Sample records for tick-borne encephalitis complex

  1. Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection.

    PubMed

    McAuley, Alexander J; Sawatsky, Bevan; Ksiazek, Thomas; Torres, Maricela; Korva, Miša; Lotrič-Furlan, Stanka; Avšič-Županc, Tatjana; von Messling, Veronika; Holbrook, Michael R; Freiberg, Alexander N; Beasley, David W C; Bente, Dennis A

    2017-01-01

    The tick-borne encephalitis complex contains a number of flaviviruses that share close genetic homology, and are responsible for significant human morbidity and mortality with widespread geographical range. Although many members of this complex have been recognised for decades, licenced human vaccines with broad availability are only available for tick-borne encephalitis virus. While tick-borne encephalitis virus vaccines have been demonstrated to induce significant protective immunity, as determined by virus-neutralisation titres, vaccine breakthrough (clinical infection following complete vaccination), has been described. The aim of this study was to confirm the cross-neutralisation of tick-borne flaviviruses using mouse immune ascitic fluids, and to determine the magnitude of cross-neutralising antibody titres in sera from donors following tick-borne encephalitis vaccination, infection, and vaccine breakthrough. The results demonstrate that there is significant cross-neutralisation of representative members of the tick-borne encephalitis complex following vaccination and/or infection, and that the magnitude of immune responses varies based upon the exposure type. Donor sera successfully neutralised most of the viruses tested, with 85% of vaccinees neutralising Kyasanur forest disease virus and 73% of vaccinees neutralising Alkhumra virus. By contrast, only 63% of vaccinees neutralised Powassan virus, with none of these neutralisation titres exceeding 1:60. Taken together, the data suggest that tick-borne encephalitis virus vaccination may protect against most of the members of the tick-borne encephalitis complex including Kyasanur forest disease virus and Alkhumra virus, but that the neutralisation of Powassan virus following tick-borne encephalitis vaccination is minimal.

  2. Experimental Transmission of Karshi and Langat (Tick-Borne Encephalitis Virus Complex) Viruses by Ornithodoros Ticks (Acari: Argasidae)

    DTIC Science & Technology

    2004-01-01

    mosquitoes and Ornithodoros ticks were evaluated for their potential to transmit Karshi and Langat (tick-borne encephalitis virus complex) viruses in the...orally exposed to Langat virus, were able to transmit this virus after more than 3 years, the longest interval tested. Therefore, Ornithodoros spp

  3. Tick-Borne Encephalitis (TBE)

    MedlinePlus

    ... virus, Siberian tick-borne encephalitis virus, and Far eastern Tick-borne encephalitis virus (formerly known as Russian ... viruses are closely related to TBEV and Far-eastern TBE, and include Omsk hemorrhagic fever virus in ...

  4. [Role of Powassan virus in the etiological structure of tick-borne encephalitis in the Primorsky Kray].

    PubMed

    Leonova, G N; Isachkova, L M; Baranov, N I; Krugliak, S P

    1980-01-01

    Composite studies conducted annually in the Primorsky kray showed the tick-borne encephalitis virus to play the main etiological role in the group of encephalites with the spring-summer incidence. In 1976--1978, virological studies of 69 cases of the disease yielded 11 strains of tick-borne encephalitis virus. In 1978, from the blood of clinically normal woman after a tick bite strain 555 was first isolated which was identified as Powassan virus, and antigenemia was observed for 53 days using the fluorescent antibody technique. In the same period, serological examinations of the blood sera from 117 patients demonstrated antibody to tick-borne encephalitis virus in 69.2%, to Powassan virus in 4,3% and to both viruses simultaneously in 4.3%. Besides, antibody to tick-borne encephalitis virus, Powassan virus and both viruses simultaneously was found in patients with progredient forms of tick-borne encephalitis and in subjects with the history of tick attachment.

  5. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management

    PubMed Central

    Bogovic, Petra; Strle, Franc

    2015-01-01

    Tick-borne encephalitis is an infection of central nervous system caused by tick-borne encephalitis virus transmitted to humans predominantly by tick bites. During the last few decades the incidence of the disease has been increasing and poses a growing health problem in almost all endemic European and Asian countries. Most cases occur during the highest period of tick activity, in Central Europe mainly from April to November. Tick-borne encephalitis is more common in adults than in children. Clinical spectrum of the disease ranges from mild meningitis to severe meningoencephalitis with or without paralysis. Rare clinical manifestations are an abortive form of the disease and a chronic progressive form. A post-encephalitic syndrome, causing long-lasting morbidity that often affects the quality of life develops in up to 50% of patients after acute tick-borne encephalitis. Clinical course and outcome vary by subtype of tick-borne encephalitis virus (the disease caused by the European subtype has milder course and better outcome than the disease caused by Siberian and Far-Easter subtypes), age of patients (increasing age is associated with less favorable outcome), and host genetic factors. Since clinical features and laboratory results of blood and cerebrospinal fluid are nonspecific, the diagnosis must be confirmed by microbiologic findings. The routine laboratory confirmation of the tick-borne encephalitis virus infection is based mainly on the detection of specific IgM and IgG antibodies in serum (and cerebrospinal fluid), usually by enzyme-linked immunosorbent assay. There is no specific antiviral treatment for tick-borne encephalitis. Vaccination can effectively prevent the disease and is indicated for persons living in or visiting tick-borne encephalitis endemic areas. PMID:25984517

  6. Fatal Tick-Borne Encephalitis Virus Infections Caused by Siberian and European Subtypes, Finland, 2015.

    PubMed

    Kuivanen, Suvi; Smura, Teemu; Rantanen, Kirsi; Kämppi, Leena; Kantonen, Jonas; Kero, Mia; Jääskeläinen, Anu; Jääskeläinen, Anne J; Sane, Jussi; Myllykangas, Liisa; Paetau, Anders; Vapalahti, Olli

    2018-05-01

    In most locations except for Russia, tick-borne encephalitis is mainly caused by the European virus subtype. In 2015, fatal infections caused by European and Siberian tick-borne encephalitis virus subtypes in the same Ixodes ricinus tick focus in Finland raised concern over further spread of the Siberian subtype among widespread tick species.

  7. Correlation of TBE Incidence with Red Deer and Roe Deer Abundance in Slovenia

    PubMed Central

    Knap, Nataša; Avšič-Županc, Tatjana

    2013-01-01

    Tick-borne encephalitis (TBE) is a virus infection which sometimes causes human disease. The TBE virus is found in ticks and certain vertebrate tick hosts in restricted endemic localities termed TBE foci. The formation of natural foci is a combination of several factors: the vectors, a suitable and numerous enough number of hosts and in a habitat with suitable vegetation and climate. The present study investigated the influence of deer on the incidence of tick-borne encephalitis. We were able to obtain data from deer culls. Using this data, the abundance of deer was estimated and temporal and spatial analysis was performed. The abundance of deer has increased in the past decades, as well as the incidence of tick-borne encephalitis. Temporal analysis confirmed a correlation between red deer abundance and tick-borne encephalitis occurrence. Additionally, spatial analysis established, that in areas with high incidence of tick-borne encephalitis red deer density is higher, compared to areas with no or few human cases of tick-borne encephalitis. However, such correlation could not be confirmed between roe deer density and the incidence of tick-borne encephalitis. This is presumably due to roe deer density being above a certain threshold so that availability of tick reproduction hosts has no apparent effect on ticks' host finding and consequently may not be possible to correlate with incidence of human TBE. PMID:23776668

  8. [The role of wild murine rodents in the selection of different strains of tick-borne encephalitis and Powassan viruses].

    PubMed

    Leonova, G N; Krugliak, S P; Lozovskaia, S A; Rybachuk, V N

    1987-01-01

    The study demonstrated the role of wild murine rodents in selection of different strains of tick-borne encephalitis and Powassan viruses, determined their ecological characteristics reflected in the epidemiological features of tick-borne encephalitis and Powassan encephalitis in southern Far East.

  9. Tick-borne encephalitis.

    PubMed

    Gritsun, T S; Lashkevich, V A; Gould, E A

    2003-01-01

    Tick-borne encephalitis (TBE) is one of the most dangerous human infections occurring in Europe and many parts of Asia. The etiological agent Tick-borne encephalitis virus (TBEV), is a member of the virus genus Flavivirus, of the family Flaviviridae. TBEV is believed to cause at least 11,000 human cases of encephalitis in Russia and about 3000 cases in the rest of Europe annually. Related viruses within the same group, Louping ill virus (LIV), Langat virus (LGTV) and Powassan virus (POWV), also cause human encephalitis but rarely on an epidemic scale. Three other viruses within the same group, Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV) and Alkhurma virus (ALKV), are closely related to the TBEV complex viruses and tend to cause fatal hemorrhagic fevers rather than encephalitis. This review describes the clinical manifestations associated with TBEV infections, the main molecular-biological properties of these viruses, and the different factors that define the incidence and severity of disease. The role of ticks and their local hosts in the emergence of new virus variants with different pathogenic characteristics is also discussed. This review also contains a brief history of vaccination against TBE including trials with live attenuated vaccine and modern tendencies in developing of vaccine virus strains.

  10. COMPARISON BETWEEN PROTON MAGNETIC RESONANCE SPECTROSCOPY FINDINGS IN DOGS WITH TICK-BORNE ENCEPHALITIS AND CLINICALLY NORMAL DOGS.

    PubMed

    Sievert, Christine; Richter, Henning; Beckmann, Katrin; Kircher, Patrick R; Carrera, Ines

    2017-01-01

    In vivo diagnosis of tick-borne encephalitis is difficult due to high seroprevalence and rapid viral clearance, limiting detection of antibodies in blood and cerebrospinal fluid. Magnetic resonance imaging (MRI) characteristics of tick-borne encephalitis have been reported, however MRI studies can also be negative despite the presence of neurologic signs. Magnetic resonance spectroscopy ( 1 H MRS) is an imaging method that provides additional information about the metabolic characteristics of brain tissues. The purpose of this retrospective cross-sectional study was to describe brain metabolites using short echo time single-voxel 1 H MRS in dogs with confirmed tick-borne encephalitis and compare them with healthy dogs. Inclusion criteria for the affected dogs were neurological symptoms suggestive of tick-borne encephalitis, previous endemic stay and tick-bite, diagnostic quality brain MRI and 1 H MRS studies, and positive antibody titers or confirmation of tick-borne encephalitis with necropsy. Control dogs were 10, clinically normal beagles that had been used in a previous study. A total of six affected dogs met inclusion criteria. All dogs affected with tick-borne encephalitis had 1 H MRS metabolite concentration alterations versus control dogs. These changes included mild to moderate decreases in N-acetyl aspartate and creatine peaks, and mild increases in glutamate/glutamine peaks. No lactate or lipid signal was detected in any dog. Myoinositol and choline signals did not differ between affected and control dogs. In conclusion, findings supported the use of 1 H MRS as an adjunctive imaging method for dogs with suspected tick-borne encephalitis and inconclusive conventional MRI findings. © 2016 American College of Veterinary Radiology.

  11. The first detection of the tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks collected from the lowland European bison (Bison bonasus bonasus L.).

    PubMed

    Biernat, Beata; Karbowiak, Grzegorz; Stańczak, Joanna; Masny, Aleksander; Werszko, Joanna

    2016-01-01

    Tick borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is the causative agent of tick-borne encephalitis (TBE), a potentially fatal neurological infection. The disease is endemic in a large region in Eurasia, where is transmitted mainly by hard ticks: Ixodes ricinus and I. persulcatus. It is known that also Dermacentor reticulatus is involved in a circulation of TBEV, but the knowledge of its importance in the TBE epidemiology is still insufficient. The Białowieża Primeval Forest is located in eastern Poland and it is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tick-borne encephalitis virus (TBEV) in Dermacentor reticulatus ticks collected from European bison (Bison bonasus bonasus), an important host of hard ticks in the Białowieża Primeval Forest. In the years 2008-2009, a total of 114 adult D. reticulatus ticks were collected from 7 European bison and examined individually for the presence of TBEV RNA using nested RT-PCR assay. Positive results were noted in 18.42% of ticks. This is the first record of TBEV infection in ticks collected from European bison.

  12. Study on the occurrence of tick-borne encephalitis virus RNA in European bison (Bison bonasus) eliminated at Białowieza Primeval Forest (north-eastern Poland) in 2005-2009.

    PubMed

    Biernat, Beata; Karbowiak, Grzegorz

    2014-01-01

    Tick-borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is an arthropod-borne virus, an etiologic agent of tick-borne encephalitis (TBE), an infection involving the central nervous system. The disease is endemic in a large region in Eurasia where it is transmitted mainly by Ixodes ricinus in Europe and I. persulcatus ticks in Asia. This is the most important tick-transmitted arbovirus of human pathogenicity in Europe. The Białowieza Primeval Forest is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tickborne encephalitis virus (TBEV) in European bison, the important hosts of ticks in the Białowieza Primeval Forest. In the years 2005-2009, 95 blood samples were collected from European bison and examined for the presence of TBEV using nRT-PCR method. No positive results were obtained. For better understanding of TBEV vertebrate reservoir hosts in Poland, further investigations are needed.

  13. Tick-Borne Encephalitis with Hemorrhagic Syndrome, Novosibirsk Region, Russia, 1999

    PubMed Central

    Ternovoi, Vladimir A.; Kurzhukov, Gennady P.; Sokolov, Yuri V.; Ivanov, Gennady Y.; Ivanisenko, Vladimir A.; Loktev, Alexander V.; Ryder, Robert W.; Netesov, Sergey V.

    2003-01-01

    Eight fatal cases of tick-borne encephalitis with unusual hemorrhagic syndrome were identified in 1999 in the Novosibirsk Region, Russia. To study these strains, we sequenced cDNA fragments of protein E gene from six archival formalin-fixed brain samples. Phylogenetic analysis showed tick-borne encephalitis variants clustered with a Far Eastern subtype (homology 94.7%) but not with the Siberian subtype (82%). PMID:12781020

  14. Inefficient Mechanical Transmission of Langat (Tick-Borne Encephalitis Virus Complex) Virus by Blood-Feeding Mites (Acari) to Laboratory Mice

    DTIC Science & Technology

    1993-05-01

    AD--A269 706 SPSSHORT C:OMMNUNICATION 8 Inefficient Mechanical Transmission of Langat (Tick-Bornee Encephalitis Virus Complex) Virus by Blood-Feeding...I d after a . iremic blood meal. but onhv immediatelIy after the vi re muo. LANGAT (LGT) VIRUS is a member of the tick- No isolations of LCT virus...Use of ulatus collected in the Ulu Langat Forest re- Laboratory Animals." as promulgated by the Committee on serve, Malaysia. in l959’(Struth 1956

  15. Nucleotide and deduced amino acid sequence of the envelope gene of the Vasilchenko strain of TBE virus; comparison with other flaviviruses.

    PubMed

    Gritsun, T S; Frolova, T V; Pogodina, V V; Lashkevich, V A; Venugopal, K; Gould, E A

    1993-02-01

    A strain of tick-borne encephalitis virus known as Vasilchenko (Vs) exhibits relatively low virulence characteristics in monkeys, Syrian hamsters and humans. The gene encoding the envelope glycoprotein of this virus was cloned and sequenced. Alignment of the sequence with those of other known tick-borne flaviviruses and identification of the recognised amino acid genetic marker EHLPTA confirmed its identity as a member of the TBE complex. However, Vs virus was distinguishable from eastern and western tick-borne serotypes by the presence of the sequence AQQ at amino acid positions 232-234 and also by the presence of other specific amino acid substitutions which may be genetic markers for these viruses and could determine their pathogenetic characteristics. When compared with other tick-borne flaviviruses, Vs virus had 12 unique amino acid substitutions including an additional potential glycosylation site at position (315-317). The Vs virus strain shared closest nucleotide and amino acid homology (84.5% and 95.5% respectively) with western and far eastern strains of tick-borne encephalitis virus. Comparison with the far eastern serotype of tick-borne encephalitis virus, by cross-immunoelectrophoresis of Vs virions and PAGE analysis of the extracted virion proteins, revealed differences in surface charge and virus stability that may account for the different virulence characteristics of Vs virus. These results support and enlarge upon previous data obtained from molecular and serological analysis.

  16. Prevention of tick-borne diseases.

    PubMed

    Piesman, Joseph; Eisen, Lars

    2008-01-01

    Tick-borne diseases are on the rise. Lyme borreliosis is prevalent throughout the Northern Hemisphere, and the same Ixodes tick species transmitting the etiologic agents of this disease also serve as vectors of pathogens causing human babesiosis, human granulocytic anaplasmosis, and tick-borne encephalitis. Recently, several novel agents of rickettsial diseases have been described. Despite an explosion of knowledge in the fields of tick biology, genetics, molecular biology, and immunology, transitional research leading to widely applied public health measures to combat tick-borne diseases has not been successful. Except for the vaccine against tick-borne encephalitis virus, and a brief campaign to reduce this disease in the former Soviet Union through widespread application of DDT, success stories in the fight against tick-borne diseases are lacking. Both new approaches to tick and pathogen control and novel ways of translating research findings into practical control measures are needed to prevent tick-borne diseases in the twenty-first century.

  17. Tick-Borne Encephalitis Virus in Ticks and Roe Deer, the Netherlands.

    PubMed

    Jahfari, Setareh; de Vries, Ankje; Rijks, Jolianne M; Van Gucht, Steven; Vennema, Harry; Sprong, Hein; Rockx, Barry

    2017-06-01

    We report the presence of tick-borne encephalitis virus (TBEV) in the Netherlands. Serologic screening of roe deer found TBEV-neutralizing antibodies with a seroprevalence of 2%, and TBEV RNA was detected in 2 ticks from the same location. Enhanced surveillance and awareness among medical professionals has led to the identification of autochthonous cases.

  18. The occurrence of Ixodes ricinus ticks and important tick-borne pathogens in areas with high tick-borne encephalitis prevalence in different altitudinal levels of the Czech Republic Part I. Ixodes ricinus ticks and tick-borne encephalitis virus.

    PubMed

    Daniel, M; Danielová, V; Kříž, B; Růžek, D; Fialová, A; Malý, M; Materna, J; Pejčoch, M; Erhart, J

    The aim of the three-year study (2011-2013) was to monitor population density of Ixodes ricinus ticks and its infection rate with the tick-borne encephalitis virus in areas with a high incidence of tick-borne encephalitis as reported in the previous decade 2001-2010. Such a comprehensive and long-term study based on existing epidemiolo-gical findings has not previously been conducted in Europe. In the areas of the Ústí nad Labem Region, Olomouc Region, South Bohemian Region, and Highlands Region, 600 m2 plots were selected in the local optimal I. ricinus habitats where tick flagging was performed every year in the spring-summer and autumn seasons of the questing activity. In total, 18,721 I. ricinus ticks (1448 females, 1425 males, and 15,848 nymphs) were collected and investigated. The results have shown that the differences in the infection rate of I. ricinus observed between regions are driven by variation in the density of the local I. ricinus populations which is influenced by the characteris-tics of the whole local biocenosis. The overall prevalence estimate of TBE virus in Ixodes ricinus ticks at the altitudes below 600 m a.s.l. was 0.096 % (95% CI 0.055-0.156) for nymphs, and 0.477 % (95% CI 0.272-0.773) for adults. The dynamics of the seasonal variation in I. ricinus populations, depending primarily on the climatic factors, are behind the interyear differences in the infection rate of ticks and, consequently, in the epidemiological situation of tick-borne encephalitis. The nymph to adult ratio was 5.5 on average but showed great interregional variability (from 10.3 in the Ústí nad Labem Region to 1.8 in the Highlands Region). It might be used in the future as one of the indicators of the composition of the local I. ricinus population and of the level of the circulation of tick-borne pathogens in zoonotic sphere and also for use in the health risk assessment in a given area. Despite the permanent expansion of ticks and tick-borne pathogens in higher altitudes the high risk limit for human infection with tick-borne encephalitis is 600 m a.s.l. in the Czech Republic.

  19. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks from three islands in north-western Norway.

    PubMed

    Paulsen, Katrine M; Pedersen, Benedikte N; Soleng, Arnulf; Okbaldet, Yohannes B; Pettersson, John H-O; Dudman, Susanne G; Ottesen, Preben; Vik, Inger Sofie Samdal; Vainio, Kirsti; Andreassen, Åshild

    2015-09-01

    Tick-borne encephalitis (TBE) is the most important viral tick-borne disease in Europe and can cause severe disease in humans. In Norway, human cases have been reported only from the southern coast. The aim of this study was to investigate the prevalence of tick-borne encephalitis virus (TBEV) in questing Ixodes ricinus ticks from the north-western part of Norway. A total of 4509 ticks were collected by flagging in May and June 2014. A subpopulation of 2220 nymphs and 162 adult ticks were analysed by real-time PCR and positive samples were confirmed by pyrosequencing. The estimated prevalence of TBEV was 3.08% among adult ticks from Sekken in Møre og Romsdal County and 0.41% among nymphs from both Hitra and Frøya in Sør-Trøndelag County. This study indicates that TBEV might be more widespread than the distribution of reported human cases suggests. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  20. Serologic Evidence of Tick-Borne Encephalitis Virus Infection in a Patient with Suspected Lyme Disease in Japan.

    PubMed

    Yoshii, Kentaro; Sato, Kozue; Ishizuka, Mariko; Kobayashi, Shintaro; Kariwa, Hiroaki; Kawabata, Hiroki

    2018-05-29

    Tick-borne encephalitis (TBE) is widely prevalent on the Eurasian continent, including Japan, but four cases of TBE have been reported in Japan. To inspect unconfirmed TBE cases in Japan, we conducted a retrospective seroepidemiological study of a total of 158 samples from 81 meningoencephalitis patients suspected as Lyme disease. Two serum samples from one patient showed neutralizing antibodies against TBE virus. The patient with severe and progressive encephalitis had a history of tick bite in Hokkaido in 2012. These results demonstrated that tick-borne encephalitis virus (TBEV) case was actually unconfirmed in Japan. Further seroepidemiological surveys are required to identify unconfirmed TBEV infections to consider the pros and cons of introducing specific countermeasures including vaccination in Japan.

  1. Arboviruses pathogenic for domestic and wild animals.

    PubMed

    Hubálek, Zdenek; Rudolf, Ivo; Nowotny, Norbert

    2014-01-01

    The objective of this chapter is to provide an updated and concise systematic review on taxonomy, history, arthropod vectors, vertebrate hosts, animal disease, and geographic distribution of all arboviruses known to date to cause disease in homeotherm (endotherm) vertebrates, except those affecting exclusively man. Fifty arboviruses pathogenic for animals have been documented worldwide, belonging to seven families: Togaviridae (mosquito-borne Eastern, Western, and Venezuelan equine encephalilitis viruses; Sindbis, Middelburg, Getah, and Semliki Forest viruses), Flaviviridae (mosquito-borne yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile, Usutu, Israel turkey meningoencephalitis, Tembusu and Wesselsbron viruses; tick-borne encephalitis, louping ill, Omsk hemorrhagic fever, Kyasanur Forest disease, and Tyuleniy viruses), Bunyaviridae (tick-borne Nairobi sheep disease, Soldado, and Bhanja viruses; mosquito-borne Rift Valley fever, La Crosse, Snowshoe hare, and Cache Valley viruses; biting midges-borne Main Drain, Akabane, Aino, Shuni, and Schmallenberg viruses), Reoviridae (biting midges-borne African horse sickness, Kasba, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki, equine encephalosis, Peruvian horse sickness, and Yunnan viruses), Rhabdoviridae (sandfly/mosquito-borne bovine ephemeral fever, vesicular stomatitis-Indiana, vesicular stomatitis-New Jersey, vesicular stomatitis-Alagoas, and Coccal viruses), Orthomyxoviridae (tick-borne Thogoto virus), and Asfarviridae (tick-borne African swine fever virus). They are transmitted to animals by five groups of hematophagous arthropods of the subphyllum Chelicerata (order Acarina, families Ixodidae and Argasidae-ticks) or members of the class Insecta: mosquitoes (family Culicidae); biting midges (family Ceratopogonidae); sandflies (subfamily Phlebotominae); and cimicid bugs (family Cimicidae). Arboviral diseases in endotherm animals may therefore be classified as: tick-borne (louping ill and tick-borne encephalitis, Omsk hemorrhagic fever, Kyasanur Forest disease, Tyuleniy fever, Nairobi sheep disease, Soldado fever, Bhanja fever, Thogoto fever, African swine fever), mosquito-borne (Eastern, Western, and Venezuelan equine encephalomyelitides, Highlands J disease, Getah disease, Semliki Forest disease, yellow fever, Japanese encephalitis, Murray Valley encephalitis, West Nile encephalitis, Usutu disease, Israel turkey meningoencephalitis, Tembusu disease/duck egg-drop syndrome, Wesselsbron disease, La Crosse encephalitis, Snowshoe hare encephalitis, Cache Valley disease, Main Drain disease, Rift Valley fever, Peruvian horse sickness, Yunnan disease), sandfly-borne (vesicular stomatitis-Indiana, New Jersey, and Alagoas, Cocal disease), midge-borne (Akabane disease, Aino disease, Schmallenberg disease, Shuni disease, African horse sickness, Kasba disease, bluetongue, epizootic hemorrhagic disease of deer, Ibaraki disease, equine encephalosis, bovine ephemeral fever, Kotonkan disease), and cimicid-borne (Buggy Creek disease). Animals infected with these arboviruses regularly develop a febrile disease accompanied by various nonspecific symptoms; however, additional severe syndromes may occur: neurological diseases (meningitis, encephalitis, encephalomyelitis); hemorrhagic symptoms; abortions and congenital disorders; or vesicular stomatitis. Certain arboviral diseases cause significant economic losses in domestic animals-for example, Eastern, Western and Venezuelan equine encephalitides, West Nile encephalitis, Nairobi sheep disease, Rift Valley fever, Akabane fever, Schmallenberg disease (emerged recently in Europe), African horse sickness, bluetongue, vesicular stomatitis, and African swine fever; all of these (except for Akabane and Schmallenberg diseases) are notifiable to the World Organisation for Animal Health (OIE, 2012). © 2014 Elsevier Inc. All rights reserved.

  2. Export Controls: Controls Over the Export Licensing Process for Chemical and Biological Items

    DTIC Science & Technology

    2005-03-30

    Akabane virus Bovine spongiform encephalopathy agent Camel pox virus Central European tick-borne encephalitis Cercopithecine herpesvirus 1...Herpes B virus) Coccidioides immitis Coccidioides posadasii Cowdria ruminantium (Heartwater) Far Eastern tick-borne encephalitis Liberobacter

  3. Distribution of tick-borne diseases in China

    PubMed Central

    2013-01-01

    As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. PMID:23617899

  4. Infection of Macaca Radiata with Viruses of the Tick-Borne Encephalitis Group

    DTIC Science & Technology

    1992-01-01

    3411 IC Microbial Patho genesis 1 992, 13: 399 409 ET AD-A265 505 N9 3U 9312898 I Infection of Macaca radiata with viruses of the tick - borne...Diseases, Frederick, MD 21702-5011, U.SA.), M. K. Rippy, K. T. McKee Jr., P. M. Zack and C. J. Peters. Infection of Macaca radiata with viruses of the tick ...for human disease caused by other, related strains of this group of viruses. Key words: Macaca radiata; tick -borne encephalitis; pathogenesis; Kyasanur

  5. [Diseases transmitted by ticks locally and abroad].

    PubMed

    Gétaz, L; Loutan, L; Mezger, N

    2012-05-09

    This article provides a brief overview of some diseases transmitted by ticks. These vectors do not transmit only Lyme disease and tickborne-encephalitis, even in Switzerland. Several tick-borne diseases cause nonspecific flu-like symptoms. Nevertheless sometimes severe, some of these diseases can be treated with specific treatments. Repellents, appropriate clothes impregnated with permethrine and prompt removal of the tick are effective preventive measures to limit the risk of infection. There is an effective vaccine which protects against tick-borne encephalitis.

  6. Tick-borne Encephalitis from Eating Goat Cheese in a Mountain Region of Austria

    PubMed Central

    Aberle, Stephan W.; Stiasny, Karin; Werner, Philipp; Mischak, Andreas; Zainer, Bernhard; Netzer, Markus; Koppi, Stefan; Bechter, Elmar; Heinz, Franz X.

    2009-01-01

    We report transmission of tick-borne encephalitis virus (TBEV) in July 2008 through nonpasteurized goat milk to 6 humans and 4 domestic pigs in an alpine pasture 1,500 m above sea level. This outbreak indicates the emergence of ticks and TBEV at increasing altitudes in central Europe and the efficiency of oral transmission of TBEV. PMID:19861072

  7. Tick-borne encephalitis among U.S. travelers to Europe and Asia - 2000-2009.

    PubMed

    2010-03-26

    Tick-borne encephalitis virus (TBEV) is the most common arbovirus transmitted by ticks in Europe. Approximately 10,000 cases of tick-borne encephalitis (TBE) are reported annually in Europe and Russia. Although TBE is endemic in parts of China, information regarding its incidence is limited. TBEV is closely related to Powassan virus (POWV), another tick-borne flavivirus that is a rare cause of encephalitis in North America and Russia; TBEV and POWV can cross-react in serologic tests. Before 2000, two cases of TBE in North American travelers to Europe were reported. State health officials or clinicians send specimens from patients with unexplained encephalitis to CDC as part of routine surveillance and diagnostic testing. CDC recently reviewed all 2000-2009 laboratory records to identify cases of TBE among U.S. travelers; the five cases identified are summarized in this report. All five cases had TBEV or POWV immunoglobulin M (IgM) antibodies in serum and were confirmed as acute TBE cases by plaque-reduction neutralization tests against both viruses. All four patients who had traveled to Europe or Russia had biphasic illnesses (a common feature of TBE) and made nearly complete recoveries. The fifth patient, the first reported case of TBE in a U.S. traveler to China, had a monophasic illness with severe encephalitis and neurologic sequelae. Health-care providers should be aware of TBE, should counsel travelers about measures to reduce exposure to tick bites, and should consider the diagnosis of TBE in travelers returning from TBE-endemic countries with meningitis or encephalitis.

  8. Powassan encephalitis and Colorado tick fever.

    PubMed

    Romero, José R; Simonsen, Kari A

    2008-09-01

    This article discusses two tick-borne illnesses: Powassan encephalitis, a rare cause of central nervous system infection caused by the Powassan virus, and Colorado tick fever, an acute febrile illness caused by the Colorado tick fever virus common to the Rocky Mountain region of North America.

  9. Tick-borne encephalitis (TBE): an underestimated risk…still: report of the 14th annual meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE).

    PubMed

    Kunze, Ursula

    2012-06-01

    Today, the risk of getting tick-borne encephalitis (TBE) is still underestimated in many parts of Europe and worldwide. Therefore, the 14th meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) - a group of neurologists, general practitioners, clinicians, travel physicians, virologists, pediatricians, and epidemiologists - was held under the title "Tick-borne encephalitis: an underestimated risk…still". Among the discussed issues were: TBE, an underestimated risk in children, a case report in two Dutch travelers, the very emotional report of a tick victim, an overview of the epidemiological situation, investigations to detect new TBE cases in Italy, TBE virus (TBEV) strains circulation in Northern Europe, TBE Program of the European Centre for Disease Prevention and Control (ECDC), efforts to increase the TBE vaccination rate in the Czech Republic, positioning statement of the World Health Organization (WHO), and TBE in dogs. To answer the question raised above: Yes, the risk of getting TBE is underestimated in children and adults, because awareness is still too low. It is still underestimated in several areas of Europe, where, for a lack of human cases, TBEV is thought to be absent. It is underestimated in travelers, because they still do not know enough about the risk, and diagnostic awareness in non-endemic countries is still low. Copyright © 2012. Published by Elsevier GmbH. All rights reserved.

  10. Detection of tick-borne encephalitis virus in I. ricinus ticks collected from autumn migratory birds in Latvia.

    PubMed

    Kazarina, Alisa; Japiņa, Kristīne; Keišs, Oskars; Salmane, Ineta; Bandere, Dace; Capligina, Valentina; Ranka, Renāte

    2015-03-01

    Birds have a potential of spreading ticks via bird migration routes. In this study, we screened 170 ticks removed during autumn 2010 from 55 birds belonging to 10 species for the presence of tick-borne encephalitis virus (TBEV). In total, TBEV RNA was detected in 14% of I. ricinus tick samples obtained from different birds species. The results of this study indicate the possible role of migrating birds in the dispersal of TBEV-infected ticks along the southward migration route. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Spatial distribution of a population at risk: an important factor for understanding the recent rise in tick-borne diseases (Lyme borreliosis and tick-borne encephalitis in the Czech Republic).

    PubMed

    Zeman, Petr; Benes, Cestmir

    2013-12-01

    Recent rise in tick-borne diseases in many parts of Europe is a phenomenon in need of an explanation. We analyzed temporal trends in spatial distribution of a population at risk of Lyme borreliosis, tick-borne encephalitis, and as a control, also of a 'non-tick-borne disease' in the Czech Republic in 1997-2010. Analysis revealed that the population's exposure had been increasingly confined to the nearest surroundings of residences or in totally residential locations and that the incidence of the diseases depended in some causal way on how close to residences people exposed themselves to the risk. The rise in Lyme borreliosis and tick-borne encephalitis was solely due to infections acquired at or near patients' homes (<5 km), while the number of cases acquired further away was decreasing. The detected patterns in the data question some of the hypotheses which may be applicable in explaining the rise in disease incidences in the Czech Republic including the effect of climate change. Potentially causal factors are discussed. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Tick-Borne Encephalitis in Sheep, Romania.

    PubMed

    Salat, Jiri; Mihalca, Andrei D; Mihaiu, Marian; Modrý, David; Ruzek, Daniel

    2017-12-01

    Little is known about the occurrence of tick-borne encephalitis in Romania. Sheep are an infection source for humans and are useful sentinels for risk analysis. We demonstrate high antibody prevalence (15.02%) among sheep used as sentinels for this disease in 80% of the tested localities in 5 counties of northwestern Romania.

  13. Powassan virus encephalitis, Minnesota, USA.

    PubMed

    Birge, Justin; Sonnesyn, Steven

    2012-10-01

    Powassan virus (POWV) is a rare tick-borne agent of encephalitis in North America. Historically, confirmed cases occurred mainly in the northeastern United States. Since 2008, confirmed cases in Minnesota and Wisconsin have increased. We report a fatal case of POWV encephalitis in Minnesota. POWV infection should be suspected in tick-exposed patients with viral encephalitis.

  14. Powassan Virus Encephalitis, Minnesota, USA

    PubMed Central

    Sonnesyn, Steven

    2012-01-01

    Powassan virus (POWV) is a rare tick-borne agent of encephalitis in North America. Historically, confirmed cases occurred mainly in the northeastern United States. Since 2008, confirmed cases in Minnesota and Wisconsin have increased. We report a fatal case of POWV encephalitis in Minnesota. POWV infection should be suspected in tick-exposed patients with viral encephalitis. PMID:23017222

  15. A comparative analysis on the physicochemical properties of tick-borne encephalitis virus envelope protein residues that affect its antigenic properties.

    PubMed

    Bukin, Yu S; Dzhioev, Yu P; Tkachev, S E; Kozlova, I V; Paramonov, A I; Ruzek, D; Qu, Z; Zlobin, V I

    2017-06-15

    This work is dedicated to the study of the variability of the main antigenic envelope protein E among different strains of tick-borne encephalitis virus at the level of physical and chemical properties of the amino acid residues. E protein variants were extracted from then NCBI database. Four amino acid residues properties in the polypeptide sequences were investigated: the average volume of the amino acid residue in the protein tertiary structure, the number of amino acid residue hydrogen bond donors, the charge of amino acid residue lateral radical and the dipole moment of the amino acid residue. These physico-chemical properties are involved in antigen-antibody interactions. As a result, 103 different variants of the antigenic determinants of the tick-borne encephalitis virus E protein were found, significantly different by physical and chemical properties of the amino acid residues in their structure. This means that some strains among the natural variants of tick-borne encephalitis virus can potentially escape the immune response induced by the standard vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Tick-borne encephalitis virus and the immune response of the mammalian host.

    PubMed

    Dörrbecker, Bastian; Dobler, Gerhard; Spiegel, Martin; Hufert, Frank T

    2010-07-01

    Tick-borne encephalitis (TBE) is caused by Tick-borne encephalitis virus (TBEV), one of the most prevalent arboviruses in Europe and in many parts of Asia. Transmission of TBEV to humans usually occurs by bite of an infected tick or rarely by ingestion of unpasteurized milk products of infected livestock. TBEV infection induces an innate and adaptive immune response, nevertheless it is able to replicate in several cell types of the immune system at the same time which probably contributes to the spread of the virus in the human host. Furthermore, TBEV can enter the central nervous system (CNS) by yet not well understood mechanisms via the blood brain barrier (BBB) or the olfactory neurons which leads to serious neurological disorders like meningitis, encephalitis or even meningoencephalitis. In this article we review the known facts and possible hypotheses of interaction of TBEV with components of the mammalian immune system and their implications for TBEV-mediated pathogenesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Vaccines and Animal Models for Arboviral Encephalitides

    DTIC Science & Technology

    2003-01-01

    equine encephalitis Rodents Aedes, Culex mosquitoes and other species Central and South America, southern Florida IND Western equine encephalitis Birds...former Soviet Union Licensed Louping ill Birds Britain Murray Valley encephalitis Birds Culex mosquitoes Australia, New Guinea None Powassan Rodents ...Birds Culex mosquitoes North and South America None Tick-borne encephalitis Rodents Ixodes, Dermacentor, Haemaphysalis ticks Europe, Russia, former

  18. Characterization of tick-borne encephalitis virus from Latvia.

    PubMed

    Mavtchoutko, V; Vene, S; Haglund, M; Forsgren, M; Duks, A; Kalnina, V; Hörling, J; Lundkvist, A

    2000-02-01

    Viruses of the tick-borne encephalitis (TBE) antigenic complex, within the family Flaviviridae, cause a variety of diseases including uncomplicated febrile illness, encephalitis, meningo-encephalitis, hemorrhagic fever and chronic disease in humans, domesticated animals or wildlife species. TBE is a serious problem in Latvia with up to a 1,000 patients confirmed serologically annually 1994-1995. No previous data had been reported on the causative agent of TBE in Latvia. In the present study, a virus was isolated from serum of a patient with clinical symptoms of an acute TBE infection. Nucleotide sequence information obtained by direct reverse transcription-polymerase chain reaction (RT-PCR) and the serological characteristics of the isolated virus strain, designated TBE-Latvia-1-96, indicated a closer relationship to the Vasilchenko strain, isolated in Novosibirsk (Siberia, Russia), as compared to the western European or far eastern subtypes of TBE viruses. In a mouse neurovirulence assay, a significant difference in survival rates (days) was shown between Latvia-1-96 and the western European TBE virus subtype. Copyright 2000 Wiley-Liss, Inc.

  19. Characterization of a siberian virus isolated from a patient with progressive chronic tick-borne encephalitis.

    PubMed

    Gritsun, T S; Frolova, T V; Zhankov, A I; Armesto, M; Turner, S L; Frolova, M P; Pogodina, V V; Lashkevich, V A; Gould, E A

    2003-01-01

    A strain of Tick-borne encephalitis virus designated Zausaev (Za) was isolated in Siberia from a patient who died of a progressive (2-year) form of tick-borne encephalitis 10 years after being bitten by a tick. The complete genomic sequence of this virus was determined, and an attempt was made to correlate the sequence with the biological characteristics of the virus. Phylogenetic analysis demonstrated that this virus belongs to the Siberian subtype of Tick-borne encephalitis virus. Comparison of Za virus with two related viruses, a Far Eastern isolate, Sofjin, and a Siberian isolate, Vasilchenko, revealed differences among the three viruses in pathogenicity for Syrian hamsters, cytopathogenicity for PS cells, plaque morphology, and the electrophoretic profiles of virus-specific nonstructural proteins. Comparative amino acid alignments revealed 10 individual amino acid substitutions in the Za virus polyprotein sequence that were different from those of other tick-borne flaviviruses. Notably, the dimeric form of the Za virus NS1 protein migrated in polyacrylamide gels as a heterogeneous group of molecules with a significantly higher electrophoretic mobility than those of the Sofjin and Vasilchenko viruses. Two amino acid substitutions, T(277)-->V and E(279)-->G, within the NS1 dimerization domain are probably responsible for the altered oligomerization of Za virus NS1. These studies suggest that the patient from whom Za virus was isolated died due to increased pathogenicity of the latent virus following spontaneous mutagenesis.

  20. Characterization of a Siberian Virus Isolated from a Patient with Progressive Chronic Tick-Borne Encephalitis

    PubMed Central

    Gritsun, T. S.; Frolova, T. V.; Zhankov, A. I.; Armesto, M.; Turner, S. L.; Frolova, M. P.; Pogodina, V. V.; Lashkevich, V. A.; Gould, E. A.

    2003-01-01

    A strain of Tick-borne encephalitis virus designated Zausaev (Za) was isolated in Siberia from a patient who died of a progressive (2-year) form of tick-borne encephalitis 10 years after being bitten by a tick. The complete genomic sequence of this virus was determined, and an attempt was made to correlate the sequence with the biological characteristics of the virus. Phylogenetic analysis demonstrated that this virus belongs to the Siberian subtype of Tick-borne encephalitis virus. Comparison of Za virus with two related viruses, a Far Eastern isolate, Sofjin, and a Siberian isolate, Vasilchenko, revealed differences among the three viruses in pathogenicity for Syrian hamsters, cytopathogenicity for PS cells, plaque morphology, and the electrophoretic profiles of virus-specific nonstructural proteins. Comparative amino acid alignments revealed 10 individual amino acid substitutions in the Za virus polyprotein sequence that were different from those of other tick-borne flaviviruses. Notably, the dimeric form of the Za virus NS1 protein migrated in polyacrylamide gels as a heterogeneous group of molecules with a significantly higher electrophoretic mobility than those of the Sofjin and Vasilchenko viruses. Two amino acid substitutions, T277→V and E279→G, within the NS1 dimerization domain are probably responsible for the altered oligomerization of Za virus NS1. These studies suggest that the patient from whom Za virus was isolated died due to increased pathogenicity of the latent virus following spontaneous mutagenesis. PMID:12477807

  1. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines.

    PubMed

    Belova, Oxana A; Litov, Alexander G; Kholodilov, Ivan S; Kozlovskaya, Liubov I; Bell-Sakyi, Lesley; Romanova, Lidiya Iu; Karganova, Galina G

    2017-10-01

    Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a vector-borne zoonotic neuroinfection. For successful circulation in natural foci the virus has to survive in the vector for a long period of time. Information about the effect of long-term infection of ticks on properties of the viral population is of great importance. In recent years, changes in the eco-epidemiology of TBEV due to changes in distribution of ixodid ticks have been observed. These changes in TBEV-endemic areas could result in a shift of the main tick vector species, which in turn may lead to changes in properties of the virus. In the present study we evaluated the selective pressure on the TBEV population during persistent infection of various species of ticks and tick cell lines. TBEV effectively replicated and formed persistent infection in ticks and tick cell lines of the vector species (Ixodes spp.), potential vectors (Dermacentor spp.) and non-vector ticks (Hyalomma spp.). During TBEV persistence in Ixodes and Dermacentor ticks, properties of the viral population remained virtually unchanged. In contrast, persistent TBEV infection of tick cell lines from both vector and non-vector ticks favoured selection of viral variants with low neuroinvasiveness for laboratory mice and substitutions in the E protein that increased local positive charge of the virion. Thus, selective pressure on viral population may differ in ticks and tick cell lines during persistent infection. Nevertheless, virus variants with properties of the original strain adapted to mouse CNS were not eliminated from the viral population during long-term persistence of TBEV in ticks and tick cell lines. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Experimental Transmission of Karshi (Mammalian Tick-Borne Flavivirus Group) Virus by Ornithodoros Ticks >2,900 Days after Initial Virus Exposure Supports the Role of Soft Ticks as a Long-Term Maintenance Mechanism for Certain Flaviviruses.

    PubMed

    Turell, Michael J

    2015-01-01

    Members of the mammalian tick-borne flavivirus group, including tick-borne encephalitis virus, are responsible for at least 10,000 clinical cases of tick-borne encephalitis each year. To attempt to explain the long-term maintenance of members of this group, we followed Ornithodoros parkeri, O. sonrai, and O. tartakovskyi for >2,900 days after they had been exposed to Karshi virus, a member of the mammalian tick-borne flavivirus group. Ticks were exposed to Karshi virus either by allowing them to feed on viremic suckling mice or by intracoelomic inoculation. The ticks were then allowed to feed individually on suckling mice after various periods of extrinsic incubation to determine their ability to transmit virus by bite and to determine how long the ticks would remain infectious. The ticks remained efficient vectors of Karshi virus, even when tested >2,900 d after their initial exposure to virus, including those ticks exposed to Karshi virus either orally or by inoculation. Ornithodoros spp. ticks were able to transmit Karshi virus for >2,900 days (nearly 8 years) after a single exposure to a viremic mouse. Therefore, these ticks may serve as a long-term maintenance mechanism for Karshi virus and potentially other members of the mammalian tick-borne flavivirus group.

  3. [The clinico-epidemiological characteristics of Powassan encephalitis in the southern Soviet Far East].

    PubMed

    Leonova, G N; Sorokina, M N; Krugliak, S P

    1991-03-01

    The present communication deals with the analysis of 14 cases of Powassan encephalitis. As shown in this study, the course of this infection may be accompanied by symptoms indicating the presence of cerebral and meningeal lesions (in 7 cases meningoencephalitic forms with one fatal outcome and in 2 cases meningeal forms were registered) or take febrile and inapparent forms (5 cases). Powassan encephalitis was found to give characteristic symptoms of cerebellovestibular lesions, differentiating this disease from tick-borne encephalitis (TBE). The cases of mixed infections caused by TBE virus, Powassan encephalitis virus and tick-born Borrelia were found to be possible.

  4. Tick-borne Encephalitis Associated with Consumption of Raw Goat Milk, Slovenia, 2012

    PubMed Central

    Hudopisk, Neda; Korva, Miša; Janet, Evgen; Simetinger, Marjana; Grgič-Vitek, Marta; Gubenšek, Jakob; Natek, Vladimir; Kraigher, Alenka; Strle, Franc

    2013-01-01

    Tick-borne encephalitis (TBE) developed in 3 persons in Slovenia who drank raw milk; a fourth person, who had been vaccinated against TBE, remained healthy. TBE virus RNA was detected in serum and milk of the source goat. Persons in TBE-endemic areas should be encouraged to drink only boiled/pasteurized milk and to be vaccinated. PMID:23697658

  5. Influence of altitude on tick-borne encephalitis infection risk in the natural foci of the Altai Republic, Southern Siberia.

    PubMed

    Shchuchinova, L D; Kozlova, I V; Zlobin, V I

    2015-04-01

    The Altai Republic is a highly endemic area as far as tick-borne encephalitis (TBE) is concerned. The aim of the research was to study the effect of altitude on the risk of tick-borne encephalitis infection in the Altai Republic. The paper analyzes the following data: the study of ixodid ticks collected from the vegetation in 116 sites at the 200-2383m elevation above sea level in 2012-2014, TBE virus prevalence of these vectors, tick-bite incidence rate, and TBE incidence rate of the population. Species identification of 4503 specimens has shown that the most common species are Dermacentor nuttalli (45.3%), Ixodes persulcatus (33.1%), Dermacentor silvarum (9.4%), Dermacentor reticulatus (8.9%), and Haemaphysalis concinna (5.0%). A total of 2997 adult ixodid ticks were studied for the presence of the TBE virus; 2163 samples were examined by ELISA, while 834 specimens were tested by PCR. The TBE virus prevalence of Dermacentor spp. ticks in both reactions was significantly higher than of Ixodes persulcatus ticks (p<0.001). The work shows that the altitude is an important factor in the development of the epidemiological situation of tick-borne encephalitis: the higher the elevation of the area above sea level, the smaller the range of vectors. There is also a change of a leading species: in middle altitude (800-1700m above sea level) the virus is transmitted by ticks of D. nuttalli along with I. persulcatus, and in high mountains (above 1700m above sea level) D. nuttalli becomes an absolute dominant species. However, these species of ticks are less effective vectors than I. persulcatus. With the increase of altitude the tick-bite incidence rate decreases (r=-0.78, p<0.05), and TBE incidence also reduces (r=-0.67, p<0.05). Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Diapause in ticks of the medically important Ixodes ricinus species complex

    PubMed Central

    Gray, Jeremy S.; Kahl, Olaf; Lane, Robert S.; Levin, Michael L.; Tsao, Jean I.

    2017-01-01

    Four members of the Ixodes ricinus species complex, Ixodes pacificus, Ixodes persulcatus, Ixodes ricinus and Ixodes scapularis, have, between them, a worldwide distribution within the northern hemisphere. They are responsible for the transmission of several animal and human pathogens, including the causal agents of Lyme borreliosis, tick-borne encephalitis, human granulocytic anaplasmosis and human babesiosis. Despite the importance of these ticks as vectors, the knowledge and understanding of the role that diapause plays in their complex life cycles are confused and incomplete. In view of the continuing geographic spread of these tick species, as well as the effects of climate change on vector-borne diseases, it is timely encourage research on diapause phenomena to improve understanding of their biology and of pathogen transmission dynamics. In our review we seek to clarify thinking on the topic and to address gaps in our knowledge that require the attention of researchers. PMID:27263092

  7. Two Cases of Severe Tick-Borne Encephalitis in Rituximab-Treated Patients in Germany: Implications for Diagnosis and Prevention.

    PubMed

    Steininger, Philipp A; Bobinger, Tobias; Dietrich, Wenke; Lee, De-Hyung; Knott, Michael; Bogdan, Christian; Korn, Klaus; Lang, Roland

    2017-01-01

    Rituximab (RTX) has become a standard therapy for certain B cell malignancies and autoimmune diseases. We report 2 RTX-treated patients who developed severe tick-borne encephalitis virus (TBEV) infection. The inability to generate new antibody responses renders RTX-treated patients susceptible to TBEV, impedes laboratory diagnosis, and necessitates preventive vaccination in endemic areas.

  8. Tick-Borne Encephalitis Virus Habitats in North East Germany: Reemergence of TBEV in Ticks after 15 Years of Inactivity

    PubMed Central

    Krienke, Anja; Riebold, Diana; Loebermann, Micha; Littmann, Martina; Fiedler, Karin; Klaus, Christine; Süss, Jochen; Reisinger, Emil Christian

    2014-01-01

    The incidence of tick-borne encephalitis has risen in Europe since 1990 and the tick-borne encephalitis virus (TBEV) has been documented to be spreading into regions where it was not previously endemic. In Mecklenburg-West Pomerania, a federal state in Northern Germany, TBEV was not detectable in over 16,000 collected ticks between 1992 and 2004. Until 2004, the last human case of TBE in the region was reported in 1985. Following the occurrence of three autochthonous human cases of TBE after 2004, however, we collected ticks from the areas in which the infections were contracted. To increase the chance of detecting TBEV-RNA, some of the ticks were fed on mice. Using nested RT-PCR, we were able to confirm the presence of TBEV in ticks for the first time after 15 years. A phylogenetic analysis revealed a close relationship between the sequences we obtained and a TBEV sequence from Mecklenburg-East Pomerania published in 1992 and pointed to the reemergence of a natural focus of TBEV after years of low activity. Our results imply that natural foci of TBEV may either persist at low levels of activity for years or reemerge through the agency of migrating birds. PMID:25110671

  9. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway.

    PubMed

    Kjelland, Vivian; Paulsen, Katrine M; Rollum, Rikke; Jenkins, Andrew; Stuen, Snorre; Soleng, Arnulf; Edgar, Kristin S; Lindstedt, Heidi H; Vaino, Kirsti; Gibory, Moustafa; Andreassen, Åshild K

    2018-04-12

    The aim of this study was to determine the occurrence of tick-borne pathogens of medical importance in questing ticks collected from five recreationally used islands along the Norwegian coastline. Furthermore, since coinfection may affect the disease severity, this study aimed to determine the extent of coinfection in individual ticks or co-localization of tick-borne pathogens. In all, 4158 questing Ixodes ricinus ticks were analyzed. For detection of tick-borne encephalitis virus (TBEV), nymphs (3690) were analyzed in pools of ten. To detect Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis, 468 nymphs were analyzed individually. A total of five nymph pools was infected with TBEV, giving an overall prevalence of 0.14%. In the individually analyzed ticks, B. burgdorferi s. l. (15.6%), Candidatus N. mikurensis (11%), A. phagocytophilum (1.4%) and B. miyamotoi (0.9%) were detected. Coinfection was found in 3.3% of the ticks, and the only dual infection observed was with B. afzelii and Candidatus N. mikurensis. This association was significantly higher than what would occur by random chance. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. Report of the 19th Annual Meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) - TBE in a changing world.

    PubMed

    Kunze, Ursula

    2018-02-01

    The 19th meeting of the International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE) - a group of neurologists, general practitioners, clinicians, travel physicians, virologists, pediatricians and epidemiologists-was held under the title "TBE in a changing world". Key topics within virology, current epidemiological developments and investigations, expansion of risk areas, clinical aspects and cases, traveling and mobility, vaccination rates, and latest news on vaccination were presented and extensively discussed. Over the past four decades, TBE has become a growing public health challenge in Europe and parts of Asia. It may be considered a complex eco-epidemiological system, characterized by an intricate interplay between the virus, ticks and tick hosts on the one hand and human exposure strongly influenced by socioeconomic conditions on the other hand. Although the facts are simple - vaccination is the best prevention - the socioeconomic conditions keep changing, and with them the ability or willingness of people to get vaccinated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Interaction of Flaviviruses with Reproduction Inhibitors Binding in β-OG Pocket: Insights from Molecular Dynamics Simulations.

    PubMed

    Dueva, Evgenia V; Osolodkin, Dmitry I; Kozlovskaya, Liubov I; Palyulin, Vladimir A; Pentkovski, Vladimir M; Zefirov, Nikolay S

    2014-10-01

    Flaviviral diseases, including dengue fever, West Nile fever, yellow fever, tick-borne encephalitis, Omsk haemorrhagic fever, and Powassan encephalitis, threaten human health all over the world. Lack of effective antivirals targeting replication cycle of flaviviruses makes the search of such compounds a challenging task. Recently we have identified a reproduction inhibitor effective against tick-borne encephalitis virus and Powassan virus (POWV) (ACS Med. Chem. Lett., 2013, 4, 869-874). To enable using this inhibitor as a template for 3D pharmacophore search, a biologically active conformation of this molecule should have been established. Here we performed molecular dynamics simulations of the complexes between the different enantiomers of the inhibitor and POWV envelope (E) proteins, putative targets of the inhibitor, in the different protonation states corresponding to the different stages of membrane fusion process. Several stable conformations of the inhibitor were identified, opening routes for further design of more advanced molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Isolation, preliminary characterization, and full-genome analyses of tick-borne encephalitis virus from Mongolia.

    PubMed

    Frey, Stefan; Mossbrugger, Ilona; Altantuul, Damdin; Battsetseg, Jigjav; Davaadorj, Rendoo; Tserennorov, Damdindorj; Buyanjargal, Tsoodol; Otgonbaatar, Dashdavaa; Zöller, Lothar; Speck, Stephanie; Wölfel, Roman; Dobler, Gerhard; Essbauer, Sandra

    2012-12-01

    Tick-borne encephalitis virus (TBEV) causes one of the most important inflammatory diseases of the central nervous system, namely severe encephalitis in Europe and Asia. Since the 1980s tick-borne encephalitis is known in Mongolia with increasing numbers of human cases reported during the last years. So far, however, data on TBEV strains are still sparse. We herein report the isolation of a TBEV strain from Ixodes persulcatus ticks collected in Mongolia in 2010. Phylogenetic analysis of the E-gene classified this isolate as Siberian subtype of TBEV. The Mongolian TBEV strain showed differences in virus titers, plaque sizes, and growth properties in two human neuronal cell-lines. In addition, the 10,242 nucleotide long open-reading frame and the corresponding polyprotein sequence were revealed. The isolate grouped in the genetic subclade of the Siberian subtype. The strain Zausaev (AF527415) and Vasilchenko (AF069066) had 97 and 94 % identity on the nucleotide level. In summary, we herein describe first detailed data regarding TBEV from Mongolia. Further investigations of TBEV in Mongolia and adjacent areas are needed to understand the intricate dispersal of this virus.

  13. Vaccination and Tick-borne Encephalitis, Central Europe

    PubMed Central

    Stiasny, Karin; Holzmann, Heidemarie; Grgic-Vitek, Marta; Kriz, Bohumir; Essl, Astrid; Kundi, Michael

    2013-01-01

    Tick-borne encephalitis (TBE) is a substantial public health problem in many parts of Europe and Asia. To assess the effect of increasing TBE vaccination coverage in Austria, we compared incidence rates over 40 years for highly TBE-endemic countries of central Europe (Czech Republic, Slovenia, and Austria). For all 3 countries we found extensive annual and longer range fluctuations and shifts in distribution of patient ages, suggesting major variations in the complex interplay of factors influencing risk for exposure to TBE virus. The most distinctive effect was found for Austria, where mass vaccination decreased incidence to ≈16% of that of the prevaccination era. Incidence rates remained high for the nonvaccinated population. The vaccine was effective for persons in all age groups. During 2000–2011 in Austria, ≈4,000 cases of TBE were prevented by vaccination. PMID:23259984

  14. [The study of adaptation syndrome in mixed-infection of tick-borne encephalitis and borreliosis in children].

    PubMed

    Subbotin, A V; Poponnikova, T V; Zinchuk, S F

    2003-01-01

    Twenty two children with mixed-infection of tick-borne encephalitis (TBE) and ixodic tick borreliosis (ITB) were studied. Blood hydrocortisone level was changed in 94.5% of the cases. The most significant activation of hydrocortisone secretion in combination with the most pronounced and prolonged general brain manifestations, was detected in infants. Blood hydrocortisone level correlated with clinical symptoms of combined TBE and ITB infections. Along with higher hydrocortisone level, down-regulation of production of antibodies both to B. burgdorferi and to TBE virus was specific for all children studied.

  15. The International Scientific Working Group on Tick-Borne Encephalitis (ISW TBE): Review of 17 years of activity and commitment.

    PubMed

    Kunze, Ursula

    2016-04-01

    Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and other parts of the world for the past 20 years. In 1999, in order to encourage the control of TBE, international experts created a new body: The International Scientific Working Group on Tick-Borne Encephalitis (ISW-TBE). This Working Group has been composed of internationally recognized scientific experts from tick-borne encephalitis virus (TBEv)-endemic and non-endemic regions with extensive personal expertise in the field and a high level of commitment to improve the knowledge of TBE and to increase the public awareness of TBE. Since the foundation of the Working Group, ISW-TBE members meet annually. Every meeting is dedicated to a specific topic, and since 2004 a yearly conference report has been published to inform the scientific community about the latest developments. Among the specific issues that have been extensively discussed over the years were the following: clinical aspects of the disease, TBE in children and golden agers, epidemiology, possible causes for the increase in TBE incidence in Europe, TBE and awareness, TBE and travel, (low) vaccination rates, and the cooperation with the European Centre for Disease Prevention and Control (ECDC). This paper gives an overview of the most important activities and achievements of the ISW-TBE over the past 17 years. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. USSR and Eastern Europe Scientific Abstracts No. 75

    DTIC Science & Technology

    1977-08-17

    source] The antigenic identity of attenuated tick-borne encephalitis (TBE) and Langat virus variatns with their initial parental strains was...established by means of a complex of sensitive serological reactions. The immunogenic activity of one of the most attenuated variants of the Langat virus, Tp

  17. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history.

    PubMed

    Kovalev, S Y; Mukhacheva, T A

    2017-11-01

    Tick-borne encephalitis is widespread in Eurasia and transmitted by Ixodes ticks. Classification of its causative agent, tick-borne encephalitis virus (TBEV), includes three subtypes, namely Far-Eastern, European, and Siberian (TBEV-Sib), as well as a group of 886-84-like strains with uncertain taxonomic status. TBEV-Sib is subdivided into three phylogenetic lineages: Baltic, Asian, and South-Siberian. A reason to reconsider TBEV-Sib classification was the analysis of 186 nucleotide sequences of an E gene fragment submitted to GenBank during the last two years. Within the South-Siberian lineage, we have identified a distinct group with prototype strains Aina and Vasilchenko as an individual lineage named East-Siberian. The analysis of reclassified lineages has promoted a new model of the evolutionary history of TBEV-Sib lineages and TBEV-Sib as a whole. Moreover, we present arguments supporting separation of 886-84-like strains into an individual TBEV subtype, which we propose to name Baikalian (TBEV-Bkl). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Recent progress in West Nile virus diagnosis and vaccination

    PubMed Central

    2012-01-01

    West Nile virus (WNV) is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus). Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV). Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections. PMID:22380523

  19. Molecular detection of severe fever with thrombocytopenia syndrome and tick-borne encephalitis viruses in ixodid ticks collected from vegetation, Republic of Korea, 2014.

    PubMed

    Yun, Seok-Min; Lee, Ye-Ji; Choi, WooYoung; Kim, Heung-Chul; Chong, Sung-Tae; Chang, Kyu-Sik; Coburn, Jordan M; Klein, Terry A; Lee, Won-Ja

    2016-07-01

    Ticks play an important role in transmission of arboviruses responsible for emerging infectious diseases, and have a significant impact on human, veterinary, and wildlife health. In the Republic of Korea (ROK), little is known about information regarding the presence of tick-borne viruses and their vectors. A total of 21,158 ticks belonging to 3 genera and 6 species collected at 6 provinces and 4 metropolitan areas in the ROK from March to October 2014 were assayed for selected tick-borne pathogens. Haemaphysalis longicornis (n=17,570) was the most numerously collected, followed by Haemaphysalis flava (n=3317), Ixodes nipponensis (n=249), Amblyomma testudinarium (n=11), Haemaphysalis phasiana (n=8), and Ixodes turdus (n=3). Ticks were pooled (adults 1-5, nymphs 1-30, and larvae 1-50) and tested by one-step reverse transcription polymerase chain reaction (RT-PCR) or nested RT-PCR for the detection of severe fever with thrombocytopenia virus (SFTSV), tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), and Langat virus (LGTV). The overall maximum likelihood estimation (MLE) [estimated numbers of viral RNA positive ticks/1000 ticks] for SFTSV and TBEV was 0.95 and 0.43, respectively, while, all pools were negative for POWV, OHFV, and LGTV. The purpose of this study was to determine the prevalence of SFTSV, TBEV, POWV, OHFV, and LGTV in ixodid ticks collected from vegetation in the ROK to aid our understanding of the epidemiology of tick-borne viral diseases. Results from this study emphasize the need for continuous tick-based arbovirus surveillance to monitor the emergence of tick-borne diseases in the ROK. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. Mixing of M Segment DNA Vaccines to Hantaan Virus and Puumala Virus Reduces Their Immunogenicity in Hamsters

    DTIC Science & Technology

    2008-01-01

    vaccines for Rift Valley fever virus, tick- borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 2006;24(May 22 (21)):4657–66. ...Valley fever virus, tick-borne encephalitis virus, TNV, and Crimean Congo hemorrhagic fever virus [19]. Thus, it s clearly possible to develop certain...online 25 April 2008 eywords: a b s t r a c t To determine if DNA vaccines for two hantaviruses causing hemorrhagic

  1. Potential role of deer tick virus in Powassan encephalitis cases in Lyme disease-endemic areas of New York, U.S.A.

    PubMed

    El Khoury, Marc Y; Camargo, Jose F; White, Jennifer L; Backenson, Bryon P; Dupuis, Alan P; Escuyer, Kay L; Kramer, Laura; St George, Kirsten; Chatterjee, Debarati; Prusinski, Melissa; Wormser, Gary P; Wong, Susan J

    2013-12-01

    Powassan virus, a member of the tick-borne encephalitis group of flaviviruses, encompasses 2 lineages with separate enzootic cycles. The prototype lineage of Powassan virus (POWV) is principally maintained between Ixodes cookei ticks and the groundhog (Marmota momax) or striped skunk (Mephitis mephitis), whereas the deer tick virus (DTV) lineage is believed to be maintained between Ixodes scapularis ticks and the white-footed mouse (Peromyscus leucopus). We report 14 cases of Powassan encephalitis from New York during 2004-2012. Ten (72%) of the patients were residents of the Lower Hudson Valley, a Lyme disease-endemic area in which I. scapularis ticks account for most human tick bites. This finding suggests that many of these cases were caused by DTV rather than POWV. In 2 patients, DTV infection was confirmed by genetic sequencing. As molecular testing becomes increasingly available, more cases of Powassan encephalitis may be determined to be attributable to the DTV lineage.

  2. Potential Role of Deer Tick Virus in Powassan Encephalitis Cases in Lyme Disease–endemic Areas of New York, USA

    PubMed Central

    Camargo, Jose F.; White, Jennifer L.; Backenson, Bryon P.; Dupuis, Alan P.; Escuyer, Kay L.; Kramer, Laura; St. George, Kirsten; Chatterjee, Debarati; Prusinski, Melissa; Wormser, Gary P.; Wong, Susan J.

    2013-01-01

    Powassan virus, a member of the tick-borne encephalitis group of flaviviruses, encompasses 2 lineages with separate enzootic cycles. The prototype lineage of Powassan virus (POWV) is principally maintained between Ixodes cookei ticks and the groundhog (Marmota momax) or striped skunk (Mephitis mephitis), whereas the deer tick virus (DTV) lineage is believed to be maintained between Ixodes scapularis ticks and the white-footed mouse (Peromyscus leucopus). We report 14 cases of Powassan encephalitis from New York during 2004–2012. Ten (72%) of the patients were residents of the Lower Hudson Valley, a Lyme disease–endemic area in which I. scapularis ticks account for most human tick bites. This finding suggests that many of these cases were caused by DTV rather than POWV. In 2 patients, DTV infection was confirmed by genetic sequencing. As molecular testing becomes increasingly available, more cases of Powassan encephalitis may be determined to be attributable to the DTV lineage. PMID:24274334

  3. [Mono- and mixed infection by the tick-borne encephalitis and Powassan viruses of tissue explants from ticks of the genus Hyalomma].

    PubMed

    Chunikhin, S P; Khozinskaia, G A; Stefutkina, L F; Korolev, M B

    1984-01-01

    The paper presents results of virusological and electron microscope studies of the reproduction of viruses of tick-borne encephalitis and Povassan at mono- and mixed persistent infection of explants of imaginal tissues of Hyalomma anatolicum and H. dromedarii with these viruses. The virus reproduction in explants was observed within 208 to 217 days after the infection. Joint reproduction of two model viruses within 1-2 months after the infection can take place and after that the inhibition of the reproduction of one of the viruses. This inhibition can be of cyclic character.

  4. Prevalence of tick-borne encephalitis virus (TBEV) in samples of raw milk taken randomly from cows, goats and sheep in eastern Poland.

    PubMed

    Cisak, Ewa; Wójcik-Fatla, Angelina; Zając, Violetta; Sroka, Jacek; Buczek, Alicja; Dutkiewicz, Jacek

    2010-01-01

    A total of 119 unpasteurized milk samples taken from 63 cows, 29 goats and 27 sheep bred on 8 farms situated on the territory of the Lublin province (eastern Poland), an area of risk of tick-borne encephalitis (TBE), were examined for the presence of RNA of tick-borne encephalitis virus (TBEV) by the nested RT-PCR method. Milk samples were also tested for the presence of anti-TBEV antibodies by ELISA test. By RT-PCR, the greatest prevalence of TBE virus was found in the milk of sheep (22.2%), followed by milk of goats (20.7%) and cows (11.1%). By ELISA, the greatest prevalence of anti- TBEV antibodies was found also in the milk of sheep (14.8%), followed by milk of cows (3.2%) and goats (0%). The results suggest a potential risk of infection with TBEV by drinking raw milk on endemic areas of TBE, and indicate a need for milk pasteurization before consumption.

  5. Ticks are more suitable than red foxes for monitoring zoonotic tick-borne pathogens in northeastern Italy.

    PubMed

    Da Rold, Graziana; Ravagnan, Silvia; Soppelsa, Fabio; Porcellato, Elena; Soppelsa, Mauro; Obber, Federica; Citterio, Carlo Vittorio; Carlin, Sara; Danesi, Patrizia; Montarsi, Fabrizio; Capelli, Gioia

    2018-03-20

    Northeastern Italy is a hotspot for several tick-borne pathogens, transmitted to animals and humans mainly by Ixodes ricinus. Here we compare the results of molecular monitoring of ticks and zoonotic TBPs over a six-year period, with the monitoring of red foxes (Vulpes vulpes) in an endemic area. In the period 2011-2016, 2,578 ticks were collected in 38 sites of 20 municipalities of Belluno Province. Individual adults (264), pooled larvae (n = 330) and nymphs (n = 1984) were screened for tick-borne encephalitis virus, Borrelia burgdorferi (s.l.), Rickettsia spp., Babesia spp., Anaplasma phagocytophilum and "Candidatus Neoehrlichia mikurensis" by specific SYBR green real-time PCR assays and sequencing. The spleens of 97 foxes, culled in the period 2015-2017 during sport hunting or population control programs, were also screened. Overall, nine different pathogens were found in I. ricinus nymph and adult ticks: Rickettsia helvetica (3.69%); R. monacensis (0.49%); four species of the B. burgdorferi (s.l.) complex [B. afzelii (1.51%); B. burgdorferi (s.s.) (1.25%); B. garinii (0.18%); and B. valaisiana (0.18%)]; A. phagocytophilum (3.29%); "Candidatus N. mikurensis" (1.73%); and Babesia venatorum (0.04%). Larvae were collected and screened in the first year only and two pools (0.6%) were positive for R. helvetica. Tick-borne encephalitis virus was not found in ticks although human cases do occur in the area. The rate of infection in ticks varied widely according to tick developmental stage, site and year of collection. As expected, adults were the most infected, with 27.6% harboring at least one pathogen compared to 7.3% of nymphs. Pathogens with a minimum infection rate above 1% were recorded every year. None of the pathogens found in ticks were detectable in the foxes, 52 (54%) of which were instead positive for Babesia cf. microti (also referred to as Babesia microti-like, "Theileria annae", "Babesia annae" and "Babesia vulpes"). The results show that foxes cannot be used as sentinel animals to monitor tick-borne pathogens in the specific epidemiological context of northeastern Italy. The high prevalence of Babesia cf. microti in foxes and its absence in ticks strongly suggests that I. ricinus is not the vector of this pathogen.

  6. 42 CFR 73.3 - HHS select agents and toxins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Register and will be listed on the CDC Web site at http://www.cdc.gov/. (2) If an excluded attenuated...) Staphylococcal enterotoxins T-2 toxin Tetrodotoxin Tick-borne encephalitis complex (flavi) viruses (Central... listed in paragraph (b) of this section. (2) Recombinant nucleic acids that encode for the functional...

  7. Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda's enduring paradigm.

    PubMed

    Randolph, Sarah E

    2011-12-01

    During the 1990s, Milan Labuda's experimental results established a new paradigm for the study of tick-borne viruses that has since been strengthened by its demonstrated effectiveness in explaining the epidemiology of tick-borne encephalitis (TBE). This brief review summarizes the essential features of the transmission of tick-borne pathogens such as TBE virus. Leukocytes migrate between tick feeding sites, bearing infective virions and providing a transport route for the virus between co-feeding ticks independent of a systemic viraemia. Such tick-borne pathogens are thus transmitted from tick to tick via vertebrates; the ticks are the reservoirs as well as the vectors, while the vertebrate is the transient bridge. The aim is to bring the related but non-synonymous terms (co-feeding and non-systemic) to the attention of workers who use simple PCR screening to identify additional vertebrate reservoir hosts of vector-borne pathogens that are not in fact maintained in nature through systemic transmission. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Tick-borne encephalitis: a disease neglected by travel medicine.

    PubMed

    Haditsch, Martin; Kunze, Ursula

    2013-01-01

    Tick-borne encephalitis (TBE) is a vector-borne disease that is primarily transmitted to humans by infected ticks and causes infection of the central nervous system. Clinical presentations range from meningitis to encephalitis with or without myelitis, and infection may result in death or long-term neurological sequelae. TBE is endemic in regions of at least 27 European as well as in some Asian countries. Infection and disease, however, can be averted successfully by tick-bite prevention and active vaccination. The risk of infection has shifted from daily life and occupational exposure to leisure-time activities, including travelling. Outdoor activities during the tick season with contact with nature increase the risk of tick bites. Although the number of travel-associated cases is unknown, it is certainly under-estimated because there is hardly any awareness of TBE in non-endemic countries. Therefore, the majority of cases remain undiagnosed, also because of the lack of diagnostic serology, as there is no routine screening for TBE in non-endemic regions. Because of the increasing number of travellers from TBE non-endemic to endemic regions, and in view of the fact that TBE was included in the list of notifiable diseases in the European Union in September 2012, this disease needs to become an important issue in travel medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Distinction between serological responses following tick-borne encephalitis virus (TBEV) infection vs vaccination, Sweden 2017.

    PubMed

    Albinsson, Bo; Vene, Sirkka; Rombo, Lars; Blomberg, Jonas; Lundkvist, Åke; Rönnberg, Bengt

    2018-01-01

    Tick-borne encephalitis virus (TBEV) is an important European vaccine-preventable pathogen. Discrimination of vaccine-induced antibodies from those elicited by infection is important. We studied anti-TBEV IgM/IgG responses, including avidity and neutralisation, by multiplex serology in 50 TBEV patients and 50 TBEV vaccinees. Infection induced antibodies reactive to both whole virus (WV) and non-structural protein 1 (NS1) in 48 clinical cases, whereas 47 TBEV vaccinees had WV, but not NS1 antibodies, enabling efficient discrimination of infection/vaccination.

  10. Evaluation of Imaging Methods in Tick-Borne Encephalitis.

    PubMed

    Zawadzki, Radosław; Garkowski, Adam; Kubas, Bożena; Zajkowska, Joanna; Hładuński, Marcin; Jurgilewicz, Dorota; Łebkowska, Urszula

    2017-01-01

    Tick-borne encephalitis (TBE) is caused by a virus that belongs to the Flaviviridae family and is transmitted by tick bites. The disease has a biphasic course. Diagnosis is based on laboratory examinations because of non-specific clinical features, which usually entails the detection of specific IgM antibodies in either blood or cerebrospinal fluid that appear in the second phase of the disease. Neurological symptoms, time course of the disease, and imaging findings are multifaceted. During the second phase of the disease, after the onset of neurological symptoms, magnetic resonance imaging (MRI) abnormalities are observed in a limited number of cases. However, imaging features may aid in predicting the prognosis of the disease.

  11. Chemical ecology of tick-host interactions

    USDA-ARS?s Scientific Manuscript database

    Ticks impact the health of livestock and humans world-wide through their roles as pests and vectors of diseases such as heartwater, theileriosis, anaplasmosis, babesiosis, Lyme disease, erhlichiosis, tick-borne encephalitis and Crimean Congo Haemorrhagic fever. Intrinsic to their capacity to serve ...

  12. Partial Characterization of Tick-Borne Encephalitis Virus Isolates from Ticks of Southern Ukraine.

    PubMed

    Yurchenko, Oksana O; Dubina, Dmytro O; Vynograd, Nataliya O; Gonzalez, Jean-Paul

    2017-08-01

    Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia; thousands of human cases are annually reported from several European countries. Several tick species are vectors of the tick-borne encephalitis virus (TBEV), while TBE appears to be spreading from the Eurasian continent westward to Europe. Fifteen study sites were chosen from five territories of southern Ukraine, including Odessa, Mykolaiv, Kherson Oblast, the Autonomous Republic of Crimea, and Sevastopol. Tick collection was performed in spring season of three consecutive years (1988-1990) using either flagging technique or direct collection of specimens feeding on cattle. A total of 15,243 tick imagoes and nymphs were collected from nine species, including Dermacentor marginatus, D. reticulatus, Haemaphysalis parva, H. punctata, Hyalomma marginatum, Ixodes ricinus, Rhipicephalus bursa, R. rossicus, and R. sanguineus, pooled in 282 monospecific samples. Supernatant of grinded pool was used for inoculation to suckling mice for virus isolation. Eight TBEV isolates were identified from ticks among six study sites. Ticks showed a minimum infection rate from 0.11% to 0.81%. Phylogenetic analysis of the envelope (E) protein gene of seven isolates, assigned all to the European subtype (TBEV-Eu) showing a maximum identity of 97.17% to the "Pan" TBEV-Eu reference strain. Compared to 104 TBEV-Eu isolates they clustered within the same clade as the Pan reference strain and distinguished from other TBEV-Eu isolates. Amino acid sequence analysis of the South Ukrainian TBEV-Eu isolates revealed the presence of four amino acid substitutions 67 (N), 266 (R), 306 (V), and 407 (R), in the ectodomains II and III and in the stem-anchor region of the E protein gene. This study confirmed TBEV-Eu subtype distribution in the southern region of Ukraine, which eventually overlaps with TBEV-FE (Far Eastern subtype) and TBEV-Sib (Siberian subtype) domains, showing the heterogeneity of TBEV circulating in Ukraine.

  13. Partial Characterization of Tick-Borne Encephalitis Virus Isolates from Ticks of Southern Ukraine

    PubMed Central

    Dubina, Dmytro O.; Vynograd, Nataliya O.; Gonzalez, Jean-Paul

    2017-01-01

    Abstract Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia; thousands of human cases are annually reported from several European countries. Several tick species are vectors of the tick-borne encephalitis virus (TBEV), while TBE appears to be spreading from the Eurasian continent westward to Europe. Fifteen study sites were chosen from five territories of southern Ukraine, including Odessa, Mykolaiv, Kherson Oblast, the Autonomous Republic of Crimea, and Sevastopol. Tick collection was performed in spring season of three consecutive years (1988–1990) using either flagging technique or direct collection of specimens feeding on cattle. A total of 15,243 tick imagoes and nymphs were collected from nine species, including Dermacentor marginatus, D. reticulatus, Haemaphysalis parva, H. punctata, Hyalomma marginatum, Ixodes ricinus, Rhipicephalus bursa, R. rossicus, and R. sanguineus, pooled in 282 monospecific samples. Supernatant of grinded pool was used for inoculation to suckling mice for virus isolation. Eight TBEV isolates were identified from ticks among six study sites. Ticks showed a minimum infection rate from 0.11% to 0.81%. Phylogenetic analysis of the envelope (E) protein gene of seven isolates, assigned all to the European subtype (TBEV-Eu) showing a maximum identity of 97.17% to the “Pan” TBEV-Eu reference strain. Compared to 104 TBEV-Eu isolates they clustered within the same clade as the Pan reference strain and distinguished from other TBEV-Eu isolates. Amino acid sequence analysis of the South Ukrainian TBEV-Eu isolates revealed the presence of four amino acid substitutions 67 (N), 266 (R), 306 (V), and 407 (R), in the ectodomains II and III and in the stem-anchor region of the E protein gene. This study confirmed TBEV-Eu subtype distribution in the southern region of Ukraine, which eventually overlaps with TBEV-FE (Far Eastern subtype) and TBEV-Sib (Siberian subtype) domains, showing the heterogeneity of TBEV circulating in Ukraine. PMID:28654319

  14. Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks.

    PubMed

    Raileanu, Cristian; Moutailler, Sara; Pavel, Ionuţ; Porea, Daniela; Mihalca, Andrei D; Savuta, Gheorghe; Vayssier-Taussat, Muriel

    2017-01-01

    Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., " Candidatus Neoehrlichia mikurensis", and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus , 19 Haemaphysalis punctata , and 4 Dermacentor reticulatus ) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., " Candidatus Neoehrlichia mikurensis", and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s.s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The most common association was between B. garinii and B. afzelii (4.3%), followed by B. garinii and B. lusitaniae (3.0%). The most frequent dual co-infections were between Borrelia spp. and Rickettsia spp., (1.3%), and between Borrelia spp. and " Candidatus Neoehrlichia mikurensis" (1.3%). The diversity of tick-borne pathogens detected in this study and the frequency of co-infections should influence all infection risk evaluations following a tick bite.

  15. Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks

    PubMed Central

    Raileanu, Cristian; Moutailler, Sara; Pavel, Ionuţ; Porea, Daniela; Mihalca, Andrei D.; Savuta, Gheorghe; Vayssier-Taussat, Muriel

    2017-01-01

    Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus, 19 Haemaphysalis punctata, and 4 Dermacentor reticulatus) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s.s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The most common association was between B. garinii and B. afzelii (4.3%), followed by B. garinii and B. lusitaniae (3.0%). The most frequent dual co-infections were between Borrelia spp. and Rickettsia spp., (1.3%), and between Borrelia spp. and “Candidatus Neoehrlichia mikurensis” (1.3%). The diversity of tick-borne pathogens detected in this study and the frequency of co-infections should influence all infection risk evaluations following a tick bite. PMID:28261565

  16. [Polymorphism of CD209 and TLR3 genes in populations of North Eurasia].

    PubMed

    Barkhash, A V; Babenko, V N; Voevoda, M I; Romaschenko, A G

    2016-06-01

    The DC-SIGN (dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin) and TLR3 (toll-like receptor 3) proteins are key effectors of the innate immunity and particularly play an important role in the organism’s antiviral defense as pattern-recognition receptors. Previously, we demonstrated that certain genotypes and alleles of single nucleotide polymorphisms (SNPs) rs2287886 (G/A) in the promoter region of the CD209 gene (encoding DC-SIGN) and rs3775291 (G/A, Leu412Phe) in the exon 4 of the TLR3 gene are associated with human predisposition to tick-borne encephalitis in the Russian population. In the present work, the distribution of genotype and allele frequencies for these SNPs was studied in seven populations of North Eurasia, including Caucasians (Russians and Germans (from Altai region)), Central Asian Mongoloids (Altaians, Khakass, Tuvinians, and Shorians), and Arctic Mongoloids (Chukchi). It was found that the CD209 gene rs2287886 SNP A/A genotype and A allele, as well as the TLR3 gene rs3775291 SNP G/G genotype and G allele (the frequencies of which in our previous studies were increased in tick-borne encephalitis patients as compared with the population control (Russian citizens of Novosibirsk)), are preserved with a high frequency in Central Asian Mongoloids (who for a long time regularly came in contact with tick-borne encephalitis virus in places of their habitation). We suggested that predisposition to tick-borne encephalitis in Central Asian Mongoloid populations can be predetermined by a different set of genes and their polymorphisms than in the Russian population.

  17. Ticks

    USGS Publications Warehouse

    Ginsberg, H.S.; Faulde, M.K.

    2008-01-01

    The most common vector-borne diseases in both Europe and North America are transmitted by ticks. Lyme borreliosis (LB), a tick-borne bacterial zoonosis, is the most highly prevalent. Other important tick-borne diseases include TBE (tick-borne encephalitis) and Crimean-Congo haemorrhagic fever in Europe, Rocky Mountain spotted fever (RMSF) in North America, and numerous less common tick-borne bacterial, viral, and protozoan diseases on both continents. The major etiological agent of LB is Borrelia burgdorferi in North America, while in Europe several related species of Borrelia can also cause human illness. These Borrelia genospecies differ in clinical manifestations, ecology (for example, some have primarily avian and others primarily mammalian reservoirs), and transmission cycles, so the epizootiology of LB is more complex in Europe than in North America. Ticks dwell predominantly in woodlands and meadows, and in association with animal hosts, with only limited colonization of human dwellings by a few species. Therefore, suburbanization has contributed substantially to the increase in tick-borne disease transmission in North America by fostering increased exposure of humans to tick habitat. The current trend toward suburbanization in Europe could potentially result in similar increases in transmission of tick-borne diseases. Incidence of tick-borne diseases can be lowered by active public education campaigns, targeted at the times and places of greatest potential for encounter between humans and infected ticks. Similarly, vaccines (e.g., against TBE) are most effective when made available to people at greatest risk, and for high-prevalence diseases such as LB. Consultation with vector-borne disease experts during the planning stages of new human developments can minimize the potential for residents to encounter infected ticks (e.g., by appropriate dwelling and landscape design). Furthermore, research on tick vectors, pathogens, transmission ecology, and on geographic distribution, spread, and management of tick-borne diseases can lead to innovative and improved methods to lower the incidence of these diseases. Surveillance programs to monitor the distribution and spread of ticks, associated pathogens, and their reservoirs, can allow better-targeted management efforts, and provide data to assess effectiveness and to improve management programs.

  18. TRIM79α, an interferon-stimulated gene product, restricts tick-borne encephalitis virus replication by degrading the viral RNA polymerase

    PubMed Central

    Taylor, R. Travis; Lubick, Kirk J.; Robertson, Shelly J.; Broughton, James P.; Bloom, Marshall E.; Bresnahan, Wade A.; Best, Sonja M.

    2011-01-01

    In response to virus infection, type I interferons (IFNs) induce several genes, most of whose functions are largely unknown. Here we show that the tripartite motif (TRIM) protein, TRIM79α, is an IFN-stimulated gene (ISG) product that specifically targets tick-borne encephalitis virus (TBEV), a Flavivirus that causes encephalitides in humans. TRIM79α restricts TBEV replication by mediating lysosome-dependent degradation of the flavivirus NS5 protein, an RNA-dependent RNA polymerase essential for virus replication. NS5 degradation was specific to tick-borne flaviviruses as TRIM79α did not recognize NS5 from West Nile virus (WNV) or inhibit WNV replication. In the absence of TRIM79α, IFN-β was less effective in inhibiting tick-borne flavivirus infection of mouse macrophages, highlighting the importance of a single virus-specific ISG in establishing an antiviral state. The specificity of TRIM79α for TBEV reveals a remarkable ability of the innate IFN response to discriminate between closely related flaviviruses. PMID:21925107

  19. [Comparative analysis of virulence of the Siberian and Far-East subtypes of the tick-born encephalitis virus].

    PubMed

    Pogodina, V V; Bochkova, N G; Karan', L S; Frolova, M P; Trukhina, A G; Malenko, G V; Levina, L S; Platonov, A E

    2004-01-01

    The Siberian subtype of the tick-borne encephalitis virus (TEV) is different from the Far-East subtype by a moderate virulence observed in Siberian hamsters and by a low infection development rate (100 strains were compared). No differences were found in neuro-invasiveness. Clinical findings and experiments with monkeys denote the ability of the Siberian subtype to provoke severe forms of tick-borne encephalitis (TBE). The inflammation-and-degenerative changes were localized in the brain cortex, subcortical ganglions, nuclei of medulla oblongata, in the cortex and nuclei of the cerebellum as well as in the anterior horns of the spinal cord. 18 disease cases triggered by the Siberian TEV subtypes in residents of the Western and Eastern Siberia and of Central Russia (Yaroslavl Region), including 7 acute TBE cases (5 lethal outcomes), as well as 11 chronic TBE cases are analyzed. The viral RNA was found in the cortex, medulla oblongata, horn and in the cervical part of the spinal cord of those diseased of acute TBE. Sequences of genotyped strains were presented to Gen Bank, NCBI (AY363846-AY363865).

  20. Detection of West Nile virus and tick-borne encephalitis virus in birds in Slovakia, using a universal primer set.

    PubMed

    Csank, Tomáš; Bhide, Katarína; Bencúrová, Elena; Dolinská, Saskia; Drzewnioková, Petra; Major, Peter; Korytár, Ľuboš; Bocková, Eva; Bhide, Mangesh; Pistl, Juraj

    2016-06-01

    West Nile virus (WNV) is a mosquito-borne neurotropic pathogen that presents a major public health concern. Information on WNV prevalence and circulation in Slovakia is insufficient. Oral and cloacal swabs and bird brain samples were tested for flavivirus RNA by RT-PCR using newly designed generic primers. The species designation was confirmed by sequencing. WNV was detected in swab and brain samples, whereas one brain sample was positive for tick-borne encephalitis virus (TBEV). The WNV sequences clustered with lineages 1 and 2. These results confirm the circulation of WNV in birds in Slovakia and emphasize the risk of infection of humans and horses.

  1. Transport of ixodid ticks and tick-borne pathogens by migratory birds.

    PubMed

    Hasle, Gunnar

    2013-01-01

    Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur.

  2. Transport of ixodid ticks and tick-borne pathogens by migratory birds

    PubMed Central

    Hasle, Gunnar

    2013-01-01

    Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur. PMID:24058903

  3. The occurrence of Ixodes ricinus ticks and important tick-borne pathogens in areas with high tick-borne encephalitis prevalence in different altitudinal levels of the Czech Republic Part II. Ixodes ricinus ticks and genospecies of Borrelia burgdorferi sensu lato complex.

    PubMed

    Daniel, M; Rudenko, N; Golovchenko, M; Danielová, V; Fialová, A; Kříž, B; Malý, M

    Three years long research study (2011-2013) on population density of Ixodes ricinus and the infection rate of the pathogens that they transmit was conducted in four topographically distant areas in the Czech Republic. In the previous decade (2001-2010) thirteen loci with increased incidence of tick borne encephalitis cases were defined, suggesting the permanent interaction of human population with ticks and indicating the landmarks for study of the presence of other tick borne pathogens. The work program included the identification of existing spectrum of spirochetes from Borrelia burgdorferi sensu lato complex and the conditions of their occurrence and distribution. In the areas of the Ústí nad Labem Region, Olomouc Region, South Bohemian Region, and Highlands Region, 600 m2 plots were selected in the local optimal I. ricinus habitats where tick flagging was performed every year in the spring-summer and autumn seasons of the tick questing activity. Collected adult ticks (1369 males and 1404 females) were individually screened for B. burgdorferi s. l. spirochets. Spirochetes from B. burgdorferi s.l. complex were detected in all 13 studies sites in all altitudes from 280 to 1030 meters a. s. l. The total rate of infection was determined as 11.4% (males 10.4%, females 12.4%) with range limits from 1.4% (Ústí nad Labem in 2011) to 19.7% (South Bohemian Region, 2012).Genospecies were detected in various proportions and in different combinations: Borrelia afzelii, B. garinii, B. burgdorferi s. s., B. bavariensis, B. bissettii, B. valaisiana, B. spielmanii and B. lusitaniae. The three-year observation justifies the assumption that the regional differences in infectivity of I. ricinus are based on the character of the local biocenosis of the respective region. The dynamics of its seasonal changes, conditioned by climatic factors, determines the annual differences. Three of the medically most important Borrelia species formed a core group among all detected genospecies. B. afzelii was a dominated one (115 detections), followed by B. garinii (100) and by B. burgdorferi s.s. (19). Other genospecies were detected sporadically. However, the detection of B. bissettii should be emphasized due to the recently proven pathogenic effects of this genospecies and yet little-known sporadic expansion in the Czech Republic. The medical importance and distribution of other sporadically occurred genospecies is also discussed.Key words: Ixodes ricinus - Borrelia afzelii - B. garinii - B. burgdorferi s. s. - B. bavariensis - B. valaisiana - B. spielmanii - B. lusitaniae - B. bissettii - distribution - altitude - season - medical importance.

  4. Factors affecting the ecology of tick-borne encephalitis in Slovenia.

    PubMed

    Knap, N; Avšič-Županc, T

    2015-07-01

    Recognition of factors that influence the formation of tick-borne encephalitis (TBE) foci is important for assessing the risk of humans acquiring the viral infection and for establishing what can be done (within reasonable boundaries) to minimize that risk. In Slovenia, the dynamics of the TBE vector, i.e. Ixodes ricinus, was studied over a 4-year period and the prevalence of infection in ticks was established. Two groups of tick hosts were investigated: deer and small mammals. Red deer have been confirmed as having a direct influence on the incidence of TBE and rodents have been recognized as important sentinels for TBE infections, although their role in the enzootic cycle of the virus still remains to be elucidated. Last, forest and agricultural areas, which are influenced by human activity, are suitable habitats for ticks, and important for TBEV transmission and establishment. Human behaviour is also therefore an important factor and should always be considered in studies of TBE ecology.

  5. Babesia canis and tick-borne encephalitis virus (TBEV) co-infection in a sled dog.

    PubMed

    Bajer, Anna; Rodo, Anna; Bednarska, Malgorzata; Mierzejewska, Ewa; Welc-Falęciak, Renata

    2013-01-01

    Sporting dogs, including sled dogs, are particularly prone to tick-borne infection either due to training/racing in forest areas or through visits to endemic areas. The aim was to present tick-borne infections in a 6-dog racing team after a race in Estonia. On the 4th day after return to Poland, the first dog presented with babesiosis symptoms and was diagnosed and treated accordingly. Next morning, the dog showed neurological symptoms and was diagnosed with tick-borne encephalitis (TBE). Diagnosis was confirmed by a high level of IgG antibodies (922 IU/ml), detected in serum 3 months later. The second dog presented with babesiosis symptoms on the 7th day after return. Babesia DNA was extracted from blood, amplified and sequenced to answer the question of whether the dogs became infected during the race in Estonia or in Poland. Sequencing of a fragment of Babesia 18S rDNA revealed that these two isolates were identical to one another and closely related to the B. canis sequence originally isolated from the dog and Dermacentor reticulatus ticks in Poland. Thus, this is the first confirmed case of B.canis and TBEV co-infection and first confirmed case of TBE in a dog in Poland.

  6. Predictability of tick-borne encephalitis fluctuations.

    PubMed

    Zeman, P

    2017-10-01

    Tick-borne encephalitis is a serious arboviral infection with unstable dynamics and profound inter-annual fluctuations in case numbers. A dependable predictive model has been sought since the discovery of the disease. The present study demonstrates that four superimposed cycles, approximately 2·4, 3, 5·4, and 10·4 years long, can account for three-fifths of the variation in the disease fluctuations over central Europe. Using harmonic regression, these cycles can be projected into the future, yielding forecasts of sufficient accuracy for up to 4 years ahead. For the years 2016-2018, this model predicts elevated incidence levels in most parts of the region.

  7. [Activating effect of cyclophosphane at late stages of persistence of the tick-borne encephalitis virus].

    PubMed

    Frolova, T V; Pogodina, V V; Larina, G I; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    Conditions of activation of persistent infection caused by subcutaneous inoculation of Syrian hamsters with the B-383 and Vasilchenko strains of tick-borne encephalitis virus (TBE) were studied. After 2 administrations of cyclophosphane (CP) on day 170 of infection clinically manifest disease developed in some animals with increasingly severe pathomorphological lesions in the CNS. Several variants of activated TBE virus were isolated from brains and spleens of CP-treated hamsters. The activation of persistent infection was observed in the presence of marked decreased of humoral immunity level, weight of the thymus, and values of spontaneous rosette-formation.

  8. Identification of tick-borne encephalitis virus in ticks collected in southeastern Hungary.

    PubMed

    Pintér, Réka; Madai, Mónika; Vadkerti, Edit; Németh, Viktória; Oldal, Miklós; Kemenesi, Gábor; Dallos, Bianka; Gyuranecz, Miklós; Kiss, Gábor; Bányai, Krisztián; Jakab, Ferenc

    2013-09-01

    Tick-borne encephalitis virus (TBEV) is an arthropod-borne viral pathogen causing infections in Europe and is responsible for most arbovirus central nervous system infections in Hungary. Assessing the TBEV prevalence in ticks through detection of genomic RNA is a broadly accepted approach to estimate the transmission risk from a tick bite. For this purpose, 2731 ticks were collected from the neighboring area of the town of Dévaványa, located in southeastern Hungary, which is considered a low-risk-transmission area for TBEV. Altogether, 2300 ticks were collected from the vegetation, while 431 were collected from rodents. Samples were pooled and then screened for TBEV with a newly designed semi-nested RT-PCR (RT-snPCR) targeting the NS1 genomic region. PCR results were confirmed by direct sequencing of the second round amplicons. Among the 3 different collected tick species (Ixodes ricinus, Haemaphysalis concinna, Dermacentor marginatus), I. ricinus was the only species that tested positive for TBEV. TBEV-positive ticks were collected from small mammals or from the vegetation. One nymphal pool and 4 larval pools tested positive for TBEV. The only positive nymphal pool was unfed and came from vegetation, while ticks of the 4 positive larval pools were collected from rodents. Minimal TBEV prevalence in ticks was 0.08% for unfed nymphs and 0.78% for feeding larvae. Our results indicate that further long-term investigations on the occurrence of TBEV are needed to better describe the geographic distribution and the prevalence of infected ticks in Hungary. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Risk of exposure to ticks (Ixodidae) and the prevalence of tick-borne encephalitis virus (TBEV) in ticks in Southern Poland.

    PubMed

    Cuber, Piotr; Andreassen, Åshild; Vainio, Kirsti; Asman, Marek; Dudman, Susanne; Szilman, Piotr; Szilman, Ewa; Ottesen, Preben; Ånestad, Gabriel; Cieśla-Nobis, Sabina; Solarz, Krzysztof

    2015-04-01

    The article presents the results of the first study on seasonal activity of ticks and prevalence of tick-borne encephalitis virus (TBEV) in nymphs from the Silesian Province (Southern Poland). Previous studies on the prevalence of TBEV in ticks in Poland have been conducted mostly in northern and eastern regions, but none in the Silesian Province itself. The aims of this study were to analyse the seasonal variation in tick populations and compare TBEV prevalence in nymphs from different geographical locations in the Silesia. A total of 5160 questing Ixodes ricinus ticks were collected by the flagging method from 23 localities in southern Poland in 2010. Micro-climatic parameters (air temperature and humidity) were measured in order to estimate their influence on tick population. The highest tick activity was recorded in spring and was positively correlated with relative air humidity (RH). TBEV in the Silesian Province was analysed in 1750 nymphs and an overall prevalence was 0.11% (2 pools out of 175 analysed). The results of this study show that TBEV pool prevalence in nymphs is low in accordance with the low number of TBE cases reported within the region. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. The ecology of ticks and epidemiology of tick-borne viral diseases.

    PubMed

    Estrada-Peña, Agustín; de la Fuente, José

    2014-08-01

    A number of tick-borne diseases of humans have increased in incidence and geographic range over the past few decades, and there is concern that they will pose an even greater threat to public health in future. Although global warming is often cited as the underlying mechanism favoring the spread of tick-borne diseases, climate is just one of many factors that determine which tick species are found in a given geographic region, their population density, the likelihood that they will be infected with microbes pathogenic for humans and the frequency of tick-human contact. This article provides basic information needed for microbiologists to understand the many factors that affect the geographic range and population density of ticks and the risk of human exposure to infected ticks. It first briefly summarizes the life cycle and basic ecology of ticks and how ticks and vertebrate hosts interact, then reviews current understanding of the role of climate, sociodemographic factors, agricultural development and changes in human behavior that affect the incidence of tick-borne diseases. These concepts are then illustrated in specific discussions of tick-borne encephalitis and Crimean-Congo hemorrhagic fever. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Rapid Detection of Powassan Virus in a Patient With Encephalitis by Metagenomic Sequencing.

    PubMed

    Piantadosi, Anne; Kanjilal, Sanjat; Ganesh, Vijay; Khanna, Arjun; Hyle, Emily P; Rosand, Jonathan; Bold, Tyler; Metsky, Hayden C; Lemieux, Jacob; Leone, Michael J; Freimark, Lisa; Matranga, Christian B; Adams, Gordon; McGrath, Graham; Zamirpour, Siavash; Telford, Sam; Rosenberg, Eric; Cho, Tracey; Frosch, Matthew P; Goldberg, Marcia B; Mukerji, Shibani S; Sabeti, Pardis C

    2018-02-10

    We describe a patient with severe and progressive encephalitis of unknown etiology. We performed rapid metagenomic sequencing from cerebrospinal fluid and identified Powassan virus, an emerging tick-borne flavivirus that has been increasingly detected in the United States.

  12. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway.

    PubMed

    Soleng, A; Edgar, K S; Paulsen, K M; Pedersen, B N; Okbaldet, Y B; Skjetne, I E B; Gurung, D; Vikse, R; Andreassen, Å K

    2018-01-01

    This study investigated the geographical distribution of Ixodes ricinus and prevalence of the tick-borne encephalitis virus (TBEV) in northern Norway. Flagging for questing I. ricinus ticks was performed in areas ranging from Vikna in Nord-Trøndelag County, located 190km south of the Arctic Circle (66.3°N), to Steigen in Nordland County, located 155km north of the Arctic Circle. We found that ticks were abundant in both Vikna (64.5°N) and Brønnøy (65.1°N). Only a few ticks were found at locations ∼66°N, and no ticks were found at several locations up to 67.5°N. Real-time PCR (RT-PCR) analyses of the collected ticks (nymphs and adults) for the presence of TBEV revealed a low prevalence (0.1%) of TBEV among the nymphs collected in Vikna, while a prevalence of 0% to 3% was found among nymphs collected at five locations in Brønnøy. Adult ticks collected in Vikna and Brønnøy had higher rates of TBEV infection (8.6% and 0%-9.0%, respectively) than the nymphs. No evidence of TBEV was found in the few ticks collected further north of Brønnøy. This is the first report of TBEV being detected at locations up to 65.1°N. It remains to be verified whether viable populations of I. ricinus exist at locations north of 66°N. Future studies are warranted to increase our knowledge concerning tick distribution, tick abundance, and tick-borne pathogens in northern Norway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Tick Infestation Risk and Borrelia burgdorferi s.l. Infection-Induced Increase in Host-Finding Efficacy of Female Ixodes ricinus Under Natural Conditions

    DTIC Science & Technology

    2008-02-14

    worldwide, only a few are vaccine -preventable (e.g., tick-borne encephalitis, yellow fever, Japanese encephalitis, and plague). For this reason...western Germany underscore the considerable risk of acquiring Lyme borreliosis in Central Europe. Since no licensed vaccine exists for Lyme borreliosis...Acknowledgements We thank Marco Isack, Sabine Barz, Thorsten Lange, Bernd Bocklet and Dirk Hiller for their assistance with fieldwork. TibMolBiol

  14. Tick-borne encephalitis.

    PubMed

    Dumpis, U; Crook, D; Oksi, J

    1999-04-01

    Tick-borne encephalitis (TBE) is a zoonotic arbovirus infection endemic to Russia and Eastern and Central Europe. Despite being a common and serious life-threatening disease for which a mass vaccination program was implemented in Austria, there is only limited reference to this disease in the English-language literature. TBE is transmitted to humans usually by the bite of a tick (either Ixodes persulcatus or Ixodes ricinus); occasionally, cases occur following consumption of infected unpasteurized milk. Transmission is seasonal and occurs in spring and summer, particularly in rural areas favored by the vector. TBE is a serious cause of acute central nervous system disease, which may result in death or long-term neurological sequelae. Effective vaccines are available in a few countries. The risk for travelers of acquiring TBE is increasing with the recent rise in tourism to areas of endemicity during spring and summer.

  15. Tick-borne encephalitis virus in dogs - is this an issue?

    PubMed Central

    2011-01-01

    The last review on Tick-borne encephalitis (TBE) in dogs was published almost ten years ago. Since then, this zoonotic tick-borne arbovirus has been geographically spreading and emerging in many regions in Eurasia and continues to do so. Dogs become readily infected with TBE virus but they are accidental hosts not capable to further spread the virus. They seroconvert upon infection but they seem to be much more resistant to the clinical disease than humans. Apart from their use as sentinels in endemic areas, however, an increasing number of case reports appeared during the last decade thus mirroring the rising public health concerns. Owing to the increased mobility of people travelling to endemic areas with their companion dogs, this consequently leads to problems in recognizing and diagnosing this severe infection in a yet non-endemic area, simply because the veterinarians are not considering TBE. This situation warrants an update on the epidemiology, clinical presentation and possible preventions of TBE in the dog. PMID:21489255

  16. Surveillance of tick-borne encephalitis virus in wild birds and ticks in Tomsk city and its suburbs (Western Siberia).

    PubMed

    Mikryukova, Tamara P; Moskvitina, Nina S; Kononova, Yulia V; Korobitsyn, Igor G; Kartashov, Mikhail Y; Tyuten Kov, Oleg Y; Protopopova, Elena V; Romanenko, Vladimir N; Chausov, Evgeny V; Gashkov, Sergey I; Konovalova, Svetlana N; Moskvitin, Sergey S; Tupota, Natalya L; Sementsova, Alexandra O; Ternovoi, Vladimir A; Loktev, Valery B

    2014-03-01

    To study the role of wild birds in the transmission of tick borne encephalitis virus (TBEV), we investigated randomly captured wild birds bearing ixodid ticks in a very highly endemic TBE region located in Tomsk city and its suburbs in the south of Western Siberia, Russia. The 779 wild birds representing 60 species were captured carrying a total of 841 ticks, Ixodes pavlovskyi Pom., 1946 (n=531), Ixodes persulcatus P. Sch., 1930 (n=244), and Ixodes plumbeus Leach. 1815 (n=66). The highest average number of ticks per bird in a particular species was found for the fieldfare (Turdus pilaris Linnaeus, 1758) (5.60 ticks/bird) and the tree pipit (Anthus trivialis Linnaeus, 1758) (13.25 ticks/bird). Samples from wild birds and ticks collected in highly endemic periods from 2006 to 2011 were tested for the TBEV markers using monoclonal modified enzyme immunoassay (EIA) and RT-PCR. TBEV RNA and antigen were found in 9.7% and 22.8% samples collected from wild birds, respectively. TBEV markers were also detected in 14.1% I. persulcatus ticks, 5.2% I. pavlovskyi, and 4.2% I. plumbeus ticks collected from wild birds. Two TBEV strains were also isolated on PKE (pig kidney embryo) cells from fieldfare and Blyth's reed warbler (Acrocephalus dumetorum Blyth, 1849). Sequencing of 5'-NCR of TBEV revealed that all TBEV isolates belong to Far Eastern (dominate) and Siberian genotypes. Several phylogenetic subgroups included TBEV sequences novel for the Tomsk region. Our data suggest that wild birds are potential disseminators of TBEV, TBEV-infected ixodid ticks, and possibly other tick-borne infections. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Molecular Detection and Serological Evidence of Tick-Borne Encephalitis Virus in Serbia.

    PubMed

    Potkonjak, Aleksandar; Petrović, Tamaš; Ristanović, Elizabeta; Lalić, Ivica; Vračar, Vuk; Savić, Sara; Turkulov, Vesna; Čanak, Grozdana; Milošević, Vesna; Vidanović, Dejan; Jurišić, Aleksandar; Petrović, Aleksandra; Petrović, Vladimir

    2017-12-01

    Tick-borne encephalitis (TBE) is a zoonotic flaviviral infection that is a growing public health concern in European countries. The aims of this research were to detect and characterize tick-borne encephalitis virus (TBEV) in Ixodes ricinus ticks at presumed natural foci in Serbia, and to determine seroprevalence of TBEV IgG antibodies in humans and animals. A total of 500 I. ricinus ticks were examined for the presence of TBEV by real-time RT-PCR, and conventional nested PCR and sequencing. To determine TBEV seroprevalence, 267 human sera samples were collected, as were 200 sera samples from different animal species. All sera samples were examined by ELISA for the presence of anti-TBEV antibodies. To exclude cross-reactivity, all sera samples were tested for anti-West Nile virus (WNV) antibodies and all human sera samples were also tested for anti-Usutu virus antibodies by ELISA. Results of this preliminary study indicated TBEV activity in Serbia at two microfoci. Several decades after the previous documentation of TBEV in Serbia, we have demonstrated the presence of TBEV in I. ricinus questing nymphs (prevalence 2% and 6.6% at the two different localities) and anti-TBEV antibodies in humans (seroprevalence 0.37%). Moreover, we show for the first time TBEV seroprevalence in several animal species in Serbia, including dogs (seroprevalence 17.5%), horses (5%), wild boars (12.5%), cattle (2.5%), and roe deer (2.5%). None of the goats tested was positive for anti-TBEV IgG antibodies. TBEV isolate from I. ricinus tick in this study belonged to the Western European subtype. To understand the true public health concern in Serbia, detailed epidemiological, clinical, virological, and acarological research are required. This is important for implementation of effective control measures to reduce the incidence of TBE in Serbia.

  18. Fatal Meningoencephalomyelitis due to the Tick-borne Encephalitis Virus: The First Detailed Neurological Observation in a Japanese Patient from the Central Part of Hokkaido Island.

    PubMed

    Tajima, Yasutaka; Yaguchi, Hiroaki; Mito, Yasunori

    2018-01-01

    To date, the only instance of tick-borne encephalitis (TBE) in Japan was reported from the southern part of Hokkaido Island in 1993; no other cases have been reported since then. We herein report the first case of TBE reported in the central part of Hokkaido Island, and describe the fatal clinical course of a patient who presented with meningoencephalomyelitis, which partly involved the nerve root. Magnetic resonance imaging (MRI) of the patient's cranium and spine revealed characteristic central nervous system involvement. Our case report is extremely relevant to efforts to protect public health and for precautions against TBE pandemics.

  19. Illnesses on the Rise From Mosquito, Tick, and Flea Bites

    MedlinePlus

    ... gets sick has a vector-borne disease, like dengue, Zika, Lyme, or plague. Between 2004 and 2016, ... Mosquito-borne diseases California serogroup viruses Chikungunya virus Dengue viruses Eastern equine encephalitis virus Malaria plasmodium St. ...

  20. Heterogeneity of 3’-Untraslated Region of Genome RNA of the Tick-Borne Encephalitis Virus (TBEV) Strains Isolated from Ticks in the Western Siberia, Russia

    PubMed Central

    Morozova, Olga V.; Bakhvalova, Valentina N.; Morozov, Igor V.

    2007-01-01

    The tick-borne encephalitis virus (TBEV) strains have been isolated from unfed adult ticks Ixodes persulcatus Schulze in Novosibirsk region (South-Western Siberia, Russia) beginning from 1980 till 2006. The TBEV 3’-untraslated region (3’UTR) variable fragment was amplified with primers corresponding to conserved flanking areas. The RT-PCR product lengths varied in range from 100 to 400 bp. Comparative analysis of 3’UTR nucleotide sequences revealed a few groups of the TBEV strains within Siberian genetic subtype with significant intra-group homology and essential differences between groups. Correlation between lengths of the 3’UTR fragments and hemagglutination (HA) titers for subsequent passages of the TBEV strains was not found. However, for the viral strains with shorter 3’UTR (less than 200 nucleotides) incubation period for suckling mice was longer than 5 days. It might be resulted from decreased RNA synthesis or reduced neuroinvasiveness. PMID:23675045

  1. Rapid Detection of Powassan Virus in a Patient With Encephalitis by Metagenomic Sequencing

    PubMed Central

    Piantadosi, Anne; Kanjilal, Sanjat; Ganesh, Vijay; Khanna, Arjun; Hyle, Emily P; Rosand, Jonathan; Bold, Tyler; Metsky, Hayden C; Lemieux, Jacob; Leone, Michael J; Freimark, Lisa; Matranga, Christian B; Adams, Gordon; McGrath, Graham; Zamirpour, Siavash; Telford, Sam; Rosenberg, Eric; Cho, Tracey; Frosch, Matthew P; Goldberg, Marcia B; Mukerji, Shibani S; Sabeti, Pardis C

    2018-01-01

    Abstract We describe a patient with severe and progressive encephalitis of unknown etiology. We performed rapid metagenomic sequencing from cerebrospinal fluid and identified Powassan virus, an emerging tick-borne flavivirus that has been increasingly detected in the United States. PMID:29020227

  2. [Genetic characterisation of Powassan virus (POWV) isolated from Haemophysalis longicornis ticks in Primorye and two strains of Tick-borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus): Alma-Arasan virus (AAV) isolated from Ixodes persulcatus ticks in Kazakhstan and Malyshevo virus isolated from Aedes vexans nipponii mosquitoes in Khabarovsk kray].

    PubMed

    L'vov, D K; Al'khovskiĭ, S V; Shchelkanov, M Iu; Deriabin, P G; Gitel'man, A K; Botikov, A G; Aristova, V A

    2014-01-01

    The complete genomes of the three tick-borne flaviviruses (genus Flavivirus, fam. Bunyaviridae) were sequenced: Povassan virus (POWV, strain LEIV-3070Prm, isolated from Haemophysalis logicornis in Primorsky Krai, Russia in 1977), Alma-Arasan virus (AAV, strain LEIV-1380Kaz, isolated from Ixodes persulcatus ticks in Kazakhstan in 1977) and Malyshevo virus (isolated from a pool of Aedes vexans nipponii mosquitoes, in the Khabarovsk Krai, Russia in 1978). It is shown that AAV and Malyshevo virus are the strains of Tick-borne encephalitis virus (TBEV) and belong to Sibirian and Far-Eastern genotypes, respectively (GenBank ID: AAV KJ744033; strain Malyshevo KJ744034). Phylogenetically AAV is closest related (94,6% nt and 98,3% aa identity) to TBEV strains, isolated in Sibiria (Vasilchenko, Aino, Chita-653, Irkutsk-12). Malyshevo virus is closest related (96,4% nt and 98,3% nt identity) to strains of TBEV, isolated in Far Eastern part of Russia (1230, Spassk-72, Primorye-89). POWV LEIV-3070Prm has 99.7% identity with the prototype strain POWV LB, isolated in Canada and 99.5% of isolates with Far-Eastern strains of POWV (Spassk-9 and Nadezdinsk-1991).

  3. Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice.

    PubMed

    Ershova, Anna S; Gra, Olga A; Lyaschuk, Alexander M; Grunina, Tatyana M; Tkachuk, Artem P; Bartov, Mikhail S; Savina, Darya M; Sergienko, Olga V; Galushkina, Zoya M; Gudov, Vladimir P; Kozlovskaya, Liubov I; Kholodilov, Ivan S; Gmyl, Larissa V; Karganova, Galina G; Lunin, Vladimir G; Karyagina, Anna S; Gintsburg, Alexander L

    2016-10-07

    E protein of tick-borne encephalitis virus (TBEV) and other flaviviruses is located on the surface of the viral particle. Domain III of this protein seems to be a promising component of subunit vaccines for prophylaxis of TBE and kits for diagnostics of TBEV. Three variants of recombinant TBEV E protein domain III of European, Siberian and Far Eastern subtypes fused with dextran-binding domain of Leuconostoc citreum KM20 were expressed in E. coli and purified. The native structure of domain III was confirmed by ELISA antibody kit and sera of patients with tick-borne encephalitis. Immunogenic and protective properties of the preparation comprising these recombinant proteins immobilized on a dextran carrier with CpG oligonucleotides as an adjuvant were investigated on the mice model. All 3 variants of recombinant proteins immobilized on dextran demonstrate specific interaction with antibodies from the sera of TBE patients. Thus, constructed recombinant proteins seem to be promising for TBE diagnostics. The formulation comprising the 3 variants of recombinant antigens immobilized on dextran and CpG oligonucleotides, induces the production of neutralizing antibodies against TBEV of different subtypes and demonstrates partial protectivity against TBEV infection. Studied proteins interact with the sera of TBE patients, and, in combination with dextran and CPGs, demonstrate immunogenicity and limited protectivity on mice compared with reference "Tick-E-Vac" vaccine.

  4. Non-systemic transmission of tick-borne diseases: A network approach

    NASA Astrophysics Data System (ADS)

    Ferreri, Luca; Bajardi, Paolo; Giacobini, Mario

    2016-10-01

    Tick-borne diseases can be transmitted via non-systemic (NS) transmission. This occurs when tick gets the infection by co-feeding with infected ticks on the same host resulting in a direct pathogen transmission between the vectors, without infecting the host. This transmission is peculiar, as it does not require any systemic infection of the host. The NS transmission is the main efficient transmission for the persistence of the tick-borne encephalitis virus in nature. By describing the heterogeneous ticks aggregation on hosts through a bipartite graphs representation, we are able to mathematically define the NS transmission and to depict the epidemiological conditions for the pathogen persistence. Despite the fact that the underlying network is largely fragmented, analytical and computational results show that the larger is the variability of the aggregation, and the easier is for the pathogen to persist in the population.

  5. 3'-O-Substituted 5-(perylen-3-ylethynyl)-2'-deoxyuridines as tick-borne encephalitis virus reproduction inhibitors.

    PubMed

    Proskurin, Gleb V; Orlov, Alexey A; Brylev, Vladimir A; Kozlovskaya, Liubov I; Chistov, Alexey A; Karganova, Galina G; Palyulin, Vladimir A; Osolodkin, Dmitry I; Korshun, Vladimir A; Aralov, Andrey V

    2018-05-26

    A series of analogues of potent antiviral perylene nucleoside dUY11 with methylthiomethyl (MTM), azidomethyl (AZM) and HO-C 1-4 -alkyl-1,2,3-triazol-1,4-diyl groups at 3'-O-position as well as the two products of copper-free alkyne-azide cycloaddition of the AZM derivative were prepared and evaluated against tick-borne encephalitis virus (TBEV). Four compounds (4, 6, 8a, 8b) showed EC 50  ≤ 10 nM, thus appearing the most potent TBEV inhibitors to date. Moreover, these nucleosides have higher lipophilicity (clogP) and increased solubility in aq. DMSO vs. parent compound dUY11. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland.

    PubMed

    Burri, C; Bastic, V; Maeder, G; Patalas, E; Gern, L

    2011-05-01

    The focal distribution of tick-borne encephalitis virus (TBEV; Flaviviridae, Flavivirus) appears to depend mainly on cofeeding transmission between infected Ixodes ricinus L. nymphs and uninfected larvae. To better understand the role of cofeeding ticks in the transmission of TBEV, we investigated tick infestation of rodents and the influence of microclimate on the seasonality of questing I. ricinus ticks. A 3-yr study was carried out at four sites, including two confirmed TBEV foci. Free-living ticks and rodents were collected monthly, and microclimatic data were recorded. A decrease in questing nymph density was observed in 2007, associated with low relative humidity and high temperatures in spring. One site, Thun, did not show this decrease, probably because of microclimatic conditions in spring that favored the questing nymph population. During the same year, the proportion of rodents carrying cofeeding ticks was lower at sites where the questing nymph density decreased, although the proportion of infested hosts was similar among years. TBEV was detected in 0.1% of questing ticks, and in 8.6 and 50.0% of larval ticks feeding on two rodents. TBEV was detected at all but one site, where the proportion of hosts with cofeeding ticks was the lowest. The proportion of hosts with cofeeding ticks seemed to be one of the factors that distinguished a TBEV focus from a non-TBEV focus. The enzootic cycle of TBEV might be disrupted when dry and hot springs occur during consecutive years.

  7. Mutational analysis of three predicted 5'-proximal stem-loop structures in the genome of tick-borne encephalitis virus indicates different roles in RNA replication and translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouha, Harald; Hoenninger, Verena M.; Thurner, Caroline

    2011-08-15

    Flavivirus gene expression is modulated by RNA secondary structure elements at the terminal ends of the viral RNA molecule. For tick-borne encephalitis virus (TBEV), four stem-loop (SL) elements have been predicted in the first 180 nucleotides of the viral genome: 5'-SL1, 5'-SL2, 5'-SL3 and 5'-SL4. The last three of these appear to be unique to tick-borne flaviviruses. Here, we report their characterization by mutagenesis in a TBEV luciferase reporter system. By manipulating their thermodynamic properties, we found that an optimal stability of the 5'-SL2 is required for efficient RNA replication. 5'-SL3 formation is also important for viral RNA replication, butmore » although it contains the viral start codon, its formation is dispensable for RNA translation. 5'-SL4 appears to facilitate both RNA translation and replication. Our data suggest that maintenance of the balanced thermodynamic stability of these SL elements is important for temporal regulation of its different functions.« less

  8. Tick-borne encephalitis virus in ticks detached from humans and follow-up of serological and clinical response.

    PubMed

    Lindblom, Pontus; Wilhelmsson, Peter; Fryland, Linda; Sjöwall, Johanna; Haglund, Mats; Matussek, Andreas; Ernerudh, Jan; Vene, Sirkka; Nyman, Dag; Andreassen, Ashild; Forsberg, Pia; Lindgren, Per-Eric

    2014-02-01

    The risk of tick-borne encephalitis virus (TBEV) infection after a tick bite remains largely unknown. To address this, we investigated the presence of TBEV in ticks detached from humans in an attempt to relate viral copy number, TBEV subtype, and tick feeding time with the serological and clinical response of the tick-bitten participants. Ticks, blood samples, and questionnaires were collected from tick-bitten humans at 34 primary health care centers in Sweden and in the Åland Islands (Finland). A total of 2167 ticks was received from 1886 persons in 2008-2009. Using a multiplex quantitative real-time PCR, 5 TBEV-infected ticks were found (overall prevalence 0.23%, copy range <4×10(2)-7.7×10(6)per tick). One unvaccinated person bitten by a tick containing 7.7×10(6) TBEV copies experienced symptoms. Another unvaccinated person bitten by a tick containing 1.8×10(3) TBEV copies developed neither symptoms nor TBEV antibodies. The remaining 3 persons were protected by vaccination. In contrast, despite lack of TBEV in the detached ticks, 2 persons developed antibodies against TBEV, one of whom reported symptoms. Overall, a low risk of TBEV infection was observed, and too few persons got bitten by TBEV-infected ticks to draw certain conclusions regarding the clinical outcome in relation to the duration of the blood meal and virus copy number. However, this study indicates that an antibody response may develop without clinical symptoms, that a bite by an infected tick not always leads to an antibody response or clinical symptoms, and a possible correlation between virus load and tick feeding time. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis.

    PubMed

    Taba, P; Schmutzhard, E; Forsberg, P; Lutsar, I; Ljøstad, U; Mygland, Å; Levchenko, I; Strle, F; Steiner, I

    2017-10-01

    Tick-borne encephalitis (TBE) is an infection of the central nervous system (CNS) caused by tick-borne encephalitis virus (TBEV) and transmitted by ticks, with a variety of clinical manifestations. The incidence of TBE in Europe is increasing due to an extended season of the infection and the enlargement of endemic areas. Our objectives are to provide recommendations on the prevention, diagnosis and management of TBE, based on evidence or consensus decisions. For systematic evaluation, the literature was searched from 1970 to 2015 (including early online publications of 2016), and recommendations were based on evidence or consensus decisions of the Task Force when evidence-based data were not available. Vaccination against TBE is recommended for all age groups above 1 year in highly endemic areas (≥5 cases/100 000/year), but also for individuals at risk in areas with a lower incidence. Travellers to endemic areas should be vaccinated if their visits will include extensive outdoor activities. Post-exposure prophylaxis after a tick bite is not recommended. A case of TBE is defined by the presence of clinical signs of meningitis, meningoencephalitis or meningoencephalomyelitis with cerebrospinal fluid (CSF) pleocytosis (>5 × 10 6 cells/l) and the presence of specific TBEV serum immunoglobulin M (IgM) and IgG antibodies, CSF IgM antibodies or TBEV IgG seroconversion. TBEV-specific polymerase chain reaction in blood is diagnostic in the first viremic phase but it is not sensitive in the second phase of TBE with clinical manifestations of CNS inflammation. Lumbar puncture should be performed in all patients with suspected CNS infection unless there are contraindications. Imaging of the brain and spinal cord has a low sensitivity and a low specificity, but it is useful for differential diagnosis. No effective antiviral or immunomodulating therapy is available for TBE; therefore the treatment is symptomatic. Patients with a potentially life threatening meningoencephalitis or meningoencephalomyelitis should be admitted to an intensive care unit. In the case of brain oedema, analgosedation should be deepened; osmotherapy and corticosteroids are not routinely recommended. If intracranial pressure is increased, therapeutic hypothermia or decompressive craniectomy might be considered. Seizures should be treated as any other symptomatic epileptic seizures. Tick-borne encephalitis is a viral CNS infection that may result in long-term neurological sequelae. Since its incidence in Europe is increasing due to broadening of endemic areas and prolongation of the tick activity season, the health burden of TBE is enlarging. There is no effective antiviral treatment for TBE, but the disease may be effectively prevented by vaccination. © 2017 EAN.

  10. Force Protection Technologies for the 2010-2020 Timeframe

    DTIC Science & Technology

    2003-11-01

    virus V12. Monkey pox virus Viruses V13. Rift Valley fever virus V14. Tick-borne encephalitis virus (Russian Spring-Summer... virus Viruses V20. Japanese encephalitis virus R1. Coxiella burnetti R2. Bartonella Quintana (Rochlimea quintana, Rickettsia quintana) R3...fever virus WV5. Oropouche virus WV6. Powassan virus WV7. Rocio virus Viruses (Warning List) WV8. St Louis encephalitis virus WB1.

  11. Replication enhancer elements within the open reading frame of tick-borne encephalitis virus and their evolution within the Flavivirus genus

    PubMed Central

    Tuplin, A.; Evans, D. J.; Buckley, A.; Jones, I. M.; Gould, E. A.; Gritsun, T. S.

    2011-01-01

    We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents. PMID:21622960

  12. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines

    PubMed Central

    Amicizia, Daniela; Domnich, Alexander; Panatto, Donatella; Lai, Piero Luigi; Cristina, Maria Luisa; Avio, Ulderico; Gasparini, Roberto

    2013-01-01

    Tick-borne Encephalitis (TBE), which is caused by a Flavivirus, is the most common tick-transmitted disease in Central and Eastern Europe and Russia. Today, TBE is endemic in 27 European countries, and has become an international public health problem. The epidemiology of TBE is changing owing to various factors, such as improvements in diagnosis and case reporting, increased recreational activities in areas populated by ticks, and changes in climatic conditions affecting tick habitats. Vaccination remains the most effective protective measure against TBE for people living in risk zones, occupationally exposed subjects and travelers to endemic areas. The vaccines currently in use are FSME-Immun®, Encepur®, EnceVir® and TBE vaccine Moscow®. The numerous studies performed on the efficacy and safety of these vaccines have shown a high level of immunogenicity and an excellent safety profile. Several studies have also shown a high level of cross-protection among strains belonging to different subtypes.   In the present paper we attempted to describe the continuously changing epidemiology of TBE in European States and to overview clinical development of available vaccines paying particular attention on cross-protection elicited by the vaccines. PMID:23377671

  13. Psychiatric aspects of herpes simplex encephalitis, tick-borne encephalitis and herpes zoster encephalitis among immunocompetent patients.

    PubMed

    Więdłocha, Magdalena; Marcinowicz, Piotr; Stańczykiewicz, Bartłomiej

    2015-01-01

    The psychopathological symptoms occurring in the course of diseases associated with infections are often initially isolated and non-characteristic, and may cause diagnostic difficulties. Moreover, such disorders tend to be less responsive to psychiatric management. Among possible causes such as trauma, neoplasm and vascular changes, inflammatory changes of the brain as a result of a viral infection should also be considered. There were 452 registered cases of viral encephalitis in Poland in 2010, and although not very prevalent they remain a severe and life-threatening condition. What is more, the frequently occurring neurological and psychiatric complications of viral encephalitis often result in permanent disabilities, causing a significant decrease in the quality of life. This article presents the three types of encephalitis that are most prevalent among immunocompetent patients in Poland, i.e. herpes simplex encephalitis (HSE), tick-borne encephalitis (TBE) and herpes zoster encephalitis (HZE). The psychopathology of the acute phase of the infection, the residual symptoms, features apparent in imaging studies and some neuropathological aspects are also presented. The paper also focuses on psychiatric aspects of the diagnostics and treatment of the described conditions. The clinical pictures of these infections are quite specific, although they cover a wide range of symptoms, and these characteristic features are described. The aim of this review is also to show the significance of thorough diagnostics and a multidisciplinary approach to patients with viral CNS infections.

  14. Comparative genome analysis of Alkhumra hemorrhagic fever virus with Kyasanur forest disease and tick-borne encephalitis viruses by the in silico approach.

    PubMed

    Palanisamy, Navaneethan; Akaberi, Dario; Lennerstrand, Johan; Lundkvist, Åke

    2018-05-10

    Alkhumra hemorrhagic fever virus (AHFV), a relatively new member of the Flaviviruses, was discovered in Saudi Arabia 23 years ago. AHFV is classified in the tick-borne encephalitis virus serocomplex, along with the Kyasanur forest disease virus (KFDV) and tick-borne encephalitis virus (TBEV). Currently, very little is known about the pathologies of AHFV. In this study, using the available genome information of AHFV, KFDV and TBEV, we have predicted and compared the following aspects of these viruses: evolution, nucleotide and protein compositions, recombination, codon frequency, substitution rate, N- and O-glycosylation sites, signal peptide and cleavage site, transmembrane region, secondary structure of 5' and 3' UTRs and RNA-RNA interactions. Additionally, we have modeled the 3D protease and RNA-dependent RNA polymerase structures for AHFV, KFDV and TBEV. Recombination analysis showed no evidence of recombination in the AHFV genome with that of either KFDV or TBEV, although single break point analysis showed that nucleotide position 7399 (in the NS4B) is a breakpoint location. AHFV, KFDV and TBEV are very similar in terms of codon frequency, the number of transmembrane regions, properties of the polyprotein, RNA-RNA interaction sequences, NS3 protease and NS5 polymerase structures and 5' UTR structure. Using genome sequences, we showed the similarities between these closely- related viruses on several different areas.

  15. Increased recognition of Powassan encephalitis in the United States, 1999-2005.

    PubMed

    Hinten, Steven R; Beckett, Geoffrey A; Gensheimer, Kathleen F; Pritchard, Elizabeth; Courtney, Thomas M; Sears, Stephen D; Woytowicz, John M; Preston, David G; Smith, Robert P; Rand, Peter W; Lacombe, Eleanor H; Holman, Mary S; Lubelczyk, Charles B; Kelso, Patsy Tassler; Beelen, Andrew P; Stobierski, Mary Grace; Sotir, Mark J; Wong, Susan; Ebel, Gregory; Kosoy, Olga; Piesman, Joseph; Campbell, Grant L; Marfin, Anthony A

    2008-12-01

    Powassan virus (POWV) disease is a rare human disease caused by a tick-borne encephalitis group flavivirus maintained in a transmission cycle between Ixodes cookei and other ixodid ticks and small and medium-sized mammals. During 1958-1998, only 27 POWV disease cases (mostly Powassan encephalitis) were reported from eastern Canada and the northeastern United States (average, 0.7 cases per year). During 1999-2005, nine cases (described herein) of serologically confirmed POWV disease were reported in the United States (average, 1.3 cases per year): four from Maine, two from New York, and one each from Michigan, Vermont, and Wisconsin. The Michigan and Wisconsin cases are the first ever reported from the north-central United States. Of these nine patients, 5 (56%) were men, the median age was 69 years (range: 25-91 years), and 6 (67%) had onset during May-July. All but one patient developed encephalitis with acute onset of profound muscle weakness, confusion, and other severe neurologic signs. In one case, no neurologic symptoms were present but the presence of pleocytosis, an elevated cerebrospinal fluid (CSF) protein concentration, and POWV-specific immunoglobulin M in CSF suggested neuroinvasion. All patients recovered from their acute disease, but most had long-term neurologic sequelae. Periresidential ecologic investigations were performed in three cases, including tests of local mammals and ticks for evidence of POWV infection. Woodchucks (Marmota monax), striped skunks (Mephitis mephitis), and a raccoon (Procyon lotor) collected at two of the Maine case-patients' residences had neutralizing antibody titers to POWV. I. cookei were found on woodchucks and skunks and questing in grassy areas of one of these residences; all were negative for POWV. Although POWV disease is rare, it is probably under-recognized, and it causes significant morbidity, and thus is an additional tick-borne emerging infectious disease entity. Because no vaccine or specific therapy is available, the basis of prevention is personal protection from ticks (or "tick hygiene") and reduced exposure to peridomestic wild mammals.

  16. [Explantation method of isolating a persistent tick-borne encephalitis virus from the organs of infected monkeys].

    PubMed

    Levina, L S; Pogodina, V V

    1981-01-01

    The method of explantation was used to examine 63 organs from M. rhesus monkeys 92-783 days after intracerebral and subcutaneous inoculation with the Vasilchenko, Aina/1448 and 41/65 strains of tick-borne encephalitis virus. The optimal time for examination of the explants by tests of the hemagglutinating, cytopathogenic activity of the virus and its pathogenicity for mice was found to be the 15th day of cultivation. A comparative study of the properties of 3 isolates obtained from explants of the spleen, liver and subcortical cerebral ganglia 202 and 307 days after inoculation of monkeys was carried out. The isolates differed from the parental TBE virus strains by their capacity to form small plaques in PEKV cell cultures (pig embryo kidney cells in versen medium).

  17. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    PubMed

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  18. [Early-summer meningo-encephalitis (ESME) and ESME-vaccination: status 2000].

    PubMed

    Kunze, U; Bernhard, G; Böhm, G; Groman, E

    2000-01-01

    Tick-borne encephalitis (TBE) is a public health problem very well under control in Austria because of a vaccination programme using a safe, efficient and well tolerated vaccine and a carefully designed social marketing concept. The Austrian vaccine underwent another technological updating and is now marketed under a new brand name (TicoVac) on the basis of an EU registration. A second product is also available (Encepur), but some limitations of use have to be taken into account. To improve the epidemiological situation even further (only 41 hospital cases in 1999) special attention has to be given to the age group 50 years and older as this is the segment of the population where the majority of cases is observed. TBE is a growing international health problem as awareness increases and cases are identified in many European countries, even in regions where TBE so far was not diagnosed. An "International Scientific Working-group on Tick-borne encephalitis (ISW-TBE)" was established to coordinate research and public health activities.

  19. Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C; Gardner, S

    The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genomemore » wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less

  20. [Tick borne encephalitis and enviromental changes].

    PubMed

    Zajkowska, Joanna; Malzahn, Elzbieta; Kondrusik, Maciej; Grygorczuk, Sambor; Pancewicz, Sławomir S; Kuśmierczyk, Justyna; Czupryna, Piotr; Hermanowska-Szpakowicz, Teresa

    2006-01-01

    Currently observed markedly increased incidence of various tick borne diseases in many parts of Europe is due to documented climatic changes as well anthropogenic influence on habitat structure. One of the analyzed factors is tendency to increase of the spring temperatures, especially in the third decade of the April. Such conditions (spring temperatures above 7-10 degrees C) let the nymphs and larvae of Ixodes ricinus to feed simultaneously on rodents. This increases the risk of infection of Ixodes ricinus with TBE virus, so dangerous for humans.

  1. [Interaction of the Siberian and Far Eastern subtypes of tick-borne encephalitis virus in mammals with mixed infection. I. Factors influencing the type of interaction].

    PubMed

    Gerasimov, S G; Pogodina, V V; Kolyasnikova, N M; Karan, L S; Malenko, G V; Levina, L S

    2011-01-01

    Polytypic strains containing the fragments of genes of Siberian and Far Eastern tick-borne encephalitis (TBE) virus subtypes were isolated from the brain of fatal TBE patients, the blood of TBE patients, and Ixodes persulcatus ticks in the foci of concomitant circulation of the two subtypes. The interaction of the Siberian and Far Eastern TBE virus subtypes was studied in the neural phase of the infection of albino mice and Syrian hamsters in order to understand conditions for formation of these strains and their role in the etiology of acute TBE. Their viral progeny was genotyped by reverse transcription-polymerase chain reaction and fluorescence hybridization assay with genotype-specific probes. Mixed infection showed an effect of synergism, independent reproduction of the two subtypes in the brain and spleen, competitive exclusion of one subtype from the viral population. The type of the Interaction depended on the species of animals, the properties of partner strains, and the target organ.

  2. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    PubMed

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection.

    PubMed

    Ignatieva, Elena V; Igoshin, Alexander V; Yudin, Nikolay S

    2017-12-28

    Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested. A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.

  4. Survey of tick-borne zoonotic viruses in wild deer in Hokkaido, Japan.

    PubMed

    Uchida, Leo; Hayasaka, Daisuke; Ngwe Tun, Mya Myat; Morita, Kouichi; Muramatsu, Yasukazu; Hagiwara, Katsuro

    2018-04-19

    Tick-borne encephalitis (TBE) and severe fever with thrombocytopenia syndrome (SFTS) are both tick-borne zoonotic diseases caused by TBE virus (TBEV) and SFTS phlebovirus (SFTSV). In 2016, a second domestic TBE case was reported in Hokkaido, Japan, after an absence of 23 years. We conducted IgG ELISA for TBEV and SFTSV on 314 deer (Cervus nippon yesoensis) serum samples collected from 3 places in Hokkaido. There were 7 seropositive samples for TBEV but none for SFTSV by ELISA. The specificity of the 7 positive samples was confirmed by neutralization tests against TBEV, and 5 sera showed 320 to 640 of 50% focus reduction endpoint titers. Our results provide information about the infectious status of TBEV in wild deer in Hokkaido, Japan.

  5. Tick-borne viruses: a review from the perspective of therapeutic approaches.

    PubMed

    Lani, Rafidah; Moghaddam, Ehsan; Haghani, Amin; Chang, Li-Yen; AbuBakar, Sazaly; Zandi, Keivan

    2014-09-01

    Several important human diseases worldwide are caused by tick-borne viruses. These diseases have become important public health concerns in recent years. The tick-borne viruses that cause diseases in humans mainly belong to 3 families: Bunyaviridae, Flaviviridae, and Reoviridae. In this review, we focus on therapeutic approaches for several of the more important tick-borne viruses from these 3 families. These viruses are Crimean-Congo hemorrhagic fever virus (CCHF) and the newly discovered tick-borne phleboviruses, known as thrombocytopenia syndromevirus (SFTSV), Heartland virus and Bhanja virus from the family Bunyaviridae, tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Louping-ill virus (LIV), Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV), and Alkhurma hemorrhagic fever virus (AHFV) from the Flaviviridae family. To date, there is no effective antiviral drug available against most of these tick-borne viruses. Although there is common usage of antiviral drugs such as ribavirin for CCHF treatment in some countries, there are concerns that ribavirin may not be as effective as once thought against CCHF. Herein, we discuss also the availability of vaccines for the control of these viral infections. The lack of treatment and prevention approaches for these viruses is highlighted, and we hope that this review may increase public health awareness with regard to the threat posed by this group of viruses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Emerging arthropod-borne diseases of companion animals in Europe.

    PubMed

    Beugnet, Frederic; Marié, Jean-Lou

    2009-08-26

    Vector-borne diseases are caused by parasites, bacteria or viruses transmitted by the bite of hematophagous arthropods (mainly ticks and mosquitoes). The past few years have seen the emergence of new diseases, or re-emergence of existing ones, usually with changes in their epidemiology (i.e. geographical distribution, prevalence, and pathogenicity). The frequency of some vector-borne diseases of pets is increasing in Europe, i.e. canine babesiosis, granulocytic anaplasmosis, canine monocytic ehrlichiosis, thrombocytic anaplasmosis, and leishmaniosis. Except for the last, these diseases are transmitted by ticks. Both the distribution and abundance of the three main tick species, Rhipicephalus sanguineus, Dermacentor reticulatus and Ixodes ricinus are changing. The conditions for such changes involve primarily human factors, such as travel with pets, changes in human habitats, social and leisure activities, but climate changes also have a direct impact on arthropod vectors (abundance, geographical distribution, and vectorial capacity). Besides the most known diseases, attention should be kept on tick-borne encephalitis, which seems to be increasing in western Europe, as well as flea-borne diseases like the flea-transmitted rickettsiosis. Here, after consideration of the main reasons for changes in tick vector ecology, an overview of each "emerging" vector-borne diseases of pets is presented.

  7. Tick-borne flavivirus infection in Ixodes scapularis larvae: development of a novel method for synchronous viral infection of ticks

    PubMed Central

    Mitzel, Dana N.; Wolfinbarger, James B.; Daniel Long, R.; Masnick, Max; Best, Sonja M.; Bloom, Marshall E.

    2007-01-01

    Following a bite from an infected tick, tick-borne flaviviruses cause encephalitis, meningitis and hemorrhagic fever in humans. Although these viruses spend most of their time in the tick, little is known regarding the virus-vector interactions. We developed a simple method for synchronously infecting Ixodes scapularis larvae with Langat virus (LGTV) by immersion in media containing the virus. This technique resulted in approximately 96% of ticks becoming infected. LGTV infection and replication were demonstrated by both viral antigen expression and the accumulation of viral RNA. Furthermore, ticks transmitted LGTV to 100% of the mice and maintained the virus through molting into the next life stage. This technique circumvents limitations present in the current methods by mimicking the natural route of infection and by using attenuated virus strains to infect ticks; thereby, making this technique a powerful tool to study both virus and tick determinants of replication, pathogenesis and transmission. PMID:17490700

  8. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health

    PubMed Central

    Rizzoli, Annapaola; Silaghi, Cornelia; Obiegala, Anna; Rudolf, Ivo; Hubálek, Zdeněk; Földvári, Gábor; Plantard, Olivier; Vayssier-Taussat, Muriel; Bonnet, Sarah; Špitalská, Eva; Kazimírová, Mária

    2014-01-01

    Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, “Candidatus Neoehrlichia mikurensis,” Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases. PMID:25520947

  9. Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients.

    PubMed

    Formanová, Petra; Černý, Jiří; Bolfíková, Barbora Černá; Valdés, James J; Kozlova, Irina; Dzhioev, Yuri; Růžek, Daniel

    2015-02-01

    Tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis (TBE), one of the most important human neuroinfections across Eurasia. Up to date, only three full genome sequences of human European TBEV isolates are available, mostly due to difficulties with isolation of the virus from human patients. Here we present full genome characterization of an additional five low-passage TBEV strains isolated from human patients with severe forms of TBE. These strains were isolated in 1953 within Central Bohemia in the former Czechoslovakia, and belong to the historically oldest human TBEV isolates in Europe. We demonstrate here that all analyzed isolates are distantly phylogenetically related, indicating that the emergence of TBE in Central Europe was not caused by one predominant strain, but rather a pool of distantly related TBEV strains. Nucleotide identity between individual sequenced TBEV strains ranged from 97.5% to 99.6% and all strains shared large deletions in the 3' non-coding region, which has been recently suggested to be an important determinant of virulence. The number of unique amino acid substitutions varied from 3 to 9 in individual isolates, but no characteristic amino acid substitution typical exclusively for all human TBEV isolates was identified when compared to the isolates from ticks. We did, however, correlate that the exploration of the TBEV envelope glycoprotein by specific antibodies were in close proximity to these unique amino acid substitutions. Taken together, we report here the largest number of patient-derived European TBEV full genome sequences to date and provide a platform for further studies on evolution of TBEV since the first emergence of human TBE in Europe. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Goats as sentinel hosts for the detection of tick-borne encephalitis risk areas in the Canton of Valais, Switzerland.

    PubMed

    Rieille, Nadia; Klaus, Christine; Hoffmann, Donata; Péter, Olivier; Voordouw, Maarten J

    2017-07-11

    Tick-borne encephalitis (TBE) is an important tick-borne disease in Europe. Detection of the TBE virus (TBEV) in local populations of Ixodes ricinus ticks is the most reliable proof that a given area is at risk for TBE, but this approach is time-consuming and expensive. A cheaper and simpler approach is to use immunology-based methods to screen vertebrate hosts for TBEV-specific antibodies and subsequently test the tick populations at locations with seropositive animals. The purpose of the present study was to use goats as sentinel animals to identify new risk areas for TBE in the canton of Valais in Switzerland. A total of 4114 individual goat sera were screened for TBEV-specific antibodies using immunological methods. According to our ELISA assay, 175 goat sera reacted strongly with TBEV antigen, resulting in a seroprevalence rate of 4.3%. The serum neutralization test confirmed that 70 of the 173 ELISA-positive sera had neutralizing antibodies against TBEV. Most of the 26 seropositive goat flocks were detected in the known risk areas in the canton of Valais, with some spread into the connecting valley of Saas and to the east of the town of Brig. One seropositive site was 60 km to the west of the known TBEV-endemic area. At two of the three locations where goats were seropositive, the local tick populations also tested positive for TBEV. The combined approach of screening vertebrate hosts for TBEV-specific antibodies followed by testing the local tick population for TBEV allowed us to detect two new TBEV foci in the canton of Valais. The present study showed that goats are useful sentinel animals for the detection of new TBEV risk areas.

  11. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus.

    PubMed

    Spik, Kristin; Shurtleff, Amy; McElroy, Anita K; Guttieri, Mary C; Hooper, Jay W; SchmalJohn, Connie

    2006-05-22

    DNA vaccines for Rift Valley fever virus (RVFV), Crimean Congo hemorrhagic fever virus (CCHFV), tick-borne encephalitis virus (TBEV), and Hantaan virus (HTNV), were tested in mice alone or in various combinations. The bunyavirus vaccines (RVFV, CCHFV, and HTNV) expressed Gn and Gc genes, and the flavivirus vaccine (TBEV) expressed the preM and E genes. All vaccines were delivered by gene gun. The TBEV DNA vaccine and the RVFV DNA vaccine elicited similar levels of antibodies and protected mice from challenge when delivered alone or in combination with other DNAs. Although in general, the HTNV and CCHFV DNA vaccines were not very immunogenic in mice, there were no major differences in performance when given alone or in combination with the other vaccines.

  12. Clusterons as a tool for monitoring populations of tick-borne encephalitis virus.

    PubMed

    Kovalev, Sergey Y; Mukhacheva, Tatyana A

    2014-02-01

    Tick-borne encephalitis (TBE) is a natural focal viral neuroinfection that is widespread in the temperate zone of Eurasia. Knowledge of the genetic structure of tick-borne encephalitis virus (TBEV) populations is important for understanding, not only the origin and evolution of the virus, but also the formation and maintenance of natural foci. A new approach to the differentiation of TBEV strains within subtype, with clusterons as the basis of analysis, has recently been proposed. In the present study, the genetic structure of TBEV-Sib populations has been investigated based on 387 strains isolated in the Middle Urals (Sverdlovsk region). Fourteen of the 18 currently known TBEV-Sib clusterons were identified. They belong to the Asian and Eastern European (Baltic) groups. It was shown that each TBE foci could be characterized by a unique clusteron profile. Three clusterons that emerged within the last 50 years have been identified which implies an active evolutionary process in the TBEV-Sib populations. The greatest diversity of clusterons was observed in the south of the Middle Urals along the Trans-Siberian Way. Such a pattern could reflect the history of colonization of the area and is closely related to the roads passing from Siberia to the European part of Russia through the Urals. In this article, the principles of continuous monitoring in the regional and local TBE foci are proposed, based on the quantitative and qualitative analysis of TBEV-Sib clusteron profiles. © 2013 Wiley Periodicals, Inc.

  13. Prevalence of tick-borne encephalitis virus in ixodid ticks collected from the republic of Korea during 2011-2012.

    PubMed

    Yun, Seok-Min; Song, Bong Gu; Choi, Wooyoung; Park, Won Il; Kim, Sung Yun; Roh, Jong Yul; Ryou, Jungsang; Ju, Young Ran; Park, Chan; Shin, E-Hyun

    2012-12-01

    In this study, we demonstrated that TBEV-infected ticks have been distributed in the ROK, combined with our previous results. These results suggest that TBEV may exist in the ROK, and H. longicornis, H. flava, and I. nipponensis may be potential vectors of TBEV. In addition, these results emphasize the need for further epidemiological research of TBEV. We examined for the presence of RNA of TBEV by reverse transcriptase-nested polymerase chain reaction (RT-nested PCR) using ixodid ticks captured in 25 localities of 10 provinces. Ticks were collected by the flagging and dragging method or using sentinel BG traps at forests, grass thickets, and grassland. A total of 13,053 ticks belonging to two genera and four species were collected and pooled (1292 pools), according to collection site, species of tick, and developmental stage. Among 1292 pools, the envelope (E) protein gene of TBEV was detected using RT-nested PCR in 10 pools (3 pools of the 1,331 adult ticks and 7 pools of the 11,169 nymph ticks) collected from Gangwon-do province, Jeonrabuk-do province, and Jeju Island. The minimum infection rates for TBEV of Haemaphysalis longicornis, Haemaphysalis flava, and Ixodes nipponensis were 0.06%, 0.17%, and 2.38%, respectively. Phylogenetic analysis based on the partial E protein gene was performed to identify relationships between the TBEV strains. This showed that 10 Korean strains clustered with the Western subtype. In this study, we investigated the prevalence of tick-borne encephalitis virus (TBEV) in ixodid ticks from various regions of the Republic of Korea (ROK) during 2011-2012 to identify whether TBEV is circulating and to determine the endemic regions of TBEV.

  14. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia

    PubMed Central

    Tokarevich, Nikolay K.; Tronin, Andrey A.; Blinova, Olga V.; Buzinov, Roman V.; Boltenkov, Vitaliy P.; Yurasova, Elena D.; Nurse, Jo

    2011-01-01

    Background The increase in tick-borne encephalitis (TBE) incidence is observed in recent decades in a number of subarctic countries. The reasons of it are widely discussed in scientific publications. The objective of this study was to understand if the climate change in Arkhangelsk Oblast (AO) situated in the north of European subarctic zone of Russia has real impact on the northward expansion of Ixodid ticks and stipulates the increase in TBE incidence. Methods This study analyzes: TBE incidence in AO and throughout Russia, the results of Ixodid ticks collecting in a number of sites in AO, and TBE virus prevalence in those ticks, the data on tick bite incidence in AO, and meteorological data on AO mean annual air temperatures and precipitations. Results It is established that in recent years TBE incidence in AO tended to increase contrary to its apparent decrease nationwide. In last 10 years, there was nearly 50-fold rise in TBE incidence in AO when compared with 1980–1989. Probably, the increase both in mean annual air temperatures and temperatures during tick active season resulted in the northward expansion of Ixodes Persulcatus, main TBE virus vector. The Ixodid ticks expansion is confirmed both by the results of ticks flagging from the surface vegetation and by the tick bite incidence in the population of AO locations earlier free from ticks. Our mathematical (correlation and regression) analysis of available data revealed a distinct correlation between TBE incidence and the growth of mean annual air temperatures in AO in 1990–2009. Conclusion Not ruling out other factors, we conclude that climate change contributed much to the TBE incidence increase in AO. PMID:22028678

  15. Tick-borne encephalitis in a naturally infected sheep.

    PubMed

    Böhm, Brigitte; Schade, Benjamin; Bauer, Benjamin; Hoffmann, Bernd; Hoffmann, Donata; Ziegler, Ute; Beer, Martin; Klaus, Christine; Weissenböck, Herbert; Böttcher, Jens

    2017-08-22

    Tick-borne encephalitis (TBE) is the most important viral tick borne zoonosis in Europe. In Germany, about 250 human cases are registered annually, with the highest incidence reported in the last years coming from the federal states Bavaria and Baden-Wuerttemberg. In veterinary medicine, only sporadic cases in wild and domestic animals have been reported; however, a high number of wild and domestic animals have tested positive for the tick-borne encephalitis virus (TBEV) antibody. In May 2015, a five-month-old lamb from a farm with 15 Merino Land sheep and offspring in Nersingen/Bavaria, a TBEV risk area, showed impaired general health with pyrexia and acute neurological signs. The sheep suffered from ataxia, torticollis, tremor, nystagmus, salivation and finally somnolence with inappetence and recumbency. After euthanasia, pathological, histopathological, immunohistochemical, bacteriological, parasitological and virological analyses were performed. Additionally, blood samples from the remaining, healthy sheep in the herd were taken for detection of TBEV antibody titres. At necropsy and accompanying parasitology, the sheep showed a moderate to severe infection with Trichostrongylids, Moniezia and Eimeria species. Histopathology revealed mild to moderate necrotising, lymphohistiocytic and granulocytic meningoencephalitis with gliosis and neuronophagia. Immunohistochemistry for TBEV was negative. RNA of a TBEV strain, closely related to the Kumlinge A52 strain, was detected in the brain by quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) and subsequent PCR product sequencing. A phylogenetic analysis revealed a close relationship to the TBEV of central Europe. TBEV was cultured from brain tissue. Serologically, one of blood samples from the other sheep in the herd was positive for TBEV in an enzyme-linked immunosorbent assay (ELISA) and in a serum neutralisation test (SNT), and one was borderline in an ELISA. To the authors' knowledge this is the first report of a natural TBEV infection in a sheep in Europe with clinical manifestation, which describes the clinical presentation and the histopathology of TBEV infection.

  16. The diversity and prevalence of hard ticks attacking human hosts in Eastern Siberia (Russian Federation) with first description of invasion of non-endemic tick species.

    PubMed

    Khasnatinov, Maxim Anatolyevich; Liapunov, Alexander Valeryevich; Manzarova, Ellina Lopsonovna; Kulakova, Nina Viktorovna; Petrova, Irina Viktorovna; Danchinova, Galina Anatolyevna

    2016-02-01

    Hard ticks are the vectors of many pathogens including tick-borne encephalitis virus and the Lyme disease agent Borrelia burgdorferi sensu lato. In Eastern Siberia, Ixodes persulcatus, Dermacentor nuttalli, Dermacentor silvarum and Haemaphysalis concinna are regarded as aggressive to humans. Recently, significant changes in world tick fauna have been reported and this affects the spread of tick-borne pathogens. We studied the current species diversity, population structure and prevalence of tick-borne pathogens of hard ticks (Acari: Ixodidae) that attacked humans in Eastern Siberia (Irkutsk region, Russia). In total, 31,892 individual ticks were identified and analysed during the years 2007-2014. The majority (85.4%) of victims was bitten by I. persulcatus, 14.55% of attacks on humans were caused by D. nuttalli and D. silvarum, whereas H. concinna was documented only in 15 cases (0.05%). The seasonal activity and the age/gender structure of the tick population were studied as well. Among all the studied ticks, three unconventional species, i.e. Rhipicephalus sanguineus, Dermacentor reticulatus and Amblyomma americanum, were identified. Analysis of tick bite histories indicates at least three events of invasion of non-endemic ticks into the ecosystems of northern Eurasia with harsh continental climates. Invading ticks are able to reach the adult life stage and are aggressive to the local human population. Phylogenetic analysis of mt 16S rRNA gene fragments suggests multiple independent routes of tick migration to Eastern Siberia. Possible implications to human health and epidemiology of tick-borne infections are discussed.

  17. [Characteristics of long-term persisting strains of tick-borne encephalitis virus in different forms of the chronic process in animals].

    PubMed

    Frolova, T V; Pogodina, V V; Frolova, M P; Karmysheva, V Ia

    1982-01-01

    The properties of the Vasilchenko strain of tick-borne encephalitis (TBE) virus and its 3 variants isolated at various stages of persistent infection (383, 453, and 535 days) in Macaca rhesus monkeys and Syrian hamsters with different forms of the chronic TBE were studied. The process characterized by chronic focal inflammatory-degenerative changes in the brains of hamsters without the disturbance of motor functions was associated with persistence of different kinds of virus-specific antigens without virulent virus production. Brain explants of this group of hamsters yielded a virus with cytopathogenic properties but not pathogenic for mice. In a chronic disease developing without the initial acute period, a virus was recovered from hamsters which proved to be virulent for mice and to possess the hemagglutinating and high invasive activity. The most virulent strain was isolated from monkeys with continuously progressive chronic encephalitis with steady paralysis of the extremities. This isolate differed from the parental Vasilchenko strain by a high pathogenicity for hamsters by intracerebral and subcutaneous routes, and thermostability at 50 degrees C.

  18. Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands

    PubMed Central

    Jahfari, Setareh; Hofhuis, Agnetha; Fonville, Manoj; van der Giessen, Joke; van Pelt, Wilfrid; Sprong, Hein

    2016-01-01

    Background Tick-borne diseases are the most prevalent vector-borne diseases in Europe. Knowledge on the incidence and clinical presentation of other tick-borne diseases than Lyme borreliosis and tick-borne encephalitis is minimal, despite the high human exposure to these pathogens through tick bites. Using molecular detection techniques, the frequency of tick-borne infections after exposure through tick bites was estimated. Methods Ticks, blood samples and questionnaires on health status were collected from patients that visited their general practitioner with a tick bite or erythema migrans in 2007 and 2008. The presence of several tick-borne pathogens in 314 ticks and 626 blood samples of this cohort were analyzed using PCR-based methods. Using multivariate logistic regression, associations were explored between pathogens detected in blood and self-reported symptoms at enrolment and during a three-month follow-up period. Results Half of the ticks removed from humans tested positive for Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, Rickettsia monacensis, Borrelia miyamotoi and several Babesia species. Among 92 Borrelia burgdorferi s. l. positive ticks, 33% carried another pathogen from a different genus. In blood of sixteen out of 626 persons with tick bites or erythema migrans, DNA was detected from Candidatus Neoehrlichia mikurensis (n = 7), Anaplasma phagocytophilum (n = 5), Babesia divergens (n = 3), Borrelia miyamotoi (n = 1) and Borrelia burgdorferi s. l. (n = 1). None of these sixteen individuals reported any overt symptoms that would indicate a corresponding illness during the three-month follow-up period. No associations were found between the presence of pathogen DNA in blood and; self-reported symptoms, with pathogen DNA in the corresponding ticks (n = 8), reported tick attachment duration, tick engorgement, or antibiotic treatment at enrolment. Conclusions Based on molecular detection techniques, the probability of infection with a tick-borne pathogen other than Lyme spirochetes after a tick bite is roughly 2.4%, in the Netherlands. Similarly, among patients with erythema migrans, the probability of a co-infection with another tick-borne pathogen is approximately 2.7%. How often these infections cause disease symptoms or to what extend co-infections affect the course of Lyme borreliosis needs further investigations. PMID:27706159

  19. A brief history of the discovery of tick-borne encephalitis virus in the late 1930s (based on reminiscences of members of the expeditions, their colleagues, and relatives).

    PubMed

    Zlobin, Vladimir I; Pogodina, Vanda V; Kahl, Olaf

    2017-10-01

    Tick-borne encephalitis virus is the etiological agent of a severe human disease transmitted by hard ticks. It occurs in large parts of eastern, central, and western Asia and in Europe with thousands of human cases each year. Here, the discovery of the virus by Soviet scientists in the late 1930s in the Far East is described. The pioneering work involved with this discovery, which resulted in great scientific and epidemiological achievement, was undertaken under the most difficult conditions, and some of the scientists and their technical assistants paid for it with their health and even their lives. This paper briefly outlines the steps on the way that elucidated the basic etiology and eco-epidemiology of the disease, and does not omit that, as one result of the expeditions and the political situation in the former Soviet Union at that time, some scientists were sent to prison. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. [FAB immunoglobulin fragments. I. The comparative characteristics of the serological and virus-neutralizing properties of a gamma globulin against tick-borne encephalitis and of the FAB fragments isolated from it].

    PubMed

    Barban, P S; Minaeva, V M; Pantiukhina, A N; Startseva, M G

    1976-06-01

    A comparative study was made of the serological properties and virus-neutralizing activity of antiencephalitis gamma-globulin and Fab-fragments isolated from it by gel-filtration. Horse immunoglobulins against the autumno-summer tick-borne encephalitis virus could be disintegrated with the aid of papaine to monovalent Fab-fragments which (according to the complement fixation reaction, the test of suppression of the complement fixation, and the HAIT) retained the serological activity whose level was compared with that of the serological activity of gamma-globulin. Fab-fragments possessed a marked virus-neutralizing activity. The mean value of a logarithm of the neutralization index was 2.65 +/- 0.2 for Fab-fragments and 3.74 +/- 0.38 for gamma-globulin (P less than 0.01).

  1. Tick-borne encephalitis in a child with previous history of completed primary vaccination.

    PubMed

    Zlamy, Manuela; Haberlandt, Edda; Brunner, Jürgen; Dozcy, Ludwig; Rostasy, Kevin

    2016-01-01

    We report the case of a 13-year-old girl who presented with fever, headache, nausea and pain behind the right ear. Cerebrospinal fluid (CSF; leukocytes 227/μL), electroencephalogram and cerebral magnetic resonance imaging were indicative of meningoencephalitis. Despite intensive therapy the general condition worsened and the patient was admitted to the intensive care unit. Serological analysis of CSF and serum indicated acute tick-borne encephalitis virus (TBEV) infection (IgG and IgM positive). TBEV infection has been reported after incomplete and complete vaccination. TBEV vaccination breakthrough in childhood has been shown to cause severe disease. It has been suggested that immunized patients develop more severe disease due to altered immune response, but the exact mechanism is unknown. In the presence of typical symptoms and a history of vaccination, possible vaccination breakthrough or missing booster vaccination should be considered. © 2015 Japan Pediatric Society.

  2. [Activating effect of adrenaline, prednisolone and vincristine in the late periods of tick-borne encephalitis virus persistence].

    PubMed

    Frolova, T V; Pogodina, V V

    1984-01-01

    The activating effect of adrenalin (A), prednisolone (P), and vincristine (V) on persistent infection caused by subcutaneous inoculation of Syrian hamsters with the Vasilchenko and B-383 strains of tick-borne encephalitis virus (TBE) was studied. The drugs were administered once, twice, or three times 250-270 days after virus inoculation. Complement-fixing antigen was found in the organs of the infected animals given no A, P, or V; in the organ explants synthesis of hemagglutinin was observed but no infectious virus could be isolated. After treatment of the infected hamsters with A, P, or V organ explants yielded TBE virus strains which showed either high or low virulence for white mice. The activated TBE virus strains were obtained from explants of hamster brains and spleens but not liver. V produced the most marked activating effect, A the least.

  3. Knowledge, attitudes, and practices regarding ticks and tick-borne diseases, Finland.

    PubMed

    Zöldi, Viktor; Turunen, Topi; Lyytikäinen, Outi; Sane, Jussi

    2017-10-01

    Tick-borne encephalitis (TBE) and Lyme borreliosis (LB) are endemic in Finland, with tens and thousands of cases, respectively, reported annually. We performed a field survey to investigate people's knowledge, attitudes and practices (KAP) regarding ticks, tick-borne diseases, and prevention strategies. The KAP were assessed using a pre-validated anonymous questionnaire consisting of 39 questions and statements. On two consecutive days in July 2016, convenience sampling was used in the cities of Parainen and Kotka, located in high-risk areas of tick-borne diseases, particularly of TBE. In attitudes and practices sections, each question was scored and analysed with ordered logistic regression model. In total, 101 individuals responded. The TBE vaccination rate among respondents was 40%. The best known preventive measures were having vaccination against TBE (88%), and wearing long sleeves and pants against ticks (81%). Two-thirds incorrectly identified the ring-like rash as a symptom of TBE. Of all respondents, 78% could not exclude that TBE can be treated with antibiotics; 55% that vaccine protects against LB; and 46% that it protects against ticks. The minority (14%) believed tick repellents to be effective. Among preventive behaviour, the quick removal of an attached tick was most frequently applied (97%). Repellents were used by 21% when visiting tick-infested areas. Significant associations were found between the vaccination status and having a correct belief that the vaccine protects against TBE (P<0.001) but not against ticks (P<0.05), or LB (P<0.001). KAP is a quick and easy tool to get a rough estimation on people's awareness regarding ticks and tick-borne diseases. We identified gaps in knowledge and misbeliefs. Our results can be used in public health communication tools on tick-borne diseases, especially those on intervention strategies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses.

    PubMed

    Martín-Acebes, Miguel A; Vázquez-Calvo, Ángela; Saiz, Juan-Carlos

    2016-10-01

    Flaviviruses are emerging arthropod-borne pathogens that cause life-threatening diseases such as yellow fever, dengue, West Nile encephalitis, tick-borne encephalitis, Kyasanur Forest disease, tick-borne encephalitis, or Zika disease. This viral genus groups >50 viral species of small enveloped plus strand RNA virus that are phylogenetically closely related to hepatitis C virus. Importantly, the flavivirus life cycle is intimately associated to host cell lipids. Along this line, flaviviruses rearrange intracellular membranes from the endoplasmic-reticulum of the infected cells to develop adequate platforms for viral replication and particle biogenesis. Moreover, flaviviruses dramatically orchestrate a profound reorganization of the host cell lipid metabolism to create a favorable environment for viral multiplication. Consistently, recent work has shown the importance of specific lipid classes in flavivirus infections. For instances, fatty acid synthesis is linked to viral replication, phosphatidylserine and phosphatidylethanolamine are involved on the entry of flaviviruses, sphingolipids (ceramide and sphingomyelin) play a key role on virus assembly and pathogenesis, and cholesterol is essential for innate immunity evasion in flavivirus-infected cells. Here, we revise the current knowledge on the interactions of the flaviviruses with the cellular lipid metabolism to identify potential targets for future antiviral development aimed to combat these relevant health-threatening pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Tick-Borne Encephalitis Virus Structural Proteins Are the Primary Viral Determinants of Non-Viraemic Transmission between Ticks whereas Non-Structural Proteins Affect Cytotoxicity.

    PubMed

    Khasnatinov, Maxim A; Tuplin, Andrew; Gritsun, Dmitri J; Slovak, Mirko; Kazimirova, Maria; Lickova, Martina; Havlikova, Sabina; Klempa, Boris; Labuda, Milan; Gould, Ernest A; Gritsun, Tamara S

    2016-01-01

    Over 50 million humans live in areas of potential exposure to tick-borne encephalitis virus (TBEV). The disease exhibits an estimated 16,000 cases recorded annually over 30 European and Asian countries. Conventionally, TBEV transmission to Ixodes spp. ticks occurs whilst feeding on viraemic animals. However, an alternative mechanism of non-viraemic transmission (NVT) between infected and uninfected ticks co-feeding on the same transmission-competent host, has also been demonstrated. Here, using laboratory-bred I. ricinus ticks, we demonstrate low and high efficiency NVT for TBEV strains Vasilchenko (Vs) and Hypr, respectively. These virus strains share high sequence similarity but are classified as two TBEV subtypes. The Vs strain is a Siberian subtype, naturally associated with I. persulcatus ticks whilst the Hypr strain is a European subtype, transmitted by I. ricinus ticks. In mammalian cell culture (porcine kidney cell line PS), Vs and Hypr induce low and high cytopathic effects (cpe), respectively. Using reverse genetics, we engineered a range of viable Vs/Hypr chimaeric strains, with substituted genes. No significant differences in replication rate were detected between wild-type and chimaeric viruses in cell culture. However, the chimaeric strain Vs[Hypr str] (Hypr structural and Vs non-structural genomic regions) demonstrated high efficiency NVT in I. ricinus whereas the counterpart Hypr[Vs str] was not transmitted by NVT, indicating that the virion structural proteins largely determine TBEV NVT transmission efficiency between ticks. In contrast, in cell culture, the extent of cpe was largely determined by the non-structural region of the TBEV genome. Chimaeras with Hypr non-structural genes were more cytotoxic for PS cells when compared with Vs genome-based chimaeras.

  6. Tick-Borne Encephalitis Virus Structural Proteins Are the Primary Viral Determinants of Non-Viraemic Transmission between Ticks whereas Non-Structural Proteins Affect Cytotoxicity

    PubMed Central

    Khasnatinov, Maxim A.; Tuplin, Andrew; Gritsun, Dmitri J.; Slovak, Mirko; Kazimirova, Maria; Lickova, Martina; Havlikova, Sabina; Klempa, Boris; Gould, Ernest A.

    2016-01-01

    Over 50 million humans live in areas of potential exposure to tick-borne encephalitis virus (TBEV). The disease exhibits an estimated 16,000 cases recorded annually over 30 European and Asian countries. Conventionally, TBEV transmission to Ixodes spp. ticks occurs whilst feeding on viraemic animals. However, an alternative mechanism of non-viraemic transmission (NVT) between infected and uninfected ticks co-feeding on the same transmission-competent host, has also been demonstrated. Here, using laboratory-bred I. ricinus ticks, we demonstrate low and high efficiency NVT for TBEV strains Vasilchenko (Vs) and Hypr, respectively. These virus strains share high sequence similarity but are classified as two TBEV subtypes. The Vs strain is a Siberian subtype, naturally associated with I. persulcatus ticks whilst the Hypr strain is a European subtype, transmitted by I. ricinus ticks. In mammalian cell culture (porcine kidney cell line PS), Vs and Hypr induce low and high cytopathic effects (cpe), respectively. Using reverse genetics, we engineered a range of viable Vs/Hypr chimaeric strains, with substituted genes. No significant differences in replication rate were detected between wild-type and chimaeric viruses in cell culture. However, the chimaeric strain Vs[Hypr str] (Hypr structural and Vs non-structural genomic regions) demonstrated high efficiency NVT in I. ricinus whereas the counterpart Hypr[Vs str] was not transmitted by NVT, indicating that the virion structural proteins largely determine TBEV NVT transmission efficiency between ticks. In contrast, in cell culture, the extent of cpe was largely determined by the non-structural region of the TBEV genome. Chimaeras with Hypr non-structural genes were more cytotoxic for PS cells when compared with Vs genome-based chimaeras. PMID:27341437

  7. Increased Relative Risk of Tick-Borne Encephalitis in Warmer Weather.

    PubMed

    Daniel, Milan; Danielová, Vlasta; Fialová, Alena; Malý, Marek; Kříž, Bohumír; Nuttall, Patricia A

    2018-01-01

    Tick-borne encephalitis (TBE) is a serious acute neuroinfection of humans caused by a tick-borne flavivirus. The disease is typically seasonal, linked to the host-seeking activity of Ixodes ricinus (predominantly nymphs), the principal European tick vector species. To address the need for accurate risk predictions of contracting TBE, data on 4,044 TBE cases reported in the Czech Republic during 2001-2006 were compared with questing activity of I. ricinus nymphs monitored weekly at a defined location for the same 6-year period. A time shift of 21 days between infected tick bite and recorded disease onset provided the optimal model for comparing the number of cases of TBE with numbers of questing nymphs. Mean annual distribution of TBE cases and tick counts showed a similar bimodal distribution. Significantly, the ratio of TBE cases to questing nymphs was highest in the summer-autumn period even though the number of questing nymphs peaked in the spring-summer period. However, this pattern changed during a period of extreme meteorological events of flooding and abnormally high temperatures, indicating that changes in climate affect the incidence of TBE. Previous studies failed to link human behavior with changes in incidence of TBE but showed extrinsic temperature impacts arbovirus replication. Hence, we hypothesize the apparent discrepancy between peak nymphal tick activity and greatest risk of contracting TBE is due to the effect of temperature on virus replication in the tick vector. Relative proportions of questing nymphs and the numbers of weeks in which they were found were greater in summer-autumn compared with spring-summer at near-ground temperatures >5°C and at standard day and weekly average temperatures of >15°C. Thus, during the summer-autumn period, the virus dose in infected tick bites is likely greater owing to increased virus replication at higher microclimatic temperatures, consequently increasing the relative risk of contracting TBE per summer-autumn tick bite. The data support the use of weather-based forecasts of tick attack risk (based on daytime ambient temperature) supplemented with weekly average temperature (as a proxy for virus replication) to provide much-needed real-time forecasts of TBE risk.

  8. Homogeneity of Powassan virus populations in naturally infected Ixodes scapularis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brackney, Doug E.; Brown, Ivy K.; Nofchissey, Robert A.

    2010-07-05

    Powassan virus (POWV, Flaviviridae: Flavivirus) is the sole North American member of the tick-borne encephalitis complex and consists of two distinct lineages that are maintained in ecologically discrete enzootic transmission cycles. The underlying genetic mechanisms that lead to niche partitioning in arboviruses are poorly understood. Therefore, intra- and interhost genetic diversity was analyzed to determine if POWV exists as a quasispecies in nature and quantify selective pressures within and between hosts. In contrast to previous reports for West Nile virus (WNV), significant intrahost genetic diversity was not observed. However, pN (0.238) and d{sub N}/d{sub S} ratios (0.092) for interhost diversitymore » were similar to those of WNV. Combined, these data suggest that purifying selection and/or population bottlenecks constrain quasispecies diversity within ticks. These same selective and stochastic mechanisms appear to drive minor sequence changes between ticks. Moreover, Powassan virus populations seem not to be structured as quasispecies in naturally infected adult deer ticks.« less

  9. Homogeneity of Powassan virus populations in naturally infected Ixodes scapularis.

    PubMed

    Brackney, Doug E; Brown, Ivy K; Nofchissey, Robert A; Fitzpatrick, Kelly A; Ebel, Gregory D

    2010-07-05

    Powassan virus (POWV, Flaviviridae: Flavivirus) is the sole North American member of the tick-borne encephalitis complex and consists of two distinct lineages that are maintained in ecologically discrete enzootic transmission cycles. The underlying genetic mechanisms that lead to niche partitioning in arboviruses are poorly understood. Therefore, intra- and interhost genetic diversity was analyzed to determine if POWV exists as a quasispecies in nature and quantify selective pressures within and between hosts. In contrast to previous reports for West Nile virus (WNV), significant intrahost genetic diversity was not observed. However, pN (0.238) and d(N)/d(S) ratios (0.092) for interhost diversity were similar to those of WNV. Combined, these data suggest that purifying selection and/or population bottlenecks constrain quasispecies diversity within ticks. These same selective and stochastic mechanisms appear to drive minor sequence changes between ticks. Moreover, Powassan virus populations seem not to be structured as quasispecies in naturally infected adult deer ticks. Copyright 2010 Elsevier Inc. All rights reserved.

  10. HOMOGENEITY OF POWASSAN VIRUS POPULATIONS IN NATURALLY INFECTED IXODES SCAPULARIS

    PubMed Central

    Brackney, Doug E.; Brown, Ivy K.; Nofchissey, Robert A.; Fitzpatrick, Kelly A.; Ebel, Gregory D.

    2010-01-01

    Powassan virus (POWV, Flaviviridae: Flavivirus) is the sole North American member of the tick-borne encephalitis complex and consists of two distinct lineages that are maintained in ecologically discrete enzootic transmission cycles. The underlying genetic mechanisms that lead to niche partitioning in arboviruses are poorly understood. Therefore, intra- and interhost genetic diversity was analyzed to determine if POWV exists as a quasispecies in nature and quantify selective pressures within and between hosts. In contrast to previous reports for West Nile virus (WNV), significant intrahost genetic diversity was not observed. However, pN (0.238) and dN/dS ratios (0.092) for interhost diversity were similar to those of WNV. Combined, these data suggest that purifying selection and/or population bottlenecks constrain quasispecies diversity within ticks. These same selective and stochastic mechanisms appear to drive minor sequence changes between ticks. Moreover, Powassan virus populations seem not to be structured as quasispecies in naturally infected adult deer ticks. PMID:20434750

  11. Seroprevalence of Borrelia burgdorferi sensu lato and tick-borne encephalitis virus in zoo animal species in the Czech Republic.

    PubMed

    Sirmarová, Jana; Tichá, Lucie; Golovchenko, Marina; Salát, Jiří; Grubhoffer, Libor; Rudenko, Nataliia; Nowotny, Norbert; Růžek, Daniel

    2014-09-01

    This study was conducted to evaluate the prevalence of antibodies against Borrelia bugdorferi (Bb) s.l. and tick-borne encephalitis virus (TBEV) in zoo animals in the Czech Republic. We collected 133 serum samples from 69 animal species from 5 zoos located in different parts of the country. The samples were obtained from even-toed ungulates (n=78; 42 species), odd-toed ungulates (n=32; 11 species), carnivores (n=13; 9 species), primates (n=2, 2 species), birds (n=3; 2 species), and reptiles (n=5; 3 species). A high antibody prevalence (60%) was observed for Bb s.l. On the other hand, only two animals had TBEV-specific antibodies: a markhor (Capra falconeri) and a reindeer (Rangifer tarandus), both from the same zoo, located in an area endemic for TBEV. Both of these animals were also positive for Bb s.l. antibodies. Our results indicate that a high number of animal species in the Czech zoos were exposed to Bb s.l. and that TBEV infection occurred at least in one of the investigated zoos. Considering the pathogenic potential of these two tick-borne pathogens, clinical and serological monitoring should be continued, and therapeutic and preventive measures should be taken when necessary. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Tick-Borne Diseases in Turkey: A Review Based on One Health Perspective.

    PubMed

    Inci, Abdullah; Yildirim, Alparslan; Duzlu, Onder; Doganay, Mehmet; Aksoy, Serap

    2016-12-01

    The importance of tick-borne diseases is increasing all over the world, including Turkey. Global warming, environmental and ecological changes and the existence of suitable habitats increase the impact of ticks and result in frequent emergence or re-emergence of tick-borne diseases (TBDs) with zoonotic characteristics. In Turkey, almost 19 TBDs have been reported in animals and men, involving four protozoa (babesiosis, theileriosis, cytauxzoonosis, hepatozoonosis), one filarial nematode (acanthocheilonemasis), ten bacterial agents (anaplasmosis, ehrlichiosis, aegyptianellosis, tick-borne typhus, Candidatus Rickettsia vini, Lyme borreliosis, tick-borne relapsing fever [TBRF], tularaemia, bartonellosis, and hemoplasmosis), and four viral infections (tick-borne encephalitis [TBE], Crimean-Congo Haemorrhagic Fever [CCHF], louping-ill [LI], and lumpy skin disease [LSD]). The growing number of TBD cases, in particular the fatal viral epidemics in humans, have led to increased public awareness and concern against TBDs in recent years. The World Health Organization (WHO) has developed a new political concept, called the "One Health" initiative, which is especially relevant for developing strategies against tick infestations and TBD control in humans and animals. It would be beneficial for Turkey to adopt this new strategy and establish specific research and control programs in coordination with international organizations like WHO, the World Organization for Animal Health (OIE), the Food and Agriculture Organization (FAO), the Centers for Disease Control and Prevention (CDC), and the European Center for Disease Prevention and Control (ECDC) to combat TBDs based on the "One Health Initiative" concept. In this article, we review the occurrence of primary TBDs in man and animals in Turkey in light of the "One Health" perspective.

  13. Tick-borne pathogens and associated co-infections in ticks collected from domestic animals in central China.

    PubMed

    Chen, Zhuo; Liu, Qin; Liu, Ji-Qi; Xu, Bian-Li; Lv, Shan; Xia, Shang; Zhou, Xiao-Nong

    2014-05-22

    Ticks can transmit a number of pathogens to humans and domestic animals. Tick borne diseases (TBDs), which may lead to organ failure and death have been recently reported in China. 98.75% of the total cases (>1000) in Henan provinces have been reported in Xinyang city. Therefore, the aims of this study were to investigate the fauna of ticks and detect the potential pathogens in ticks in Xinyang, the region of central China. Ticks were collected from 10 villages of Xinyang from April to December 2012, from domestic animals including sheep, cattle and dogs. Then identification of ticks and detection of tick-borne pathogens, including Babesia spp., Theileria spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., tick-borne encephalitis virus (TBEV), Borrelia burgdorferi sensu lato, Leishmania infantum, were undertaken by using polymerase chain reaction assay (PCR) and sequence analysis. Moreover, the co-infection patterns of various pathogens were compared among locations where ticks were collected. A total of 308 ticks were collected. Two species of Ixodidae were found, namely Haemaphysalis longicornis (96.75%) and Rhipicephalus microplus (3.25%). Five genera of pathogens, namely Theileria spp. (3.25%), Anaplasma spp. (2.92%), Babesia spp. (1.95%), Ehrlichia spp. (2.92%) and Rickettsia spp. (0.65%), were detected in 7 villages. Co-infections by two pathogens were diagnosed in 11.11% of all infected ticks. Both human and animal pathogens were abundant in ticks in the study areas. Humans and animals in these regions were at a high risk of exposure to piroplasmosis, since piroplasm had the highest rates of infection and co-infection in positive ticks.

  14. Impact of air temperature variation on the ixodid ticks habitat and tick-borne encephalitis incidence in the Russian Arctic: the case of the Komi Republic.

    PubMed

    Tokarevich, N; Tronin, A; Gnativ, B; Revich, B; Blinova, O; Evengard, B

    2017-01-01

    The causes of the recent rise of tick-borne encephalitis (TBE) incidence in Europe are discussed. Our objective was to estimate the impact of air temperature change on TBE incidence in the European part of the Russian Arctic. We analysed the TBE incidence in the Komi Republic (RK) over a 42-year period in relation to changes in local annual average air temperature, air temperature during the season of tick activity, tick abundance, TBE-prevalence in ticks, tick-bite incidence rate, and normalised difference vegetation index within the area under study. In 1998-2011 in RK a substantial growth of TBE virus (TBEV) prevalence both in questing and feeding ticks was observed. In 1992-2011 there was 23-fold growth of the tick-bite incidence rate in humans, a northward shift of the reported tick bites, and the season of tick bites increased from 4 to 6 months. In 1998-2011 there was more than 6-fold growth of average annual TBE incidence compared with 1970-1983 and 1984-1997 periods. This resulted both from the northward shift of TBE, and its growth in the south. In our view it was related to local climate change as both the average annual air temperature, and the air temperature during the tick activity season grew substantially. We revealed in RK a strong correlation between the change in the air temperature and that in TBE incidence. The satellite data showed NDVI growth within RK, i.e. alteration of the local ecosystem under the influence of climate change. The rise in TBE incidence in RK is related considerably to the expansion of the range of Ixodes persulcatus. The territory with reported TBE cases also expanded northward. Climate change is an important driver of TBE incidence rate growth.

  15. Detection and genetic characterization of tick-borne encephalitis virus (TBEV) derived from ticks removed from red foxes (Vulpes vulpes) and isolated from spleen samples of red deer (Cervus elaphus) in Croatia.

    PubMed

    Jemeršić, Lorena; Dežđek, Danko; Brnić, Dragan; Prpić, Jelena; Janicki, Zdravko; Keros, Tomislav; Roić, Besi; Slavica, Alen; Terzić, Svjetlana; Konjević, Dean; Beck, Relja

    2014-02-01

    Tick-borne encephalitis (TBE) is a growing public health concern in central and northern European countries. Even though TBE is a notifiable disease in Croatia, there is a significant lack of information in regard to vector tick identification, distribution as well as TBE virus prevalence in ticks or animals. The aim of our study was to identify and to investigate the viral prevalence of TBE virus in ticks removed from red fox (Vulpes vulpes) carcasses hunted in endemic areas in northern Croatia and to gain a better insight in the role of wild ungulates, especially red deer (Cervus elaphus) in the maintenance of the TBE virus in the natural cycle. We identified 5 tick species (Ixodes ricinus, Ixodes hexagonus, Haemaphysalis punctata, Dermacentor reticulatus, Rhipicephalus sanguineus) removed from 40 red foxes. However, TBE virus was isolated only from adult I. ricinus and I. hexagonus ticks showing a viral prevalence (1.6%) similar to or higher than reported in endemic areas of other European countries. Furthermore, 2 positive spleen samples from 182 red deer (1.1%) were found. Croatian TBE virus isolates were genetically analyzed, and they were shown to be closely related, all belonging to the European TBE virus subgroup. However, on the basis of nucleotide and amino acid sequence analysis, 2 clusters were identified. Our results show that further investigation is needed to understand the clustering of isolates and to identify the most common TBE virus reservoir hosts in Croatia. Sentinel surveys based on wild animal species would give a better insight in defining TBE virus-endemic and possible risk areas in Croatia. Copyright © 2013. Published by Elsevier GmbH.

  16. Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland.

    PubMed

    Lommano, Elena; Dvořák, Charles; Vallotton, Laurent; Jenni, Lukas; Gern, Lise

    2014-10-01

    From 2007 to 2010, 4558 migrating and breeding birds of 71 species were caught and examined for ticks in Switzerland. A total of 1205 specimens were collected; all were Ixodes ricinus ticks except one Ixodes frontalis female, which was found on a common chaffinch (Fringilla coelebs) for the first time in Switzerland. Each tick was analysed individually for the presence of Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum and tick-borne encephalitis virus (TBEV). Altogether, 11.4% of birds (22 species) were infested by ticks and 39.8% of them (15 species) were carrying infected ticks. Bird species belonging to the genus Turdus were the most frequently infested with ticks and they were also carrying the most frequently infected ticks. Each tick-borne pathogen for which we tested was identified within the sample of bird-feeding ticks: Borrelia spp. (19.5%) and Rickettsia helvetica (10.5%) were predominantly detected whereas A. phagocytophilum (2%), Rickettsia monacensis (0.4%) and TBEV (0.2%) were only sporadically detected. Among Borrelia infections, B. garinii and B. valaisiana were largely predominant followed by B. afzelii, B. bavariensis, B. miyamotoi and B. burgdorferi ss. Interestingly, Candidatus Neoehrlichia mikurensis was identified in a few ticks (3.3%), mainly from chaffinches. Our study emphasizes the role of birds in the natural cycle of tick-borne pathogens that are of human medical and veterinary relevance in Europe. According to infection detected in larvae feeding on birds we implicate the common blackbird (Turdus merula) and the tree pipit (Anthus trivialis) as reservoir hosts for Borrelia spp., Rickettsia spp. and A. phagocytophilum. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Non-Hemagglutinating Flaviviruses: Molecular Mechanisms for the Emergence of New Strains via Adaptation to European Ticks

    PubMed Central

    Khasnatinov, Maxim A.; Ustanikova, Katarina; Frolova, Tatiana V.; Pogodina, Vanda V.; Bochkova, Nadezshda G.; Levina, Ludmila S.; Slovak, Mirko; Kazimirova, Maria; Labuda, Milan; Klempa, Boris; Eleckova, Elena; Gould, Ernest A.; Gritsun, Tamara S.

    2009-01-01

    Tick-borne encephalitis virus (TBEV) causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA) virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A) in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards across Europe by adaptation to the indigenous tick species and if they are associated with severe forms of TBE. PMID:19802385

  18. Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5' and 3'-UTRs.

    PubMed

    Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A

    1997-05-01

    The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.

  19. Assessing the abundance, seasonal questing activity, and Borrelia and tick-borne encephalitis virus (TBEV) prevalence of Ixodes ricinus ticks in a Lyme borreliosis endemic area in Southwest Finland.

    PubMed

    Sormunen, Jani J; Klemola, Tero; Vesterinen, Eero J; Vuorinen, Ilppo; Hytönen, Jukka; Hänninen, Jari; Ruohomäki, Kai; Sääksjärvi, Ilari E; Tonteri, Elina; Penttinen, Ritva

    2016-02-01

    Studies have revealed that Ixodes ricinus (Acari: Ixodidae) have become more abundant and their geographical distribution extended northwards in some Nordic countries during the past few decades. However, ecological data of tick populations in Finland are sparse. In the current study, I. ricinus abundance, seasonal questing activity, and their Borrelia spp. and tick-borne encephalitis virus (TBEV) prevalence were evaluated in a Lyme borreliosis endemic area in Southwest Finland, Seili Island, where a previous study mapping tick densities was conducted 12 years earlier. A total of 1940 ticks were collected from five different biotopes by cloth dragging during May-September 2012. The overall tick density observed was 5.2 ticks/100m(2) for nymphs and adults. Seasonal questing activity of ticks differed between biotopes and life stages: bimodal occurrences were observed especially for nymphal and adult ticks in forested biotopes, while larvae in pastures exhibited mostly unimodal occurrence. Prevalence of Borrelia and TBEV in ticks was evaluated using conventional and real-time PCR. All samples were negative for TBEV. Borrelia prevalence was 25.0% for adults (n=44) and the minimum infection rate (MIR) 5.6% for pooled nymph samples (191 samples, 1-14 individuals per sample; 30/191 positive). No Borrelia were detected in pooled larval samples (63 samples, 1-139 individuals per sample). Five species of Borrelia were identified from the samples: B. afzelii, B. burgdorferi s.s., B. garinii, B. valaisiana and B. miyamotoi. In Finland, B. valaisiana and B. miyamotoi have previously been reported from the Åland Islands but not from the mainland or inner archipelago. The results of the present study suggest an increase in I. ricinus abundance on the island. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Tick-Borne Diseases in Turkey: A Review Based on One Health Perspective

    PubMed Central

    Yildirim, Alparslan; Duzlu, Onder; Doganay, Mehmet; Aksoy, Serap

    2016-01-01

    The importance of tick-borne diseases is increasing all over the world, including Turkey. Global warming, environmental and ecological changes and the existence of suitable habitats increase the impact of ticks and result in frequent emergence or re-emergence of tick-borne diseases (TBDs) with zoonotic characteristics. In Turkey, almost 19 TBDs have been reported in animals and men, involving four protozoa (babesiosis, theileriosis, cytauxzoonosis, hepatozoonosis), one filarial nematode (acanthocheilonemasis), ten bacterial agents (anaplasmosis, ehrlichiosis, aegyptianellosis, tick-borne typhus, Candidatus Rickettsia vini, Lyme borreliosis, tick-borne relapsing fever [TBRF], tularaemia, bartonellosis, and hemoplasmosis), and four viral infections (tick-borne encephalitis [TBE], Crimean-Congo Haemorrhagic Fever [CCHF], louping-ill [LI], and lumpy skin disease [LSD]). The growing number of TBD cases, in particular the fatal viral epidemics in humans, have led to increased public awareness and concern against TBDs in recent years. The World Health Organization (WHO) has developed a new political concept, called the “One Health” initiative, which is especially relevant for developing strategies against tick infestations and TBD control in humans and animals. It would be beneficial for Turkey to adopt this new strategy and establish specific research and control programs in coordination with international organizations like WHO, the World Organization for Animal Health (OIE), the Food and Agriculture Organization (FAO), the Centers for Disease Control and Prevention (CDC), and the European Center for Disease Prevention and Control (ECDC) to combat TBDs based on the “One Health Initiative” concept. In this article, we review the occurrence of primary TBDs in man and animals in Turkey in light of the “One Health” perspective. PMID:27977689

  1. Epidemiological patterns of tick-borne encephalitis in Lithuania and clinical features in adults in the light of the high incidence in recent years: a retrospective study.

    PubMed

    Radzišauskienė, D; Žagminas, K; Ašoklienė, L; Jasionis, A; Mameniškienė, R; Ambrozaitis, A; Jančorienė, L; Jatužis, D; Petraitytė, I; Mockienė, E

    2018-02-01

    Lithuania is one of the countries with the highest incidence of tick-borne encephalitis (TBE) in Europe. The aim of this study was to describe the epidemiological patterns of TBE in Lithuania, and characterize clinical features in adults in the light of the high incidence in recent years. Surveillance data available on the website of the Centre for Communicable Diseases and AIDS of Lithuania were used to describe the epidemiological patterns of TBE. The retrospective study included 712 patients hospitalized in the Centre for Infectious Diseases and the Centre for Neurology of Vilnius University in the years 2005-2014. Tick-borne encephalitis incidence rates have been increasing by 8.5% per year for the 45-year period from 1970 to 2014. The joinpoint model finds two joinpoints at 1991 and 1994, with a significant decrease of 8.4% per year (P < 0.05) prior to the joinpoint at 1991, and a rise of 195.2% afterwards. TBE presented with meningoencephalitis in 556 cases (81.3%). A total of 129 patients (18%) had a severe case of the disease. The most common neurological signs were ataxia (579, 81.3%), meningeal signs (474, 66.5%) and tremor (338, 47.5%). Limb paresis was observed in 6.3% of patients. Five patients (0.7%) died, and 544 patients (76.7%) were discharged with sequelae. Intensified efforts in promoting TBE vaccination will be needed in the light of the high incidence and expanded spatial distribution. Significant prognostic factors for severe cases of the disease were age above 61 and delayed immune response of specific immunoglobulin G. © 2017 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.

  2. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis.

    PubMed

    Mandl, Christian W

    2005-08-01

    Tick-borne encephalitis virus (TBEV) is an important human pathogen that causes severe neurological illness in large areas of Europe and Asia. The neuropathogenesis of this disease agent is determined by its capacity to enter the central nervous system (CNS) after peripheral inoculation ("neuroinvasiveness") and its ability to replicate and cause damage within the CNS ("neurovirulence"). TBEV is a small, enveloped flavivirus with an unsegmented, positive-stranded RNA genome. Mutations affecting various steps of its natural replication cycle were shown to influence its neuropathogenic properties. This review describes experimental approaches and summarizes results on molecular determinants of neurovirulence and neuroinvasiveness that have been identified for this virus. It focuses on molecular mechanisms of three particular steps of the viral life cycle that have been studied in some detail for TBEV and two closely related tick-borne flaviviruses (Louping ill virus (LIV) and Langat virus (LGTV)), namely (i) the envelope protein E and its role in viral attachment to the cell surface, (ii) the 3'-noncoding region of the genome and its importance for viral RNA replication, and (iii) the capsid protein C and its role in the assembly process of infectious virus particles. Mutations affecting each of these three molecular targets significantly influence neuropathogenesis of TBEV, particularly its neuroinvasiveness. The understanding of molecular determinants of TBEV neuropathogenesis is relevant for vaccine development, also against other flaviviruses.

  3. ANTIHEMAGGLUTINATING ANTIBODY SPECTRUM FOLLOWING EXPERIMENTAL IMMUNIZATION WITH TICK-BORNE ENCEPHALITIS VIRUSES

    DTIC Science & Technology

    fever, Kyasanur forest disease, Langat , Powassan and Negishi. The differences in the dynamics of homologous and heterologous antihemagglutinins after...antibodies to all the other representatives of this group, but in lower titers. For the viruses of Omsk hemorrhagic fever, Langat , Scotland

  4. A Cluster of Fatal Tick-borne Encephalitis Virus Infection in Organ Transplant Setting.

    PubMed

    Lipowski, Dariusz; Popiel, Marta; Perlejewski, Karol; Nakamura, Shota; Bukowska-Osko, Iwona; Rzadkiewicz, Ewa; Dzieciatkowski, Tomasz; Milecka, Anna; Wenski, Wojciech; Ciszek, Michal; Debska-Slizien, Alicja; Ignacak, Ewa; Cortes, Kamila Caraballo; Pawelczyk, Agnieszka; Horban, Andrzej; Radkowski, Marek; Laskus, Tomasz

    2017-03-15

    Tick-borne encephalitis virus (TBEV) infection has become a major health problem in Europe and is currently a common cause of viral brain infection in many countries. Encephalitis in transplant recipients, althrough rare, is becoming a recognized complication. Our study provides the first description of transmission of TBEV through transplantation of solid organs. Three patients who received solid organ transplants from a single donor (2 received kidney, and 1 received liver) developed encephalitis 17-49 days after transplantation and subsequently died. Blood and autopsy tissue samples were tested by next-generation sequencing (NGS) and reverse transcription polymerase chain reaction (RT-PCR). All 3 recipients were first analyzed in autopsy brain tissue samples and/or cerebrospinal fluid by NGS, which yielded 24-52 million sequences per sample and 9-988 matched TBEV sequences in each patient. The presence of TBEV was confirmed by RT-PCR in all recipients and in the donor, and direct sequencing of amplification products corroborated the presence of the same viral strain. We demonstrated transmission of TBEV by transplantation of solid organs. In such a setting, TBEV infection may be fatal, probably due to pharmacological immunosuppression. Organ donors should be screened for TBEV when coming from or visiting endemic areas. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity.

    PubMed

    Palus, Martin; Vancova, Marie; Sirmarova, Jana; Elsterova, Jana; Perner, Jan; Ruzek, Daniel

    2017-07-01

    Alteration of the blood-brain barrier (BBB) is a hallmark of tick-borne encephalitis (TBE), a life-threating human viral neuroinfection. However, the mechanism of BBB breakdown during TBE, as well as TBE virus (TBEV) entry into the brain is unclear. Here, primary human microvascular endothelial cells (HBMECs) were infected with TBEV to study interactions with the BBB. Although the number of infected cells was relatively low in culture (<5%), the infection was persistent with high TBEV yields (>10 6 pfu/ml). Infection did not induce any significant changes in the expression of key tight junction proteins or upregulate the expression of cell adhesion molecules, and did not alter the highly organized intercellular junctions between HBMECs. In an in vitro BBB model, the virus crossed the BBB via a transcellular pathway without compromising the integrity of the cell monolayer. The results indicate that HBMECs may support TBEV entry into the brain without altering BBB integrity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Interaction of the Siberian and Far Eastern subtypes of tick-borne encephalitis virus in mammals with mixed infection. Competition of the subtypes in acute and inapparent infection].

    PubMed

    Gerasimov, S G; Pogodina, V V; Koliasnikova, N M; Karan', L S; Malenko, G V; Levina, L S

    2011-01-01

    Long-term monitoring of natural tick-borne encephalitis virus (TBEV) populations could reveal the change of TBEV subtypes, the displacement of the Far Eastern (FE) subtype, and its substitution for the Siberian (Sib) subtype. Acute and inapparent mixed infections were studied in Syrian hamsters to understand this phenomenon. The animals were inoculated with the Sib subtype and then with the FE one of TBEV (JQ845440-YaroslavI-Aver-08 and Fj214132-Kemerovo-Phateev-1954 strains). The inapparent form developed more frequently in mixed infection. Viral progeny was genotyped by reverse transcription polymerase chain reaction and hybridization fluorescence detection using genotype-specific probes. Independent reproduction of strains in the brain gave way to competition. The FE subtype dominated in hamster youngsters with acute infection. The Sib subtype had selective benefits in asymptomatic infection (adult hamsters infected intracerebrally and subcutaneously and youngsters infected subcutaneously). The competition of the subtypes was imperfect.

  7. [Strategy for choosing antibiotics for treating bacterial infections associated with chronic tick-borne encephalitis].

    PubMed

    Malenko, G V; Pogodina, V V; Frolova, M P; Ivannikova, T A

    1996-01-01

    The capacity of wide-spectrum antibiotics kefzol and ristomycin to activate the persisting tick-borne encephalitis (TBE) virus and cause an exacerbation of chronic process was investigated in Syrian hamsters in whom a prolonged (77 to 270 days) persistent TBE infection was induced by three TBE strains: Vasilchenko, V-383, and 205. The degree of antibiotic-induced activation was assessed using the criteria characterizing the reproduction and peculiarities of persisting TBE virus, immunodepression, and morphologic changes in the central nervous system. Effects of kefzol and ristomycin were compared with those of 8 antibiotics studied previously. Ristomycin, levomycetin (chloramphycin), penicillin, ampicillin (ampital), and levoridan were referred to drugs devoid of evident provoking effect. Kefzol (cefamezin), florimycin (viomycin), and kanamycin (kanamytrex) were characterized as weak activators and streptomycin and tetracycline as potent activators of the persisting TBE virus. These data may be used when selecting alternative agents for therapy of secondary bacterial infections concomitant with TBE.

  8. Complete Genomic Characterization of Three Tick-Borne Encephalitis Viruses Detected Along the China-North Korea Border, 2011.

    PubMed

    He, Xiaoxia; Zhao, Junwei; Fu, Shihong; Yao, Lisi; Gao, Xiaoyan; Liu, Yan; He, Ying; Liang, Guodong; Wang, Huanyu

    2018-05-09

    Tick-borne encephalitis virus (TBEV) causes neurological infections with serious sequelae in Europe and Northeast Asia. In China, the major epidemic areas are along the borders with Russia and North Korea. Although several TBEV isolates have been reported, the biological characteristics of the Chinese strains, especially those along the China-North Korea border, are unclear. In this study, we detected seven TBEV fragment sequences in 602 adult Dermacentor silvarum collected in the Changbai Mountain area of Jilin Province on the China-North Korea border and characterized the genome of three TBEV strains (JLCB11-08, JLCB11-35, and JLCB11-40). These three TBEV strains belong to the TBEV-Far Eastern (TBEV-FE) genotype and clustered most closely with the Svetlogorie and Kavalerovo strains from Russia. In addition, the TBEV strains from Northeast China clustered geographically within the TBEV-FE subtype branch. These findings will facilitate further research on the distinct genetic groupings of TBEV strains in China.

  9. Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination

    PubMed Central

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H.; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. IMPORTANCE Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry into cells and thus mediate virus neutralization and protection from disease. However, the fine specificity and individual variation of neutralizing antibody responses are currently not known. We have therefore developed new in vitro assays for dissecting the antibody populations present in blood serum and determining their contribution to virus neutralization. In our analysis of human postinfection and postvaccination sera, we found an extensive variation of the antibody populations present in sera, indicating substantial influences of individual-specific factors that control the specificity of the antibody response. Our study provides new insights into the immune response to an important human pathogen that is of relevance for the design of novel vaccines. PMID:25253341

  10. Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination.

    PubMed

    Jarmer, Johanna; Zlatkovic, Jürgen; Tsouchnikas, Georgios; Vratskikh, Oksana; Strauß, Judith; Aberle, Judith H; Chmelik, Vaclav; Kundi, Michael; Stiasny, Karin; Heinz, Franz X

    2014-12-01

    Tick-borne encephalitis (TBE) virus is an important human-pathogenic flavivirus endemic in large parts of Europe and Central and Eastern Asia. Neutralizing antibodies specific for the viral envelope protein E are believed to mediate long-lasting protection after natural infection and vaccination. To study the specificity and individual variation of human antibody responses, we developed immunoassays with recombinant antigens representing viral surface protein domains and domain combinations. These allowed us to dissect and quantify antibody populations of different fine specificities in sera of TBE patients and vaccinees. Postinfection and postvaccination sera both displayed strong individual variation of antibody titers as well as the relative proportions of antibodies to different domains of E, indicating that the immunodominance patterns observed were strongly influenced by individual-specific factors. The contributions of these antibody populations to virus neutralization were quantified by serum depletion analyses and revealed a significantly biased pattern. Antibodies to domain III, in contrast to what was found in mouse immunization studies with TBE and other flaviviruses, did not play any role in the human neutralizing antibody response, which was dominated by antibodies to domains I and II. Importantly, most of the neutralizing activity could be depleted from sera by a dimeric soluble form of the E protein, which is the building block of the icosahedral herringbone-like shell of flaviviruses, suggesting that antibodies to more complex quaternary epitopes involving residues from adjacent dimers play only a minor role in the total response to natural infection and vaccination in humans. Tick-borne encephalitis (TBE) virus is a close relative of yellow fever, dengue, Japanese encephalitis, and West Nile viruses and distributed in large parts of Europe and Central and Eastern Asia. Antibodies to the viral envelope protein E prevent viral attachment and entry into cells and thus mediate virus neutralization and protection from disease. However, the fine specificity and individual variation of neutralizing antibody responses are currently not known. We have therefore developed new in vitro assays for dissecting the antibody populations present in blood serum and determining their contribution to virus neutralization. In our analysis of human postinfection and postvaccination sera, we found an extensive variation of the antibody populations present in sera, indicating substantial influences of individual-specific factors that control the specificity of the antibody response. Our study provides new insights into the immune response to an important human pathogen that is of relevance for the design of novel vaccines. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. A cluster of two human cases of tick-borne encephalitis (TBE) transmitted by unpasteurised goat milk and cheese in Germany, May 2016.

    PubMed

    Brockmann, S O; Oehme, R; Buckenmaier, T; Beer, M; Jeffery-Smith, A; Spannenkrebs, M; Haag-Milz, S; Wagner-Wiening, C; Schlegel, C; Fritz, J; Zange, S; Bestehorn, M; Lindau, A; Hoffmann, D; Tiberi, S; Mackenstedt, U; Dobler, G

    2018-04-01

    In May 2016, two cases of tick-borne encephalitis (TBE) were confirmed by serology (positive IgM and IgG antibodies against TBE virus (TBEV) in serum), with a possible link to raw milk and cheese from a goat farm in a region in Baden-Württemberg, Germany not previously known as TBE-endemic. The outbreak investigation identified 32 consumers of goat dairy products (29 consumers, one farm employee, two owners) of whom none had IgM antibodies against TBEV 3-8 weeks after consumption. Of the 27 notified TBE cases in the State, none reported consumption of raw goat milk or cheese from the suspected farm. Five of 22 cheese samples from 18 different batches were RT-qPCR-positive for TBEV -genome, and two of the five samples were confirmed by virus isolation, indicating viability of TBEV in the cheese. Nine of the 45 goats had neutralising TBEV antibodies, two of them with a high titre indicating recent infection. One of 412 Ixodes ricinus was RT-qPCR-positive, and sequencing of the E gene from nucleic acid extracted from the tick confirmed TBEV. Phylogenetic analyses of tick and cheese isolates showed 100% amino acid homology in the E gene and a close relation to TBEV strains from Switzerland and Austria.

  12. The Willingness to Pay for Vaccination against Tick-Borne Encephalitis and Implications for Public Health Policy: Evidence from Sweden.

    PubMed

    Slunge, Daniel

    2015-01-01

    The increasing incidence of tick-borne encephalitis (TBE) in Sweden and several other European countries has sparked a discussion about the need for a public vaccination strategy. However, TBE vaccination coverage is incomplete and there is little knowledge about the factors influencing vaccination behavior. Based on a survey of 1,500 randomly selected respondents in Sweden, we estimate vaccination coverage in areas with different TBE risk levels and analyze the role of vaccine price and other factors influencing the demand for vaccination. First, we find that the average rate of TBE vaccination in Sweden is 33% in TBE risk areas and 18% elsewhere. Income, age and risk-related factors such as incidence of TBE in the area of residence, frequency of visits to areas with TBE risk, and experience with tick bites are positively associated with demand for TBE vaccine. Next, using contingent valuation methodology, we estimate the willingness to pay for TBE vaccination among the unvaccinated respondents and the effect of a possible subsidy. Among the unvaccinated respondents in TBE risk areas, we estimate the mean willingness to pay for the recommended three doses of TBE vaccine to be 465 SEK (approximately 46 euros or 40% of the current market price). We project that a subsidy making TBE vaccines free of charge could increase the vaccination rate in TBE risk areas to around 78%, with a larger effect on low-income households, whose current vaccination rate is only 15% in risk areas. However, price is not the only factor affecting demand. We find significant effects on vaccination behavior associated with trust in vaccine recommendations, perceptions about tick bite-related health risks and knowledge about ticks and tick-borne diseases. Hence, increasing knowledge and trust, as well as ease of access to vaccinations, can also be important measures for public health agencies that want to increase the vaccination rate.

  13. The Willingness to Pay for Vaccination against Tick-Borne Encephalitis and Implications for Public Health Policy: Evidence from Sweden

    PubMed Central

    Slunge, Daniel

    2015-01-01

    The increasing incidence of tick-borne encephalitis (TBE) in Sweden and several other European countries has sparked a discussion about the need for a public vaccination strategy. However, TBE vaccination coverage is incomplete and there is little knowledge about the factors influencing vaccination behavior. Based on a survey of 1,500 randomly selected respondents in Sweden, we estimate vaccination coverage in areas with different TBE risk levels and analyze the role of vaccine price and other factors influencing the demand for vaccination. First, we find that the average rate of TBE vaccination in Sweden is 33% in TBE risk areas and 18% elsewhere. Income, age and risk-related factors such as incidence of TBE in the area of residence, frequency of visits to areas with TBE risk, and experience with tick bites are positively associated with demand for TBE vaccine. Next, using contingent valuation methodology, we estimate the willingness to pay for TBE vaccination among the unvaccinated respondents and the effect of a possible subsidy. Among the unvaccinated respondents in TBE risk areas, we estimate the mean willingness to pay for the recommended three doses of TBE vaccine to be 465 SEK (approximately 46 euros or 40% of the current market price). We project that a subsidy making TBE vaccines free of charge could increase the vaccination rate in TBE risk areas to around 78%, with a larger effect on low-income households, whose current vaccination rate is only 15% in risk areas. However, price is not the only factor affecting demand. We find significant effects on vaccination behavior associated with trust in vaccine recommendations, perceptions about tick bite-related health risks and knowledge about ticks and tick-borne diseases. Hence, increasing knowledge and trust, as well as ease of access to vaccinations, can also be important measures for public health agencies that want to increase the vaccination rate. PMID:26641491

  14. Infections and Coinfections of Questing Ixodes ricinus Ticks by Emerging Zoonotic Pathogens in Western Switzerland

    PubMed Central

    Lommano, Elena; Bertaiola, Luce; Dupasquier, Christèle

    2012-01-01

    In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and “Candidatus Neoehrlichia mikurensis” were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite. PMID:22522688

  15. Experimental infection of goats with tick-borne encephalitis virus and the possibilities to prevent virus transmission by raw goat milk.

    PubMed

    Balogh, Zsuzsanna; Egyed, László; Ferenczi, Emőke; Bán, Enikő; Szomor, Katalin N; Takács, Mária; Berencsi, György

    2012-01-01

    The aim of this work was to study the tick-borne encephalitis virus (TBEV) infection of goats and the possibilities to prevent human milk-borne infections either by immunizing animals or the heat treatment of milk. An experiment was conducted with 20 milking goats. Ten goats (half of them immunized) were challenged with live TBEV and 10 were left uninfected. Clinical signs and body temperatures of the animals were recorded and milk samples were collected daily. The presence of viral RNA and infectious virions in milk were detected by RT-PCR and intracerebral inoculation of suckling mice, respectively. Milk samples containing infectious virions were subjected to various heat treatment conditions and retested afterwards to assess the effect on infectivity. The infected goats did not show any clinical signs or fever compared to uninfected ones. Infectious virions were detected for 8-19 days from the milk samples (genome for 3-18 days by PCR) of infected goats. Immunized goats did not shed the virus. After heat treatment of the milk, the inoculated mice survived. Goats shed the virus with their milk without showing any symptoms. Human milk-borne infections can be avoided both by immunizing goats and boiling/pasteurizing infected milk. Copyright © 2011 S. Karger AG, Basel.

  16. The Stress Granule Component TIA-1 Binds Tick-Borne Encephalitis Virus RNA and Is Recruited to Perinuclear Sites of Viral Replication To Inhibit Viral Translation

    PubMed Central

    Albornoz, Amelina; Carletti, Tea; Corazza, Gianmarco

    2014-01-01

    ABSTRACT Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially fatal infection of the central nervous system. However, the contributions of host proteins during TBEV infection are poorly understood. In this work, we investigate the cellular protein TIA-1 and its cognate factor TIAR, which are stress-induced RNA-binding proteins involved in the repression of initiation of translation of cellular mRNAs and in the formation of stress granules. We show that TIA-1 and TIAR interact with viral RNA in TBEV-infected cells. During TBEV infection, cytoplasmic TIA-1 and TIAR are recruited at sites of viral replication with concomitant depletion from stress granules. This effect is specific, since G3BP1, another component of these cytoplasmic structures, remains localized to stress granules. Moreover, heat shock induction of stress granules containing TIA-1, but not G3BP1, is inhibited in TBEV-infected cells. Infection of cells depleted of TIA-1 or TIAR by small interfering RNA (siRNA) or TIA-1−/− mouse fibroblasts, leads to a significant increase in TBEV extracellular infectivity. Interestingly, TIAR−/− fibroblasts show the opposite effect on TBEV infection, and this phenotype appears to be related to an excess of TIA-1 in these cells. Taking advantage of a TBE-luciferase replicon system, we also observed increased luciferase activity in TIA-1−/− mouse fibroblasts at early time points, consistent with TIA-1-mediated inhibition at the level of the first round of viral translation. These results indicate that, in response to TBEV infection, TIA-1 is recruited to sites of virus replication to bind TBEV RNA and modulate viral translation independently of stress granule (SG) formation. IMPORTANCE This study (i) extends previous work that showed TIA-1/TIAR recruitment at sites of flavivirus replication, (ii) demonstrates that TIAR behaves like TIA-1 as an inhibitor of viral replication using an RNA interference (RNAi) approach in human cells that contradicts the previous hypothesis based on mouse embryonic fibroblast (MEF) knockouts only, (iii) demonstrates that tick-borne encephalitis virus (TBEV) is capable of inducing bona fide G3BP1/eIF3/eIF4B-positive stress granules, (iv) demonstrates a differential phenotype of stress response proteins following viral infection, and (v) implicates TIA-1 in viral translation and as a modulator of TBEV replication. PMID:24696465

  17. The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation.

    PubMed

    Albornoz, Amelina; Carletti, Tea; Corazza, Gianmarco; Marcello, Alessandro

    2014-06-01

    Flaviviruses are a major cause of disease in humans and animals worldwide. Tick-borne encephalitis virus (TBEV) is the most important arthropod-borne flavivirus endemic in Europe and is the etiological agent of tick-borne encephalitis, a potentially fatal infection of the central nervous system. However, the contributions of host proteins during TBEV infection are poorly understood. In this work, we investigate the cellular protein TIA-1 and its cognate factor TIAR, which are stress-induced RNA-binding proteins involved in the repression of initiation of translation of cellular mRNAs and in the formation of stress granules. We show that TIA-1 and TIAR interact with viral RNA in TBEV-infected cells. During TBEV infection, cytoplasmic TIA-1 and TIAR are recruited at sites of viral replication with concomitant depletion from stress granules. This effect is specific, since G3BP1, another component of these cytoplasmic structures, remains localized to stress granules. Moreover, heat shock induction of stress granules containing TIA-1, but not G3BP1, is inhibited in TBEV-infected cells. Infection of cells depleted of TIA-1 or TIAR by small interfering RNA (siRNA) or TIA-1(-/-) mouse fibroblasts, leads to a significant increase in TBEV extracellular infectivity. Interestingly, TIAR(-/-) fibroblasts show the opposite effect on TBEV infection, and this phenotype appears to be related to an excess of TIA-1 in these cells. Taking advantage of a TBE-luciferase replicon system, we also observed increased luciferase activity in TIA-1(-/-) mouse fibroblasts at early time points, consistent with TIA-1-mediated inhibition at the level of the first round of viral translation. These results indicate that, in response to TBEV infection, TIA-1 is recruited to sites of virus replication to bind TBEV RNA and modulate viral translation independently of stress granule (SG) formation. This study (i) extends previous work that showed TIA-1/TIAR recruitment at sites of flavivirus replication, (ii) demonstrates that TIAR behaves like TIA-1 as an inhibitor of viral replication using an RNA interference (RNAi) approach in human cells that contradicts the previous hypothesis based on mouse embryonic fibroblast (MEF) knockouts only, (iii) demonstrates that tick-borne encephalitis virus (TBEV) is capable of inducing bona fide G3BP1/eIF3/eIF4B-positive stress granules, (iv) demonstrates a differential phenotype of stress response proteins following viral infection, and (v) implicates TIA-1 in viral translation and as a modulator of TBEV replication. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. INFLUENCE OF CHEMICAL AND PHYSICAL MUTAGENIC FACTORS ON THE VIRUS of tick-BORNE ENCEPHALITIS

    DTIC Science & Technology

    In experiments the chemicals azouridine, azouracil, 5-bromuracil, formaldehyde, urethan and proflavine were used as mutagenic agents. The influence of...with passaging (tests with proflavine ). Subject to further study is the problem of the reversibility of these properties, and also the fixing of

  19. USSR Report, Life Sciences Biomedical and Behavioral Sciences.

    DTIC Science & Technology

    1984-03-14

    demonstrated that infection with tick-borne encephalitis (TBE) virus or Langat virus leads to the appearance of two populations of autoreactive T...cells formed in mice ^fected wiA the TBE or Langat viruses exert a protective effect by preventing the maturation of the ACTL precursor cells Into

  20. Tick-Borne Encephalitis Virus Diversity in Ixodid Ticks and Small Mammals in South-Western Siberia, Russia.

    PubMed

    Bakhvalova, Valentina N; Chicherina, Galina S; Potapova, Olga F; Panov, Victor V; Glupov, Victor V; Potapov, Mikhail A; Seligman, Stephen J; Morozova, Olga V

    2016-08-01

    The persistence of tick-borne encephalitis virus (TBEV) in nature is maintained by numerous species of reservoir hosts, multiple transmissions between vertebrates and invertebrates, and the virus adaptation to its hosts. Our Aim: was to compare TBEV isolates from ticks and small wild mammals to estimate their roles in the circulation of the viral subtypes. TBEV isolates from two species of ixodid ticks, four species of rodents, and one species of shrews in the Novosibirsk region, South-Western Siberia, Russia, were analyzed using bioassay, hemagglutination, hemagglutination inhibition, neutralization tests, ELISA, reverse transcription with real-time PCR, and phylogenetic analysis. TBEV RNA and/or protein E were found in 70.9% ± 3.0% of mammals and in 3.8% ± 0.4% of ticks. The TBEV infection rate, main subtypes, and neurovirulence were similar between ixodid tick species. However, the proportions of the virus that were pathogenic for laboratory mice and of the Far-Eastern (FE) subtype, as well as the viral loads with the Siberian and the European subtypes for the TBEV in Ixodes pavlovskyi Pomerantsev, 1946 were higher than in Ixodes persulcatus (P. Schulze, 1930). Percentages of infected Myodes rutilus, Sicista betulina, and Sorex araneus exceeded those of Apodemus agrarius and Myodes rufocanus. Larvae and nymphs of ticks were found mainly on rodents, especially on Myodes rufocanus and S. betulina. The proportion of TBEV-mixed infections with different subtypes in the infected ticks (55.9% ± 6.5%) was higher than in small mammals (36.1% ± 4.0%) (p < 0.01). Molecular typing revealed mono- or mixed infection with three main subtypes of TBEV in ticks and small mammals. The Siberian subtype was more common in ixodid ticks, and the FE subtype was more common in small mammals (p < 0.001). TBEV isolates of the European subtype were rare. TBEV infection among different species of small mammals did not correlate with their infestation rate with ticks in the Novosibirsk region, Russia.

  1. Diagnosis and management of acute encephalitis.

    PubMed

    Halperin, J J

    2017-01-01

    Encephalitis is typically viral (approximately half of diagnosed cases) or autoimmune (about a quarter) with the remainder remaining undiagnosable at this time. All require general supportive care but only a minority requires intensive care admission - in these intubation, to protect the airway or to treat status epilepticus with anesthetic drugs, may be needed. In some dysautonomia with wide blood pressure fluctuations is the principal concern. Remarkably, in addition to supportive care, specific treatment options are available for the majority - immune-modulating therapy for those with autoimmune disorders, antiviral therapy for herpes simplex 1 and 2, and varicella-zoster encephalitis. Flavivirus infections (West Nile, Japanese encephalitis, tick-borne encephalitis) remain the most common other identified cause of encephalitis but no specific intervention is available. Overall long-term outcomes are favorable in the majority of patients with encephalitis, a proportion that hopefully will improve with further advances in diagnostic technology and therapeutic interventions. © 2017 Elsevier B.V. All rights reserved.

  2. Genetic and Biological Characterization of Tick-Borne Encephalitis Virus Isolated from Wild Rodents in Southern Hokkaido, Japan in 2008

    PubMed Central

    Yamazaki, Shoko; Mottate, Keita; Nagata, Noriyo; Seto, Takahiro; Sanada, Takashiro; Sakai, Mizuki; Kariwa, Hiroaki; Takashima, Ikuo

    2013-01-01

    Abstract Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis in humans. A recent epizootiological survey indicated that endemic foci of TBEV have been maintained in the southern part of Hokkaido until recently. In this study, we sought to isolate TBEV from wild rodents in the area. One virus, designated Oshima 08-As, was isolated from an Apodemus speciosus captured in Hokuto in 2008. Oshima 08-As was classified as the Far Eastern subtype of TBEV and formed a cluster with the other strains isolated in Hokkaido from 1995 to 1996. Thirty-six nucleotide differences resulted in 12 amino acid changes between Oshima 08-As and Oshima 5–10 isolated in 1995. Oshima 08-As caused high mortality and morbidity in a mouse model compared with Oshima 5–10. Although similar transient viral multiplication in the spleen was observed in the mice infected with Oshima 08-As and Oshima 5–10, greater viral multiplication with an inflammatory response was noted in the brains of mice infected with Oshima 08-As than those infected with Oshima 5–10. These data indicate that a few naturally occurring mutations affect the pathogenicity of the Oshima strains endemic in the southern part of Hokkaido. PMID:23590320

  3. Tick-borne encephalitis in Japan, Republic of Korea and China

    PubMed Central

    Yoshii, Kentaro; Song, Joon Young; Park, Seong-Beom; Yang, Junfeng; Schmitt, Heinz-Josef

    2017-01-01

    Tick-borne encephalitis virus (TBEV) causes mild or moderate febrile illness in humans that may progress to encephalitis, leading to severe long-term complications and sometimes death. TBEV is prevalent in the Eurasian continent and has been isolated in China, Japan and Republic of Korea (ROK). The TBEV isolates from Japan are of the Far-Eastern subtype; in ROK, the isolates are of the Western subtype; and all TBEV isolates in China are of the Far-Eastern subtype, except one strain that was identified most recently as the Siberian subtype. TBE is endemic to the northeast, northwest and southeast of China; only two confirmed TBE cases have been reported in Japan to date; and no TBE case has been confirmed in ROK. For TBE patients in China, the onset of disease is acute with no biphasic course for disease presentation. The clinical spectrum of disease phenotypes may be wider than currently understood, since serological evidence suggests the presence of TBEV infections in healthy people, indicating that asymptomatic or unspecific manifestations of TBEV infection may exist. The current treatment for TBE is supportive care. In China, vaccines against TBEV have been developed and are available with demonstrated immunogenicity and safety, although efficacy data are lacking. No vaccines are available in ROK or Japan. PMID:28928417

  4. Emergence of tick-borne encephalitis in new endemic areas in Austria: 42 years of surveillance.

    PubMed

    Heinz, F X; Stiasny, K; Holzmann, H; Kundi, M; Sixl, W; Wenk, M; Kainz, W; Essl, A; Kunz, C

    2015-04-02

    Human infections with tick-borne encephalitis (TBE)virus are a public health concern in certain regions of Europe, central and eastern Asia. Expansions of endemic areas and increased incidences have been associated with different factors including ecological changes supporting tick reproduction, socioeconomic changes increasing human outdoor activities and climatic changes favouring virus circulation in natural foci. Austria is among the most strongly affected countries in Central Europe, but the annual number of cases has strongly declined due to vaccination. Here,we have analysed changes of the incidence of TBE in the unvaccinated population of all federal states of Austria over a period of 42 years. The overall incidence in Austria has remained constant, but new strongly affected endemic regions have emerged in alpine valleys in the west of Austria. In parallel, the incidence in low-land regions in the north-east of the country is decreasing. There is no evidence for a shift to higher altitudes of infection sites in the traditional TBE zones,but the average altitudes of some newly established endemic areas in the west are significantly higher. Our analyses underscore the focal nature of TBE endemic areas and the potential of TBE virus to emerge in previously unaffected regions.

  5. Evaluation of a serological test for the diagnosis of Borrelia miyamotoi disease in Europe.

    PubMed

    Jahfari, Setareh; Sarksyan, Denis S; Kolyasnikova, Nadezda M; Hovius, Joppe W; Sprong, Hein; Platonov, Alexander E

    2017-05-01

    Borrelia miyamotoi causes systemic febrile illness and is transmitted by the same tick species that transmits Borrelia burgdorferi sensu lato and tick-borne encephalitis virus. We describe a serological test using a fragment of glycerophosphodiester phosphodiesterase (GlpQ) as an antigen, and determined its performance in well-defined patient categories. Serum of patients with PCR-confirmed Borrelia miyamotoi disease (BMD), Lyme borreliosis (LB), tick-borne encephalitis (TBE), and healthy blood donors (HBD) were collected in Udmurt Republic, Russia. Sera of BMD and LB patients were collected at hospital admission, one week, one month and one year after admission. The levels of IgM and IgG anti-GlpQ antibodies, determined as optical density values in Luminex bead-based assays, were significantly higher in the BMD patient group than in LB patients, TBE patients or HBD group (all p<0.05). By using a strict cut-off value, it was possible to exclude B. miyamotoi infection in LB and TBE patients and to serologically confirm B. miyamotoi infection in 44% to 94% of the PCR-positive BMD patients (95% confidence interval). Thus, sensitive serological assays should not solely rely on rGlpQ, to support the diagnosis of acute BMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Geographical Environment Factors and Risk Assessment of Tick-Borne Encephalitis in Hulunbuir, Northeastern China.

    PubMed

    Li, Yifan; Wang, Juanle; Gao, Mengxu; Fang, Liqun; Liu, Changhua; Lyu, Xin; Bai, Yongqing; Zhao, Qiang; Li, Hairong; Yu, Hongjie; Cao, Wuchun; Feng, Liqiang; Wang, Yanjun; Zhang, Bin

    2017-05-26

    Tick-borne encephalitis (TBE) is one of natural foci diseases transmitted by ticks. Its distribution and transmission are closely related to geographic and environmental factors. Identification of environmental determinates of TBE is of great importance to understanding the general distribution of existing and potential TBE natural foci. Hulunbuir, one of the most severe endemic areas of the disease, is selected as the study area. Statistical analysis, global and local spatial autocorrelation analysis, and regression methods were applied to detect the spatiotemporal characteristics, compare the impact degree of associated factors, and model the risk distribution using the heterogeneity. The statistical analysis of gridded geographic and environmental factors and TBE incidence show that the TBE patients mainly occurred during spring and summer and that there is a significant positive spatial autocorrelation between the distribution of TBE cases and environmental characteristics. The impact degree of these factors on TBE risks has the following descending order: temperature, relative humidity, vegetation coverage, precipitation and topography. A high-risk area with a triangle shape was determined in the central part of Hulunbuir; the low-risk area is located in the two belts next to the outside edge of the central triangle. The TBE risk distribution revealed that the impact of the geographic factors changed depending on the heterogeneity.

  7. Powassan Virus-A New Reemerging Tick-Borne Disease.

    PubMed

    Fatmi, Syed Soheb; Zehra, Rija; Carpenter, David O

    2017-01-01

    Powassan virus is a neurovirulent flavivirus consisting of two lineages causing meningoencephalitis. It is the only member of the tick-borne encephalitis serogroup which is present in mainland North America. With a total number of 27 cases from 1958 to 1998 and 98 cases from 1999 to 2016, reported cases have increased by 671% over the last 18 years. Powassan infection is transmitted by different tick species in different geographical regions. Ixodes scapularis is the primary vector that transmits the virus on the East Coast of US and Ixodes cookei in the Midwest and Canada, while Hemaphysalis longicornis is the vector in Russia. Powassan has no singular pathognomonic finding and presents with a wide spectrum of symptoms including severe neurological symptoms. The clinical challenge lies within the management of the disease as there is no standard diagnostic protocol and most cases are only diagnosed after a patient goes through an extensive workup for other infectious disease. The diagnosis is established by a combination of imaging and serologic tests. In case of Powassan meningoencephalitis, computed tomography scan and magnetic resonance imaging show vascular insults, which are also seen in cases of tick-borne encephalitis virus, another flavivirus of medical importance. Serologic tests are the gold standard for diagnosis, although testing is not widely available and only state health departments and Center for Disease Control and Prevention can perform Powassan-specific IgM antibody testing utilizing enzyme-linked immunosorbent assay and immunofluorescence antibody. Powassan is also of veterinary medical importance. Wildlife animals act as a reservoir to the pathogens, hence possessing threat to humans and domestic animals. This review highlights Powassan's neurotropic presentation, epidemiology, diagnostic challenges, and prevalence. Strong emphasis is placed on establishing diagnostic protocols, widespread Powassan-specific IgM testing, role of the vector in disease presentation, and necessary preventive research.

  8. Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation.

    PubMed

    Panayiotou, Christakis; Lindqvist, Richard; Kurhade, Chaitanya; Vonderstein, Kirstin; Pasto, Jenny; Edlund, Karin; Upadhyay, Arunkumar S; Överby, Anna K

    2018-04-01

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus , affording the possible availability of new drug targets that can be used for therapeutic intervention. IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to infection, effectively restricts the replication of several flaviviruses, but the exact molecular mechanisms have not been elucidated. Here we have identified a novel mechanism employed by viperin to inhibit the replication of two flaviviruses: tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin induced selective degradation via the proteasome of TBEV and ZIKV nonstructural 3 (NS3) protein, which is involved in several steps of the viral life cycle. Furthermore, viperin also reduced the stability of several other viral proteins in a NS3-dependent manner, suggesting a central role of NS3 in viperin's antiflavivirus activity. Taking the results together, our work shows important similarities and differences among the members of the genus Flavivirus and could lead to the possibility of therapeutic intervention. Copyright © 2018 American Society for Microbiology.

  9. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions.

    PubMed

    Wikel, Stephen K

    2018-06-20

    Ticks transmit the most diverse array of infectious agents of any arthropod vector. Both ticks and the microbes they transmit are recognized as significant threats to human and veterinary public health. This article examines the potential impacts of climate change on the distribution of ticks and the infections they transmit; the emergence of novel tick-borne pathogens, increasing geographic range and incidence of tick-borne infections; and advances in the characterization of tick saliva mediated modulation of host defenses and the implications of those interactions for transmission, establishment, and control of tick infestation and tick-borne infectious agents.

  10. Chapter 4. Recent epidemiology of tick-borne encephalitis an effect of climate change?

    PubMed

    Korenberg, E I

    2009-01-01

    Consideration is given to the opinion of some specialists that the rise in tick-borne encephalitis (TBE) morbidity at the turn of the century has been accounted for by new features of TBE epidemiology as well as by global climate change. It is shown that neither the reputed current expansion of the ranges of main TBE vectors, the taiga (Ixodes persulcatus) and sheep (Ixodes ricinus) ticks, nor the significant rise of their abundance and TBE virus prevalence in them are confirmed by any objective data. The concept of recent tick expansion to large cities and human TBE infection in newly formed urban foci disagrees with the facts repeatedly described during the past four decades. There is no reliable information on the expansion of TBE nosological range. The influence of newly formed anthropurgic foci and of changes in the contribution of city dwellers to the general morbidity structure on the current epidemiological situation is estimated. As in the case of any other zoonosis with natural focality, the level of epidemiological manifestation of TBE foci is determined by two main parameters: the intensity of virus circulation in the foci (i.e., their loimopotential) and the frequency of human contact with them. Attention is paid to the character of interaction between these two factors, which accounted for a major outbreak of TBE morbidity at the end of the twentieth century, followed by a long-term decrease in its level.

  11. Tick-borne encephalitis virus isolates from natural foci of the Irkutsk region: clarification of the genotype landscape.

    PubMed

    Mel'nikova, Ol'ga V; Adel'shin, R V; Korzun, V M; Trushina, Yu N; Andaev, E I

    The Irkutsk region is the unique territory where all known subtypes of tick-borne encephalitis virus (TBEV) circulate. In the last years, the phenomenon of changes in TBEV subtypes (substitution of the Far-Eastern subtype by the Siberian one) was noted in some regions of the Russian Federation. The results of individual investigation of 11522 Ixodes persulcatus ticks and brain specimens from 81 small mammals collected in natural foci of the Irkutsk region during 2006-2014 are presented in the article. More than 60 TBEV strains have been isolated and studied by virological methods; E gene fragments (1193 b.p.) of 68 isolates have been typed. The majority of the strains (irrespective of subtype) were of high virulence for laboratory mice (LM) in case of both intracerebral and subcutaneous inoculation of virus. All isolates from warm-blooded small mammals and humans were of high virulence for LM, but placed in the same clusters of the phylogenetic tree with ticks collected in the same area. Tick-borne strains of different virulence also did not form separate clusters on the tree. Phylogenetic analysis showed that modern TBEV genotypic landscape of the studied territory is changing toward absolute predominance of the Siberian subtype (94.1%). This subtype is represented by two groups with prototype strains “Zausaev” and “Vasilchenko”. The “Vasilchenko” group of strains is spread on the whole territory under study; the strains of “Zausaev” group were isolated previously in the Irkutsk suburbs. The European subtype of TBEV circulates in natural foci of Pribaikalie permanently (at least 5% of the random sampling); the strains are of high virulence for LM. The Far-Eastern TBEV subtype was not found within the group of isolates collected in 20062014. The phylogenetic relationship of the strains under study had a higher correlation with the place of isolation than with the year or source.

  12. Comparison of six commercial tick-borne encephalitis IgM and IgG ELISA kits and the molecular characterization of their antigenic design.

    PubMed

    Velay, Aurélie; Solis, Morgane; Barth, Heidi; Sohn, Véronique; Moncollin, Anne; Neeb, Amandine; Wendling, Marie-Josée; Fafi-Kremer, Samira

    2018-04-01

    Tick-borne encephalitis virus (TBEV) diagnosis is mainly based on the detection of viral-specific antibodies in serum. Several commercial assays are available, but published data on their performance remain unclear. We assessed six IgM and six IgG commercial enzyme-linked immunosorbent assay (ELISA) kits (ELISA-1 through ELISA-6) using 94 samples, including precharacterized TBEV-positive samples (n=50) and -negative samples (n=44). The six manufacturers showed satisfactory sensitivity and specificity and high overall agreement for both IgM and IgG. Three manufacturers showed better reproducibility and were the most sensitive (100%) and specific (95.5-98.1%) for both IgM and IgG. Two of them were also in agreement with the clinical interpretation in more than 90% of the cases. All the assays use inactivated virus as antigen, with strains showing approximately 94% homology at the amino acid level. The antigenic format of the assays was discussed to further improve this TBEV diagnostic tool. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Stability of a Tick-Borne Flavivirus in Milk.

    PubMed

    Offerdahl, Danielle K; Clancy, Niall G; Bloom, Marshall E

    2016-01-01

    The tick-borne flaviviruses (TBFV) occur worldwide and the tick-borne encephalitis virus (TBEV) members of the group often cause severe, debilitating neurological disease in humans. Although the primary route of infection is through the bite of an infected tick, alimentary infection through the consumption of TBEV-contaminated dairy products is also well-documented and is responsible for some disease in endemic areas. Experimental infection of goats, cattle, and sheep with TBEV shows that the virus can be excreted in the milk of infected animals. Additionally, the virus remains infectious after exposure to low pH levels, similar to those found in the stomach. To evaluate the survival of virus in milk, we studied the stability of the BSL-2 TBFV, Langat virus, in unpasteurized goat milk over time and after different thermal treatments. Virus was stable in milk maintained under refrigeration conditions; however, there was a marked reduction in virus titer after incubation at room temperature. High temperature, short time pasteurization protocols completely inactivated the virus. Interestingly, simulation of a typical thermal regime utilized for cheese did not completely inactivate the virus in milk. These findings stress the importance of proper milk handling and pasteurization processes in areas endemic for TBEV.

  14. Stability of a Tick-Borne Flavivirus in Milk

    PubMed Central

    Offerdahl, Danielle K.; Clancy, Niall G.; Bloom, Marshall E.

    2016-01-01

    The tick-borne flaviviruses (TBFV) occur worldwide and the tick-borne encephalitis virus (TBEV) members of the group often cause severe, debilitating neurological disease in humans. Although the primary route of infection is through the bite of an infected tick, alimentary infection through the consumption of TBEV-contaminated dairy products is also well-documented and is responsible for some disease in endemic areas. Experimental infection of goats, cattle, and sheep with TBEV shows that the virus can be excreted in the milk of infected animals. Additionally, the virus remains infectious after exposure to low pH levels, similar to those found in the stomach. To evaluate the survival of virus in milk, we studied the stability of the BSL-2 TBFV, Langat virus, in unpasteurized goat milk over time and after different thermal treatments. Virus was stable in milk maintained under refrigeration conditions; however, there was a marked reduction in virus titer after incubation at room temperature. High temperature, short time pasteurization protocols completely inactivated the virus. Interestingly, simulation of a typical thermal regime utilized for cheese did not completely inactivate the virus in milk. These findings stress the importance of proper milk handling and pasteurization processes in areas endemic for TBEV. PMID:27243000

  15. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks in northern Europe with particular reference to Southern Sweden.

    PubMed

    Pettersson, John H-O; Golovljova, Irina; Vene, Sirkka; Jaenson, Thomas G T

    2014-03-11

    In northern Europe, the tick-borne encephalitis virus (TBEV) of the European subtype is usually transmitted to humans by the common tick Ixodes ricinus. The aims of the present study are (i) to obtain up-to-date information on the TBEV prevalence in host-seeking I. ricinus in southern and central Sweden; (ii) to compile and review all relevant published records on the prevalence of TBEV in ticks in northern Europe; and (iii) to analyse and try to explain how the TBE virus can be maintained in natural foci despite an apparently low TBEV infection prevalence in the vector population. To estimate the mean minimum infection rate (MIR) of TBEV in I. ricinus in northern Europe (i.e. Denmark, Norway, Sweden and Finland) we reviewed all published TBEV prevalence data for host-seeking I. ricinus collected during 1958-2011. Moreover, we collected 2,074 nymphs and 906 adults of I. ricinus from 29 localities in Sweden during 2008. These ticks were screened for TBEV by RT-PCR. The MIR for TBEV in nymphal and adult I. ricinus was 0.28% for northern Europe and 0.23% for southern Sweden. The infection prevalence of TBEV was significantly lower in nymphs (0.10%) than in adult ticks (0.55%). At a well-known TBEV-endemic locality, Torö island south-east of Stockholm, the TBEV prevalence (MIR) was 0.51% in nymphs and 4.48% in adults of I. ricinus. If the ratio of nymphs to adult ticks in the TBEV-analysed sample differs from that in the I. ricinus population in the field, the MIR obtained will not necessarily reflect the TBEV prevalence in the field. The relatively low TBEV prevalence in the potential vector population recorded in most studies may partly be due to: (i) inclusion of uninfected ticks from the 'uninfected areas' surrounding the TBEV endemic foci; (ii) inclusion of an unrepresentative, too large proportion of immature ticks, compared to adult ticks, in the analysed tick pools; and (iii) shortcomings in the laboratory techniques used to detect the virus that may be present in a very low concentration or undetectable state in ticks which have not recently fed.

  16. First detection of tick-borne encephalitis virus RNA in clinical specimens of acutely ill patients in Hungary.

    PubMed

    Nagy, Anna; Nagy, Orsolya; Tarcsai, Katalin; Farkas, Ágnes; Takács, Mária

    2018-03-01

    Tick-borne encephalitis virus (TBEV) is one of the endemic flaviviruses in Hungary, which is responsible for human infections every year. Neurological involvement in the disease is characterized by meningitis, encephalitis or meningoencephalitis which can result in long-term neurological and neuropsychiatric sequelae. Microbiological diagnosis of acute cases is predominantly based on serological tests due to the limited duration of viremia and long incubation period, however, the application of molecular methods can also supplement the serological diagnosis and provides epidemiological data. The aim of this study was to determine how viral RNA could successfully be detected from different body fluids of serologically confirmed acute cases. Serum, whole blood, cerebrospinal fluid and urine samples of 18 patients from the total of the 19 serologically diagnosed cases were investigated by using the RT-PCR method. Two sera and one urine sample of three patients tested positive and the European subtype of TBEV could be identified. As far as we know this was the first time that TBEV RNA could be detected from human clinical samples in Hungary. Our finding highlights that the application of molecular methods besides serological tests can be a valuable tool in differential diagnosis especially in areas like Hungary, where two or more flaviviruses are co-circulating. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. New developments in flavivirus vaccines with special attention to yellow fever.

    PubMed

    Pugachev, Konstantin V; Guirakhoo, Farshad; Monath, Thomas P

    2005-10-01

    Here we review recent epidemiological trends in flavivirus diseases, findings related to existing vaccines, and new directions in flavivirus vaccine research. We emphasize the need for stepped-up efforts to stop further spread and intensification of these infections worldwide. Although the incidence and geographic distribution of flavivirus diseases have increased in recent years, human vaccines are available only for yellow fever, Japanese encephalitis, tick-borne encephalitis and Kyasanur forest disease. Factors contributing to resurgence include insufficient supplies of available vaccines, incomplete vaccination coverage and relaxation in vector control. Research has been underway for 60 years to develop effective vaccines against dengue, and recent progress is encouraging. The development of vaccines against West Nile, virus recently introduced to North America, has been initiated. In addition, there is considerable interest in improving existing vaccines with respect to increasing safety (e.g. eliminating the newly recognized syndrome of yellow fever vaccine-associated viscerotropic adverse disease), and to reducing the cost and number of doses required for effective immunization. Traditional approaches to flavivirus vaccines are still employed, while recent advancements in biotechnology produced new approaches to vaccine design, such as recombinant live virus, subunit and DNA vaccines. Live chimeric vaccines against dengue, Japanese encephalitis and West Nile based on yellow fever 17D virus (ChimeriVax) are in phase I/II trials, with encouraging results. Other chimeric dengue, tick-borne encephalitis and West Nile virus candidates were developed based on attenuated dengue backbones. To further reduce the impact of flavivirus diseases, vaccination policies and vector control programs in affected countries require revision.

  18. Hungarian tick-borne encephalitis viruses isolated from a 0.5-ha focus are closely related to Finnish strains.

    PubMed

    Egyed, László; Rónai, Zsuzsanna; Dán, Ádám

    2018-04-07

    Four tick-borne encephalitis virus strains were isolated from a small 0.5-ha focus over a six-year-long period (2011-2016) in Hungary. Two strains with identical genomes were isolated from Ixodes ricinus and Haemaphysalis concinna two months apart, which shows that the virus had not evolved separately in these tick species. Whole-genome sequencing of the virus revealed that the isolates differed from each other in 4 amino acids and 9 nucleotides. The calculated substitution rates indicated that the speed of genome evolution differs from habitat to habitat, and continuously changes even within the same focus. The amino acid changes affected the capsid, envelope, NS2a and NS5 genes, and one mutation each occurred in the 5' and 3' NCR as well as the premembrane, NS2a and NS5 genes. Phylogenetic analyses based on complete coding ORF sequences showed that the isolates belong to the European subtype of the virus and are closely related to the Finnish Kumlinge strains, the Bavarian isolate Leila and two isolates of Russian origin, but more distantly related to viruses from the neighbouring Central European countries. These isolates obviously have a common origin and are probably connected by migrating birds. These are the first published complete Hungarian TBEV sequences. Copyright © 2018. Published by Elsevier GmbH.

  19. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland.

    PubMed

    Oechslin, Corinne P; Heutschi, Daniel; Lenz, Nicole; Tischhauser, Werner; Péter, Olivier; Rais, Olivier; Beuret, Christian M; Leib, Stephen L; Bankoul, Sergei; Ackermann-Gäumann, Rahel

    2017-11-09

    Throughout Europe, Ixodes ricinus transmits numerous pathogens. Its widespread distribution is not limited to rural but also includes urbanized areas. To date, comprehensive data on pathogen carrier rates of I. ricinus ticks in urban areas of Switzerland is lacking. Ixodes ricinus ticks sampled at 18 (sub-) urban collection sites throughout Switzerland showed carrier rates of 0% for tick-borne encephalitis virus, 18.0% for Borrelia burgdorferi (sensu lato), 2.5% for Borrelia miyamotoi, 13.5% for Rickettsia spp., 1.4% for Anaplasma phagocytophilum, 6.2% for "Candidatus Neoehrlichia mikurensis", and 0.8% for Babesia venatorum (Babesia sp., EU1). Site-specific prevalence at collection sites with n > 45 ticks (n = 9) significantly differed for B. burgdorferi (s.l.), Rickettsia spp., and "Ca. N. mikurensis", but were not related to the habitat type. Three hundred fifty eight out of 1078 I. ricinus ticks (33.2%) tested positive for at least one pathogen. Thereof, about 20% (71/358) were carrying two or three different potentially disease-causing agents. Using next generation sequencing, we could detect true pathogens, tick symbionts and organisms of environmental or human origin in ten selected samples. Our data document the presence of pathogens in the (sub-) urban I. ricinus tick population in Switzerland, with carrier rates as high as those in rural regions. Carriage of multiple pathogens was repeatedly observed, demonstrating the risk of acquiring multiple infections as a consequence of a tick bite.

  20. [Emerging viral diseases in Europe].

    PubMed

    Löbermann, M; Gürtler, L G; Eichler-Löbermann, B; Reisinger, E C

    2012-04-01

    Emergence of viral agents in Europe is influenced by various factors. Climatic changes influencing possible vectors, insufficient vaccination, and travel of man and goods are among the most important reasons to explain these changes. Fever and arthralgia are the leading symptoms in infection with Dengue, Sindbis, or Chikungunya virus. In contrast, tick-born encephalitis (TBE), Toscana, or West Nile virus infections mainly lead to meningo-encephalitis. In Europe, hemorrhagic fever is caused by Crimean Congo and Hanta virus. Protective vaccines are available for emerging viral agents like TBE, influenza and measles. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Coupling of replication and assembly in flaviviruses.

    PubMed

    Apte-Sengupta, Swapna; Sirohi, Devika; Kuhn, Richard J

    2014-12-01

    Flaviviruses affect hundreds of millions of people each year causing tremendous morbidity and mortality worldwide. This genus includes significant human pathogens such as dengue, West Nile, yellow fever, tick-borne encephalitis and Japanese encephalitis virus among many others. The disease caused by these viruses can range from febrile illness to hemorrhagic fever and encephalitis. A deeper understanding of the virus life cycle is required to foster development of antivirals and vaccines, which are an urgent need for many flaviviruses, especially dengue. The focus of this review is to summarize our current knowledge of flaviviral replication and assembly, the proteins and lipids involved therein, and how these processes are coordinated for efficient virus production. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Probing chemical space of tick-borne encephalitis virus reproduction inhibitors with organoselenium compounds.

    PubMed

    Orlov, Alexey A; Eletskaya, Anastasia A; Frolov, Konstantin A; Golinets, Anastasia D; Palyulin, Vladimir A; Krivokolysko, Sergey G; Kozlovskaya, Liubov I; Dotsenko, Victor V; Osolodkin, Dmitry I

    2018-06-01

    Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is the leading cause of arboviral neuroinfections in Europe. Only a few classes of the nucleoside and non-nucleoside inhibitors were investigated against TBEV reproduction. Paving the way to previously unexplored areas of anti-TBEV chemical space, we assessed the inhibition of TBEV reproduction in the plaque reduction assay by various compounds derived from cyanothioacetamide and cyanoselenoacetamide. Compounds from seven classes, including 4-(alkylthio)-2-aryl-3-azaspiro[5.5]undec-4-ene-1,1,5-tricarbonitriles, 3-arylamino-2-(selenazol-2-yl)acrylonitriles, ethyl 6-(alkylseleno)-5-cyano-2-oxo-1,2-dihydropyridine-3-carboxylates, 6-(alkylseleno)-2-oxo-1,4,5,6-tetrahydropyridine-3-carbonitriles, 2-(alkylseleno)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carbonitriles, 8-selenoxo-3,5,7,11-tetraazatricyclo[7.3.1.0 2,7 ]tridec-2-ene-1,9-dicarbonitriles, and selenolo[2,3-b]quinolines, inhibited TBEV reproduction with EC 50 values in the micromolar range while showing moderate cytotoxicity and no inhibition of enterovirus reproduction. Thus, new scaffolds with promising anti-TBEV activity were found. © 2018 Deutsche Pharmazeutische Gesellschaft.

  3. Development and analysis of a tick-borne encephalitis virus infectious clone using a novel and rapid strategy.

    PubMed

    Gritsun, T S; Gould, E A

    1998-12-01

    In less than 1 month we have constructed an infectious clone of attenuated tick-borne encephalitis virus (strain Vasilchenko) from 100 microl of unpurified virus suspension using long high fidelity PCR and a modified bacterial cloning system. Optimization of the 3' antisense primer concentration was essential to achieve PCR synthesis of an 11 kb cDNA copy of RNA from infectious virus. A novel system utilising two antisense primers, a 14-mer for reverse transcription and a 35-mer for long PCR, produced high yields of genomic length cDNA. Use of low copy number Able K cells and an incubation temperature of 28 degrees C increased the genetic stability of cloned cDNA. Clones containing 11 kb cDNA inserts produced colonies of reduced size, thus providing a positive selection system for full length clones. Sequencing of the infectious clone emphasised the improved fidelity of the method compared with conventional PCR and cloning methods. A simple and rapid strategy for genetic manipulation of the infectious clone is also described. These developments represent a significant advance in recombinant technology and should be applicable to positive stranded RNA viruses which cannot easily be purified or genetically manipulated.

  4. [Streptomycin--an activator of persisting tick-borne encephalitis virus].

    PubMed

    Malenko, G V; Pogodina, V V; Karmysheva, V Ia

    1984-01-01

    The effect of streptomycin (C) on persistence of tick-borne encephalitis (TBE) virus in Syrian hamsters infected with 3 strains of the virus (41/65, Aina/1448, Vasilchenko ) intracerebrally or subcutaneously was studied. In the animals not given C the infectious virus could be detected in the brain for 8-14 days but not later although their organs (mostly brains and spleens) contained the hemagglutinating antigen and viral antigen detectable by immunofluorescence. Intramuscularly C was given twice daily for 13-35 days in a daily dose of 200 mg/kg. The C-treated hamsters yielded 7 virulent TBE virus strains: 3 from the brain, 3 from the spleen, and one from the blood. No virus could be isolated from the liver, kidneys, or lungs despite the use of various methods for isolation including tissue explantation. The activating effect of C was observed against the background of 4-fold decrease in the titre of complement-fixing and antihemagglutinating antibodies. C exerted its activating effect both at early (70 days) and late (9 months) stages of TBE virus persistence. The activating effect of C appears to be due to its immunosuppressive properties and neurotoxic action on the CNS.

  5. Combined prime-boost vaccination against tick-borne encephalitis (TBE) using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    PubMed Central

    Aleshin, SE; Timofeev, AV; Khoretonenko, MV; Zakharova, LG; Pashvykina, GV; Stephenson, JR; Shneider, AM; Altstein, AD

    2005-01-01

    Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines. PMID:16076390

  6. Increased working memory related fMRI signal in children following Tick Borne Encephalitis.

    PubMed

    Henrik, Ullman; Åsa, Fowler; Ronny, Wickström

    2016-01-01

    Tick Borne Encephalitis (TBE) is a viral infection in the central nervous system endemic in Europe and Asia. While pediatric infection may carry a lower risk for serious neurological sequelae compared to adults, a large proportion of children experience long term cognitive problems, most markedly decreased working memory capacity. We explored whether task related functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) could reveal a biological correlate of status-post TBE in children. We examined 11 serologically verified pediatric TBE patients with central nervous system involvement with 55 healthy controls with working memory tests and MRI. The TBE patients showed a prominent deficit in working memory capacity and an increased task related functional MRI signal in working memory related cortical areas during a spatial working memory task performed without sedation. No diffusion differences could be found with DTI, in line with the reported paucity of anatomical abnormalities. This study is the first to demonstrate functional MRI abnormalities in TBE patients that bears similarity to other patient groups with diffuse neuronal damage. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. Cycluridine: A novel antiviral effective against flaviviruses

    PubMed Central

    Galabov, Angel S; Mukova, Lucia; Abashev, Yuriy P; Wassilewa, Lilia; Tzvetkov, Petko; Minkov, Vassil; Barinskiy, Igor F; Rice, Charles M; Ouzounov, Sergey; Sidzhakova, Dorotea

    2017-01-01

    This review describes the contemporary state of research for antivirals effective against flaviviruses, especially focusing on inhibitors of the pestivirus causative agent of bovine viral diarrhoea virus. We highlight cycluridine, an originally synthesized Mannich’s base [a tetrahydro-2(1H)-pyrimidinones derivative], as a highly effective antiviral possessing a strong inhibitory effect on bovine viral diarrhoea virus replication. Cycluridine was active against replication of a wide variety of bovine viral diarrhoea virus strains in cell cultures. The drug-sensitive period in the bovine viral diarrhoea virus replication cycle included the latent period and the exponential phase; a 90-min delay in the peak of viral RNA synthesis was observed. Cycluridine administered orally manifested a pronounced protective effect in calves with natural mucosal disease/viral diarrhoea and calves experimentally infected with bovine viral diarrhoea virus. Its magnitude of activity and selectivity places cycluridine in the lead among all known substances with anti- bovine viral diarrhoea virus activity. Additionally, cycluridine applied subcutaneously showed anti-tick-born encephalitis virus activity, manifesting a marked protective effect in mice infected with tick-born encephalitis virus. Cycluridine could be a prospective antiviral in veterinary and medical practice for the treatment of bovine viral diarrhoea virus and other flavivirus infections. PMID:28768435

  8. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells

    PubMed Central

    Neupane, Biswas; Bai, Fengwei; Sherman, Michael B.; Choi, Kyung H.; Neelakanta, Girish

    2018-01-01

    Molecular determinants and mechanisms of arthropod-borne flavivirus transmission to the vertebrate host are poorly understood. In this study, we show for the first time that a cell line from medically important arthropods, such as ticks, secretes extracellular vesicles (EVs) including exosomes that mediate transmission of flavivirus RNA and proteins to the human cells. Our study shows that tick-borne Langat virus (LGTV), a model pathogen closely related to tick-borne encephalitis virus (TBEV), profusely uses arthropod exosomes for transmission of viral RNA and proteins to the human- skin keratinocytes and blood endothelial cells. Cryo-electron microscopy showed the presence of purified arthropod/neuronal exosomes with the size range of 30 to 200 nm in diameter. Both positive and negative strands of LGTV RNA and viral envelope-protein were detected inside exosomes derived from arthropod, murine and human cells. Detection of Nonstructural 1 (NS1) protein in arthropod and neuronal exosomes further suggested that exosomes contain viral proteins. Viral RNA and proteins in exosomes derived from tick and mammalian cells were secured, highly infectious and replicative in all tested evaluations. Treatment with GW4869, a selective inhibitor that blocks exosome release affected LGTV loads in both arthropod and mammalian cell-derived exosomes. Transwell-migration assays showed that exosomes derived from infected-brain-microvascular endothelial cells (that constitute the blood-brain barrier) facilitated LGTV RNA and protein transmission, crossing of the barriers and infection of neuronal cells. Neuronal infection showed abundant loads of both tick-borne LGTV and mosquito-borne West Nile virus RNA in exosomes. Our data also suggest that exosome-mediated LGTV viral transmission is clathrin-dependent. Collectively, our results suggest that flaviviruses uses arthropod-derived exosomes as a novel means for viral RNA and protein transmission from the vector, and the vertebrate exosomes for dissemination within the host that may subsequently allow neuroinvasion and neuropathogenesis. PMID:29300779

  9. Powassan Virus—A New Reemerging Tick-Borne Disease

    PubMed Central

    Fatmi, Syed Soheb; Zehra, Rija; Carpenter, David O.

    2017-01-01

    Powassan virus is a neurovirulent flavivirus consisting of two lineages causing meningoencephalitis. It is the only member of the tick-borne encephalitis serogroup which is present in mainland North America. With a total number of 27 cases from 1958 to 1998 and 98 cases from 1999 to 2016, reported cases have increased by 671% over the last 18 years. Powassan infection is transmitted by different tick species in different geographical regions. Ixodes scapularis is the primary vector that transmits the virus on the East Coast of US and Ixodes cookei in the Midwest and Canada, while Hemaphysalis longicornis is the vector in Russia. Powassan has no singular pathognomonic finding and presents with a wide spectrum of symptoms including severe neurological symptoms. The clinical challenge lies within the management of the disease as there is no standard diagnostic protocol and most cases are only diagnosed after a patient goes through an extensive workup for other infectious disease. The diagnosis is established by a combination of imaging and serologic tests. In case of Powassan meningoencephalitis, computed tomography scan and magnetic resonance imaging show vascular insults, which are also seen in cases of tick-borne encephalitis virus, another flavivirus of medical importance. Serologic tests are the gold standard for diagnosis, although testing is not widely available and only state health departments and Center for Disease Control and Prevention can perform Powassan-specific IgM antibody testing utilizing enzyme-linked immunosorbent assay and immunofluorescence antibody. Powassan is also of veterinary medical importance. Wildlife animals act as a reservoir to the pathogens, hence possessing threat to humans and domestic animals. This review highlights Powassan’s neurotropic presentation, epidemiology, diagnostic challenges, and prevalence. Strong emphasis is placed on establishing diagnostic protocols, widespread Powassan-specific IgM testing, role of the vector in disease presentation, and necessary preventive research. PMID:29312918

  10. Detection of Tick-Borne Pathogens in Lambs Undergoing Prophylactic Treatment Against Ticks on Two Swedish Farms.

    PubMed

    Grandi, Giulio; Aspán, Anna; Pihl, Jenny; Gustafsson, Katarina; Engström, Fredrik; Jinnerot, Tomas; Söderlund, Robert; Chirico, Jan

    2018-01-01

    Tick-borne pathogens (TBPs), especially Anaplasma phagocytophilum , cause disease in grazing livestock. Tick prophylaxis is, therefore, a routine practice in sheep flocks in Sweden, especially in central, southern, and coastal areas of the country where ixodid ticks ( Ixodes ricinus and Haemaphysalis punctata ) are present. In the present study, the status of infection by A. phagocytophilum and other TBPs in lambs treated with tick prophylaxis has been assessed serologically and with polymerase chain reaction (PCR). Blood samples ( n  = 78) from lambs ( n  = 20) subjected to regular tick prophylactic treatment (flumethrin, Bayticol ® ) at two sites in different regions in Sweden (Östergötland, Gotland) were collected on four occasions from May until July 2013. The severity of clinical signs in Anaplasma- infected animals is known to differ between these two regions. In total, 20% of blood samples were PCR-positive for A. phagocytophilum . Serological analyses showed that 33% of all collected samples were positive for A. phagocytophilum , while 2.5% were positive for Borrelia burgdorferi s.l. and 13% for tick-borne encephalitis virus (TBEV). Percentages of lambs positive were 75 and 45% for A. phagocytophilum antibodies and DNA, respectively, while 10 and 45% were serologically positive for B. burgdorferi s.l. and TBEV, respectively. Sequencing of partial 16S rRNA genes from Anaplasma PCR positive samples revealed presence of A. phagocytophilum in all animals in Östergötland, while sequences consistent with A. phagocytophilum as well as A. capra and A. bovis were found on the island of Gotland. This is the first report of the occurrence of the latter two species in Sweden.

  11. Emerging tick-borne infections in mainland China: an increasing public health threat

    PubMed Central

    Li, Xin-Lou; Liang, Song; Yang, Yang; Yao, Hong-Wu; Sun, Ruo-Xi; Sun, Ye; Chen, Wan-Jun; Zuo, Shu-Qing; Ma, Mai-Juan; Li, Hao; Jiang, Jia-Fu; Liu, Wei; Yang, X Frank; Gray, Gregory C; Krause, Peter J; Cao, Wu-Chun

    2016-01-01

    Since the beginning of the 1980s, 33 emerging tick-borne agents have been identified in mainland China, including eight species of spotted fever group rickettsiae, seven species in the family Anaplasmataceae, six genospecies in the complex Borrelia burgdorferi sensu lato, 11 species of Babesia, and the virus causing severe fever with thrombocytopenia syndrome. In this Review we have mapped the geographical distributions of human cases of infection. 15 of the 33 emerging tick-borne agents have been reported to cause human disease, and their clinical characteristics have been described. The non-specific clinical manifestations caused by tick-borne pathogens present a major diagnostic challenge and most physicians are unfamiliar with the many tick-borne diseases that present with non-specific symptoms in the early stages of the illness. Advances in and application of modern molecular techniques should help with identification of emerging tick-borne pathogens and improve laboratory diagnosis of human infections. We expect that more novel tick-borne infections in ticks and animals will be identified and additional emerging tick-borne diseases in human beings will be discovered. PMID:26453241

  12. The zoonotic flaviviruses of southern, south-eastern and eastern Asia, and Australasia: the potential for emergent viruses.

    PubMed

    Mackenzie, J S; Williams, D T

    2009-08-01

    The genus Flaviviridae comprises about 70 members, of which about 30 are found in southern, south-eastern and eastern Asia and Australasia. These include major pathogens such as Japanese encephalitis (JE), West Nile (WN), Murray Valley encephalitis (MVE), tick-borne encephalitis, Kyasanur Forest disease virus, and the dengue viruses. Other members are known to be associated with mild febrile disease in humans, or with no known disease. In addition, novel flaviviruses continue to be discovered, as demonstrated recently by New Mapoon virus in Australia, Sitiawan virus in Malaysia, and ThCAr virus in Thailand. About 19 of these viruses are mosquito-borne, six are tick-borne, and four have no known vector and represent isolates from rodents or bats. Evidence from phylogenetic studies suggest that JE, MVE and Alfuy viruses probably emerged in the Malaya-Indonesian region from an African progenitor virus, possibly a virus related to Usutu virus. WN virus, however, is believed to have emerged in Africa, and then dispersed through avian migration. Evidence suggests that there are at least seven genetic lineages of WN virus, of which lineage 1b spread to Australasia as Kunjin virus, lineages 1a and 5 spread to India, and lineage 6 spread to Malaysia. Indeed, flaviviruses have a propensity to spread and emerge in new geographic areas, and they represent a potential source for new disease emergence. Many of the factors associated with disease emergence are present in the region, such as changes in land use and deforestation, increasing population movement, urbanization, and increasing trade. Furthermore, because of their ecology and dependence on climate, there is a strong likelihood that global warming may significantly increase the potential for disease emergence and/or spread.

  13. A tiny tick can cause a big health problem.

    PubMed

    John, Manuel; Raman, M; Ryan, Keith

    2017-11-01

    Ticks are tiny crawling bugs in the spider family that feed by sucking blood from animals. They are second only to mosquitoes as vectors of human disease, both infectious and toxic. Infected ticks spread over a hundred diseases, some of which are fatal if undetected. They spread the spirochete (which multiplies in the insect's gut) with a subsequent bite to the next host. We describe the only reported cases of peri ocular tick bite from India that presented to us within a span of 3 days and its management. Due suspicion and magnification of the lesions revealed the ticks which otherwise masqueraded as small skin tags/moles on gross examination. The ticks were firmly latched on to the skin and careful removal prevented incarceration of the mouth parts. Rickettsial diseases that were believed to have disappeared from India are reemerging and their presence has recently been documented in at least 11 states in the country. Among vector borne diseases, the most common, Lyme disease, also known as the great mimicker, can present with rheumatoid arthritis, fibromyalgia, depression, attention deficit hyperactivity disorder, multiple sclerosis, chronic fatigue syndrome, cardiac manifestations, encephalitis, and mental illness, to name some of the many associations. Common ocular symptoms and signs include conjunctivitis, keratitis, uveitis, and retinitis. Early detection and treatment of tick borne diseases is important to prevent multi system complications that can develop later in life.

  14. Tick infestation in birds and prevalence of pathogens in ticks collected from different places in Germany.

    PubMed

    Klaus, Christine; Gethmann, Jörn; Hoffmann, Bernd; Ziegler, Ute; Heller, Martin; Beer, Martin

    2016-07-01

    The importance of ticks and tick-borne pathogens for human and animal health has been increasing over the past decades. For their transportation and dissemination, birds may play a more important role than wingless hosts. In this study, tick infestation of birds in Germany was examined. Eight hundred ninety-two captured birds were infested with ticks and belonged to 48 different species, of which blackbirds (Turdus merula) and song thrushes (Turdus philomelos) were most strongly infested. Ground feeders were more strongly infested than non-ground feeders, sedentary birds more strongly than migratory birds, and short-distance migratory birds more strongly than long-distance migratory birds. Mean tick infestation per bird ranged between 2 (long-distance migratory bird) and 4.7 (sedentary bird), in some single cases up to 55 ticks per bird were found. With the exception of three nymphs of Haemaphysalis spp., all ticks belonged to Ixodes spp., the most frequently detected tick species was Ixodes ricinus. Birds were mostly infested by nymphs (65.1 %), followed by larvae (32.96 %). Additionally, ticks collected from birds were examined for several pathogens: Tick-borne encephalitis virus (TBEV) and Sindbisvirus with real-time RT-PCR, Flaviviruses, Simbuviruses and Lyssaviruses with broad-range standard RT-PCR-assays, and Borrelia spp. with a Pan-Borrelia real-time PCR. Interestingly, no viral pathogens could be detected, but Borrelia spp. positive ticks were collected from 76 birds. Borrelia (B.) garinii, B. valaisiaina, B. burgdorferi s.s. and B. afzelii were determined. The screening of ticks and birds for viral pathogens with broad range PCR-assays was tested and the use as an "early warning system" is discussed.

  15. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity.

    PubMed

    Zheng, Zifeng; Yang, Jieyu; Jiang, Xuan; Liu, Yalan; Zhang, Xiaowei; Li, Mei; Zhang, Mudan; Fu, Ming; Hu, Kai; Wang, Hanzhong; Luo, Min-Hua; Gong, Peng; Hu, Qinxue

    2018-05-14

    Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Development of a serodiagnostic IgM-ELISA for tick-borne encephalitis virus using subviral particles with strep-tag.

    PubMed

    Nakayasu, Miki; Hirano, Minato; Muto, Memi; Kobayashi, Shintaro; Kariwa, Hiroaki; Yoshii, Kentaro

    2018-06-23

    Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis in humans. IgM antibody detection is useful for the serological diagnosis of TBEV infection, because IgM has high specificity for each flavivirus and indicates a recent infection. Commercial IgM-ELISA kits are somewhat expensive and difficulties in their sensitivity have been suggested due to their format and formalin-inactivated antigens. Therefore, the development of an inexpensive IgM-ELISA with high specificity and sensitivity is needed. In this study, a μ-capture ELISA was developed to detect TBEV-specific IgM antibodies using subviral particles (SPs) with strep-tag (strep-SP-IgM-ELISA). The results of our strep-SP-IgM-ELISA were highly correlated with diagnoses made by the neutralization test (sensitivity: 94.1%), and our strep-SP-IgM-ELISA could detect anti-TBEV IgM antibodies in patients who could not be diagnosed with the neutralization test. Besides, 51 of 52 positive samples by a commercial IgM-ELISA were also diagnosed as positive by our strep-SP-IgM-ELISA (98.1%), and our strep-SP-IgM-ELISA could detect anti-TBEV IgM antibodies in all samples that were inconclusive based on the commercial IgM-ELISA. Our strep-SP-IgM-ELISA will be useful for diagnoses in TBE-endemic areas. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    Růzek, Daniel; Vancová, Marie; Tesarová, Martina; Ahantarig, Arunee; Kopecký, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.

  18. Emerging horizons for tick-borne pathogens: from the ‘one pathogen–one disease’ vision to the pathobiome paradigm

    PubMed Central

    Vayssier-Taussat, Muriel; Kazimirova, Maria; Hubalek, Zdenek; Hornok, Sándor; Farkas, Robert; Cosson, Jean-François; Bonnet, Sarah; Vourch, Gwenaël; Gasqui, Patrick; Mihalca, Andrei Daniel; Plantard, Olivier; Silaghi, Cornelia; Cutler, Sally; Rizzoli, Annapaola

    2015-01-01

    Ticks, as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human and animal health in Europe. Recent applications of new technology revealed the complexity of the tick microbiome, which may affect its vectorial capacity. Appreciation of these complex systems is expanding our understanding of tick-borne pathogens, leading us to evolve a more integrated view that embraces the ‘pathobiome’; the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of future research approaches that will enable us to efficiently prevent and control the threat posed by ticks. PMID:26610021

  19. Vector-borne diseases and climate change: a European perspective

    PubMed Central

    Suk, Jonathan E

    2017-01-01

    Abstract Climate change has already impacted the transmission of a wide range of vector-borne diseases in Europe, and it will continue to do so in the coming decades. Climate change has been implicated in the observed shift of ticks to elevated altitudes and latitudes, notably including the Ixodes ricinus tick species that is a vector for Lyme borreliosis and tick-borne encephalitis. Climate change is also thought to have been a factor in the expansion of other important disease vectors in Europe: Aedes albopictus (the Asian tiger mosquito), which transmits diseases such as Zika, dengue and chikungunya, and Phlebotomus sandfly species, which transmits diseases including Leishmaniasis. In addition, highly elevated temperatures in the summer of 2010 have been associated with an epidemic of West Nile Fever in Southeast Europe and subsequent outbreaks have been linked to summer temperature anomalies. Future climate-sensitive health impacts are challenging to project quantitatively, in part due to the intricate interplay between non-climatic and climatic drivers, weather-sensitive pathogens and climate-change adaptation. Moreover, globalisation and international air travel contribute to pathogen and vector dispersion internationally. Nevertheless, monitoring forecasts of meteorological conditions can help detect epidemic precursors of vector-borne disease outbreaks and serve as early warning systems for risk reduction. PMID:29149298

  20. Vector-borne diseases and climate change: a European perspective.

    PubMed

    Semenza, Jan C; Suk, Jonathan E

    2018-02-01

    Climate change has already impacted the transmission of a wide range of vector-borne diseases in Europe, and it will continue to do so in the coming decades. Climate change has been implicated in the observed shift of ticks to elevated altitudes and latitudes, notably including the Ixodes ricinus tick species that is a vector for Lyme borreliosis and tick-borne encephalitis. Climate change is also thought to have been a factor in the expansion of other important disease vectors in Europe: Aedes albopictus (the Asian tiger mosquito), which transmits diseases such as Zika, dengue and chikungunya, and Phlebotomus sandfly species, which transmits diseases including Leishmaniasis. In addition, highly elevated temperatures in the summer of 2010 have been associated with an epidemic of West Nile Fever in Southeast Europe and subsequent outbreaks have been linked to summer temperature anomalies. Future climate-sensitive health impacts are challenging to project quantitatively, in part due to the intricate interplay between non-climatic and climatic drivers, weather-sensitive pathogens and climate-change adaptation. Moreover, globalisation and international air travel contribute to pathogen and vector dispersion internationally. Nevertheless, monitoring forecasts of meteorological conditions can help detect epidemic precursors of vector-borne disease outbreaks and serve as early warning systems for risk reduction. © FEMS 2017.

  1. [Modeling of mixed infection by tick-borne encephalitis and Powassan viruses in mice].

    PubMed

    Khozinskaia, G A; Pogodina, V V

    1982-01-01

    Simultaneous inoculation of mice with tick-borne and Powassan viruses was shown, depending on experimental conditions, to result either in stimulation of infection or its unchanged course as compared with monoinfection and inoculation with the viruses at 2--3-week intervals in cross protection of mice against the superinfecting virus. Simultaneous inoculation of mice with the two viruses was accompanied by their multiplication in the blood and brains of mice and formation of antihemagglutinating antibodies to each of them. In the virus population in the brains of mice there was either formation of a mixture of two viruses or their phenotypic mixing. In cross protection, multiplication of the superinfecting virus in the blood and brain of mice was slightly inhibited, the antihemagglutinating antibody to a second virus either did not form or appeared in low titres.

  2. The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations.

    PubMed

    Gritsun, T S; Desai, A; Gould, E A

    2001-07-01

    An infectious clone (pGGVs) of the tick-borne encephalitis complex virus Vasilchenko (Vs) was constructed previously. Virus recovered from pGGVs produced slightly smaller plaques than the Vs parental virus. Sequence analysis demonstrated five nucleotide differences between the original Vs virus and pGGVs; four of these mutations resulted in amino acid substitutions, while the fifth mutation was located in the 3' untranslated region (3'UTR). Two mutations were located in conserved regions and three mutations were located in variable regions of the virus genome. Reverse substitutions from the conserved regions of the genome, R(496)-->H in the envelope (E) gene and C(10884)-->T in the 3'UTR, were introduced both separately and together into the infectious clone and their biological effect on virus phenotype was evaluated. The engineered viruses with R(496) in the E protein produced plaques of smaller size than viruses with H(496) at this position. This mutation also affected the growth and neuroinvasiveness of the virus. In contrast, the consequence of a T(10884)-->C substitution within the 3'UTR was noticeable only in cytotoxicity and neuroinvasiveness tests. However, all virus mutants engineered by modification of the infectious clone, including one with two wild-type mutations, H(496) and T(10884), showed reduced neuroinvasiveness in comparison with the Vs parental virus. Therefore, although the H(496)-->R and T(10884)-->C substitutions clearly reduce virus virulence, the other mutations within the variable regions of the capsid (I(45)-->F) and the NS5 (T(2688)-->A and M(3385)-->I) genes also contribute to the process of attenuation. In terms of developing flavivirus vaccines, the impact of accumulating apparently minor mutations should be assessed in detail.

  3. Development of simple and rapid assay to detect viral RNA of tick-borne encephalitis virus by reverse transcription-loop-mediated isothermal amplification.

    PubMed

    Hayasaka, Daisuke; Aoki, Kotaro; Morita, Kouichi

    2013-03-04

    Tick-borne encephalitis virus (TBEV) is a causative agent of acute central nervous system disease in humans. It has three subtypes, far eastern (FE), Siberian (Sib) and European (Eu) subtypes, which are distributed over a wide area of Europe and Asia. The objective of this study was to develop a simple and rapid assay for the detection of TBEV RNA by using reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) method that can differentiate the three subtypes of TBEV and can be used for clinical diagnosis and epidemiological study. Primers for TBEV-specific and subtype-specific RT-LAMP assay were designed to target the consensus sequence in NS1 of all subtypes and the consensus sequence in the E gene of each subtype, respectiveluy. In vitro transcribed RNA of Oshima strain that belongs to FE subtype was serially diluted and used to examine the sensitivity of the assay. Cross-reactivity of subtype-specific RT-LAMP assay was tested by using the RNA of Oshima and Sofjin (FE), IR-99 (Sib) and Hochosterwitz (Eu) strains. RNA extracted from the mixtures of TBEV and ticks, and of TBEV and human blood, and the mouse tissues infected with TBEV, were evaluated in the assay. Positive amplification was observed by real-time monitoring of turbidity and by visual detection of color change. The sensitivity of TBEV-specific RT-LAMP assay was 102 copies of target RNA per reaction volume. FE-specific RT-LAMP assay amplified viral genes of Oshima and Sofjin strains but not of IR-99 and Hochosterwitz strains, and of Japanese encephalitis virus. RT-LAMP assay for Sib and for Eu specifically amplified viral genes of IR-99 and Hochosterwitz strains, respectively. We also showed that tick or human blood extract did not inhibit the amplification of viral gene during the assay. Furthermore, we confirmed that the TBEV RT-LAMP could detect virus RNA from peripheral and central nervous system tissues of laboratory mice infected with TBEV. TBEV RT-LAMP assay offers a sensitive, specific, rapid and easy-to-handle method for the detection of TBEV RNA in tick samples and this may be applied in the clinical samples collected from TBE-suspected patients.

  4. Powassan virus infection: case series and literature review from a single institution.

    PubMed

    Raval, Mihir; Singhal, Mayank; Guerrero, Dubert; Alonto, Augusto

    2012-10-30

    Powassan virus is a flavivirus related to eastern hemisphere's tick-borne encephalitis viruses. It can cause a rare but potentially life-threatening disease including encephalitis. We report four cases of POWV infection in Minnesota and North Dakota with known exposure to tick bites in 2011. Our first case was an 18-year-old male who dramatically presented with seizure and headache with positive serum analysis for Powassan virus immunoglobulin M. The second case was a 60 year old gentleman with intraparenchymal hemorrhage and was diagnosed via cerebrospinal fluid analysis. Thirdly, a 61 year old male developed altered mental status and encephalitis. Our fourth patient was a 69 year old male who had headache and non-focal weakness who was diagnosed with serum analysis. Symptoms of Powassan virus infection ranged from headaches to seizures and severe neurological symptoms. This study serves to highlight the increased detection of Powassan virus infection in the central north United States. This report focuses on the increasing incidence that can lead to increasing efforts for raising awareness regarding this infection. There is a need for clinician vigilance and public attention due to its increasing detection, westward progression and varied clinical presentations.

  5. Evaluation of chimeric yellow fever 17D/dengue viral replication in ticks.

    PubMed

    Kazimírová, Mária; Mantel, Nathalie; Raynaud, Sandrine; Slovák, Mirko; Ustaniková, Katarína; Lang, Jean; Guy, Bruno; Barban, Veronique; Labuda, Milan

    2012-11-01

    Chimeric yellow fever 17D/DENV-1-4 viruses (CYD-1-4) have been developed as a tetravalent dengue vaccine candidate which is currently being evaluated in efficacy trials in Asia and America. While YF 17D and DENV are mosquito-borne flaviviruses, it has been shown that CYD-1-4 do not replicate after oral infection in mosquitoes and are not transmitted to new hosts. To further document the risk of environmental dissemination of these viruses, we evaluated the replication of CYD-1-4 in ticks, the vector of tick-borne encephalitis virus (TBEV), another member of the flavivirus family. Females of two hard tick species, Ixodes ricinus and Rhipicephalus appendiculatus, were inoculated intracoelomically with CYD-1-4 viruses and parent viruses (DENV-1-4 and YF 17D). Virus persistence and replication was assessed 2, 16, and 44 days post-inoculation by plaque titration and qRT-PCR. CYD-1-4 viruses were detected in I. ricinus ticks at early time points post-inoculation, but with infectious titers at least 100-fold lower than those observed in TBEV-infected ticks. Unlike TBEV, complete viral clearance occurred by day 44 in most ticks except for CYD-2, which had a tendency to decline. In addition, while about 70% of TBEV-infected I. ricinus nymphs acquired infection by co-feeding with infected tick females on non-viremic hosts, no co-feeding transmission of CYD-2 virus was detected. Based on these results, we conclude that the risk of dissemination of the candidate vaccine viruses by tick bite is highly unlikely.

  6. Fatal Case of Deer Tick Virus Encephalitis

    PubMed Central

    Tavakoli, Norma P.; Wang, Heng; Dupuis, Michelle; Hull, Rene; Ebel, Gregory D.; Gilmore, Emily J.; Faust, Phyllis L.

    2010-01-01

    SUMMARY Deer tick virus is related to Powassan virus, a tickborne encephalitis virus. A 62-year-old man presented with a meningoencephalitis syndrome and eventually died. Analyses of tissue samples obtained during surgery and at autopsy revealed a widespread necrotizing meningoencephalitis. Nucleic acid was extracted from formalin-fixed tissue, and the presence of deer tick virus was verified on a flavivirus-specific polymerase-chain-reaction (PCR) assay, followed by sequence confirmation. Immunohistochemical analysis with antisera specific for deer tick virus identified numerous immunoreactive neurons, with prominent involvement of large neurons in the brain stem, cerebellum, basal ganglia, thalamus, and spinal cord. This case demonstrates that deer tick virus can be a cause of fatal encephalitis. PMID:19439744

  7. Fatal case of deer tick virus encephalitis.

    PubMed

    Tavakoli, Norma P; Wang, Heng; Dupuis, Michelle; Hull, Rene; Ebel, Gregory D; Gilmore, Emily J; Faust, Phyllis L

    2009-05-14

    Deer tick virus is related to Powassan virus, a tickborne encephalitis virus. A 62-year-old man presented with a meningoencephalitis syndrome and eventually died. Analyses of tissue samples obtained during surgery and at autopsy revealed a widespread necrotizing meningoencephalitis. Nucleic acid was extracted from formalin-fixed tissue, and the presence of deer tick virus was verified on a flavivirus-specific polymerase-chain-reaction (PCR) assay, followed by sequence confirmation. Immunohistochemical analysis with antisera specific for deer tick virus identified numerous immunoreactive neurons, with prominent involvement of large neurons in the brain stem, cerebellum, basal ganglia, thalamus, and spinal cord. This case demonstrates that deer tick virus can be a cause of fatal encephalitis. 2009 Massachusetts Medical Society

  8. Ticks and tick-borne diseases: a One Health perspective.

    PubMed

    Dantas-Torres, Filipe; Chomel, Bruno B; Otranto, Domenico

    2012-10-01

    Tick-borne diseases are common occurrences in both the medical and veterinary clinical settings. In addition to the constraints related to their diagnosis and clinical management, the control and prevention of these diseases is often difficult, because it requires the disruption of a complex transmission chain, involving vertebrate hosts and ticks, which interact in a constantly changing environment. We provide a contemporary review of representative tick-borne diseases of humans and discuss aspects linked to their medical relevance worldwide. Finally, we emphasize the importance of a One Health approach to tick-borne diseases, calling physicians and veterinarians to unify their efforts in the management of these diseases, several of which are zoonoses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Adaptation of tick-borne encephalitis virus from human brain to different cell cultures induces multiple genomic substitutions.

    PubMed

    Ponomareva, Eugenia P; Ternovoi, Vladimir A; Mikryukova, Tamara P; Protopopova, Elena V; Gladysheva, Anastasia V; Shvalov, Alexander N; Konovalova, Svetlana N; Chausov, Eugene V; Loktev, Valery B

    2017-10-01

    The C11-13 strain from the Siberian subtype of tick-borne encephalitis virus (TBEV) was isolated from human brain using pig embryo kidney (PEK), 293, and Neuro-2a cells. Analysis of the complete viral genome of the C11-13 variants during six passages in these cells revealed that the cell-adapted C11-13 variants had multiple amino acid substitutions as compared to TBEV from human brain. Seven out of eight amino acids substitutions in the high-replicating C11-13(PEK) variant mapped to non-structural proteins; 13 out of 14 substitutions in the well-replicating C11-13(293) variant, and all four substitutions in the low-replicating C11-13(Neuro-2a) variant were also localized in non-structural proteins, predominantly in the NS2a (2), NS3 (6) and NS5 (3) proteins. The substitutions NS2a 1067 (Asn → Asp), NS2a 1168 (Leu → Val) in the N-terminus of NS2a and NS3 1745 (His → Gln) in the helicase domain of NS3 were found in all selected variants. We postulate that multiple substitutions in the NS2a, NS3 and NS5 genes play a key role in adaptation of TBEV to different cells.

  10. The neurovirulence and neuroinvasiveness of chimeric tick-borne encephalitis/dengue virus can be attenuated by introducing defined mutations into the envelope and NS5 protein genes and the 3' non-coding region of the genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Amber R., E-mail: engelam@mail.nih.go; Rumyantsev, Alexander A., E-mail: alexander.rumyantsev@sanofipasteur.co; Maximova, Olga A., E-mail: maximovao@mail.nih.go

    Tick-borne encephalitis (TBE) is a severe disease affecting thousands of people throughout Eurasia. Despite the use of formalin-inactivated vaccines in endemic areas, an increasing incidence of TBE emphasizes the need for an alternative vaccine that will induce a more durable immunity against TBE virus (TBEV). The chimeric attenuated virus vaccine candidate containing the structural protein genes of TBEV on a dengue virus genetic background (TBEV/DEN4) retains a high level of neurovirulence in both mice and monkeys. Therefore, attenuating mutations were introduced into the envelope (E{sub 315}) and NS5 (NS5{sub 654,655}) proteins, and into the 3' non-coding region ({Delta}30) of TBEV/DEN4.more » The variant that contained all three mutations (v{Delta}30/E{sub 315}/NS5{sub 654,655}) was significantly attenuated for neuroinvasiveness and neurovirulence and displayed a reduced level of replication and virus-induced histopathology in the brains of mice. The high level of safety in the central nervous system indicates that v{Delta}30/E{sub 315}/NS5{sub 654,655} should be further evaluated as a TBEV vaccine.« less

  11. Tick-borne pathogens and the vector potential of ticks in China.

    PubMed

    Yu, Zhijun; Wang, Hui; Wang, Tianhong; Sun, Wenying; Yang, Xiaolong; Liu, Jingze

    2015-01-14

    Ticks, as obligate blood-sucking ectoparasites, attack a broad range of vertebrates and transmit a great diversity of pathogenic microorganisms. They are considered second only to mosquitoes as vectors of human disease, and the most important vector of pathogens of domestic and wild animals. Of the 117 described species in the Chinese tick fauna, 60 are known to transmit one or more diseases: 36 species isolated within China and 24 species isolated outside China. Moreover, 38 of these species carry multiple pathogens, indicating the potentially vast role of these vectors in transmitting pathogens. Spotted fever is the most common tick-borne disease, and is carried by at least 27 tick species, with Lyme disease and human granulocytic anaplasmosis ranked as the second and third most widespread tick-borne diseases, carried by 13 and 10 species, respectively. Such knowledge provides us with clues for the identification of tick-associated pathogens and suggests ideas for the control of tick-borne diseases in China. However, the numbers of tick-associated pathogens and tick-borne diseases in China are probably underestimated because of the complex distribution and great diversity of tick species in this country.

  12. Update on Tick-Borne Rickettsioses around the World: a Geographic Approach

    PubMed Central

    Paddock, Christopher D.; Socolovschi, Cristina; Labruna, Marcelo B.; Mediannikov, Oleg; Kernif, Tahar; Abdad, Mohammad Yazid; Stenos, John; Bitam, Idir; Fournier, Pierre-Edouard; Raoult, Didier

    2013-01-01

    SUMMARY Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These zoonoses are among the oldest known vector-borne diseases. However, in the past 25 years, the scope and importance of the recognized tick-associated rickettsial pathogens have increased dramatically, making this complex of diseases an ideal paradigm for the understanding of emerging and reemerging infections. Several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections, and novel Rickettsia species of undetermined pathogenicity continue to be detected in or isolated from ticks around the world. This remarkable expansion of information has been driven largely by the use of molecular techniques that have facilitated the identification of novel and previously recognized rickettsiae in ticks. New approaches, such as swabbing of eschars to obtain material to be tested by PCR, have emerged in recent years and have played a role in describing emerging tick-borne rickettsioses. Here, we present the current knowledge on tick-borne rickettsiae and rickettsioses using a geographic approach toward the epidemiology of these diseases. PMID:24092850

  13. Tick salivary secretion as a source of antihemostatics

    PubMed Central

    Chmelar, Jindrich; Calvo, Eric; Pedra, Joao H.F.; Francischetti, Ivo M. B.; Kotsyfakis, Michail

    2012-01-01

    Ticks are mostly obligatory blood feeding ectoparasites that have an impact on human and animal health. In addition to direct damage due to feeding, some tick species serve as the vectors for the causative agents of several diseases, such as the spirochetes of the genus Borrelia causing Lyme disease, the virus of tick-borne encephalitis, various Rickettsial pathogens or even protozoan parasites like Babesia spp. Hard ticks are unique among bloodfeeders because of their prolonged feeding period that may last up to two weeks. During such a long period of blood uptake, the host develops a wide range of mechanisms to prevent blood loss. The arthropod ectoparasite, in turn, secretes saliva in the sites of bite that assists blood feeding. Indeed, tick saliva represents a rich source of proteins with potent pharmacologic action that target different mechanisms of coagulation, platelet aggregation and vasoconstriction. Tick adaptation to their vertebrate hosts led to the inclusion of a powerful protein armamentarium in their salivary secretion that has been investigated by high throughput methods. The resulting knowledge can be exploited for the isolation of novel antihemostatic agents. Here we review the tick salivary antihemostatics and their characterized functions at the molecular and cellular levels. PMID:22564820

  14. [Seroprevalence of Anaplasma phagocytophilum in patients with suspected Lyme borreliosis].

    PubMed

    Dvořáková Heroldová, M; Dvořáčková, M

    2014-11-01

    Human granulocytic anaplasmosis (HGA) is an emerging tick-borne zoonotic disease caused by an obligate intracellular bacterium, Anaplasma phagocytophilum. In Europe, A. phagocytophilum is transmitted by Ixodes ricinus ticks. After Lyme borreliosis and European tick-borne encephalitis, HGA is the third most common tick-borne infection in the USA and Europe. The clinical symptoms of anaplasmosis are non-specific and include malaise, fever, headache, myalgia, and arthralgia. In more severe cases, the gastrointestinal or respiratory tract may be affected. However, most infections are asymptomatic. The aim of our study was to determine the seroprevalence of A. phagocytophilum in patients with suspected Lyme borreliosis. A total of 314 sera from patients with suspected Lyme borreliosis were screened for IgG and IgM antibodies against A. phagocytophilum. The immunoblot assay was used to detect the antibodies. Anti-A. phagocytophilum antibodies were detected in 34 patients, i.e. in 10.82%. IgM antibodies were positive in 19 cases and IgG antibodies in 10 cases. Positivity to both IgM and IgG antibodies was revealed in five patients. Antibodies against Borrelia burgdorferi sensu lato were detected in 181 patients (57.64%). Co-seroprevalence of Borrelia burgdorferi s. l. and A. phagocytophilum was found in 26 patients (8.3%). Positivity for anti-A. phagocytophilum antibodies was most often seen in samples from the age group 60-69 years. Our results show that A. phagocytophilum infection is not uncommon in the Czech Republic and should be considered in patients with a history of a tick bite.

  15. Crimean-Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania.

    PubMed

    Sherifi, Kurtesh; Rexhepi, Agim; Berxholi, Kristaq; Mehmedi, Blerta; Gecaj, Rreze M; Hoxha, Zamira; Joachim, Anja; Duscher, Georg G

    2018-01-01

    Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean-Congo hemorrhagic fever (CCHF) is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE). Therefore, we sampled and tested 795 ticks. Ixodes ricinus ( n  = 218), Dermacentor marginatus ( n  = 98), and Haemaphysalis spp. ( n  = 24) were collected from the environment by flagging (all from Kosovo), while Hyalomma marginatum ( n  = 199 from Kosovo, all from Kosovo) and Rhipicephalus bursa ( n  = 130, 126 from Albania) could be collected only by removal from animal pasture and domestic ruminants. Ticks were collected in the years 2014/2015 and tested for viral RNA of CCHF and TBE viruses, as well as for DNA of Borrelia burgdorferi sensu lato by real-time PCR. In Kosovo, nine ticks were positive for RNA of Crimean-Congo hemorrhagic fever virus and seven for DNA of B. burgdorferi s. l. None of the ticks tested positive for TBEV. CCHF virus was detected in one H. marginatum male specimen collected while feeding on grazing cattle from the Prizren region and in eight R. bursa specimens (five females and three males collected while feeding on grazing sheep and cattle) from the Prishtina region (Kosovo). B. burgdorferi s. l. was detected in seven questing ticks (four male and one female D. marginatus , two I. ricinus one female and one male) from the Mitrovica region (Kosovo). Our study confirmed that CCHF virus is circulating in Kosovo mainly in H. marginatum and R. bursa in the central areas of the country. B. burgdorferi s. l. was found in its major European host tick, I. ricinus , but also in D. marginatus , in the north of the Kosovo. In order to prevent the spread of these diseases and better control of the tick-borne infections, an improved vector surveillance and testing of ticks for the presence of pathogens needs to be established.

  16. Crimean–Congo Hemorrhagic Fever Virus and Borrelia burgdorferi sensu lato in Ticks from Kosovo and Albania

    PubMed Central

    Sherifi, Kurtesh; Rexhepi, Agim; Berxholi, Kristaq; Mehmedi, Blerta; Gecaj, Rreze M.; Hoxha, Zamira; Joachim, Anja; Duscher, Georg G.

    2018-01-01

    Tick-borne diseases pose a serious threat to human health in South-Eastern Europe, including Kosovo. While Crimean–Congo hemorrhagic fever (CCHF) is a well-known emerging infection in this area, there are no accurate data on Lyme borreliosis and tick-borne encephalitis (TBE). Therefore, we sampled and tested 795 ticks. Ixodes ricinus (n = 218), Dermacentor marginatus (n = 98), and Haemaphysalis spp. (n = 24) were collected from the environment by flagging (all from Kosovo), while Hyalomma marginatum (n = 199 from Kosovo, all from Kosovo) and Rhipicephalus bursa (n = 130, 126 from Albania) could be collected only by removal from animal pasture and domestic ruminants. Ticks were collected in the years 2014/2015 and tested for viral RNA of CCHF and TBE viruses, as well as for DNA of Borrelia burgdorferi sensu lato by real-time PCR. In Kosovo, nine ticks were positive for RNA of Crimean–Congo hemorrhagic fever virus and seven for DNA of B. burgdorferi s. l. None of the ticks tested positive for TBEV. CCHF virus was detected in one H. marginatum male specimen collected while feeding on grazing cattle from the Prizren region and in eight R. bursa specimens (five females and three males collected while feeding on grazing sheep and cattle) from the Prishtina region (Kosovo). B. burgdorferi s. l. was detected in seven questing ticks (four male and one female D. marginatus, two I. ricinus one female and one male) from the Mitrovica region (Kosovo). Our study confirmed that CCHF virus is circulating in Kosovo mainly in H. marginatum and R. bursa in the central areas of the country. B. burgdorferi s. l. was found in its major European host tick, I. ricinus, but also in D. marginatus, in the north of the Kosovo. In order to prevent the spread of these diseases and better control of the tick-borne infections, an improved vector surveillance and testing of ticks for the presence of pathogens needs to be established. PMID:29560357

  17. Distribution of Ixodes ricinus L., 1758 and Ixodes persulcatus Shulze, 1930 (Parasitoformes, Ixodidae) in Russia and adjacent countries in view of observable climate changes

    NASA Astrophysics Data System (ADS)

    Yasyukevich, V. V.; Kazakova, E. V.; Popov, I. O.; Semenov, S. M.

    2009-08-01

    Possible changes in the area inhabited by the ticks Ixodes ricinus and Ixodes persulcatus, the main transmitters of tick-borne encephalitis and Lyme disease in Russia, caused by temperature changes in 1976-2005 compared to 1946-1975 are discussed. It is shown that these changes could result in some areal expansion of these species. In the European part of Russia, I. ricinus expanded its areal boundaries to the east 100-300 km. I. persulcatus expanded its areal in the Asian part of Russia. Its boundary moved to the north and northeast 100-300 km. Areal expansion both of species has not been observed.

  18. Current status of flavivirus vaccines.

    PubMed

    Barrett, A D

    2001-12-01

    Although there are approximately 68 flaviviruses recognized, vaccines have been developed to control very few human flavivirus diseases. Licensed live attenuated vaccines have been developed for yellow fever (strain 17D) and Japanese encephalitis (strain SA14-14-2) viruses, and inactivated vaccines have been developed for Japanese encephalitis and tick-borne encephalitis viruses. The yellow fever live attenuated 17D vaccine is one of the most efficacious and safe vaccines developed to date and has been used to immunize more than 300 million people. A number of experimental vaccines are being developed, most notably for dengue. Candidate tetravalent live attenuated dengue vaccines are undergoing clinical trials. Other vaccines are being developed using reverse genetics, DNA vaccines, and recombinant immunogens. In addition, the yellow fever 17D vaccine has been used as a backbone to generate chimeric viruses containing the premembrane and envelope protein genes from other flaviviruses. The "Chimerivax" platform has been used to construct chimeric Japanese encephalitis and dengue viruses that are in different phases of development. Similar strategies are being used by other laboratories.

  19. [Experimental monkey encephalitis caused by Powassan virus].

    PubMed

    Frolova, M P; Isachkova, L M; Shestopalova, N M; Pogodina, V V

    1981-01-01

    A comparative study of the experimental infection of monkeys caused by brain P-40 of Powassan virus isolated in the Primorye Territory of the USSR and by the prototype Canadian strain LB was carried out. Powassan virus was found to be pathogenic for Macaca rhesus. Clinical and pathomorphological picture of the experimental encephalitis was studied. Full identity of the infection caused in the monkeys by the strain P-40 and the Canadian strain LB of Powassan virus has been proved. On electronmicroscopic examination of the central nervous system the virus was detected in the neurons, glial cells and intercellular spaces. The virions of the strains studied have identical morphological parameters, being 37 to 45 nm in diameter and having spherical shape. The data obtained point to a marked neurotropism of the virus. They will contribute to elucidation of the virus role in the infectious pathology of man, and namely, in verification of encephalitis cases not associated etiologically with the virus of the spring-summer tick-borne encephalitis.

  20. Emerging Causes of Arbovirus Encephalitis in North America: Powassan, Chikungunya, and Zika Viruses.

    PubMed

    Doughty, Christopher T; Yawetz, Sigal; Lyons, Jennifer

    2017-02-01

    Arboviruses are arthropod-borne viruses transmitted by the bite of mosquitoes, ticks, or other arthropods. Arboviruses are a common and an increasing cause of human illness in North America. Powassan virus, Chikungunya virus, and Zika virus are arboviruses that have all recently emerged as increasing causes of neurologic illness. Powassan virus almost exclusively causes encephalitis, but cases are rare, sporadic, and restricted to portions of North America and Russia. Chikungunya virus has spread widely across the world, causing millions of infections. Encephalitis is a rare manifestation of illness but is more common and severe in neonates and older adults. Zika virus has recently spread through much of the Americas and has been associated mostly with microcephaly and other congenital neurologic complications. Encephalitis occurring in infected adults has also been recently reported. This review will discuss the neuropathogenesis of these viruses, their transmission and geographic distribution, the spectrum of their neurologic manifestations, and the appropriate method of diagnosis.

  1. Prevention of infectious tick-borne diseases in humans: Comparative studies of the repellency of different dodecanoic acid-formulations against Ixodes ricinus ticks (Acari: Ixodidae)

    PubMed Central

    Schwantes, Ulrich; Dautel, Hans; Jung, Gerd

    2008-01-01

    Background Ticks of the species Ixodes ricinus are the main vectors of Lyme Borreliosis and Tick-borne Encephalitis – two rapidly emerging diseases in Europe. Repellents provide a practical means of protection against tick bites and can therefore minimize the transmission of tick-borne diseases. We developed and tested seven different dodecanoic acid (DDA)-formulations for their efficacy in repelling host-seeking nymphs of I. ricinus by laboratory screening. The ultimately selected formulation was then used for comparative investigations of commercially available tick repellents in humans. Methods Laboratory screening tests were performed using the Moving-object (MO) bioassay. All test formulations contained 10% of the naturally occurring active substance DDA and differed only in terms of the quantitative and qualitative composition of inactive ingredients and fragrances. The test procedure used in the human bioassays is a modification of an assay described by the U.S. Environmental Protection Agency and recommended for regulatory affairs. Repellency was computed using the equation: R = 100 - NR/N × 100, where NR is the number of non-repelled ticks, and N is the respective number of control ticks. All investigations were conducted in a controlled laboratory environment offering standardized test conditions. Results All test formulations strongly repelled nymphs of I. ricinus (100-81% protection) as shown by the MO-bioassay. The majority of ticks dropped off the treated surface of the heated rotating drum that served as the attractant (1 mg/cm2 repellent applied). The 10% DDA-based formulation, that produced the best results in laboratory screening, was as effective as the coconut oil-based reference product. The mean protection time of both preparations was generally similar and averaged 8 hours. Repellency investigations in humans showed that the most effective 10% DDA-based formulation (~1.67 mg/cm2 applied) strongly avoided the attachment of I. ricinus nymphs and adults for at least 6 hours. The test repellent always provided protection (83-63%) against I. ricinus nymphs equivalent to the natural coconut oil based reference product and a better protection (88-75%) against adult ticks than the synthetic Icaridin-containing reference repellent. Conclusion We found that the 10% DDA-based formulation (ContraZeck®) is an easily applied and very effective natural repellent against I. ricinus ticks. By reducing the human-vector contact the product minimises the risk of transmission of tick-borne diseases in humans. PMID:18397516

  2. Powassan virus infection: case series and literature review from a single institution

    PubMed Central

    2012-01-01

    Background Powassan virus is a flavivirus related to eastern hemisphere’s tick-borne encephalitis viruses. It can cause a rare but potentially life-threatening disease including encephalitis. Case presentation We report four cases of POWV infection in Minnesota and North Dakota with known exposure to tick bites in 2011. Our first case was an 18-year-old male who dramatically presented with seizure and headache with positive serum analysis for Powassan virus immunoglobulin M. The second case was a 60 year old gentleman with intraparenchymal hemorrhage and was diagnosed via cerebrospinal fluid analysis. Thirdly, a 61 year old male developed altered mental status and encephalitis. Our fourth patient was a 69 year old male who had headache and non-focal weakness who was diagnosed with serum analysis. Conclusion Symptoms of Powassan virus infection ranged from headaches to seizures and severe neurological symptoms. This study serves to highlight the increased detection of Powassan virus infection in the central north United States. This report focuses on the increasing incidence that can lead to increasing efforts for raising awareness regarding this infection. There is a need for clinician vigilance and public attention due to its increasing detection, westward progression and varied clinical presentations. PMID:23111001

  3. Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection.

    PubMed

    Mlera, Luwanika; Meade-White, Kimberly; Dahlstrom, Eric; Baur, Rachel; Kanakabandi, Kishore; Virtaneva, Kimmo; Porcella, Stephen F; Bloom, Marshall E

    2018-02-01

    Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.

  4. Tick-Borne Encephalitis Virus Vaccine-Induced Human Antibodies Mediate Negligible Enhancement of Zika Virus Infection InVitro and in a Mouse Model.

    PubMed

    Duehr, James; Lee, Silviana; Singh, Gursewak; Foster, Gregory A; Krysztof, David; Stramer, Susan L; Bermúdez González, Maria C; Menichetti, Eva; Geretschläger, Robert; Gabriel, Christian; Simon, Viviana; Lim, Jean K; Krammer, Florian

    2018-01-01

    Recent reports in the scientific literature have suggested that anti-dengue virus (DENV) and anti-West Nile virus (WNV) immunity exacerbates Zika virus (ZIKV) pathogenesis in vitro and in vivo in mouse models. Large populations of immune individuals exist for a related flavivirus (tick-borne encephalitis virus [TBEV]), due to large-scale vaccination campaigns and endemic circulation throughout most of northern Europe and the southern Russian Federation. As a result, the question of whether anti-TBEV immunity can affect Zika virus pathogenesis is a pertinent one. For this study, we obtained 50 serum samples from individuals vaccinated with the TBEV vaccine FSME-IMMUN (Central European/Neudörfl strain) and evaluated their enhancement capacity in vitro using K562 human myeloid cells expressing CD32 and in vivo using a mouse model of ZIKV pathogenesis. Among the 50 TBEV vaccinee samples evaluated, 29 had detectable reactivity against ZIKV envelope (E) protein by enzyme-linked immunosorbent assay (ELISA), and 36 showed enhancement of ZIKV infection in vitro . A pool of the most highly reacting and enhanced samples resulted in no significant change in the morbidity/mortality of ZIKV disease in immunocompromised Stat2 -/- mice. Our results suggest that humoral immunity against TBEV is unlikely to enhance Zika virus pathogenesis in humans. No clinical reports indicating that TBEV vaccinees experiencing enhanced ZIKV disease have been published so far, and though the epidemiological data are sparse, our findings suggest that there is little reason for concern. This study also displays a clear relationship between the phylogenetic distance between two flaviviruses and their capacity for pathogenic enhancement. IMPORTANCE The relationship between serial infections of two different serotypes of dengue virus and more severe disease courses is well-documented in the literature, driven by so-called antibody-dependent enhancement (ADE). Recently, studies have shown the possibility of ADE in cells exposed to anti-DENV human plasma and then infected with ZIKV and also in mouse models of ZIKV pathogenesis after passive transfer of anti-DENV human plasma. In this study, we evaluated the extent to which this phenomenon occurs using sera from individuals immunized against tick-borne encephalitis virus (TBEV). This is highly relevant, since large proportions of the European population are vaccinated against TBEV or otherwise seropositive.

  5. Specificities of Human CD4+ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction

    PubMed Central

    Schwaiger, Julia; Aberle, Judith H.; Stiasny, Karin; Knapp, Bernhard; Schreiner, Wolfgang; Fae, Ingrid; Fischer, Gottfried; Scheinost, Ondrej; Chmelik, Vaclav

    2014-01-01

    ABSTRACT Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4+ T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4+ T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4+ T cell epitopes. IMPORTANCE Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated vaccine can effectively prevent disease. Both vaccination and natural infection induce the formation of antibodies to a viral surface protein that neutralize the infectivity of the virus and mediate protection. B lymphocytes synthesizing these antibodies require help from other lymphocytes (helper T cells) which recognize small peptides derived from proteins contained in the viral particle. Which of these peptides dominate immune responses to vaccination and infection, however, was unknown. In our study we demonstrate which parts of the proteins contribute most strongly to the helper T cell response, highlight specific weaknesses of currently available approaches for their prediction, and demonstrate similarities and differences between vaccination and infection. PMID:24789782

  6. West Nile virus and other arboviral diseases--United States, 2012.

    PubMed

    2013-06-28

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States. However, several other arboviruses also cause sporadic cases and seasonal outbreaks of neuroinvasive disease (e.g., meningitis, encephalitis, and acute flaccid paralysis). In 2012, CDC received reports of 5,780 nationally notifiable arboviral disease cases (excluding dengue). A large multistate outbreak of WNV disease accounted for 5,674 (98%) of reported cases, the highest number reported since 2003. Other reported etiologies included Eastern equine encephalitis virus (EEEV), Powassan virus (POWV), St. Louis encephalitis virus (SLEV), and California serogroup viruses such as La Crosse virus (LACV) and Jamestown Canyon virus (JCV). Arboviruses continue to cause serious illness in substantial numbers of persons in the United States. Maintaining surveillance remains important to identify outbreaks and guide prevention efforts.

  7. Mapping the distribution of tick-borne encephalitis in mainland China.

    PubMed

    Sun, Ruo-Xi; Lai, Sheng-Jie; Yang, Yang; Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Zhou, Hang; Li, Yu; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun

    2017-06-01

    Tick-borne encephalitis (TBE) has become an increasing public health threat in recent years, ranging from Europe, through far-eastern Russia to Japan and northern China. However, the neglect of its expansion and scarce analyses of the dynamics have made the overall disease burden and the risk distribution of the disease being unclear in mainland China. In this study, we described epidemiological characteristics of 2117 reported human TBE cases from 2006 to 2013 in mainland China. About 99% of the cases were reported in forest areas of northeastern China, and 93% of reported infections occurred during May-July. Cases were primarily male (67%), mostly in 30-59 years among all age-gender groups. Farmers (31.6%), domestic workers (20.1%) and forest workers (17.9%) accounted for the majority of the patients, and the proportions of patients from farmers and domestic workers were increasing in recent years. The epidemiological features of TBE differed slightly across the affected regions. The distribution and features of the disease in three main endemic areas of mainland China were also summarized. Using the Boosted Regression Trees (BRT) model, we found that the presence of TBE was significantly associated with a composite meteorological index, altitude, the coverage of broad-leaved forest, the coverage of mixed broadleaf-conifer forest, and the distribution of Ixodes persulcatus (I. persulcatus) ticks. The model-predicted probability of presence of human TBE cases in mainland China was mapped at the county level. The spatial distribution of human TBE in China was largely driven by the distributions of forests and I. persulcatus ticks, altitude, and climate. Enhanced surveillance and intervention for human TBE in the high-risk regions, particularly on the forest areas in north-eastern China, is necessary to prevent human infections. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. [Further studies of continuous human and animal cell lines for the manufacture of viral vaccines and diagnostic kits].

    PubMed

    Mironova, L L; Koniushko, O I; Popova, V D

    2005-01-01

    Long-term experiments have provided conditions for the optimal conditions for reproduction of vaccine strains of poliomyelitis, measles, tick-borne and Japan encephalitis on the continuous cell lines. This makes it possible to solve one of the most urgent problems of modern biotechnology, namely to refuse to use primary cell cultures in vaccinology and to apply a more accessible, safe, and reference biological substrate that are stable cell lines.

  9. Human Herpesvirus 6 Infection Presenting as an Acute Febrile Illness Associated with Thrombocytopenia and Leukopenia

    PubMed Central

    Avšič-Županc, Tatjana; Uršič, Tina; Petrovec, Miroslav

    2016-01-01

    We present an infant with acute fever, thrombocytopenia, and leukopenia, coming from an endemic region for tick-borne encephalitis, human granulocytic anaplasmosis, and hantavirus infection. The primary human herpesvirus 6 infection was diagnosed by seroconversion of specific IgM and IgG and by identification of viral DNA in the acute patient's serum. The patient did not show skin rash suggestive of exanthema subitum during the course of illness. PMID:27980872

  10. A Predictive Model Has Identified Tick-Borne Encephalitis High-Risk Areas in Regions Where No Cases Were Reported Previously, Poland, 1999–2012

    PubMed Central

    Rubikowska, Barbara; Bratkowski, Jakub; Ustrnul, Zbigniew; Vanwambeke, Sophie O.

    2018-01-01

    During 1999–2012, 77% of the cases of tick-borne encephalitis (TBE) were recorded in two out of 16 Polish provinces. However, historical data, mostly from national serosurveys, suggest that the disease could be undetected in many areas. The aim of this study was to identify which routinely-measured meteorological, environmental, and socio-economic factors are associated to TBE human risk across Poland, with a particular focus on areas reporting few cases, but where serosurveys suggest higher incidence. We fitted a zero-inflated Poisson model using data on TBE incidence recorded in 108 NUTS-5 administrative units in high-risk areas over the period 1999–2012. Subsequently we applied the best fitting model to all Polish municipalities. Keeping the remaining variables constant, the predicted rate increased with the increase of air temperature over the previous 10–20 days, precipitation over the previous 20–30 days, in forestation, forest edge density, forest road density, and unemployment. The predicted rate decreased with increasing distance from forests. The map of predicted rates was consistent with the established risk areas. It predicted, however, high rates in provinces considered TBE-free. We recommend raising awareness among physicians working in the predicted high-risk areas and considering routine use of household animal surveys for risk mapping. PMID:29617333

  11. Brain perfusion alterations in tick-borne encephalitis-preliminary report.

    PubMed

    Tyrakowska-Dadełło, Zuzanna; Tarasów, Eugeniusz; Janusek, Dariusz; Moniuszko-Malinowska, Anna; Zajkowska, Joanna; Pancewicz, Sławomir

    2018-03-01

    Magnetic resonance imaging (MRI) changes in tick-borne encephalitis (TBE) are non-specific and the pathophysiological mechanisms leading to their formation remain unclear. This study investigated brain perfusion in TBE patients using dynamic susceptibility-weighted contrast-enhanced magnetic resonance perfusion imaging (DSC-MRI perfusion). MRI scans were performed for 12 patients in the acute phase, 3-5days after the diagnosis of TBE. Conventional MRI and DSC-MRI perfusion studies were performed. Cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP) parametric maps were created. The bilateral frontal, parietal, and temporal subcortical regions and thalamus were selected as regions of interest. Perfusion parameters of TBE patients were compared to those of a control group. There was a slight increase in CBF and CBV, with significant prolongation of TTP in subcortical areas in the study subjects, while MTT values were comparable to those of the control group. A significant increase in thalamic CBF (p<0.001) and increased CBV (p<0.05) were observed. Increased TTP and a slight reduction in MTT were also observed within this area. The DSC-MRI perfusion study showed that TBE patients had brain perfusion disturbances, expressed mainly in the thalami. These results suggest that DSC-MRI perfusion may provide important information regarding the areas affected in TBE patients. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Exposure to West Nile virus and tick-borne encephalitis virus in dogs in Spain.

    PubMed

    García-Bocanegra, I; Jurado-Tarifa, E; Cano-Terriza, D; Martínez, R; Pérez-Marín, J E; Lecollinet, S

    2018-06-01

    In the past decade, the spread of emerging zoonotic flaviviruses (genus Flavivirus, family Flaviviridae) has been reported in many regions worldwide, representing a threat to both human and animal health. A serosurvey was carried out to assess exposure and risk factors associated with antigenically related flaviviruses, particularly West Nile virus (WNV), Usutu virus (USUV) and tick-borne encephalitis virus (TBEV), in dogs in Spain. Flavivirus antibodies were detected in 39 of 815 dogs (4.8%; 95% CI: 3.3-6.3) by bELISA. Significantly higher seropositivity was observed in hunting dogs compared to pet dogs. Virus neutralization tests confirmed WNV-specific and TBEV-specific antibodies in 11 and 14 bELISA-positive dogs, respectively. This is the first serosurvey of WNV and TBEV in dogs in Spain and the first report of TBEV circulation in this country. The seropositivity obtained indicates widespread, but not homogeneous, distribution of WNV and TBEV in dogs in Spain. In 2013 and 2015, WNV-seropositive dogs were detected in those areas of Andalusia where the highest number of WNV outbreaks were reported in both horses and humans. Antibodies against TBEV have been found in dogs sampled in two different periods and regions in Spain. Serosurveillance in dogs could be a complementary way of monitoring the activity of emerging flaviviruses in Spain. © 2018 Blackwell Verlag GmbH.

  13. Self-reported tick-borne encephalitis (TBE) vaccination coverage in Europe: Results from a cross-sectional study.

    PubMed

    Erber, Wilhelm; Schmitt, Heinz-Josef

    2018-05-01

    Adequate vaccination is effective in preventing tick-borne encephalitis (TBE). A population survey conducted in 2015 in Czech Republic, Estonia, Finland, Germany, Hungary, Latvia, Lithuania, Poland, Slovakia, Slovenia, and Sweden obtained information on TBE vaccination. Respondents answered 10 questions for themselves and household members. Data were weighted according to age and fine-tuned for geographical spread. Across the 10 countries (excluding Poland), TBE awareness was 83%; of all respondents, 68% were aware of TBE vaccines and 25% had ≥1 injections. Vaccination rates were lowest in Finland and Slovakia (∼10%), highest in Austria (85%, results from a separate 2015 survey), and varied widely in Germany. Across the 11 countries (excluding Austria), compliance with vaccination schedule among TBE-vaccinated respondents was 61%; 27% and 15% of respondents received first and second booster injections; strongest motivators for vaccination were fear of TBE (38%) and residence/spending time in high-risk areas (31-35%); main reasons for not receiving vaccination were beliefs that vaccination was unnecessary (33%) and that there was no risk of contracting TBE (23%). TBE vaccine uptake and compliance could be improved with effective public health information to increase TBE awareness and trust in vaccination and by updating recommendations to include all subjects visiting TBE-risk areas. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. A Predictive Model Has Identified Tick-Borne Encephalitis High-Risk Areas in Regions Where No Cases Were Reported Previously, Poland, 1999-2012.

    PubMed

    Stefanoff, Pawel; Rubikowska, Barbara; Bratkowski, Jakub; Ustrnul, Zbigniew; Vanwambeke, Sophie O; Rosinska, Magdalena

    2018-04-04

    During 1999–2012, 77% of the cases of tick-borne encephalitis (TBE) were recorded in two out of 16 Polish provinces. However, historical data, mostly from national serosurveys, suggest that the disease could be undetected in many areas. The aim of this study was to identify which routinely-measured meteorological, environmental, and socio-economic factors are associated to TBE human risk across Poland, with a particular focus on areas reporting few cases, but where serosurveys suggest higher incidence. We fitted a zero-inflated Poisson model using data on TBE incidence recorded in 108 NUTS-5 administrative units in high-risk areas over the period 1999–2012. Subsequently we applied the best fitting model to all Polish municipalities. Keeping the remaining variables constant, the predicted rate increased with the increase of air temperature over the previous 10–20 days, precipitation over the previous 20–30 days, in forestation, forest edge density, forest road density, and unemployment. The predicted rate decreased with increasing distance from forests. The map of predicted rates was consistent with the established risk areas. It predicted, however, high rates in provinces considered TBE-free. We recommend raising awareness among physicians working in the predicted high-risk areas and considering routine use of household animal surveys for risk mapping.

  15. Revisiting Recombination Signal in the Tick-Borne Encephalitis Virus: A Simulation Approach

    PubMed Central

    Johansson, Magnus; Norberg, Peter

    2016-01-01

    The hypothesis of wide spread reticulate evolution in Tick-Borne Encephalitis virus (TBEV) has recently gained momentum with several publications describing past recombination events involving various TBEV clades. Despite a large body of work, no consensus has yet emerged on TBEV evolutionary dynamics. Understanding the occurrence and frequency of recombination in TBEV bears significant impact on epidemiology, evolution, and vaccination with live vaccines. In this study, we investigated the possibility of detecting recombination events in TBEV by simulating recombinations at several locations on the virus’ phylogenetic tree and for different lengths of recombining fragments. We derived estimations of rates of true and false positive for the detection of past recombination events for seven recombination detection algorithms. Our analytical framework can be applied to any investigation dealing with the difficult task of distinguishing genuine recombination signal from background noise. Our results suggest that the problem of false positives associated with low detection P-values in TBEV, is more insidious than generally acknowledged. We reappraised the recombination signals present in the empirical data, and showed that reliable signals could only be obtained in a few cases when highly genetically divergent strains were involved, whereas false positives were common among genetically similar strains. We thus conclude that recombination among wild-type TBEV strains may occur, which has potential implications for vaccination with live vaccines, but that these events are surprisingly rare. PMID:27760182

  16. Tick-borne encephalitis carries a high risk of incomplete recovery in children.

    PubMed

    Fowler, Åsa; Forsman, Lea; Eriksson, Margareta; Wickström, Ronny

    2013-08-01

    To examine long-term outcome after tick-borne encephalitis (TBE) in children. In this population-based cohort, 55 children with TBE with central nervous system involvement infected during 2004-2008 were evaluated 2-7 years later using the Rivermead post-concussion symptoms questionnaire (n = 42) and the Behavior Rating Inventory of Executive Functioning for parents and teachers (n = 32, n = 22, respectively). General cognitive ability was investigated in a subgroup (n = 20) using the Wechsler Intelligence Scale for Children, 4th edition. At long-term follow-up, two-thirds of the children experienced residual problems, the main complaints being cognitive problems, headache, fatigue, and irritability. More than one-third of the children were reported by parents or teachers to have problems with executive functioning on the Behavior Rating Inventory of Executive Functioning, mainly in areas involving initiating and organizing activities and working memory. Children who underwent Wechsler Intelligence Scale for Children, 4th edition testing had a significantly lower working memory index compared with reference norms. A large proportion of children experience an incomplete recovery after TBE with central nervous system involvement. Cognitive problems in areas of executive function and working memory are the most prevalent. Even if mortality and severe sequelae are low in children after TBE, all children should be followed after TBE to detect cognitive deficits. Copyright © 2013 Mosby, Inc. All rights reserved.

  17. The analysis of some indices of immune response, DNA repair, and micronuclei content in cells from tick-borne encephalitis patients.

    PubMed

    Ilyinskikh, N N; Zagromov, E J; Lepekhin, A V

    1990-12-01

    Patients with tick-borne encephalitis (TBE) had higher counts of red blood cells (RBC) with micronuclei. The majority of patients revealed decreased capacity of blood lymphoid cells for DNA repair except those with a 2-wave pattern of the course of disease; in the latter, the DNA repair was significantly higher than in healthy donors. Patients with TBE revealed lower T-lymphocyte counts due to a decrease in the amount of T-helper cells (the level of T-suppressors was elevated). The intensity of antibody production against TBE virus was significantly enhanced by termination of disease in the majority of patients. The count of natural killer cells was decreased, particularly at the initial stage of disease. At the time of admission to hospital the counts of RBC with micronuclei and of T-helper cells were in reverse proportion. At the terminal stage of disease the same correlation was noted between RBC counts with micronuclei and the antibody level. At the onset of disease a direct correlation was noted between DNA repair and B-lymphocyte and T-helper counts. At the final stage of disease the reverse correlation between the activity of DNA-repair systems and T-suppressor counts was registered. Three months after discharge from hospital, the indices of micronuclear test, natural killer cell activity, and DNA repair returned to normal.

  18. A matrix metalloproteinase 9 (MMP9) gene single nucleotide polymorphism is associated with predisposition to tick-borne encephalitis virus-induced severe central nervous system disease.

    PubMed

    Barkhash, Andrey V; Yurchenko, Andrey A; Yudin, Nikolay S; Ignatieva, Elena V; Kozlova, Irina V; Borishchuk, Inessa A; Pozdnyakova, Larisa L; Voevoda, Mikhail I; Romaschenko, Aida G

    2018-05-01

    The progression of infectious diseases depends on causative agents, the environment and the host's genetic susceptibility. To date, human genetic susceptibility to tick-borne encephalitis (TBE) virus-induced disease has not been sufficiently studied. We have combined whole-exome sequencing with a candidate gene approach to identify genes that are involved in the development of predisposition to TBE in a Russian population. Initially, six exomes from TBE patients with severe central nervous system (CNS) disease and seven exomes from control individuals were sequenced. Despite the small sample size, two nonsynonymous single nucleotide polymorphisms (SNPs) were significantly associated with TBE virus-induced severe CNS disease. One of these SNPs is rs6558394 (G/A, Pro422Leu) in the scribbled planar cell polarity protein (SCRIB) gene and the other SNP is rs17576 (A/G, Gln279Arg) in the matrix metalloproteinase 9 (MMP9) gene. Subsequently, these SNPs were genotyped in DNA samples of 150 non-immunized TBE patients with different clinical forms of the disease from two cities and 228 control randomly selected samples from the same populations. There were no statistically significant differences in genotype and allele frequencies between the case and control groups for rs6558394. However, the frequency of the rs17576 G allele was significantly higher in TBE patients with severe CNS diseases such as meningo-encephalitis (43.5%) when compared with TBE patients with milder meningitis (26.3%; P = 0.01), as well as with the population control group (32.5%; P = 0.042). The results suggest that the MMP9 gene may affect genetic predisposition to TBE in a Russian population. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. A new hot spot for tick-borne encephalitis (TBE): A marked increase of TBE cases in France in 2016.

    PubMed

    Velay, Aurélie; Solis, Morgane; Kack-Kack, Wallys; Gantner, Pierre; Maquart, Marianne; Martinot, Martin; Augereau, Olivier; De Briel, Dominique; Kieffer, Pierre; Lohmann, Caroline; Poveda, Jean Dominique; Cart-Tanneur, Emmanuelle; Argemi, Xavier; Leparc-Goffart, Isabelle; de Martino, Sylvie; Jaulhac, Benoit; Raguet, Sophie; Wendling, Marie-Josée; Hansmann, Yves; Fafi-Kremer, Samira

    2018-01-01

    Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. In 2016, in Northeastern France, we faced a TBEV infection increase, leading to a warning from the Regional Health Agency. Here, we report the confirmed TBE cases diagnosed between January 2013 and December 2016, with particular emphasis on the year 2016. A total of 1643 blood and cerebrospinal fluid (CSF) samples from everywhere in France, corresponding to 1460 patients, were prospectively tested for anti-TBEV-specific IgM and IgG antibodies by ELISA. Additional 39 blood and CSF samples from patients with suspected Lyme neuroborreliosis were retrospectively investigated. The TBEV seropositivity rate was estimated to 5.89% and 54 patients were diagnosed as TBE-confirmed cases. A significant increase in TBE cases was observed during the year 2016 with 29 confirmed cases, instead of a mean of eight cases during the three previous years (p=0.0006). Six imported cases and 48 autochthonous cases, located in the Alsace region (n=43) and in the Alpine region (n=5) were reported. Forty-six patients experienced neurological impairment. Nine patients showed an incomplete recovery at last follow-up (from 15days to eight months post-infection). TBE diagnosis was performed earlier for patients taken in charge in the Alsace region than those hospitalized elsewhere in France (p=0.0087). Among the 39 patients with suspected Lyme neuroborreliosis retrospectively investigated, one showed a TBEV recent infection. The TBE increase that occurred in France in 2016 highlights the need to improve our knowledge about the true burden of TBEV infection and subsequent long-term outcomes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America.

    PubMed

    Hermance, Meghan E; Thangamani, Saravanan

    2017-07-01

    Powassan virus (POWV, Flaviviridae) is the only North American member of the tick-borne encephalitis serogroup of flaviviruses. It is transmitted to small- and medium-sized mammals by Ixodes scapularis, Ixodes cookei, and several other Ixodes tick species. Humans become infected with POWV during spillover transmission from the natural transmission cycles. In humans, POWV is the causative agent of a severe neuroinvasive illness with 50% of survivors displaying long-term neurological sequelae. POWV was recognized as a human pathogen in 1958 when a young boy died of severe encephalitis in Powassan, Ontario, and POWV was isolated from the brain autopsy of this case. Two distinct genetic lineages of POWV are now recognized: POWV (lineage I) and deer tick virus (lineage II). Since the index case in 1958, over 100 human cases of POWV have been reported, with an apparent rise in disease incidence in the past 16 years. This recent increase in cases may represent a true emergence of POWV in regions where the tick vector species are prevalent, or it could represent an increase in POWV surveillance and diagnosis. In the past 5 years, both basic and applied research for POWV disease has intensified, including phylogenetic studies, field surveillance, case studies, and animal model development. This review provides an overview of POWV, including the epidemiology, transmission, clinical disease, and diagnosis of POWV infection. Recent research developments and future priorities with regard to the disease are emphasized.

  1. Powassan Virus: An Emerging Arbovirus of Public Health Concern in North America

    PubMed Central

    Hermance, Meghan E.

    2017-01-01

    Abstract Powassan virus (POWV, Flaviviridae) is the only North American member of the tick-borne encephalitis serogroup of flaviviruses. It is transmitted to small- and medium-sized mammals by Ixodes scapularis, Ixodes cookei, and several other Ixodes tick species. Humans become infected with POWV during spillover transmission from the natural transmission cycles. In humans, POWV is the causative agent of a severe neuroinvasive illness with 50% of survivors displaying long-term neurological sequelae. POWV was recognized as a human pathogen in 1958 when a young boy died of severe encephalitis in Powassan, Ontario, and POWV was isolated from the brain autopsy of this case. Two distinct genetic lineages of POWV are now recognized: POWV (lineage I) and deer tick virus (lineage II). Since the index case in 1958, over 100 human cases of POWV have been reported, with an apparent rise in disease incidence in the past 16 years. This recent increase in cases may represent a true emergence of POWV in regions where the tick vector species are prevalent, or it could represent an increase in POWV surveillance and diagnosis. In the past 5 years, both basic and applied research for POWV disease has intensified, including phylogenetic studies, field surveillance, case studies, and animal model development. This review provides an overview of POWV, including the epidemiology, transmission, clinical disease, and diagnosis of POWV infection. Recent research developments and future priorities with regard to the disease are emphasized. PMID:28498740

  2. Nonspecific Bacterial Flora Isolated from the Body Surface and Inside Ixodes ricinus Ticks.

    PubMed

    Okła, Hubert; Sosnowska, Malwina; Jasik, Krzysztof P; Słodki, Jan; Wojtyczka, Robert D

    2012-09-28

    Ixodes ricinus and other representatives of the order Ixodida are vectors of typical pathogens: Borrelia burgdorferi sensu lato, Anaplasma phagocytophilium, Babesia spp., a tick-borne encephalitis virus, and other microorganisms which are important from a medical and veterinary point of view. The presented study focuses on the verification of nonspecific bacterial flora of I. ricinus. We analyzed ticks collected in a forest region in Silesia, an industrial district in Poland. Methods of classical microbiology and biochemical assays (API 20 NE test, API Staph test and MICRONAUT System) were used for isolation and identification of microorganisms living on the body surface of I. ricinus and inside ticks. The results show the presence of various bacteria on the surface and inside ticks' bodies. During the study, we isolated Acinetobacter lwoffi, Pseudomonas fluorescens, Aeromonas hydrophila, Achromobacter denitrificans, Alcaligenes faecalis, Stenotrophomonas maltophilia, Pseudomonas oryzihabitans, Micrococcus spp., Kocuria varians, Staphylococcus lentus, Kocuria kristinae, Streptococcus pneumoniae, Rhizobium radiobacter, Staphylococcus xylosus. Majority of the isolated species are non-pathogenic environmental microorganisms, but some of the isolated bacterial strains could cause severe infections.

  3. Images in Health Surveillance: Tickborne Disease Vectors and Lyme Disease Clinical Diagnosis

    DTIC Science & Technology

    2012-05-01

    Powassan virus encephalitis, babesiosis, and Colorado tick fever. Tick bites are also a mode of transmission for tularemia and Q fever. 15. SUBJECT...anaplasmosis, Powassan virus encephalitis, babesiosis, and Colorado tick fever. Tick bites are also a mode of trans- mission for tularemia and Q...east- ern and central U.S. and in limited areas on the Pacifi c Coast (Figure 5).4 It is the major vector of RMSF and can also trans- mit tularemia

  4. The Relationship between the Structure of the Tick-Borne Encephalitis Virus Strains and Their Pathogenic Properties

    PubMed Central

    Belikov, Sergei I.; Kondratov, Ilya G.; Potapova, Ulyana V.; Leonova, Galina N.

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is transmitted to vertebrates by taiga or forest ticks through bites, inducing disease of variable severity. The reasons underlying these differences in the severity of the disease are unknown. In order to identify genetic factors affecting the pathogenicity of virus strains, we have sequenced and compared the complete genomes of 34 Far-Eastern subtype (FE) TBEV strains isolated from patients with different disease severity (Primorye, the Russian Far East). We analyzed the complete genomes of 11 human pathogenic strains isolated from the brains of dead patients with the encephalitic form of the disease (Efd), 4 strains from the blood of patients with the febrile form of TBE (Ffd), and 19 strains from patients with the subclinical form of TBE (Sfd). On the phylogenetic tree, pathogenic Efd strains formed two clusters containing the prototype strains, Senzhang and Sofjin, respectively. Sfd strains formed a third separate cluster, including the Oshima strain. The strains that caused the febrile form of the disease did not form a separate cluster. In the viral proteins, we found 198 positions with at least one amino acid residue substitution, of which only 17 amino acid residue substitutions were correlated with the variable pathogenicity of these strains in humans and they authentically differed between the groups. We considered the role of each amino acid substitution and assumed that the deletion of 111 amino acids in the capsid protein in combination with the amino acid substitutions R16K and S45F in the NS3 protease may affect the budding process of viral particles. These changes may be the major reason for the diminished pathogenicity of TBEV strains. We recommend Sfd strains for testing as attenuation vaccine candidates. PMID:24740396

  5. [The phenomenon of antigenic defectiveness in naturally circulating strains of the tick-borne encephalitis virus and its possible connection to seronegative forms of the disease].

    PubMed

    Pogodina, V V; Bochkova, N G; Dzhivanian, T I; Levina, L S; Karganova, G G; Riasova, R A; Sergeeva, V A; Lashkevich, V A

    1992-01-01

    Ten strains of tick-borne encephalitis (TBE) virus isolated from single specimens of I. persulcatus ticks were studied. The strains were divided into antigenically complete (AC) and antigenically defective (AD), depending on the presence or absence of some virus antigens in concentrated virus preparations, characteristics in rocket immune electrophoresis (RIEP), rate and intensity of humoral immune response in monkeys and rabbits, and plaque size in SPEV cell culture. The AC-strain markers include high activities of precipitating, hemagglutinating (HA), and complement-fixing (CF) antigens, formation of precipitates moving in rocket shape towards anode and cathode in RIEP, rapid development of antihemagglutinins and virus-neutralizing antibodies, large plaques (3-5 mm). The AD variants are characterized by the lack of HA and precipitating activity, low titres of CF antigen, slow and poor immune response, the lack of cathode precipitate "rocket", very small plaques. The antigenic defectiveness is transitory and shows in early passages; after 10-11 passages in SPEV cell cultures or in white mice, transformation AD----AC occurs. A transformed strain is neutralized, like standard TBE strains, by blood sera of a typical patient with poliomyelitis-like form of TBE. Examinations of blood sera from the population of an endemic zone (Yaroslavl Province) and 67 TBE patients (Kurgan Province) demonstrated the association of AC and AD variants with the formation of immune portion of the population and TBE etiology. Cases of the disease confirmed by seroconversion in HI with commercial diagnosticum are associated with AC variants, whereas AD variants are associated with those TBE cases which are difficult to diagnose using the commercial diagnosticum.

  6. Spinal Cord Ventral Horns and Lymphoid Organ Involvement in Powassan Virus Infection in a Mouse Model

    PubMed Central

    Santos, Rodrigo I.; Hermance, Meghan E.; Gelman, Benjamin B.; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) belongs to the family Flaviviridae and is a member of the tick-borne encephalitis serogroup. Transmission of POWV from infected ticks to humans has been documented in the USA, Canada, and Russia, causing fatal encephalitis in 10% of human cases and significant neurological sequelae in survivors. We used C57BL/6 mice to investigate POWV infection and pathogenesis. After footpad inoculation, infected animals exhibited rapid disease progression and 100% mortality. Immunohistochemistry and immunofluorescence revealed a very strong neuronal tropism of POWV infection. The central nervous system infection appeared as a meningoencephalitis with perivascular mononuclear infiltration and microglial activation in the brain, and a poliomyelitis-like syndrome with high level of POWV antigen at the ventral horn of the spinal cord. Pathological studies also revealed substantial infection of splenic macrophages by POWV, which suggests that the spleen plays a more important role in pathogenesis than previously realized. This report provides a detailed description of the neuroanatomical distribution of the lesions produced by POWV infection in C57BL/6 mice. PMID:27529273

  7. Spinal Cord Ventral Horns and Lymphoid Organ Involvement in Powassan Virus Infection in a Mouse Model.

    PubMed

    Santos, Rodrigo I; Hermance, Meghan E; Gelman, Benjamin B; Thangamani, Saravanan

    2016-08-12

    Powassan virus (POWV) belongs to the family Flaviviridae and is a member of the tick-borne encephalitis serogroup. Transmission of POWV from infected ticks to humans has been documented in the USA, Canada, and Russia, causing fatal encephalitis in 10% of human cases and significant neurological sequelae in survivors. We used C57BL/6 mice to investigate POWV infection and pathogenesis. After footpad inoculation, infected animals exhibited rapid disease progression and 100% mortality. Immunohistochemistry and immunofluorescence revealed a very strong neuronal tropism of POWV infection. The central nervous system infection appeared as a meningoencephalitis with perivascular mononuclear infiltration and microglial activation in the brain, and a poliomyelitis-like syndrome with high level of POWV antigen at the ventral horn of the spinal cord. Pathological studies also revealed substantial infection of splenic macrophages by POWV, which suggests that the spleen plays a more important role in pathogenesis than previously realized. This report provides a detailed description of the neuroanatomical distribution of the lesions produced by POWV infection in C57BL/6 mice.

  8. Disease Risk in a Dynamic Environment: The Spread of Tick-Borne Pathogens in Minnesota, USA

    PubMed Central

    Robinson, Stacie J.; Neitzel, David F.; Moen, Ronald A.; Craft, Meggan E.; Hamilton, Karin E.; Johnson, Lucinda B.; Mulla, David J.; Munderloh, Ulrike G.; Redig, Patrick T.; Smith, Kirk E.; Turner, Clarence L.; Umber, Jamie K.; Pelican, Katharine M.

    2015-01-01

    As humans and climate change alter the landscape, novel disease risk scenarios emerge. Understanding the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease threats in a dynamic environment. Tick-borne diseases present an important public health concern and incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-borne diseases includes strong ties with environmental factors that influence host availability, vector abundance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest communities predict rising risk of tick-borne disease. PMID:25281302

  9. Disease risk in a dynamic environment: the spread of tick-borne pathogens in Minnesota, USA.

    PubMed

    Robinson, Stacie J; Neitzel, David F; Moen, Ronald A; Craft, Meggan E; Hamilton, Karin E; Johnson, Lucinda B; Mulla, David J; Munderloh, Ulrike G; Redig, Patrick T; Smith, Kirk E; Turner, Clarence L; Umber, Jamie K; Pelican, Katharine M

    2015-03-01

    As humans and climate change alter the landscape, novel disease risk scenarios emerge. Understanding the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease threats in a dynamic environment. Tick-borne diseases present an important public health concern and incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-borne diseases includes strong ties with environmental factors that influence host availability, vector abundance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest communities predict rising risk of tick-borne disease.

  10. The prevalence of Anaplasma phagocytophilum in questing Ixodes ricinus ticks in SW Poland.

    PubMed

    Kiewra, Dorota; Zaleśny, Grzegorz; Czułowska, Aleksandra

    2014-01-01

    Ticks constitute important vectors of human and animal pathogens. Besides the Lyme borreliosis and tick-borne encephalitis, other pathogens such as Babesia spp., Rickettsia spp., and Anaplasma phagocytophilum, are of increasing public health interest. In Poland, as in other European countries, Ixodes ricinus, the most prevalent tick species responsible for the majority of tick bites in humans, is the main vector of A. phagocytophilum. The aim of the study was to estimate the infection level of I. ricinus with A. phagocytophilum in selected districts, not previously surveyed for the presence of this agent. Sampling of questing ticks was performed in 12 forested sites, located in four districts (Legnica, Milicz, Lubań, and Oława) in SW Poland. Altogether, 792 ticks (151 females, 101 males, and 540 nymphs) representing I. ricinus were checked for the presence of A. phagocytophilum. The average infection level was 4.3%, with higher rate reported for adult ticks. The highest percentage of infected adults was observed in Milicz (17.4%) and the lowest in Oława (6.8%). The abundance of questing I. ricinus in all examined sites as well as the infection with A. phagocytophilum indicate for the first time the risk for HGA transmission in SW Poland.

  11. Development and Validation of a Serologic Test Panel for Detection of Powassan Virus Infection in U.S. Patients Residing in Regions Where Lyme Disease Is Endemic.

    PubMed

    Thomm, Angela M; Schotthoefer, Anna M; Dupuis, Alan P; Kramer, Laura D; Frost, Holly M; Fritsche, Thomas R; Harrington, Yvette A; Knox, Konstance K; Kehl, Sue C

    2018-01-01

    Powassan virus (POWV) is an emerging tick-borne arbovirus presenting a public health threat in North America. POWV lineage II, also known as deer tick virus, is the strain of the virus most frequently found in Ixodes scapularis ticks and is implicated in most cases of POWV encephalitis in the United States. Currently, no commercial tests are available to detect POWV exposure in tick-borne disease (TBD) patients. We describe here the development and analytical validation of a serologic test panel to detect POWV infections. The panel uses an indirect enzyme immunoassay (EIA) to screen. EIA-positive samples reflex to a laboratory-developed, POWV-specific immunofluorescence assay (IFA). The analytical sensitivity of the test panel was 89%, and the limit of detection was a plaque reduction neutralization test (PRNT) titer of 1:20. The analytical specificity was 100% for the IgM assay and 65% for the IgG assay when heterologous-flavivirus-positive samples were tested. On samples collected from regions where Lyme disease is endemic, seroprevalence for POWV in TBD samples was 9.4% (10 of 106) versus 2% when tested with non-TBD samples (2 of 100, P = 0.034). No evidence of POWV infection was seen in samples collected from a region where Lyme disease was not endemic (0 of 22). This test panel provides a sensitive and specific platform for detecting a serologic response to POWV early in the course of infection when neutralizing antibodies may not be detectable. Combined with clinical history, the panel is an effective tool for identifying acute POWV infection. IMPORTANCE Approximately 100 cases of POWV disease were reported in the United States over the past 10 years. Most cases have occurred in the Northeast (52) and Great Lakes (45) regions (https://www.cdc.gov/powassan/statistics.html). The prevalence of POWV in ticks and mammals is increasing, and POWV poses an increasing threat in a greater geographical range. In areas of the Northeast and Midwest where Lyme disease is endemic, POWV testing is recommended for patients with a recent tick bite, patients with Lyme disease who have been treated with antibiotics, or patients with a tick exposure who have tested negative for Lyme disease or other tick-borne illnesses and have persistent symptoms consistent with posttreatment Lyme disease. Testing could also benefit patients with tick exposure and unexplained neurologic symptoms and chronic fatigue syndrome (CFS) patients with known tick exposure. Until now, diagnostic testing for Powassan virus has not been commercially available and has been limited to patients presenting with severe, neurologic complications. The lack of routine testing for Powassan virus in patients with suspected tick-borne disease means that little information is available regarding the overall prevalence of the virus and the full spectrum of clinical symptoms associated with infection. As Ixodes scapularis is the tick vector for Powassan virus and multiple other tick-borne pathogens, including the Lyme disease bacterium, Borrelia burgdorferi , the clinical presentations and long-term outcomes of Powassan virus infection and concurrent infection with other tick-borne disease pathogens remain unknown.

  12. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  13. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE PAGES

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.; ...

    2014-01-01

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  14. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect.

    PubMed

    Dantas-Torres, Filipe

    2015-12-01

    We have killed wild animals for obtaining food and decimated forests for many reasons. Nowadays, we are burning fossil fuels as never before and even exploring petroleum in deep waters. The impact of these activities on our planet is now visible to the naked eye and the debate on climate change is warming up in scientific meetings and becoming a priority on the agenda of both scientists and policy decision makers. On the occasion of the Impact of Environmental Changes on Infectious Diseases (IECID) meeting, held in the 2015 in Sitges, Spain, I was invited to give a keynote talk on climate change, biodiversity, ticks and tick-borne diseases. The aim of the present article is to logically extend my rationale presented on the occasion of the IECID meeting. This article is not intended to be an exhaustive review, but an essay on climate change, biodiversity, ticks and tick-borne diseases. It may be anticipated that warmer winters and extended autumn and spring seasons will continue to drive the expansion of the distribution of some tick species (e.g., Ixodes ricinus) to northern latitudes and to higher altitudes. Nonetheless, further studies are advocated to improve our understanding of the complex interactions between landscape, climate, host communities (biodiversity), tick demography, pathogen diversity, human demography, human behaviour, economics, and politics, also considering all ecological processes (e.g., trophic cascades) and other possible interacting effects (e.g., mutual effects of increased greenhouse gas emissions and increased deforestation rates). The multitude of variables and interacting factors involved, and their complexity and dynamism, make tick-borne transmission systems beyond (current) human comprehension. That is, perhaps, the main reason for our inability to precisely predict new epidemics of vector-borne diseases in general.

  15. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect

    PubMed Central

    Dantas-Torres, Filipe

    2015-01-01

    We have killed wild animals for obtaining food and decimated forests for many reasons. Nowadays, we are burning fossil fuels as never before and even exploring petroleum in deep waters. The impact of these activities on our planet is now visible to the naked eye and the debate on climate change is warming up in scientific meetings and becoming a priority on the agenda of both scientists and policy decision makers. On the occasion of the Impact of Environmental Changes on Infectious Diseases (IECID) meeting, held in the 2015 in Sitges, Spain, I was invited to give a keynote talk on climate change, biodiversity, ticks and tick-borne diseases. The aim of the present article is to logically extend my rationale presented on the occasion of the IECID meeting. This article is not intended to be an exhaustive review, but an essay on climate change, biodiversity, ticks and tick-borne diseases. It may be anticipated that warmer winters and extended autumn and spring seasons will continue to drive the expansion of the distribution of some tick species (e.g., Ixodes ricinus) to northern latitudes and to higher altitudes. Nonetheless, further studies are advocated to improve our understanding of the complex interactions between landscape, climate, host communities (biodiversity), tick demography, pathogen diversity, human demography, human behaviour, economics, and politics, also considering all ecological processes (e.g., trophic cascades) and other possible interacting effects (e.g., mutual effects of increased greenhouse gas emissions and increased deforestation rates). The multitude of variables and interacting factors involved, and their complexity and dynamism, make tick-borne transmission systems beyond (current) human comprehension. That is, perhaps, the main reason for our inability to precisely predict new epidemics of vector-borne diseases in general. PMID:26835253

  16. Prevention of vector transmitted diseases with clove oil insect repellent.

    PubMed

    Shapiro, Rochel

    2012-08-01

    Vector repellent is one element in the prevention of vector-borne diseases. Families that neglect protecting their children against vectors risk their children contracting illnesses such as West Nile virus, eastern equine encephalitis, Lyme disease, malaria, dengue hemorrhagic fever, yellow fever, babesiosis, Crimean-Congo hemorrhagic fever, Rocky Mountain spotted fever, Southern tick-associated rash illness, ehrlichiosis, tick-borne relapsing fever, tularemia, and other insect and arthropod related diseases (CDC, 2011). Identification of families at risk includes screening of the underlying basis for reluctance to apply insect repellent. Nurses and physicians can participate in a positive role by assisting families to determine the proper prophylaxis by recommending insect repellent choices that are economical, safe, and easy to use. A holistic alternative might include the suggestion of clove oil in cases where families might have trepidations regarding the use of DEET on children. This article will explore the safety and effectiveness of clove oil and its use as an insect repellent. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Spatial disaggregation of tick occurrence and ecology at a local scale as a preliminary step for spatial surveillance of tick-borne diseases: general framework and health implications in Belgium.

    PubMed

    Obsomer, Valerie; Wirtgen, Marc; Linden, Annick; Claerebout, Edwin; Heyman, Paul; Heylen, Dieter; Madder, Maxime; Maris, Jo; Lebrun, Maude; Tack, Wesley; Lempereur, Laetitia; Hance, Thierry; Van Impe, Georges

    2013-06-22

    The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control. In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities. Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal. This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems.

  18. Epidemiology of the arthropod-borne encephalitides*

    PubMed Central

    Miles, J. A. R.

    1960-01-01

    Since the recognition that louping-ill, known for well over 100 years as an epizootic disease of sheep in Scotland, was caused by a virus transmitted by arthropods, many other arthropod-borne viruses capable of causing encephalitis in domestic animals or man have been discovered. The author reviews here the knowledge at present available on these viruses, originally termed ”arthropod-borne encephalitides viruses” but now often referred to as ”arbor viruses”. In this discussion of the host and vector relationships of the two broad groups of arbor viruses — the mosquito-borne and the tick-borne—and of the distribution, epidemiology and control of the various diseases they cause, the author includes an outline of the types of investigation likely to provide the most useful information, stressing in this connexion the value of ecological surveys. PMID:14422369

  19. Roadside ecology and epidemiology of tick-borne diseases.

    PubMed

    Haemig, Paul D; Waldenstrom, Jonas; Olsen, Bjorn

    2008-01-01

    When humans, pets and livestock walk along roads, they may encounter questing ticks and tick-borne pathogens. A new field of environmental science called road ecology can help researchers study the complex epidemiology of tick-borne diseases in the unique roadside environment. This paper reviews some of the important ways that roads alter the distribution, abundance and behaviour of wildlife species that are involved in the enzootic cycles of tick-borne diseases. Compared to the surrounding landscape, roadways often constitute a different environment and hence there is no assurance that disease risk along roads will be the same as in the adjacent landscape, or that disease control measures taken in the surrounding landscape will work in the adjacent roadway. Since roadways have their own special ecological conditions, are used extensively by the human populace and play strategic roles in community security, we believe that roadways should be one of the habitats where tick-borne diseases are studied. It is amazing that at this late period of human history, epidemiological research along such important corridors has been almost completely ignored.

  20. Fatal Deer Tick Virus Infection in Maine.

    PubMed

    Cavanaugh, Catherine E; Muscat, Paul L; Telford, Sam R; Goethert, Heidi; Pendlebury, William; Elias, Susan P; Robich, Rebecca; Welch, Margret; Lubelczyk, Charles B; Smith, Robert P

    2017-09-15

    Deer tick virus (DTV), a genetic variant (lineage II) of Powassan virus, is a rare cause of encephalitis in North America. We report a fatal case of DTV encephalitis following a documented bite from an Ixodes scapularis tick and the erythema migrans rash associated with Lyme disease. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Potential impact of climate change on emerging vector-borne and other infections in the UK.

    PubMed

    Baylis, Matthew

    2017-12-05

    Climate is one of several causes of disease emergence. Although half or more of infectious diseases are affected by climate it appears to be a relatively infrequent cause of human disease emergence. Climate mostly affects diseases caused by pathogens that spend part of their lifecycle outside of the host, exposed to the environment. The most important routes of transmission of climate sensitive diseases are by arthropod (insect and tick) vectors, in water and in food. Given the sensitivity of many diseases to climate, it is very likely that at least some will respond to future climate change. In the case of vector-borne diseases this response will include spread to new areas. Several vector-borne diseases have emerged in Europe in recent years; these include vivax malaria, West Nile fever, dengue fever, Chikungunya fever, leishmaniasis, Lyme disease and tick-borne encephalitis. The vectors of these diseases are mosquitoes, sand flies and ticks. The UK has endemic mosquito species capable of transmitting malaria and probably other pathogens, and ticks that transmit Lyme disease. The UK is also threatened by invasive mosquito species known to be able to transmit West Nile, dengue, chikungunya and Zika, and sand flies that spread leishmaniasis. Warmer temperatures in the future will increase the suitability of the UK's climate for these invasive species, and increase the risk that they may spread disease. While much attention is on invasive species, it is important to recognize the threat presented by native species too. Proposed actions to reduce the future impact of emerging vector-borne diseases in the UK include insect control activity at points of entry of vehicles and certain goods, wider surveillance for mosquitoes and sand flies, research into the threat posed by native species, increased awareness of the medical profession of the threat posed by specific diseases, regular risk assessments, and increased preparedness for the occurrence of a disease emergency.

  2. Microbial Invasion vs. Tick Immune Regulation.

    PubMed

    Sonenshine, Daniel E; Macaluso, Kevin R

    2017-01-01

    Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins, fibrinogen-related lectins and convertase factors (Hajdušek et al., 2013). Ticks also express reactive oxygen species (ROS) as well as glutathione-S-transferase, superoxide dismutase, heat shock proteins and even protease inhibitors that kill or inhibit microbes. Nevertheless, many tick-borne microorganisms are able to evade the tick's innate immune system and survive within the tick's body. The examples that follow describe some of the many different strategies that have evolved to enable ticks to transmit the agents of human and/or animal disease.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S; Jaing, C

    The goal of this project is to develop forensic genotyping assays for select agent viruses, addressing a significant capability gap for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the Taqmanmore » signature development for South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.« less

  4. Development and Validation of a Serologic Test Panel for Detection of Powassan Virus Infection in U.S. Patients Residing in Regions Where Lyme Disease Is Endemic

    PubMed Central

    Thomm, Angela M.; Schotthoefer, Anna M.; Dupuis, Alan P.; Kramer, Laura D.; Frost, Holly M.; Fritsche, Thomas R.; Harrington, Yvette A.; Knox, Konstance K.

    2018-01-01

    ABSTRACT Powassan virus (POWV) is an emerging tick-borne arbovirus presenting a public health threat in North America. POWV lineage II, also known as deer tick virus, is the strain of the virus most frequently found in Ixodes scapularis ticks and is implicated in most cases of POWV encephalitis in the United States. Currently, no commercial tests are available to detect POWV exposure in tick-borne disease (TBD) patients. We describe here the development and analytical validation of a serologic test panel to detect POWV infections. The panel uses an indirect enzyme immunoassay (EIA) to screen. EIA-positive samples reflex to a laboratory-developed, POWV-specific immunofluorescence assay (IFA). The analytical sensitivity of the test panel was 89%, and the limit of detection was a plaque reduction neutralization test (PRNT) titer of 1:20. The analytical specificity was 100% for the IgM assay and 65% for the IgG assay when heterologous-flavivirus-positive samples were tested. On samples collected from regions where Lyme disease is endemic, seroprevalence for POWV in TBD samples was 9.4% (10 of 106) versus 2% when tested with non-TBD samples (2 of 100, P = 0.034). No evidence of POWV infection was seen in samples collected from a region where Lyme disease was not endemic (0 of 22). This test panel provides a sensitive and specific platform for detecting a serologic response to POWV early in the course of infection when neutralizing antibodies may not be detectable. Combined with clinical history, the panel is an effective tool for identifying acute POWV infection. IMPORTANCE Approximately 100 cases of POWV disease were reported in the United States over the past 10 years. Most cases have occurred in the Northeast (52) and Great Lakes (45) regions (https://www.cdc.gov/powassan/statistics.html). The prevalence of POWV in ticks and mammals is increasing, and POWV poses an increasing threat in a greater geographical range. In areas of the Northeast and Midwest where Lyme disease is endemic, POWV testing is recommended for patients with a recent tick bite, patients with Lyme disease who have been treated with antibiotics, or patients with a tick exposure who have tested negative for Lyme disease or other tick-borne illnesses and have persistent symptoms consistent with posttreatment Lyme disease. Testing could also benefit patients with tick exposure and unexplained neurologic symptoms and chronic fatigue syndrome (CFS) patients with known tick exposure. Until now, diagnostic testing for Powassan virus has not been commercially available and has been limited to patients presenting with severe, neurologic complications. The lack of routine testing for Powassan virus in patients with suspected tick-borne disease means that little information is available regarding the overall prevalence of the virus and the full spectrum of clinical symptoms associated with infection. As Ixodes scapularis is the tick vector for Powassan virus and multiple other tick-borne pathogens, including the Lyme disease bacterium, Borrelia burgdorferi, the clinical presentations and long-term outcomes of Powassan virus infection and concurrent infection with other tick-borne disease pathogens remain unknown. PMID:29359181

  5. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA.

    PubMed

    Miorin, Lisa; Romero-Brey, Inés; Maiuri, Paolo; Hoppe, Simone; Krijnse-Locker, Jacomine; Bartenschlager, Ralf; Marcello, Alessandro

    2013-06-01

    Flavivirus replication is accompanied by the rearrangement of cellular membranes that may facilitate viral genome replication and protect viral components from host cell responses. The topological organization of viral replication sites and the fate of replicated viral RNA are not fully understood. We exploited electron microscopy to map the organization of tick-borne encephalitis virus (TBEV) replication compartments in infected cells and in cells transfected with a replicon. Under both conditions, 80-nm vesicles were seen within the lumen of the endoplasmic reticulum (ER) that in infected cells also contained virions. By electron tomography, the vesicles appeared as invaginations of the ER membrane, displaying a pore that could enable release of newly synthesized viral RNA into the cytoplasm. To track the fate of TBEV RNA, we took advantage of our recently developed method of viral RNA fluorescent tagging for live-cell imaging combined with bleaching techniques. TBEV RNA was found outside virus-induced vesicles either associated to ER membranes or free to move within a defined area of juxtaposed ER cisternae. From our results, we propose a biologically relevant model of the possible topological organization of flavivirus replication compartments composed of replication vesicles and a confined extravesicular space where replicated viral RNA is retained. Hence, TBEV modifies the ER membrane architecture to provide a protected environment for viral replication and for the maintenance of newly replicated RNA available for subsequent steps of the virus life cycle.

  6. Identification and analysis of host proteins that interact with the 3'-untranslated region of tick-borne encephalitis virus genomic RNA.

    PubMed

    Muto, Memi; Kamitani, Wataru; Sakai, Mizuki; Hirano, Minato; Kobayashi, Shintaro; Kariwa, Hiroaki; Yoshii, Kentaro

    2018-04-02

    Tick-borne encephalitis virus (TBEV) causes severe neurological disease, but the pathogenetic mechanism is unclear. The conformational structure of the 3'-untranslated region (UTR) of TBEV is associated with its virulence. We tried to identify host proteins interacting with the 3'-UTR of TBEV. Cellular proteins of HEK293T cells were co-precipitated with biotinylated RNAs of the 3'-UTR of low- and high-virulence TBEV strains and subjected to mass spectrometry analysis. Fifteen host proteins were found to bind to the 3'-UTR of TBEV, four of which-cold shock domain containing-E1 (CSDE1), spermatid perinuclear RNA binding protein (STRBP), fragile X mental retardation protein (FMRP), and interleukin enhancer binding factor 3 (ILF3)-bound specifically to that of the low-virulence strain. An RNA immunoprecipitation and pull-down assay confirmed the interactions of the complete 3'-UTRs of TBEV genomic RNA with CSDE1, FMRP, and ILF3. Partial deletion of the stem loop (SL) 3 to SL 5 structure of the variable region of the 3'-UTR did not affect interactions with the host proteins, but the interactions were markedly suppressed by deletion of the complete SL 3, 4, and 5 structures, as in the high-virulence TBEV strain. Further analysis of the roles of host proteins in the neurologic pathogenicity of TBEV is warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Comparison of three commercial IgG and IgM ELISA kits for the detection of tick-borne encephalitis virus antibodies.

    PubMed

    Ackermann-Gäumann, Rahel; Tritten, Marie-Lise; Hassan, Mona; Lienhard, Reto

    2018-05-01

    Tick-borne encephalitis (TBE) is endemic in many parts of Europe and Asia. The diagnosis of this disease is essentially based on the demonstration of specific antibodies. For reasons of simplicity, automatization and quick availability of test results, enzyme-linked immunosorbent assays (ELISAs) are the method of choice for serological diagnosis of TBE. Here, we evaluated three commercially available anti-TBEV IgG and IgM ELISAs using 251 serum samples: the SERION ELISA classic FSME Virus/TBE Virus IgG and IgM kit (Virion\\Serion), the RIDASCREEN ® FSME/TBE IgG and IgM kit (R-Biopharm), and the anti-FSME/TBE virus ELISA "Vienna" IgG/anti-FSME/TBE virus ELISA IgM kit (Euroimmun). In total, discrepant test results for IgG and/or IgM were observed for 37/251 (14.7 %) of tested samples; differences were statistically significant. Reference values defined by serum neutralization test (SNT, n = 25) or results provided by EQA organizers (n = 2) were established for a subset of samples. In relation to these values, false-positive results were observed mainly for Euroimmun Vienna IgG and RIDASCREEN IgG, whereas false-negative results were primarily observed for Virion\\Serion IgG and RIDASCREEN IgM kits. In routine diagnostics, specificity problems are of major relevance and may be addressed by analyzing the respective samples using SNT. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Compliance with vaccination against tick-borne encephalitis virus in Germany.

    PubMed

    Jacob, L; Kostev, K

    2017-07-01

    The goal of this study was to analyse patients' compliance with vaccination against tick-borne encephalitis (TBE) virus in Germany. The present study included 7266 patients from 638 general practices and 4194 patients from 114 paediatric practices. Patients were included if they had received the first dose of one of two vaccines against TBE virus (FSME-Immune ® and Encepur ® ). The immunization schedule of these vaccines consisted of three injections. Patients were considered compliant if they received the second and third doses at the recommended time or within a period of ±25% around the recommended time (tolerance period). Of the recruited patients, 28% received both the second and the third injections within the tolerance period. Individuals treated in paediatric practices had a higher likelihood of receiving vaccine doses within the tolerance period compared with individuals treated in general practices (OR 2.15; 95% CI 1.92-2.41). Moreover, patients <18 years old were more likely to be compliant than patients >65 years old (OR 1.22; 95% CI 1.02-1.46), whereas patients aged between 18 and 30 years were least likely to be compliant (OR 0·77; 95% CI 0.61-0.96). Compliance with vaccination against the TBE virus was low. This compliance was significantly associated with age and the type of practices in which patients were treated. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Systematic literature review comparing rapid 3-dose administration of the GSK tick-borne encephalitis vaccine with other primary immunization schedules.

    PubMed

    Galgani, Ilaria; Bunge, Eveline M; Hendriks, Lisa; Schludermann, Christopher; Marano, Cinzia; De Moerlooze, Laurence

    2017-09-01

    Tick-borne encephalitis (TBE), which is endemic across large regions of Europe and Asia, is most effectively prevented through vaccination. Three-dose primary TBE vaccination schedules are either rapid (0,7,21-days) or conventional (0,28-84-days, 9-12-months). The second dose can also be administered at 14 days for faster priming and sero-protection). Areas covered: We used a three-step selection process to identify 21 publications comparing the immunogenicity and/or safety of different schedules. Expert commentary: Priming with two or three TBE vaccine doses was highly immunogenic. After conventional priming (0-28 days), 95% adults and ≥95% children had neutralization test (NT) titers ≥10 at 14 days post-dose-2 compared with 92% adults and 99% children at 21 days post-dose-3 (rapid schedule). Most subjects retained NT titers ≥10 at day 300. A single booster dose induced a strong immune response in all subjects irrespective of primary vaccination schedule or elapsed time since priming. GMT peaked at 42 days post-dose-1 (i.e., 21 days post-dose 3 [rapid-schedule], or 14-28 days post-dose-2 [conventional-schedule]), and declined thereafter. Adverse events were generally rare and declined with increasing doses. In the absence of data to recommend one particular schedule, the regimen choice will remain at the physician's discretion, based on patient constraints and availability.

  10. New genetic lineage within the Siberian subtype of tick-borne encephalitis virus found in Western Siberia, Russia.

    PubMed

    Tkachev, Sergey E; Chicherina, Galina S; Golovljova, Irina; Belokopytova, Polina S; Tikunov, Artem Yu; Zadora, Oksana V; Glupov, Victor V; Tikunova, Nina V

    2017-12-01

    Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, is a causative agent of a severe neurological disease. There are three main TBEV subtypes: the European (TBEV-Eu), Far Eastern (TBEV-FE), and Siberian (TBEV-Sib). Currently, three lineages within TBEV-Sib have been recorded. In this study, the genetic and biological characteristics of a new original strain, TBEV-2871, isolated in the Novosibirsk province of Western Siberia, Russia were investigated. The strain has low neuroinvasiveness in mice. Phylogenetic analysis demonstrated that TBEV-2871 belongs to TBEV-Sib, but does not cluster with any of the TBEV-Sib lineages. The TBEV-2871 strain has 88-89% nucleotide sequence identity with the other TBEV-Sib strains, 84-86% nucleotide sequence identity with the TBEV-FE and TBEV-Eu subtypes and is genetically close to the subtype division border. The TBEV-2871 polyprotein sequence includes 43 unique amino acid substitutions, 30 of which are recorded at positions that are conserved among all TBEV subtypes. Strain TBEV-2871 and two similar but not identical isolates found in Kemerovo province, Western Siberia are separated into a new lineage tentatively named Obskaya after the name of Ob riber, in the vicinity of which the TBEV-2871 was first found. A molecular evolution investigation demonstrated that within TBEV-Sib, the Obskaya lineage likely separated 1535years ago, which is even earlier than the Baltic lineage. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Presence of herpesvirus DNA in cerebrospinal fluid of patients with tick-borne encephalitis and enteroviral meningoencephalitis.

    PubMed

    Labská, Klára; Roubalová, Kateřina; Pícha, Dušan; Marešová, Vilma

    2015-07-01

    Reactivation of HHVs in the CNS due to inflammation has not been well described yet. The primary aim of this study was to investigate the frequency of HHV DNA detection in the cerebrospinal fluid (CSF) of immunocompetent patients with meningoencephalitis of other than HHV origin. The secondary aim of this study was to evaluate the impact of herpesvirus co-infection on the clinical course and patient outcome. Ninety-six patients with clinically and laboratory proven tick-borne encephalitis (TBE) and 77 patients with a confirmed diagnosis of enteroviral meningitis (EVM), along with a control group of 107 patients without evidence of inflammation in the CSF were retrospectively tested by nested PCR for the presence of DNA of the neurotropic herpesviruses HSV1, HSV2, VZV, and HHV6 in the CSF. The clinical course, laboratory tests, antiviral treatment, and neurological complications in a 6-month follow-up were compared between the groups positive or negative for HHV DNA in the CSF. HHV DNA was found in the CSF of 12 (6.9%) patients (6.3% and 7.8% in the TBE and EVM groups, respectively) and in 1 (0.9%) control patient. None of the patients had recent blisters or rash. The clinical course was comparably mild in all patients. No permanent neurological sequelae were observed. Only the CSF total protein level was significantly higher in HHV DNA-positive than in HHV-negative patients. © 2015 Wiley Periodicals, Inc.

  12. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study.

    PubMed

    Ai, Junhong; Xie, Zhengde; Liu, Gang; Chen, Zongbo; Yang, Yong; Li, Yuning; Chen, Jing; Zheng, Guo; Shen, Kunling

    2017-07-14

    In China, there were few studies about the pathogens of acute viral encephalitis and meningitis in children in recent years. The aims of this study were to characterize the etiology and prognosis of acute viral encephalitis and meningitis in Chinese children. This was a multicentre prospective study. Two hundred and sixty one viral encephalitis patients and 285 viral meningitis patients were enrolled. The mean age of viral encephalitis and meningitis were 5.88 ± 3.60 years and 6.39 ± 3.57 years, respectively. Real-time reverse transcription PCR and multiplex PCR were used to detect human enteroviruses and herpes viruses in cerebrospinal fluid (CSF) of patients with encephalitis or meningitis. The enzyme-linked immune absorbent assay (ELISA) was used for detecting IgM antibody against Japanese encephalitis virus (JEV) in CSF and against mumps virus, tick-borne encephalitis virus (TBEV), dengue virus and rubella virus in acute serum. The clinical and outcome data were collected during patients' hospitalization. The etiology of viral encephalitis was confirmed in 52.5% patients. The primary pathogen was human enteroviruses (27.7%) in viral encephalitis. The incidence of sequelae and the fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The etiology of viral meningitis was identified in 42.8% cases. The leading pathogen was also human enteroviruses (37.7%) in viral meningitis. The prognosis of viral meningitis was favorable with only 0.7% patients had neurological sequelae. Human enteroviruses were the leading cause both in acute viral encephalitis and viral meningitis in children. The incidence of sequelae and fatality rate of viral encephalitis with confirmed etiology were 7.5% and 0.8%, respectively. The prognosis of viral meningitis was favorable compared to viral encephalitis.

  13. Nucleotide sequencing and serological evidence that the recently recognized deer tick virus is a genotype of Powassan virus.

    PubMed

    Beasley, D W; Suderman, M T; Holbrook, M R; Barrett, A D

    2001-11-05

    Deer tick virus (DTV) is a recently recognized North American virus isolated from Ixodes dammini ticks. Nucleotide sequencing of fragments of structural and non-structural protein genes suggested that this virus was most closely related to the tick-borne flavivirus Powassan (POW), which causes potentially fatal encephalitis in humans. To determine whether DTV represents a new and distinct member of the Flavivirus genus of the family Flaviviridae, we sequenced the structural protein genes and 5' and 3' non-coding regions of this virus. In addition, we compared the reactivity of DTV and POW in hemagglutination inhibition tests with a panel of polyclonal and monoclonal antisera, and performed cross-neutralization experiments using anti-DTV antisera. Nucleotide sequencing revealed a high degree of homology between DTV and POW at both nucleotide (>80% homology) and amino acid (>90% homology) levels, and the two viruses were indistinguishable in serological assays and mouse neuroinvasiveness. On the basis of these results, we suggest that DTV should be classified as a genotype of POW virus.

  14. Emergence of tick-borne pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Ricketsia raoultii and Babesia microti) in the Kyiv urban parks, Ukraine.

    PubMed

    Didyk, Yuliya M; Blaňárová, Lucia; Pogrebnyak, Svyatoslav; Akimov, Igor; Peťko, Branislav; Víchová, Bronislava

    2017-02-01

    To date, only limited data about the presence of ticks and circulation of tick-borne pathogens in urban parks of Kyiv in northern Ukraine are available. In total, 767 ticks (696 Ixodes ricinus and 69 Dermacentor reticulatus) collected in seven urban parks and one suburban oak wood park in Kyiv were individually analyzed by the PCR assays. Tick-borne pathogens, namely spirochetes from Borrelia burgdorferi sensu lato complex, Anaplasma phagocytophilum, and Babesia microti, were detected in 11.1% of tested I. ricinus ticks. In total, 4% of I. ricinus ticks tested positive for the presence of B. burdorferi s.l. (Borrelia afzelii and Borrelia garinii), 5.2% for A. phagocytophilum, and Ba. microti was confirmed in 1.9% of examined ticks. Mixed infections were recorded in four DNA samples, representing the prevalence of 0.6%. One female and two I. ricinus nymphs were simultaneously infected with B. afzelii and A. phagocytophilum, and one female carried B. afzelii and Ba. microti. In addition, 10.1% of D. reticulatus ticks tested positive for Rickettsia raoultii. Identification of infectious agents and their diversity, assessment of the relative epidemiological importance and determination of the prevalence in questing ticks from central parts of the cities are crucial steps towards the tick-borne diseases surveillance in urban environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Ticks and Tickborne Diseases Affecting Military Personnel

    DTIC Science & Technology

    1989-09-01

    36 Rocky Mountain Spotted Fever ........................ 38 Boutonneuse Fever ...40 Siberian Tick Typhus ................................ 40 Tularemia ........................................... 41 Colorado Tick Fever ...42 Tickborne Relapsing Fever ........................... 43 Tickborne Encephalitis .............................. 43 Crimean

  16. Spatial disaggregation of tick occurrence and ecology at a local scale as a preliminary step for spatial surveillance of tick-borne diseases: general framework and health implications in Belgium

    PubMed Central

    2013-01-01

    Background The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control. Methods In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities. Results Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal. Conclusion This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems. PMID:23800283

  17. Animal models of highly pathogenic RNA viral infections: encephalitis viruses.

    PubMed

    Holbrook, Michael R; Gowen, Brian B

    2008-04-01

    The highly pathogenic RNA viruses that cause encephalitis include a significant number of emerging or re-emerging viruses that are also considered potential bioweapons. Many of these viruses, including members of the family Flaviviridae, the genus Alphavirus in the family Togaviridae, and the genus Henipavirus in the family Paramyxoviridae, circulate widely in their endemic areas, where they are transmitted by mosquitoes or ticks. They use a variety of vertebrate hosts, ranging from birds to bats, in their natural life cycle. As was discovered in the United States, the introduction of a mosquito-borne encephalitis virus such as West Nile virus can cause significant health and societal concerns. There are no effective therapeutics for treating diseases caused by any of these viruses and there is limited, if any, vaccine availability for most. In this review we provide a brief summary of the current status of animal models used to study highly pathogenic encephalitic RNA viruses for the development of antiviral therapeutics and vaccines.

  18. Constancy and diversity in the flavivirus fusion peptide.

    PubMed

    Seligman, Stephen J

    2008-02-14

    Flaviviruses include the mosquito-borne dengue, Japanese encephalitis, yellow fever and West Nile and the tick-borne encephalitis viruses. They are responsible for considerable world-wide morbidity and mortality. Viral entry is mediated by a conserved fusion peptide containing 16 amino acids located in domain II of the envelope protein E. Highly orchestrated conformational changes initiated by exposure to acidic pH accompany the fusion process and are important factors limiting amino acid changes in the fusion peptide that still permit fusion with host cell membranes in both arthropod and vertebrate hosts. The cell-fusing related agents, growing only in mosquitoes or insect cell lines, possess a different homologous peptide. Analysis of 46 named flaviviruses deposited in the Entrez Nucleotides database extended the constancy in the canonical fusion peptide sequences of mosquito-borne, tick-borne and viruses with no known vector to include more recently-sequenced viruses. The mosquito-borne signature amino acid, G104, was also found in flaviviruses with no known vector and with the cell-fusion related viruses. Despite the constancy in the canonical sequences in pathogenic flaviviruses, mutations were surprisingly frequent with a 27% prevalence of nonsynonymous mutations in yellow fever virus fusion peptide sequences, and 0 to 7.4% prevalence in the others. Six of seven yellow fever patients whose virus had fusion peptide mutations died. In the cell-fusing related agents, not enough sequences have been deposited to estimate reliably the prevalence of fusion peptide mutations. However, the canonical sequences homologous to the fusion peptide and the pattern of disulfide linkages in protein E differed significantly from the other flaviviruses. The constancy of the canonical fusion peptide sequences in the arthropod-borne flaviviruses contrasts with the high prevalence of mutations in most individual viruses. The discrepancy may be the result of a survival advantage accompanying sequence diversity (quasispecies) involving the fusion peptide. Limited clinical data with yellow fever virus suggest that the presence of fusion peptide mutants is not associated with a decreased case fatality rate. The cell-fusing related agents may have substantial differences from other flaviviruses in their mechanism of viral entry into the host cell.

  19. Characterization of tick-borne encephalitis (TBE) foci in Germany and Latvia (1997-2000).

    PubMed

    Süss, Jochen; Schrader, Christina; Abel, Ulrich; Bormane, Antra; Duks, Arnis; Kalnina, Vaira

    2002-06-01

    Knowledge concerning the prevalence of the tick-borne encephalitis virus (TBEV) in wild living tick populations is very important for understanding the epidemiology of the disease and for immuno prophylactic strategy. In Germany high and low risk areas of TBE exist. In the years 1997-2000, 533 autochthonous clinical TBE cases were recorded, in the high-risk areas of Bavaria and Baden-Wuerttemberg 140 and 363, and in the low risk areas in Hesse (Odenwald) and Rhineland-Palatinate 22 and 8, respectively. Corresponding to these case reports we have measured the virus prevalence in free living ticks in these four risk areas and compared these findings with the situation in high-risk areas in Latvia. In the years 1997-2000, 2,797 clinical TBE cases were recorded in Latvia. For the studies in Germany, a total of 17,398 Ixodesricinus ticks (14,860 nymphs and 2,538 adults) were collected by flagging and examined for TBEV, in Latvia the corresponding numbers were 525 I. ricinus ticks (350 adults and 175 nymphs) and 281 I. persulcatus ticks (adults only). Information concerning annual and seasonal differences of the TBEV prevalence in natural TBE foci is not available in Germany. This paper is a continuation of the study (Süss et al., 1999), starting in 1997. We investigated every year, in May and September, the virus prevalence in ticks in high risk areas of Bavaria (8 foci) and Baden-Wuerttemberg (5 foci). A total of 15,400 ticks (13,100 nymphs and 2,300 adults) were examined for TBEV. The ticks were tested for the presence of TBEV-RNA using a sensitive, nested-RT-PCR. The virus prevalence in the Bavarian foci of the whole tick population ranged from 0.3 to 2.0% during these four years, in adults between 1.2 and 5.3% and in nymphs between 0.1 and 1.4%. In the high-risk areas of Baden-Wuerttemberg, in the Black Forest, the estimated virus prevalence rates of investigated ticks varied from 0.2 to 3.4%, in adults from 0 to 4.8%, and in nymphs from 0.2 to 3.4%. Using the same methods, we have also tested the low risk areas in the Odenwald (840 nymphs, 160 adults) and in Rhineland-Palatinate (920 nymphs, 78 adults). Ticks were collected in those areas where most TBE cases were registered. The virus prevalence in the Odenwald was 0% in adults and 0.5% in nymphs, whereas in ticks from Rhineland-Palatinate we have not found any positive PCR signal. Sequence data of the PCR products have shown that all strains in Germany were closely related to the central European virus prototype Neudoerfl. In I. ricinus ticks, collected in Riga county, the following virus prevalence rates were found: in females 2.4%, in males 3.7%, and in all adults 3.0%, in nymphs 2.4% and in the I. ricinus tick population examined 2.8%. The virus prevalence in I. persulcatus, collected in the eastern parts of Latvia was 6% in females, 4% in males and 5% in all adults. All the PCR products were sequenced and a phylogenetic tree was constructed. Studies in natural foci of TBE in Latvia have shown that I. ricinus carried the central European virus subtype (prototype Neudoerfl) whereas in I. persulcatus two strains have been found, the central European virus subtype (prototype Neudoerfl) and the Siberian virus subtype (prototype Vasilchenko). Sequences of the Far Eastern subtype have not been detected yet.

  20. The intrathecal expression and pathogenetic role of Th17 cytokines and CXCR2-binding chemokines in tick-borne encephalitis.

    PubMed

    Grygorczuk, Sambor; Świerzbińska, Renata; Kondrusik, Maciej; Dunaj, Justyna; Czupryna, Piotr; Moniuszko, Anna; Siemieniako, Agnieszka; Pancewicz, Sławomir

    2018-04-20

    Tick-borne encephalitis (TBE) is a clinically variable but potentially severe Flavivirus infection, with the outcome strongly dependent on secondary immunopathology. Neutrophils are present in cerebrospinal fluid (CSF) of TBE patients, but their pathogenetic role remains unknown. In animal models, neutrophils contributed both to the Flavivirus entry into central nervous system (CNS) and to the control of the encephalitis, which we attempted to evaluate in human TBE. We analyzed records of 240 patients with TBE presenting as meningitis (n = 110), meningoencephalitis (n = 114) or meningoencephalomyelitis (n = 16) assessing CSF neutrophil count on admission and at follow-up 2 weeks later, and their associations with other laboratory and clinical parameters. We measured serum and CSF concentrations of Th17-type cytokines (interleukin-17A, IL-17F, IL-22) and chemokines attracting neutrophils (IL-8, CXCL1, CXCL2) in patients with TBE (n = 36 for IL-8, n = 15 for other), with non-TBE aseptic meningitis (n = 6) and in non-meningitis controls (n = 7), using commercial ELISA assays. The results were analyzed with non-parametric tests with p < 0.05 considered as significant. On admission, neutrophils were universally present in CSF constituting 25% (median) of total pleocytosis, but on follow-up, they were absent in most of patients (58%) and scarce (< 10%) in 36%. CSF neutrophil count did not correlate with lymphocyte count and blood-brain barrier integrity, did not differ between meningitis and meningoencephalitis, but was higher in meningoencephalomyelitis patients. Prolonged presence of neutrophils in follow-up CSF was associated with encephalitis and neurologic sequelae. All the studied cytokines were expressed intrathecally, with IL-8 having the highest CSF concentration index. Additionally, IL-17A concentration was significantly increased in serum. IL-17F and CXCL1 CSF concentrations correlated with neutrophil count and CXCL1 concentration was higher in patients with encephalitis. The neutrophil CNS infiltrate does not correlate directly with TBE severity, but is associated with clinical features like myelitis, possibly being involved in its pathogenesis. Th17 cytokine response is present in TBE, especially intrathecally, and contributes to the CNS neutrophilic inflammation. IL-8 and CXCL1 may be chemokines directly responsible for the neutrophil migration.

  1. Interferon signaling in Peromyscus leucopus confers a potent and specific restriction to vector-borne flaviviruses.

    PubMed

    Izuogu, Adaeze O; McNally, Kristin L; Harris, Stephen E; Youseff, Brian H; Presloid, John B; Burlak, Christopher; Munshi-South, Jason; Best, Sonja M; Taylor, R Travis

    2017-01-01

    Tick-borne flaviviruses (TBFVs), including Powassan virus and tick-borne encephalitis virus cause encephalitis or hemorrhagic fevers in humans with case-fatality rates ranging from 1-30%. Despite severe disease in humans, TBFV infection of natural rodent hosts has little noticeable effect. Currently, the basis for resistance to disease is not known. We hypothesize that the coevolution of flaviviruses with their respective hosts has shaped the evolution of potent antiviral factors that suppress virus replication and protect the host from lethal infection. In the current study, we compared virus infection between reservoir host cells and related susceptible species. Infection of primary fibroblasts from the white-footed mouse (Peromyscus leucopus, a representative host) with a panel of vector-borne flaviviruses showed up to a 10,000-fold reduction in virus titer compared to control Mus musculus cells. Replication of vesicular stomatitis virus was equivalent in P. leucopus and M. musculus cells suggesting that restriction was flavivirus-specific. Step-wise comparison of the virus infection cycle revealed a significant block to viral RNA replication, but not virus entry, in P. leucopus cells. To understand the role of the type I interferon (IFN) response in virus restriction, we knocked down signal transducer and activator of transcription 1 (STAT1) or the type I IFN receptor (IFNAR1) by RNA interference. Loss of IFNAR1 or STAT1 significantly relieved the block in virus replication in P. leucopus cells. The major IFN antagonist encoded by TBFV, nonstructural protein 5, was functional in P. leucopus cells, thus ruling out ineffective viral antagonism of the host IFN response. Collectively, this work demonstrates that the IFN response of P. leucopus imparts a strong and virus-specific barrier to flavivirus replication. Future identification of the IFN-stimulated genes responsible for virus restriction specifically in P. leucopus will yield mechanistic insight into efficient control of virus replication and may inform the development of antiviral therapeutics.

  2. A survey of tick-borne pathogens in dogs and their ticks in the Pantanal biome, Brazil.

    PubMed

    Melo, A L T; Witter, R; Martins, T F; Pacheco, T A; Alves, A S; Chitarra, C S; Dutra, V; Nakazato, L; Pacheco, R C; Labruna, M B; Aguiar, D M

    2016-03-01

    Tick and blood samples collected from domestic dogs in the Brazilian Pantanal were tested by molecular methods for the presence of tick-borne protozoa and bacteria. Among 320 sampled dogs, 3.13% were infected by Babesia vogeli (Piroplasmida: Babesiidae), 8.75% by Hepatozoon canis (Eucoccidiorida: Hepatozoidae), 7.19% by Anaplasma platys (Rickettsiales: Anaplasmataceae), and 0.94% by an unclassified Anaplasma sp. In three tick species collected from dogs, the following tick-borne agents were detected: (a) B. vogeli, An. platys and Ehrlichia canis (Rickettsiales: Anaplasmataceae), infecting Rhipicephalus sanguineus sensu lato (Ixodida: Ixodidae) ticks; (b) H. canis, an unclassified Anaplasma sp. and Rickettsia amblyommii (Rickettsiales: Rickettsiaceae), infecting Amblyomma cajennense sensu lato (Ixodida: Ixodidae) ticks, and (c) Rickettsia sp. strain Atlantic rainforest, an emerging human pathogen, infecting Amblyomma ovale ticks. Molecular analysis, based on a mitochondrial gene, revealed that the Am. cajennense s.l. ticks of the present study corresponded to Amblyomma sculptum, a member of the Am. cajennense species complex, and that Rh. sanguineus s.l. belonged to the tropical lineage. Whereas dogs are exposed to a number of tick-borne bacterial and protozoan agents in the Pantanal biome, humans are potentially exposed to infection by spotted fever group rickettsiae (e.g. R. amblyommii and Rickettsia sp. strain Atlantic rainforest) because both Am. sculptum and Am. ovale are among the most important human-biting ticks in Brazil. © 2015 The Royal Entomological Society.

  3. Deer ticks (image)

    MedlinePlus

    Diseases are often carried by ticks, including Rocky Mountain Spotted Fever, Colorado Tick Fever, Lyme disease, and tularemia. Less common or less frequent diseases include typhus, Q-fever, relapsing fever, viral encephalitis, hemorrhagic fever, ...

  4. Forecasting next season's Ixodes ricinus nymphal density: the example of southern Germany 2018.

    PubMed

    Brugger, Katharina; Walter, Melanie; Chitimia-Dobler, Lidia; Dobler, Gerhard; Rubel, Franz

    2018-05-30

    The castor bean tick, Ixodes ricinus (L.) (Ixodida: Ixodidae), is the principal vector of pathogens causing tick-borne encephalitis or Lyme borreliosis in Europe. It is therefore of general interest to make an estimate of the density of I. ricinus for the whole year at the beginning of the tick season. There are two necessary conditions for making a successful prediction: a long homogeneous time series of observed tick density and a clear biological relationship between environmental predictors and tick density. A 9-year time series covering the period 2009-2017 of nymphal I. ricinus flagged at monthly intervals in southern Germany has been used. With the hypothesis that I. ricinus density is triggered by the fructification of the European beech 2 years before, the mean annual temperature of the previous year, and the current mean winter temperature (December-February), a forecast of the annual nymphal tick density has been made. Therefore, a Poisson regression model was generated resulting in an explained variance of 93.4% and an error of [Formula: see text] ticks per [Formula: see text] (annual [Formula: see text] collected ticks/[Formula: see text]). An independent verification of the forecast for the year 2017 resulted in 187 predicted versus 180 observed nymphs per [Formula: see text]. For the year 2018 a relatively high number of 443 questing I. ricinus nymphs per [Formula: see text] is forecasted, i.e., a "good" tick year.

  5. Tick-borne rickettsial pathogens in questing ticks, removed from humans and animals in Mexico.

    PubMed

    Sosa-Gutierrez, Carolina G; Vargas-Sandoval, Margarita; Torres, Javier; Gordillo-Pérez, Guadalupe

    2016-09-30

    Tick-borne rickettsial diseases (TBRD) are commonly encountered in medical and veterinary clinical settings. The control of these diseases is difficult, requiring disruption of a complex transmission chain involving a vertebrate host and ticks. The geographical distribution of the diseases is related to distribution of the vector, which is an indicator of risk for the population. A total of 1107 were collected by tick drag from forests, ecotourism parks and hosts at 101 sites in 22 of the 32 states of Mexico. Collected ticks were placed in 1.5 mL cryovials containing 70% ethanol and were identified to species. Ticks were pooled according to location/host of collection, date of collection, sex, and stage of development. A total of 51 ticks were assayed by polymerase chain reaction (PCR) to confirm species identification using morphological methods. A total of 477 pools of ticks were assayed using PCR techniques for selected tick-borne pathogens. Anaplasma phagocytophilum was the most commonly detected pathogen (45 pools), followed by, Ehrlichia (E.) canis (42), Rickettsia (R.) rickettsii (11), E. chaffeensis (8), and R. amblyommii (1). Rhipicephalus sanguineus was the tick most frequently positive for selected pathogens. Overall, our results indicate that potential tick vectors positive for rickettsial pathogens are distributed throughout the area surveyed in Mexico.

  6. Outbreak of Powassan encephalitis--Maine and Vermont, 1999-2001.

    PubMed

    2001-09-07

    Powassan (POW) virus, a North American tickborne flavivirus related to the Eastern Hemisphere's tickborne encephalitis viruses, was first isolated from a patient with encephalitis in 1958. During 1958-1998, 27 human POW encephalitis cases were reported from Canada and the northeastern United States. During September 1999-July 2001, four Maine and Vermont residents with encephalitis were found to be infected with POW virus. These persons were tested for other arbovirus infections found in the northeast after testing for West Nile virus (WNV) infection was negative. This report describes these four cases, summarizes the results of ecologic investigations, and discusses a potential association between ticks that infest medium-sized mammals and the risk for human exposure to POW virus. The findings underscore the need for personal protective measures to prevent tick bites and continued encephalitis surveillance.

  7. Effect of climate change on vector-borne disease risk in the UK.

    PubMed

    Medlock, Jolyon M; Leach, Steve A

    2015-06-01

    During the early part of the 21st century, an unprecedented change in the status of vector-borne disease in Europe has occurred. Invasive mosquitoes have become widely established across Europe, with subsequent transmission and outbreaks of dengue and chikungunya virus. Malaria has re-emerged in Greece, and West Nile virus has emerged throughout parts of eastern Europe. Tick-borne diseases, such as Lyme disease, continue to increase, or, in the case of tick-borne encephalitis and Crimean-Congo haemorrhagic fever viruses, have changed their geographical distribution. From a veterinary perspective, the emergence of Bluetongue and Schmallenberg viruses show that northern Europe is equally susceptible to transmission of vector-borne disease. These changes are in part due to increased globalisation, with intercontinental air travel and global shipping transport creating new opportunities for invasive vectors and pathogens. However, changes in vector distributions are being driven by climatic changes and changes in land use, infrastructure, and the environment. In this Review, we summarise the risks posed by vector-borne diseases in the present and the future from a UK perspective, and assess the likely effects of climate change and, where appropriate, climate-change adaptation strategies on vector-borne disease risk in the UK. Lessons from the outbreaks of West Nile virus in North America and chikungunya in the Caribbean emphasise the need to assess future vector-borne disease risks and prepare contingencies for future outbreaks. Ensuring that adaptation strategies for climate change do not inadvertently exacerbate risks should be a primary focus for decision makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Exploring of Primate Models of Tick-Borne Flaviviruses Infection for Evaluation of Vaccines and Drugs Efficacy

    PubMed Central

    Pripuzova, Natalia S.; Gmyl, Larissa V.; Romanova, Lidiya Iu.; Tereshkina, Natalia V.; Rogova, Yulia V.; Terekhina, Liubov L.; Kozlovskaya, Liubov I.; Vorovitch, Mikhail F.; Grishina, Karina G.; Timofeev, Andrey V.; Karganova, Galina G.

    2013-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8–16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C. aethiops. PMID:23585873

  9. Tick-borne encephalitis virus in arthropod vectors in the Far East of Russia.

    PubMed

    Pukhovskaya, Natalia M; Morozova, Olga V; Vysochina, Nelya P; Belozerova, Nadejda B; Bakhmetyeva, Svetlana V; Zdanovskaya, Nina I; Seligman, Stephen J; Ivanov, Leonid I

    2018-05-01

    Isolates of tick-borne encephalitis virus (TBEV) from arthropod vectors (ticks and mosquitoes) in the Amur, the Jewish Autonomous and the Sakhalin regions as well as on the Khabarovsk territory of the Far East of Russia were studied. Different proportions of four main tick species of the family Ixodidae: Ixodes persulcatus P. Schulze, 1930; Haemaphysalis concinna Koch, 1844; Haemaphysalis japonica douglasi Nuttall et Warburton, 1915 and Dermacentor silvarum Olenev, 1932 were found in forests and near settlements. RT-PCR of TBEV RNA in adult ticks collected from vegetation in 1999-2014 revealed average infection rates of 7.9 ± 0.7% in I. persulcatus, of 5.6 ± 1.0% in H. concinna, of 2.0 ± 2.0% in H. japonica, and of 1.3 ± 1.3% in D. silvarum. Viral loads varied in a range from 10 2 to 10 9 TBEV genome-equivalents per a tick with the maximal values in I. persulcatus and H. japonica. Molecular typing using reverse transcription with subsequent real time PCR with subtype-specific fluorescent probes demonstrated that the Far Eastern (FE) subtype of TBEV predominated both in mono-infections and in mixed infection with the Siberian (Sib) subtype in I. persulcatus pools. TBEV strains of the FE subtype were isolated from I. persulcatus, H. concinna and from a pool of Aedes vexans mosquitoes. Ten TBEV strains isolated from I. persulcatus from the Khabarovsk territory and the Jewish Autonomous region between 1985 and 2013 cluster with the TBEV vaccine strain Sofjin of the FE subtype isolated from human brain in 1937. A TBEV strain from H. concinna collected in the Amur region (GenBank accession number KF880803) is similar to the vaccine strain 205 isolated in 1973 from I. persulcatus collected in the Jewish Autonomous region. The TBEV strain Lazo MP36 of the FE subtype isolated from a pool of A. vexans in the Khabarovsk territory in 2014 (KT001073) differs from strains isolated from 1) I. persulcatus (including the vaccine strain 205) and H. concinna; 2) mosquitoes [strain Malishevo (KJ744034) isolated in 1978 from Aedes vexans nipponii in the Khabarovsk territory]; and 3) human brain (including the vaccine strain Sofjin). Accordingly, in the far eastern natural foci, TBEV of the prevailing FE subtype has remained stable since 1937. Both Russian vaccines against TBE based on the FE strains (Sofjin and 205) are similar to the new viral isolates and might protect against infection. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. Dendritic transport of tick-borne flavivirus RNA by neuronal granules affects development of neurological disease.

    PubMed

    Hirano, Minato; Muto, Memi; Sakai, Mizuki; Kondo, Hirofumi; Kobayashi, Shintaro; Kariwa, Hiroaki; Yoshii, Kentaro

    2017-09-12

    Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, little is known about the detailed mechanisms of viral replication and pathogenicity in the brain. Previously, we reported that the genomic RNA of tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus , is transported and replicated in the dendrites of neurons. In the present study, we analyzed the transport mechanism of the viral genome to dendrites. We identified specific sequences of the 5' untranslated region of TBEV genomic RNA that act as a cis -acting element for RNA transport. Mutated TBEV with impaired RNA transport in dendrites caused a reduction in neurological symptoms in infected mice. We show that neuronal granules, which regulate the transport and local translation of dendritic mRNAs, are involved in TBEV genomic RNA transport. TBEV genomic RNA bound an RNA-binding protein of neuronal granules and disturbed the transport of dendritic mRNAs. These results demonstrated a neuropathogenic virus hijacking the neuronal granule system for the transport of viral genomic RNA in dendrites, resulting in severe neurological disease.

  11. Evaluation of immune response and protective effect of four vaccines against the tick-borne encephalitis virus.

    PubMed

    Morozova, O V; Bakhvalova, V N; Potapova, O F; Grishechkin, A E; Isaeva, E I; Aldarov, K V; Klinov, D V; Vorovich, M F

    2014-05-23

    Among three main subtypes of the tick-borne encephalitis virus (TBEV), the Siberian subtype is currently dominant in a majority of the endemic regions of Russia. However, inactivated vaccines are based on TBEV strains of the heterologous Far Eastern or the European subtypes isolated 40-77 years ago. To analyze the efficacy of the available vaccines against currently prevailing TBEV isolates of the Siberian subtype, mice were immunized subcutaneously three times (one group per each vaccine). The expression of seven cytokine genes was determined using RT-PCR. Sera were studied using homologous and heterologous ELISA, hemagglutination inhibition (HI) and neutralization tests with TBEV strains of the Far Eastern, Siberian and European subtypes. Cross-protective efficacy of the vaccines was evaluated with the TBEV strain 2689 of Siberian subtype isolated from an ixodid tick from the Novosibirsk, South-Western Siberia, Russia in 2010. The cytokine gene expression profile indicates a predominantly Th2 response due to exogenous antigen presentation. Titers for homologous combinations of vaccine strain and strain in ELISA, HI and neutralization tests exceeded those for heterologous antigen-antibody pairs. Despite antibody detection by means of ELISA, HI and neutralization tests, the mouse protection afforded by the vaccines differed significantly. Complete protection of mice challenged with 100 LD50 virus of the Siberian subtype was induced by the vaccine "Encevir" ("Microgen", Tomsk, Russia). The minimal immunization doze (MID50) of "Encevir" protecting 50% of the mice was less than 0.0016 ml. Partial protective effect of vaccines produced in Moscow, Russia and Austria revealed MID50 within recommended intervals (0.001-0.017 ml). However, the MID50 for the vaccine "Encepur" (Novartis, Germany) 0.04 ml exceeded acceptable limits with total loss of mice immunized with vaccine diluted 32, 100 and 320 fold. These results suggest regular evaluation of TBEV vaccines in regions where heterologous virus subtypes prevail. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Role of Game (Wild Boar and Roe Deer) in the Spread of Tick-Borne Encephalitis in the Czech Republic

    PubMed Central

    Daniel, Milan; Benes, Cestmir; Maly, Marek

    2014-01-01

    Abstract In the Czech Republic, the incidence of human tick-borne encephalitis (TBE) has been increasing over the last two decades. At the same time, populations of game have also shown an upward trend. In this country, the ungulate game is the main host group of hosts for Ixodes ricinus female ticks. This study examined the potential contribution of two most widespread game species (roe deer [Capreolus capreolus] and wild boar [Sus scrofa]) to the high incidence of TBE in the Czech Republic, using the annual numbers of culls as a proxy for the game population. This was an ecological study, with annual figures for geographical areas—municipalities with extended competence (MEC)—used as units of analysis. Between 2003 and 2011, a total of 6213 TBE cases were reported, and 1062,308 roe deer and 989,222 wild boars were culled; the culls of roe deer did not demonstrate a clear temporal trend, but wild boar culls almost doubled (from 77,269 to 143,378 per year). Statistical analyses revealed a positive association between TBE incidence rate and the relative number of culled wild boars. In multivariate analyses, a change in the numbers of culled wild boars between the 25th and 75th percentile was associated with TBE incidence rate ratio of 1.23 (95% confidence interval 1.07–1.41, p=0.003). By contrast, the association of TBE with culled roe deer was not statistically significant (p=0.481). The results suggest that the size of the wild boar population may have contributed to the current high levels and the rising trend in incidence of TBE, whereas the regulated population of roe deer does not seem to be implicated in recent geographical or temporal variations in TBE in the Czech Republic. PMID:25409271

  13. [Tourism, imported parasitic diseases, and their prevention].

    PubMed

    Tumol'skaia, N I; Zavoĭkin, V D; Mazmanian, M V; Plakhotnaia, G A; Kurbatova, I V; Zelia, O P; Gutova, V P

    2012-01-01

    The paper gives the results of observations of 1558 patients before and after tourist travels to tropical countries and 368 individuals visiting the north areas of the Russian Federation. Different conditions (malaria, amebiasis, leishmaniasis, intestinal and tissue helminthiasis, insect bites, venomous fish pricks, medusa burn, tick bites, etc.) were found in 402 persons. Prophylactic immunization included vaccination against hepatitis A and B viruses, meningitis, typhus, yellow fever, tick-borne encephalitis in more than 2500 patients (not including influenza vaccination in the epidemic season). The performed observations reinforce the statement that imported pathology is urgent to Russia and suggest that it is necessary to develop this section of medicine and to set up a network of health care facilities with a necessary therapeutic and diagnostic base to render skilled care to tourists. It is essential to improve medical staff training in travel medicine.

  14. Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health

    PubMed Central

    Eisen, Rebecca J.; Kugeler, Kiersten J.; Eisen, Lars; Beard, Charles B.; Paddock, Christopher D.

    2017-01-01

    In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents. PMID:28369515

  15. CXCL9 concentrations in cerebrospinal fluid and serum of patients with tick-borne encephalitis.

    PubMed

    Koper, Olga M; Kamińska, Joanna; Grygorczuk, Sambor; Zajkowska, Joanna; Kemona, Halina

    2018-03-01

    The aim of our current study was to evaluate cerebrospinal fluid (CSF) and serum CXCL9 concentrations and diagnostic usefulness of this molecule in tick-borne encephalitis (TBE). The study included TBE patients in the acute phase (TBE I) and after 2 weeks of follow-up (TBE II). The control group consisted of patients investigated for suspected central nervous system (CNS) infection, but with normal CSF findings. Concentrations of CXCL9 were measured using enzyme-linked immunosorbent assay (ELISA). Cerebrospinal fluid and serum concentrations of CXCL9 in patients with TBE were significantly higher than in controls ( p < 0.001). This alteration was also observed in the case of the CXCL9 index (I CXCL9 ; CSF CXCL9 concentration divided by serum CXCL9 concentration) ( p < 0.001); moreover, I CXCL9 significantly decreased after 2 weeks ( p < 0.001). This is the first study to evaluate the CSF and serum levels of CXCL9 in subjects with TBE. CXCL9 is a ligand for CXCR3, which was found on all Th1 memory lymphocytes present in the peripheral blood; therefore the elevated concentrations of CXCL9 in TBE patients as compared to the controls might indicate that this chemokine perhaps takes part in the trafficking of Th 1 cells into the CNS. The results presented here support the hypothesis that CXCL9 may play a role in TBE. However, further studies are required to determine whether this protein might be used as a potential tool for the diagnosis and monitoring of inflammation in TBE.

  16. Intrathecal expression of IL-5 and humoral response in patients with tick-borne encephalitis.

    PubMed

    Grygorczuk, Sambor; Czupryna, Piotr; Pancewicz, Sławomir; Świerzbińska, Renata; Kondrusik, Maciej; Dunaj, Justyna; Zajkowska, Joanna; Moniuszko-Malinowska, Anna

    2018-05-01

    The aim of the study was to assess the role of an early specific humoral response in human infection with a tick-borne encephalitis virus (TBEV) and the role of IL-5 as its potential mediator and marker. The retrospective study involved a cohort of 199 patients diagnosed with TBE, in whom anti-TBEV IgM and IgG antibody titers were analyzed on admission and compared with clinical presentation and basic laboratory parameters. The prospective study included 50 TBE patients in whom IL-5 serum and CSF concentration was measured with ELISA on admission in the TBE neurologic phase and in selected patients before discharge, at follow-up or in samples obtained before the neurologic phase onset. The serum anti-TBEV IgM correlated with good clinical outcome and the CSF anti-TBEV IgM with more pronounced CSF inflammation on admission, but also with its more complete resolution on follow-up. The serum anti-TBEV IgG correlated with milder presentation and better outcome. Concentration of IL-5 was increased in CSF but not in the serum of TBE patients. IL-5 concentration index on admission favored its intrathecal synthesis. IL-5 did not correlate significantly with clinical presentation and specific IgM and IgG titers. Specific anti-TBEV IgM systemic and intrathecal response and IgG systemic response are protective, together favoring milder presentation, better outcome and resolution of central nervous system (CNS) inflammation. IL-5 is expressed intrathecally in TBE, but its pathogenetic role remains unclear. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. The Burden of Tick-Borne Encephalitis in Disability-Adjusted Life Years (DALYs) for Slovenia

    PubMed Central

    Šmit, Renata; Postma, Maarten J.

    2015-01-01

    Background Tick-borne encephalitis (TBE) presents an increasing burden in many parts of Europe, Asian Russia, Siberia, Asian former USSR and Far East. Incidence can be considered as one way to express the burden. A more comprehensive measure concerns disability-adjusted life years (DALYs), better characterizing the full burden of TBE. TBE burden in DALYs has not yet been estimated, nor has it been specified by the Global Burden of Disease (GBD) studies. Objective The purpose of the present study is to estimate the burden of TBE in Slovenia, expressed in DALYs, both from the population and individual perspectives. We discuss the impact of TBE burden on public health and potential strategies to reduce this burden in Slovenia. Methods The burden of TBE is estimated by using the updated DALYs' methodology first introduced in the GBD project. The DALYs᾽ calculations are based on the health outcomes of the natural course of the disease being modelled. Corrections for under-reporting and under-ascertainment are applied. The impact of uncertainty in parameters in the model was assessed using sensitivity analyses. Results From the population perspective, total DALYs amount to 3,450 (167.8 per 100,000 population), while from the individual perspective they amount to 3.1 per case in 2011. Notably, the consequences of TBE present a larger burden than TBE itself. Conclusions TBE presents a relatively high burden expressed in DALYs compared with estimates for other infectious diseases from the GBD 2010 study for Slovenia. Raising awareness and increasing vaccination coverage are needed to reduce TBE and its consequences. PMID:26672751

  18. Immunogenicity against Far Eastern and Siberian subtypes of tick-borne encephalitis (TBE) virus elicited by the currently available vaccines based on the European subtype: systematic review and meta-analysis.

    PubMed

    Domnich, Alexander; Panatto, Donatella; Arbuzova, Eva Klementievna; Signori, Alessio; Avio, Ulderico; Gasparini, Roberto; Amicizia, Daniela

    2014-01-01

    Tick-borne encephalitis (TBE) virus, which is usually divided into European, Far Eastern and Siberian subtypes, is a serious public health problem in several European and Asian countries. Vaccination is the most effective measure to prevent TBE; cross-subtype protection elicited by the TBE vaccines is biologically plausible since all TBE virus subtypes are closely related. This manuscript systematically explores available data on the cross-subtype immunogenicity elicited by the currently available Western vaccines based on the European subtype. Completed immunization course of 3 doses of both Western vaccines determined very high seroconversion/seropositivity rates against both Far Eastern and Siberian subtypes among previously flavivirus-naïve subjects. All but one study found no statistically significant difference in titers of neutralizing antibodies against strains belonging to homologous and heterologous subtypes. Pooled analysis of randomized controlled trials on head-to-head comparison of immunogenicity of Western and Russian TBE vaccines did not reveal differences in seroconversion rates against Far Eastern isolates in either hemagglutination inhibition (risk ratio = 0.98, p = 0.83) or enzyme-linked immunosorbent (risk ratio = 0.95, p = 0.44) assays after 2 vaccine doses. This suggests that, in regions where a heterogeneous TBE virus population circulates, vaccines based on the European subtype may be used alongside vaccines based on the Far Eastern subtype. Studies on the field effectiveness of TBE vaccines and investigation of vaccination failures, especially in countries where different subtypes co-circulate, will further elucidate TBE vaccination-induced cross-subtype protection.

  19. Immunogenicity against Far Eastern and Siberian subtypes of tick-borne encephalitis (TBE) virus elicited by the currently available vaccines based on the European subtype: Systematic review and meta-analysis

    PubMed Central

    Domnich, Alexander; Panatto, Donatella; Arbuzova, Eva Klementievna; Signori, Alessio; Avio, Ulderico; Gasparini, Roberto; Amicizia, Daniela

    2014-01-01

    Tick-borne encephalitis (TBE) virus, which is usually divided into European, Far Eastern and Siberian subtypes, is a serious public health problem in several European and Asian countries. Vaccination is the most effective measure to prevent TBE; cross-subtype protection elicited by the TBE vaccines is biologically plausible since all TBE virus subtypes are closely related. This manuscript systematically explores available data on the cross-subtype immunogenicity elicited by the currently available Western vaccines based on the European subtype. Completed immunization course of 3 doses of both Western vaccines determined very high seroconversion/seropositivity rates against both Far Eastern and Siberian subtypes among previously flavivirus-naïve subjects. All but one study found no statistically significant difference in titers of neutralizing antibodies against strains belonging to homologous and heterologous subtypes. Pooled analysis of randomized controlled trials on head-to-head comparison of immunogenicity of Western and Russian TBE vaccines did not reveal differences in seroconversion rates against Far Eastern isolates in either hemagglutination inhibition (risk ratio = 0.98, p = 0.83) or enzyme-linked immunosorbent (risk ratio = 0.95, p = 0.44) assays after 2 vaccine doses. This suggests that, in regions where a heterogeneous TBE virus population circulates, vaccines based on the European subtype may be used alongside vaccines based on the Far Eastern subtype. Studies on the field effectiveness of TBE vaccines and investigation of vaccination failures, especially in countries where different subtypes co-circulate, will further elucidate TBE vaccination-induced cross-subtype protection. PMID:25483679

  20. Epidemiology of Tick-Borne Borreliosis in Morocco

    PubMed Central

    Diatta, Georges; Souidi, Yassine; Granjon, Laurent; Arnathau, Céline; Durand, Patrick; Chauvancy, Gilles; Mané, Youssouph; Sarih, M'hammed; Belghyti, Driss; Renaud, François; Trape, Jean-François

    2012-01-01

    Background The presence in Morocco of Argasid ticks of the Ornithodoros erraticus complex, the vector of tick-borne relapsing fever (TBRF) in North Africa, has been known since 1919, but the disease is rarely diagnosed and few epidemiological data are available. Methodology/Principal Findings Between 2006 and 2011, we investigated the presence of Ornithodoros ticks in rodent burrows in 34 sites distributed across Morocco. We also collected small mammals in 10 sites and we investigated TBRF in febrile patients in Kenitra district. The prevalence of Borrelia infections was assessed by nested PCR amplification in ticks and the brain tissue of small mammals, and by evaluation of thick blood films in patients. A high proportion of burrows were infested with ticks of the O. erraticus complex in all regions of Morocco, with a mean of 39.5% for the whole country. Borrelia infections were found in 39/382 (10.2%) of the ticks and 12/140 (8.6%) of the rodents and insectivores studied by PCR amplification, and 102 patients tested positive by thick blood film. Five small mammalian species were found infected: Dipodillus campestris, Meriones shawi, Gerbillus hoogstrali, Gerbillus occiduus and Atelerix algirus. Three Borrelia species were identified in ticks and/or rodents: B. hispanica, B. crocidurae and B. merionesi. Conclusions/Significance Tick populations belonging to O. erraticus complex are widely distributed in Morocco and a high proportion of ticks and small mammals are infected by Borrelia species. Although rarely diagnosed, TBRF may be a common cause of morbidity in all regions of Morocco. PMID:23029574

  1. Ecology and Epidemiology of Lyme Borreliosis.

    PubMed

    Schotthoefer, Anna M; Frost, Holly M

    2015-12-01

    Lyme borreliosis is a zoonotic, tick-borne disease that infects humans worldwide. The disease is currently recognized as the most common vector-borne disease in Europe and North America. Disease is caused by several genospecies of the Borrelia burgdorferi sensu lato complex. Humans are at high risk of infection in regions where highly competent reservoirs are the primary hosts for the subadult stages of the tick, in contrast to regions where less competent or refractory animals feed ticks. Human infections are also most frequently associated with spring and summer months when the nymph stage of the tick is active. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Prevention and control strategies for ticks and pathogen transmission.

    PubMed

    de La Fuente, J; Kocan, K M; Contreras, M

    2015-04-01

    Ticks and tick-borne pathogens have evolved together, resulting in a complex relationship in which the pathogen's life cycle is perfectly coordinated with the tick's feeding cycle, and the tick can harbour high pathogen levels without affecting its biology. Tick-borne diseases (TBDs) continue to emerge and/or spread, and pose an increasing threatto human and animal health. The disruptive impacts of global change have resulted in ecosystem instability and the future outcomes of management and control programmes for ticks and TBDs are difficult to predict. In particular, the selection of acaricide-resistant ticks has reduced the value of acaricides as a sole means of tick control. Vaccines provide an alternative control method, but the use of tick vaccines has not advanced since the first vaccines were registered in the early 1990s. An understanding of the complex molecular relationship between hosts, ticks and pathogens and the use of systems biology and vaccinomics approaches are needed to discover proteins with the relevant biological function in tick feeding, reproduction, development, immune response, the subversion of host immunity and pathogen transmission, all of which mediate tick and pathogen success. The same approaches will also be required to characterise candidate protective antigens and to validate vaccine formulations. Tick vaccines with a dual effect on tick infestations and pathogen transmission could reduce both tick infestations and their vector capacity for humans, animals and reservoir hosts. The development of integrated tick control strategies, including vaccines and synthetic and botanical acaricides, in combination with managing drug resistance and educating producers, should lead to the sustainable control of ticks and TBDs.

  3. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus

    PubMed Central

    Peterson, A. Townsend; Samy, Abdallah M.

    2017-01-01

    Background Ixodes ricinus is a species of hard tick that transmits several important diseases in Europe and North Africa, including Lyme borreliosis and tick-borne encephalitis. Climate change is affecting the geographic distributions and abundances of arthropod vectors, which in turn influence the geographic distribution and epidemiology of associated vector-borne diseases. To date, few studies have investigated effects of climate change on the spatial distribution of I. ricinus at continental extents. Here, we assessed the potential distribution of I. ricinus under current and future climate conditions to understand how climate change will influence the geographic distribution of this important tick vector in coming decades. Method We used ecological niche modeling to estimate the geographic distribution of I. ricinus with respect to current climate, and then assessed its future potential distribution under different climate change scenarios. This approach integrates occurrence records of I. ricinus with six relevant environmental variables over a continental extent that includes Europe, North Africa, and the Middle East. Future projections were based on climate data from 17 general circulation models (GCMs) under 2 representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 2070. Result The present and future potential distributions of I. ricinus showed broad overlap across most of western and central Europe, and in more narrow zones in eastern and northern Europe, and North Africa. Potential expansions were observed in northern and eastern Europe. These results indicate that I. ricinus populations could emerge in areas in which they are currently lacking, posing increased risks to human health in those areas. However, the future of I. ricinus ticks in some important regions such the Mediterranean was unclear owing to high uncertainty in model predictions. PMID:29206879

  4. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus.

    PubMed

    Alkishe, Abdelghafar A; Peterson, A Townsend; Samy, Abdallah M

    2017-01-01

    Ixodes ricinus is a species of hard tick that transmits several important diseases in Europe and North Africa, including Lyme borreliosis and tick-borne encephalitis. Climate change is affecting the geographic distributions and abundances of arthropod vectors, which in turn influence the geographic distribution and epidemiology of associated vector-borne diseases. To date, few studies have investigated effects of climate change on the spatial distribution of I. ricinus at continental extents. Here, we assessed the potential distribution of I. ricinus under current and future climate conditions to understand how climate change will influence the geographic distribution of this important tick vector in coming decades. We used ecological niche modeling to estimate the geographic distribution of I. ricinus with respect to current climate, and then assessed its future potential distribution under different climate change scenarios. This approach integrates occurrence records of I. ricinus with six relevant environmental variables over a continental extent that includes Europe, North Africa, and the Middle East. Future projections were based on climate data from 17 general circulation models (GCMs) under 2 representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 2070. The present and future potential distributions of I. ricinus showed broad overlap across most of western and central Europe, and in more narrow zones in eastern and northern Europe, and North Africa. Potential expansions were observed in northern and eastern Europe. These results indicate that I. ricinus populations could emerge in areas in which they are currently lacking, posing increased risks to human health in those areas. However, the future of I. ricinus ticks in some important regions such the Mediterranean was unclear owing to high uncertainty in model predictions.

  5. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria

    PubMed Central

    Duscher, Georg G.; Leschnik, Michael; Fuehrer, Hans-Peter; Joachim, Anja

    2014-01-01

    Austria's mammalian wildlife comprises a large variety of species, acting and interacting in different ways as reservoir and intermediate and definitive hosts for different pathogens that can be transmitted to pets and/or humans. Foxes and other wild canids are responsible for maintaining zoonotic agents, e.g. Echinococcus multilocularis, as well as pet-relevant pathogens, e.g. Hepatozoon canis. Together with the canids, and less commonly felids, rodents play a major role as intermediate and paratenic hosts. They carry viruses such as tick-borne encephalitis virus (TBEV), bacteria including Borrelia spp., protozoa such as Toxoplasma gondii, and helminths such as Toxocara canis. The role of wild ungulates, especially ruminants, as reservoirs for zoonotic disease on the other hand seems to be negligible, although the deer filaroid Onchocerca jakutensis has been described to infect humans. Deer may also harbour certain Anaplasma phagocytophilum strains with so far unclear potential to infect humans. The major role of deer as reservoirs is for ticks, mainly adults, thus maintaining the life cycle of these vectors and their distribution. Wild boar seem to be an exception among the ungulates as, in their interaction with the fox, they can introduce food-borne zoonotic agents such as Trichinella britovi and Alaria alata into the human food chain. PMID:25830102

  6. Economic downturn results in tick-borne disease upsurge.

    PubMed

    Godfrey, Elinor R; Randolph, Sarah E

    2011-03-15

    The emergence of zoonoses is due both to changes in human activities and to changes in their natural wildlife cycles. One of the most significant vector-borne zoonoses in Europe, tick-borne encephalitis (TBE), doubled in incidence in 1993, largely as a consequence of the socio-economic transition from communism to capitalism and associated environmental changes. To test the effect of the current economic recession, unemployment in 2009 and various socio-economic indices were compared to weather indices (derived from principal component analyses) as predictors for the change in TBE case numbers in 2009 relative to 2004-08, for 14 European countries. Greatest increases in TBE incidence occurred in Latvia, Lithuania and Poland (91, 79 and 45%, respectively). The weather was rejected as an explanatory variable. Indicators of high background levels of poverty, e.g. percent of household expenditure on food, were significant predictors. The increase in unemployment in 2009 relative to 2008 together with 'in-work risk of poverty' is the only case in which a multivariate model has a second significant term. Background socio-economic conditions determine susceptibility to risk of TBE, while increased unemployment triggered a sudden increase in risk. Mechanisms behind this result may include reduced resistance to infection through stress; reduced uptake of costly vaccination; and more exposure of people to infected ticks in their forest habitat as they make greater use of wild forest foods, especially in those countries, Lithuania and Poland, with major marketing opportunities in such products. Recognition of these risk factors could allow more effective protection through education and a vaccination programme targeted at the economically most vulnerable.

  7. Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes

    PubMed Central

    Fernández-Sanlés, Alba; Ríos-Marco, Pablo; Romero-López, Cristina; Berzal-Herranz, Alfredo

    2017-01-01

    The genus Flavivirus comprises a large number of small, positive-sense single-stranded, RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate host cells. The genus, which has some 70 member species, includes a number of emerging and re-emerging pathogens responsible for outbreaks of human disease around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the information required for the completion of the infectious cycle. The efficiency of this storage system is attributable to supracoding elements, i.e., discrete, structural units with essential functions. This information storage system overlaps and complements the protein coding sequence and is highly conserved across the genus. It therefore offers interesting potential targets for novel therapeutic strategies. This review summarizes our knowledge of the features of flavivirus genome functional RNA domains. It also provides a brief overview of the main achievements reported in the design of antiviral nucleic acid-based drugs targeting functional genomic RNA elements. PMID:28421048

  8. West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2016.

    PubMed

    Burakoff, Alexis; Lehman, Jennifer; Fischer, Marc; Staples, J Erin; Lindsey, Nicole P

    2018-01-12

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the continental United States (1,2). Other arboviruses, including La Crosse, Powassan, Jamestown Canyon, St. Louis encephalitis, and eastern equine encephalitis viruses, cause sporadic cases of disease and occasional outbreaks. This report summarizes surveillance data reported to CDC for 2016 for nationally notifiable arboviruses. It excludes dengue, chikungunya, and Zika viruses, as these are primarily nondomestic viruses typically acquired through travel. Forty-seven states and the District of Columbia (DC) reported 2,240 cases of domestic arboviral disease, including 2,150 (96%) WNV disease cases. Of the WNV disease cases, 1,310 (61%) were classified as neuroinvasive disease (e.g., meningitis, encephalitis, acute flaccid paralysis), for a national incidence of 0.41 cases per 100,000 population. After WNV, the most frequently reported arboviruses were La Crosse (35 cases), Powassan (22), and Jamestown Canyon (15) viruses. Because arboviral diseases continue to cause serious illness, maintaining surveillance is important to direct prevention activities.

  9. West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2015.

    PubMed

    Krow-Lucal, Elisabeth; Lindsey, Nicole P; Lehman, Jennifer; Fischer, Marc; Staples, J Erin

    2017-01-20

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. The leading cause of domestically acquired arboviral disease in the United States is West Nile virus (WNV) (1). Other arboviruses, including La Crosse, St. Louis encephalitis, Jamestown Canyon, Powassan, and eastern equine encephalitis viruses, also cause sporadic cases and outbreaks. This report summarizes surveillance data reported to CDC in 2015 for nationally notifiable arboviruses. It excludes dengue, chikungunya, and Zika viruses, which are primarily nondomestic viruses typically acquired through travel (and are addressed in other CDC reports). In 2015, 45 states and the District of Columbia (DC) reported 2,282 cases of domestic arboviral disease. Among these cases, 2,175 (95%) were WNV disease and 1,455 (67%) of those were classified as neuroinvasive disease (meningitis, encephalitis, or acute flaccid paralysis). The national incidence of WNV neuroinvasive disease was 0.45 cases per 100,000 population. Because arboviral diseases continue to cause serious illness, maintaining surveillance is important to direct prevention activities such as reduction of vector populations and screening of blood donors.

  10. West Nile Virus and Other Nationally Notifiable Arboviral Diseases - United States, 2014.

    PubMed

    Lindsey, Nicole P; Lehman, Jennifer A; Staples, J Erin; Fischer, Marc

    2015-09-04

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States (1). However, several other arboviruses also cause sporadic cases and seasonal outbreaks. This report summarizes surveillance data reported to CDC in 2014 for WNV and other nationally notifiable arboviruses, excluding dengue. Forty-two states and the District of Columbia (DC) reported 2,205 cases of WNV disease. Of these, 1,347 (61%) were classified as WNV neuroinvasive disease (e.g., meningitis, encephalitis, or acute flaccid paralysis), for a national incidence of 0.42 cases per 100,000 population. After WNV, the next most commonly reported cause of arboviral disease was La Crosse virus (80 cases), followed by Jamestown Canyon virus (11), St. Louis encephalitis virus (10), Powassan virus (8), and Eastern equine encephalitis virus (8). WNV and other arboviruses cause serious illness in substantial numbers of persons each year. Maintaining surveillance programs is important to help direct prevention activities.

  11. Production of single-round infectious chimeric flaviviruses with DNA-based Japanese encephalitis virus replicon.

    PubMed

    Suzuki, Ryosuke; Ishikawa, Tomohiro; Konishi, Eiji; Matsuda, Mami; Watashi, Koichi; Aizaki, Hideki; Takasaki, Tomohiko; Wakita, Takaji

    2014-01-01

    A method for rapid production of single-round infectious particles (SRIPs) of flavivirus would be useful for viral mutagenesis studies. Here, we established a DNA-based production system for SRIPs of flavivirus. We constructed a Japanese encephalitis virus (JEV) subgenomic replicon plasmid, which lacked the C-prM-E (capsid-pre-membrane-envelope) coding region, under the control of the cytomegalovirus promoter. When the JEV replicon plasmid was transiently co-transfected with a JEV C-prM-E expression plasmid into 293T cells, SRIPs were produced, indicating successful trans-complementation with JEV structural proteins. Equivalent production levels were observed when C and prM-E proteins were provided separately. Furthermore, dengue types 1-4, West Nile, yellow fever or tick-borne encephalitis virus prM-E proteins could be utilized for production of chimaeric flavivirus SRIPs, although the production was less efficient for dengue and yellow fever viruses. These results indicated that our plasmid-based system is suitable for investigating the life cycles of flaviviruses, diagnostic applications and development of safer vaccine candidates.

  12. Past and future perspectives on mathematical models of tick-borne pathogens.

    PubMed

    Norman, R A; Worton, A J; Gilbert, L

    2016-06-01

    Ticks are vectors of pathogens which are important both with respect to human health and economically. They have a complex life cycle requiring several blood meals throughout their life. These blood meals take place on different individual hosts and potentially on different host species. Their life cycle is also dependent on environmental conditions such as the temperature and habitat type. Mathematical models have been used for the more than 30 years to help us understand how tick dynamics are dependent on these environmental factors and host availability. In this paper, we review models of tick dynamics and summarize the main results. This summary is split into two parts, one which looks at tick dynamics and one which looks at tick-borne pathogens. In general, the models of tick dynamics are used to determine when the peak in tick densities is likely to occur in the year and how that changes with environmental conditions. The models of tick-borne pathogens focus more on the conditions under which the pathogen can persist and how host population densities might be manipulated to control these pathogens. In the final section of the paper, we identify gaps in the current knowledge and future modelling approaches. These include spatial models linked to environmental information and Geographic Information System maps, and development of new modelling techniques which model tick densities per host more explicitly.

  13. The risk of vector-borne infections in sled dogs associated with existing and new endemic areas in Poland: Part 1: A population study on sled dogs during the racing season.

    PubMed

    Bajer, Anna; Mierzejewska, Ewa J; Rodo, Anna; Bednarska, Malgorzata; Kowalec, Maciej; Welc-Falęciak, Renata

    2014-05-28

    The achievements of sled dogs in competitions depend both on their training and on their health. Vector-borne infections may lead to anaemia, affect joints or heart muscle or even cause death. Between December 2009 and October 2010, one hundred and twenty six individual blood samples were collected from 26 sled dog kennels situated in different regions of Poland. The majority of samples were taken during the racing season (winter 2009/10). The prevalences of 3 vector-borne infections- including 2 'old pathogens' Anaplasma phagocytophilum and Babesia canis, and 'new pathogen' Hepatozoon canis-were estimated in sled dogs using PCR and nested PCR. Additionally, 25 serum samples originating from a subset of 3 kennels situated in a tick-borne encephalitis (TBE) endemic area (Mazowiecki region), were tested for antibodies against the tick-borne encephalitis virus (TBEV). Because of the recently reported occurrence of Dirofilaria repens in Central Poland and that of fatal cases of unknown aetiology in two of the kennels, blood samples collected from dogs at these kennels in 2010 and in February-May 2013 and from two unaffected kennels were checked for evidence of presence of this parasite. Babesia canis DNA was detected in 11 sled dogs (4 with clinical babesiosis, 7 asymptomatic; 8.7%) inhabiting mainly endemic regions of Poland (9/11 cases). Three serum samples originating from one location tested positive for TBEV antibodies (total seroprevalence: 3/25=12%, local seroprevalence: 3/12=25%). The risk of TBEV infection was associated with previous B. canis infections. Dirofilaria repens DNA was detected in 15 dogs (44%). Prevalence was especially high in two sled dog kennels situated near Grodzisk Mazowiecki (50-57%). No blood samples tested positive for A. phagocytophilum or H. canis DNA. The present study has established that the prevalence of vector-borne pathogens in working sled dogs is significant in the endemic regions and has justified the important role of surveillance of reservoir hosts in the epidemiology of TBE. Our results emphasize the need for regular monitoring for the presence of D. repens. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle

    NASA Astrophysics Data System (ADS)

    Hofmeester, T. R.; Coipan, E. C.; van Wieren, S. E.; Prins, H. H. T.; Takken, W.; Sprong, H.

    2016-04-01

    Background. In the northern hemisphere, ticks of the Ixodidae family are vectors of diseases such as Lyme borreliosis, Rocky Mountain spotted fever and tick-borne encephalitis. Most of these ticks are generalists and have a three-host life cycle for which they are dependent on three different hosts for their blood meal. Finding out which host species contribute most in maintaining ticks and the pathogens they transmit, is imperative in understanding the drivers behind the dynamics of a disease. Methods. We performed a systematic review to identify the most important vertebrate host species for Ixodes ricinus and Borrelia burgdorferi s.l. as a well-studied model system for tick-borne diseases. We analyzed data from 66 publications and quantified the relative contribution for 15 host species. Review results. We found a positive correlation between host body mass and tick burdens for the different stages of I. ricinus. We show that nymphal burdens of host species are positively correlated with infection prevalence with B. burgdorferi s.l., which is again positively correlated with the realized reservoir competence of a host species for B. burgdorferi s.l. Our quantification method suggests that only a few host species, which are amongst the most widespread species in the environment (rodents, thrushes and deer), feed the majority of I. ricinus individuals and that rodents infect the majority of I. ricinus larvae with B. burgdorferi s.l. Discussion. We argue that small mammal-transmitted Borrelia spp. are maintained due to the high density of their reservoir hosts, while bird-transmitted Borrelia spp. are maintained due to the high infection prevalence of their reservoir hosts. Our findings suggest that Ixodes ricinus and Borrelia burgdorferi s.l. populations are maintained by a few widespread host species. The increase in distribution and abundance of these species, could be the cause for the increase in Lyme borreliosis incidence in Europe in recent decades.

  15. Circulation of a Meaban-Like Virus in Yellow-Legged Gulls and Seabird Ticks in the Western Mediterranean Basin

    PubMed Central

    Cerdà-Cuéllar, Marta; Lecollinet, Sylvie; Pearce-Duvet, Jessica; Busquets, Núria; García-Bocanegra, Ignacio; Pagès, Nonito; Vittecoq, Marion; Hammouda, Abdessalem; Samraoui, Boudjéma; Garnier, Romain; Ramos, Raül; Selmi, Slaheddine; González-Solís, Jacob; Jourdain, Elsa; Boulinier, Thierry

    2014-01-01

    In recent years, a number of zoonotic flaviviruses have emerged worldwide, and wild birds serve as their major reservoirs. Epidemiological surveys of bird populations at various geographical scales can clarify key aspects of the eco-epidemiology of these viruses. In this study, we aimed at exploring the presence of flaviviruses in the western Mediterranean by sampling breeding populations of the yellow-legged gull (Larus michahellis), a widely distributed, anthropophilic, and abundant seabird species. For 3 years, we sampled eggs from 19 breeding colonies in Spain, France, Algeria, and Tunisia. First, ELISAs were used to determine if the eggs contained antibodies against flaviviruses. Second, neutralization assays were used to identify the specific flaviviruses present. Finally, for colonies in which ELISA-positive eggs had been found, chick serum samples and potential vectors, culicid mosquitoes and soft ticks (Ornithodoros maritimus), were collected and analyzed using serology and PCR, respectively. The prevalence of flavivirus-specific antibodies in eggs was highly spatially heterogeneous. In northeastern Spain, on the Medes Islands and in the nearby village of L'Escala, 56% of eggs had antibodies against the flavivirus envelope protein, but were negative for neutralizing antibodies against three common flaviviruses: West Nile, Usutu, and tick-borne encephalitis viruses. Furthermore, little evidence of past flavivirus exposure was obtained for the other colonies. A subset of the Ornithodoros ticks from Medes screened for flaviviral RNA tested positive for a virus whose NS5 gene was 95% similar to that of Meaban virus, a flavivirus previously isolated from ticks of Larus argentatus in western France. All ELISA-positive samples subsequently tested positive for Meaban virus neutralizing antibodies. This study shows that gulls in the western Mediterranean Basin are exposed to a tick-borne Meaban-like virus, which underscores the need of exploring the spatial and temporal distribution of this flavivirus as well as its potential pathogenicity for animals and humans. PMID:24625959

  16. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity

    PubMed Central

    Ogden, Nick H.; Mechai, Samir; Margos, Gabriele

    2013-01-01

    The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity. PMID:24010124

  17. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity.

    PubMed

    Ogden, Nick H; Mechai, Samir; Margos, Gabriele

    2013-01-01

    The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R 0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity.

  18. Tick-borne encephalitis in patients vaccinated against this disease.

    PubMed

    Lotrič-Furlan, S; Bogovič, P; Avšič-Županc, T; Jelovšek, M; Lusa, L; Strle, F

    2017-08-01

    Information on tick-borne encephalitis (TBE) in patients already vaccinated against the disease is limited. To compare the course and outcome in patients with vaccination breakthrough TBE with findings in patients who developed TBE without previous vaccination. All adult patients diagnosed with TBE at a single medical centre during a 16-year period and who had received at least two doses of TBE vaccine before the onset of illness qualified for the study. For each patient with breakthrough TBE, two unvaccinated sex- and age-matched patients, diagnosed with TBE in the same year, were included for comparison. Amongst 2332 patients diagnosed with TBE in the period 2000-2015, 39 (1.7%) had been vaccinated against the disease. Their median age was 59 (20-83) years; 22 of 39 (56.4%) were male. In comparison with unvaccinated patients with TBE, those with breakthrough disease more often experienced a monophasic course of illness (P = 0.006), had a higher CSF leucocyte count (P = 0.005), more often had urine retention (P = 0.012), more often needed ICU treatment (P = 0.009), were hospitalized for longer (P = 0.002) and had more severe acute illness (P = 0.004 for simple clinical assessment, P = 0.001 for severity score). In addition to several findings corroborating previous results in patients with vaccination breakthrough TBE, such as older age and the presence of a particular specific serum antibody pattern indicating anamnestic response, findings in this study indicate that the acute illness in patients with breakthrough TBE is more severe than in unvaccinated sex- and age-matched patients who develop the disease. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  19. Evaluation of serological tests for detecting tick-borne encephalitis virus (TBEV) antibodies in animals.

    PubMed

    Klaus, Christine; Beer, Martin; Saier, Regine; Schubert, Harald; Bischoff, Sabine; Süss, Jochen

    2011-01-01

    Tick-borne encephalitis (TBE) in animals is not well understood yet. TBE virus (TBEV) serology in several host species could be valuable for epidemiological analyses in the field as well as for the detection of clinical cases. However, performance and suitability of the available test systems are not well assessed. Therefore, we evaluated two commercial TBEV-ELISA kits in a pilot study and compared them for their suitability in veterinary applications. For this purpose, we tested 163 field collected goat sera and evaluated the results by serum neutralization test (SNT) as "gold standard". Twenty-eight SNT positive sera (17.2%) were detected. The best suited ELISA kit was used for determination of a species-specific cutoff for horses, cattle, sheep, goats, pigs, mice, dogs, rabbits and monkeys with defined sera from animals without known or with improbable contact to TBEV. The level of non-specific ELISA results does not only differ between animal species but may also be influenced by the age of the tested animals. The number of sera which tested false positive by ELISA was higher in older than in young sheep. In order to obtain defined polyclonal sera as references, two dogs, cattle, goats, sheep, rabbits and pigs each, as well as one horse and 90 mice were immunized four times with a commercially available TBEV vaccine. In conclusion, our results demonstrated that commercial TBEV-ELISA kits are suitable for application in veterinary medicine for both, verification of clinical TBE cases and epidemiological screening. However, positive ELISA results should be verified by SNT. Only a very low number of false negative ELISA-results were found.

  20. Irregular tick-borne encephalitis vaccination schedules: the effect of a single catch-up vaccination with FSME-IMMUN. A prospective non-interventional study.

    PubMed

    Schosser, Rudolf; Reichert, Anja; Mansmann, Ulrich; Unger, Bernd; Heininger, Ulrich; Kaiser, Reinhard

    2014-04-25

    Intervals longer than recommended are frequently encountered between doses of tick borne encephalitis virus (TBE) vaccines in both residents of and travelers to endemic regions. In clinical practice the management of individuals with lapsed TBE vaccination schedules varies widely and has in common that the underlying immunological evidence is scarce. The aim of this study was to generate data reliable enough to derive practical recommendations on how to continue vaccination with FSME-IMMUN in subjects with an irregular TBE vaccination history. Antibody response to a single catch-up dose of FSME-IMMUN was assessed in 1115 adults (age ≥16 years) and 125 children (age 6-15 years) with irregular TBE vaccination histories. Subjects of all age groups developed a substantial increase in geometric mean antibody concentration after a single catch-up TBE vaccination which was consistently lower in subjects with only one previous TBE vaccination compared to subjects with two or more vaccinations. Overall, >94% of young adults and children, and >93% of elderly subjects with an irregular TBE vaccination history achieved antibody levels ≥25U/ml irrespective of the number of previous TBE vaccinations. We conclude that TBE vaccination of subjects with irregular vaccination histories should be continued as if the previous vaccinations had been administered in a regular manner, with the stage of the vaccination schedule being determined by the number of previous vaccinations. Although lapsed vaccination schedules may leave subjects temporarily with inadequate protection against TBE infection, adequate protection can quickly be re-established in >93% of the subjects by a single catch-up dose of FSME-IMMUN, irrespective of age, number of previous vaccinations, and time interval since the last vaccination. Copyright © 2014 Anja Reichert. Published by Elsevier Ltd.. All rights reserved.

  1. Five year follow-up after a first booster vaccination against tick-borne encephalitis following different primary vaccination schedules demonstrates long-term antibody persistence and safety.

    PubMed

    Beran, Jiří; Xie, Fang; Zent, Olaf

    2014-07-23

    Long-term vaccination programs are recommended for individuals living in regions endemic for tick-borne encephalitis (TBE). Current recommendations suggest a first booster vaccine be administered 3 years after a conventional regimen or 12-18 months after a rapid regimen. However, the research supporting subsequent booster intervals is limited. The aim of this study was thus to evaluate the long-term persistence of TBE antibodies in adults and adolescents after a first booster dose with Encepur(®). A total of 323 subjects aged 15 years and over, who had received one of four different primary TBE vaccination series in a parent study, participated in this follow-up Phase IV trial. Immunogenicity and safety were assessed for up to five years after a first booster dose, which was administered three years after completion of the primary series. One subset of subjects was excluded from the booster vaccination since they had already received their booster prior to enrollment. For comparison, immune responses were still recorded for these subjects on Day 0 and on an annual basis until Year 5, but safety information was not collected. Following a booster vaccination, high antibody titers were recorded in all groups throughout the study. Neutralization test (NT) titers of ≥ 10 were noted in at least 94% of subjects at every time point post-booster (on Day 21 and through Years 1-5). These results demonstrated that a first booster vaccination following any primary immunization schedule results in high and long-lasting (>5 years) immune responses. These data lend support to the current belief that subsequent TBE booster intervals could be extended from the current recommendation. NCT00387634. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Nucleoside Inhibitors of Tick-Borne Encephalitis Virus

    PubMed Central

    Eyer, Luděk; Valdés, James J.; Gil, Victor A.; Nencka, Radim; Hřebabecký, Hubert; Šála, Michal; Salát, Jiří; Černý, Jiří; Palus, Martin; De Clercq, Erik

    2015-01-01

    Tick-borne encephalitis virus (TBEV) is a leading cause of human neuroinfections in Europe and Northeast Asia. There are no antiviral therapies for treating TBEV infection. A series of nucleoside analogues was tested for the ability to inhibit the replication of TBEV in porcine kidney cells and human neuroblastoma cells. The interactions of three nucleoside analogues with viral polymerase were simulated using advanced computational methods. The nucleoside analogues 7-deaza-2′-C-methyladenosine (7-deaza-2′-CMA), 2′-C-methyladenosine (2′-CMA), and 2′-C-methylcytidine (2′-CMC) inhibited TBEV replication. These compounds showed dose-dependent inhibition of TBEV-induced cytopathic effects, TBEV replication (50% effective concentrations [EC50]of 5.1 ± 0.4 μM for 7-deaza-2′-CMA, 7.1 ± 1.2 μM for 2′-CMA, and 14.2 ± 1.9 μM for 2′-CMC) and viral antigen production. Notably, 2′-CMC was relatively cytotoxic to porcine kidney cells (50% cytotoxic concentration [CC50] of ∼50 μM). The anti-TBEV effect of 2′-CMA in cell culture diminished gradually after day 3 posttreatment. 7-Deaza-2′-CMA showed no detectable cellular toxicity (CC50 > 50 μM), and the antiviral effect in culture was stable for >6 days posttreatment. Computational molecular analyses revealed that compared to the other two compounds, 7-deaza-2′-CMA formed a large cluster near the active site of the TBEV polymerase. High antiviral activity and low cytotoxicity suggest that 7-deaza-2′-CMA is a promising candidate for further investigation as a potential therapeutic agent in treating TBEV infection. PMID:26124166

  3. Comparison of hyponatremia and SIADH frequency in patients with tick borne encephalitis and meningitis of other origin.

    PubMed

    Czupryna, Piotr; Moniuszko, Anna; Garkowski, Adam; Pancewicz, Sławomir; Zajkowska, Joanna

    2016-01-01

    The aim of the study was the evaluation of frequency and origin of hyponatremia in tick borne encephalitis (TBE) in comparison to non-TBE viral meningitis and bacterial meningitis. A total of 124 patients aged 18-80 years, with TBE were included to the study. The mild form of TBE was diagnosed in 59 patients, while the severe form was diagnosed in 65 patients. The first control group (VMG) consisted of 72 patients with viral meningitis, but excluded TBE. The second control group (BMG) consisted of 16 patients diagnosed with bacterial meningitis. Hyponatremia was diagnosed in 55 (44.4%) patients with TBE. In 12 (9.7%) patients (mean age 56.6 ± 19.9 years; 9 men, 3 women) syndrome of inappropriate secretion of antidiuretic hormone (SIADH) was diagnosed. In VMG hyponatremia was diagnosed in 7 (9.7%) patients. In the age group <35 years and in the age group of 50-64 years the frequency of hyponatremia and SIADH was higher in TBE than in VMG (p < 0.05). In BMG hyponatremia was diagnosed in 6 (37.5%) patients. No statistically significant differences in frequency of hyponatremia between BMG and TBE groups were observed. (1) Hyponatremia is a common disorder in TBE and is more frequent than in other viral types of meningitis, especially in young patients (< 35 years). (2) The most common cause of hyponatremia in TBE patients is dehydration and fluid supplementation should be a treatment of choice. (3) Overall, 16.9% of the patients with the severe form of TBE develop SIADH syndrome and they required treatment based on fluid restriction and hypertonic saline infusion.

  4. Characterization of a novel insect-specific flavivirus from Brazil: Potential for inhibition of infection of arthropod cells with medically important flaviviruses.

    DOE PAGES

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.; ...

    2014-01-12

    In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated ‘Nhumirim virus’; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell linesmore » were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. As a result, the inhibitory effect was most effective against WNV and SLEV with over a 106-fold and 104-fold reduction in peak titres, respectively.« less

  5. Characterization of a novel insect-specific flavivirus from Brazil: Potential for inhibition of infection of arthropod cells with medically important flaviviruses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.

    In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated ‘Nhumirim virus’; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell linesmore » were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. As a result, the inhibitory effect was most effective against WNV and SLEV with over a 106-fold and 104-fold reduction in peak titres, respectively.« less

  6. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses

    PubMed Central

    Kenney, Joan L.; Solberg, Owen D.; Langevin, Stanley A.; Brault, Aaron C.

    2015-01-01

    In the past decade there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated “Nhumirim virus”; NHUV) (Pauvolid-Correa et al., in review) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential, 3’ untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus’s capacity to suppress replication of representative Culex spp. vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3’ UTR indicate NHUV to be most similar to viruses within the yellow fever serogroup, Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared to traditional insect-specific flaviviruses. This suggests that, despite being apparently insect-specific, this virus likely diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in significant reduction in viral production of West Nile virus (WNV), St. Louis encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most effective against WNV and SLEV with over a million-fold and 10,000-fold reduction in peak titers, respectively. PMID:25146007

  7. Colorado tick fever

    MedlinePlus

    ... cord ( meningitis ) Irritation and swelling of the brain ( encephalitis ) Repeated bleeding episodes for no apparent cause Call ... Beckham JD, Tyler KL. Encephalitis. In: Bennett JE, Dolin R, ... Principles and Practice of Infectious Disease, Updated Edition . ...

  8. Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses.

    PubMed

    Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X

    1993-05-01

    The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.

  9. Molecular Detection and Identification of Rickettsia Species in Ticks (Acari: Ixodidae) Collected From Belize, Central America.

    PubMed

    Polsomboon, Suppaluck; Hoel, David F; Murphy, Jittawadee R; Linton, Yvonne-Marie; Motoki, Maysa; Robbins, Richard G; Bautista, Kim; Bricen O, Ireneo; Achee, Nicole L; Grieco, John P; Ching, Wei-Mei; Chao, Chien-Chung

    2017-11-07

    Little is known about tick-borne rickettsial pathogens in Belize, Central America. We tested ixodid ticks for the presence of Rickettsia species in three of the six northern and western Belizean districts. Ticks were collected from domestic animals and tick drags over vegetation in 23 different villages in November 2014, February 2015, and May 2015. A total of 2,506 collected ticks were identified to the following species: Dermacentor nitens Neumann (46.69%), Rhipicephalus sanguineus (Latreille) (19.55%), Rhipicephalus microplus (Canestrini) (19.47%), Amblyomma cajennense complex (9.74%), Amblyomma maculatum Koch (3.47%), Amblyomma ovale Koch (0.68%), Ixodes nr affinis (0.16%), Amblyomma nr maculatum (0.12%), and Amblyomma nr oblongoguttatum (0.12%). Ticks were pooled according to species, life stage (larva, nymph, or adult), and location (n = 509) for DNA extraction and screened for genus Rickettsia by quantitative real-time polymerase chain reaction (qPCR). All 42 positive pools were found to be positive for spotted fever group (SFG) Rickettsia in pools of A. cajennense complex (n = 33), A. maculatum (n = 4), A. nr maculatum (n = 1), A. ovale (n = 1), R. sanguineus (n = 1), and I. nr affinis (n = 2). Rickettsia amblyommatis was identified from A. cajennense complex and A. nr maculatum. Rickettsia parkeri was found in A. maculatum, and Rickettsia sp. endosymbiont was detected in I. nr affinis. The presence of infected ticks suggests a risk of tick-borne rickettsioses to humans and animals in Belize. This knowledge can contribute to an effective tick management and disease control program benefiting residents and travelers. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  10. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface

    PubMed Central

    Kazimírová, Mária; Thangamani, Saravanan; Bartíková, Pavlína; Hermance, Meghan; Holíková, Viera; Štibrániová, Iveta; Nuttall, Patricia A.

    2017-01-01

    Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses. PMID:28798904

  11. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface.

    PubMed

    Kazimírová, Mária; Thangamani, Saravanan; Bartíková, Pavlína; Hermance, Meghan; Holíková, Viera; Štibrániová, Iveta; Nuttall, Patricia A

    2017-01-01

    Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.

  12. Occurrence and genetic variability of Kemerovo virus in Ixodes ticks from different regions of Western Siberia, Russia and Kazakhstan.

    PubMed

    Tkachev, Sergey E; Tikunov, Artem Yu; Babkin, Igor V; Livanova, Natalia N; Livanov, Stanislav G; Panov, Victor V; Yakimenko, Valeriy V; Tantsev, Alexey K; Taranenko, Dmitrii E; Tikunova, Nina V

    2017-01-01

    Kemerovo virus (KEMV), a member of the Reoviridae family, Orbivirus genus, is transmitted by Ixodes ticks and can cause aseptic meningitis and meningoencephalitis. Recently, this virus was observed in certain provinces of European part of Russia, Ural, and Western and Eastern Siberia. However, the occurrence and genetic diversity of KEMV in Western Siberia remain poorly studied. Therefore, the aim of this work was to investigate the prevalence and genetic variability of KEMV in Ixodes ticks from Western Siberia. A total of 1958 Ixodes persulcatus, I. pavlovskyi ticks and their hybrids from Novosibirsk and Omsk provinces, Altai Republic (Russia) and East Kazakhstan province (Kazakhstan) were analyzed for the presence of KEMV and tick-borne encephalitis virus (TBEV) RNA. It was observed that the KEMV distribution area in Western Siberia was wider than originally thought and included Northern and Northeastern Altai in addition to the Omsk and Novosibirsk provinces. For the first time, this virus was found in Kazakhstan. The occurrence of KEMV was statistically lower than TBEV in most locations in Western Siberia. KEMV was found both in I. persulcatus and I. pavlovskyi ticks and in their hybrids. Notably, KEMV variants observed in the 2010s were genetically different from those isolated in the 1960s, which indicated the ongoing process of evolution of the Kemerovo virus group. Moreover, the possibility of reassortment for KEMV was demonstrated for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission.

    PubMed

    Hermance, Meghan E; Santos, Rodrigo I; Kelly, Brent C; Valbuena, Gustavo; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host's skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation.

  14. Coltiviruses and Seadornaviruses in North America, Europe, and Asia

    PubMed Central

    Jaafar, Fauziah Mohd; de Micco, Philippe; de Lamballerie, Xavier

    2005-01-01

    Coltiviruses are tickborne viruses of the genus Coltivirus. The type species, Colorado tick fever virus (from North America), has been isolated from patients with flulike syndromes, meningitis, encephalitis, and other severe complications. Another coltivirus, Eyach virus, has been isolated from ticks in France and Germany and incriminated in febrile illnesses and neurologic syndromes. Seadornaviruses are endemic in Southeast Asia, particularly Indonesia and China. The prototype virus of the genus, Banna virus (BAV), has been isolated from many mosquito species, humans with encephalitis, pigs, and cattle. Two other seadornaviruses, Kadipiro and Liao Ning, were isolated only from mosquitoes. The epidemiology of seadornaviruses remains poorly documented. Evidence suggests that BAV is responsible for encephalitis in humans. Infection with BAV may be underreported because it circulates in regions with a high incidence of Japanese encephalitis and could be misdiagnosed as this disease. PMID:16318717

  15. Economic downturn results in tick-borne disease upsurge

    PubMed Central

    2011-01-01

    Background The emergence of zoonoses is due both to changes in human activities and to changes in their natural wildlife cycles. One of the most significant vector-borne zoonoses in Europe, tick-borne encephalitis (TBE), doubled in incidence in 1993, largely as a consequence of the socio-economic transition from communism to capitalism and associated environmental changes. Methods To test the effect of the current economic recession, unemployment in 2009 and various socio-economic indices were compared to weather indices (derived from principal component analyses) as predictors for the change in TBE case numbers in 2009 relative to 2004-08, for 14 European countries. Results Greatest increases in TBE incidence occurred in Latvia, Lithuania and Poland (91, 79 and 45%, respectively). The weather was rejected as an explanatory variable. Indicators of high background levels of poverty, e.g. percent of household expenditure on food, were significant predictors. The increase in unemployment in 2009 relative to 2008 together with 'in-work risk of poverty' is the only case in which a multivariate model has a second significant term. Conclusion Background socio-economic conditions determine susceptibility to risk of TBE, while increased unemployment triggered a sudden increase in risk. Mechanisms behind this result may include reduced resistance to infection through stress; reduced uptake of costly vaccination; and more exposure of people to infected ticks in their forest habitat as they make greater use of wild forest foods, especially in those countries, Lithuania and Poland, with major marketing opportunities in such products. Recognition of these risk factors could allow more effective protection through education and a vaccination programme targeted at the economically most vulnerable. PMID:21406086

  16. Climate change and zoonotic infections in the Russian Arctic

    PubMed Central

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax. PMID:22868189

  17. Serum carnitine and acyl-carnitine in patients with meningitis due to tick-borne encephalitis virus infection.

    PubMed

    Kępka, Alina; Janas, Roman M; Pancewicz, Sławomir A; Świerzbińska, Renata

    2017-01-01

    Hard ticks are the main vectors of tick-borne encephalitis virus (TBEV). Free carnitine (FC) and acylcarnitines (AC) have the basic role in β-oxidation as well as the modulation of immune and nervous system. Homeostasis of carnitines in the TBE patients was not studied so far. This study aimed to evaluate FC and AC serum concentrations in patients with meningitis due to TBEV infection before and after 14 ± 3 days of treatment. The study was performed in 14 patients aged 48 ± 29 years that were divided a posteriori (based on their FC level before and after treatment) into 2 subgroups: 1-8 and 9-14. Diagnosis was based on the neurological, serological and pleocytosis evaluation. The FC level in patients 1-8 before treatment (24.1 ± 8.1) was significantly lower than in patients post-treatment (34.4 ± 8.3), lower than in the control group (40.5 ± 7.6), and lower than in patients 9-14 before treatment (40.0 ± 13.5) but not lower than in the patients 9-14 after treatment (24.7 ± 7.3 μmol/L), respectively, p < 0.05. AC concentration in the patients 1-8 before treatment (4.7 ± 2.2) was apparently lower than in patients post-treatment (9.5 ± 3.9 μmol/L) but the values were not significantly different. In patients 9-14 before treatment the AC concentration (16.3 ± 12.6) was higher than in patients after treatment (5.3 ± 4.0 μmol/L), but the difference was not statistically significant. FC and AC homeostasis in circulation was disturbed in the patients with meningitis due to TBEV infection patients. The mean levels of FC and AC in 60% of the patients were below the normal range but normalized after treatment whereas in 40% of the patients they were near or at a normal range and significantly decreased after treatment. Explanation of this intriguing finding and its clinical significance is not easy without further studies.

  18. Medically important arboviruses of the United States and Canada.

    PubMed Central

    Calisher, C H

    1994-01-01

    Of more than 500 arboviruses recognized worldwide, 5 were first isolated in Canada and 58 were first isolated in the United States. Six of these viruses are human pathogens: western equine encephalitis (WEE) and eastern equine encephalitis (EEE) viruses (family Togaviridae, genus Alphavirus), St. Louis encephalitis (SLE) and Powassan (POW) viruses (Flaviviridae, Flavivirus), LaCrosse (LAC) virus (Bunyaviridae, Bunyavirus), and Colorado tick fever (CTF) virus (Reoviridae, Coltivirus). Their scientific histories, geographic distributions, virology, epidemiology, vectors, vertebrate hosts, transmission, pathogenesis, clinical and differential diagnoses, control, treatment, and laboratory diagnosis are reviewed. In addition, mention is made of the Venezuelan equine encephalitis (VEE) complex viruses (family Togaviridae, genus Alphavirus), which periodically cause human and equine disease in North America. WEE, EEE, and SLE viruses are transmitted by mosquitoes between birds; POW and CTF viruses, between wild mammals by ticks; LAC virus, between small mammals by mosquitoes; and VEE viruses, between small or large mammals by mosquitoes. Human infections are tangential to the natural cycle. Such infections range from rare to focal but are relatively frequent where they occur. Epidemics of WEE, EEE, VEE, and SLE viruses have been recorded at periodic intervals, but prevalence of infections with LAC and CTF viruses typically are constant, related to the degree of exposure to infected vectors. Infections with POW virus appear to be rare. Adequate diagnostic tools are available, but treatment is mainly supportive, and greater efforts at educating the public and the medical community are suggested if infections are to be prevented. PMID:8118792

  19. [POLYMORPHISM IN THE PHENOTYPIC STRUCTURE OF A POPULATION OF TAIGA TICK AND ITS EPIDEMIOLOGICAL SIGNIFICANCE].

    PubMed

    Morozov, I M; Alekseev, A N; Dubinina, E V; Nikitin, A Ya; Melnikova, O V; Andaev, E I

    2015-01-01

    The paper presents the results of 10-year (2005-2014) observations of an Ixodespersulcatus Schulze population. The purpose of this investigation was to trace long-term changes in the structure of the taiga tick population from the proportion of specimens with external skeletal anomalies and to assess a relationship between the pattern of imago phenotypic variation and the virus percentage of a carrier. There were a total of reports of the external skeletal structure of 1123 females gathered from plants to a flag in an area at 43 km from the Baikal Road connecting Irkutsk and the settlement of Listvyanka (Irkutsk Region). The proportion of specimens with anomalies averaged 37.8 +/- 1.88%. Four-to-seven varying anomalies were annually recorded. There was a preponderance of scutum impairment (an average of 17.0 +/- 3.08% of all females) that was a conglomerate of prominences and indentations along the entire clypeus surface and that was denoted P9. The nature of a change in the proportion of ticks with two anomalies (average monthly registration rate, 2.5 +/- 0.66%) is exhibited by three-year high-frequency oscillations whereas the specimens with P9 anomalies fail to show so clear cycling. The percentage of virus-containing taiga ticks was individually determined estimating the level of tick-borne encephalitis virus antigen by an enzyme immunoassay. A total of 4022 ticks were examined. The male and female data were pooled. There was a positive correlation between the change in the proportion of females with P9 anomaly and the infection of ticks in the examined population (Spearman's correlation coefficient, 0.88; P < 0.01). This supports the earlier observation of the greater epidemiological significance of the imago of a taiga tick with external skeletal anomalies particularly with considerably marked ones.

  20. Immunological control of ticks and tick-borne diseases that impact cattle health and production.

    PubMed

    Almazan, Consuelo; Tipacamu, Gabriela Aguilar; Rodriguez, Sergio; Mosqueda, Juan; Perez de Leon, Adalberto

    2018-03-01

    The cattle industry is one of the most important agroeconomic activities in Mexico. The national herd is estimated to include approximately 33.5. million head of cattle. Ticks and tick-borne diseases are principal factors with a negative impact on cattle health and production. The most economically important tick species parasitizing cattle in Mexico are Rhipicephalus microplus , R. annulatus , and Amblyomma mixtum . Parasitism by ticks affects cattle health and production directly. Morbidity and mortality caused by tick-borne diseases augment the detrimental effect of tick infestation in cattle. Bovine babesiosis and anaplasmosis are the most important tick-borne diseases of cattle, which are caused by infectious agents transmitted by R. microplus and R. annulatus . However, there are no prophylactic therapies to control bovine babesiosis and anaplasmosis. Chemical control is the most common way to treat animals against ticks, and the use of acaricides can also help manage tick-borne diseases. However, the evolution of resistance to acaricides among cattle tick populations renders chemical control ineffective; which represents a challenge for sustainable ticks and tick-borne diseases control. The only anti-tick vaccine commercially available globally is based on the recombinant antigen Bm86. Because of its mode of immunity against R. microplus and R. annulatus , the Bm86-based vaccine also decreases the exposition of bovines to babesiosis and anaplasmosis. Research with Bm86-based vaccines documented high efficacy against R. annulatus , the efficacy levels against R. microplus varies according to the geographic origin of tick populations, and there is not effect against other ticks species such as Amblyomma spp. The impact of ticks and tick-borne diseases, the problem of chemical control due to acaricide resistance, and progress with anti-tick vaccine research efforts in Mexico are reviewed herein.

  1. Molecular targets for flavivirus drug discovery

    PubMed Central

    Sampath, Aruna; Padmanabhan, R.

    2009-01-01

    Flaviviruses are a major cause of infectious disease in humans. Dengue virus causes an estimated 50 million cases of febrile illness each year, including an increasing number of cases of hemorrhagic fever. West Nile virus, which recently spread from the Mediterranean basin to the Western Hemisphere, now causes thousands of sporadic cases of encephalitis annually. Despite the existence of licensed vaccines, yellow fever, Japanese encephalitis and tick-borne encephalitis also claim many thousands of victims each year across their vast endemic areas. Antiviral therapy could potentially reduce morbidity and mortality from flavivirus infections, but no effective drugs are currently available. This article introduces a collection of papers in Antiviral Research on molecular targets for flavivirus antiviral drug design and murine models of dengue virus disease that aims to encourage drug development efforts. After reviewing the flavivirus replication cycle, we discuss the envelope glycoprotein, NS3 protease, NS3 helicase, NS5 methyltransferase and NS5 RNA-dependent RNA polymerase as potential drug targets, with special attention being given to the viral protease. The other viral proteins are the subject of individual articles in the journal. Together, these papers highlight current status of drug discovery efforts for flavivirus diseases and suggest promising areas for further research. PMID:18796313

  2. Risk of Disease from Mosquito and Tick Bites

    EPA Pesticide Factsheets

    Insect repellents help reduce the risk of mosquito and tick bites, which can transmit diseases including West Nile Virus, malaria, encephalitis, yellow fever, dengue fever, chikungunya virus, Lyme disease, Rocky Mountain spotted fever, and ehrlichiosis.

  3. Management of ticks and tick-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.; Stafford, K.C.; Goodman, J.L.; Dennis, D.T.; Sonenshine, D .E.

    2005-01-01

    The mainstays of tick management and protection from tick-borne diseases have traditionally been personal precautions and the application of acaricides. These techniques maintain their value, and current innovations hold considerable promise for future improvement in effective targeting of materials for tick control. Furthermore, an explosion of research in the past few decades has resulted in the development and expansion of several novel and potentially valuable approaches to tick control, including vaccination against tick-borne pathogen transmission and against tick attachment, host management, use of natural enemies (especially entomopathogenic fungi), and pheromone-based techniques. The situations that require tick management are diverse, and occur under varied ecological conditions. Therefore, the likelihood of finding a single ?magic bullet? for tick management is low. In practical terms, the approach to tick management or to management of tick-borne disease must be tailored to the specific conditions at hand. One area that needs increased attention is the decision-making process in applying IPM to tick control. Further development of novel tick control measures, and increased efficiency in their integration and application to achieve desired goals, holds great promise for effective future management of ticks and tick-borne diseases.

  4. Unrecognized Subclinical Infection with Tickborne Encephalitis Virus, Japan

    PubMed Central

    Yoshii, Kentaro; Kojima, Reiji

    2017-01-01

    During early 2017, we conducted a seroepidemiologic investigation for tickborne encephalitis virus among 291 Japan Self-Defense Forces members in Hokkaido. Two (0.7%) tested positive. Neither had clinically apparent symptoms after removing ticks. PMID:28930025

  5. Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector.

    PubMed

    Durand, Jonas; Herrmann, Coralie; Genné, Dolores; Sarr, Anouk; Gern, Lise; Voordouw, Maarten J

    2017-02-01

    Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others. Copyright © 2017 American Society for Microbiology.

  6. Advancing integrated tick management to mitigate burden of tick-borne diseases

    USDA-ARS?s Scientific Manuscript database

    More than half of the world’s population is at risk of exposure to vector-borne pathogens. Annually, more than 1 billion people are infected and more than 1 million die from vector-borne diseases, including those caused by pathogens transmitted by ticks. The problem with tick borne diseases (TBD) is...

  7. The complexity of Rhipicephalus (Boophilus) microplus genome characterised through detailed analysis of two BAC clones

    USDA-ARS?s Scientific Manuscript database

    Background: Rhipicephalus (Boophilus) microplus (Rmi) a major cattle ectoparasite and tick borne disease vector, impacts on animal welfare and industry productivity. In arthropod research there is an absence of a complete Chelicerate genome, which includes ticks, mites, spiders, scorpions and crusta...

  8. West nile virus and other arboviral diseases - United States, 2013.

    PubMed

    Lindsey, Nicole P; Lehman, Jennifer A; Staples, J Erin; Fischer, Marc

    2014-06-20

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. West Nile virus (WNV) is the leading cause of domestically acquired arboviral disease in the United States. However, several other arboviruses also cause sporadic cases and seasonal outbreaks of neuroinvasive disease (i.e., meningitis, encephalitis, and acute flaccid paralysis). This report summarizes surveillance data reported to CDC in 2013 for WNV and other nationally notifiable arboviruses, excluding dengue. Forty-seven states and the District of Columbia reported 2,469 cases of WNV disease. Of these, 1,267 (51%) were classified as WNV neuroinvasive disease, for a national incidence of 0.40 per 100,000 population. After WNV, the next most commonly reported cause of arboviral disease was La Crosse virus (LACV) (85 cases), followed by Jamestown Canyon virus (JCV), Powassan virus (POWV), and eastern equine encephalitis virus (EEEV) (eight). WNV and other arboviruses continue to cause serious illness in substantial numbers of persons annually. Maintaining surveillance remains important to help direct and promote prevention activities.

  9. [Vaccination for international travelers].

    PubMed

    Arrazola, M Pilar; Serrano, Almudena; López-Vélez, Rogelio

    2016-05-01

    Traveler's vaccination is one of the key strategies for the prevention of infectious diseases during international travel. The risk of acquiring an infectious disease is determined in each case by the characteristics of the traveler and the travel, so the pre-departure medical advice of the traveler must be individualized. The World Health Organization classifies travelerś vaccines into three groups. - Vaccines for routine use in national immunization programs: Haemophilus influenzae type b, hepatitis B, polio, measles-mumps-rubella, tetanus-diphtheria-whooping a cough, and chickenpox. - Vaccinations required by law in certain countries before to enter them: yellow fever, meningococcal disease and poliomyelitis. - Vaccines recommended depending on the circumstances: cholera, japanese encephalitis, tick-borne encephalitis, meningococcal disease, typhoid fever, influenza, hepatitis A, hepatitis B, rabies and BCG. This review is intended to introduce the reader to the field of international vaccination. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  10. Anaplasmosis

    MedlinePlus

    ... Illness (STARI) Tick Paralysis Tick-borne Relapsing Fever Tularemia News & Views Find A Physician Donate Physician’s Resources ... Illness (STARI) Tick Paralysis Tick-borne Relapsing Fever Tularemia Anaplasmosis Anaplasmosis Tick species that transmit anaplasmosis: Deer ...

  11. Tick-borne protozoa

    USDA-ARS?s Scientific Manuscript database

    Tick-borne protozoa impose a significant health burden on humans and animals throughout the world. The virulence of tick-borne protozoa, and the geographic distribution of their tick vectors and vertebrate hosts remain in flux as they adapt to changing environmental and climatic conditions. Babesios...

  12. Vaccination against Louping Ill Virus Protects Goats from Experimental Challenge with Spanish Goat Encephalitis Virus.

    PubMed

    Salinas, L M; Casais, R; García Marín, J F; Dalton, K P; Royo, L J; Del Cerro, A; Gayo, E; Dagleish, M P; Alberdi, P; Juste, R A; de la Fuente, J; Balseiro, A

    2017-05-01

    Spanish goat encephalitis virus (SGEV) is a recently described member of the genus Flavivirus belonging to the tick-borne encephalitis group of viruses, and is closely related to louping ill virus (LIV). Naturally acquired disease in goats results in severe, acute encephalitis and 100% mortality. Eighteen goats were challenged subcutaneously with SGEV; nine were vaccinated previously against LIV and nine were not. None of the vaccinated goats showed any clinical signs of disease or histological lesions, but all of the non-vaccinated goats developed pyrexia and 5/9 developed neurological clinical signs, primarily tremors in the neck and ataxia. All non-vaccinated animals developed histological lesions restricted to the central nervous system and consistent with a lymphocytic meningomyeloencephalitis. Vaccinated goats had significantly (P <0.003) greater concentrations of serum IgG and lower levels of IgM (P <0.0001) compared with unvaccinated animals. SGEV RNA levels were below detectable limits in the vaccinated goats throughout the experiment, but increased rapidly and were significantly (P <0.0001) greater 2-10 days post challenge in the non-vaccinated group. In conclusion, vaccination of goats against LIV confers highly effective protection against SGEV; this is probably mediated by IgG and prevents an increase in viral RNA load in serum such that vaccinated animals would not be an effective reservoir of the virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation.

    PubMed

    Barrett, Alan D T

    2018-01-01

    Zika virus (ZIKV), a mosquito-borne flavivirus, was first identified in the 1940s in Uganda in Africa and emerged in the Americas in Brazil in May 2015. In the 30 months since ZIKV emerged as a major public health problem, spectacular progress has been made with vaccine development cumulating with the publication of three reports of phase 1 clinical trials in the 4th quarter of 2017. Clinical trials involving candidate DNA and purified inactivated virus vaccines showed all were safe and well-tolerated in the small number of volunteers and all induced neutralizing antibodies, although these varied by vaccine candidate and dosing regimen. These results suggest that a Zika vaccine can be developed and that phase 2 clinical trials are warranted. However, it is difficult to compare the results from the different phase 1 studies or with neutralizing antibodies induced by licensed flavivirus vaccines (Japanese encephalitis, tick-borne encephalitis, and yellow fever) as neutralizing antibody assays vary and, unfortunately, there are no standards for Zika virus neutralizing antibodies. In addition to clinical studies, substantial progress continues to be made in nonclinical development, particularly in terms of the ability of candidate vaccines to protect reproductive tissues, and the potential use of monoclonal antibodies for passive prophylaxis.

  14. Borrelia miyamotoi, Other Vector-Borne Agents in Cat Blood and Ticks in Eastern Maryland.

    PubMed

    Shannon, Avery B; Rucinsky, Renee; Gaff, Holly D; Brinkerhoff, R Jory

    2017-12-01

    We collected blood and tick samples in eastern Maryland to quantify vector-borne pathogen exposure and infection in healthy cats and to assess occupational disease risk to veterinary professionals and others who regularly interact with household pets. Thirty-six percent of healthy cats parasitized by ticks at time of examination (9/25) were exposed to, and 14% of bloods (7/49) tested PCR-positive for, at least one vector-borne pathogen including several bloods and ticks with Borrelia miyamotoi, a recently recognized tick-borne zoonotic bacterium. There was no indication that high tick burdens were associated with exposure to vector-borne pathogens. Our results underscore the potential importance of cats to human vector-borne disease risk.

  15. [Exoskeleton anomalies among taiga tick males from populations of the Asiatic part of Russia].

    PubMed

    Nikitin, A Ya; Morozov, I M

    2017-01-01

    The taiga tick (Icodes persulcatus, Schulze, 1930) is the main and most epidemiologically dangerous vector of tick-born encephalitis virus (TBEV) and Borrelia in most parts of Russia's territory (Alekseev et al., 2008). The purpose of this article is to describe the incidence rate of I. persulcatus males with exoskeleton anomalies in populations of the Asiatic part of Russia. A total of 2630 taiga tick males were morphologically analyzed. They were collected in Far Eastern, Siberian and Ural Federal Districts (respectively, FEFD, SFD, UFD) in 15 geographically remote locations. It is shown that in all populations there are adult ticks with impaired exoskeleton, among which two types dominate: twin dents at the back of conscutum (P11), and uneven surface of conscutum - a "shagreen skin" (P9). The frequency of abnormalities in males from the areas with temperate monsoon and temperate continental climate (FEFD) was definitely lower (6.5 ± 1.05 %), than in individuals from the territories of SFD (29.7 ± 1.03 %) and UFD (25.8 ± 3.93 %) with continental and sharply continental climate. FEFD territory is also characterized by a less number of males having two simultaneous exoskeleton anomalies. Similar district-preconditioned differences in the frequency of recorded body distortions are also typical of females, with a higher percentage of deviant individuals in comparison with males. Thus, the identified polymorphism of exoskeleton structure of the taiga tick may reflect the natural phenogeographical variability of this trait and might not be the result of human impact.

  16. Ticks and tick-borne pathogens of dogs along an elevational and land-use gradient in Chiriquí province, Panamá.

    PubMed

    Ferrell, A Michelle; Brinkerhoff, R Jory; Bernal, Juan; Bermúdez, Sergio E

    2017-04-01

    Systematic acarological surveys are useful tools in assessing risk to tick-borne infections, especially in areas where consistent clinical surveillance for tick-borne disease is lacking. Our goal was to identify environmental predictors of tick burdens on dogs and tick-borne infectious agents in dog-derived ticks in the Chiriquí Province of western Panama to draw inferences about spatio-temporal variation in human risk to tick-borne diseases. We used a model-selection approach to test the relative importance of elevation, human population size, vegetative cover, and change in landuse on patterns of tick parasitism on dogs. We collected 2074 ticks, representing four species (Rhipicephalus sanguineus, R. microplus, Amblyomma ovale, and Ixodes boliviensis) from 355 dogs. Tick prevalence ranged from 0 to 74% among the sites we sampled, and abundance ranged from 0 to 20.4 ticks per dog with R. sanguineus s.l. being the most commonly detected tick species (97% of all ticks sampled). Whereas elevation was the best single determinant of tick prevalence and abundance on dogs, the top models also included predictor variables describing vegetation cover and landuse change. Specifically, low-elevation areas associated with decreasing vegetative cover were associated with highest tick occurrence on dogs, potentially because of the affinity of R. sanguineus for human dwellings. Although we found low prevalence of tick-borne pathogen genera (two Rickettsia-positive ticks, no R. rickettsia or Ehrlichia spp.) in our study, all of the tick species we collected from dogs are known vectors of zoonotic pathogens. In areas where epidemiological surveillance infrastructure is limited, field-based assessments of acarological risk can be useful and cost-effective tools in efforts to identify high-risk environments for tick-transmitted pathogens.

  17. Risk of encountering ticks and tick-borne pathogens in a rapidly growing metropolitan area in the U.S. Great Plains.

    PubMed

    Noden, Bruce H; Loss, Scott R; Maichak, Courtney; Williams, Faithful

    2017-01-01

    The prevalence of tick-borne diseases has increased dramatically in many urban areas of the U.S., yet little is known about the ecology of ticks and tick-borne pathogens in relation to characteristics of North American urban and suburban landscapes. This study aimed to begin identification of the risk of encountering ticks and tick-borne pathogens within a rapidly expanding metropolitan area in the U.S. Great Plains region. Ten sites across Oklahoma City, Oklahoma were selected for tick sampling based on presence of tick habitat and level of urbanization intensity. Sampling was conducted using CO 2 traps and flagging in June, July and October 2015. A total of 552 ticks were collected from eight of the ten sampled greenspaces. The majority of ticks collected in summer were Amblyomma americanum (N=534 (97.8%)), followed by Dermacentor variabilis (N=10 (1.8%)) and Amblyomma maculatum (N=2 (0.3%)). Ixodes scapularis adult females (N=4) and nymphal A. americanum (N=2) were also collected in October 2015. Tick species diversity was highest in sites with >15% of the surrounding landscape composed of undeveloped land. Rickettsia sp. (including R. amblyommii and 'Candidatus R. andeanae'), Ehrlichia chaffeensis and/or E. ewingii were detected in tick pools from all eight sites where ticks were found. Our data suggest that the risk of encountering ticks and tick-borne pathogens exists throughout the Oklahoma City metropolitan area and that tick populations are likely influenced by urbanization intensity. Continued research is needed to clarify the full range of abiotic and biotic features of urban landscapes that influence the risk of encountering ticks and transmitting tick-borne diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Emergence of zoonotic arboviruses by animal trade and migration

    PubMed Central

    2010-01-01

    Arboviruses are transmitted in nature exclusively or to a major extend by arthropods. They belong to the most important viruses invading new areas in the world and their occurrence is strongly influenced by climatic changes due to the life cycle of the transmitting vectors. Several arboviruses have emerged in new regions of the world during the last years, like West Nile virus (WNV) in the Americas, Usutu virus (USUV) in Central Europe, or Rift Valley fever virus (RVFV) in the Arabian Peninsula. In most instances the ways of introduction of arboviruses into new regions are not known. Infections acquired during stays in the tropics and subtropics are diagnosed with increasing frequency in travellers returning from tropical countries, but interestingly no attention is paid on accompanying pet animals or the hematophagous ectoparasites that may still be attached to them. Here we outline the known ecology of the mosquito-borne equine encephalitis viruses (WEEV, EEEV, and VEEV), WNV, USUV, RVFV, and Japanese Encephalitis virus, as well as Tick-Borne Encephalitis virus and its North American counterpart Powassan virus, and will discuss the most likely mode that these viruses could expand their respective geographical range. All these viruses have a different epidemiology as different vector species, reservoir hosts and virus types have adapted to promiscuous and robust or rather very fine-balanced transmission cycles. Consequently, these viruses will behave differently with regard to the requirements needed to establish new endemic foci outside their original geographical ranges. Hence, emphasis is given on animal trade and suitable ecologic conditions, including competent vectors and vertebrate hosts. PMID:20377873

  19. Clinical Investigation Program

    DTIC Science & Technology

    1992-10-01

    Tick-Borne Disease Surveillance in Febrile, Hospitalized Patients KEYWORDS: tick-borne disease, Lyme disease, Rocky Mountain Spotted Fever PRINCIPAL...tick-borne diseases such as Lyme disease, Ehrlichiosis, Q fever, and Rocky Mountain Spotted Fever in the patients admitted to Womack Army Medical...several common tick-borne diseases such as Lyme disease, ehrlichiosis, Q fever, and Rocky Mountain Spotted Fever (RMSF) in a non-active duty military

  20. Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission

    PubMed Central

    Hermance, Meghan E.; Santos, Rodrigo I.; Kelly, Brent C.; Valbuena, Gustavo; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host’s skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation. PMID:27203436

  1. Powassan Encephalitis in New Brunswick

    PubMed Central

    Fitch, William M.; Artsob, Harvey

    1990-01-01

    A case Powassan encephalitis was diagnosed in a 76-year-old man who had viral encephalitis. The patient had been staying at a cottage in Upper Rexton, north of Moncton, New Brunswick. No history of tick bite was elicited. Seven months after onset, the patient is much improved in his cognitive and physical functioning, but has minor memory impairment. This is the 11th case of Powassan encephalitis to be recognized in Canada and the first from New Brunswick. PMID:21233909

  2. Powassan encephalitis in new brunswick.

    PubMed

    Fitch, W M; Artsob, H

    1990-07-01

    A case Powassan encephalitis was diagnosed in a 76-year-old man who had viral encephalitis. The patient had been staying at a cottage in Upper Rexton, north of Moncton, New Brunswick. No history of tick bite was elicited. Seven months after onset, the patient is much improved in his cognitive and physical functioning, but has minor memory impairment. This is the 11th case of Powassan encephalitis to be recognized in Canada and the first from New Brunswick.

  3. [Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].

    PubMed

    Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K

    2014-05-01

    Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

  4. Purification and crystallization of dengue and West Nile virus NS2B-NS3 complexes.

    PubMed

    D'Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-02-01

    Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B-NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  5. Evaluation of European tick-borne encephalitis virus vaccine against recent Siberian and far-eastern subtype strains.

    PubMed

    Hayasaka, D; Goto, A; Yoshii, K; Mizutani, T; Kariwa, H; Takashima, I

    2001-09-14

    To evaluate the efficacy of the European TBE vaccine in east-Siberian and far-eastern regions of Russia, we examined the immune responses of the vaccine against recent TBE virus Siberian (Irkutsk) and far-eastern (Khabarovsk and Vladivostok) isolates. The sera of vaccinated humans showed efficient neutralizing antibody titers (> or =20) against Siberian and far-eastern strains. To evaluate the efficacy of the vaccine in vivo, mice were vaccinated and challenged with lethal doses of the viruses. All vaccinated mice survived each virus challenge. These results suggest that the European vaccine can prevent the TBE virus infection in east-Siberian and far-eastern regions of Russia.

  6. [Borrelia miyamotoi: a recently identified human pathogenic tick-borne relapsing fever spirochete].

    PubMed

    Szekeres, Sándor; Lakos, András; Földvári, Gábor

    2017-07-01

    Borrelia miyamotoi is a recently described relapsing fever spirochete transmitted by ticks of the Ixodes ricinus complex. This pathogen is different from Borrelia burgdorferi sensu lato (the Lyme borreliosis spirochetes) in its epidemiology, ecology and also genetics. Over 50 patients have been described worldwide with Borrelia miyamotoi disease, and three immunocompromised patients were reported with neurological symptoms. Our knowledge about Borrelia miyamotoi infection in ticks and its distribution in different habitats and also the mechanism of the infection is limited. The most common symptom is fever; thus it can be easily confused with other tick-borne diseases. Due to the intensive research in recent years, Borrelia miyamotoi infection in ticks and hosts has been reported from different regions and also the number of patients is increasing, thus this bacterium is considered as an emerging pathogen. In this literature review we would like to summarize the available knowledge about this spirochete. Orv Hetil. 2017, 158(29): 1124-1130.

  7. Concurrent micro-RNA mediated silencing of tick-borne flavivirus replication in tick vector and in the brain of vertebrate host.

    PubMed

    Tsetsarkin, Konstantin A; Liu, Guangping; Kenney, Heather; Hermance, Meghan; Thangamani, Saravanan; Pletnev, Alexander G

    2016-09-13

    Tick-borne viruses include medically important zoonotic pathogens that can cause life-threatening diseases. Unlike mosquito-borne viruses, whose impact can be restrained via mosquito population control programs, for tick-borne viruses only vaccination remains the reliable means of disease prevention. For live vaccine viruses a concern exists, that spillovers from viremic vaccinees could result in introduction of genetically modified viruses into sustainable tick-vertebrate host transmission cycle in nature. To restrict tick-borne flavivirus (Langat virus, LGTV) vector tropism, we inserted target sequences for tick-specific microRNAs (mir-1, mir-275 and mir-279) individually or in combination into several distant regions of LGTV genome. This caused selective attenuation of viral replication in tick-derived cells. LGTV expressing combinations of target sequences for tick- and vertebrate CNS-specific miRNAs were developed. The resulting viruses replicated efficiently and remained stable in simian Vero cells, which do not express these miRNAs, however were severely restricted to replicate in tick-derived cells. In addition, simultaneous dual miRNA targeting led to silencing of virus replication in live Ixodes ricinus ticks and abolished virus neurotropism in highly permissive newborn mice. The concurrent restriction of adverse replication events in vertebrate and invertebrate hosts will, therefore, ensure the environmental safety of live tick-borne virus vaccine candidates.

  8. [Meningitis and encephalitis in Poland in 2010].

    PubMed

    Parda, Natalia; Polkowska, Aleksandra

    2012-01-01

    Annually 2 000-3 000 cases of meningitis and encephalitis are notified to the Polish surveillance system. The leading etiologic agents of the bacterial infections are: N. meningitidis, S. pneumoniae, H. influenzae type B and L. monocytogenes. The most common causes of bacterial infections in children are: E. coli, S. agalactiae and H. influenzae type B. The viral infections are mainly caused by the following pathogens: Echovirus, Coxsackie virus group A and B. The agents responsible for the viral infections are also: arboviruses, Herpes simplex virus and mumps virus. The objectives of the present article are to analyze the epidemiology of meningitis and encephalitis in Poland in 2010 and to present the information on the vaccines used to prevent the discussed infections. The analysis was based on the data retrieved from the questionnaires used for the surveillance purposes, aggregated data on meningitis and encephalitis published in "Infectious diseases and poisonings in Poland in 2010", aggregated data on the vaccination coverage published in "Vaccinations in Poland in 2010", "Case definitions for the infectious diseases used for the surveillance purposes in 2009-2011" and Polish Immunization Programme for 2010. In 2010, Poland reported 3 063 neuroinfections--nearly 22% more than in 2009. The incidence rate was 8.03 cases per 100 000 population. From the analysis of data transpired that of the notified cases, 1 619 were of viral etiology, 846--were bacterial and 598 of other or unknown origin. Given the bacterial infections of determined etiology, the leading pathogenic agent was S. pneumoniae (180 cases), following by N. meningitidis (146 cases) and Haemophilus influenzae typu B (11 cases). Among confirmed cases of the viral infections, the predominant were tick-borne encephalitis cases (294). Compared to the data from 2009, the epidemiologic situation of the meningitis and encephalitis in Poland in 2010 has not changed significantly.

  9. Cluster of tick-borne infections at Fort Chaffee, Arkansas: Rickettsiae and Borrelia burgdorferi in ixodid ticks.

    PubMed

    Kardatzke, J T; Neidhardt, K; Dzuban, D P; Sanchez, J L; Azad, A F

    1992-07-01

    Human intrusion into pristine habitats increases the likelihood of acquiring infectious agents from potentially infective ticks. As part of a larger human serological investigation into tick-borne illnesses, 3,000 ixodid ticks were collected during May, August, and November 1990 at Fort Chaffee, Arkansas. Ticks were examined to determine whether they harbor rickettsiae, ehrlichiae, and Borrelia burgdorferi, and to assess relationship to human exposure to tick-borne infections at Fort Chaffee, Ark. The overall tick infection rates with SFG rickettsiae, B. burgdorferi, and ehrlichiae were 4.8, 0.1, and 0.3%, respectively.

  10. Chemical control of ticks on cattle and the resistance of these parasites to acaricides.

    PubMed

    George, J E; Pound, J M; Davey, R B

    2004-01-01

    Toward the end of the nineteenth century a complex of problems related to ticks and tick-borne diseases of cattle created a demand for methods to control ticks and reduce losses of cattle. The discovery and use of arsenical solutions in dipping vats for treating cattle to protect them against ticks revolutionized tick and tick-borne disease control programmes. Arsenic dips for cattle were used for about 40 years before the evolution of resistance of ticks to the chemical, and the development and marketing of synthetic organic acaricides after World War II provided superior alternative products. Most of the major groups of organic pesticides are represented on the list of chemicals used to control ticks on cattle. Unfortunately, the successive evolution of resistance of ticks to acaricides in each chemical group with the concomitant reduction in the usefulness of a group of acaricides is a major reason for the diversity of acaricides. Whether a producer chooses a traditional method for treating cattle with an acaricide or uses a new method, he must recognize the benefits, limitations and potential problems with each application method and product. Simulation models and research were the basis of recommendations for tick control strategies advocating approaches that reduced reliance on acaricides. These recommendations for controlling ticks on cattle are in harmony with recommendations for reducing the rate of selection for acaricide resistance. There is a need to transfer knowledge about tick control and resistance mitigation strategies to cattle producers.

  11. Molecular identification of tick-borne pathogens in asymptomatic individuals with human immunodeficiency virus type 1 (HIV-1) infection: a retrospective study.

    PubMed

    Welc-Falęciak, Renata; Kowalska, Justyna D; Bednarska, Małgorzata; Szatan, Magdalena; Pawełczyk, Agnieszka

    2018-05-18

    The studies on the occurrence and diversity of tick-borne infections in HIV-infected individuals have been few, and the subject has been relatively neglected when compared with other common infections associated with HIV. In HIV-positive patients in whom a serological diagnostics is complicated due to reduced positive predictive value, a method where the microorganism is detected directly is of great value. Therefore, we performed a molecular study to ascertain the prevalence and incidence of tick-borne infections in HIV-infected persons in Poland, an endemic area for Ixodes ricinus ticks. Genomic DNA was isolated from whole blood of tested patients. Detection of tick-borne pathogens was performed by amplification and sequencing of different loci. Molecular and phylogenetic analyses of obtained nucleotide sequences were performed. Serum samples were analyzed for antibodies against tick-borne pathogens by using commercial tests in all patients. Among 148 studied blood samples from HIV-infected patients, two cases (1.4%) of infection with tick-borne pathogen were reported. No symptoms of tick-borne infection were observed in these cases. In one case a patient was infected with Anaplasma phagocytophilum - the agent of human granulocytic anaplasmosis (HGA) and in the other with Borrelia garinii. Our study revealed the first case of HIV positive patient infected with A. phagocytophilum. Asymptomatic tick-borne infection can occur in HIV-positive patients. The detailed history of tick bites, especially in endemic tick areas, should be considered as part of anamnesis in routine clinical care of HIV-positive patients.

  12. Epidemiological survey of ticks and tick-borne pathogens in pet dogs in south-eastern China.

    PubMed

    Zhang, Jianwei; Liu, Qingbiao; Wang, Demou; Li, Wanmeng; Beugnet, Frédéric; Zhou, Jinlin

    2017-01-01

    To understand the epidemiology of tick infestation and tick-borne diseases in pet dogs in south-eastern China and to develop a reference for their prevention and treatment, we collected 1550 ticks parasitizing 562 dogs in 122 veterinary clinics from 20 cities of south-eastern China. Dogs were tested for common tick-borne pathogens; collected ticks were identified and processed for the detection of tick-borne pathogens. The use of an in vitro ELISA diagnostic kit for antibody detection (SNAP®4Dx® Plus) on dog sera found the infection rates with Borrelia burgdorferi sensu lato, Ehrlichia canis, and Anaplasma spp. to be 0.4%, 1.3% and 2.7%, respectively. By using a specific ELISA method, the infection rate with Babesia gibsoni was 3.9%. Rhipicephalus sanguineus sensu lato, Haemaphysalis longicornis and Rhipicephalus haemaphysaloides were the major tick species identified on pet dogs. PCR tests were conducted to detect five tick-borne pathogens in 617 ticks. The infection rate was 10.2% for E. canis, 3.4% for Anaplasma platys, 2.3% for B. gibsoni, 0.3% for B. burgdorferi s.l. and 0% for Babesia canis. Some ticks were co-infected with two (1.46%) or three pathogens (0.16%). These results indicate the infestation of pet dogs by ticks infected with tick-borne pathogens in south-eastern China, and the need for effective treatment and routine prevention of tick infestations in dogs. © J. Zhang et al., published by EDP Sciences, 2017.

  13. Ecological Factors Characterizing the Prevalence of Bacterial Tick-Borne Pathogens in Ixodes ricinus Ticks in Pastures and Woodlands ▿ §

    PubMed Central

    Halos, Lénaïg; Bord, Séverine; Cotté, Violaine; Gasqui, Patrick; Abrial, David; Barnouin, Jacques; Boulouis, Henri-Jean; Vayssier-Taussat, Muriel; Vourc'h, Gwenaël

    2010-01-01

    Ecological changes are recognized as an important driver behind the emergence of infectious diseases. The prevalence of infection in ticks depends upon ecological factors that are rarely taken into account simultaneously. Our objective was to investigate the influences of forest fragmentation, vegetation, adult tick hosts, and habitat on the infection prevalence of three tick-borne bacteria, Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Rickettsia sp. of the spotted fever group, in questing Ixodes ricinus ticks, taking into account tick characteristics. Samples of questing nymphs and adults were taken from 61 pastures and neighboring woodlands in central France. The ticks were tested by PCR of pools of nymphs and individual adults. The individual infection prevalence was modeled using multivariate regression. The highest infection prevalences were found in adult females collected in woodland sites for B. burgdorferi sensu lato and A. phagocytophilum (16.1% and 10.7%, respectively) and in pasture sites for Rickettsia sp. (8.7%). The infection prevalence in nymphs was lower than 6%. B. burgdorferi sensu lato was more prevalent in woodlands than in pastures. Forest fragmentation favored B. burgdorferi sensu lato and A. phagocytophilum prevalence in woodlands, and in pastures, the B. burgdorferi sensu lato prevalence was favored by shrubby vegetation. Both results are probably because large amounts of edges or shrubs increase the abundance of small vertebrates as reservoir hosts. The Rickettsia sp. prevalence was maximal on pasture with medium forest fragmentation. Female ticks were more infected by B. burgdorferi sensu lato than males and nymphs in woodland sites, which suggests an interaction between the ticks and the bacteria. This study confirms the complexity of the tick-borne pathogen ecology. The findings support the importance of small vertebrates as reservoir hosts and make a case for further studies in Europe on the link between the composition of the reservoir host community and the infection prevalence in ticks. PMID:20453131

  14. The babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission o...

  15. Emerging Tick-Borne Viruses in the Twenty-First Century

    PubMed Central

    Mansfield, Karen L.; Jizhou, Lv; Phipps, L. Paul; Johnson, Nicholas

    2017-01-01

    Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified. PMID:28744449

  16. Tick-borne pathogens in ticks collected from birds in Taiwan.

    PubMed

    Kuo, Chi-Chien; Lin, Yi-Fu; Yao, Cheng-Te; Shih, Han-Chun; Chung, Lo-Hsuan; Liao, Hsien-Chun; Hsu, Yu-Cheng; Wang, Hsi-Chieh

    2017-11-25

    A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Nineteen ticks (all larvae) were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus). A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis) not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Our study demonstrates the paucity of information on ticks of birds and emphasizes the need for more research on ticks of birds in Taiwan and Southeast Asia. Moreover, some newly recorded ticks and tick-borne pathogens were found only on migratory birds, demonstrating the necessity of further surveillance on these highly mobile species.

  17. Major emerging vector-borne zoonotic diseases of public health importance in Canada

    PubMed Central

    Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H

    2015-01-01

    In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response. PMID:26954882

  18. Major emerging vector-borne zoonotic diseases of public health importance in Canada.

    PubMed

    Kulkarni, Manisha A; Berrang-Ford, Lea; Buck, Peter A; Drebot, Michael A; Lindsay, L Robbin; Ogden, Nicholas H

    2015-06-10

    In Canada, the emergence of vector-borne diseases may occur via international movement and subsequent establishment of vectors and pathogens, or via northward spread from endemic areas in the USA. Re-emergence of endemic vector-borne diseases may occur due to climate-driven changes to their geographic range and ecology. Lyme disease, West Nile virus (WNV), and other vector-borne diseases were identified as priority emerging non-enteric zoonoses in Canada in a prioritization exercise conducted by public health stakeholders in 2013. We review and present the state of knowledge on the public health importance of these high priority emerging vector-borne diseases in Canada. Lyme disease is emerging in Canada due to range expansion of the tick vector, which also signals concern for the emergence of human granulocytic anaplasmosis, babesiosis, and Powassan virus. WNV has been established in Canada since 2001, with epidemics of varying intensity in following years linked to climatic drivers. Eastern equine encephalitis virus, Jamestown Canyon virus, snowshoe hare virus, and Cache Valley virus are other mosquito-borne viruses endemic to Canada with the potential for human health impact. Increased surveillance for emerging pathogens and vectors and coordinated efforts among sectors and jurisdictions will aid in early detection and timely public health response.

  19. Identification of Tick-Borne Pathogens in Ticks Feeding on Humans in Turkey

    PubMed Central

    Orkun, Ömer; Karaer, Zafer; Çakmak, Ayşe; Nalbantoğlu, Serpil

    2014-01-01

    Background The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara. Methodology/Principal Findings A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca) were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph) and Ha. parva). Conclusions/Significance This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey. More epidemiological studies are warranted for B. rossi, which is very pathogenic for dogs, because the presented results suggest that B. rossi might have a wide distribution in Turkey. Furthermore, we recommend that tick-borne pathogens, especially R. aeschlimannii, R. slovaca, and B. burgdorferi sensu stricto, should be taken into consideration in patients who had a tick bite in Turkey. PMID:25101999

  20. Identification of tick-borne pathogens in ticks feeding on humans in Turkey.

    PubMed

    Orkun, Ömer; Karaer, Zafer; Çakmak, Ayşe; Nalbantoğlu, Serpil

    2014-08-01

    The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara. A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca) were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph) and Ha. parva). This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey. More epidemiological studies are warranted for B. rossi, which is very pathogenic for dogs, because the presented results suggest that B. rossi might have a wide distribution in Turkey. Furthermore, we recommend that tick-borne pathogens, especially R. aeschlimannii, R. slovaca, and B. burgdorferi sensu stricto, should be taken into consideration in patients who had a tick bite in Turkey.

  1. Viperin targets flavivirus virulence by inducing assembly of non-infectious capsid particles.

    PubMed

    Vonderstein, Kirstin; Nilsson, Emma; Hubel, Philipp; Nygård Skalman, Lars; Upadhyay, Arunkumar; Pasto, Jenny; Pichlmair, Andreas; Lundmark, Richard; Överby, Anna K

    2017-10-18

    Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. Here we describe a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly, and involves release of malfunctional membrane associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad spectrum antiviral interferon stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1), as the cellular protein targeted by viperin. Viperin-induced antiviral activity as well as C-particle release was stimulated by GBF1 inhibition and knock down, and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive non-infectious virus particles, by a GBF1-dependent mechanism. This yet undescribed antiviral mechanism allows potential therapeutic intervention. Importance The interferon response can target viral infection on almost every level, however, very little is known about interference of flavivirus assembly. Here we show that interferon, through the action of viperin, can disturb assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appear to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study we show that viperin induce capsid particle release by interacting and inhibiting the function of the cellular protein Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target. Copyright © 2017 Vonderstein et al.

  2. Spontaneous and engineered deletions in the 3' noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus.

    PubMed

    Mandl, C W; Holzmann, H; Meixner, T; Rauscher, S; Stadler, P F; Allison, S L; Heinz, F X

    1998-03-01

    The flavivirus genome is a positive-strand RNA molecule containing a single long open reading frame flanked by noncoding regions (NCR) that mediate crucial processes of the viral life cycle. The 3' NCR of tick-borne encephalitis (TBE) virus can be divided into a variable region that is highly heterogeneous in length among strains of TBE virus and in certain cases includes an internal poly(A) tract and a 3'-terminal conserved core element that is believed to fold as a whole into a well-defined secondary structure. We have now investigated the genetic stability of the TBE virus 3' NCR and its influence on viral growth properties and virulence. We observed spontaneous deletions in the variable region during growth of TBE virus in cell culture and in mice. These deletions varied in size and location but always included the internal poly(A) element of the TBE virus 3' NCR and never extended into the conserved 3'-terminal core element. Subsequently, we constructed specific deletion mutants by using infectious cDNA clones with the entire variable region and increasing segments of the core element removed. A virus mutant lacking the entire variable region was indistinguishable from wild-type virus with respect to cell culture growth properties and virulence in the mouse model. In contrast, even small extensions of the deletion into the core element led to significant biological effects. Deletions extending to nucleotides 10826, 10847, and 10870 caused distinct attenuation in mice without measurable reduction of cell culture growth properties, which, however, were significantly restricted when the deletion was extended to nucleotide 10919. An even larger deletion (to nucleotide 10994) abolished viral viability. In spite of their high degree of attenuation, these mutants efficiently induced protective immune responses even at low inoculation doses. Thus, 3'-NCR deletions represent a useful technique for achieving stable attenuation of flaviviruses that can be included in the rational design of novel flavivirus live vaccines.

  3. [Molecular evolution of the tick-borne encephalitis and Powassan viruses].

    PubMed

    Subbotina, E L; Loktev, V B

    2012-01-01

    The problem of emerging viruses, their genetic diversity and viral evolution in nature are attracting more attention. The phylogenetic analysis and evaluationary rate estimation were made for pathogenic flaviviruses such as tick-borne encephalitis virus (TBEV) and Powassan (PV) circulated in natural foci in Russia. 47 nucleotide sequences of encoded protein E of the TBEV and 17 sequences of NS5 genome region of the PV have been used. It was found that the rate of accumulation of nucleotide substitutions for E genome region of TBEV was approximately 1.4 x 10(-4) and 5.4 x 10(-5) substitutions per site per year for NS5 genome region of PV. The ratio of non-synonymous nucleotide substitutions to synonymous substitution (dN/dS) for viral sequences were estimated of 0.049 for TBEV and 0.098 for PV. Maximum value dN/dS was 0.201-0.220 for sub-cluster of Russian and Canadian strains of PV and the minimum - 0.024 for cluster of Russian and Chinese strains of Far Eastern genotype TBEV. Evaluation of time intervals of evolutionary events associated with these viruses showed that European subtype TBEV are diverged from all-TBEV ancestor within approximately 2750 years and the Siberian and Far Eastern subtypes are emerged about 2250 years ago. The PV was introduced into natural foci of the Primorsky Krai of Russia only about 70 years ago and PV is a very close to Canadian strains of PV. Evolutionary picture for PV in North America is similar to evolution of Siberian and Far Eastern subtypes TBEV in Asia. The divergence time for main genetic groups of TBEV and PV are correlated with historical periods of warming and cooling. These allow to propose a hypothesis that climate changes were essential to the evolution of the flaviviruses in the past millenniums.

  4. Second five-year follow-up after a booster vaccination against tick-borne encephalitis following different primary vaccination schedules demonstrates at least 10 years antibody persistence.

    PubMed

    Beran, Jiri; Lattanzi, Maria; Xie, Fang; Moraschini, Luca; Galgani, Ilaria

    2018-02-01

    Tick borne encephalitis (TBE) endemic zones are expanding. We previously evaluated long term persistence of antibody 5 years after the first booster immunization following different primary immunization schedules with the polygeline-free inactivated TBE vaccine (TBEvac) in adults and adolescents. Here, we report anti-TBE virus (TBEV) antibody persistence from 6 to 10 years post-booster administration. This was a phase IV, open-label, single-center, second extension study (NCT01562444), conducted in Czechia. Healthy adults and adolescents ≥12 years who had received 3 different primary vaccination schedules (rapid, conventional and accelerated conventional) in the parent study and a booster dose before (12-18 months post-primary series completion) or at the beginning (3 years post-primary series completion) of the first extension study were screened and enrolled in this study. Blood samples were collected yearly and anti-TBEV antibody response was evaluated by neutralizing test (NT) antibody assays. Analysis was performed overall and per age strata: 15-49 years, ≥50 years, and ≥60 years. Of 206 screened individuals, 191 completed the study. Overall, 90-100% of participants in the all-screened set and ≥97% in the per-protocol set had the clinically meaningful threshold of protection (NT titers ≥10) across all timepoints, regardless of the primary vaccination schedule. Overall, antibody geometric mean titers (GMTs) varied from 134 to 343 in the all-screened set. Older age groups showed overall lower GMTs, although GMTs remained higher than NT titers ≥10 up to year 10 in all groups. This study showed long-term persistence of anti-TBEV NT antibodies for up to 10 years after the first booster dose of TBEvac in all age groups, regardless of the primary vaccination schedule. Copyright © 2018 GSK. Published by Elsevier Ltd.. All rights reserved.

  5. Epidemiology of Tick-Borne Encephalitis in the Czech Republic 1970–2008

    PubMed Central

    Maly, Marek; Benes, Cestmir; Daniel, Milan

    2012-01-01

    Abstract This article presents major epidemiologic features of tick-borne encephalitis (TBE) in the Czech Republic, using data of laboratory-confirmed cases since 1970. A total of 17,053 cases of TBE were reported in the Czech Republic (population 10 million) in 1970–2008. The data show several important features. First, the pattern of TBE incidence changed over time. Until the end of the 1970s, TBE was characterized by periods of alternately higher and lower incidence (between 180 and 595 cases per year); the 1980s were a period of low incidence with minimum variability; since the beginning of the 1990s, there has been a steep rise in incidence, with marked year-to-year variation (e.g., 745 cases were registered in 1995, and a maximum of 1029 cases were registered in 2006). Second, the age distribution of TBE incidence has changed. Until the end of 1990s, incidence peaked among those 15–19 years of age, with a gradual decline with age. In the 2000s, however, TBE incidence has been rising in those aged 60–64 years, with a sharp decline in those older than 65 years. Third, the seasonal pattern of TBE has changed markedly over time. In the earlier period, incidence had a clear peak in July/August; since the 1990s, more cases have occurred in earlier and later months of the year. The proportion of cases occurring in April, May, October, and November increased from 9% in the 1970s to 23% in 2000–2008. Fourth, the geographical distribution of TBE also changed over time, with TBE increasingly occurring in the mountainous districts at higher altitudes. These changes in incidence patterns appear to be linked with changes in climatic and meteorological conditions. The link between climate change and TBE incidence is plausible, since TBE is a recreation-related infection associated with outdoor activities, and since climatic changes affect the life cycle of the vector. PMID:23025693

  6. Translating ecology, physiology, biochemistry and population genetics research to meet the challenge of tick and tick-borne diseases in North America

    PubMed Central

    Esteve-Gassent, Maria D.; Castro-Arellano, Ivan; Feria-Arroyo, Teresa P.; Patino, Ramiro; Li, Andrew Y.; Medina, Raul F.; Pérez de León, Adalberto A.; Rodríguez-Vivas, Roger Iván

    2016-01-01

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern US and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multi host-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks. PMID:27062414

  7. Awareness of tick-borne disease and compliance with using tick preventive products of dog owners in Hong Kong.

    PubMed

    Boost, Maureen V; Tung, Choi-Yin; Ip, Claudia Hoi-Ki; Man, July Fung-Oi; Hui, Toni Wing-Tung; Leung, Candy Fung-Yee; Mak, Maggie Yuen-Wa; Yuen, Queeny; O'Donoghue, Margaret M

    2017-02-01

    Tick-borne disease in dogs is common in South-east Asia and includes babesiosis and ehrlichiosis. These diseases can be largely prevented by compliant use of tick preventive products. This study investigated knowledge of ticks and tick-borne disease and use of tick preventive agents by a large sample of dog owners in Hong Kong. A total of 492 valid questionnaires were completed by owners attending veterinary practices, approached by researchers at common dog-walking areas, or targeted via local social media sites for pet owners. A high proportion of respondents were aware of tick-borne disease (79%) and this correlated well with use of preventive products. However, 18% of owners did not use any protection, mainly due to lack of knowledge of the risk of disease. Targeted advice stressing the importance of tick protection use and frequent follow-up at veterinary clinics could help reduce the risk of tick-borne disease. It would be beneficial if veterinarians provided training of frontline staff at the clinics to ensure they provide essential information to clients in an easily understandable format. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. New endemic foci of tick-borne encephalitis (TBE) identified in districts where testing for TBE was not available before 2009 in Poland

    PubMed Central

    2013-01-01

    Background Tick-borne encephalitis (TBE) is found in limited endemic foci in Poland. Lack of diagnosis limits disease detection in non-endemic provinces. Methods In 2009, we enhanced TBE surveillance to confirm the location of endemic foci and inform vaccination policy. In 105 hospitals located in 11/16 provinces, we identified suspected TBE cases through admission ICD-10 codes indicating aseptic meningo-encephalitis or from specimens tested for TBE. The National Reference Laboratory confirmed cases at no cost, by testing serum and/or cerebrospinal fluid using ELISA method. We calculated TBE reported rates as the number of confirmed TBE cases per 100,000 inhabitants. Adjusting to neighbouring districts, we classified districts as non-endemic (<0.1 cases per 100,000 inhabitants), low endemic (> = 0.1 to <1), moderately endemic (> = 1 to <5) and highly endemic (> = 5). We compared surveillance data obtained in 2009 with 2004–2008 baseline data. Results Among 166,099 admissions, we identified 1,585 suspected TBE cases of which 256 were confirmed. Physicians reported more suspected cases among patients <40 years old (12 cases per 1,000 admissions) than among older patients (8 cases per 1,000 admissions). However, patients <40 years of age were confirmed less frequently (16%), than older patients (35%). Physicians reported more suspected cases in districts classed as endemic during 2004–2008 (12 cases per 1,000 admissions, 77% tested for TBE) than in districts classed as non-endemic (7 cases per 1,000 admissions, 59% tested). Of the 38 newly identified endemic districts, 31 were adjacent to 2004–2008 endemic districts and 7 were isolated. Conclusions Enhanced surveillance detected 38 new endemic districts to be considered for TBE vaccination. However, lack of consistent testing in districts believed to be TBE-free remained an obstacle for mapping TBE risk. Although the disease affects mostly older adults and the elderly, more attention is given to the diagnosis of TBE in young patients. Solutions need to be identified to sustain sensitive, acceptable and affordable TBE surveillance in all districts of Poland. Also, higher attention should be given to the diagnosis of TBE in the elderly. PMID:23777675

  9. Ticks and Tick-Borne Pathogens Associated with Feral Swine in Edwards Plateau and Gulf Prairies and Marshes Ecoregions of Texas

    DTIC Science & Technology

    2011-05-01

    for previous exposure to tick-borne pathogens in the genera Rickettsia and Ehrlichia (N=888) and Borrelia (N=849). Prevalence percentages by...immunoassay were 27.59%, 13.18%, and 2.12% for Rickettsia , Ehrlichia, and Borrelia, respectively. Samples positive by ELISA for exposure to Borrelia were...pathogen transmissions cycles in Texas. 15. SUBJECT TERMS Ticks, feral swine, bacteria, tick-borne pathogens, pigs, ecology, Rickettsia , Borrelia

  10. Translating ecology, physiology, biochemistry and population genetics research to meet the challenge of tick and tick-borne diseases in North America

    USDA-ARS?s Scientific Manuscript database

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal population...

  11. Translating ecology, physiology, biochemistry and molecular biology research to meet grand challenge of tick and tick-borne diseases in North America

    USDA-ARS?s Scientific Manuscript database

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The use of science-based technology to diminish the impact of tick-borne diseases should be an active research effort aimed to protect human and animal populations. Here, ...

  12. Tick-borne Diseases in Animals and USDA Research on Tick Control

    USDA-ARS?s Scientific Manuscript database

    Tick-borne diseases represent a major threat to animal health in the United States. The cattle industry in the United States has benefited greatly from the continued USDA efforts through the Cattle Fever Tick Eradication Program in preventing the re-introduction of cattle ticks and associated pathog...

  13. Factors associated with tick bites and pathogen prevalence in ticks parasitizing humans in Georgia, USA.

    PubMed

    Gleim, Elizabeth R; Garrison, Laurel E; Vello, Marianne S; Savage, Mason Y; Lopez, Gaylord; Berghaus, Roy D; Yabsley, Michael J

    2016-03-02

    The incidence and emergence of tick-borne diseases has increased dramatically in the United States during the past 30 years, yet few large-scale epidemiological studies have been performed on individuals bitten by ticks. Epidemiological information, including disease development, may provide valuable information regarding effectiveness of tick bite prevention education, pathogen transmission, human-disease dynamics, and potential implications for under reporting of tick-borne diseases. Ticks found attached to Georgia residents were submitted for identification and polymerase chain reaction (PCR) testing for Francisella tularensis, Ehrlichia, Anaplasma, Borrelia, and Rickettsia spp. Tick bite victims were interviewed three weeks after the tick bite to identify various epidemiologic factors associated with infestation and if signs suggestive of a tick-borne disease had developed. Fisher's exact test of independence was used to evaluate associations between various factors evaluated in the study. A multivariable logistic regression model was used for the prediction of non-specific illness post-tick bite. From April 2005-December 2006, 444 participants submitted 597 ticks (426 Amblyomma americanum, 142 Dermacentor variabilis, 19 A. maculatum, 7 Ixodes scapularis, 3 Amblyomma sp.) which originated from 95 counties. Only 25 (34 %) of 74 interviewed individuals purposely took tick bite prevention measures. Ticks that were PCR positive for bacterial organisms were attached to 136 participants. Of the 77 participants who developed non-specific illness, 50 did not have PCR positive ticks, whereas 27 did have PCR positive tick (s). Of those 27 individuals, 12 fit the criteria for a possible tick-borne illness (i.e., tick attached >6 h [if known], ≥4 day incubation period, and the individual exhibited clinical symptoms typical of a tick-borne illness without exhibiting cough, sore throat, or sinus congestion). Ticks from these individuals were positive for R. amblyommii (n = 8), E. ewingii (n = 1), R. montana (n = 1), R. rhiphicephali (n = 1), and Rickettsia sp. TR-39 (n = 1). Although illnesses reported in this study cannot definitively be connected with tick bites, it does provide insight into development, diagnosis, and treatment of possible tick-borne diseases post-tick bite. The study also provided data on pathogen prevalence, and epidemiologic factors associated with tick bites, as well as tick presence by county in Georgia.

  14. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the International Society of Dermatology Climate Change Task Force.

    PubMed

    Andersen, Louise K; Davis, Mark D P

    2017-03-01

    Climate change refers to variation in the climate of a specific region or globally over time. A change has been reported in the epidemiology of tick- and mosquito-borne diseases in recent decades. Investigators have postulated that this effect may be associated with climate change. We reviewed the English-language literature describing changes in the epidemiology of specific tick- and mosquito-borne diseases, including the tick-borne diseases of Lyme disease, tularemia, Crimean-Congo hemorrhagic fever, Mediterranean spotted fever, and Rocky Mountain spotted fever and the mosquito-borne diseases of dengue, malaria, West Nile virus infection, Ross River virus disease, and Barmah Forest virus disease. We postulate that the changing epidemiology of tick- and mosquito-borne diseases is related to climate change. © 2016 The International Society of Dermatology.

  15. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex.

    PubMed

    Becker, Noémie S; Margos, Gabriele; Blum, Helmut; Krebs, Stefan; Graf, Alexander; Lane, Robert S; Castillo-Ramírez, Santiago; Sing, Andreas; Fingerle, Volker

    2016-09-15

    The Borrelia burgdorferi sensu lato (s.l.) species complex consists of tick-transmitted bacteria and currently comprises approximately 20 named and proposed genospecies some of which are known to cause Lyme Borreliosis. Species have been defined via genetic distances and ecological niches they occupy. Understanding the evolutionary relationship of species of the complex is fundamental to explaining patterns of speciation. This in turn forms a crucial basis to frame testable hypotheses concerning the underlying processes including host and vector adaptations. Illumina Technology was used to obtain genome-wide sequence data for 93 strains of 14 named genospecies of the B. burgdorferi species complex and genomic data already published for 18 additional strain (including one new species) was added. Phylogenetic reconstruction based on 114 orthologous single copy genes shows that the genospecies represent clearly distinguishable taxa with recent and still ongoing speciation events apparent in Europe and Asia. The position of Borrelia species in the phylogeny is consistent with host associations constituting a major driver for speciation. Interestingly, the data also demonstrate that vector associations are an additional driver for diversification in this tick-borne species complex. This is particularly obvious in B. bavariensis, a rodent adapted species that has diverged from the bird-associated B. garinii most likely in Asia. It now consists of two populations one of which most probably invaded Europe following adaptation to a new vector (Ixodes ricinus) and currently expands its distribution range. The results imply that genotypes/species with novel properties regarding host or vector associations have evolved recurrently during the history of the species complex and may emerge at any time. We suggest that the finding of vector associations as a driver for diversification may be a general pattern for tick-borne pathogens. The core genome analysis presented here provides an important source for investigations of the underlying mechanisms of speciation in tick-borne pathogens.

  16. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug.

    PubMed

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M; Frick, David N; Bolognesi, Martino; Milani, Mario

    2012-08-01

    Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC₅₀ values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV.

  17. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug

    PubMed Central

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M.; Frick, David N.; Bolognesi, Martino; Milani, Mario

    2012-01-01

    Objectives Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Methods Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Results Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC50 values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. Conclusions The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV. PMID:22535622

  18. TRANSLATING ECOLOGY, PHYSIOLOGY, BIOCHEMISTRY, AND POPULATION GENETICS RESEARCH TO MEET THE CHALLENGE OF TICK AND TICK-BORNE DISEASES IN NORTH AMERICA.

    PubMed

    Esteve-Gassent, Maria D; Castro-Arellano, Ivan; Feria-Arroyo, Teresa P; Patino, Ramiro; Li, Andrew Y; Medina, Raul F; de León, Adalberto A Pérez; Rodríguez-Vivas, Roger Iván

    2016-05-01

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern United States and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multihost-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks. © 2016 Wiley Periodicals, Inc.

  19. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

    PubMed Central

    de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.

    2017-01-01

    Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499

  20. Tick-Borne Pathogen – Reversed and Conventional Discovery of Disease

    PubMed Central

    Tijsse-Klasen, Ellen; Koopmans, Marion P. G.; Sprong, Hein

    2014-01-01

    Molecular methods have increased the number of known microorganisms associated with ticks significantly. Some of these newly identified microorganisms are readily linked to human disease while others are yet unknown to cause human disease. The face of tick-borne disease discovery has changed with more diseases now being discovered in a “reversed way,” detecting disease cases only years after the tick-borne microorganism was first discovered. Compared to the conventional discovery of infectious diseases, reverse order discovery presents researchers with new challenges. Estimating public health risks of such agents is especially challenging, as case definitions and diagnostic procedures may initially be missing. We discuss the advantages and shortcomings of molecular methods, serology, and epidemiological studies that might be used to study some fundamental questions regarding newly identified tick-borne diseases. With increased tick-exposure and improved detection methods, more tick-borne microorganisms will be added to the list of pathogens causing disease in humans in the future. PMID:25072045

  1. Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens.

    PubMed

    Dietrich, Muriel; Gómez-Díaz, Elena; McCoy, Karen D

    2011-05-01

    The ubiquity of ticks and their importance in the transmission of pathogens involved in human and livestock diseases are reflected by the growing number of studies focusing on tick ecology and the epidemiology of tick-borne pathogens. Likewise, the involvement of wild birds in dispersing pathogens and their role as reservoir hosts are now well established. However, studies on tick-bird systems have mainly focused on land birds, and the role of seabirds in the ecology and epidemiology of tick-borne pathogens is rarely considered. Seabirds typically have large population sizes, wide geographic distributions, and high mobility, which make them significant potential players in the maintenance and dispersal of disease agents at large spatial scales. They are parasitized by at least 29 tick species found across all biogeographical regions of the world. We know that these seabird-tick systems can harbor a large diversity of pathogens, although detailed studies of this diversity remain scarce. In this article, we review current knowledge on the diversity and global distribution of ticks and tick-borne pathogens associated with seabirds. We discuss the relationship between seabirds, ticks, and their pathogens and examine the interesting characteristics of these relationships from ecological and epidemiological points of view. We also highlight some future research directions required to better understand the evolution of these systems and to assess the potential role of seabirds in the epidemiology of tick-borne pathogens.

  2. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanai,R.; Kar, K.; Anthony, K.

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specificmore » antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.« less

  3. Biochemistry and Molecular Biology of Flaviviruses.

    PubMed

    Barrows, Nicholas J; Campos, Rafael K; Liao, Kuo-Chieh; Prasanth, K Reddisiva; Soto-Acosta, Ruben; Yeh, Shih-Chia; Schott-Lerner, Geraldine; Pompon, Julien; Sessions, October M; Bradrick, Shelton S; Garcia-Blanco, Mariano A

    2018-04-25

    Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.

  4. [West Nile virus expanding in Europe].

    PubMed

    Reusken, Chantal B E M; van Maanen, C Kees; Martina, Byron E; Sonder, Gerard J B; van Gorp, Eric C M; Koopmans, Marion P G

    2011-01-01

    The areas of Europe in which West Nile virus (WNV)-transmission to humans is observed have expanded over the last few years, with endemic circulation amongst animals of southern Europe. This situation calls for heightened vigilance to the clinical presentation of WNV infection in humans. The average incubation period lasts 2-6 days. Of those infected, 20% will experience a mild, non-specific disease presentation such as high fever, headache, myalgia, possibly with rash and lymphadenopathy; <1% will develop severe neurological symptoms. Rare complications include: myelitis, optic neuritis, rhombencephalitis, polyradiculitis, myocarditis, pancreatitis and fulminant hepatitis. Clinicians should take WNV infection into consideration when making a differential diagnosis for such symptoms in patients who have returned from areas with potential virus circulation. Given the increase in the spread of WNV within Europe, this now holds true for continental travellers as well as those destined for the Americas, Africa and Asia. It is important to include the patient's travel history, clinical symptoms and any occurrences of vaccination against viruses causing Japanese encephalitis, tick-borne encephalitis and yellow fever into the diagnostic workup, as the antibodies against these diseases show cross-reactivity.

  5. Development and characterization of polyclonal peptide antibodies for the detection of Yellow fever virus proteins.

    PubMed

    Stock, N K; Escadafal, C; Achazi, K; Cissé, M; Niedrig, M

    2015-09-15

    There is still a considerable need for development of new tools and methods detecting specific viral proteins for the diagnosis and pathogenesis study of the Yellow fever virus (YFV). This study aimed to develop and characterize polyclonal peptide antisera for detection of YFV-C and -NS1 proteins. The antisera were used further to investigate NS1 protein expression during YFV infection in mammalian cells. YFV target proteins were detected by all antisera in western blot and immunofluorescence assays. No cross-reactivity was observed with Dengue virus, West Nile virus, Tick-borne encephalitis virus and Japanese encephalitis virus. Nuclear localization of the YFV-C protein was demonstrated for the first time. Experiments investigating NS1 expression suggested a potential use of the YFV-NS1 antisera for development of diagnostic approaches targeting the secreted form of the NS1 protein. The antisera described in this study offer new possibilities for use in YFV research and for the development of novel diagnostic tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.

    PubMed

    Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S

    2017-09-01

    We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.

  7. Influence of the biotope on the tick infestation of cattle and on the tick-borne pathogen repertoire of cattle ticks in Ethiopia.

    PubMed

    Hornok, Sándor; Abichu, Getachew; Meli, Marina L; Tánczos, Balázs; Sulyok, Kinga M; Gyuranecz, Miklós; Gönczi, Enikő; Farkas, Róbert; Hofmann-Lehmann, Regina

    2014-01-01

    The majority of vector-borne infections occur in the tropics, including Africa, but molecular eco-epidemiological studies are seldom reported from these regions. In particular, most previously published data on ticks in Ethiopia focus on species distribution, and only a few molecular studies on the occurrence of tick-borne pathogens or on ecological factors influencing these. The present study was undertaken to evaluate, if ticks collected from cattle in different Ethiopian biotopes harbour (had access to) different pathogens. In South-Western Ethiopia 1032 hard ticks were removed from cattle grazing in three kinds of tick biotopes. DNA was individually extracted from one specimen of both sexes of each tick species per cattle. These samples were molecularly analysed for the presence of tick-borne pathogens. Amblyomma variegatum was significantly more abundant on mid highland, than on moist highland. Rhipicephalus decoloratus was absent from savannah lowland, where virtually only A. cohaerens was found. In the ticks Coxiella burnetii had the highest prevalence on savannah lowland. PCR positivity to Theileria spp. did not appear to depend on the biotope, but some genotypes were unique to certain tick species. Significantly more A. variegatum specimens were rickettsia-positive, than those of other tick species. The presence of rickettsiae (R. africae) appeared to be associated with mid highland in case of A. variegatum and A. cohaerens. The low level of haemoplasma positivity seemed to be equally distributed among the tick species, but was restricted to one biotope type. The tick biotope, in which cattle are grazed, will influence not only the tick burden of these hosts, but also the spectrum of pathogens in their ticks. Thus, the presence of pathogens with alternative (non-tick-borne) transmission routes, with transstadial or with transovarial transmission by ticks appeared to be associated with the biotope type, with the tick species, or both, respectively.

  8. Molecular survey of hard ticks in endemic areas of tick-borne diseases in China.

    PubMed

    Lu, Xin; Lin, Xian-Dan; Wang, Jian-Bo; Qin, Xin-Cheng; Tian, Jun-Hua; Guo, Wen-Ping; Fan, Fei-Neng; Shao, Renfu; Xu, Jianguo; Zhang, Yong-Zhen

    2013-06-01

    Over the past several years, there was a substantial increase in the number of cases of known and novel tick-borne infections in humans in China. To better understand the ticks associated with these infections, we collected hard ticks from animals or around livestock shelters in 29 localities in 5 provinces (Beijing, Henan, Hubei, Inner Mongolia, and Zhejiang) where cases of tick-borne illness were reported. We collected 2950 hard ticks representing 7 species of 4 genera (Dermacentor sinicus, Haemaphysalis flava, Haemaphysalis longicornis, Ixodes granulatus, Ixodes persulcatus, Rhipicephalus microplus, and Rhipicephalus sanguineus). These ticks were identified to species using morphological characters initially. We then sequenced the mitochondrial small subunit rRNA (12S rRNA) gene, cytochrome oxidase subunit 1 (COI) gene, and the second internal transcribed spacer (ITS2) gene of these ticks, and conducted phylogenetic analyses. Our analyses showed that the molecular and morphological data are consistent in the identification of the 7 tick species. Furthermore, all these 7 tick species from China were genetically closely related to the same species or related species found outside China. Rapid and accurate identification and long-term monitoring of these ticks will be of significance to the prevention and control of tick-borne diseases in China. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Ultrastructural evidence of the ehrlichial developmental cycle in naturally infected Ixodes persulcatus ticks in the course of coinfection with Rickettsia, Borrelia, and a flavivirus.

    PubMed

    Popov, Vsevolod L; Korenberg, Edward I; Nefedova, Valentina V; Han, Violet C; Wen, Julie W; Kovalevskii, Yurii V; Gorelova, Natalia B; Walker, David H

    2007-01-01

    Ehrlichiae are small gram-negative obligately intracellular bacteria that multiply within vacuoles of their host cells and are associated for a part of their life cycle with ticks, which serve as vectors for vertebrate hosts. Two morphologically and physiologically different ehrlichial cell types, reticulate cells (RC) and dense-cored cells (DC), are observed during experimental infection of cell cultures, mice, and ticks. Dense-cored cells and reticulate cells in vertebrate cell lines alternate in a developmental cycle. We observed ultrastructure of RC and DC of Ehrlichia muris in morulae in salivary gland cells and coinfection with Borrelia burgdorferi sensu lato (sl), "Candidatus Rickettsia tarasevichiae," and a flavivirus (presumably, tick-borne encephalitis virus [TBEV]) of Ixodes persulcatusticks collected in the Cis-Ural region of Russia. Polymerase chain reaction revealed 326 (81.5%) of 400 ticks carrying at least one infectious agent, and 41.5% (166 ticks) were coinfected with two to four agents. Ehrlichiae and rickettsiae were identified by sequencing of 359 bp of the 16S rRNA gene of E. muris and of 440 bp of the 16S rRNA gene and 385 bp of the gltA gene of "R. tarasevichiae." Different organs of the same tick harbored different microorganisms: TBEV in salivary gland and borreliae in midgut; E. muris in salivary gland; and "R. tarasevichiae" in midgut epithelium. Salivary gland cells contained both RC and DC, a finding that confirmed the developmental cycle in naturally infected ticks. Dense-cored cells in tick salivary glands were denser and of more irregular shape than DC in cell cultures. Ehrlichia-infected salivary gland cells had lysed cytoplasm, suggesting pathogenicity of E. muris for the tick host at the cellular level, as well as potential transmission during feeding. Rickettsiae in the midgut epithelial cells multiplied to significant numbers without altering the host cell ultrastructure. This is the first demonstration of E. muris, "R. tarasevichiae," and the ehrlichial developmental cycle in naturally infected I. persulcatus sticks.

  10. Molecular detection of emerging tick-borne pathogens in Vojvodina, Serbia.

    PubMed

    Potkonjak, Aleksandar; Gutiérrez, Ricardo; Savić, Sara; Vračar, Vuk; Nachum-Biala, Yaarit; Jurišić, Aleksandar; Kleinerman, Gabriela; Rojas, Alicia; Petrović, Aleksandra; Baneth, Gad; Harrus, Shimon

    2016-02-01

    Ticks play an important role in disease transmission globally due to their capability to serve as vectors for human and animal pathogens. The Republic of Serbia is an endemic area for a large number of tick-borne diseases. However, current knowledge on these diseases in Serbia is limited. The aim of this study was to investigate the presence of new emerging tick-borne pathogens in ticks collected from dogs and the vegetation from different parts of Vojvodina, Serbia. A total of 187 ticks, including 124 Rhipicephalus sanguineus, 45 Ixodes ricinus and 18 Dermacentor reticulatus were collected from dogs. In addition, 26 questing I. ricinus ticks were collected from the vegetation, using the flagging method, from 4 different localities in Vojvodina, Serbia. DNA was extracted from each tick individually and samples were tested by either conventional or real-time PCR assays for the presence of Rickettsia spp.-DNA (gltA and ompA gene fragments), Ehrlichia/Anaplasma spp.-DNA (16S rRNA gene fragment) and Hepatozoon spp./Babesia spp.-DNA (18S rRNA gene fragment). In addition, all I. ricinus DNA samples were tested for Bartonella spp.-DNA (ITS locus) by real-time PCR. In this study, the presence of novel emerging tick-borne pathogens including Rickettsia raoultii, Rickettsia massiliae, Babesia venatorum, Babesia microti, Hepatozoon canis and Candidatus Neoehrlichia mikurensis was identified for the first time in Serbia. Our findings also confirmed the presence of Rickettsia monacensis, Babesia canis and Anaplasma phagocytophilum in ticks from Serbia. The findings of the current study highlight the great diversity of tick-borne pathogens of human and animal importance in Serbia. Physicians, public health workers and veterinarians should increase alertness to the presence of these tick-borne pathogens in this country. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Tick salivary compounds: their role in modulation of host defences and pathogen transmission

    PubMed Central

    Kazimírová, Mária; Štibrániová, Iveta

    2013-01-01

    Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases. PMID:23971008

  12. A quantitative synthesis of the role of birds in carrying ticks and tick-borne pathogens in North America.

    PubMed

    Loss, Scott R; Noden, Bruce H; Hamer, Gabriel L; Hamer, Sarah A

    2016-12-01

    Birds play a central role in the ecology of tick-borne pathogens. They expand tick populations and pathogens across vast distances and serve as reservoirs that maintain and amplify transmission locally. Research into the role of birds for supporting ticks and tick-borne pathogens has largely been descriptive and focused in small areas. To expand inference beyond these studies, we conducted a quantitative review at the scale of North America to identify avian life history correlates of tick infestation and pathogen prevalence, calculate species-level indices of importance for carrying ticks, and identify research gaps limiting understanding of tick-borne pathogen transmission. Across studies, 78 of 162 bird species harbored ticks, yielding an infestation prevalence of 1981 of 38,929 birds (5.1 %). Avian foraging and migratory strategies interacted to influence infestation. Ground-foraging species, especially non-migratory ground foragers, were disproportionately likely to have high prevalence and intensity of tick infestation. Studies largely focused on Borrelia burgdorferi, the agent of Lyme disease, and non-migratory ground foragers were especially likely to carry B. burgdorferi-infected ticks, a finding that highlights the potential importance of resident birds in local pathogen transmission. Based on infestation indices, all "super-carrier" bird species were passerines. Vast interior areas of North America, many bird and tick species, and most tick-borne pathogens, remain understudied, and research is needed to address these gaps. More studies are needed that quantify tick host preferences, host competence, and spatiotemporal variation in pathogen prevalence and vector and host abundance. This information is crucial for predicting pathogen transmission dynamics under future global change.

  13. U.S. healthcare providers’ experience with Lyme and other tick-borne diseases

    PubMed Central

    Brett, Meghan E.; Hinckley, Alison F.; Zielinski-Gutierrez, Emily C.; Mead, Paul S.

    2015-01-01

    Surveillance indicates that tick-borne diseases are a common problem in the United States. Nevertheless, little is known regarding the experience or management practices of healthcare providers who treat these conditions. The purpose of the present study was to characterize the frequency of tick-borne diseases in clinical practice and the knowledge of healthcare providers regarding their management. Four questions about tick-borne diseases were added to the 2009 Docstyles survey, a nationally representative survey of >2000 U.S. healthcare providers. Topics included diseases encountered, management of patients with early Lyme disease (LD), provision of tick-bite prophylaxis, and sources of information on tick-borne diseases. Overall, 51.3% of practitioners had treated at least one patient for a tick-borne illness in the previous year. Among these, 75.1% had treated one type of disease, 19.0% two types of disease, and 5.9% three or more diseases. LD was encountered by 936 (46.8%) providers; Rocky Mountain spotted fever was encountered by 184 (9.2%) providers. Given a scenario involving early LD, 89% of providers would prescribe antibiotics at the first visit, with or without ordering a blood test. Tick-bite prophylaxis was prescribed by 31.0% of all practitioners, including 41.1% in high-LD-incidence states and 26.0% in low-incidence states. Tick-borne diseases are encountered frequently in clinical practice. Most providers would treat early LD promptly, suggesting they are knowledgeable regarding the limitations of laboratory testing in this setting. Conversely, providers in low-LD-incidence states frequently prescribe tick-bite prophylaxis, suggesting a need for education to reduce potential misdiagnosis and overtreatment. PMID:24713280

  14. The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus.

    PubMed

    Jacquet, Maxime; Genné, Dolores; Belli, Alessandro; Maluenda, Elodie; Sarr, Anouk; Voordouw, Maarten J

    2017-05-25

    The population dynamics of vector-borne pathogens inside the arthropod vector can have important consequences for vector-to-host transmission. Tick-borne spirochete bacteria of the Borrelia burgdorferi (sensu lato) species complex cause Lyme borreliosis in humans and spend long periods of time (>12 months) in their Ixodes tick vectors. To date, few studies have investigated the dynamics of Borrelia spirochete populations in unfed Ixodes nymphal ticks. Larval ticks from our laboratory colony of I. ricinus were experimentally infected with B. afzelii, and killed at 1 month and 4 months after the larva-to-nymph moult. The spirochete load was also compared between engorged larval ticks and unfed nymphs (from the same cohort) and between unfed nymphs and unfed adult ticks (from the same cohort). The spirochete load of B. afzelii in each tick was estimated using qPCR. The mean spirochete load in the 1-month-old nymphs (~14,000 spirochetes) was seven times higher than the 4-month-old nymphs (~2000 spirochetes). Thus, the nymphal spirochete load declined by 80% over a period of 3 months. An engorged larval tick acquired ~100 spirochetes, and this population was 20 times larger in a young, unfed nymph. The spirochete load also appeared to decline in adult ticks. Comparison between wild and laboratory populations found that lab ticks were more susceptible to acquiring B. afzelii. The spirochete load of B. afzelii declines dramatically over time in domesticated I. ricinus nymphs under laboratory conditions. Future studies should investigate whether temporal declines in spirochete load occur in wild Ixodes ticks under natural conditions and whether these declines influence the tick-to-host transmission of Borrelia.

  15. Co-Infection and Genetic Diversity of Tick-Borne Pathogens in Roe Deer from Poland

    PubMed Central

    Werszko, Joanna; Cydzik, Krystian; Bajer, Anna; Michalik, Jerzy; Behnke, Jerzy M.

    2013-01-01

    Abstract Wild species are essential hosts for maintaining Ixodes ticks and the tick-borne diseases. The aim of our study was to estimate the prevalence, the rate of co-infection with Babesia, Bartonella, and Anaplasma phagocytophilum, and the molecular diversity of tick-borne pathogens in roe deer in Poland. Almost half of the tested samples provided evidence of infection with at least 1 species. A. phagocytophilum (37.3%) was the most common and Bartonella (13.4%) the rarest infection. A total of 18.3% of all positive samples from roe deer were infected with at least 2 pathogens, and one-third of those were co-infected with A. phagocytophilum, Bartonella, and Babesia species. On the basis of multilocus molecular studies we conclude that: (1) Two different genetic variants of A. phagocytophilum, zoonotic and nonzoonotic, are widely distributed in Polish roe deer population; (2) the roe deer is the host for zoonotic Babesia (Bab. venatorum, Bab. divergens), closely related or identical with strains/species found in humans; (3) our Bab. capreoli and Bab. divergens isolates differed from reported genotypes at 2 conserved base positions, i.e., positions 631 and 663; and (4) this is the first description of Bart. schoenbuchensis infections in roe deer in Poland. We present 1 of the first complex epidemiological studies on the prevalence of Babesia, Bartonella, and A. phagocytophilum in naturally infected populations of roe deer. These game animals clearly have an important role as reservoir hosts of tick-borne pathogens, but the pathogenicity and zoonotic potential of the parasite genotypes hosted by roe deer requires further detailed investigation. PMID:23473225

  16. Virome Analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks Reveals Novel Highly Divergent Vertebrate and Invertebrate Viruses

    PubMed Central

    Williams, Simon Hedley; Sameroff, Stephen; Sanchez Leon, Maria; Jain, Komal; Lipkin, W. Ian

    2014-01-01

    ABSTRACT A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases. PMID:25056893

  17. Relatively low prevalence of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected in the Lehigh Valley region of eastern Pennsylvania.

    PubMed

    Edwards, Marten J; Barbalato, Laura A; Makkapati, Amulya; Pham, Katerina D; Bugbee, Louise M

    2015-09-01

    Several human pathogens are transmitted by the blacklegged tick, Ixodes scapularis. These include the spirochetes that cause Lyme disease (Borrelia burgdorferi) which is endemic to the Lehigh Valley region of eastern Pennsylvania. Emerging and currently rare tick-borne diseases have been of increasing concern in this region, including tick-borne relapsing fever (caused by Borrelia miyamotoi), human granulocytic anaplasmosis (caused by Anaplasma phagocytophilum), and human babesiosis (caused by Babesia microti). Real-time PCR assays and in some instances, conventional PCR followed by DNA sequencing, were used to screen 423 DNA samples that were prepared from questing adult and nymph stage I. scapularis ticks for infection with four tick-borne human pathogens. B. burgdorferi was detected in 23.2% of the sampled ticks, while B. miyamotoi, B. microti and a human variant of A. phagocytophilum were detected in less than 0.5% of the ticks. Our results are consistent with those expected in a region where Lyme disease is prevalent and human cases of tick-borne relapsing fever, babesiosis and human granulocytic anaplasmosis are not currently widespread. It is expected that this study will serve as a baseline for future studies of tick-borne pathogens in an area that is in close proximity to regions of high endemicity for Lyme disease, human granulocytic anaplasmosis and human babesiosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Ixodes ricinus and Its Endosymbiont Midichloria mitochondrii: A Comparative Proteomic Analysis of Salivary Glands and Ovaries.

    PubMed

    Di Venere, Monica; Fumagalli, Marco; Cafiso, Alessandra; De Marco, Leone; Epis, Sara; Plantard, Olivier; Bardoni, Anna; Salvini, Roberta; Viglio, Simona; Bazzocchi, Chiara; Iadarola, Paolo; Sassera, Davide

    2015-01-01

    Hard ticks are hematophagous arthropods that act as vectors of numerous pathogenic microorganisms of high relevance in human and veterinary medicine. Ixodes ricinus is one of the most important tick species in Europe, due to its role of vector of pathogenic bacteria such as Borrelia burgdorferi and Anaplasma phagocytophilum, of viruses such as tick borne encephalitis virus and of protozoans as Babesia spp. In addition to these pathogens, I. ricinus harbors a symbiotic bacterium, Midichloria mitochondrii. This is the dominant bacteria associated to I. ricinus, but its biological role is not yet understood. Most M. mitochondrii symbionts are localized in the tick ovaries, and they are transmitted to the progeny. M. mitochondrii bacteria have however also been detected in the salivary glands and saliva of I. ricinus, as well as in the blood of vertebrate hosts of the tick, prompting the hypothesis of an infectious role of this bacterium. To investigate, from a proteomic point of view, the tick I. ricinus and its symbiont, we generated the protein profile of the ovary tissue (OT) and of salivary glands (SG) of adult females of this tick species. To compare the OT and SG profiles, 2-DE profiling followed by LC-MS/MS protein identification were performed. We detected 21 spots showing significant differences in the relative abundance between the OT and SG, ten of which showed 4- to 18-fold increase/decrease in density. This work allowed to establish a method to characterize the proteome of I. ricinus, and to detect multiple proteins that exhibit a differential expression profile in OT and SG. Additionally, we were able to use an immunoproteomic approach to detect a protein from the symbiont. Finally, the method here developed will pave the way for future studies on the proteomics of I. ricinus, with the goals of better understanding the biology of this vector and of its symbiont M. mitochondrii.

  19. Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005-2010.

    PubMed

    Hamer, Sarah A; Goldberg, Tony L; Kitron, Uriel D; Brawn, Jeffrey D; Anderson, Tavis K; Loss, Scott R; Walker, Edward D; Hamer, Gabriel L

    2012-10-01

    Bird-facilitated introduction of ticks and associated pathogens is postulated to promote invasion of tick-borne zoonotic diseases into urban areas. Results of a longitudinal study conducted in suburban Chicago, Illinois, USA, during 2005-2010 show that 1.6% of 6,180 wild birds captured in mist nets harbored ticks. Tick species in order of abundance were Haemaphysalis leporispalustris, Ixodes dentatus, and I. scapularis, but 2 neotropical tick species of the genus Amblyomma were sampled during the spring migration. I. scapularis ticks were absent at the beginning of the study but constituted the majority of ticks by study end and were found predominantly on birds captured in areas designated as urban green spaces. Of 120 ticks, 5 were infected with Borrelia burgdorferi, spanning 3 ribotypes, but none were infected with Anaplasma phagocytophilum. Results allow inferences about propagule pressure for introduction of tick-borne diseases and emphasize the large sample sizes required to estimate this pressure.

  20. Wild Birds and Urban Ecology of Ticks and Tick-borne Pathogens, Chicago, Illinois, USA, 2005–2010

    PubMed Central

    Goldberg, Tony L.; Kitron, Uriel D.; Brawn, Jeffrey D.; Anderson, Tavis K.; Loss, Scott R.; Walker, Edward D.; Hamer, Gabriel L.

    2012-01-01

    Bird-facilitated introduction of ticks and associated pathogens is postulated to promote invasion of tick-borne zoonotic diseases into urban areas. Results of a longitudinal study conducted in suburban Chicago, Illinois, USA, during 2005–2010 show that 1.6% of 6,180 wild birds captured in mist nets harbored ticks. Tick species in order of abundance were Haemaphysalis leporispalustris, Ixodes dentatus, and I. scapularis, but 2 neotropical tick species of the genus Amblyomma were sampled during the spring migration. I. scapularis ticks were absent at the beginning of the study but constituted the majority of ticks by study end and were found predominantly on birds captured in areas designated as urban green spaces. Of 120 ticks, 5 were infected with Borrelia burgdorferi, spanning 3 ribotypes, but none were infected with Anaplasma phagocytophilum. Results allow inferences about propagule pressure for introduction of tick-borne diseases and emphasize the large sample sizes required to estimate this pressure. PMID:23017244

  1. Novel Rickettsia and emergent tick-borne pathogens: A molecular survey of ticks and tick-borne pathogens in Shimba Hills National Reserve, Kenya.

    PubMed

    Mwamuye, Micky M; Kariuki, Edward; Omondi, David; Kabii, James; Odongo, David; Masiga, Daniel; Villinger, Jandouwe

    2017-02-01

    Ticks are important vectors of emerging and re-emerging zoonoses, the majority of which originate from wildlife. In recent times, this has become a global public health concern that necessitates surveillance of both known and unknown tick-borne pathogens likely to be future disease threats, as well as their tick vectors. We carried out a survey of the diversity of ticks and tick-borne pathogens in Kenya's Shimba Hills National Reserve (SHNR), an area with intensified human-livestock-wildlife interactions, where we collected 4297 questing ticks (209 adult ticks, 586 nymphs and 3502 larvae). We identified four tick species of two genera (Amblyomma eburneum, Amblyomma tholloni, Rhipicephalus maculatus and a novel Rhipicephalus sp.) based on both morphological characteristics and molecular analysis of 16S rRNA, internal transcribed spacer 2 (ITS 2) and cytochrome oxidase subunit 1 (CO1) genes. We pooled the ticks (3-8 adults, 8-15 nymphs or 30 larvae) depending on species and life-cycle stages, and screened for bacterial, arboviral and protozoal pathogens using PCR with high-resolution melting analysis and sequencing of unique melt profiles. We report the first molecular detection of Anaplasma phagocytophilum, a novel Rickettsia-like and Ehrlichia-like species, in Rh. maculatus ticks. We also detected Ehrlichia chaffeensis, Coxiella sp., Rickettsia africae and Theileria velifera in Am. eburneum ticks for the first time. Our findings demonstrate previously unidentified tick-pathogen relationships and a unique tick diversity in the SHNR that may contribute to livestock, and possibly human, morbidity in the region. This study highlights the importance of routine surveillance in similar areas to elucidate disease transmission dynamics, as a critical component to inform the development of better tick-borne disease diagnosis, prevention and control measures. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Ticks and tick-borne diseases in Oklahoma.

    PubMed

    Moody, E K; Barker, R W; White, J L; Crutcher, J M

    1998-11-01

    Tick-borne diseases are common in Oklahoma, especially the eastern part of the state where tick prevalence is highest. Three species of hard ticks are present in Oklahoma that are known vectors of human disease--the American dog tick (Rocky Mountain spotted fever; RMSF), the lone star tick (ehrlichiosis) and the black-legged tick (Lyme disease). Oklahoma consistently ranks among the top states in numbers of reported RMSF cases, and Ehrlichiosis may be as prevalent as RMSF. Although Lyme disease is frequently reported in Oklahoma, over-diagnosing of this disease due to false-positive test results is common; positive or equivocal screening tests should be confirmed by Western immunoblot. At present, it is unclear whether the disease seen here is Lyme disease or another Lyme-like disease. If true Lyme disease is present in the state, it is probably rare. Physicians should be aware of the most recent recommendations for diagnosis, therapy and prevention of tick-borne diseases.

  3. Flavivirus Infection of Ixodes scapularis (Black-Legged Tick) Ex Vivo Organotypic Cultures and Applications for Disease Control.

    PubMed

    Grabowski, Jeffrey M; Tsetsarkin, Konstantin A; Long, Dan; Scott, Dana P; Rosenke, Rebecca; Schwan, Tom G; Mlera, Luwanika; Offerdahl, Danielle K; Pletnev, Alexander G; Bloom, Marshall E

    2017-08-22

    Ixodes scapularis ticks transmit many infectious agents that cause disease, including tick-borne flaviviruses (TBFVs). TBFV infections cause thousands of human encephalitis cases worldwide annually. In the United States, human TBFV infections with Powassan virus (POWV) are increasing and have a fatality rate of 10 to 30%. Additionally, Langat virus (LGTV) is a TBFV of low neurovirulence and is used as a model TBFV. TBFV replication and dissemination within I. scapularis organs are poorly characterized, and a deeper understanding of virus biology in this vector may inform effective countermeasures to reduce TBFV transmission. Here, we describe short-term, I. scapularis organ culture models of TBFV infection. Ex vivo organs were metabolically active for 9 to 10 days and were permissive to LGTV and POWV replication. Imaging and videography demonstrated replication and spread of green fluorescent protein-expressing LGTV in the organs. Immunohistochemical staining confirmed LGTV envelope and POWV protein synthesis within the infected organs. LGTV- and POWV-infected organs produced infectious LGTV and POWV; thus, the ex vivo cultures were suitable for study of virus replication in individual organs. LGTV- and POWV-infected midgut and salivary glands were subjected to double-stranded RNA (dsRNA) transfection with dsRNA to the LGTV 3' untranslated region (UTR), which reduced infectious LGTV and POWV replication, providing a proof-of-concept use of RNA interference in I. scapularis organ cultures to study the effects on TBFV replication. The results contribute important information on TBFV localization within ex vivo I. scapularis organs and provide a significant translational tool for evaluating recombinant, live vaccine candidates and potential tick transcripts and proteins for possible therapeutic use and vaccine development to reduce TBFV transmission. IMPORTANCE Tick-borne flavivirus (TBFV) infections cause neurological and/or hemorrhagic disease in humans worldwide. There are currently no licensed therapeutics or vaccines against Powassan virus (POWV), the only TBFV known to circulate in North America. Evaluating tick vector targets for antitick vaccines directed at reducing TBFV infection within the arthropod vector is a critical step in identifying efficient approaches to controlling TBFV transmission. This study characterized infection of female Ixodes scapularis tick organ cultures of midgut, salivary glands, and synganglion with the low-neurovirulence Langat virus (LGTV) and the more pathogenic POWV. Cell types of specific organs were susceptible to TBFV infection, and a difference in LGTV and POWV replication was noted in TBFV-infected organs. This tick organ culture model of TBFV infection will be useful for various applications, such as screening of tick endogenous dsRNA corresponding to potential control targets within midgut and salivary glands to confirm restriction of TBFV infection.

  4. West Nile virus disease and other arboviral diseases--United States, 2010.

    PubMed

    2011-08-05

    Arthropod-borne viruses (arboviruses) are transmitted to humans primarily through the bites of infected mosquitoes and ticks. Since West Nile virus (WNV) was first detected in the Western Hemisphere in 1999, it has become the leading cause of neuroinvasive arboviral disease in the United States. However, several other arboviruses continue to cause sporadic cases and seasonal outbreaks of neuroinvasive disease (i.e., meningitis, encephalitis, or acute flaccid paralysis). This report summarizes surveillance data reported to CDC in 2010 for WNV and other nationally notifiable arboviruses (excluding dengue, which is reported separately). In 2010, 40 states and the District of Columbia (DC) reported 1,021 cases of WNV disease. Of these, 629 (62%) were classified as WNV neuroinvasive disease, for a national incidence of 0.20 per 100,000 population. States with the highest incidence were Arizona (1.60), New Mexico (1.03), Nebraska (0.55), and Colorado (0.51). After WNV, the next most commonly reported cause of neuroinvasive arboviral disease was California serogroup viruses (CALV), with 68 cases, followed by eastern equine encephalitis virus (EEEV), 10 cases, St. Louis encephalitis virus (SLEV), eight cases, and Powassan virus (POWV), eight cases. WNV and other arboviruses continue to cause focal outbreaks and severe illness in substantial numbers of persons in the United States. Maintaining surveillance remains important to guide arboviral disease prevention activities.

  5. Widespread Rickettsia spp. Infections in Ticks (Acari: Ixodoidea) in Taiwan.

    PubMed

    Kuo, Chi-Chien; Shu, Pei-Yun; Mu, Jung-Jung; Lee, Pei-Lung; Wu, Yin-Wen; Chung, Chien-Kung; Wang, Hsi-Chieh

    2015-09-01

    Ticks are second to mosquitoes as the most important disease vectors, and recent decades have witnessed the emergence of many novel tick-borne rickettsial diseases, but systematic surveys of ticks and tick-borne rickettsioses are generally lacking in Asia. We collected and identified ticks from small mammal hosts between 2006 and 2010 in different parts of Taiwan. Rickettsia spp. infections in ticks were identified by targeting ompB and gltA genes with nested polymerase chain reaction. In total, 2,732 ticks were collected from 1,356 small mammals. Rhipicephalus haemaphysaloides Supino (51.8% of total ticks), Haemaphysalis bandicota Hoogstraal & Kohls (28.0%), and Ixodes granulatus Supino (20.0%) were the most common tick species, and Rattus losea Swinhoe (44.7% of total ticks) and Bandicota indica Bechstein (39.9%) were the primary hosts. The average Rickettsia infective rate in 329 assayed ticks was 31.9% and eight Rickettsia spp. or closely related species were identified. This study shows that rickettsiae-infected ticks are widespread in Taiwan, with a high diversity of Rickettsia spp. circulating in the ticks. Because notifiable rickettsial diseases in Taiwan only include mite-borne scrub typhus and flea-borne murine typhus, more studies are warranted for a better understanding of the real extent of human risks to rickettsioses in Taiwan. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Citizen Science and Community Engagement in Tick Surveillance-A Canadian Case Study.

    PubMed

    Lewis, Julie; Boudreau, Corinne R; Patterson, James W; Bradet-Legris, Jonathan; Lloyd, Vett K

    2018-03-02

    Lyme disease is the most common tick-borne disease in North America and Europe, and on-going surveillance is required to monitor the spread of the tick vectors as their populations expand under the influence of climate change. Active surveillance involves teams of researchers collecting ticks from field locations with the potential to be sites of establishing tick populations. This process is labor- and time-intensive, limiting the number of sites monitored and the frequency of monitoring. Citizen science initiatives are ideally suited to address this logistical problem and generate high-density and complex data from sites of community importance. In 2014, the same region was monitored by academic researchers, public health workers, and citizen scientists, allowing a comparison of the strengths and weaknesses of each type of surveillance effort. Four community members persisted with tick collections over several years, collectively recovering several hundred ticks. Although deviations from standard surveillance protocols and the choice of tick surveillance sites makes the incorporation of community-generated data into conventional surveillance analyses more complex, this citizen science data remains useful in providing high-density longitudinal tick surveillance of a small area in which detailed ecological observations can be made. Most importantly, partnership between community members and researchers has proven a powerful tool in educating communities about of the risk of tick-vectored diseases and in encouraging tick bite prevention.

  7. Update on Tick-Borne Bacterial Diseases in Travelers.

    PubMed

    Eldin, Carole; Parola, Philippe

    2018-05-22

    Ticks are the second most important vectors of infectious diseases after mosquitoes worldwide. The growth of international tourism including in rural and remote places increasingly exposes travelers to tick bite. Our aim was to review the main tick-borne infectious diseases reported in travelers in the past 5 years. In recent years, tick-borne bacterial diseases have emerged in travelers including spotted fever group (SFG) rickettsioses, borrelioses, and diseases caused by bacteria of the Anaplasmataceae family. African tick-bite fever, due to Rickettsia africae, is the most frequent agent reported in travelers returned from Sub-Saharan areas. Other SFG agents are increasingly reported in travelers, and clinicians should be aware of them. Lyme disease can be misdiagnosed in Southern countries. Organisms causing tick-borne relapsing fever are neglected pathogens worldwide, and reports in travelers have allowed the description of new species. Infections due to Anaplasmataceae bacteria are more rarely described in travelers, but a new species of Neoehrlichia has recently been detected in a traveler. The treatment of these infections relies on doxycycline, and travelers should be informed before the trip about prevention measures against tick bites.

  8. Tick-borne disease.

    PubMed

    Bratton, Robert L; Corey, Ralph

    2005-06-15

    Tick-borne diseases in the United States include Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, tularemia, babesiosis, Colorado tick fever, and relapsing fever. It is important for family physicians to consider these illnesses when patients present with influenza-like symptoms. A petechial rash initially affecting the palms and soles of the feet is associated with Rocky Mountain spotted fever, whereas erythema migrans (annular macule with central clearing) is associated with Lyme disease. Various other rashes or skin lesions accompanied by fever and influenza-like illness also may signal the presence of a tick-borne disease. Early, accurate diagnosis allows treatment that may help prevent significant morbidity and possible mortality. Because 24 to 48 hours of attachment to the host are required for infection to occur, early removal can help prevent disease. Treatment with doxycycline or tetracycline is indicated for Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, and relapsing fever. In patients with clinical findings suggestive of tick-borne disease, treatment should not be delayed for laboratory confirmation. If no symptoms follow exposure to tick bites, empiric treatment is not indicated. The same tick may harbor different infectious pathogens and transmit several with one bite. Advising patients about prevention of tick bites, especially in the summer months, may help prevent exposure to dangerous vector-borne diseases.

  9. Effects of tick control by acaricide self-treatement of white-tailed deer on host-seeking tick infection prevalence and entomologic risk for Ixodes scapularis-borne pathogens

    USDA-ARS?s Scientific Manuscript database

    We evaluated the effects of tick control by acaricide self-treatment of white-tailed deer on the infection prevalence and entomologic risk for three I. scapularis-borne bacteria in host-seeking ticks. Ticks were collected from vegetation in areas treated with the ‘4-Poster’ device and from control a...

  10. The role of rodents in the ecology of Ixodes ricinus and associated pathogens in Central and Eastern Europe.

    PubMed

    Mihalca, Andrei D; Sándor, Attila D

    2013-01-01

    Rodents comprise more species than any other mammal order. Most rodents are considered keystone species in their ecological communities, hence the survival of many other species in the ecosystem depend on them. From medical point of view, this is particularly important for rodent-dependent pathogens. In the particular case of tick-borne diseases, rodents are important as hosts for vector ticks and as reservoir hosts (Lyme borreliosis, human granulocytic anaplasmosis, Crimean-Congo hemorrhagic fever, Tick-borne relapsing fevers, tick-borne rickettsioses, babesiosis). Community and population ecology of rodents was shown to be correlated with disease ecology in the case of many tick-borne diseases. In Eastern Europe, several adult hard-tick species use rodents as their principal hosts: Ixodes apronophorus, I. crenulatus, I. laguri, I. redikorzevi, I. trianguliceps. However, the majority of ticks feeding on rodents are immature stages of ticks which as adults are parasitic on larger mammals. Larvae and nymphs of Ixodes ricinus, the most abundant and medically important tick from Europe, are commonly found on rodents. This is particularly important, as many rodents are synanthropic and, together with other micromammals and birds are often the only available natural hosts for ticks in urban environments. This work reviews the correlated ecology of rodents and I. ricinus.

  11. Immunological control of ticks and tick-borne diseases that impact cattle health and production in Mexico

    USDA-ARS?s Scientific Manuscript database

    The cattle industry is one of the most important agroeconomic activities in Mexico. The national herd is estimated to include approximately 33.5 million head of cattle. Ticks and tick-borne diseases are principal factors with a negative impact on cattle health and production in Mexico. The most econ...

  12. Species of ticks and carried pathogens in owned dogs in Spain: Results of a one-year national survey.

    PubMed

    Estrada-Peña, Agustín; Roura, Xavier; Sainz, Angel; Miró, Guadalupe; Solano-Gallego, Laia

    2017-06-01

    This study presents the results of a national survey in Spain on the distribution of ticks on owned dogs, their phenology and the associated pathogens over one year. In the study, 1628 adult ticks were collected on 660 dogs presented to 26 veterinary practices, of which 507 dogs (76.8%) carried at least one adult tick. The primary species of ticks were Rhipicephalus sanguineus s.l. (53%), Dermacentor reticulatus (9%), Ixodes ricinus (9%), and I. hexagonus (4%). Parasitism by two species of these ticks was rare. The four species showed a clear association with the biogeographical features of the country, with I. ricinus associated with the wettest northern regions, I. hexagonus and D. reticulatus associated with the north of the territory, and R. sanguineus s.l. prevalent throughout the entire country. Dogs living in rural areas had a higher prevalence of all species, but R. sanguineus s.l. was the most prevalent; however, this tick was also more common on dogs living indoors. R. sanguineus s.l. adults were active throughout the year, with a maximum peak from March to July. The other tick species were collected throughout the year, with an autumn-winter peak of D. reticulatus, but without clear seasonality for either I. ricinus or I. hexagonus. Combined real-time PCR and conventional PCR of the feeding ticks recorded Piroplasmida (Hepatozoon canis, Babesia canis, B. gibsoni, and several sequences compatible with Theileria spp.), Rickettsia spp. (R. massiliae, R. sibirica mongolitimonae, R. monacensis), Ehrlichia canis, Anaplasma platys, A. phagocytophilum and Borrelia spp. (B. afzelii, B. garinii, B. valaisiana). Hepatozoon canis and B. canis were the most frequently detected pathogens, with variable rates of infection according to the region. Other than a close association of Borrelia spp. with I. ricinus (and therefore to the wet northern areas of the territory), the other tick-borne pathogens were recorded throughout the country. Although a potential transmission role for ticks carrying unusual pathogens cannot be attributed to these results, these findings introduce a change of paradigm on the tick-borne pathogen distribution in Spain and emphasize the importance of performing active surveys to understand the complex patterns of tick-borne pathogen distributions and their vectors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Molecular Detection of Tick-Borne Pathogen Diversities in Ticks from Livestock and Reptiles along the Shores and Adjacent Islands of Lake Victoria and Lake Baringo, Kenya.

    PubMed

    Omondi, David; Masiga, Daniel K; Fielding, Burtram C; Kariuki, Edward; Ajamma, Yvonne Ukamaka; Mwamuye, Micky M; Ouso, Daniel O; Villinger, Jandouwe

    2017-01-01

    Although diverse tick-borne pathogens (TBPs) are endemic to East Africa, with recognized impact on human and livestock health, their diversity and specific interactions with tick and vertebrate host species remain poorly understood in the region. In particular, the role of reptiles in TBP epidemiology remains unknown, despite having been implicated with TBPs of livestock among exported tortoises and lizards. Understanding TBP ecologies, and the potential role of common reptiles, is critical for the development of targeted transmission control strategies for these neglected tropical disease agents. During the wet months (April-May; October-December) of 2012-2013, we surveyed TBP diversity among 4,126 ticks parasitizing livestock and reptiles at homesteads along the shores and islands of Lake Baringo and Lake Victoria in Kenya, regions endemic to diverse neglected tick-borne diseases. After morphological identification of 13 distinct Rhipicephalus, Amblyomma , and Hyalomma tick species, ticks were pooled (≤8 individuals) by species, host, sampling site, and collection date into 585 tick pools. By supplementing previously established molecular assays for TBP detection with high-resolution melting analysis of PCR products before sequencing, we identified high frequencies of potential disease agents of ehrlichiosis (12.48% Ehrlichia ruminantium , 9.06% Ehrlichia canis ), anaplasmosis (6.32% Anaplasma ovis , 14.36% Anaplasma platys , and 3.08% Anaplasma bovis ,), and rickettsiosis (6.15% Rickettsia africae , 2.22% Rickettsia aeschlimannii , 4.27% Rickettsia rhipicephali , and 4.95% Rickettsia spp.), as well as Paracoccus sp. and apicomplexan hemoparasites (0.51% Theileria sp., 2.56% Hepatozoon fitzsimonsi , and 1.37% Babesia caballi ) among tick pools. Notably, we identified E. ruminantium in both Amblyomma and Rhipicephalus pools of ticks sampled from livestock in both study areas as well as in Amblyomma falsomarmoreum (66.7%) and Amblyomma nuttalli (100%) sampled from tortoises and Amblyomma sparsum (63.6%) sampled in both cattle and tortoises at Lake Baringo. Similarly, we identified E. canis in rhipicephaline ticks sampled from livestock and dogs in both regions and Amblyomma latum (75%) sampled from monitor lizards at Lake Victoria. These novel tick-host-pathogen interactions have implications on the risk of disease transmission to humans and domestic animals and highlight the complexity of TBP ecologies, which may include reptiles as reservoir species, in sub-Saharan Africa.

  14. Tick-borne Diseases: The Big Two | NIH MedlinePlus the Magazine

    MedlinePlus

    ... been a tick bite. Photo: CDC/James Gathany Lyme disease Lyme disease is the most common tick-borne disease in ... nervous system can develop in patients with late Lyme disease. Lyme disease has different stages. The rash is ...

  15. Reducing the Risk of Tick-Borne Diseases through Smart, Safe and Sustainable Pest Control

    EPA Pesticide Factsheets

    Each year PestWise programs form new partnerships to address ongoing and emerging issues. Reducing the risk from ticks and tick-borne disease is an issue of importance and EPA is contributing to a larger federal effort.

  16. Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks.

    PubMed

    Gall, Cory A; Scoles, Glen A; Magori, Krisztian; Mason, Kathleen L; Brayton, Kelly A

    2017-10-04

    Nearly a quarter of emerging infectious diseases identified in the last century are arthropod-borne. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of their microbial communities. The majority of tick microbiome research has had a focus on discovery and description; very few studies have analyzed the ecological context and functional responses of the bacterial microbiome of ticks. The goal of this analysis was to characterize the stability of the bacterial microbiome of Dermacentor andersoni ticks between generations and two populations within a species. The bacterial microbiome of D. andersoni midguts and salivary glands was analyzed from populations collected at two different ecologically distinct sites by comparing field (F1) and lab-reared populations (F1-F3) over three generations. The microbiome composition of pooled and individual samples was analyzed by sequencing nearly full-length 16S rRNA gene amplicons using a Pacific Biosciences CCS platform that allows identification of bacteria to the species level. In this study, we found that the D. andersoni microbiome was distinct in different geographic populations and was tissue specific, differing between the midgut and the salivary gland, over multiple generations. Additionally, our study showed that the microbiomes of laboratory-reared populations were not necessarily representative of their respective field populations. Furthermore, we demonstrated that the microbiome of a few individual ticks does not represent the microbiome composition at the population level. We demonstrated that the bacterial microbiome of D. andersoni was complex over three generations and specific to tick tissue (midgut vs. salivary glands) as well as geographic location (Burns, Oregon vs. Lake Como, Montana vs. laboratory setting). These results provide evidence that habitat of the tick population is a vital component of the complexity of the bacterial microbiome of ticks, and that the microbiome of lab colonies may not allow for comparative analyses with field populations. A broader understanding of microbiome variation will be required if we are to employ manipulation of the microbiome as a method for interfering with acquisition and transmission of tick-borne pathogens.

  17. Ticks and tick-borne pathogens in wild birds in Greece.

    PubMed

    Diakou, Anastasia; Norte, Ana Cláudia; Lopes de Carvalho, Isabel; Núncio, Sofia; Nováková, Markéta; Kautman, Matej; Alivizatos, Haralambos; Kazantzidis, Savas; Sychra, Oldřich; Literák, Ivan

    2016-05-01

    Wild birds are common hosts of ticks and can transport them for long distances, contributing to the spreading of tick-borne pathogens. The information about ticks on birds and tick-borne pathogens in Greece is limited. The present study aimed to evaluate the prevalence and species of ticks infesting wild resident birds (mostly small passerines) in Greece, and to assess Borrelia and Rickettsia infection in the collected ticks. Detection of Borrelia burgdorferi s.l. was performed by nested PCR targeting the flaB gene. Rickettsia spp. were detected by PCR targeting the gltA and ompA genes. Seven (2 %) out of 403 birds examined in northern Greece in 2013 were infested with 15 ticks, identified as Ixodes frontalis, Ixodes acuminatus, Hyalomma marginatum, Hyalomma aegyptium and Hyalomma sp. All ticks were negative for Borrelia spp. while four of them were positive for rickettsiae (Rickettsia aeschlimannii in H. aegyptium and Rickettsia sp. in I. frontalis, H. aegyptium and H. marginatum). Ixodes acuminatus is reported for the first time in Greece and Sylvia borin is reported as a new host record for I. acuminatus.

  18. Host surveys, ixodid tick biology and transmission scenarios as related to the tick-borne pathogen, Ehrlichia canis

    PubMed Central

    Stich, R. W.; Schaefer, John J.; Bremer, William G.; Needham, Glen R.; Jittapalapong, Sathaporn

    2008-01-01

    The ehrlichioses have been subject to increasing interest from veterinary and public health perspectives, but experimental studies of these diseases and their etiologic agents can be challenging. Ehrlichia canis, the primary etiologic agent of canine monocytic ehrlichiosis, is relatively well characterized and offers unique advantages and opportunities to study interactions between a monocytotropic pathogen and both its vertebrate and invertebrate hosts. Historically, advances in tick-borne disease control strategies have typically followed explication of tick-pathogen-vertebrate interactions, thus it is reasonable to expect novel, more sustainable approaches to control of these diseases as the transmission of their associated infections are investigated at the molecular through ecological levels. Better understanding of the interactions between E. canis and its canine and tick hosts would also elucidate similar interactions for other Ehrlichia species as well as the potential roles of canine sentinels, reservoirs and models of tick-borne zoonoses. This article summarizes natural exposure studies and experimental investigations of E. canis in the context of what is understood about biological vectors of tick-borne Anaplasmataceae. PMID:18963493

  19. General framework for comparative quantitative studies on transmission of tick-borne diseases using Lyme borreliosis in Europe as an example.

    PubMed

    Randolph, S E; Craine, N G

    1995-11-01

    Models of tick-borne diseases must take account of the particular biological features of ticks that contrast with those of insect vectors. A general framework is proposed that identifies the parameters of the transmission dynamics of tick-borne diseases to allow a quantitative assessment of the relative contributions of different host species and alternative transmission routes to the basic reproductive number, Ro, of such diseases. Taking the particular case of the transmission of the Lyme borreliosis spirochaete, Borrelia burgdorferi, by Ixodes ticks in Europe, and using the best, albeit still inadequate, estimates of the parameter values and a set of empirical data from Thetford Forest, England, we show that squirrels and the transovarial transmission route make quantitatively very significant contributions to Ro. This approach highlights the urgent need for more robust estimates of certain crucial parameter values, particularly the coefficients of transmission between ticks and vertebrates, before we can progress to full models that incorporate seasonality and heterogeneity among host populations for the natural dynamics of transmission of borreliosis and other tick-borne diseases.

  20. Investigation of tick-borne bacteria (Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Borrelia spp.) in ticks collected from Andean tapirs, cattle and vegetation from a protected area in Ecuador.

    PubMed

    Pesquera, Cristina; Portillo, Aránzazu; Palomar, Ana M; Oteo, José A

    2015-01-24

    Ixodid ticks play an important role in the transmission and ecology of infectious diseases. Information about the circulation of tick-borne bacteria in ticks is lacking in Ecuador. Our aims were to investigate the tick species that parasitize Andean tapirs and cattle, and those present in the vegetation from the buffer zone of the Antisana Ecological Reserve and Cayambe-Coca National Park (Ecuador), and to investigate the presence of tick-borne bacteria. Tick species were identified based on morphologic and genetic criteria. Detection of tick-borne bacteria belonging to Rickettsia, Anaplasma, Ehrlichia and Borrelia genera was performed by PCRs. Our ticks included 91 Amblyomma multipunctum, 4 Amblyomma spp., 60 Rhipicephalus microplus, 5 Ixodes spp. and 1 Ixodes boliviensis. A potential Candidatus Rickettsia species closest to Rickettsia monacensis and Rickettsia tamurae (designated Rickettsia sp. 12G1) was detected in 3 R. microplus (3/57, 5.3%). In addition, Anaplasma spp., assigned at least to Anaplasma phagocytophilum (or closely related genotypes) and Anaplasma marginale, were found in 2 A. multipunctum (2/87, 2.3%) and 13 R. microplus (13/57, 22.8%). This is the first description of Rickettsia sp. in ticks from Ecuador, and the analyses of sequences suggest the presence of a potential novel Rickettsia species. Ecuadorian ticks from Andear tapirs, cattle and vegetation belonging to Amblyomma and Rhipicephalus genera were infected with Anaplasmataceae. Ehrlichia spp. and Borrelia burgdorferi sensu lato were not found in any ticks.

  1. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay

    PubMed Central

    Tagliafierro, Teresa; Cucura, D. Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W. Ian

    2017-01-01

    ABSTRACT Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum, Borrelia burgdorferi, Borrelia miyamotoi, Babesia microti, and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis. Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area. PMID:28435891

  2. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay.

    PubMed

    Tokarz, Rafal; Tagliafierro, Teresa; Cucura, D Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W Ian

    2017-01-01

    Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia miyamotoi , Babesia microti , and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis . Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area.

  3. Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes

    PubMed Central

    Walter, Katharine S.; Pepin, Kim M.; Webb, Colleen T.; Gaff, Holly D.; Krause, Peter J.; Pitzer, Virginia E.; Diuk-Wasser, Maria A.

    2016-01-01

    Modelling the spatial spread of vector-borne zoonotic pathogens maintained in enzootic transmission cycles remains a major challenge. The best available spatio-temporal data on pathogen spread often take the form of human disease surveillance data. By applying a classic ecological approach—occupancy modelling—to an epidemiological question of disease spread, we used surveillance data to examine the latent ecological invasion of tick-borne pathogens. Over the last half-century, previously undescribed tick-borne pathogens including the agents of Lyme disease and human babesiosis have rapidly spread across the northeast United States. Despite their epidemiological importance, the mechanisms of tick-borne pathogen invasion and drivers underlying the distinct invasion trajectories of the co-vectored pathogens remain unresolved. Our approach allowed us to estimate the unobserved ecological processes underlying pathogen spread while accounting for imperfect detection of human cases. Our model predicts that tick-borne diseases spread in a diffusion-like manner with occasional long-distance dispersal and that babesiosis spread exhibits strong dependence on Lyme disease. PMID:27252022

  4. Molecular Detection of Tick-Borne Pathogen Diversities in Ticks from Livestock and Reptiles along the Shores and Adjacent Islands of Lake Victoria and Lake Baringo, Kenya

    PubMed Central

    Omondi, David; Masiga, Daniel K.; Fielding, Burtram C.; Kariuki, Edward; Ajamma, Yvonne Ukamaka; Mwamuye, Micky M.; Ouso, Daniel O.; Villinger, Jandouwe

    2017-01-01

    Although diverse tick-borne pathogens (TBPs) are endemic to East Africa, with recognized impact on human and livestock health, their diversity and specific interactions with tick and vertebrate host species remain poorly understood in the region. In particular, the role of reptiles in TBP epidemiology remains unknown, despite having been implicated with TBPs of livestock among exported tortoises and lizards. Understanding TBP ecologies, and the potential role of common reptiles, is critical for the development of targeted transmission control strategies for these neglected tropical disease agents. During the wet months (April–May; October–December) of 2012–2013, we surveyed TBP diversity among 4,126 ticks parasitizing livestock and reptiles at homesteads along the shores and islands of Lake Baringo and Lake Victoria in Kenya, regions endemic to diverse neglected tick-borne diseases. After morphological identification of 13 distinct Rhipicephalus, Amblyomma, and Hyalomma tick species, ticks were pooled (≤8 individuals) by species, host, sampling site, and collection date into 585 tick pools. By supplementing previously established molecular assays for TBP detection with high-resolution melting analysis of PCR products before sequencing, we identified high frequencies of potential disease agents of ehrlichiosis (12.48% Ehrlichia ruminantium, 9.06% Ehrlichia canis), anaplasmosis (6.32% Anaplasma ovis, 14.36% Anaplasma platys, and 3.08% Anaplasma bovis,), and rickettsiosis (6.15% Rickettsia africae, 2.22% Rickettsia aeschlimannii, 4.27% Rickettsia rhipicephali, and 4.95% Rickettsia spp.), as well as Paracoccus sp. and apicomplexan hemoparasites (0.51% Theileria sp., 2.56% Hepatozoon fitzsimonsi, and 1.37% Babesia caballi) among tick pools. Notably, we identified E. ruminantium in both Amblyomma and Rhipicephalus pools of ticks sampled from livestock in both study areas as well as in Amblyomma falsomarmoreum (66.7%) and Amblyomma nuttalli (100%) sampled from tortoises and Amblyomma sparsum (63.6%) sampled in both cattle and tortoises at Lake Baringo. Similarly, we identified E. canis in rhipicephaline ticks sampled from livestock and dogs in both regions and Amblyomma latum (75%) sampled from monitor lizards at Lake Victoria. These novel tick–host–pathogen interactions have implications on the risk of disease transmission to humans and domestic animals and highlight the complexity of TBP ecologies, which may include reptiles as reservoir species, in sub-Saharan Africa. PMID:28620610

  5. Identifying Attenuating Mutations: Tools for a New Vaccine Design against Flaviviruses.

    PubMed

    Khou, Cécile; Pardigon, Nathalie

    2017-01-01

    Emerging Flaviviruses pose an increasing threat to global human health. To date, human vaccines against yellow fever virus (YFV), Japanese encephalitis virus (JEV), dengue virus (DV), and tick-borne encephalitis virus (TBEV) exist. However, there is no human vaccine against other Flaviviruses such as Zika virus (ZIKV) and West Nile virus (WNV). In order to restrict their spread and to protect populations against the diseases they induce, vaccines against these emerging viruses must be designed. Obtaining new live attenuated Flavivirus vaccines using molecular biology methods is now possible. Molecular infectious clones of the parental viruses are relatively easy to generate. Key mutations present in live attenuated vaccines or mutations known to have a key role in the Flavivirus life cycle and/or interactions with their hosts can be identified by sequencing, and are then inserted in infectious clones by site-directed mutagenesis. More recently, the use of chimeric viruses and large-scale reencoding and introduction of microRNA target sequences have also been tested. Indeed, a combination of these methods will help in designing new generations of vaccines against emerging and reemerging Flaviviruses. © 2017 S. Karger AG, Basel.

  6. Clinical outcome and cerebrospinal fluid profiles in patients with tick-borne encephalitis and prior vaccination history.

    PubMed

    Lenhard, Thorsten; Ott, Daniela; Jakob, Nurith J; Martinez-Torres, Francisco; Grond-Ginsbach, Caspar; Meyding-Lamadé, Uta

    2018-05-01

    Tick-borne encephalitis (TBE) is endemic in southern and eastern districts of Germany. Approximately 10-14% of the infected individuals suffer from long-term disability and in 1.5-3.6% the course is fatal. Two well-tolerated vaccines are available, which provide high protection and which have been confirmed in several field studies. Here we investigate clinical course, long-term outcome and cerebrospinal fluid (CSF) characteristics of TBE cases with a prior history of any vaccination as well as real vaccination breakthrough (VBT). A case series of 11 patients with a prior history of vaccination, part of a recently published lager cohort of 111 TBE cases. Evaluation included clinical data, degree of disability (modified RANKIN scale, mRS) and analysis of CSF and serum samples. Furthermore, metadata for extended analysis on clinical outcome of TBE with VBT were analysed. One patient had a clear VBT and ten of them had irregular vaccinations schedules (IVS). Infection severity did not differ in patients with IVS as compared to a non-vaccinated control cohort (median mRS: both 3.0) but these patients showed a stronger cellular immune response as measured by CSF pleocytosis (IVS, 205 cells/μL versus non-vaccinated control, 114 cell/μL, P < 0.05) and by differential pattern of CSF (intrathecal) immunoglobulin synthesis. However, shift analysis of VBT metadata using linear-by-linear association revealed a more serious course of TBE in patients with VBT than in a non-vaccinated control cohort (χ 2  = 9.95, P = 0.002). Furthermore, ordinal logistic regression analysis showed that VBT patients had an age-corrected, 2.65 fold (CI: 1.110-6.328; χ 2  = 4.813; p = 0.028) significant higher risk to suffer from moderate or severe infections, respectively. A history of IVS surprisingly seems to have no impact on the clinical course of TBE but may leave marks in the specific brain immune response. VBT patients, however, carry an age-independent, significant risk to experience a severe infection. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. Prevalence estimation of tick-borne encephalitis virus (TBEV) antibodies in dogs from Finland using novel dog anti-TBEV IgG MAb-capture and IgG immunofluorescence assays based on recombinant TBEV subviral particles.

    PubMed

    Levanov, Lev; Vera, Cristina Pérez; Vapalahti, Olli

    2016-07-01

    Tick-borne encephalitis (TBE) is one of the most dangerous human neurological infections occurring in Europe and Northern parts of Asia with thousands of cases and millions vaccinated against it. The risk of TBE might be assessed through analyses of the samples taken from wildlife or from animals which are in close contact with humans. Dogs have been shown to be a good sentinel species for these studies. Serological assays for diagnosis of TBE in dogs are mainly based on purified and inactivated TBEV antigens. Here we describe novel dog anti-TBEV IgG monoclonal antibody (MAb)-capture assay which is based on TBEV prME subviral particles expressed in mammalian cells from Semliki Forest virus (SFV) replicon as well as IgG immunofluorescence assay (IFA) which is based on Vero E6 cells transfected with the same SFV replicon. We further demonstrate their use in a small-scale TBEV seroprevalence study of dogs representing different regions of Finland. Altogether, 148 dog serum samples were tested by novel assays and results were compared to those obtained with a commercial IgG enzyme immunoassay (EIA), hemagglutination inhibition test and IgG IFA with TBEV infected cells. Compared to reference tests, the sensitivities of the developed assays were 90-100% and the specificities of the two assays were 100%. Analysis of the dog serum samples showed a seroprevalence of 40% on Åland Islands and 6% on Southwestern archipelago of Finland. In conclusion, a specific and sensitive EIA and IFA for the detection of IgG antibodies in canine sera were developed. Based on these assays the seroprevalence of IgG antibodies in dogs from different regions of Finland was assessed and was shown to parallel the known human disease burden as the Southwestern archipelago and Åland Islands in particular had considerable dog TBEV antibody prevalence and represent areas with high risk of TBE for humans. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Urban Breeding Corvids as Disseminators of Ticks and Emerging Tick-Borne Pathogens.

    PubMed

    Sándor, Attila D; Kalmár, Zsuzsa; Matei, Ioana; Ionică, Angela Monica; Mărcuţan, Ioan-Daniel

    2017-02-01

    Crows (Corvidae) are common city dwellers worldwide and are increasingly important subjects of epidemiology studies. Although their importance as hosts and transmitters of a number of zoonotic parasites and pathogens is well known, there are no studies on their importance as tick hosts. After mosquitoes, ticks are the most important vectors of zoonotic pathogens, especially for those causing emerging zoonotic diseases. Pathogenic bacteria, especially Borrelia spp., Rickettsia spp., and Anaplasma spp., vectored by ticks, are the cause for most vector-borne diseases in Europe. Here we report on ticks and tick-borne pathogens harbored by urban breeding crows. A total of 36 birds (33.33%, n = 108) hosted ticks, with 91 individual ticks belonging to 6 species (Haemaphysalis concinna, Haemaphysalis parva, Haemaphysalis punctata, Hyalomma marginatum, Ixodes arboricola, and Ixodes ricinus). Rickettsia spp. DNA was found in 6.6% of ticks and 1.9% of bird tissues, whereas Anaplasma phagocytophilum was found in 5.9% of ticks and 0.9% of birds. Two rickettsial genospecies were located, Rickettsia helvetica and Rickettsia monacensis. This is the first study to determine such a diverse tick spectrum feeding on urban corvids, while highlighting their importance as tick hosts and raising concerns about their potential risk to human health.

  9. Records of ticks on humans in Rio Grande do Sul state, Brazil.

    PubMed

    Reck, José; Souza, Ugo; Souza, Getúlio; Kieling, Eduardo; Dall'Agnol, Bruno; Webster, Anelise; Michel, Thais; Doyle, Rovaina; Martins, Thiago F; Labruna, Marcelo B; Marks, Fernanda; Ott, Ricardo; Martins, João Ricardo

    2018-05-18

    More than seventy tick species have been reported in Brazil. Despite the emergence of tick-borne diseases in Neotropical region, there are still limited data available on tick species parasitizing humans in Brazil. Rio Grande do Sul is the southernmost state of Brazil, comprising the only part of Brazilian territory inside the Pampa biome, as well as the transition between subtropical and temperate zones. Here, we report on human parasitism by ticks in Rio Grande do Sul state between 2004 and 2017. Seventy cases of human parasitism by ticks were recorded, with a total of 81 tick specimens collected. These included 11 tick species belonging to three genera of Ixodidae (hard-ticks), Amblyomma, Haemaphysalis and Rhipicephalus; and one genus of Argasidae, Ornithodoros. The most prevalent tick species associated to cases of human parasitism were Amblyomma parkeri (24%), Rhipicephalus sanguineus sensu lato (22%), Amblyomma aureolatum (15%) and Amblyomma ovale (12%). A spatial analysis showed two major hot spots of human parasitism by ticks in Rio Grande do Sul state. The findings of this study highlight the need for permanent monitoring of human parasitism by ticks in order to provide a better understanding of tick and tick-borne disease eco-epidemiology, and the early identification of potential cases of tick-borne diseases, particularly in spotted fever endemic regions. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. First report of Rickettsia raoultii in field collected Dermacentor reticulatus ticks from Austria.

    PubMed

    Duscher, Georg G; Hodžić, Adnan; Weiler, Martin; Vaux, Alexander G C; Rudolf, Ivo; Sixl, Wolfdieter; Medlock, Jolyon M; Versteirt, Veerle; Hubálek, Zdenek

    2016-07-01

    In a set of pooled field collected Dermacentor reticulatus ticks, Rickettsia raoultii, the causative agent of Tick-borne lymphadenopathy/Dermacentor-borne necrosis erythema and lymphadenopathy, was found for the first time in Austria. The coordinates of the positive locations for tick and pathogen abundance are given and shown in a map. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Alkhumra virus infection, a new viral hemorrhagic fever in Saudi Arabia.

    PubMed

    Madani, Tariq A

    2005-08-01

    Four patients with typical acute viral hemorrhagic fever were identified in the holy city of Makkah, Saudi Arabia, between 8 and 23 February 2001, the Hajj (pilgrimage) period of that year. Tests for Rift Valley fever (RVF), Crimean-Congo hemorrhagic fever (CCHF), and dengue were negative. Blood specimens were sent to the Centres for Disease Control and Prevention (CDC), Atlanta for viral culture and testing for other hemorrhagic fever viruses. A new flavivirus closely related to the tick-borne Kyasanur forest disease virus was isolated. This new flavivirus was originally isolated in 1995 from 6 patients with dengue-like hemorrhagic fever from Alkhumra district, south of Jeddah, Saudi Arabia. A case definition was formulated for surveillance of this new disease in Saudi Arabia. Blood specimens were collected from all patients with suspect 'Alkhumra' virus (ALKV) infection and tested for ALKV, RVF, CCHF, dengue, and West Nile encephalitis. Patients data were prospectively collected on standardized data collection forms. From 8 February 2001 through 9 February 2003, a total of 37 cases were identified in Makkah, 20 of them were laboratory confirmed. Acute febrile flu-like illness with hepatitis (100%), hemorrhagic manifestations (55%), and encephalitis (20%) were the main clinical features. The case fatality was 25%. The disease seemed to be transmitted from sheep or goat to humans by the mosquito bites or direct contact with these animals. ALKV infection is a novel serious zoonotic hemorrhagic fever virus discovered in Saudi Arabia. The role of arthropods such as ticks and mosquitoes, and animals such as sheep, goat, and rodents in the transmission and maintenance of the virus remains to be elucidated.

  12. A Molecular Survey of Tick-Borne Pathogens from Ticks Collected in Central Queensland, Australia.

    PubMed

    Chalada, Melissa Judith; Stenos, John; Vincent, Gemma; Barker, Dayana; Bradbury, Richard Stewart

    2018-03-01

    Central Queensland (CQ) is a large and isolated, low population density, remote tropical region of Australia with a varied environment. The region has a diverse fauna and several species of ticks that feed upon that fauna. This study examined 518 individual ticks: 177 Rhipicephalus sanguineus (brown dog tick), 123 Haemaphysalis bancrofti (wallaby tick), 102 Rhipicephalus australis (Australian cattle tick), 47 Amblyomma triguttatum (ornate kangaroo tick), 57 Ixodes holocyclus (paralysis tick), 9 Bothriocroton tachyglossi (CQ short-beaked echidna tick), and 3 Ornithodoros capensis (seabird soft tick). Tick midguts were pooled by common host or environment and screened for four genera of tick-borne zoonoses by PCR and sequencing. The study examined a total of 157 midgut pools of which 3 contained DNA of Coxiella burnetii, 13 Rickettsia gravesii, 1 Rickettsia felis, and 4 other Rickettsia spp. No Borrelia spp. or Babesia spp. DNA were recovered.

  13. Susceptibility to Ticks and Lyme Disease Spirochetes Is Not Affected in Mice Coinfected with Nematodes.

    PubMed

    Maaz, Denny; Rausch, Sebastian; Richter, Dania; Krücken, Jürgen; Kühl, Anja A; Demeler, Janina; Blümke, Julia; Matuschka, Franz-Rainer; von Samson-Himmelstjerna, Georg; Hartmann, Susanne

    2016-05-01

    Small rodents serve as reservoir hosts for tick-borne pathogens, such as the spirochetes causing Lyme disease. Whether natural coinfections with other macroparasites alter the success of tick feeding, antitick immunity, and the host's reservoir competence for tick-borne pathogens remains to be determined. In a parasitological survey of wild mice in Berlin, Germany, approximately 40% of Ixodes ricinus-infested animals simultaneously harbored a nematode of the genus Heligmosomoides We therefore aimed to analyze the immunological impact of the nematode/tick coinfection as well as its effect on the tick-borne pathogen Borrelia afzelii Hosts experimentally coinfected with Heligmosomoides polygyrus and larval/nymphal I. ricinus ticks developed substantially stronger systemic type 2 T helper cell (Th2) responses, on the basis of the levels of GATA-3 and interleukin-13 expression, than mice infected with a single pathogen. During repeated larval infestations, however, anti-tick Th2 reactivity and an observed partial immunity to tick feeding were unaffected by concurrent nematode infections. Importantly, the strong systemic Th2 immune response in coinfected mice did not affect susceptibility to tick-borne B. afzelii An observed trend for decreased local and systemic Th1 reactivity against B. afzelii in coinfected mice did not result in a higher spirochete burden, nor did it facilitate bacterial dissemination or induce signs of immunopathology. Hence, this study indicates that strong systemic Th2 responses in nematode/tick-coinfected house mice do not affect the success of tick feeding and the control of the causative agent of Lyme disease. Copyright © 2016 Maaz et al.

  14. Seroprevalence of tick-borne-encephalitis virus in wild game in Mecklenburg-Western Pomerania (north-eastern Germany).

    PubMed

    Frimmel, Silvius; Leister, Matthias; Löbermann, Micha; Feldhusen, Frerk; Seelmann, Matthias; Süss, Jochen; Reisinger, Emil Christian

    2016-10-01

    Mecklenburg-Western Pomerania, a federal state in the north east of Germany, has never been a risk area for TBEV infection, but a few autochthonous cases, along with TBEV-RNA detection in ticks, have shown a low level of activity in natural foci of the virus in the past. As wild game and domestic animals have been shown to be useful sentinels for TBEV we examined sera from wild game shot in Mecklenburg-Western Pomerania for the prevalence of TBEV antibodies. A total of 359 sera from wild game were investigated. All animals were shot in Mecklenburg-Western Pomerania in 2012. Thirteen of 359 sera tested positive or borderline for anti-TBEV-IgG with ELISA and four samples tested positive using NT. The four TBEV-positive sera confirmed by NT constitute the first detection of TBEV-antibodies in sera of wild game in Mecklenburg-Western Pomerania since 1986-1989. This underlines that the serological examination of wild game can be a useful tool in defining areas of possible TBEV infection, especially in areas of low TBEV-endemicity. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Borrelia crocidurae in Ornithodoros ticks from northwestern Morocco: a range extension in relation to climatic change?

    PubMed

    Souidi, Yassine; Boudebouch, Najma; Ezikouri, Sayeh; Belghyti, Driss; Trape, Jean-François; Sarih, M'hammed

    2014-12-01

    Tick-borne relapsing fever (TBRF) is caused by Borrelia spirochetes transmitted to humans by Argasid soft ticks of the genus Ornithodoros. We investigated the presence of Ornithodoros ticks in rodent burrows in nine sites of the Gharb region of northwestern Morocco where we recently documented a high incidence of TBRF in humans. We assessed the Borrelia infection rate by nested PCR and sequencing. All sites investigated were colonized by ticks of the Ornithodoros marocanus complex and a high proportion of burrows (38.4%) were found to be infested. Borrelia infections were observed in 6.8% of the ticks tested. Two Borrelia species were identified by sequencing: B. hispanica and B. crocidurae. The discovery in northwestern Morocco of Ornithodoros ticks infected by B. crocidurae represents a 350 km range extension of this Sahelo-Saharan spirochete in North Africa. The spread of B. crocidurae may be related to the increasing aridity of northwestern Morocco in relation to climate change. © 2014 The Society for Vector Ecology.

  16. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests.

    PubMed

    Hofmeester, Tim R; Sprong, Hein; Jansen, Patrick A; Prins, Herbert H T; van Wieren, Sipke E

    2017-09-19

    Understanding which factors drive population densities of disease vectors is an important step in assessing disease risk. We tested the hypothesis that the density of ticks from the Ixodes ricinus complex, which are important vectors for tick-borne diseases, is determined by the density of deer, as adults of these ticks mainly feed on deer. We performed a cross-sectional study to investigate I. ricinus density across 20 forest plots in the Netherlands that ranged widely in deer availability to ticks, and performed a deer-exclosure experiment in four pairs of 1 ha forest plots in a separate site. Ixodes ricinus from all stages were more abundant in plots with deer (n = 17) than in plots without deer (n = 3). Where deer were present, the density of ticks did not increase with the abundance of deer. Experimental exclosure of deer reduced nymph density by 66% and adult density by 32% within a timeframe of two years. In this study, deer presence rather than abundance explained the density of I. ricinus. This is in contrast to previous studies and might be related to the relatively high host-species richness in Dutch forests. This means that reduction of the risk of acquiring a tick bite would require the complete elimination of deer in species rich forests. The fact that small exclosures (< 1 ha) substantially reduced I. ricinus densities suggests that fencing can be used to reduce tick-borne disease risk in areas with high recreational pressure.

  17. [Latinamerican guidelines of RIICER for diagnosis of tick-borne rickettsioses].

    PubMed

    Oteo, José A; Nava, Santiago; Sousa, Rita de; Mattar, Salim; Venzal, José M; Abarca, Katia; Labruna, Marcelo B; Zavala-Castro, Jorge

    2014-02-01

    Tick-borne rickettsioses are worldwide infectious diseases that are considered emerging and re-emerging. Until recently the only tick-borne rickettsiosis present in Latin America was Rickettsia rickettsii infection, but to date, with the incorporation of new tools as PCR and sequencing and the quick cellular close tube cultures (Shell-vial), new species has been involved as human pathogens. In these guidelines, we offer an update of the microbiological assays for diagnosing rickettsioses. Besides we have included a section in which the most important hard ticks involved in human rickettsioses in Latinoamerica are detailed.

  18. Ticks and tick-borne novel bunyavirus collected from the natural environment and domestic animals in Jinan city, East China.

    PubMed

    Wang, Dong; Wang, Yongming; Yang, Guoliang; Liu, Huiyuan; Xin, Zheng

    2016-02-01

    Since 2011, 73 cases of the severe fever with thrombocytopenia syndrome, a novel tick-borne disease, have been reported in Jinan city through information system for disease control and prevention. Therefore, this study aimed to investigate the species, distribution, host animals of ticks and tick-borne pathogens. A total of 722 ticks were collected from two types of natural environment and six kinds of domestic animal in Jinan city. All the sampled ticks belonged to the same species, namely Haemaphysalis longicornis, and 94.7% of them were adult. The density of free-living ticks in grassland was nearly six times that in shrub. The prevalence of the goat (53.3%) was highest among the domestic animals. The host body region most frequently parasitized by H. longicornis was the head (77.8%), especially ears and periocular region. Novel bunyavirus was detected on the free-ranging goats in Jinan city. Acaricide treatment with a higher concentration on the ears, periocular region and the groin of domestic animals should be recommended to control the ticks effectively.

  19. The burden of tick-borne diseases in the Altai region of Russia.

    PubMed

    Dedkov, V G; Simonova, E G; Beshlebova, O V; Safonova, M V; Stukolova, O A; Verigina, E V; Savinov, G V; Karaseva, I P; Blinova, E A; Granitov, V M; Arsenjeva, I V; Shipulin, G A

    2017-08-01

    This article presents the results of a comprehensive survey of the burden of tick-borne infectious diseases (TBIDs) in the Altai region of Russia. Official data for TBID incidence were analyzed and 201 samples from patients with suspected TBID were studied. Furthermore, questing ticks and ticks recovered from humans were examined to estimate prevalence of TBID-causative agents. The Altai region was determined to have a heightened risk for TBIDs in Russia. The most epidemiologically significant tick-borne illness in this area is spotted fever group rickettsiosis, while nationally in Russia, the leading TBID is Lyme borreliosis. The prevalence of mixed infection was 12.4% among the studied cases. Additionally, the prevalence of poorly studied pathogens - Kemerovo virus (KEMV) and Rickettsia tarasevichiae - in ticks from the Altai region was determined. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Serologic evidence for tick-borne pathogens other than Borrelia burgdorferi (TOBB) in Lyme borreliosis patients from midwestern Germany.

    PubMed

    Hunfeld, K P; Allwinn, R; Peters, S; Kraiczy, P; Brade, V

    1998-12-23

    The seroprevalence of antibodies against the human granulocytic ehrlichiosis agent (HGE) and Babesia microti was retrospectively determined in 76 Lyme borreliosis patients and in 44 asymptomatic individuals with a positive borreliosis serology, in comparison to 100 healthy blood donors from the Rhein-Main area. Additionally, seroreactivity for tick-borne encephalitis virus (TBEV) was investigated. For antibody detection, commercially available immunofluorescence assays (MRL Diagnostics, USA) and a TBEV-ELISA (Immuno, Germany) were used. In the control group, the positivity rate for anti-Borrelia burgdorferi (IgG/IgM) and anti-Babesia microti-antibodies in the population of the Rhein-Main area (Midwestern Germany) may be estimated at 15% and 8%, respectively. Examination for both HGE and TBEV demonstrated seroreactivity (IgG) in 1% of tested individuals. Specific anti-HGE IgG and/or IgM antibodies were more often discovered in cases of early Borrelia infection (stage I: 13.6%, stage II: 18.4%) than in patients with stage III disease (0%) or in seropositive but asymptomatic patients (6.8%). Investigation for TBEV revealed seroreactivity for IgG in 13% of these cases. No TBEV-IgM was found. Interestingly, the prevalence of anti-HGE and anti-TBEV antibodies among Lyme borreliosis patients and seropositive patients without active Lyme disease symptoms was significantly higher than that in the control group of healthy blood donors (p < 0.05). Likewise, antibody titers reflecting a recent infection with Babesia microti could be demonstrated more often in patients with Lyme borreliosis stage I or II (p < 0.05). Analysis of 50 samples from patients with florid or recent syphilis infection revealed no crossreactivity between Babesia microti, HGE and Treponema pallidum. Our findings suggest that concomitant or serial infection due to TOBB may be common in tick exposed patients from the Rhein-Main area and in European countries in general. Hence, in addition to TBEV, human babesiosis and HGE should always be considered by European physicians in the differential diagnosis of acute febrile illness following a tick bite.

  1. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    PubMed Central

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  2. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  3. What's eating you? lone star tick (Amblyomma americanum).

    PubMed

    Reynolds, H Harris; Elston, Dirk M

    2017-02-01

    Amblyomma americanum , also known as the lone star tick, is found in much of the eastern United States. Since the mid-20th century, the lone star tick has been implicated in human disease. Today, A americanum remains an important vector for tick-borne illness. In addition to others, species of Rickettsia , Ehrlichia , and Borrelia are all transmitted by the lone star tick. Recently described conditions such as Southern tick-associated rash illness and anaphylaxis to red meat following tick bites have been attributed to the lone star tick. Impressive local reactions also can result after bites from A americanum . Early treatment of tick-borne illness is crucial to ensure good patient outcomes. Tick-control measures also are an important part of disease management in endemic areas. We discuss the tick's biology, human illnesses associated with A americanum , and methods to control tick numbers and eliminate disease in local reservoirs.

  4. Comparative genetic diversity of Lyme disease bacteria in Northern Californian ticks and their vertebrate hosts.

    PubMed

    Swei, Andrea; Bowie, Verna C; Bowie, Rauri C K

    2015-04-01

    Vector-borne pathogens are transmitted between vertebrate hosts and arthropod vectors, two immensely different environments for the pathogen. There is further differentiation among vertebrate hosts that often have complex, species-specific immunological responses to the pathogen. All this presents a heterogeneous environmental and immunological landscape with possible consequences on the population genetic structure of the pathogen. We evaluated the differential genetic diversity of the Lyme disease pathogen, Borrelia burgdorferi, in its vector, the western black-legged tick (Ixodes pacificus), and in its mammal host community using the 5S-23S rRNA intergenic spacer region. We found differences in haplotype distribution of B. burgdorferi in tick populations from two counties in California as well as between a sympatric tick and vertebrate host community. In addition, we found that three closely related haplotypes consistently occurred in high frequency in all sample types. Lastly, our study found lower species diversity of the B. burgdorferi species complex, known as B. burgdorferi sensu lato, in small mammal hosts versus the tick populations in a sympatric study area. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania.

    PubMed

    Andersson, Martin O; Marga, Georgeta; Banu, Teofilia; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-05-01

    Romania has a highly diverse tick fauna. Consequently, a high diversity of tick-transmitted pathogens might be a potential threat to humans. However, only a limited number of tick species regularly infest humans, and pathogens present in such species are therefore of particular interest from a medical perspective. In this study, 297 ticks were collected from humans during 2013 and 2014. Ixodes ricinus was the predominant tick species, accounting for 272 specimens or 91.6% of the ticks in the study. Nevertheless, other tick species were also found to infest humans: Dermacentor marginatus constituted 7% of the ticks found on humans (21/297), Haemaphysalis punctata 1% (3/297), and Haemaphysalis concinna 0.3% (1/297). Ticks were tested by PCR for a wide range of tick-borne pathogens. In total, 11.8% of the ticks carried human pathogenic bacteria, while no viral or protozoan pathogens were detected. The most frequently detected pathogen was Rickettsia spp., occurring in 5.4% of the ticks (16/297) and comprising three species: Rickettsia (R.) raoultii, R. monacensis, and R. helvetica. Borrelia s.l. occurred in 3% (9/297) of the ticks. "Candidatus Neoehrlichia mikurensis" occurred in 1.7% (5/297) and Anaplasma phagocytophilum in 1.3% (4/297). Anaplasma bovis was detected in an H. punctata and Borrelia miyamotoi in an I. ricinus. These results point to the need for further studies on the medical importance of tick-borne pathogens in Romania.

  6. Molecular identification of tick-borne pathogens in Nigerian ticks.

    PubMed

    Ogo, Ndudim Isaac; de Mera, Isabel G Fernández; Galindo, Ruth C; Okubanjo, Oluyinka O; Inuwa, Hauwa Mairo; Agbede, Rowland I S; Torina, Alessandra; Alongi, Angelina; Vicente, Joaquín; Gortázar, Christian; de la Fuente, José

    2012-07-06

    A molecular epidemiology investigation was undertaken in two Nigerian states (Plateau and Nassarawa) to determine the prevalence of pathogens of veterinary and public health importance associated with ticks collected from cattle and dogs using PCR, cloning and sequencing or reverse line blot techniques. A total of 218 tick samples, Amblyomma variegatum (N=153), Rhipicephalus (Boophilus) decoloratus (N=45), and Rhipicephalus sanguineus (N=20) were sampled. Pathogens identified in ticks included piroplasmids (Babesia spp., Babesia bigemina and Babesia divergens), Anaplasma marginale and Rickettsia africae. Piroplasmids were identified in A. variegatum, A. marginale was found in R. decoloratus, while R. africae was detected in all tick species examined. Ehrlichia spp. and Theileria spp. were not identified in any of the ticks examined. Of the 218 ticks examined, 33 (15.1%) contained pathogen DNA, with the presence of B. divergens and R. africae that are zoonotic pathogens of public health and veterinary importance. The variety of tick-borne pathogens identified in this study suggests a risk for the emergence of tick-borne diseases in domestic animals and humans, especially amongst the Fulani pastoralists in Plateau and Nassarawa states of Nigeria. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Phylogeny of the Genus Flavivirus

    PubMed Central

    Kuno, Goro; Chang, Gwong-Jen J.; Tsuchiya, K. Richard; Karabatsos, Nick; Cropp, C. Bruce

    1998-01-01

    We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses. PMID:9420202

  8. Phylogeny of the genus Flavivirus.

    PubMed

    Kuno, G; Chang, G J; Tsuchiya, K R; Karabatsos, N; Cropp, C B

    1998-01-01

    We undertook a comprehensive phylogenetic study to establish the genetic relationship among the viruses of the genus Flavivirus and to compare the classification based on molecular phylogeny with the existing serologic method. By using a combination of quantitative definitions (bootstrap support level and the pairwise nucleotide sequence identity), the viruses could be classified into clusters, clades, and species. Our phylogenetic study revealed for the first time that from the putative ancestor two branches, non-vector and vector-borne virus clusters, evolved and from the latter cluster emerged tick-borne and mosquito-borne virus clusters. Provided that the theory of arthropod association being an acquired trait was correct, pairwise nucleotide sequence identity among these three clusters provided supporting data for a possibility that the non-vector cluster evolved first, followed by the separation of tick-borne and mosquito-borne virus clusters in that order. Clades established in our study correlated significantly with existing antigenic complexes. We also resolved many of the past taxonomic problems by establishing phylogenetic relationships of the antigenically unclassified viruses with the well-established viruses and by identifying synonymous viruses.

  9. The spectrum of aseptic central nervous system infections in southern Germany - demographic, clinical and laboratory findings.

    PubMed

    Kaminski, M; Grummel, V; Hoffmann, D; Berthele, A; Hemmer, B

    2017-08-01

    Aseptic infections of the central nervous system (CNS) are frequently observed in Germany. However, no study has systematically addressed the spectrum of aseptic CNS infections in Germany. Data on 191 adult patients diagnosed from January 2007 to December 2014 with aseptic meningitis or encephalitis/meningoencephalitis at our hospital were collected by chart review and analyzed for demographic, clinical and laboratory findings. Patients were stratified according to the causative virus and findings were compared between groups. In our cohort, meningitis was caused in 36% by enterovirus (EV), 15% by herpes simplex virus (HSV), 12% by varicella zoster virus (VZV) and 5% by tick borne encephalitis (TBE). Encephalitis/meningoencephalitis was caused in 13% by HSV, 13% by VZV, and three out of 11 tested patients were positive for TBE. The highest incidence of EV infections was between 25 and 35 years and of HSV infections between 30 and 60 years. VZV infections had a bimodal distribution peaking below 30 and above 70 years. VZV and EV infections were more frequently observed during summer, whereas HSV infections showed no seasonal preference. Inflammatory changes in cerebrospinal fluid (CSF) were highest in HSV and lowest in EV infections. Polymerase chain reaction tests for HSV, VZV and EV in CSF and TBE serology determined the causative virus in over 60% of tested patients. The age of affected patients, seasonal distribution, disease course and inflammatory changes in CSF differ between groups of patients affected by the most common viral infections. © 2017 EAN.

  10. Flavivirus-induced antibody cross-reactivity

    PubMed Central

    Mansfield, Karen L.; Horton, Daniel L.; Johnson, Nicholas; Li, Li; Barrett, Alan D. T.; Smith, Derek J.; Galbraith, Sareen E.; Solomon, Tom

    2011-01-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae. PMID:21900425

  11. Flavivirus-induced antibody cross-reactivity.

    PubMed

    Mansfield, Karen L; Horton, Daniel L; Johnson, Nicholas; Li, Li; Barrett, Alan D T; Smith, Derek J; Galbraith, Sareen E; Solomon, Tom; Fooks, Anthony R

    2011-12-01

    Dengue viruses (DENV) cause countless human deaths each year, whilst West Nile virus (WNV) has re-emerged as an important human pathogen. There are currently no WNV or DENV vaccines licensed for human use, yet vaccines exist against other flaviviruses. To investigate flavivirus cross-reactivity, sera from a human cohort with a history of vaccination against tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) were tested for antibodies by plaque reduction neutralization test. Neutralization of louping ill virus (LIV) occurred, but no significant neutralization of Murray Valley encephalitis virus was observed. Sera from some individuals vaccinated against TBEV and JEV neutralized WNV, which was enhanced by YFV vaccination in some recipients. Similarly, some individuals neutralized DENV-2, but this was not significantly influenced by YFV vaccination. Antigenic cartography techniques were used to generate a geometric illustration of the neutralization titres of selected sera against WNV, TBEV, JEV, LIV, YFV and DENV-2. This demonstrated the individual variation in antibody responses. Most sera had detectable titres against LIV and some had titres against WNV and DENV-2. Generally, LIV titres were similar to titres against TBEV, confirming the close antigenic relationship between TBEV and LIV. JEV was also antigenically closer to TBEV than WNV, using these sera. The use of sera from individuals vaccinated against multiple pathogens is unique relative to previous applications of antigenic cartography techniques. It is evident from these data that notable differences exist between amino acid sequence identity and mapped antigenic relationships within the family Flaviviridae.

  12. Isolation of deer tick virus (Powassan virus, lineage II) from Ixodes scapularis and detection of antibody in vertebrate hosts sampled in the Hudson Valley, New York State

    PubMed Central

    2013-01-01

    Background Deer tick virus, DTV, is a genetically and ecologically distinct lineage of Powassan virus (POWV) also known as lineage II POWV. Human incidence of POW encephalitis has increased in the last 15 years potentially due to the emergence of DTV, particularly in the Hudson Valley of New York State. We initiated an extensive sampling campaign to determine whether POWV was extant throughout the Hudson Valley in tick vectors and/or vertebrate hosts. Methods More than 13,000 ticks were collected from hosts or vegetation and tested for the presence of DTV using molecular and virus isolation techniques. Vertebrate hosts of Ixodes scapularis (black-legged tick) were trapped (mammals) or netted (birds) and blood samples analyzed for the presence of neutralizing antibodies to POWV. Maximum likelihood estimates (MLE) were calculated to determine infection rates in ticks at each study site. Results Evidence of DTV was identified each year from 2007 to 2012, in nymphal and adult I. scapularis collected from the Hudson Valley. 58 tick pools were positive for virus and/or RNA. Infection rates were higher in adult ticks collected from areas east of the Hudson River. MLE limits ranged from 0.2-6.0 infected adults per 100 at sites where DTV was detected. Virginia opossums, striped skunks and raccoons were the source of infected nymphal ticks collected as replete larvae. Serologic evidence of POWV infection was detected in woodchucks (4/6), an opossum (1/6), and birds (4/727). Lineage I, prototype POWV, was not detected. Conclusions These data demonstrate widespread enzootic transmission of DTV throughout the Hudson Valley, in particular areas east of the river. High infection rates were detected in counties where recent POW encephalitis cases have been identified, supporting the hypothesis that lineage II POWV, DTV, is responsible for these human infections. PMID:24016533

  13. Isolation of deer tick virus (Powassan virus, lineage II) from Ixodes scapularis and detection of antibody in vertebrate hosts sampled in the Hudson Valley, New York State.

    PubMed

    Dupuis, Alan P; Peters, Ryan J; Prusinski, Melissa A; Falco, Richard C; Ostfeld, Richard S; Kramer, Laura D

    2013-07-15

    Deer tick virus, DTV, is a genetically and ecologically distinct lineage of Powassan virus (POWV) also known as lineage II POWV. Human incidence of POW encephalitis has increased in the last 15 years potentially due to the emergence of DTV, particularly in the Hudson Valley of New York State. We initiated an extensive sampling campaign to determine whether POWV was extant throughout the Hudson Valley in tick vectors and/or vertebrate hosts. More than 13,000 ticks were collected from hosts or vegetation and tested for the presence of DTV using molecular and virus isolation techniques. Vertebrate hosts of Ixodes scapularis (black-legged tick) were trapped (mammals) or netted (birds) and blood samples analyzed for the presence of neutralizing antibodies to POWV. Maximum likelihood estimates (MLE) were calculated to determine infection rates in ticks at each study site. Evidence of DTV was identified each year from 2007 to 2012, in nymphal and adult I. scapularis collected from the Hudson Valley. 58 tick pools were positive for virus and/or RNA. Infection rates were higher in adult ticks collected from areas east of the Hudson River. MLE limits ranged from 0.2-6.0 infected adults per 100 at sites where DTV was detected. Virginia opossums, striped skunks and raccoons were the source of infected nymphal ticks collected as replete larvae. Serologic evidence of POWV infection was detected in woodchucks (4/6), an opossum (1/6), and birds (4/727). Lineage I, prototype POWV, was not detected. These data demonstrate widespread enzootic transmission of DTV throughout the Hudson Valley, in particular areas east of the river. High infection rates were detected in counties where recent POW encephalitis cases have been identified, supporting the hypothesis that lineage II POWV, DTV, is responsible for these human infections.

  14. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission.

    PubMed

    Blisnick, Adrien A; Foulon, Thierry; Bonnet, Sarah I

    2017-01-01

    New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.

  15. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission

    PubMed Central

    Blisnick, Adrien A.; Foulon, Thierry; Bonnet, Sarah I.

    2017-01-01

    New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials. PMID:28589099

  16. Flavitrack: an annotated database of flavivirus sequences

    PubMed Central

    Misra, Milind

    2009-01-01

    Motivation Properly annotated sequence data for flaviviruses, which cause diseases, such as tick-borne encephalitis (TBE), dengue fever (DF), West Nile (WN) and yellow fever (YF), can aid in the design of antiviral drugs and vaccines to prevent their spread. Flavitrack was designed to help identify conserved sequence motifs, interpret mutational and structural data and track evolution of phenotypic properties. Summary Flavitrack contains over 590 complete flavivirus genome/protein sequences and information on known mutations and literature references. Each sequence has been manually annotated according to its date and place of isolation, phenotype and lethality. Internal tools are provided to rapidly determine relationships between viruses in Flavitrack and sequences provided by the user. Availability http://carnot.utmb.edu/flavitrack Contact chschein@utmb.edu Supplementary information http://carnot.utmb.edu/flavitrack/B1S1.html PMID:17660525

  17. [Anaphylaxis after vaccination due to hypersensitivity to gelatin].

    PubMed

    Kamin, W; Staubach, P; Klär-Hlawatsch, B; Erdnüss, F; Knuf, M

    2006-01-01

    Most allergic reactions after vaccination occur in patients sensitive to egg protein. Therefore this subject is well investigated, and the majority of common vaccines today contain only traces of egg protein. In contrast, there is little knowledge of hypersensitivities to other substances frequently contained in vaccines, e. g. antibiotics, phenol, gelatin and different preservatives. Here we report the case of a boy who had an anaphylactic reaction after being vaccinated against measles, mumps, rubella (MMR), and tick-born encephalitis (TBE) simultaneously. Different tests finally revealed a hypersensitivity to gelatin. This should be kept in mind especially during emergency care, since gelatin containing products like Haemaccel, Gelifundol or Gelofusin are widely used as colloid for resuscitation. If type 1 reactions after vaccination occur, gelatin should be taken into account as the causative agent. A medical alert card is recommended for such patients.

  18. Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan.

    PubMed

    Masatani, Tatsunori; Hayashi, Kei; Andoh, Masako; Tateno, Morihiro; Endo, Yasuyuki; Asada, Masahito; Kusakisako, Kodai; Tanaka, Tetsuya; Gokuden, Mutsuyo; Hozumi, Nodoka; Nakadohzono, Fumiko; Matsuo, Tomohide

    2017-06-01

    To reveal the distribution of tick-borne parasites, we established a novel nested polymerase chain reaction (PCR) system to detect the most common agents of tick-borne parasitic diseases, namely Babesia, Theileria, and Hepatozoon parasites. We collected host-seeking or animal-feeding ticks in Kagoshima Prefecture, the southernmost region of Kyusyu Island in southwestern Japan. Twenty of the total of 776 tick samples displayed a specific band of the appropriate size (approximately 1.4-1.6kbp) for the 18S rRNA genes in the novel nested PCR (20/776: 2.58%). These PCR products have individual sequences of Babesia spp. (from 8 ticks), Theileria spp. (from 9 ticks: one tick sample including at least two Theileria spp. sequences), and Hepatozoon spp. (from 3 ticks). Phylogenetic analyses revealed that these sequences were close to those of undescribed Babesia spp. detected in feral raccoons in Japan (5 sequences; 3 sequences being identical), Babesia gibsoni-like parasites detected in pigs in China (3 sequences; all sequences being identical), Theileria spp. detected in sika deer in Japan and China (10 sequences; 2 sequences being identical), Hepatozoon canis (one sequence), and Hepatozoon spp. detected in Japanese martens in Japan (two sequences). In summary, we showed that various tick-borne parasites exist in Kagoshima, the southern region in Japan by using the novel nested PCR system. These including undescribed species such as Babesia gibsoni-like parasites previously detected in pigs in China. Importantly, our results revealed new combinations of ticks and protozoan parasites in southern Japan. The results of this study will aid in the recognition of potential parasitic animal diseases caused by tick-borne parasites. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research: a review.

    PubMed

    Ghosh, Srikant; Nagar, Gaurav

    2014-12-01

    Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.

  20. [The ecology of ticks, tick-borne diseases and biological tick control in Baden-Württemberg].

    PubMed

    Sebastian, P; Mackenstedt, U; Wassermann, M; Wurst, E; Hartelt, K; Petney, T; Pfäffle, M; Littwin, N; Steidle, J L M; Selzer, P; Norra, S; Böhnke, D; Gebhardt, R; Kahl, O; Dautel, H; Oehme, R

    2014-05-01

    Ticks and tick-borne diseases are of great significance for the health of humans and animals. However, the factors influencing their distribution and dynamics are inadequately known. In a project financed by the Baden-Württemberg Ministry of the Environment, Climate and Energy Industry, as part of the program BWPLUS, interdisciplinary specialists work together to determine the influence of weather, (micro)climate, habitat, land use, human activities, and the population dynamics of host animals on the distribution and abundance of ticks and the diseases that they transmit in Baden-Württemberg. The project comprises four modules: the large-scale distribution of ticks in Baden-Württemberg (module 1), detailed studies of host-tick-pathogen interaction in relation to the microclimate (module 2), and the spatial occurrence of important tick-borne pathogens (module 3). The fourth module involves the comprehensive analysis and synthesis of all data in order to determine the relative importance of the factors studied and to develop a risk model. Recently, intensive investigations into tick control have been undertaken using various entomopathogenic fungi and nematodes as well as a parasitoid wasp. Our aim was to determine whether these natural enemies could be used to effectively reduce the number of free-living ticks.

Top