remain elevated in women on HRT. Fifty six women who at recruitment were on average 35 years postmenopausal were placed on calcium supplementation. Six months later 33 of these women were prescribed either low dose or moderate dose hormone replacement in addition to the calcium supplementation. After approximately 4 years of hormone replacement, lead content was measured at the tibia and calcaneus by in vivo fluorescence excitation, and lead concentrations were measured in serum, whole blood, and urine. Women not taking hormones had significantly lower lead concentrations in cortical bone compared to all women on HRT (p = 0.007). Tibia lead content (mean +/- SD) for women on calcium only was 11.13 +/- 6.22 microgram/g bone mineral. For women on HRT, tibia bone lead was 19.37 +/- 8.62 micrograms/g bone mineral on low-dose HRT and 16.87 +/- 11.68 micrograms/g bone mineral on moderate-dose HRT. There were no differences between groups for lead concentrations measured in trabecular bone, whole blood, serum or urine. Hormone replacement maintains cortical bone lead content. In women not on HRT, there will be a perimenopausal release of lead from bone. Images Figure 1. PMID:8747022

  4. The effect of both a thoracic trauma and a soft-tissue trauma on fracture healing in a rat model

    PubMed Central

    2011-01-01

    Background and purpose There is some clinical evidence that fracture healing is impaired in multiply injured patients. Nothing is known, however, about the effects of various types of injuries and their contribution to a possible disturbance of the fracture-healing process. We investigated the effect of a thoracic trauma and an additional soft-tissue trauma on fracture healing in a rat tibia model. Methods 3 groups of rats were operated: group A with a simple fracture of the tibia and fibula, group B with a fracture and an additional thoracic trauma, and group C with a fracture, thoracic trauma, and an additional soft-tissue trauma. The fracture and the soft-tissue injury were produced by a special guillotine-like device and the thoracic trauma by a blast wave generator. After one day, the serum level of IL-6 was quantified, and at the end of the study (28 days) the mechanical properties and the callus volume of the healed tibia were determined. Results Increasing the severity of the injury caused IL-6 levels to more than double 1 day after injury. It halved the load to failure in mechanical tests and led to reduced callus volume after 28 days of healing. Interpretation Fracture healing is impaired when additional thoracic trauma and soft tissue trauma occurs. PMID:21463222

  5. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.

    PubMed

    Nilsson, M; Wang, J S; Wielanek, L; Tanner, K E; Lidgren, L

    2004-01-01

    An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.

  6. A skeletal case of hypertrophic osteoarthropathy from the Canary Islands dating from 1000 BP.

    PubMed

    González-Reimers, Emilio; Trujillo-Mederos, Aioze; Machado-Calvo, Manuel; Castañeyra-Ruiz, María; Ordóñez, Alejandra C; Arnay-de-la-Rosa, Matilde

    2015-12-01

    A left tibia, the distal right tibia, and the proximal four fifths of the right ulna and radius, probably belonging to an adult prehispanic man (antiquity of ≈1000 years BP) were found among commingled bone remains in a collective burial cave of the island of El Hierro, in the Canary Archipelago. All four bones show an intense periosteal bone formation, encrusting the preserved cortical bone of the diaphyses. Differential diagnosis include melorheostosis, syphilis, and leprosy, although the most likely diagnosis is hypertrophic osteoarthropathy, which is usually associated with lung neoplasm or non-malignant diseases leading to chronic hypoxemia. The marked bone proliferation, possibly due to a chronic condition, suggests that possibly the underlying illness was a non-malignant one. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Anatomic Outside-In Reconstruction of the Anterior Cruciate Ligament Using Femoral Fixation with Metallic Interference Screw and Surgical Staples (Agrafe) in the Tibia: An Effective Low-Cost Technique.

    PubMed

    Diego, Ariel de Lima; Stemberg Martins, de Vasconcelos; Dias, Leite José Alberto; Moreira, Pinto Dilamar; Beltrão, Teixeira Rogério; Coelho, de Léo Álvaro; de Lima, Silveira Leonardo; Krause, Gonçalves Romeu; Carvalho Krause, Gonçalves Marcelo; Carolina Leite, de Vasconcelos Ana; Dias Costa, Filho Carlos Frederico; Lana Lacerda, de Lima

    2017-01-01

    An anterior cruciate ligament (ACL) rupture is a frequent injury, with short and long-term consequences if left untreated. With a view to benefitting as many patients as possible and preventing future complications, we created a low-cost ligament reconstruction technique. The present article describes an anatomic ACL reconstruction technique. The technique involves single-band reconstruction, using flexors tendon graft, outside-in tunnel perforation, femoral fixation with metal interference screw and surgical staples (Agrafe) in the longitudinal position. We present a simple, easy-to-reproduce technique that, when executed on patients with good bone quality, primarily in the tibia, is effective and inexpensive, favoring its large scale application.

  8. Anatomic Outside-In Reconstruction of the Anterior Cruciate Ligament Using Femoral Fixation with Metallic Interference Screw and Surgical Staples (Agrafe) in the Tibia: An Effective Low-Cost Technique

    PubMed Central

    Diego, Ariel de Lima; Stemberg Martins, de Vasconcelos,; Dias, Leite, José Alberto; Moreira, Pinto, Dilamar; Beltrão, Teixeira, Rogério; Coelho, de Léo, Álvaro; de Lima, Silveira, Leonardo; Krause, Gonçalves, Romeu; Carvalho Krause, Gonçalves, Marcelo; Carolina Leite, de Vasconcelos, Ana; Dias Costa, Filho, Carlos Frederico; Lana Lacerda, de Lima,

    2017-01-01

    Background: An anterior cruciate ligament (ACL) rupture is a frequent injury, with short and long-term consequences if left untreated. With a view to benefitting as many patients as possible and preventing future complications, we created a low-cost ligament reconstruction technique. Method: The present article describes an anatomic ACL reconstruction technique. Results: The technique involves single-band reconstruction, using flexors tendon graft, outside-in tunnel perforation, femoral fixation with metal interference screw and surgical staples (Agrafe) in the longitudinal position. Conclusion: We present a simple, easy-to-reproduce technique that, when executed on patients with good bone quality, primarily in the tibia, is effective and inexpensive, favoring its large scale application. PMID:29290851

  9. Two new species of Rhombognathus (Halacaridae, Trombidiformes) from a Mangrove in the northern littoral zone of São Paulo State (Brazil).

    PubMed

    Pepato, Almir R; Da Silveira, Paulo Sergio Amorim

    2015-01-14

    Two species belonging to the algivorous genus Rhombognathus are described from algae associated to mangrove trees. Rhombognathus aribus sp. nov. is similar to R. major Bartsch, 2005, but may be set apart by the lacking of the third pair of dorsal setae on Ocular plates, adjunct setae on Posterior Epimeral plates, absence of ventral setae on basifemura III-IV and presence of ventromedial bipectinate setae on tibiae II of all individuals and on tibiae III of most of them. Rhombognathus picinguabensis sp. nov. shares the leg chaetotaxy and shape of the lateral claws with R. parvulus Viets, 1939. The latter species, however, can be easily separated from the former due the fusion of all dorsal plates in a single dorsal shield. 

  10. Elicitation and abrupt termination of behaviorally significant catchlike tension in a primitive insect.

    PubMed

    Hoyle, G; Field, L H

    1983-07-01

    Sustained steady contractural or catchlike tension (CT) occurs in the metathoracic extensor tibiae muscle of the primitive insect the weta (Orthoptera: Stenopelmatidae) during its characteristic leg-extension defense behavior or following leg-position conditioning. Similar action occurs occasionally in semi-intact preparations and is abruptly turned off by a single peripheral inhibitory impulse. These phenomena were reproduced routinely by first infusing saline containing 10(-8) M (or stronger) octopamine into the muscle for 12 min, and then stimulating the slow excitatory motor neuron SETi with a brief burst. Direct stimulation of the dorsal unpaired median neuron, innervating the extensor tibiae (DUMETi) prior to SETi stimulation, also led to CT. Both octopamine and DUMETi markedly enhanced the tension developed in response to a burst of impulses in SETi.

  11. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta.

    PubMed

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Huang, Yihe; Ma, Yan; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-06-01

    The Col1a2(+/G610C) knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2(+/G610C) and their wild-type controls (Col1a2(+/+)), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2(+/G610C) with an LRP(+/A214V) high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2(+/G610C) tibias had 13% fewer secondary trabeculae than Col1a2(+/+), these were thinner (11%) and more widely spaced (20%) than those of Col1a2(+/+) mice. Vertebrae of Col1a2(+/G610C) mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1(a2+/+). The cortical bone of Col1a2(+/G610C) tibias at 2-months had 3% higher tissue mineral density compared to Col1a2(+/+); Col1a2(+/G610C) vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2(+/+). FTIRI analysis, which provides information on bone chemical composition at ~7μm-spatial resolution, showed tibias at 10-days did not differ between genotypes. Comparing identical bone types in Col1a2(+/G610C) to Col1a2(+/+) at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2(+/G610C) vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day-old trabecular bone in vertebrae (31%) and in 2-month old trabecular bone in both tibia (31%) and vertebrae (4%). There was also a 16% lower carbonate-to-phosphate ratio in vertebral trabeculae and a correspondingly higher (22%) carbonate-to-phosphate ratio in 2month-old vertebral cortices. At age 3-months-of-age, male femurs with both a Col1a2(+/G610C) allele and a Lrp5 high bone mass allele (Lrp5+/A214V) showed an improvement in bone composition, presenting higher trabecular carbonate-to-phosphate ratio (18%) and lower trabecular and cortical acid-phosphate substitutions (8% and 18%, respectively). Together, these results indicate that mutant collagen α2(I) chain affects both bone quantity and composition, and the usefulness of this model for studies of potential OI therapies such as anti-sclerostin treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Bone Mineral Properties in Growing Col1a2+/G610C Mice, an animal model of Osteogenesis Imperfecta

    PubMed Central

    Masci, Marco; Wang, Min; Imbert, Laurianne; Barnes, Aileen M; Spevak, Lyudmila; Lukashova, Lyudmila; Yihe, Huang; Yan, Ma; Marini, Joan C; Jacobsen, Christina M; Warman, Matthew L; Boskey, Adele L

    2016-01-01

    The Col1a2+/G610C knock-in mouse, models osteogenesis imperfecta in a large old order Amish family (OOA) with type IV OI, caused by a G-to-T transversion at nucleotide 2098, which alters the gly-610 codon in the triple-helical domain of the α2(I) chain of type I collagen. Mineral and matrix properties of the long bones and vertebrae of male Col1a2+/G610C and their wild-type controls (Col1a2+/+), were characterized to gain insight into the role of α2-chain collagen mutations in mineralization. Additionally, we examined the rescuability of the composition by sclerostin inhibition initiated by crossing Col1a2+/G610C with an LRP+/A214V high bone mass allele. At age 10-days, vertebrae and tibia showed few alterations by micro-CT or Fourier transform infrared imaging (FTIRI). At 2-months-of-age, Col1a2+/G610C tibias had 13% fewer secondary trabeculae than Col1a2+/+, these were thinner (11%) and more widely spaced (20%) than those of Col1a2+/+ mice. Vertebrae of Col1a2+/G610C mice at 2-months also had lower bone volume fraction (38%), trabecular number (13%), thickness (13%) and connectivity density (32%) compared to Col1a2+/+. The cortical bone of Col1a2+/G610C tibias at 2-months had 3% higher tissue mineral density compared to Col1a2+/+; Col1a2+/G610C vertebrae had lower cortical thickness (29%), bone area (37%) and polar moment of inertia (38%) relative to Col1a2+/+. FTIRI analysis, which provides information on bone chemical composition at ~ 7 µm-spatial resolution, showed tibias at 10-days, did not differ between genotypes. Comparing identical bone types in Col1a2+/G610C to Col1a2+/+ at 2-months-of-age, tibias showed higher mineral-to-matrix ratio in trabeculae (17%) and cortices (31%). and in vertebral cortices (28%). Collagen maturity was 42% higher at 10-days-of-age in Col1a2+/G610C vertebral trabeculae and in 2-month tibial cortices (12%), vertebral trabeculae (42%) and vertebral cortices (12%). Higher acid-phosphate substitution was noted in 10-day-old trabecular bone in vertebrae (31%) and in 2-month old trabecular bone in both tibia (31%) and vertebrae (4%). There was also a 16% lower carbonate-to-phosphate ratio in vertebral trabeculae and a correspondingly higher (22%) carbonate-to-phosphate ratio in 2 month-old vertebral cortices. At age 3- months-of-age, male femurs with both a Col1a2+/G610C allele and a Lrp5 high bone mass allele (Lrp5+/A214V) showed an improvement in bone composition, presenting higher trabecular carbonate-to-phosphate ratio (18%) and lower trabecular and cortical acid-phosphate substitutions (8% and 18%, respectively). Together, these results indicate that mutant collagen α2(I) chain affects both bone quantity and composition, and the usefulness of this model for studies of potential OI therapies such as anti-sclerostin treatments. PMID:27083399

  13. Should fractures in massive intercalary bone allografts of the lower limb be treated with ORIF or with a new allograft?

    PubMed

    Aponte-Tinao, Luis A; Ayerza, Miguel A; Muscolo, D Luis; Farfalli, Germán L

    2015-03-01

    Massive bone allografts have been used for limb salvage of bone tumor resections as an alternative to endoprostheses, although they have different outcomes and risks. There is no general consensus about when to use these alternatives, but when it is possible to save the native joints after the resection of a long bone tumor, intercalary allografts offer some advantages despite complications, such as fracture. The management and outcomes of this complication deserve more study. The purposes of this study were to (1) analyze the fracture frequency in a group of patients treated with massive intercalary bone allografts of the femur and tibia; (2) compare the results of allografts treated with open reduction and internal fixation (ORIF) with those treated with resection and repeat allograft reconstruction; and (3) determine the likelihood that treatment of a fracture resulted in a healed intercalary reconstruction. We reviewed patients treated with intercalary bone allografts between 1991 and 2011. During this period, patients were generally treated with intercalary allografts when after tumor resection at least 1 cm of residual epiphysis remained to allow fixation of the osteotomy junction. To obtain a homogeneous group of patients, we excluded allograft-prosthesis composites and osteoarticular and hemicylindrical intercalary allografts from this study. We analyzed the fracture rate of 135 patients reconstructed with segmental intercalary bone allografts of the lower extremities (98 femurs and 37 tibias). In patients whose grafts fractured were treated either by internal fixation or a second allograft, ORIF generally was attempted but after early failures in femur fractures, these fractures were treated with a second allograft. Using a chart review, we ascertained the frequency of osseous union, complications, and reoperations after the treatment of fractured intercalary allografts. Followup was at a mean of 101 months (range, 24-260 months); of the original 135 patients, no patient was lost to followup. At latest followup, 19 patients (14%) had an allograft fracture (16 femurs [16%] and three tibias [8%]). Six patients were treated with internal fixation and addition of autologous graft (three femurs and three tibias) and 13 patients were treated with a second intercalary allograft (13 femurs). The three patients with femoral allograft fractures treated with internal fixation and autologous grafts failed and were treated with a second allograft, whereas those patients with tibia allograft fractures treated by the same procedure healed without secondary complications. When we analyzed the 16 patients with a second intercalary allograft (13 as primary treatment of the fracture and three as secondary treatment of the fracture), five failed (31%) and were treated with resection of the allograft and reconstructed with an endoprosthesis (four patients) or an osteoarticular allograft (one patient). Fractures of intercalary allografts of the tibia could successfully be treated with internal fixation and autologous iliac crest bone graft; however, this treatment failed when used for femur allograft fractures. Femoral fractures could be treated with resection and repeat allograft reconstruction, however, with a higher refracture frequency. The addition of a vascularized fibular graft in the second attempt should be considered. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  14. Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats.

    PubMed

    Dobrowolski, Piotr; Tomaszewska, Ewa; Kurlak, Paulina; Pierzynowski, Stefan G

    2016-01-01

    Gastrectomy (Gx) leads to osteopenia/osteoporosis in humans and animals. However, little is known about the influence of Gx on the cartilage in this regard. Recent studies have demonstrated a protective effect of 2-oxoglutaric acid (2-Ox) on bone and cartilage. Hence, the purpose of this study was to investigate whether 2-Ox can mitigate eventual Gx-induced cartilage impairment. Twenty female Sprague-Dawley rats were subjected to Gx and randomly divided into two groups: Gx + 2-Ox and Gx. Another 20 rats were sham-operated (ShO) and randomly divided into two groups: ShO + 2-Ox and ShO. The daily dose of 2-Ox administered to the rats in the drinking water was 0.43 g per 100 g rat. After eight weeks, rats were euthanized and femora and tibiae were collected. Histology and histomorphometry analyses of the articular cartilage and the growth plate were done. Gx resulted in a 32% (±44.5 femur, ±35.8 tibia) decrease in overall thickness of articular cartilage in both bones (femur: ShO 279.1 ± 48.5 vs. Gx 190.2 ± 38.4 µm, tibia: ShO 222.9 ± 50.3 µm vs. Gx 151.3 ± 52.6 µm) (in some zones up to 58 ± 28.0%), and in the growth plate up to 20% (±22.4) (femur: ShO 243.0 ± 34.0 vs. Gx 207.0 ± 33.7 µm, tibia: ShO 220.0 ± 24.6 µm vs. Gx 171.1 ± 16.1 µm). Gx altered the spatial distribution of thick and thin collagen fibers, and chondrocyte shape and size. 2-Ox administration prevented the reduction in both cartilages thickness (Gx + 2-Ox: articular cartilage 265.2 ± 53.8 µm, 235.6 ± 42.7 µm, growth plate 236.7 ± 39.2 µm, 191.3 ± 16.5 µm in femur and tibia, respectively), and abolished the spatial changes in collagen distribution and structure induced by Gx. Gx affects cartilage structure and thickness, however, 2-Ox administration mitigates these effects and showed protective and stimulatory properties. Our observations suggest that dietary 2-Ox can be used to offset some of the changes in hyaline cartilage, in particular articular cartilage, following bariatric surgeries. © 2016 by the Society for Experimental Biology and Medicine.

  15. Quantification of functional brace forces for posterior cruciate ligament injuries on the knee joint: an in vivo investigation.

    PubMed

    LaPrade, Robert F; Smith, Sean D; Wilson, Katharine J; Wijdicks, Coen A

    2015-10-01

    Counteracting posterior translation of the tibia with an anterior force on the posterior proximal tibia has been demonstrated clinically to improve posterior knee laxity following posterior cruciate ligament (PCL) injury. This study quantified forces applied to the posterior proximal tibia by two knee braces designed for treatment of PCL injuries. The forces applied by two knee braces to the posterior proximal tibia and in vivo three-dimensional knee kinematics of six adult, male, healthy volunteer subjects (mean ± standard deviation: height, 182.5 ± 5.2 cm; body mass, 83.2 ± 9.3 kg; body mass index, 24.9 ± 1.5 kg/m(2); age, 25.8 ± 2.9 years) were measured using a custom pressure mapping technique and traditional surface marker motion capture techniques, while subjects performed three functional activities. The activities included seated unloaded knee flexion, squatting, and stair descent in a new generation dynamic force (DF) PCL brace and a static force (SF) PCL brace. During unloaded flexion at the lowest force level setting, the force applied by the DF brace increased as a function of flexion angle (slope = 0.7 N/°; p < 0.001) compared to the SF brace effect. Force applied by the SF brace did not significantly change as a function of flexion angle (slope = 0.0 N/°; n.s.). By 45° of flexion, the average force applied by the DF brace (48.1 N) was significantly larger (p < 0.001) than the average force applied by the SF brace (25.0 N). The difference in force continued to increase as flexion angle increased. During stair descent, average force (mean ± standard deviation) at toe off was significantly higher (p = 0.013) for the DF brace (78.7 ± 21.6 N) than the SF brace (37.3 ± 7.2 N). Similar trends were observed for squatting and for the higher force level settings. The DF brace applied forces to the posterior proximal tibia that dynamically increased with increased flexion angle. Additionally, the DF brace applied significantly larger forces at higher flexion angles compared to the SF brace where the PCL is known to experience larger in situ forces. Clinical studies are necessary to determine whether the loading characteristics of the DF brace, which more closely replicated the in situ loading profile of the native PCL, results in long-term improved posterior knee laxity following PCL injury. II.

  16. Shin Splints

    MedlinePlus

    Shin splints Overview The term "shin splints" refers to pain along the shin bone (tibia) — the large bone in the front of your lower leg. Shin splints are common in runners, dancers and military recruits. ...

  17. Impact of 4-methylbenzylidene camphor, daidzein, and estrogen on intact and osteotomized bone in osteopenic rats.

    PubMed

    Komrakova, Marina; Sehmisch, Stephan; Tezval, Mohammad; Schmelz, Ulrich; Frauendorf, Holm; Grueger, Thomas; Wessling, Thomas; Klein, Carolin; Birth, Miriam; Stuermer, Klaus M; Stuermer, Ewa K

    2011-11-01

    The study investigated the influence of 4-methylbenzylidene camphor (4-MBC), daidzein, and estradiol-17β-benzoate (E(2)) on either intact or osteotomized cancellous bone in ovariectomized (Ovx) rats. Three-month old Ovx rats were fed with soy-free (SF) diet over 8 weeks; thereafter, bilateral transverse metaphyseal osteotomy of tibia was performed and rats were divided into groups: rats fed with SF diet and SF diet supplemented with 4-MBC (200 mg), daidzein (50 mg), or E(2) (0.4 mg) per kilogram body weight. After 5 or 10 weeks, computed tomographical, biomechanical, histological, and ashing analyses were performed in lumbar spine and tibia of 12 rats from each group. 4-MBC and E(2) improved bone parameters in lumbar spine and tibia, were not favorable for osteotomy healing, and decreased serum osteocalcin level. However, daidzein improved bone parameters to a lesser extent and facilitated osteotomy healing. For lumbar spine, the bone mineral density was 338±9, 346±5, 361±6, and 360±5 mg/cm(3) in SF, daidzein, 4-MBC, and E(2), respectively, after 10 weeks. For tibia, the yield load was 98±5, 114±3, 90±2, and 52±4 N in SF, daidzein, 4-MBC, and E(2), respectively, after 10 weeks. Serum daidzein was 54±6 ng/ml in daidzein group and equol was not detected. Alp and Igf1 genes were down-regulated in callus after daidzein and E(2) compared with 4-MBC (week 5). The response of bone tissue and serum markers of bone metabolism could be ordered: daidzein<4-MBC

  18. An investigation into the magnitude of the current window and perception of transcutaneous electrical nerve stimulation (TENS) sensation at various frequencies and body sites in healthy human participants.

    PubMed

    Hughes, Nicola; Bennett, Michael I; Johnson, Mark I

    2013-02-01

    Strong nonpainful transcutaneous electrical nerve stimulation (TENS) is prerequisite to a successful analgesic outcome although the ease with which this sensation is achieved is likely to depend on the magnitude of current amplitude (mA) between sensory detection threshold (SDT) and pain threshold, that is, the current window. To measure the current window and participant's perception of the comfort of the TENS sensation at different body sites. A repeated measure cross-over study was conducted using 30 healthy adult volunteers. Current amplitudes (mA) of TENS [2 pulses per second (pps); 30 pps; 80 pps] at SDT, pain threshold, and strong nonpainful intensities were measured at the tibia (bone), knee joint (connective tissue), lower back [paraspinal (skeletal) muscle], volar surface of forearm (nerve) and waist (fat). The amplitude to achieve a strong nonpainful intensity was represented as a percentage of the current window. Data were analyzed using repeated measures analysis of variance. Effects were detected for body site and frequency for SDT (P<0.001, P=0.018, respectively), current window (P<0.001, P<0.001, respectively), and strong nonpainful TENS as a percentage of the current window (P=0.002, P<0.001, respectively). The current window was larger for the knee joint compared with tibia (difference [95% confidence interval]=12.76 mA [4.25, 21.28]; P=0.001) and forearm (10.33 mA [2.62, 18.40]; P=0.006), and for the lower back compared with tibia (12.10 mA [1.65, 22.52]; P=0.015) and forearm (9.65 mA [1.06, 18.24]; P=0.019). The current window was larger for 2 pps compared with 30 pps (P<0.001) and 80 pps (P<0.001). Participants rated strong nonpainful TENS as most comfortable at the lower back (P<0.001) and least comfortable at the tibia and forearm (P<0.001). TENS is most comfortable and easiest to titrate to a strong nonpainful intensity when applied over areas of muscle and soft tissue.

  19. Increased Cortical Porosity in Type-2 Diabetic Postmenopausal Women with Fragility Fractures

    PubMed Central

    Patsch, Janina M.; Burghardt, Andrew J.; Yap, Samuel P.; Baum, Thomas; Schwartz, Ann V.; Joseph, Gabby B.; Link, Thomas M.

    2012-01-01

    The primary goal of this study was to assess peripheral bone microarchitecture and strength in diabetic postmenopausal women with fragility fractures (DMFx) and to compare them with diabetic women without fracture (DM). Secondary goals were to assess differences in non-diabetic women with (Fx) and without fragility fractures (Co) and in women with (DM) and without diabetes (Co). Eighty women (mean age 61.3±5.7 yrs) were recruited into these groups (n=20 per group). Participants underwent DXA and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultradistal and distal radius and tibia. In the HR-pQCT images volumetric bone mineral density, cortical and trabecular structure measures, including cortical porosity, were calculated. Bone strength was estimated using micro-finite element analysis (μFEA). Differential strength estimates were obtained with and without open cortical pores. At the ultradistal and distal tibia, DMFx had greater intracortical pore volume (+52.6%, p=0.009; +95.4%, p=0.020), relative porosity (+58.1%; p=0.005; +87.9%, p=0.011) and endocortical bone surface (+10.9%, p=0.031; +11.5%, 0.019) than DM. At the distal radius DMFx had 4.7-fold greater relative porosity (p=0.000) than DM. At the ultradistal radius, intracortical pore volume was significantly higher in DMFx than DM (+67.8%, p=0.018). DMFx also displayed larger trabecular heterogeneity (ultradistal radius; +36.8%, p=0.035), and lower total and cortical BMD (ultradistal tibia: −12.6%, p=0.031; −6.8%, p=0.011) than DM. DMFx exhibited significantly higher pore-related deficits in stiffness, failure load and cortical load fraction at the ultradistal and distal tibia, and the distal radius than DM. Comparing non-diabetic Fx and Co, we only found a non-significant trend with increase in pore volume (+38.9%, p=0.060) at the ultradistal radius. The results of our study suggest that severe deficits in cortical bone quality are responsible for fragility fractures in postmenopausal diabetic women. PMID:22991256

  20. A Biomechanical Comparison Of Pin Configurations Used For Percutaneous Pinning Of Distal Tibia Fractures In Children.

    PubMed

    Brantley, Justin; Majumdar, Aditi; Jobe, J Taylor; Kallur, Antony; Salas, Christina

    2016-01-01

    Percutaneous pin fixation is often used in conjunction with closed-reduction and cast immobilization to treat pediatric distal tibia fractures. The goal of this procedure is to maintain reduction and provide improved stabilization, in effort to facilitate a more anatomic union. We conducted a biomechanical study of the torsional and bending stability of three commonly used pin configurations in distal tibia fracture fixation. A transverse fracture was simulated at the metaphyseal/diaphyseal junction in 15 synthetic tibias. Each fracture was reduced and fixed with two Kirschner wires, arranged in one of three pin configurations: parallel, retrograde, medial to lateral pins entering at the medial malleolus distal to the fracture (group A); parallel, antegrade, medial to lateral pins entering at the medial diaphysis proximal to the fracture (group B); or a cross-pin configuration with one retrograde, medial to lateral pin entering the medial malleolus distal to the fracture and the second an antegrade, medial to lateral pin entering at the medial diaphysis proximal to the fracture (group C). Stability of each construct was assessed by resistance to torsion and bending. Resistance to external rotation stress was significantly higher in group A than group B (P = 0.044). Resistance to internal rotation stress was significantly higher in group C than group B (P = 0.003). There was no significant difference in torsional stiffness when comparing group A with group C. Under a medial-directed load, group B and C specimens were significantly stiffer than those in group A (28 N/mm and 24 N/mm vs. 14 N/mm for A; P = 0.001 and P = 0.009, respectively). None of the three pin configurations produced superior results with respect to all variables studied. Group A configuration provided the highest resistance to external rotation forces, which is the most clinically relevant variable under short-cast immobilization. Parallel, retrograde, medial to lateral pins entering at the medial malleolus provide the greatest resistance to external rotation of the foot while minimizing the potential for iatrogenic injury to soft tissue structures.

  1. Comparison of the Fluid Resuscitation Rate with and without External Pressure Using Two Intraosseous Infusion Systems for Adult Emergencies, the CITRIN (Comparison of InTRaosseous infusion systems in emergency medicINe)-Study

    PubMed Central

    Gries, André; Hossfeld, Björn; Bechmann, Ingo; Bernhard, Michael

    2015-01-01

    Introduction Intraosseous infusion is recommended if peripheral venous access fails for cardiopulmonary resuscitation or other medical emergencies. The aim of this study, using body donors, was to compare a semi-automatic (EZ-IO®) device at two insertion sites and a sternal intraosseous infusion device (FASTR™). Methods Twenty-seven medical students being inexperienced first-time users were randomized into three groups using EZ-IO and FASTR. The following data were evaluated: attempts required for successful placement, insertion time and flow rates with and without external pressure to the infusion. Results The first-pass insertion success of the EZ-IO tibia, EZ-IO humerus and FASTR was 91%, 77%, and 95%, respectively. Insertion times (MW±SD) did not show significant differences with 17±7 (EZ-IO tibia) vs. 29±42 (EZ-IO humerus) vs. 33±21 (FASTR), respectively. One-minute flow rates using external pressures between 0 mmHg and 300 mmHg ranged between 27±5 to 69±54 ml/min (EZ-IO tibia), 16±3 to 60±44 ml/min (EZ-IO humerus) and 53±2 to 112±47 ml/min (FASTR), respectively. Concerning pressure-related increases in flow rates, negligible correlations were found for the EZ-IO tibia in all time frames (c = 0.107–0.366; p≤0.013), moderate positive correlations were found for the EZ-IO humerus after 5 minutes (c = 0.489; p = 0.021) and strong positive correlations were found for the FASTR in all time frames (c = 0.63–0.80; p≤0.007). Post-hoc statistical power was 0.62 with the given sample size. Conclusions The experiments with first-time users applying EZ-IO and FASTR in body donors indicate that both devices may be effective intraosseous infusion devices, likely suitable for fluid resuscitation using a pressure bag. Variations in flow rate may limit their reliability. Larger sample sizes will prospectively be required to substantiate our findings. PMID:26630579

  2. Time to initial operative treatment following open fracture does not impact development of deep infection: a prospective cohort study of 736 subjects.

    PubMed

    Weber, Donald; Dulai, Sukhdeep K; Bergman, Joseph; Buckley, Richard; Beaupre, Lauren A

    2014-11-01

    To evaluate the association between time to surgery, antibiotic administration, Gustilo grade, fracture location, and development of deep infection in open fractures. Prospective cohort between 2001 and 2009. Three Level 1 Canadian trauma centers. A total of 736 (791 fractures) subjects were enrolled and 686 subjects (93%; 737 fractures) provided adequate follow-up data (1-year interview and/or clinical follow-up >90 days). Demographics, injury information, time to surgery, and antibiotics were recorded. Subjects were evaluated using standardized data forms until the fracture(s) healed. Phone interviews were undertaken 1 year after the fracture. Infection requiring unplanned surgical debridement and/or sustained antibiotic therapy. Tibia/fibula fractures were most common (n = 413, 52%), followed by upper extremity (UE) (n = 285, 36%), and femoral (n = 93, 12%) fractures. Infection developed in 46 fractures (6%). The median time to surgery was 9 hours 4 minutes (interquartile range, 6 hours 39 minutes to 12 hours 33 minutes) and 7 hours 39 minutes (interquartile range, 6 hours 10 minutes to 9 hours 54 minutes) for those without and with infection, respectively (P = 0.04). Gustilo grade 3B/3C fractures accounted for 17 of 46 infections (37%) (P < 0.001). Four UE (1.5%), 7 femoral (8%), and 35 tibia/fibula (9%) fractures developed infections (P = 0.001). Multivariate regression found no association between infection and time to surgery [odds ratio (OR), 0.97; 95% confidence interval (95% CI), 0.90-1.06] or antibiotics (OR, 1.0; 95% CI, 0.90-1.05). Grades 3A (OR, 6.37; 95% CI, 1.37-29.56) and 3B/3C (OR, 12.87; 95% CI, 2.72-60.95) relative to grade 1 injuries and tibia/fibula (OR, 3.91; 95% CI, 1.33-11.53) relative to UE fractures were significantly associated with infection. Infection after open fracture was associated with increasing Gustilo grade or tibia/fibula fractures but not time to surgery or antibiotics. Prognostic level I. See instructions for authors for a complete description of levels of evidence.

  3. [The method of accelerating osteanagenesis and revascularization of tissue engineered bone in big animal in vivo].

    PubMed

    Chen, Bin; Pei, Guo-xian; Wang, Ke; Jin, Dan; Wei, Kuan-hai; Ren, Gao-hong

    2003-02-01

    To study whether tissue engineered bone can repair the large segment bone defect of large animal or not. To observe what character the fascia flap played during the osteanagenesis and revascularization process of tissue engineered bone. 9 Chinese goats were made 2 cm left tibia diaphyseal defect. The repairing effect of the defects was evaluated by ECT, X-ray and histology. 27 goats were divided into three groups: group of CHAP, the defect was filled with coral hydroxyapatite (CHAP); group of tissue engineered bone, the defect was filled with CHAP + bone marrow stroma cells (BMSc); group of fascia flap, the defect was filled with CHAP + BMSc + fascia flap. After finished culturing and inducing the BMSc, CHAP of group of tissue engineered bone and of fascia flap was combined with it. Making fascia flap, different materials as described above were then implanted separately into the defects. Radionuclide bone imaging was used to monitor the revascularization of the implants at 2, 4, 8 weeks after operation. X-ray examination, optical density index of X-ray film, V-G staining of tissue slice of the implants were used at 4, 8, 12 weeks after operation, and the biomechanical character of the specimens were tested at 12 weeks post operation. In the first study, the defect showed no bone regeneration phenomenon. 2 cm tibia defect was an ideal animal model. In the second study, group of CHAP manifested a little trace of bone regeneration, as to group of tissue engineered bone, the defect was almost repaired totally. In group of fascia flap, with the assistance of fascia flap which gave more chance to making implants to get more nutrient, the repair was quite complete. The model of 2 cm caprine tibia diaphyseal defect cannot be repaired by goat itself and can satisfy the tissue engineering's demands. Tissue engineered bone had good ability to repair large segment tibia defect of goat. Fascia flap can accelerate the revascularization process of tissue engineered bone. And by this way, it augment the ability of tissue engineered bone to repair the large bone defect of goat.

  4. Return to Sport Following Surgery for a Complicated Tibia and Fibula Fracture in a Collegiate Women's Soccer Player with a Low Level of Kinesiophobia.

    PubMed

    Feigenbaum, Luis A; Baraga, Michael; Kaplan, Lee D; Roach, Kathryn E; Calpino, Kathryn M; Dorsey, Katie; Martorelli, Cristina; Sagarduy, Beatriz; King, Lesley-Anne; Scavo, Vincent A

    2015-02-01

    Much attention has been solely paid to physical outcome measures for return to sport after injury in the past. However, current research shows that the psychological component of these injuries can be more predictive of return to sport than physical outcome measures. The purpose of this case report is to describe the successful return to sport following surgery of a complicated tibia and fibula fracture of a Division I collegiate women's soccer player with a low level of kinesiophobia. A 22-year-old female sustained a closed traumatic mid-shaft fracture of her tibia and fibula. During a high velocity play she sustained a direct blow while colliding with an opposing player's cleats. As a result of the play, her distal tibia was displaced 908 to the rest of her leg. She underwent a closed reduction and tibial internal fixation with an intramedullary rod. Outcome scores were tracked using the IKDC and TSK-11. The IKDC measures symptoms, function, and sport activity related to knee injuries. The TSK-11 measures fear of movement and re-injury, which was important to assess during this case due to the gruesome nature of the injury. At 4 months, the subject became symptomatic over the fibula and was diagnosed with a fibular nonunion fracture. This was unexpected due to the low incidence of and usual asymptomatic nature of fibular nonunion fractures, which required an additional surgery. TSK-11 scores ranged from 19-20 throughout, signifying low levels of kinesiophobia. IKDC scores improved from 8.05 to 60.92. The subject ultimately signed a professional soccer contract. The rehabilitation of this subject was complex due to her low levels of kinesiophobia, self-guided overtraining, and the potential role they may have had in her fibular nonunion fracture. This case study demonstrates a successful outcome despite a unique injury presentation, multiple surgeries, and low levels of kinesiophobia. While a low level of kinesiophobia can be detrimental to rehabilitation compliance, it may have benefited her in the long-term. 5.

  5. Comparing hospital outcomes between open and closed tibia fractures treated with intramedullary fixation.

    PubMed

    Smith, Evan J; Kuang, Xiangyu; Pandarinath, Rajeev

    2017-07-01

    Tibial shaft fractures comprise a large portion of operatively treated long bone fractures, and present with the highest rate of open injuries. Intramedullary fixation has become the standard of care for both open and closed injuries. The rates of short term complications and hospital length of stay for open and closed fractures treated with intramedullary fixation is not fully known. Previous series on tibia fractures were performed at high volume centers, and data were not generalizable, further they did not report on length of stay and the impact of preoperative variables on infections, complications and reoperation. We used a large surgical database to compare these outcomes while adjusting for preoperative risk factors. Data were extracted from the ACS-NSQIP database from 2005 to 2014. Cases were identified based on CPT codes for intramedullary fixation and categorized as closed vs open based on ICD9 code. In addition to demographic and case data, primary analysis examined correlation between open and closed fracture status with infection, complications, reoperation and hospital length of stay. Secondary analysis examined preoperative variables including gender, race, age, BMI, and diabetes effect on outcomes. There were 272 cases identified. There were no significant demographic differences between open and closed tibia fracture cases. Open fracture status did not increase the rate of infection, 30day complications, reoperation, or length of stay. The only preoperative factor that correlated with length of stay was age. There was no correlation between BMI, presence of insulin dependent and nondependent diabetes, and any outcome measure. When considering the complication rates for open and closed tibial shaft fractures treated with intramedullary fixation, there is no difference between 30-day complication rate, length of stay, or return to the operating room. Our reported postoperative infection rates were comparable to previous series, adding validity to our results. The heterogeneity of the hospitals included in ACS-NSQIP database allow our data to be generalizable. These methods may underrepresent the true occurrence of infection as operatively treated tibia infections may present late, requiring late revision. Despite limitations, the data reflect on the current burden of managing these once devastating injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative methods assured a standardized analysis of all samples. Conclusions This experimental animal model provides an excellent basis for testing new biomaterials for their suitability as bone augmentation materials. Concomitantly, similar cardiovascular changes occur during vertebroplasties as in humans, thus making it a suitable animal model for studies related to vertebroplasty. PMID:23819858

  7. Sost deficiency does not alter bone's lacunar or vascular porosity in mice

    NASA Astrophysics Data System (ADS)

    Mosey, Henry; Núñez, Juan A.; Goring, Alice; Clarkin, Claire E.; Staines, Katherine A.; Lee, Peter D.; Pitsillides, Andrew A.; Javaheri, Behzad

    2017-09-01

    SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6 /group) were sacrificed at 12 weeks of age. Fixed tibiae were analysed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nanoCT at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We therefore conclude that the significant increases in bone mass induced by Sost deficiency are not accompanied by any significant modification in the density, organisation or shape of osteocyte lacunae or vascular content within the cortical bone. These data may imply that SCLEROSTIN does not modify the frequency of osteocytogenic recruitment of osteoblasts to initiate terminal osteocytic differentiation in mice.

  8. The potential effect of anatomic relationship between the femur and the tibia on medial meniscus tears.

    PubMed

    Bozkurt, Murat; Unlu, Serhan; Cay, Nurdan; Apaydin, Nihal; Dogan, Metin

    2014-10-01

    The anatomic and the kinematical relationships between the femur and the tibia have been previously examined in both normal and diseased knees. However, less attention has been directed to the effect of these relationships on the meniscal diseases. Therefore, we aimed to investigate the impact of femorotibial incongruence on both lateral and medial meniscal tears. A total of 100 images obtained from MRI of 100 patients (39 males and 61 females) were included in the study. Diameters of the medial and the lateral femoral condyles, thicknesses of the menisci, and diameters of the medial and the lateral tibial articular surfaces were measured. The medial meniscus tear was detected in 40 (40 %) patients. However, no lateral meniscus tear was found. Significant relationships were found between the diameters of the posterior medial femoral condyle and the medial tibial superior articular surface and between the diameters of the posterior lateral femoral condyle and the lateral tibial superior articular surface. The mean values for the diameter of the medial condyle of the femur, the lateral condyle of the femur, the medial superior articular surface of the tibia, and the lateral superior articular surface of the tibia were found to be significantly higher in cases with meniscus tear compared to cases without meniscus tear. However, no significant difference was present regarding the thicknesses of the medial and the lateral menisci. A positive relationship between the diameter of the posterior medial femoral condyle and the tibial medial superior articular surface was found in cases with (n = 40) (r (2) = 0.208, p = 0.003) and without tear (n = 60) (r (2) = 0.182, p = 0.001). In addition, a significant positive relationship was found between the diameter of the posterior medial femoral condyle and the medial tibial superior articular surface in cases with and without tear. The impact of femorotibial incongruence on the medial meniscus tear is important for the understanding of the lesions.

  9. Evaluation of bone substitutes for treatment of peri-implant bone defects: biomechanical, histological, and immunohistochemical analyses in the rabbit tibia

    PubMed Central

    2016-01-01

    Purpose We sought to evaluate the effectiveness of bone substitutes in circumferential peri-implant defects created in the rabbit tibia. Methods Thirty rabbits received 45 implants in their left and right tibia. A circumferential bone defect (6.1 mm in diameter/4 mm depth) was created in each rabbit tibia using a trephine bur. A dental implant (4.1 mm × 8.5 mm) was installed after the creation of the defect, providing a 2-mm gap. The bone defect gaps between the implant and the bone were randomly filled according to the following groups: blood clot (CO), particulate Bio-Oss® (BI), and Bio-Oss® Collagen (BC). Ten animals were euthanized after periods of 15, 30, and 60 days. Biomechanical analysis by means of the removal torque of the implants, as well as histologic and immunohistochemical analyses for protein expression of osteocalcin (OC), Runx2, OPG, RANKL, and TRAP were evaluated. Results For biomechanics, BC showed a better biological response (61.00±15.28 Ncm) than CO (31.60±14.38 Ncm) at 30 days. Immunohistochemical analysis showed significantly different OC expression in CO and BC at 15 days, and also between the CO and BI groups, and between the CO and BC groups at 60 days. After 15 days, Runx2 expression was significantly different in the BI group compared to the CO and BC groups. RANKL expression was significantly different in the BI and CO groups and between the BI and BC groups at 15 days, and also between the BI and CO groups at 60 days. OPG expression was significantly higher at 60 days postoperatively in the BI group than the CO group. Conclusions Collectively, our data indicate that, compared to CO and BI, BC offered better bone healing, which was characterized by greater RUNX2, OC, and OPG immunolabeling, and required greater reversal torque for implant removal. Indeed, along with BI, BC presents promising biomechanical and biological properties supporting its possible use in osteoconductive grafts for filling peri-implant gaps. PMID:27382506

  10. Sexual dimorphism of the tibia in contemporary Greek-Cypriots and Cretans: Forensic applications.

    PubMed

    Kranioti, E K; García-Donas, J G; Almeida Prado, P S; Kyriakou, X P; Langstaff, H C

    2017-02-01

    Sex estimation is an essential step in the identification process of unknown heavily decomposed human remains as it eliminates all possible matches of the opposite sex from the missing person's database. Osteometric methods constitute a reliable approach for sex estimation and considering the variation of sexual dimorphism between and within populations; standards for specific populations are required to ensure accurate results. The current study aspires to contribute osteometric data on the tibia from contemporary Greek-Cypriots to assist the identification process. A secondary goal involves osteometric comparison with data from Crete, a Greek island with similar cultural and dietary customs and environmental conditions. Left tibiae from one hundred and thirty-two skeletons (70 males and 62 females) of Greek-Cypriots and one hundred and fifty-seven skeletons (85 males, 72 females) of Cretans were measured. Seven standard metric variables including Maximum length (ML), Upper epiphyseal breadth (UB), Nutrient foramen anteroposterior diameter (NFap), Nutrient Foramen transverse diameter (NFtrsv), Nutrient foramen circumference (NFCirc), Minimum circumference (MinCirc) and Lower epiphyseal breadth (LB) were compared between sexes and populations. Univariate and multivariate discriminant functions were developed and posterior probabilities were calculated for each sample. Results confirmed the existence of sexual dimorphism of the tibia in both samples as well as the pooled sample. Classification accuracy for univariate functions ranged from 78% to 85% for Greek-Cypriots and from 69% to 83% for Cretans. The best multivariate equations after cross-validation resulted in 87% for Greek-Cypriots and 90% accuracy for Cretans. When the samples were pooled accuracy reached 87% with over 95% confidence for about one third of the population. Estimates with over 95% of posterior probability can be considered reliable while any less than 80% should be treated with caution. This work constitutes the initial step towards the creation of an osteometric database for Greek-Cypriots and we hope it can contribute to the biological profiling and identification of the missing and to potential forensic cases of unknown skeletal remains both in Cyprus and Crete. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. [Pedicle flap transfer combined with external fixator to treat leg open fracture with soft tissue defect].

    PubMed

    Luo, Zhongchun; Lou, Hua; Jiang, Junwei; Song, Chunlin; Gong, Min; Wang, Yongcai

    2008-08-01

    To investigate the clinical results of treating leg open fracture with soft tissue defect by pedicle flap transfer in combination with external fixator. From May 2004 to June 2007, 12 cases of leg open fracture with soft tissue defect, 9 males and 3 females aged 18-75 years, were treated. Among them, 8 cases were caused by traffic accidents, 2 crush, 1 falling and 1 mechanical accident. According to the Gustilo Classification, there were 2 cases of type II, 5 of type IIIA and 5 of type IIIB. There were 2 cases of upper-tibia fracture, 3 of middle-tibia and 7 of middle-lower. The sizes of soft tissue defect ranged from 5 cm x 3 cm to 22 cm x 10 cm.The sizes of exposed bone ranged from 3 cm x 2 cm to 6 cm x 3 cm. The course of the disease was 1-12 hours. Fracture fixation was reached by external fixators or external fixators and limited internal fixation with Kirschner wire. The wounds with exposed tendons and bones were repaired by ipsilateral local rotation flap, sural neurocutaneous flap and saphenous nerve flap. The size of selected flap ranged from 5 cm x 4 cm to 18 cm x 12 cm. Granulation wounds were repaired by skin grafting or direct suture. All patients were followed up for 6 months to 2 years. All patients survived, among whom 2 with the wound edge infection and 1 with the distal necrosis were cured by changing the dressing, 8 with pin hole infection were treated by taking out the external fixator, 1 with nonunion received fracture healing after bone graft in comminuted fracture of lower tibia, 2 suffered delayed union in middle-lower tibia fracture. The ROM of ankle in 3 cases was mildly poor with surpass-joint fixation, with plantar extension of 0-10 degrees and plantar flexion of 10-30 degrees, while the others had plantar extension of 10-20 degrees and plantar flexion of 30-50 degrees. The method of pedicle flap transfer combined with external fixator is safe and effective for the leg open fracture with soft tissue defect.

  12. Elastic nailing of tibia shaft fractures in young children up to 10 years of age.

    PubMed

    Heo, Jeong; Oh, Chang-Wug; Park, Kyeong-Hyeon; Kim, Joon-Woo; Kim, Hee-June; Lee, Jong-Chul; Park, Il-Hyung

    2016-04-01

    Although tibia shaft fractures in children usually have satisfactory results after closed reduction and casting, there are several surgical indications, including associated fractures and soft tissue injuries such as open fractures. Titanium elastic nails (TENs) are often used for pediatric tibia fractures, and have the advantage of preserving the open physis. However, complications such as delayed union or nonunion are not uncommon in older children or open fractures. In the present study, we evaluated children up to 10 years of age with closed or open tibial shaft fractures treated with elastic nailing technique. A total of 16 tibia shaft fractures treated by elastic nailing from 2001 to 2013 were reviewed. The mean patient age at operation was 7 years (range: 5-10 years). Thirteen of 16 cases were open fractures (grade I: 4, grade II: 6, grade IIIA: 3 cases); the other cases had associated fractures that necessitated operative treatments. Closed, antegrade intramedullary nailing was used to insert two nails through the proximal tibial metaphysis. All patients were followed up for at least one year after the injury. Outcomes were evaluated using modified Flynn's criteria, including union, alignment, leg length discrepancies, and complications. All fractures achieved union a mean of 16.1 weeks after surgery (range: 11-26 weeks). No patient reported knee pain or experienced any loss of knee or ankle motion. There was a case of superficial infection in a patient with grade III open fracture. Three patients reported soft tissue discomfort due to prominent TEN tips at the proximal insertion site, which required cutting the tip before union or removing the nail after union. At the last follow-up, there were no angular or rotational deformities over 10° in either the sagittal or coronal planes. With the exception of one case with an overgrowth of 15 mm, no patient showed shortening or overgrowth exceeding 10mm. Among final outcomes, 15 were excellent and 1 was satisfactory. Even with open fractures or soft tissue injuries, elastic nailing can achieve satisfactory results in young children, with minimal complications of delayed bone healing, or infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comparison of the Fluid Resuscitation Rate with and without External Pressure Using Two Intraosseous Infusion Systems for Adult Emergencies, the CITRIN (Comparison of InTRaosseous infusion systems in emergency medicINe)-Study.

    PubMed

    Hammer, Niels; Möbius, Robert; Gries, André; Hossfeld, Björn; Bechmann, Ingo; Bernhard, Michael

    2015-01-01

    Intraosseous infusion is recommended if peripheral venous access fails for cardiopulmonary resuscitation or other medical emergencies. The aim of this study, using body donors, was to compare a semi-automatic (EZ-IO®) device at two insertion sites and a sternal intraosseous infusion device (FASTR™). Twenty-seven medical students being inexperienced first-time users were randomized into three groups using EZ-IO and FASTR. The following data were evaluated: attempts required for successful placement, insertion time and flow rates with and without external pressure to the infusion. The first-pass insertion success of the EZ-IO tibia, EZ-IO humerus and FASTR was 91%, 77%, and 95%, respectively. Insertion times (MW ± SD) did not show significant differences with 17 ± 7 (EZ-IO tibia) vs. 29 ± 42 (EZ-IO humerus) vs. 33 ± 21 (FASTR), respectively. One-minute flow rates using external pressures between 0 mmHg and 300 mmHg ranged between 27 ± 5 to 69 ± 54 ml/min (EZ-IO tibia), 16 ± 3 to 60 ± 44 ml/min (EZ-IO humerus) and 53 ± 2 to 112 ± 47 ml/min (FASTR), respectively. Concerning pressure-related increases in flow rates, negligible correlations were found for the EZ-IO tibia in all time frames (c = 0.107-0.366; p ≤ 0.013), moderate positive correlations were found for the EZ-IO humerus after 5 minutes (c = 0.489; p = 0.021) and strong positive correlations were found for the FASTR in all time frames (c = 0.63-0.80; p ≤ 0.007). Post-hoc statistical power was 0.62 with the given sample size. The experiments with first-time users applying EZ-IO and FASTR in body donors indicate that both devices may be effective intraosseous infusion devices, likely suitable for fluid resuscitation using a pressure bag. Variations in flow rate may limit their reliability. Larger sample sizes will prospectively be required to substantiate our findings.

  14. Bone-bonding behavior of alumina bead composite.

    PubMed

    Shinzato, S; Kobayashi, M; Choju, K; Kokubo, T; Nakamura, T

    1999-08-01

    Previously we developed an alumina bead composite (ABC) consisting of alumina bead powder (AL-P) and bisphenol-alpha-glycidyl methacrylate (Bis-GMA)-based resin and reported its excellent osteoconductivity in rat tibiae. In the present study, are evaluated histologically and mechanically the effect of alumina crystallinity on the osteoconductivity and bone-bonding strength of the composite. AL-P was manufactured by fusing crushed alpha-alumina powder and quenching it. The AL-P was composed mainly of amorphous and delta-crystal phases of alumina. Its average particle size was 3.5 microm, and it took a spherical form. Another composite (alpha ALC), filled with pure alpha-alumina powder (alpha AL-P), was used as a referential material. The proportion of powder added to each composite was 70% w/w. Mechanical testing of ABC and alpha ALC indicated that they would be strong enough for use under weight-bearing conditions. The affinity indices for ABC, determined using male Wistar rat tibiae, were significantly higher than those for alpha ALC (p < 0.0001) up to 8 weeks. Composite plates (15 x 10 x 2 mm) that had an uncured surface layer on one side were made in situ in a rectangular mold. One of the plates was implanted into the proximal metaphysis of the tibia of a male Japanese white rabbit, and the failure load was measured by a detaching test 10 weeks after implantation. The failure loads for ABC on its uncured surface [1.91+/-1.23 kgf (n = 8)] were significantly higher than those for alpha ALC on its uncured surface [0.35+/-0.33 kgf (n = 8); (p < 0.0001)], and they also were significantly higher than those for ABC on the other (cured surface) side (p < 0.0001). Histological examinations using rabbit tibiae revealed bone ingrowth into the composite only on the uncured surface of ABC. This study revealed that the amorphous phase of alumina and formation of an uncured surface layer are needed for the osteoconductive and bone-bonding ability of ABC. ABC shows promise as a basis for the development of a highly osteoconductive and mechanically strong biomaterial.

  15. Bone augmentation for cancellous bone- development of a new animal model.

    PubMed

    Klein, Karina; Zamparo, Enrico; Kronen, Peter W; Kämpf, Katharina; Makara, Mariano; Steffen, Thomas; von Rechenberg, Brigitte

    2013-07-02

    Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (Ø 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative methods assured a standardized analysis of all samples. This experimental animal model provides an excellent basis for testing new biomaterials for their suitability as bone augmentation materials. Concomitantly, similar cardiovascular changes occur during vertebroplasties as in humans, thus making it a suitable animal model for studies related to vertebroplasty.

  16. Predicted osteotomy planes are accurate when using patient-specific instrumentation for total knee arthroplasty in cadavers: a descriptive analysis.

    PubMed

    Kievit, A J; Dobbe, J G G; Streekstra, G J; Blankevoort, L; Schafroth, M U

    2018-06-01

    Malalignment of implants is a major source of failure during total knee arthroplasty. To achieve more accurate 3D planning and execution of the osteotomy cuts during surgery, the Signature (Biomet, Warsaw) patient-specific instrumentation (PSI) was used to produce pin guides for the positioning of the osteotomy blocks by means of computer-aided manufacture based on CT scan images. The research question of this study is: what is the transfer accuracy of osteotomy planes predicted by the Signature PSI system for preoperative 3D planning and intraoperative block-guided pin placement to perform total knee arthroplasty procedures? The transfer accuracy achieved by using the Signature PSI system was evaluated by comparing the osteotomy planes predicted preoperatively with the osteotomy planes seen intraoperatively in human cadaveric legs. Outcomes were measured in terms of translational and rotational errors (varus, valgus, flexion, extension and axial rotation) for both tibia and femur osteotomies. Average translational errors between the osteotomy planes predicted using the Signature system and the actual osteotomy planes achieved was 0.8 mm (± 0.5 mm) for the tibia and 0.7 mm (± 4.0 mm) for the femur. Average rotational errors in relation to predicted and achieved osteotomy planes were 0.1° (± 1.2°) of varus and 0.4° (± 1.7°) of anterior slope (extension) for the tibia, and 2.8° (± 2.0°) of varus and 0.9° (± 2.7°) of flexion and 1.4° (± 2.2°) of external rotation for the femur. The similarity between osteotomy planes predicted using the Signature system and osteotomy planes actually achieved was excellent for the tibia although some discrepancies were seen for the femur. The use of 3D system techniques in TKA surgery can provide accurate intraoperative guidance, especially for patients with deformed bone, tailored to individual patients and ensure better placement of the implant.

  17. Response of broiler chickens to different levels of calcium, non-phytate phosphorus and phytase.

    PubMed

    Akter, M; Graham, H; Iji, P A

    2016-12-01

    1. Five hundred and seventy six-d old Ross 308 broiler chicks (6 cages per diet, 8 birds per cage in 3 × 2 × 2 factorial arrangement) were fed on maize-soybean meal-based diets containing three concentrations of Ca (6, 8 or 10 g/kg), two concentrations of non-phytate phosphorus (NPP) (3 or 4 g/kg) and two levels of exogenous microbial phytase (0 or 500 FTU/kg) from d 0 to 35. 2. Body weight (BW), feed intake (FI) and mortality records were collected. Two birds per replicate were killed at 24 d of age to obtain tibia samples. 3. Increasing Ca level significantly reduced the FI and body weight gain (BWG) between hatch and 10 and 24 d, especially with the phytase-supplemented diets. However, phytase supplementation of the diet containing 4 g NPP/kg improved the FI and BWG at d 10 and 24. At d 24, phytase supplementation improved feed conversion ratio (FCR) of birds that consumed diets containing high NPP. The overall FCR was better in birds offered the phytase-supplemented, medium-Ca diet. 4. There was a significant reduction in length, width and breaking strength of the tibia bone in birds fed on a diet with high Ca and low NPP. Phytase supplementation improved the tibia ash content and bone breaking strength of chicks fed on the diet containing 8 and 4 g/kg Ca and NPP, respectively. The Ca content of the tibia bone was low in birds fed on diets with 6 and 4 g/kg Ca and NPP, respectively, but this was counteracted by phytase supplementation. 5. Birds fed on diets with 4 g/kg NPP had the best carcass percentage and parts yield. Phytase supplementation to high-Ca diets significantly reduced the carcass yield of birds. 6. These results confirmed the detrimental effect of high dietary Ca on phytase activity and subsequent growth and bone development of birds, especially when NPP is in short supply.

  18. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia

    PubMed Central

    Shimokochi, Yohei; Ambegaonkar, Jatin P.; Meyer, Eric G.

    2016-01-01

    Context: Ground reaction force (GRF) and tibiofemoral force magnitudes and directions have been shown to affect anterior cruciate ligament loading during landing. However, the kinematic and kinetic factors modifying these 2 forces during landing are unknown. Objective: To clarify the intersegmental kinematic and kinetic links underlying the alteration of the GRF and tibiofemoral force vectors secondary to changes in the sagittal-plane body position during single-legged landing. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty recreationally active participants (age = 23.4 ± 3.6 years, height = 171.0 ± 9.4 cm, mass = 73.3 ± 12.7 kg). Intervention(s): Participants performed single-legged landings using 3 landing styles: self-selected landing (SSL), body leaning forward and landing on the toes (LFL), and body upright with flat-footed landing (URL). Three-dimensional kinetics and kinematics were recorded. Main Outcome Measure(s): Sagittal-plane tibial inclination and knee-flexion angles, GRF magnitude and inclination angles relative to the tibia, and proximal tibial forces at peak tibial axial forces. Results: The URL resulted in less time to peak tibial axial forces, smaller knee-flexion angles, and greater magnitude and a more anteriorly inclined GRF vector relative to the tibia than did the SSL. These changes led to the greatest peak tibial axial and anterior shear forces in the URL among the 3 landing styles. Conversely, the LFL resulted in longer time to peak tibial axial forces, greater knee-flexion angles, and reduced magnitude and a more posteriorly inclined GRF vector relative to the tibia than the SSL. These changes in LFL resulted in the lowest peak tibial axial and largest posterior shear forces among the 3 landing styles. Conclusions: Sagittal-plane intersegmental kinematic and kinetic links strongly affected the magnitude and direction of GRF and tibiofemoral forces during the impact phase of single-legged landing. Therefore, improving sagittal-plane landing mechanics is important in reducing harmful magnitudes and directions of impact forces on the anterior cruciate ligament. PMID:27723362

  19. [Advanced bone graft combined with locking compression plate for the treatment of middle and distal tibia nonunion].

    PubMed

    Zhao, Xue; Wang, Pan-feng; Zhang, Yun-tong; Zhang, Chun-cai; Xu, Shuo-gui; Zhang, Xin

    2014-12-01

    To explore methods of treating middle and distal tibia nonunion with the treatment of advanced bone graft combined with locking compression plate. From January 2011 to December 2012, 12 patients with middle and distal tibia nonunion were treated with advanced bone graft combined with locking compression plate. Among patients, there were 8 males and 4 females aged from 20 to 69 with an average of 47 years old. The time from first injuries to bone nonunion was from 9 months to 5 years, avergaed 19 months. Four cases were treated with external fixation, 6 cases were treated with plate fixation, 2 cases of 12 patients occurred broken of plate and nail. Eleven patients were non-infective bone nonunion and 1 patient was infective bone nonunion. Preoperative X-ray and CT showed all patients had sequestration and formation of ossified bone with different degrees. Operative time, blood loss, wound healing were observed, fracture healing time was evaluated by postoperative X-ray. Johner-Wruhs scoring standards was used to evaluate ankle joint function after operation at 10 months. Operative time ranged from 90 to 185 min with an average of (125.00±20.15) min; blood loss ranged from 225 to 750 ml with an average of (415.00±120.00) ml. All patients were followed up from 10 months to 2.5 years with an average of 1.5 years. Postoperative X-ray showed bone union was formed around fracture after operation at 4 months in all patients, 3 cases obtained bone healing within 6 months after operation, 9 cases obtained from 8 to 12 months. No infection, injury of nerve and vessles, and broken of plate and nail were ocurred. According to Johner-Wruhs scoring at 10 months after operation, 10 cases obtained excellent results, 1 good and 1 moderate. Advanced bone graft combined with locking compression plate, which can build fracture multi-point supporting based on full compression of bone nonunion to get effective fixation, is an effective method in treating middle and distal tibia nonunion.

  20. Shin splints (image)

    MedlinePlus

    Shin splints is the common name for the medical condition called medial tibial stress syndrome in which pain ... the lower leg muscles' attachment to the tibia. Shin splints are typically caused from intense or vigorous athletic ...

  1. Patellar Tendinitis

    MedlinePlus

    ... your shinbone (tibia). Initially, you may only feel pain in your knee as you begin physical activity or just after ... a chair. When to see a doctor For knee pain, try self-care measures first, such as icing ...

  2. Unicameral bone cyst of the proximal tibia in a five year old girl.

    PubMed

    Tahririan, Mohammadali; Motiffard, Mehdi

    2012-01-01

    Unicameral bone cysts (UBCs) are benign, osteolytic lesions which are often asymptomatic and are commonly seen in the proximal of humerus and femur. The average age at diagnosis is 9-11 years and there is a male preponderance with a male-to-female ratio of approximately 2-2.5 to 1. We describe a case of 5-year-old girl who presented to orthopedic clinic with a 4-month history of painful limping. Plain radiography of the right knee demonstrated a well-defined lytic lesion in the proximal of the tibia. Open biopsy and then curettage and bone grafting with bone- substitute was performed. The diagnosis of this condition requires a high index of suspicion. This report demonstrates that all UBCs do not have the same clinical patterns and with adequate attention good results can be achieved.

  3. Anserina Bursitis—A Treatable Cause of Knee Pain in Patients with Degenerative Arthritis

    PubMed Central

    Brookler, Morton I.; Mongan, Edward S.

    1973-01-01

    The anserina bursa is located on the medial surface of the tibia deep to the tendons of the sartorius, gracilis, and semimembranosus muscles and superficial to the insertion of the tibial collateral ligament. Knee pain, a palpable swelling of the bursa, and tenderness over the medial anterior aspect of the tibia just below the knee are the hallmarks of anserina bursitis. In a three-year period, 24 patients with anserina bursitis were seen in a rheumatology clinic. All but one were women, 18 were obese, and only four were under 50 years old. Knee x-ray studies showed degenerative arthritis in 20 of the 24 patients. In ten, varus knee deformities were present, while three had valgus deformities. Ultrasound or local steroid injections gave dramatic relief in all but one patient. PMID:4731586

  4. PET/CT and MRI of intra-osseous haemangioma of the tibia

    PubMed Central

    Cha, J G; Yoo, J H; Kim, H K; Park, J M; Paik, S H; Park, S J

    2012-01-01

    Intra-osseous haemangioma is a rare, benign neoplasm that usually involves the vertebrae and craniofacial bones. Furthermore, its occurrence in the long bones is extremely rare. We report the findings of fluorine-18-fludeoxyglucose (18F-FDG) positron emission tomography (PET)/CT and MRI in a patient with intra-osseous haemangioma in the proximal tibia, who was initially misdiagnosed as having a malignancy based on 18F-FDG PET/CT. 18F-FDG PET/CT showed a well-marginated osteolytic lesion with abnormal FDG uptake. The mass demonstrated low signal intensity on T1 weighted MRI. On T2 weighted images, the lesion appeared as a cluster of high signal intensity lobules and showed strong enhancement on contrast-enhanced T1 weighted images. Surgical curettage was performed and histopathological examination of the excised tissue confirmed a cavernous haemangioma. PMID:22457416

  5. Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.

    PubMed

    Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman

    2016-09-01

    Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation.

  6. The many faces of intraosseous haemangioma: a diagnostic headache.

    PubMed

    Ching, B C; Wong, J S; Tan, M H; Jara-Lazaro, A R

    2009-05-01

    Intraosseous haemangioma constitutes less than ten percent of all primary bone neoplasms. Approximately 75 percent occur in the calvarium or vertebrae, with long bones, short tubular bones and ribs constituting the rest. We describe a 52-year-old woman who presented with left knee pain for 4-5 years and loss of weight over one week. An initial radiograph of the knee showed several well circumscribed isodense lesions with sclerotic rims in the medullary cavity of the distal femur and diaphysis of the left tibia. There were also lucent lesions with a slightly sclerotic rim in the diaphysis of the left tibia and proximal left fibula. In view of the clinical presentation and radiological findings, extensive investigations were made to rule out metastases and multiple myeloma. An open biopsy with segmental osteotomy of the left mid fibular lesion revealed an intraosseous haemangioma.

  7. Bilateral stress fracture of the fibulae and periostitis of the tibiae.

    PubMed

    Tsuchie, Hiroyuki; Okada, Kyoji; Nagasawa, Hiroyuki; Chida, Shuichi; Shimada, Yoichi

    2010-01-01

    This study describes a unique case of bilateral stress fractures of the fibulae and provides a literature review. A 16-year-old female badminton player presented with pain around the bilateral distal lateral legs. She had mild bilateral varus deformity at the knee joint, and the bilateral ankles showed valgus deformity in standing posture. Radiographs and computed tomography showed periosteal reactions on the bilateral distal fibulae. Technetium-99m bone scintigraphy demonstrated increased uptake in the bilateral distal fibulae and the bilateral middle third of the tibiae. A diagnosis of bilateral distal fibular stress fractures was made. She was advised to stop playing badminton until the symptoms disappeared. Varus deformity of the knee and valgus deformity of the ankle may have influenced the mechanism underlying bilateral symmetric stress fractures. Copyright © 2010 S. Karger AG, Basel.

  8. An automatic bone segmentation method based on anatomical structure for the knee joint in MDCT image.

    PubMed

    Uozumi, Y; Nagamune, K

    2013-01-01

    The purpose of this study is to propose an automatic segmentation about each bone (the femur, the tibia, the patellar, and fibular) of the knee in MDCT image. The proposed method was applied for six patients (Age 33 ± 13, four males/tew females). The proposed method segmented the knee joint into each bone by using anatomical structure for the knee joint. The experiments calculate matching rate of the manual and the proposed method for evaluating it. As a result, The matching rate of the femur, the tibia, the patellar, and fibula were 95.84 ± 0.57%, 94.12 ± 1.01%, 94.49 ± 0.83%, 86.37 ± 4.28%, respectively. This study concluded that the proposed method is enough to segment the knee bones.

  9. Anthropometry of the proximal tibia of patients with knee arthritis in Shanghai.

    PubMed

    Liu, Zhihong; Yuan, Gaoxiang; Zhang, Weibin; Shen, Yuhui; Deng, Lianfu

    2013-05-01

    We measured the resected bony surface of the proximal tibia from reconstructed 3D models of the 179 arthritis knees using CT data. We found that the mediolateral (ML) dimension (69.6 ± 9.2 mm) and anteroposterior (AP) dimension (46.1 ± 6.1 mm) were less than those of Westerners. It was observed the medial anteroposterior (MAP) dimension (47.1 ± 7.2 mm) was much larger and closer to middle point of ML dimension than lateral anteroposterior (LAP) dimension (42.9 ± 6.3 mm). The aspect ratio (AR) (1.5 ± 0.07) was constant in Shanghai population. Only half of the prostheses we used in clinic mostly matched the resected bony surface of Shanghai population very well in ML, AP and AR dimension. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. High-fat/high-sucrose diet results in higher bone mass in aged rats.

    PubMed

    Minematsu, Akira; Nishii, Yasue; Sakata, Susumu

    2018-06-01

    Intake of high-fat/high-sucrose (HFS) diet or high fat diet influences bone metabolism in young rodents, but its effects on bone properties of aged rodents still remain unclear. This study aimed to examine the effects of HFS diet intake on trabecular bone architecture (TBA) and cortical bone geometry (CBG) in aged rats. Fifteen male Wistar rats over 1 year were randomly divided into two groups. One group was fed a standard laboratory diet (SLD) and the other group was fed a HFS diet for six months. The femur/tibia, obtained from both groups at the end of experimental period, were scanned by micro-computed tomography for TBA/CBG analyses. Serum biochemical analyses were also conducted. Body weight was significantly higher in the HFS group than in the SLD group. In both femur and tibia, the HFS group showed higher trabecular/cortical bone mass in reference to bone mineral content, volume bone mineral density and TBA/CBG parameters compared with the SLD group. In addition, serum calcium, inorganic phosphorus, total protein, triacylglycerol, HDL and TRACP-5b levels were significantly higher in the HFS group than in the SLD group. There were good correlations between body weight and bone parameters in the femur and tibia. These results suggest that HFS diet intake results in higher bone mass in aged rats. Such effects of HFS diet intake might have been induced by increased body weight.

  11. Effect of hydrocortisone on total body calcium in rats. [/sup 47/Ca and /sup 85/Sr tracer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumura, S.; Ellis, K.J.; Cohn, S.H.

    Administration of 5 mg. of hydrocortisone acetate to rats every other day for 2 weeks resulted in growth retardation and weight loss as indicated by body weights of experimental animals, which averaged 33 percent lower than those of the controls, and a significant decrease in the length of the tibiae and femurs (p less than 0.01 for treated vs controls). However, despite the smaller size of the treated animals, the values for total body calcium (TBCa) and the calcium in the tibia and femur did not differ significantly from control values. Thus, there was more calcium per unit length ofmore » bone, resulting in an increase in the skeletal density of treated rats. This finding was confirmed by x-ray examination of these bones. The net intestinal absorption of calcium (rate of initial entry) calculated from plasma levels following an oral and intravenous dose of /sup 47/Ca and /sup 85/Sr, respectively, was not significantly different in hydrocortisone-treated rats compared to controls. This would indicate that the rate of intestinal absorption of calcium is unimpaired despite the administration of massive doses of corticosteroids. When the animals were placed on a calcium-deficient diet, both TBCa and tibia and femur calcium levels were decreased. Subsequent administration of hydrocortisone did not alter the calcium values. The results of this study are compatible with the hypothesis that hydrocortisone promotes weight loss, retards growth, but inhibits the rate of bone resorption.« less

  12. Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver

    PubMed Central

    Miranda, Daniel L; Rainbow, Michael J; Crisco, Joseph J; Fleming, Braden C

    2012-01-01

    Jumping and cutting activities are investigated in many laboratories attempting to better understand the biomechanics associated with non-contact ACL injury. Optical motion capture is widely used; however, it is subject to soft tissue artifact (STA). Biplanar videoradiography offers a unique approach to collecting skeletal motion without STA. The goal of this study was to compare how STA affects the six-degree-of-freedom motion of the femur and tibia during a jump-cut maneuver associated with non-contact ACL injury. Ten volunteers performed a jump-cut maneuver while their landing leg was imaged using optical motion capture (OMC) and biplanar videoradiography. The within-bone motion differences were compared using anatomical coordinate systems for the femur and tibia, respectively. The knee joint kinematic measurements were compared during two periods: before and after ground contact. Over the entire activity, the within-bone motion differences between the two motion capture techniques were significantly lower for the tibia than the femur for two of the rotational axes (flexion/extension, internal/external) and the origin. The OMC and biplanar videoradiography knee joint kinematics were in best agreement before landing. Kinematic deviations between the two techniques increased significantly after contact. This study provides information on the kinematic discrepancies between OMC and biplanar videoradiography that can be used to optimize methods employing both technologies for studying dynamic in vivo knee kinematics and kinetics during a jump-cut maneuver. PMID:23084785

  13. Transfer of ipsilateral fibula on vascular pedicle for treatment of congenital pseudarthrosis of the tibia.

    PubMed

    Tan, Jane S; Roach, James W; Wang, Angela A

    2011-01-01

    Although the use of free vascularized fibula grafts has frequently been reported in the treatment of congenital pseudarthrosis of the tibia, the use of ipsilateral fibula graft on a vascular pedicle is uncommon. We reviewed the long-term results of this procedure in 11 patients. The records of 11 patients who underwent transfer of the ipsilateral fibula on a vascular pedicle between 2.1 and 10.8 years of age were retrospectively reviewed. Average follow-up was 11 years after the index procedure. Seven patients had reached skeletal maturity. Clinical records and radiographs were reviewed to determine patient demographics, surgical parameters, union rate, refracture rate, residual deformity, and functional outcome. Eight patients (73%) achieved union at an average of 20.1 months. Additional bone grafting procedures were required in 4 patients with distal nonunions. There were 3 refractures (38%). Four patients eventually underwent amputation, and 1 patient had a persistent nonunion at final follow-up. Residual deformity included tibial valgus and procurvatum deformities, limb length discrepancy, and ankle valgus. Use of the ipsilateral fibula did not seem to increase the risk of ankle valgus. Functional outcomes were good in all but one patient. Use of the ipsilateral fibula as a pedicle graft provides reasonable results in healing congenital pseudarthrosis of the tibia. Patients should be monitored for the sequelae of this condition, including nonunion, refracture, shortening, and angular deformity, and treated accordingly. Therapeutic Level IV.

  14. Function-sparing tibialis anterior pivoted muscle flap for reconstruction of post-burn and post-traumatic middle-third leg defects with exposed tibia

    PubMed Central

    Megahed, M.A.

    2011-01-01

    Summary Reconstruction of the middle third of the leg is a challenging procedure. The tibialis anterior muscle flap can be useful in reconstruction of the middle third of the leg with exposed tibia. The aim of this work was to evaluate the efficacy of tibialis anterior pivoted muscle flap for reconstruction of the middle third of the leg with functional preservation. This study, performed in the Plastic, Reconstructive and Burn Unit, Menoufiya University Hospital, Egypt, included 16 patients (13 males and 3 females) during the period February 2007/May 2010: seven post-burn and nine post-traumatic patients with post-burn middle-third leg defects with exposed tibia. Their ages ranged from 14 to 67 years. A function-sparing lateral split tibialis anterior pivoted muscle flap was used in all the patients. Follow-up ranged from six months to two years. Partial flap loss occurred in one patient (6.25%), there was no post-operative haematoma or infection, and only one case of wound dehiscence (6.25%), managed by secondary suture. No donor site morbidity or any significant functional impairment was observed, and the subjective aesthetic results were satisfactory. Lateral split tibialis anterior pivoted muscle flap is a useful, simple technique, allowing rapid, durable and reliable coverage of middle-third leg defects without significant impairment of function and without sacrificing major nerves or vessels in the foot, and without any donor site morbidity. PMID:22262962

  15. Bilateral periprosthetic tibial stress fracture after total knee arthroplasty: A case report.

    PubMed

    Ozdemir, Guzelali; Azboy, Ibrahim; Yilmaz, Baris

    2016-01-01

    Periprosthetic fractures around the knee after total knee arthroplasty can be seen in the femur, tibia and patella. The tibial fractures are rare cases. Our case with bilateral tibial stress fracture developed after total knee arthroplasty (TKA) is the first of its kind in the literature. 75-year-old male patient with bilateral knee osteoarthritis had not benefited from conservative treatment methods previously applied. Left TKA was applied. In the second month postoperatively, periprosthetic tibial fracture was identified and osteosynthesis was implemented with locked tibia proximal plate-screw. Bone union in 12 weeks was observed in his follow-ups. After 15 months of his first operation, TKA was applied to the right knee. Postoperatively in the second month, as in the first operation, periprosthetic tibial fracture was detected. Osteosynthesis with locking plate-screw was applied and union in 12 weeks was observed in his follow-up. He was seen mobilized independently and without support in the last control of the case made in the 24th month after the second operation. The number of TKA applications is expected to increase in the future. The incidence of periprosthetic fractures should also be expected to increase in these cases. Periprosthetic tibial fractures after TKA are rarely seen. The treatment of periprosthetic fractures around the knee after TKA can be difficult. In the case of persistent pain in the upper end of the tibia after the surgery, stress fracture should be considered. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. An Approach for Determining Quantitative Measures for Bone Volume and Bone Mass in the Pediatric Spina Bifida Population

    PubMed Central

    Horenstein, Rachel E.; Shefelbine, Sandra J.; Mueske, Nicole M.; Fisher, Carissa L.; Wren, Tishya A.L.

    2015-01-01

    Background The pediatric spina bifida population suffers from decreased mobility and recurrent fractures. This study aimed to develop a method for quantifying bone mass along the entire tibia in youth with spina bifida. This will provide information about all potential sites of bone deficiencies. Methods Computed tomography images of the tibia for 257 children (n=80 ambulatory spina bifida, n=10 non-ambulatory spina bifida, n=167 typically developing) were analyzed. Bone area was calculated at regular intervals along the entire tibia length and then weighted by calibrated pixel intensity for density weighted bone area. Integrals of density weighted bone area were used to quantify bone mass in the proximal and distal epiphyses and diaphysis. Group differences were evaluated using analysis of variance. Findings Non-ambulatory children suffer from decreased bone mass in the diaphysis and proximal and distal epiphyses compared to ambulatory and control children (P≤0.001). Ambulatory children with spina bifida showed statistically insignificant differences in bone mass in comparison to typically developing children at these sites (P>0.5). Interpretation This method provides insight into tibial bone mass distribution in the pediatric spina bifida population by incorporating information along the whole length of the bone, thereby providing more information than dual-energy x-ray absorptiometry and peripheral quantitative computed tomography. This method can be applied to any population to assess bone mass distribution across the length of any long bone. PMID:26002057

  17. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs.

    PubMed

    Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok

    2014-12-01

    The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.

  18. Does morbid obesity negatively affect the hospital course of patients undergoing treatment of closed, lower-extremity diaphyseal long-bone fractures?

    PubMed

    Baldwin, Keith D; Matuszewski, Paul E; Namdari, Surena; Esterhai, John L; Mehta, Samir

    2011-01-03

    Obesity is prevalent in the developed world and is associated with significant costs to the health care system. The effect of morbid obesity in patients operatively treated for long-bone fractures of the lower extremity is largely unknown. The National Trauma Data Bank was accessed to determine if morbidly obese patients (body mass index >40) with lower extremity fractures have longer length of hospital stay, higher cost, greater rehabilitation admission rates, and more complications than nonobese patients. We identified patients with operatively treated diaphyseal femur (6920) and tibia (5190) fractures. Polytrauma patients and patients younger than 16 years were excluded. Morbidly obese patients were identified by ICD-9 and database comorbidity designation (femur, 131 morbidly obese; tibia, 75 morbidly obese). Patients meeting these criteria who were not morbidly obese were used as controls. Sensitivity analyses were performed to analyze patients with isolated trauma to the tibia or femur. Morbidly obese patients were more likely to be admitted to a subacute facility. Length of stay trended higher in morbidly obese patients. There was no significant relationship between obesity and inpatient mortality or inpatient complications. These trends held true when considering patients with multiple injuries and patients who had isolated long-bone injuries. Our study showed that morbidly obese patients may have greater rehabilitation needs following long-bone fractures in the lower extremity. Our study showed no difference in mortality or complications, although further studies are needed to confirm these findings. Copyright 2011, SLACK Incorporated.

  19. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.

    PubMed

    Bitschnau, Achim; Alt, Volker; Böhner, Felicitas; Heerich, Katharina Elisabeth; Margesin, Erika; Hartmann, Sonja; Sewing, Andreas; Meyer, Christof; Wenisch, Sabine; Schnettler, Reinhard

    2009-01-01

    This is the first work to report on additional Arginin-Glycin-Aspartat (RGD) coating on precoated hydroxyapatite (HA) surfaces regarding new bone formation, implant bone contact, and biocompatibility compared to pure HA coating and uncoated stainless K-wires. There were 39 rabbits in total with 6 animals for the RGD-HA and HA group for the 4 week time period and 9 animals for each of the 3 implant groups for the 12 week observation. A 2.0 K-wire either with RGD-HA or with pure HA coating or uncoated was placed into the intramedullary canal of the tibia. After 4 and 12 weeks, the tibiae were harvested and three different areas of the tibia were assessed for quantitative and qualitative histology for new bone formation, direct implant bone contact, and formation of multinucleated giant cells. Both RGD-HA and pure HA coating showed statistically higher new bone formation and implant bone contact after 12 weeks than the uncoated K-wire. There were no significant differences between the RGD-HA and the pure HA coating in new bone formation and direct implant bone contact after 4 and 12 weeks. The number of multinucleated giant did not differ significantly between the RGD-HA and HA group after both time points. Overall, no significant effects of an additional RGD coating on HA surfaces were detected in this model after 12 weeks. (c) 2008 Wiley Periodicals, Inc.

  20. Increased bone density in mice lacking the proton receptor, OGR1

    PubMed Central

    Krieger, Nancy S.; Yao, Zhenqiang; Kyker-Snowman, Kelly; Kim, Min Ho; Boyce, Brendan F.; Bushinsky, David A.

    2016-01-01

    Chronic metabolic acidosis stimulates cell-mediated calcium efflux from bone through osteoblastic prostaglandin E2-induced stimulation of RANKL leading to increased osteoclastic bone resorption. Osteoblasts express the proton-sensing G-protein coupled receptor, OGR1, which activates IP3-mediated intracellular calcium. Proton-induced osteoblastic intracellular calcium signaling requires OGR1, suggesting OGR1 is the sensor activated during acidosis to cause bone resorption. Growing mice produce large amounts of metabolic acids which must be buffered, primarily by bone, prior to excretion by the kidney. Here we tested whether lack of OGR1 inhibits proton-induced bone resorption by measuring bone mineral density by μCT and histomorphometry in 8 week old male OGR1−/− and C57/Bl6 wild type mice. OGR1−/− mice have normal skeletal development with no atypical gross phenotype. Trabecular and cortical bone volume was increased in tibiae and vertebrae from OGR1−/−. There were increased osteoblast numbers on the cortical and trabecular surfaces of tibiae from OGR1−/− mice, increased endocortical and trabecular bone formation rates, and osteoblastic gene expression. Osteoclast numbers and surface were increased in tibiae of OGR1−/− mice. Thus, in rapidly growing mice, lack of OGR1 leads to increased bone mass with increased bone turnover and a greater increase in bone formation than resorption. This supports the important role of the proton receptor, OGR1, in the response of bone to protons. PMID:26880453

  1. Second hand tobacco smoke adversely affects the bone of immature rats.

    PubMed

    Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; Santiago, Hildemberg Agostinho Rocha de; Volpon, José Batista

    2017-12-01

    To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure.

  2. Cartilage morphology at 2-3 years following anterior cruciate ligament reconstruction with or without concomitant meniscal pathology.

    PubMed

    Wang, Xinyang; Wang, Yuanyuan; Bennell, Kim L; Wrigley, Tim V; Cicuttini, Flavia M; Fortin, Karine; Saxby, David J; Van Ginckel, Ans; Dempsey, Alasdair R; Grigg, Nicole; Vertullo, Christopher; Feller, Julian A; Whitehead, Tim; Lloyd, David G; Bryant, Adam L

    2017-02-01

    To examine differences in cartilage morphology between young adults 2-3 years post-anterior cruciate ligament reconstruction (ACLR), with or without meniscal pathology, and control participants. Knee MRI was performed on 130 participants aged 18-40 years (62 with isolated ACLR, 38 with combined ACLR and meniscal pathology, and 30 healthy controls). Cartilage defects, cartilage volume and bone marrow lesions (BMLs) were assessed from MRI using validated methods. Cartilage defects were more prevalent in the isolated ACLR (69 %) and combined group (84 %) than in controls (10 %, P < 0.001). Furthermore, the combined group showed higher prevalence of cartilage defects on medial femoral condyle (OR 4.7, 95 % CI 1.3-16.6) and patella (OR 7.8, 95 % CI 1.5-40.7) than the isolated ACLR group. Cartilage volume was lower in both ACLR groups compared with controls (medial tibia, lateral tibia and patella, P < 0.05), whilst prevalence of BMLs was higher on lateral tibia (P < 0.001), with no significant differences between the two ACLR groups for either measure. Cartilage morphology was worse in ACLR patients compared with healthy controls. ACLR patients with associated meniscal pathology have a higher prevalence of cartilage defects than ACLR patients without meniscal pathology. The findings suggest that concomitant meniscal pathology may lead to a greater risk of future OA than isolated ACLR. III.

  3. The Soy Isoflavones for Reducing Bone Loss (SIRBL) Study: Three year effects on pQCT bone mineral density and strength measures in postmenopausal women

    PubMed Central

    SHEDD-WISE, KRISTINE M.; ALEKEL, D. LEE; HOFMANN, HEIKE; HANSON, KATHY B.; SCHIFERL, DAN J.; HANSON, LAURA N.; VAN LOAN, MARTA D.

    2011-01-01

    Soy isoflavones exert inconsistent bone density-preserving effects, but the bone strength-preserving effects in humans are unknown. Our double-blind randomized controlled trial examined two soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength (via peripheral quantitative computed tomography) in healthy postmenopausal women (46–63 y). We measured 3 y change in cortical (Ct) BMD, cortical thickness (CtThk), periosteal circumference (PC), endosteal circumference (EC), and strength-strain index (SSI) at 1/3 midshaft femur (N=171) and trabecular (Tb) BMD, PC, and SSI at 4% distal tibia (N=162). We found no treatment effect on femur CtThk, PC, or EC, or tibia TbBMD or PC. Strongest predictors (negative) of tibia TbBMD and SSI and femur CtBMD were timepoint and bone resorption; whole body fat mass was protective of SSI. As time since last menstrual period (TLMP) increased (p=0.012), 120 mg/d was protective of CtBMD. Strongest predictors of femur SSI were timepoint, bone resorption, and TLMP (protective). Isoflavone tablets were negative predictors of SSI, but 80 mg/d became protective as bone turnover increased (p=0.011). Soy isoflavone treatment for 3 y was modestly beneficial for midshaft femur vBMD as TLMP increased, and for midshaft femur SSI as bone turnover increased. PMID:21295742

  4. Limited Associations between Keel Bone Damage and Bone Properties Measured with Computer Tomography, Three-Point Bending Test, and Analysis of Minerals in Swiss Laying Hens

    PubMed Central

    Gebhardt-Henrich, Sabine G.; Pfulg, Andreas; Fröhlich, Ernst K. F.; Käppeli, Susanna; Guggisberg, Dominik; Liesegang, Annette; Stoffel, Michael H.

    2017-01-01

    Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far whether bone quality relates to keel bone damage. The goal of the present study was to detect possible associations between keel bone damage and bone properties of intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing systems. Bones were palpated and examined by peripheral quantitative computer tomography (PQCT), a three-point bending test, and analyses of bone ash. Contrary to our expectations, PQCT revealed higher cortical and trabecular contents in fractured than in intact keel bones. This might be due to structural bone repair after fractures. Density measurements of cortical and trabecular tissues of keel bones did not differ between individuals with and without fractures. In the three-point bending test of the tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral and calcium contents of the keel bone than birds with fractured keel bones. Calcium content in keel bones was correlated with calcium content in tibias. Although there were some associations between bone traits related to bone strength and keel bone damage, other factors such as stochastic events related to housing such as falls and collisions seem to be at least as important for the prevalence of keel bone damage. PMID:28848740

  5. Intramedullary nailing versus plating for distal tibia fractures without articular involvement: a meta-analysis.

    PubMed

    Mao, Zhi; Wang, Guoqi; Zhang, Lihai; Zhang, Licheng; Chen, Shuo; Du, Hailong; Zhao, Yanpeng; Tang, Peifu

    2015-06-16

    The choice between intramedullary (IM) nailing or plating of distal tibia fractures without articular involvement remains controversial. A meta-analysis of randomized controlled trials (RCTs) and observational studies was performed to compare IM nailing with plating for distal tibia fractures without articular involvement and to determine the dominant strategy. The PubMed, Embase, Cochrane Library databases, Chinese Wan-Fang Database, and China National Knowledge Infrastructure were searched. Twenty-eight studies, which included 1863 fractures, met the eligible criteria. The meta-analysis did not identify a statistically significant difference between the two treatments in terms of the rate of deep infection, delayed union, removal of instrumentation, or secondary procedures either in the RCT or retrospective subgroups. IM nailing was associated with significantly more malunion events and a higher incidence of knee pain in the retrospective subgroup and across all the studies, but not significantly in the RCT subgroup, and a lower rate of delayed wound healing and superficial infection both in the RCT and retrospective subgroups relative to plating. A meta-analysis of the functional scores or questionnaires was not possible because of the considerable variation among the included studies, and no significant differences were observed. Evidence suggests that both IM nailing and plating are appropriate treatments as IM nailing shows lower rate of delayed wound healing and superficial infection and plating may avoid malunion and knee pain. These findings should be interpreted with caution, however, because of the heterogeneity of the study designs. Large, rigorous RCTs are required.

  6. Novel management of distal tibial and fibular fractures with Acumed fibular nail and minimally invasive plating osteosynthesis technique: A case report.

    PubMed

    Wang, Tie-Jun; Ju, Wei-Na; Qi, Bao-Chang

    2017-03-01

    Anatomical characteristics, such as subcutaneous position and minimal muscle cover, contribute to the complexity of fractures of the distal third of the tibia and fibula. Severe damage to soft tissue and instability ensure high risk of delayed bone union and wound complications such as nonunion, infection, and necrosis. This case report discusses management in a 54-year-old woman who sustained fractures of the distal third of the left tibia and fibula, with damage to overlying soft tissue (swelling and blisters). Plating is accepted as the first choice for this type of fracture as it ensures accurate reduction and rigid fixation, but it increases the risk of complications. Closed fracture of the distal third of the left tibia and fibula (AO: 43-A3). After the swelling was alleviated, the patient underwent closed reduction and fixation with an Acumed fibular nail and minimally invasive plating osteosynthesis (MIPO), ensuring a smaller incision and minimal soft-tissue dissection. At the 1-year follow-up, the patient had recovered well and had regained satisfactory function in the treated limb. The Kofoed score of the left ankle was 95. Based on the experience from this case, the operation can be undertaken safely when the swelling has been alleviated. The minimal invasive technique represents the best approach. Considering the merits and good outcome in this case, we recommend the Acumed fibular nail and MIPO technique for treatment of distal tibial and fibular fractures.

  7. Evaluation of in-vivo measurement errors associated with micro-computed tomography scans by means of the bone surface distance approach.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco

    2015-11-01

    In vivo micro-computed tomography (µCT) scanning is an important tool for longitudinal monitoring of the bone adaptation process in animal models. However, the errors associated with the usage of in vivo µCT measurements for the evaluation of bone adaptations remain unclear. The aim of this study was to evaluate the measurement errors using the bone surface distance approach. The right tibiae of eight 14-week-old C57BL/6 J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size (10.4 µm) and the tibiae were repositioned between each scan. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration and a region of interest was selected in the proximal tibia metaphysis for analysis. The bone surface distances between the repeated and the baseline scan datasets were evaluated. It was found that the average (±standard deviation) median and 95th percentile bone surface distances were 3.10 ± 0.76 µm and 9.58 ± 1.70 µm, respectively. This study indicated that there were inevitable errors associated with the in vivo µCT measurements of bone microarchitecture and these errors should be taken into account for a better interpretation of bone adaptations measured with in vivo µCT. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Unsupervised segmentation of MRI knees using image partition forests

    NASA Astrophysics Data System (ADS)

    Marčan, Marija; Voiculescu, Irina

    2016-03-01

    Nowadays many people are affected by arthritis, a condition of the joints with limited prevention measures, but with various options of treatment the most radical of which is surgical. In order for surgery to be successful, it can make use of careful analysis of patient-based models generated from medical images, usually by manual segmentation. In this work we show how to automate the segmentation of a crucial and complex joint -- the knee. To achieve this goal we rely on our novel way of representing a 3D voxel volume as a hierarchical structure of partitions which we have named Image Partition Forest (IPF). The IPF contains several partition layers of increasing coarseness, with partitions nested across layers in the form of adjacency graphs. On the basis of a set of properties (size, mean intensity, coordinates) of each node in the IPF we classify nodes into different features. Values indicating whether or not any particular node belongs to the femur or tibia are assigned through node filtering and node-based region growing. So far we have evaluated our method on 15 MRI knee images. Our unsupervised segmentation compared against a hand-segmented gold standard has achieved an average Dice similarity coefficient of 0.95 for femur and 0.93 for tibia, and an average symmetric surface distance of 0.98 mm for femur and 0.73 mm for tibia. The paper also discusses ways to introduce stricter morphological and spatial conditioning in the bone labelling process.

  9. X-Ray Exam: Lower Leg (Tibia and Fibula)

    MedlinePlus

    ... X-rays are performed by an X-ray technician in the radiology department of a hospital, a ... pregnant, inform her doctor and the X-ray technician. Procedure This is a quick procedure. Although the ...

  10. Intramedullary nail fixation versus locking plate fixation for adults with a fracture of the distal tibia: the UK FixDT RCT.

    PubMed

    Costa, Matthew L; Achten, Juul; Hennings, Susie; Boota, Nafisa; Griffin, James; Petrou, Stavros; Maredza, Mandy; Dritsaki, Melina; Wood, Thomas; Masters, James; Pallister, Ian; Lamb, Sarah E; Parsons, Nick R

    2018-05-01

    The best treatment for fractures of the distal tibia remains controversial. Most of these fractures require surgical fixation, but the outcomes are unpredictable and complications are common. To assess disability, quality of life, complications and resource use in patients treated with intramedullary (IM) nail fixation versus locking plate fixation in the 12 months following a fracture of the distal tibia. This was a multicentre randomised trial. The trial was conducted in 28 UK acute trauma centres from April 2013 to final follow-up in February 2017. In total, 321 adult patients were recruited. Participants were excluded if they had open fractures, fractures involving the ankle joint, contraindication to nailing or inability to complete questionnaires. IM nail fixation ( n  = 161), in which a metal rod is inserted into the hollow centre of the tibia, versus locking plate fixation ( n  = 160), in which a plate is attached to the surface of the tibia with fixed-angle screws. The primary outcome measure was the Disability Rating Index (DRI) score, which ranges from 0 points (no disability) to 100 points (complete disability), at 6 months with a minimum clinically important difference of 8 points. The DRI score was also collected at 3 and 12 months. The secondary outcomes were the Olerud-Molander Ankle Score (OMAS), quality of life as measured using EuroQol-5 Dimensions (EQ-5D), complications such as infection, and further surgery. Resource use was collected to inform the health economic evaluation. Participants had a mean age of 45 years (standard deviation 16.2 years), were predominantly male (61%, 197/321) and had experienced traumatic injury after a fall (69%, 223/321). There was no statistically significant difference in DRI score at 6 months [IM nail fixation group, mean 29.8 points, 95% confidence interval (CI) 26.1 to 33.7 points; locking plate group, mean 33.8 points, 95% CI 29.7 to 37.9 points; adjusted difference, 4.0 points, 95% CI -1.0 to 9.0 points; p  = 0.11]. There was a statistically significant difference in DRI score at 3 months in favour of IM nail fixation (IM nail fixation group, mean 44.2 points, 95% CI 40.8 to 47.6 points; locking plate group, mean 52.6 points, 95% CI 49.3 to 55.9 points; adjusted difference 8.8 points, 95% CI 4.3 to 13.2 points; p  < 0.001), but not at 12 months (IM nail fixation group, mean 23.1 points, 95% CI 18.9 to 27.2 points; locking plate group, 24.0 points, 95% CI 19.7 to 28.3 points; adjusted difference 1.9 points, 95% CI -3.2 to 6.9 points; p  = 0.47). Secondary outcomes showed the same pattern, including a statistically significant difference in mean OMAS and EQ-5D scores at 3 and 6 months in favour of IM nail fixation. There were no statistically significant differences in complications, including the number of postoperative infections (13% in the locking plate group and 9% in the IM nail fixation group). Further surgery was more common in the locking plate group (12% in locking plate group and 8% in IM nail fixation group at 12 months). The economic evaluation showed that IM nail fixation provided a slightly higher quality of life in the 12 months after injury and at lower cost and, therefore, it was cost-effective compared with locking plate fixation. The probability of cost-effectiveness for IM nail fixation exceeded 90%, regardless of the value of the cost-effectiveness threshold. As wound dressings after surgery are clearly visible, it was not possible to blind the patients to their treatment allocation. This evidence does not apply to intra-articular (pilon) fractures of the distal tibia. Among adults with an acute fracture of the distal tibia who were randomised to IM nail fixation or locking plate fixation, there were similar disability ratings at 6 months. However, recovery across all outcomes was faster in the IM nail fixation group and costs were lower. The potential benefit of IM nail fixation in several other fractures requires investigation. Research is also required into the role of adjuvant treatment and different rehabilitation strategies to accelerate recovery following a fracture of the tibia and other long-bone fractures in the lower limb. The patients in this trial will remain in longer-term follow-up. Current Controlled Trials ISRCTN99771224 and UKCRN 13761. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 22, No. 25. See the NIHR Journals Library website for further project information.

  11. Leg lengthening - series (image)

    MedlinePlus

    ... as Legg-Perthes disease Previous injuries or bone fractures that may stimulate excessive bone growth Abnormal spinal ... in the bone to be lengthened; usually the lower leg bone (tibia) or upper ... small steps, usually over the course of several months.

  12. Two New Species of the Simulium (Simulium) variegatum Species-Group of Black Flies (Diptera: Simuliidae) From Thailand.

    PubMed

    Takaoka, Hiroyuki; Srisuka, Wichai; Saeung, Atiporn

    2017-09-01

    Two new species of black flies, Simulium (Simulium) srisukai and S. (S.) kiewmaepanense, are described from specimens collected in Thailand. Both species are assigned to the Simulium variegatum species-group of the subgenus Simulium (Simulium) Latreille. They are characterized by the darkened female femora and tibiae and six inflated pupal gill filaments, and the darkened female tibiae and six ordinary thread-like pupal gill filaments, respectively. Taxonomic notes are given to separate these new species from 10 related species among the group. These new species represent the third and fourth species of the S. variegatum species-group from Thailand. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com Version of Record, first published online May 15, 2017 with fixed content and layout in compliance with Art. 8.1.3.2 ICZN.

  13. Finite Element Analysis of Absorbable Sheath to Prevent Stress Shielding of Tibial Interlocking Intramedullary Nail

    NASA Astrophysics Data System (ADS)

    Dong, Yansheng; Wang, Yongqing; Dong, Limin; Jia, Peng; Lu, Fengcheng

    2017-07-01

    The nail with absorbable sheath (AS nail) is designed to reduce the stress shielding effect of internal fixation with interlocking intramedullary nail. In order to verify its feasibility, two types of the finite element models of internal fixation of tibia with the AS nail and the common metal nail (CM nail) are established using the Softwares of Mimics, Geomagic, SolidWorks and ANSYS according to the CT scanning data of tibia. The result of the finite element analysis shows that the AS nail has great advantages compared with the CM nail in reducing the stress shielding effect in different periods of fracture healing. The conclusion is that the AS nail can realize the static fixation to the dynamic fixation from the early to the later automatically to shorten the time of fracture healing, which also provides a new technique to the interlocking intramedullary nail.

  14. Longitudinal changes in bone lead levels: the VA Normative Aging Study.

    PubMed

    Wilker, Elissa; Korrick, Susan; Nie, Linda H; Sparrow, David; Vokonas, Pantel; Coull, Brent; Wright, Robert O; Schwartz, Joel; Hu, Howard

    2011-08-01

    Bone lead is a cumulative measure of lead exposure that can also be remobilized. We examined repeated measures of bone lead over 11 years to characterize long-term changes and identify predictors of tibia and patella lead stores in an elderly male population. Lead was measured every 3 to 5 years by k-x-ray fluorescence and mixed-effect models with random effects were used to evaluate change over time. A total of 554 participants provided up to four bone lead measurements. Final models predicted a -1.4% annual decline (95% CI: -2.2 to -0.7) for tibia lead and piecewise linear model for patella with an initial decline of 5.1% per year (95% CI: -6.2 to -3.9) during the first 4.6 years but no significant change thereafter (-0.4% [95% CI: -2.4 to 1.7]). These results suggest that bone lead half-life may be longer than previously reported.

  15. The Complimentary Role of Methoxy-Isobutyl-Isonitrile and Hand-Held Gamma Probe in Adamantinoma

    PubMed Central

    Maharaj, Masha; Korowlay, Nisaar; Ellmann, Prof

    2016-01-01

    Adamantinoma is a rare locally aggressive osteolytic tumor that is found 90% of the time in the diaphysis of the tibia with the remaining lesions found in the fibula and long tubular bones. A case of adamantinoma of the tibia is presented. The added value of nuclear medicine investigations in the workup of this patient is described. A three-phase whole body 99mTc-methylene diphosphonate bone and a whole body 99mTc-methoxy-isobutyl-isonitrile scans were complimentary in the demarcation of viable bone tumor and the assessment of the remainder of the bone and soft tissue to exclude other sites. Intra-operative assistance with a hand-held gamma probe, guided the biopsy of the most metabolically active tumor tissue. Histology revealed a biphasic tumor composed of epithelial and fibrous components, in keeping with an adamantinoma. PMID:26912979

  16. Unicameral bone cyst of the proximal tibia in a five year old girl

    PubMed Central

    Tahririan, Mohammadali; Motiffard, Mehdi

    2012-01-01

    Unicameral bone cysts (UBCs) are benign, osteolytic lesions which are often asymptomatic and are commonly seen in the proximal of humerus and femur. The average age at diagnosis is 9-11 years and there is a male preponderance with a male-to-female ratio of approximately 2-2.5 to 1. We describe a case of 5-year-old girl who presented to orthopedic clinic with a 4-month history of painful limping. Plain radiography of the right knee demonstrated a well-defined lytic lesion in the proximal of the tibia. Open biopsy and then curettage and bone grafting with bone- substitute was performed. The diagnosis of this condition requires a high index of suspicion. This report demonstrates that all UBCs do not have the same clinical patterns and with adequate attention good results can be achieved. PMID:23248665

  17. Medium to long-term results of the UNIX uncemented unicompartmental knee replacement.

    PubMed

    Hall, Matthew J; Connell, David A; Morris, Hayden G

    2013-10-01

    We report the first non-designer study of the Unix uncemented unicompartmental knee prosthesis. Eighty-five consecutive UKRs were carried out with sixty-five available for follow-up. Oxford Knee Scores, WOMAC questionnaire and radiological assessment were completed. The mean Oxford Knee Score was thirty-eight and WOMAC Score was twenty. Overall Kaplan Meier survival estimate is 76% (95% confidence interval 60%-97%) at 12years and 88% (95% confidence interval 76-100%) with aseptic loosening as the endpoint. Radiographic assessment showed lysis in the tibia in 6% of patients with no lysis evident around the central fin. Survivorship is comparable to other published series of UKRs. We suggest the central fin design is key to dissipating large forces throughout the proximal tibia, resulting in low levels of tibial loosening. Level of evidence IV. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Chronic osteomyelitis of the tibia in a runner: catastrophic consequences of shin splints.

    PubMed

    Hammad, Yunes Nadim; Johnson, Abigail; Norrish, Alan

    2018-03-01

    Medial tibial stress syndrome and chronic osteomyelitis are conditions that are traditionally thought to affect very different patient groups. We present a case of shin splints in a recreational long-distance runner, complicated by chronic osteomyelitis of the tibia. This is a unique case in which the microtrauma resulting from shin splints was implicated as an entry point for bacterial infection into the bone. Clinical evaluation and bone biopsy culture results indicated haematogenous spread of bacteria originating from the oral cavity. The patient required surgical resection of the affected bone and a prolonged course of intravenous antibiotic treatment. We illustrate that when shin splints show signs of acute inflammation with delayed recovery, the possibility of osteomyelitis should be kept in mind. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. A free vascularized tibia-fibular composite graft for the traumatic femoral bony defect of a 6-year-old boy with 10-year follow up: a case report

    PubMed Central

    2013-01-01

    Introduction Free vascularized fibular grafts have been widely used for the reconstruction of long bone defects. However, the use of a vascularized tibial graft is precluded by its weight-bearing function and unacceptable donor site morbidity. Case presentation We present a rare case of using a vascularized tibia-fibular composite graft taken from a 6-year-old Chinese boy’s ipsilateral lower leg to reconstruct a large bony defect of his traumatic femur. Hypertrophy of the tibial graft, good remodeling of the femoral shaft, and atrophy of the unloaded fibular graft were noted at the 10-year follow up. He was able to participate in outdoor activities such as basketball while wearing his prosthesis. Conclusions The 10-year follow up demonstrates the feasibility of this salvage procedure for a floating knee injury with neurovascular compromise. PMID:23714102

  20. Evolution of bone microanatomy of the tetrapod tibia and its use in palaeobiological inference.

    PubMed

    Kriloff, A; Germain, D; Canoville, A; Vincent, P; Sache, M; Laurin, M

    2008-05-01

    Bone microanatomy appears to track changes in various physiological or ecological properties of the individual or the taxon. Analyses of sections of the tibia of 99 taxa show a highly significant (P

Top