Sample records for ticks

  1. A list of the 70 species of Australian ticks; diagnostic guides to and species accounts of Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus australis (Australian cattle tick); and consideration of the place of Australia in the evolution of ticks with comments on four controversial ideas.

    PubMed

    Barker, Stephen C; Walker, Alan R; Campelo, Dayana

    2014-10-15

    Seventy species of ticks are known from Australia: 14 soft ticks (family Argasidae) and 56 hard ticks (family Ixodidae). Sixteen of the 70 ticks in Australia may feed on humans and domestic animals (Barker and Walker 2014). The other 54 species of ticks in Australia feed only on wild mammals, reptiles and birds. At least 12 of the species of ticks in Australian also occur in Papua New Guinea. We use an image-matching system much like the image-matching systems of field guides to birds and flowers to identify Ixodes holocyclus (paralysis tick), Ixodes cornuatus (southern paralysis tick) and Rhipicephalus (Boophilus) australis (Australian cattle tick). Our species accounts have reviews of the literature on I. holocyclus (paralysis tick) from the first paper on the biology of an Australian tick by Bancroft (1884), on paralysis of dogs by I. holocyclus, to papers published recently, and of I. cornuatus (southern paralysis tick) and Rhipicephalus (Boophilus) australis (Australian cattle tick). We comment on four controversial questions in the evolutionary biology of ticks: (i) were labyrinthodont amphibians in Australia in the Devonian the first hosts of soft, hard and nuttalliellid ticks?; (ii) are the nuttalliellid ticks the sister-group to the hard ticks or the soft ticks?; (iii) is Nuttalliella namaqua the missing link between the soft and hard ticks?; and (iv) the evidence for a lineage of large bodied parasitiform mites (ticks plus the holothyrid mites plus the opiliocarid mites). Copyright © 2014. Published by Elsevier Ltd.

  2. Transport of ixodid ticks and tick-borne pathogens by migratory birds.

    PubMed

    Hasle, Gunnar

    2013-01-01

    Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur.

  3. Transport of ixodid ticks and tick-borne pathogens by migratory birds

    PubMed Central

    Hasle, Gunnar

    2013-01-01

    Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur. PMID:24058903

  4. Tick salivary compounds: their role in modulation of host defences and pathogen transmission

    PubMed Central

    Kazimírová, Mária; Štibrániová, Iveta

    2013-01-01

    Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases. PMID:23971008

  5. Immune recognition of salivary proteins from the cattle tick Rhipicephalus microplus differs according to the genotype of the bovine host.

    PubMed

    Garcia, Gustavo Rocha; Maruyama, Sandra Regina; Nelson, Kristina T; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Maia, Antonio Augusto Mendes; Ferreira, Beatriz Rossetti; Kooyman, Frans N J; de Miranda Santos, Isabel K F

    2017-03-14

    Males of the cattle tick Rhipicephalus microplus produce salivary immunoglobulin-binding proteins and allotypic variations in IgG are associated with tick loads in bovines. These findings indicate that antibody responses may be essential to control tick infestations. Infestation loads with cattle ticks are heritable: some breeds carry high loads of reproductively successful ticks, in others, few ticks feed and they reproduce inefficiently. Different patterns of humoral immunity against tick salivary proteins may explain these phenotypes. We describe the profiles of humoral responses against tick salivary proteins elicited during repeated artificial infestations of bovines of a tick-resistant (Nelore) and a tick-susceptible (Holstein) breed. We measured serum levels of total IgG1, IgG2 and IgE immunoglobulins and of IgG1 and IgG2 antibodies specific for tick salivary proteins. With liquid chromatography followed by mass spectrometry we identified tick salivary proteins that were differentially recognized by serum antibodies from tick-resistant and tick-susceptible bovines in immunoblots of tick salivary proteins separated by two-dimensional electrophoresis. Baseline levels of total IgG1 and IgG2 were significantly higher in tick-susceptible Holsteins compared with resistant Nelores. Significant increases in levels of total IgG1, but not of IgG2 accompanied successive infestations in both breeds. Resistant Nelores presented with significantly higher levels of salivary-specific antibodies before and at the first challenge with tick larvae; however, by the third challenge, tick-susceptible Holsteins presented with significantly higher levels of IgG1 and IgG2 tick salivary protein-specific antibodies. Importantly, sera from tick-resistant Nelores reacted with 39 tick salivary proteins in immunoblots of salivary proteins separated in two dimensions by electrophoresis versus only 21 spots reacting with sera from tick-susceptible Holsteins. Levels of tick saliva-specific antibodies were not directly correlated with infestation phenotypes. However, in spite of receiving apparently lower amounts of tick saliva, tick-resistant bovines recognized more tick salivary proteins. These reactive salivary proteins are putatively involved in several functions of parasitism and blood-feeding. Our results indicate that neutralization by host antibodies of tick salivary proteins involved in parasitism is essential to control tick infestations.

  6. Tick capillary feeding for the study of proteins involved in tick-pathogen interactions as potential antigens for the control of tick infestation and pathogen infection

    PubMed Central

    2014-01-01

    Background Ticks represent a significant health risk to animals and humans due to the variety of pathogens they can transmit during feeding. The traditional use of chemicals to control ticks has serious drawbacks, including the selection of acaricide-resistant ticks and environmental contamination with chemical residues. Vaccination with the tick midgut antigen BM86 was shown to be a good alternative for cattle tick control. However, results vary considerably between tick species and geographic location. Therefore, new antigens are required for the development of vaccines controlling both tick infestations and pathogen infection/transmission. Tick proteins involved in tick-pathogen interactions may provide good candidate protective antigens for these vaccines, but appropriate screening procedures are needed to select the best candidates. Methods In this study, we selected proteins involved in tick-Anaplasma (Subolesin and SILK) and tick-Babesia (TROSPA) interactions and used in vitro capillary feeding to characterize their potential as antigens for the control of cattle tick infestations and infection with Anaplasma marginale and Babesia bigemina. Purified rabbit polyclonal antibodies were generated against recombinant SUB, SILK and TROSPA and added to uninfected or infected bovine blood to capillary-feed female Rhipicephalus (Boophilus) microplus ticks. Tick weight, oviposition and pathogen DNA levels were determined in treated and control ticks. Results The specificity of purified rabbit polyclonal antibodies against tick recombinant proteins was confirmed by Western blot and against native proteins in tick cell lines and tick tissues using immunofluorescence. Capillary-fed ticks ingested antibodies added to the blood meal and the effect of these antibodies on tick weight and oviposition was shown. However, no effect was observed on pathogen DNA levels. Conclusions These results highlighted the advantages and some of the disadvantages of in vitro tick capillary feeding for the characterization of candidate tick protective antigens. While an effect on tick weight and oviposition was observed, the effect on pathogen levels was not evident probably due to high tick-to-tick variations among other factors. Nevertheless, these results together with previous results of RNA interference functional studies suggest that these proteins are good candidate vaccine antigens for the control of R. microplus infestations and infection with A. marginale and B. bigemina. PMID:24450836

  7. A study of ticks and tick-borne livestock pathogens in Pakistan.

    PubMed

    Karim, Shahid; Budachetri, Khemraj; Mukherjee, Nabanita; Williams, Jaclyn; Kausar, Asma; Hassan, Muhammad Jawadul; Adamson, Steven; Dowd, Scot E; Apanskevich, Dmitry; Arijo, Abdullah; Sindhu, Zia Uddin; Kakar, Muhammad Azam; Khan, Raja Muhammad Dilpazir; Ullah, Shafiq; Sajid, Muhammad Sohail; Ali, Abid; Iqbal, Zafar

    2017-06-01

    As obligate blood-feeding arthropods, ticks transmit pathogens to humans and domestic animals more often than other arthropod vectors. Livestock farming plays a vital role in the rural economy of Pakistan, and tick infestation causes serious problems with it. However, research on tick species diversity and tick-borne pathogens has rarely been conducted in Pakistan. In this study, a systematic investigation of the tick species infesting livestock in different ecological regions of Pakistan was conducted to determine the microbiome and pathobiome diversity in the indigenous ticks. A total of 3,866 tick specimens were morphologically identified as 19 different tick species representing three important hard ticks, Rhipicephalus, Haemaphysalis and Hyalomma, and two soft ticks, Ornithodorus and Argas. The bacterial diversity across these tick species was assessed by bacterial 16S rRNA gene sequencing using a 454-sequencing platform on 10 of the different tick species infesting livestock. The notable genera detected include Ralstonia, Clostridium, Staphylococcus, Rickettsia, Lactococcus, Lactobacillus, Corynebacterium, Enterobacter, and Enterococcus. A survey of Spotted fever group rickettsia from 514 samples from the 13 different tick species generated rickettsial-specific amplicons in 10% (54) of total ticks tested. Only three tick species Rhipicephalus microplus, Hyalomma anatolicum, and H. dromedarii had evidence of infection with "Candidatus Rickettsia amblyommii" a result further verified using a rompB gene-specific quantitative PCR (qPCR) assay. The Hyalomma ticks also tested positive for the piroplasm, Theileria annulata, using a qPCR assay. This study provides information about tick diversity in Pakistan, and pathogenic bacteria in different tick species. Our results showed evidence for Candidatus R. amblyommii infection in Rhipicephalus microplus, H. anatolicum, and H. dromedarii ticks, which also carried T. annulata.

  8. A study of ticks and tick-borne livestock pathogens in Pakistan

    PubMed Central

    Budachetri, Khemraj; Mukherjee, Nabanita; Williams, Jaclyn; Kausar, Asma; Hassan, Muhammad Jawadul; Adamson, Steven; Dowd, Scot E.; Apanskevich, Dmitry; Arijo, Abdullah; Sindhu, Zia Uddin; Kakar, Muhammad Azam; Khan, Raja Muhammad Dilpazir; Ullah, Shafiq; Sajid, Muhammad Sohail; Ali, Abid; Iqbal, Zafar

    2017-01-01

    Background As obligate blood-feeding arthropods, ticks transmit pathogens to humans and domestic animals more often than other arthropod vectors. Livestock farming plays a vital role in the rural economy of Pakistan, and tick infestation causes serious problems with it. However, research on tick species diversity and tick-borne pathogens has rarely been conducted in Pakistan. In this study, a systematic investigation of the tick species infesting livestock in different ecological regions of Pakistan was conducted to determine the microbiome and pathobiome diversity in the indigenous ticks. Methodology/Principal findings A total of 3,866 tick specimens were morphologically identified as 19 different tick species representing three important hard ticks, Rhipicephalus, Haemaphysalis and Hyalomma, and two soft ticks, Ornithodorus and Argas. The bacterial diversity across these tick species was assessed by bacterial 16S rRNA gene sequencing using a 454-sequencing platform on 10 of the different tick species infesting livestock. The notable genera detected include Ralstonia, Clostridium, Staphylococcus, Rickettsia, Lactococcus, Lactobacillus, Corynebacterium, Enterobacter, and Enterococcus. A survey of Spotted fever group rickettsia from 514 samples from the 13 different tick species generated rickettsial-specific amplicons in 10% (54) of total ticks tested. Only three tick species Rhipicephalus microplus, Hyalomma anatolicum, and H. dromedarii had evidence of infection with “Candidatus Rickettsia amblyommii” a result further verified using a rompB gene-specific quantitative PCR (qPCR) assay. The Hyalomma ticks also tested positive for the piroplasm, Theileria annulata, using a qPCR assay. Conclusions/Significance This study provides information about tick diversity in Pakistan, and pathogenic bacteria in different tick species. Our results showed evidence for Candidatus R. amblyommii infection in Rhipicephalus microplus, H. anatolicum, and H. dromedarii ticks, which also carried T. annulata. PMID:28650978

  9. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission.

    PubMed

    Blisnick, Adrien A; Foulon, Thierry; Bonnet, Sarah I

    2017-01-01

    New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.

  10. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission

    PubMed Central

    Blisnick, Adrien A.; Foulon, Thierry; Bonnet, Sarah I.

    2017-01-01

    New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials. PMID:28589099

  11. Targeting ticks for control of selected hemoparasitic diseases of cattle.

    PubMed

    Kocan, K M

    1995-03-01

    Development in and transmission of hemoparasites by tick vectors are phenomena closely synchronized with the tick feeding cycle. In all known life cycles, initial infection of tick tissues occurs in midgut epithelial cells and transmission is effected as ticks feed after parasites have developed and multiplied in salivary glands. Many factors reviewed affect development and transmission of hemoparasites by ticks including age of ticks, artificial temperature, climate and/or season, tick stage or sex, hemoparasite variation, concurrent infection of ticks with other pathogens, host cell susceptibility, transovarial transmission, effect of hemoparasites on tick biology, and the effect of infecting parasitemia level in cattle on infection rates in ticks. Four hemoparasites of cattle, Anaplasma marginale, Cowdria ruminantium, Theileria parva, and Babesia spp., are all dependent on ticks for biological transmission. Babesia is transmitted transovarially whereas the other three are transmitted transstadially. Mechanical transfer of infective blood via fomites and mouthparts of biting arthropods is also a major means of transmission for Anaplasma marginale but not of the others. Potential control methods for hemoparasites that target parasites as they are developing in their respective tick hosts include tick control, vaccines (against ticks and parasites), and drugs (against ticks and parasites). Successful application of control strategies will be dependent upon thorough understanding of parasite developmental cycles, biology of the tick vectors and the immune response of cattle to ticks and to hemoparasites. The most effective control measures will be those that are targeted against both ticks and the hemoparasites they vector.

  12. Management of ticks and tick-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.; Stafford, K.C.; Goodman, J.L.; Dennis, D.T.; Sonenshine, D .E.

    2005-01-01

    The mainstays of tick management and protection from tick-borne diseases have traditionally been personal precautions and the application of acaricides. These techniques maintain their value, and current innovations hold considerable promise for future improvement in effective targeting of materials for tick control. Furthermore, an explosion of research in the past few decades has resulted in the development and expansion of several novel and potentially valuable approaches to tick control, including vaccination against tick-borne pathogen transmission and against tick attachment, host management, use of natural enemies (especially entomopathogenic fungi), and pheromone-based techniques. The situations that require tick management are diverse, and occur under varied ecological conditions. Therefore, the likelihood of finding a single ?magic bullet? for tick management is low. In practical terms, the approach to tick management or to management of tick-borne disease must be tailored to the specific conditions at hand. One area that needs increased attention is the decision-making process in applying IPM to tick control. Further development of novel tick control measures, and increased efficiency in their integration and application to achieve desired goals, holds great promise for effective future management of ticks and tick-borne diseases.

  13. Use of a tick-borne disease manual increases accuracy of tick identification among primary care providers in Lyme disease endemic areas.

    PubMed

    Butler, Amber D; Carlson, Meredith L; Nelson, Christina A

    2017-02-01

    Given the high incidence of tick bites and tick-borne diseases in the United States, it is important for primary care providers to recognize common ticks and the pathogens they may transmit. If a patient has removed and saved an attached tick, identifying the tick helps guide clinical management and determine whether antibiotic prophylaxis for Lyme disease is appropriate. To investigate providers' ability to recognize common ticks and the pathogens they may transmit, we asked 76 primary care providers from Lyme disease endemic areas to identify the common name or genus of preserved ticks found in their area. At baseline, 10.5%, 46.1%, and 57.9% of participants correctly identified an adult female blacklegged tick (engorged), dog tick, and lone star tick, respectively. Less than half of participants identified the three pathogens most frequently transmitted by blacklegged ticks. Use of a reference manual with tick photographs and drawings substantially improved identification of ticks and associated pathogens and therefore should be encouraged in clinical practice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. A Molecular Survey of Tick-Borne Pathogens from Ticks Collected in Central Queensland, Australia.

    PubMed

    Chalada, Melissa Judith; Stenos, John; Vincent, Gemma; Barker, Dayana; Bradbury, Richard Stewart

    2018-03-01

    Central Queensland (CQ) is a large and isolated, low population density, remote tropical region of Australia with a varied environment. The region has a diverse fauna and several species of ticks that feed upon that fauna. This study examined 518 individual ticks: 177 Rhipicephalus sanguineus (brown dog tick), 123 Haemaphysalis bancrofti (wallaby tick), 102 Rhipicephalus australis (Australian cattle tick), 47 Amblyomma triguttatum (ornate kangaroo tick), 57 Ixodes holocyclus (paralysis tick), 9 Bothriocroton tachyglossi (CQ short-beaked echidna tick), and 3 Ornithodoros capensis (seabird soft tick). Tick midguts were pooled by common host or environment and screened for four genera of tick-borne zoonoses by PCR and sequencing. The study examined a total of 157 midgut pools of which 3 contained DNA of Coxiella burnetii, 13 Rickettsia gravesii, 1 Rickettsia felis, and 4 other Rickettsia spp. No Borrelia spp. or Babesia spp. DNA were recovered.

  15. Tick microbiome: the force within

    PubMed Central

    Narasimhan, Sukanya; Fikrig, Erol

    2015-01-01

    Ticks are obligate blood-feeders and serve as vectors of human and livestock pathogens worldwide. Defining the tick microbiome and deciphering the interactions between the tick and its symbiotic bacteria in the context of tick development and pathogen transmission, will likely reveal new insights and spawn new paradigms to control tick-borne diseases. Descriptive observations on the tick microbiome that began almost a century ago serve as forerunners to the gathering momentum to define the tick microbiome in greater detail. This review will focus on the current efforts to address the microbiomes of diverse ticks, and the evolving understanding of tick microbiomes. There is hope that these efforts will bring a holistic understanding of pathogen transmission by ticks. PMID:25936226

  16. Ticks and Tick-Borne Infections: Complex Ecology, Agents, and Host Interactions.

    PubMed

    Wikel, Stephen K

    2018-06-20

    Ticks transmit the most diverse array of infectious agents of any arthropod vector. Both ticks and the microbes they transmit are recognized as significant threats to human and veterinary public health. This article examines the potential impacts of climate change on the distribution of ticks and the infections they transmit; the emergence of novel tick-borne pathogens, increasing geographic range and incidence of tick-borne infections; and advances in the characterization of tick saliva mediated modulation of host defenses and the implications of those interactions for transmission, establishment, and control of tick infestation and tick-borne infectious agents.

  17. Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model

    PubMed Central

    Sprong, Hein; van den Wijngaard, Cees C.; Harms, Margriet G.; Fonville, Manoj; Docters van Leeuwen, Arieke; Simões, Mariana; van Pelt, Wilfrid

    2017-01-01

    Background Understanding and quantification of the risk of Lyme borreliosis after a tick bite can aid development of prevention strategies against Lyme borreliosis. Methods We used 3,525 single tick bite reports from three large prospective studies on the transmission risk of tick-borne pathogens to humans, with 50 reports of Lyme borreliosis during the follow-up period, among 1,973 reports with known outcome. A structural equation model was applied to estimate the risk of Lyme borreliosis after a tick bite, and quantify the influence of: developmental stage of the tick, detection of Borrelia burgdorferi s.l. DNA in the tick by PCR, tick engorgement, patient-estimated duration of tick attachment, and patient age. Results The overall risk of developing Lyme borreliosis after a tick bite was 2.6% (95%CI 1.4–5.1). The risk increased with: - Tick engorgement: 1.4% (95%CI 0.7%-2.3%) for low engorgement to 5.5% (95%CI 2.8%-9.2%) for substantially engorged ticks; - Rising patient-estimated tick attachment duration: 2.0% (95%CI 1.3%-2.8%) after <12 hours, to 5.2% (95%CI 3.0%-8.9%) after ≥4 days; - Detection of Borrelia burgdorferi s.l. DNA in ticks: 6.7% (95%CI 3.6%-13.5%), versus 1.4% (95%CI 0.7%-2.9%) when ticks tested negative. The highest observed risk of Lyme borreliosis was 14.4% (95%CI 6.8%-24.6%) after one tick bite of a substantially engorged tick that tested positive for Borrelia burgdorferi s.l. DNA, which corresponds to one new case of Lyme borreliosis per 7 (95%CI 4–15) of such tick bites. Conclusions An individual's risk of Lyme borreliosis after a tick bite can be predicted with tick engorgement, patient-estimated duration of tick attachment, and detection of Borrelia burgdorferi s.l. DNA in the tick. PMID:28742149

  18. Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model.

    PubMed

    Hofhuis, Agnetha; van de Kassteele, Jan; Sprong, Hein; van den Wijngaard, Cees C; Harms, Margriet G; Fonville, Manoj; Docters van Leeuwen, Arieke; Simões, Mariana; van Pelt, Wilfrid

    2017-01-01

    Understanding and quantification of the risk of Lyme borreliosis after a tick bite can aid development of prevention strategies against Lyme borreliosis. We used 3,525 single tick bite reports from three large prospective studies on the transmission risk of tick-borne pathogens to humans, with 50 reports of Lyme borreliosis during the follow-up period, among 1,973 reports with known outcome. A structural equation model was applied to estimate the risk of Lyme borreliosis after a tick bite, and quantify the influence of: developmental stage of the tick, detection of Borrelia burgdorferi s.l. DNA in the tick by PCR, tick engorgement, patient-estimated duration of tick attachment, and patient age. The overall risk of developing Lyme borreliosis after a tick bite was 2.6% (95%CI 1.4-5.1). The risk increased with: - Tick engorgement: 1.4% (95%CI 0.7%-2.3%) for low engorgement to 5.5% (95%CI 2.8%-9.2%) for substantially engorged ticks;- Rising patient-estimated tick attachment duration: 2.0% (95%CI 1.3%-2.8%) after <12 hours, to 5.2% (95%CI 3.0%-8.9%) after ≥4 days;- Detection of Borrelia burgdorferi s.l. DNA in ticks: 6.7% (95%CI 3.6%-13.5%), versus 1.4% (95%CI 0.7%-2.9%) when ticks tested negative.The highest observed risk of Lyme borreliosis was 14.4% (95%CI 6.8%-24.6%) after one tick bite of a substantially engorged tick that tested positive for Borrelia burgdorferi s.l. DNA, which corresponds to one new case of Lyme borreliosis per 7 (95%CI 4-15) of such tick bites. An individual's risk of Lyme borreliosis after a tick bite can be predicted with tick engorgement, patient-estimated duration of tick attachment, and detection of Borrelia burgdorferi s.l. DNA in the tick.

  19. Ticks

    MedlinePlus

    ... Tweet Share Compartir PREVENT BITES Avoid ticks on people, on pets and in the yard. More REMOVE TICKS Find ... Follow the Steps Ticks Home Avoiding ticks On people On pets In the yard Removing a tick Symptoms of ...

  20. Ticks and tick-borne pathogens of dogs along an elevational and land-use gradient in Chiriquí province, Panamá.

    PubMed

    Ferrell, A Michelle; Brinkerhoff, R Jory; Bernal, Juan; Bermúdez, Sergio E

    2017-04-01

    Systematic acarological surveys are useful tools in assessing risk to tick-borne infections, especially in areas where consistent clinical surveillance for tick-borne disease is lacking. Our goal was to identify environmental predictors of tick burdens on dogs and tick-borne infectious agents in dog-derived ticks in the Chiriquí Province of western Panama to draw inferences about spatio-temporal variation in human risk to tick-borne diseases. We used a model-selection approach to test the relative importance of elevation, human population size, vegetative cover, and change in landuse on patterns of tick parasitism on dogs. We collected 2074 ticks, representing four species (Rhipicephalus sanguineus, R. microplus, Amblyomma ovale, and Ixodes boliviensis) from 355 dogs. Tick prevalence ranged from 0 to 74% among the sites we sampled, and abundance ranged from 0 to 20.4 ticks per dog with R. sanguineus s.l. being the most commonly detected tick species (97% of all ticks sampled). Whereas elevation was the best single determinant of tick prevalence and abundance on dogs, the top models also included predictor variables describing vegetation cover and landuse change. Specifically, low-elevation areas associated with decreasing vegetative cover were associated with highest tick occurrence on dogs, potentially because of the affinity of R. sanguineus for human dwellings. Although we found low prevalence of tick-borne pathogen genera (two Rickettsia-positive ticks, no R. rickettsia or Ehrlichia spp.) in our study, all of the tick species we collected from dogs are known vectors of zoonotic pathogens. In areas where epidemiological surveillance infrastructure is limited, field-based assessments of acarological risk can be useful and cost-effective tools in efforts to identify high-risk environments for tick-transmitted pathogens.

  1. Immunological control of ticks and tick-borne diseases that impact cattle health and production.

    PubMed

    Almazan, Consuelo; Tipacamu, Gabriela Aguilar; Rodriguez, Sergio; Mosqueda, Juan; Perez de Leon, Adalberto

    2018-03-01

    The cattle industry is one of the most important agroeconomic activities in Mexico. The national herd is estimated to include approximately 33.5. million head of cattle. Ticks and tick-borne diseases are principal factors with a negative impact on cattle health and production. The most economically important tick species parasitizing cattle in Mexico are Rhipicephalus microplus , R. annulatus , and Amblyomma mixtum . Parasitism by ticks affects cattle health and production directly. Morbidity and mortality caused by tick-borne diseases augment the detrimental effect of tick infestation in cattle. Bovine babesiosis and anaplasmosis are the most important tick-borne diseases of cattle, which are caused by infectious agents transmitted by R. microplus and R. annulatus . However, there are no prophylactic therapies to control bovine babesiosis and anaplasmosis. Chemical control is the most common way to treat animals against ticks, and the use of acaricides can also help manage tick-borne diseases. However, the evolution of resistance to acaricides among cattle tick populations renders chemical control ineffective; which represents a challenge for sustainable ticks and tick-borne diseases control. The only anti-tick vaccine commercially available globally is based on the recombinant antigen Bm86. Because of its mode of immunity against R. microplus and R. annulatus , the Bm86-based vaccine also decreases the exposition of bovines to babesiosis and anaplasmosis. Research with Bm86-based vaccines documented high efficacy against R. annulatus , the efficacy levels against R. microplus varies according to the geographic origin of tick populations, and there is not effect against other ticks species such as Amblyomma spp. The impact of ticks and tick-borne diseases, the problem of chemical control due to acaricide resistance, and progress with anti-tick vaccine research efforts in Mexico are reviewed herein.

  2. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines.

    PubMed

    Belova, Oxana A; Litov, Alexander G; Kholodilov, Ivan S; Kozlovskaya, Liubov I; Bell-Sakyi, Lesley; Romanova, Lidiya Iu; Karganova, Galina G

    2017-10-01

    Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a vector-borne zoonotic neuroinfection. For successful circulation in natural foci the virus has to survive in the vector for a long period of time. Information about the effect of long-term infection of ticks on properties of the viral population is of great importance. In recent years, changes in the eco-epidemiology of TBEV due to changes in distribution of ixodid ticks have been observed. These changes in TBEV-endemic areas could result in a shift of the main tick vector species, which in turn may lead to changes in properties of the virus. In the present study we evaluated the selective pressure on the TBEV population during persistent infection of various species of ticks and tick cell lines. TBEV effectively replicated and formed persistent infection in ticks and tick cell lines of the vector species (Ixodes spp.), potential vectors (Dermacentor spp.) and non-vector ticks (Hyalomma spp.). During TBEV persistence in Ixodes and Dermacentor ticks, properties of the viral population remained virtually unchanged. In contrast, persistent TBEV infection of tick cell lines from both vector and non-vector ticks favoured selection of viral variants with low neuroinvasiveness for laboratory mice and substitutions in the E protein that increased local positive charge of the virion. Thus, selective pressure on viral population may differ in ticks and tick cell lines during persistent infection. Nevertheless, virus variants with properties of the original strain adapted to mouse CNS were not eliminated from the viral population during long-term persistence of TBEV in ticks and tick cell lines. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Strategies for new and improved vaccines against ticks and tick-borne diseases.

    PubMed

    de la Fuente, J; Kopáček, P; Lew-Tabor, A; Maritz-Olivier, C

    2016-12-01

    Ticks infest a variety of animal species and transmit pathogens causing disease in both humans and animals worldwide. Tick-host-pathogen interactions have evolved through dynamic processes that accommodated the genetic traits of the hosts, pathogens transmitted and the vector tick species that mediate their development and survival. New approaches for tick control are dependent on defining molecular interactions between hosts, ticks and pathogens to allow for discovery of key molecules that could be tested in vaccines or new generation therapeutics for intervention of tick-pathogen cycles. Currently, tick vaccines constitute an effective and environmentally sound approach for the control of ticks and the transmission of the associated tick-borne diseases. New candidate protective antigens will most likely be identified by focusing on proteins with relevant biological function in the feeding, reproduction, development, immune response, subversion of host immunity of the tick vector and/or molecules vital for pathogen infection and transmission. This review addresses different approaches and strategies used for the discovery of protective antigens, including focusing on relevant tick biological functions and proteins, reverse genetics, vaccinomics and tick protein evolution and interactomics. New and improved tick vaccines will most likely contain multiple antigens to control tick infestations and pathogen infection and transmission. © 2016 John Wiley & Sons Ltd.

  4. Factors associated with tick bites and pathogen prevalence in ticks parasitizing humans in Georgia, USA.

    PubMed

    Gleim, Elizabeth R; Garrison, Laurel E; Vello, Marianne S; Savage, Mason Y; Lopez, Gaylord; Berghaus, Roy D; Yabsley, Michael J

    2016-03-02

    The incidence and emergence of tick-borne diseases has increased dramatically in the United States during the past 30 years, yet few large-scale epidemiological studies have been performed on individuals bitten by ticks. Epidemiological information, including disease development, may provide valuable information regarding effectiveness of tick bite prevention education, pathogen transmission, human-disease dynamics, and potential implications for under reporting of tick-borne diseases. Ticks found attached to Georgia residents were submitted for identification and polymerase chain reaction (PCR) testing for Francisella tularensis, Ehrlichia, Anaplasma, Borrelia, and Rickettsia spp. Tick bite victims were interviewed three weeks after the tick bite to identify various epidemiologic factors associated with infestation and if signs suggestive of a tick-borne disease had developed. Fisher's exact test of independence was used to evaluate associations between various factors evaluated in the study. A multivariable logistic regression model was used for the prediction of non-specific illness post-tick bite. From April 2005-December 2006, 444 participants submitted 597 ticks (426 Amblyomma americanum, 142 Dermacentor variabilis, 19 A. maculatum, 7 Ixodes scapularis, 3 Amblyomma sp.) which originated from 95 counties. Only 25 (34 %) of 74 interviewed individuals purposely took tick bite prevention measures. Ticks that were PCR positive for bacterial organisms were attached to 136 participants. Of the 77 participants who developed non-specific illness, 50 did not have PCR positive ticks, whereas 27 did have PCR positive tick (s). Of those 27 individuals, 12 fit the criteria for a possible tick-borne illness (i.e., tick attached >6 h [if known], ≥4 day incubation period, and the individual exhibited clinical symptoms typical of a tick-borne illness without exhibiting cough, sore throat, or sinus congestion). Ticks from these individuals were positive for R. amblyommii (n = 8), E. ewingii (n = 1), R. montana (n = 1), R. rhiphicephali (n = 1), and Rickettsia sp. TR-39 (n = 1). Although illnesses reported in this study cannot definitively be connected with tick bites, it does provide insight into development, diagnosis, and treatment of possible tick-borne diseases post-tick bite. The study also provided data on pathogen prevalence, and epidemiologic factors associated with tick bites, as well as tick presence by county in Georgia.

  5. Tick-borne pathogens in ticks collected from birds in Taiwan.

    PubMed

    Kuo, Chi-Chien; Lin, Yi-Fu; Yao, Cheng-Te; Shih, Han-Chun; Chung, Lo-Hsuan; Liao, Hsien-Chun; Hsu, Yu-Cheng; Wang, Hsi-Chieh

    2017-11-25

    A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Nineteen ticks (all larvae) were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus). A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis) not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Our study demonstrates the paucity of information on ticks of birds and emphasizes the need for more research on ticks of birds in Taiwan and Southeast Asia. Moreover, some newly recorded ticks and tick-borne pathogens were found only on migratory birds, demonstrating the necessity of further surveillance on these highly mobile species.

  6. Novel foci of Dermacentor reticulatus ticks infected with Babesia canis and Babesia caballi in the Netherlands and in Belgium.

    PubMed

    Jongejan, Frans; Ringenier, Moniek; Putting, Michael; Berger, Laura; Burgers, Stefan; Kortekaas, Reinier; Lenssen, Jesse; van Roessel, Marleen; Wijnveld, Michiel; Madder, Maxime

    2015-04-17

    Autochthonous populations of Dermacentor reticulatus ticks in the Netherlands were discovered after fatal cases of babesiosis occurred in resident dogs in 2004. The presence of D. reticulatus in the Netherlands has also linked with the emergence of piroplasmosis in the resident horse population. The aim of this study was to put together results of continued surveillance of field sites and hosts for this tick in the Netherlands and also in Belgium and determine their infection status for Babesia and Theileria species. Ticks were collected from the vegetation at 11 locations between 2011 and 2013. D. reticulatus ticks were also collected from different hosts between 2007 and 2013. Ticks were screened by PCR and reverse line blot (RLB). A total of 1368 D. reticulatus ticks were collected from 4 previously known field locations and from 5 new locations in the Netherlands and from 2 sites in Belgium (one old and one new location). A total of 855 ticks collected from 8 locations in the Netherlands and 2 locations in Belgium were tested. Fourteen ticks (1,64%) collected at 4 field locations (Dintelse Gorzen, Rozenburg, Slikken van de Heen and St. Philipsland) were positive for Babesia canis, whereas two ticks were positive for Babesia caballi, one tick in the Dintelse Gorzen in the Netherlands and one tick was found positive in De Panne in Belgium. A further 1092 D. reticulatus ticks were collected between 2007 and 2013 from 40 dogs (132 ticks), two ticks from two humans, 51 ticks from 15 horses, two ticks from two cats, one tick from a roe deer, whereas most ticks (904) were collected from cattle (n = 25). Ticks were found throughout the year on dogs in nearly all provinces of the Netherlands. None of the ticks collected from these hosts were infected. D. reticulatus is continuing its spread into novel areas. The finding that some autochthonous ticks are infected with B. canis and B. caballi poses a threat to the resident dog and horse population and justifies year-round tick control measures.

  7. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface

    PubMed Central

    Kazimírová, Mária; Thangamani, Saravanan; Bartíková, Pavlína; Hermance, Meghan; Holíková, Viera; Štibrániová, Iveta; Nuttall, Patricia A.

    2017-01-01

    Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses. PMID:28798904

  8. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface.

    PubMed

    Kazimírová, Mária; Thangamani, Saravanan; Bartíková, Pavlína; Hermance, Meghan; Holíková, Viera; Štibrániová, Iveta; Nuttall, Patricia A

    2017-01-01

    Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.

  9. What's eating you? lone star tick (Amblyomma americanum).

    PubMed

    Reynolds, H Harris; Elston, Dirk M

    2017-02-01

    Amblyomma americanum , also known as the lone star tick, is found in much of the eastern United States. Since the mid-20th century, the lone star tick has been implicated in human disease. Today, A americanum remains an important vector for tick-borne illness. In addition to others, species of Rickettsia , Ehrlichia , and Borrelia are all transmitted by the lone star tick. Recently described conditions such as Southern tick-associated rash illness and anaphylaxis to red meat following tick bites have been attributed to the lone star tick. Impressive local reactions also can result after bites from A americanum . Early treatment of tick-borne illness is crucial to ensure good patient outcomes. Tick-control measures also are an important part of disease management in endemic areas. We discuss the tick's biology, human illnesses associated with A americanum , and methods to control tick numbers and eliminate disease in local reservoirs.

  10. Ticks and Tick Bites Presenting as "Funny Moles": A Review of Different Presentations and a Focus on Tick-borne Diseases.

    PubMed

    Kallini, Joseph R; Khachemoune, Amor

    2017-03-01

    Purpose: To describe a man with an adherent tick mimicking a melanoma, summarize the salient features of this condition, and review other cases of ticks mistaken for dermatoses. Background: Ticks are obligatory ectoparasites. Disease-causing ticks belong to two families: Ixodidae (hard ticks) and Argasidae (soft ticks). Ticks thrive by consuming blood from animal hosts, and the transfer of infected blood from one host to the next is the method by which ticks spread disease. Materials and methods: The authors describe a man who presented to their dermatology clinic in New York with an unusual black pigmented lesion on the right zygomatic region of his face. He was worried about how rapidly the lesion had developed and the tingling of the skin surrounding it. Since the patient had a history of nonmelanoma skin cancer, he was concerned that the lesion was a melanoma. An excisional biopsy of the lesion revealed a non- Ixodes tick with a surrounding tick-bite reaction. Results: Ticks cause cutaneous manifestations through physical trauma and their salivary contents. A number of reports describe a similar phenomenon of a persistent tick being mistaken for a nodule or tumor. Management includes complete removal of a tick, either mechanically or surgically, along with the appropriate work-up for tick-borne diseases in the relevant geographic location. The decision to test for systemic disease depends on the clinical presentation of the patient and geographic location of the tick bite. Conclusion: A patient presented to the authors' dermatology clinic with a pigmented lesion suspicious for a melanoma, but the lesion was actually an adherent non- Ixodes tick. This case illustrates the importance of keeping insects and arthropods in the differential diagnosis of a sudden- and recent-onset pigmented skin lesion.

  11. Risk of encountering ticks and tick-borne pathogens in a rapidly growing metropolitan area in the U.S. Great Plains.

    PubMed

    Noden, Bruce H; Loss, Scott R; Maichak, Courtney; Williams, Faithful

    2017-01-01

    The prevalence of tick-borne diseases has increased dramatically in many urban areas of the U.S., yet little is known about the ecology of ticks and tick-borne pathogens in relation to characteristics of North American urban and suburban landscapes. This study aimed to begin identification of the risk of encountering ticks and tick-borne pathogens within a rapidly expanding metropolitan area in the U.S. Great Plains region. Ten sites across Oklahoma City, Oklahoma were selected for tick sampling based on presence of tick habitat and level of urbanization intensity. Sampling was conducted using CO 2 traps and flagging in June, July and October 2015. A total of 552 ticks were collected from eight of the ten sampled greenspaces. The majority of ticks collected in summer were Amblyomma americanum (N=534 (97.8%)), followed by Dermacentor variabilis (N=10 (1.8%)) and Amblyomma maculatum (N=2 (0.3%)). Ixodes scapularis adult females (N=4) and nymphal A. americanum (N=2) were also collected in October 2015. Tick species diversity was highest in sites with >15% of the surrounding landscape composed of undeveloped land. Rickettsia sp. (including R. amblyommii and 'Candidatus R. andeanae'), Ehrlichia chaffeensis and/or E. ewingii were detected in tick pools from all eight sites where ticks were found. Our data suggest that the risk of encountering ticks and tick-borne pathogens exists throughout the Oklahoma City metropolitan area and that tick populations are likely influenced by urbanization intensity. Continued research is needed to clarify the full range of abiotic and biotic features of urban landscapes that influence the risk of encountering ticks and transmitting tick-borne diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Tick control: trapping, biocontrol, host management and other alternative strategies

    USGS Publications Warehouse

    Ginsberg, Howard S.; Edited by Sonenshine, Daniel E.; Roe, R. Michael

    2014-01-01

    Biology of Ticks is the most comprehensive work on tick biology and tick-borne diseases. This second edition is a multi-authored work, featuring the research and analyses of renowned experts across the globe. Spanning two volumes, the book examines the systematics, biology, structure, ecological adaptations, evolution, genomics and the molecular processes that underpin the growth, development and survival of these important disease-transmitting parasites. Also discussed is the remarkable array of diseases transmitted (or caused) by ticks, as well as modern methods for their control. This book should serve as a modern reference for students, scientists, physicians, veterinarians and other specialists. Volume I covers the biology of the tick and features chapters on tick systematics, tick life cycles, external and internal anatomy, and others dedicated to specific organ systems, specifically, the tick integument, mouthparts and digestive system, salivary glands, waste removal, salivary glands, respiratory system, circulatory system and hemolymph, fat body, the nervous and sensory systems and reproductive systems. Volume II includes chapters on the ecology of non-nidicolous and nidicolous ticks, genetics and genomics (including the genome of the Lyme disease vector Ixodes scapularis) and immunity, including host immune responses to tick feeding and tick-host interactions, as well as the tick's innate immune system that prevents and/or controls microbial infections. Six chapters cover in depth the many diseases caused by the major tick-borne pathogens, including tick-borne protozoa, viruses, rickettsiae of all types, other types of bacteria (e.g., the Lyme disease agent) and diseases related to tick paralytic agents and toxins. The remaining chapters are devoted to tick control using vaccines, acaricides, repellents, biocontrol, and, finally, techniques for breeding ticks in order to develop tick colonies for scientific study.

  13. Prevention and control strategies for ticks and pathogen transmission.

    PubMed

    de La Fuente, J; Kocan, K M; Contreras, M

    2015-04-01

    Ticks and tick-borne pathogens have evolved together, resulting in a complex relationship in which the pathogen's life cycle is perfectly coordinated with the tick's feeding cycle, and the tick can harbour high pathogen levels without affecting its biology. Tick-borne diseases (TBDs) continue to emerge and/or spread, and pose an increasing threatto human and animal health. The disruptive impacts of global change have resulted in ecosystem instability and the future outcomes of management and control programmes for ticks and TBDs are difficult to predict. In particular, the selection of acaricide-resistant ticks has reduced the value of acaricides as a sole means of tick control. Vaccines provide an alternative control method, but the use of tick vaccines has not advanced since the first vaccines were registered in the early 1990s. An understanding of the complex molecular relationship between hosts, ticks and pathogens and the use of systems biology and vaccinomics approaches are needed to discover proteins with the relevant biological function in tick feeding, reproduction, development, immune response, the subversion of host immunity and pathogen transmission, all of which mediate tick and pathogen success. The same approaches will also be required to characterise candidate protective antigens and to validate vaccine formulations. Tick vaccines with a dual effect on tick infestations and pathogen transmission could reduce both tick infestations and their vector capacity for humans, animals and reservoir hosts. The development of integrated tick control strategies, including vaccines and synthetic and botanical acaricides, in combination with managing drug resistance and educating producers, should lead to the sustainable control of ticks and TBDs.

  14. Virome Analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks Reveals Novel Highly Divergent Vertebrate and Invertebrate Viruses

    PubMed Central

    Williams, Simon Hedley; Sameroff, Stephen; Sanchez Leon, Maria; Jain, Komal; Lipkin, W. Ian

    2014-01-01

    ABSTRACT A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases. PMID:25056893

  15. Prevalence of Borrelia burgdorferi in ticks removed from skin of people and circumstances of being bitten - research from the area of Poland, 2012-2014.

    PubMed

    Gałęziowska, Edyta; Rzymowska, Jolanta; Najda, Nella; Kołodziej, Przemysław; Domżał-Drzewicka, Renata; Rząca, Marcin; Muraczyńska, Bożena; Charzyńska-Gula, Marianna; Szadowska-Szlachetka, Zdzisława; Ślusarska, Barbara; Guty, Edyta

    2018-03-14

    During feeding, the tick sucks blood from the host along with the pathogens that are in the blood, simultaneously exchanging its own pathogens with the host. Humans can also be a host. It is important to understand the most typical circumstances in which people might become infected with Borrelia burgdorferi. This knowledge will help to prepare health education programmes aimed at the prevention of Lyme disease and other tick-borne diseases. The aim of the study was to determine the percentage of ticks infected with Borrelia burgdorferi sensu lato, depending on the circumstances of getting bitten. The research material consisted of ticks acquired from people who had been bitten, and questionnaires completed by these people. 510 ticks were acquired from 257 females and 253 males. Following delivery of a tick for testing, the stage of its development was determined and a molecular assay of Borrelia burgdorferi DNA performed. A positive result of the nested-PCR test was obtained in 78 ticks, which represents 15.30% of all ticks. The infected ticks were collected from male (41 ticks - 52.56%) and female subjects (37 ticks - 47.44%). The biggest number of infected ticks were collected in autumn (54 ticks - 69.23%) and from people who had been into forests (44 ticks - 56.41%). Among the people from whom the infected ticks were acquired, the dominating group included persons over 16 years of age (53 persons - 67.95%) and children aged 0-5 years (16 persons - 20.51%). One in four infected ticks were acquired from the southwestern (20 ticks - 25.64%) and eastern regions of Poland (21 ticks - 26.92%). Infestation of ticks infected with Lyme disease spirochete in this study proved to be variable and depend on the season, the area of tick attack and the region in Poland. The results of the study clearly show that ticks infected with Borrelia burgdorferi inhabit all regions of Poland. The results are consistent with National Institute of Hygiene data which indicates that Lyme disease cases are recorded in all regions of Poland.

  16. Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health

    PubMed Central

    Eisen, Rebecca J.; Kugeler, Kiersten J.; Eisen, Lars; Beard, Charles B.; Paddock, Christopher D.

    2017-01-01

    In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents. PMID:28369515

  17. Influence of the biotope on the tick infestation of cattle and on the tick-borne pathogen repertoire of cattle ticks in Ethiopia.

    PubMed

    Hornok, Sándor; Abichu, Getachew; Meli, Marina L; Tánczos, Balázs; Sulyok, Kinga M; Gyuranecz, Miklós; Gönczi, Enikő; Farkas, Róbert; Hofmann-Lehmann, Regina

    2014-01-01

    The majority of vector-borne infections occur in the tropics, including Africa, but molecular eco-epidemiological studies are seldom reported from these regions. In particular, most previously published data on ticks in Ethiopia focus on species distribution, and only a few molecular studies on the occurrence of tick-borne pathogens or on ecological factors influencing these. The present study was undertaken to evaluate, if ticks collected from cattle in different Ethiopian biotopes harbour (had access to) different pathogens. In South-Western Ethiopia 1032 hard ticks were removed from cattle grazing in three kinds of tick biotopes. DNA was individually extracted from one specimen of both sexes of each tick species per cattle. These samples were molecularly analysed for the presence of tick-borne pathogens. Amblyomma variegatum was significantly more abundant on mid highland, than on moist highland. Rhipicephalus decoloratus was absent from savannah lowland, where virtually only A. cohaerens was found. In the ticks Coxiella burnetii had the highest prevalence on savannah lowland. PCR positivity to Theileria spp. did not appear to depend on the biotope, but some genotypes were unique to certain tick species. Significantly more A. variegatum specimens were rickettsia-positive, than those of other tick species. The presence of rickettsiae (R. africae) appeared to be associated with mid highland in case of A. variegatum and A. cohaerens. The low level of haemoplasma positivity seemed to be equally distributed among the tick species, but was restricted to one biotope type. The tick biotope, in which cattle are grazed, will influence not only the tick burden of these hosts, but also the spectrum of pathogens in their ticks. Thus, the presence of pathogens with alternative (non-tick-borne) transmission routes, with transstadial or with transovarial transmission by ticks appeared to be associated with the biotope type, with the tick species, or both, respectively.

  18. Factors Associated with Tick Bite Preventive Practices among Farmworkers in Malaysia

    PubMed Central

    Wong, Li Ping; Tay, Sun Tee; Bulgiba, Awang; Zandi, Keivan; Kho, Kai Ling; Koh, Fui Xian; Ong, Bee Lee; Jaafar, Tariq; Hassan Nizam, Quaza Nizamuddin

    2016-01-01

    Background Farmworkers are at high-risk for tick bites, which potentially transmit various tick-borne diseases. Previous studies show that personal prevention against tick bites is key, and certain factors namely, knowledge, experience of tick bites, and health beliefs influence compliance with tick bites preventive behaviour. This study aimed to assess these factors and their associations with tick bite preventive practices among Malaysian farmworkers. Methods A total of eight cattle, goat and sheep farms in six states in Peninsular Malaysia participated in a cross-sectional survey between August and October 2013 Results A total of 151 (72.2%) out of 209 farmworkers answered the questionnaire. More than half of the farmworkers (n = 91) reported an experience of tick bites. Farms with monthly acaricide treatment had significantly (P<0.05) a low report of tick bites. Tick bite exposure rates did not differ significantly among field workers and administrative workers. The mean total knowledge score of ticks for the overall farmworkers was 13.6 (SD±3.2) from 20. The mean total tick bite preventive practices score for all farmworkers was 8.3 (SD±3.1) from 15. Fixed effect model showed the effects of four factors on tick bite prevention: (1) farms, (2) job categories (administrative workers vs. field workers), (3) perceived severity of tick bites, and (4) perceived barriers to tick bite prevention. Conclusions A high proportion of farmworkers, including administrative workers, reported an experience of tick bites. The effectiveness of monthly acaricide treatment was declared by low reports of tick bites on these farms. Tick bite preventive practices were insufficient, particularly in certain farms and for administrative workers. Our findings emphasise the need to have education programmes for all farmworkers and targeting farms with low prevention practices. Education and health programmes should increase the perception of the risk of tick bites and remove perceived barriers of tick bite prevention. PMID:27341678

  19. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity

    PubMed Central

    Ogden, Nick H.; Mechai, Samir; Margos, Gabriele

    2013-01-01

    The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity. PMID:24010124

  20. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity.

    PubMed

    Ogden, Nick H; Mechai, Samir; Margos, Gabriele

    2013-01-01

    The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R 0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity.

  1. The widely distributed hard tick, Haemaphysalis longicornis, can retain canine parvovirus, but not be infected in laboratory condition

    PubMed Central

    MORI, Hiroyuki; TANAKA, Tetsuya; MOCHIZUKI, Masami

    2014-01-01

    ABSTRACT. Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding on their interaction and biology is still lacking. The aim of this study was to experimentally assess the interaction between canine parvovirus (CPV) and a widely distributed hard tick, Haemaphysalis longicornis, in laboratory condition. After inoculation of CPV into the hemocoel of the ticks, polymerase chain reaction assay revealed that CPV persisted in inoculated unfed adult female ticks for 28 days. Canine parvovirus was recovered from the inoculated ticks using a cell culture, indicating that the virus retained intact in the ticks after inoculation, but significant positive reaction indicating virus infection was not detected in the tick organs by immunofluorescence antibody test using a monoclonal antibody. In the case of ticks inoculated with feline leukemia virus, the virus had shorter persistence in the ticks compared to CPV. These findings provide significant important information on the characteristic interaction of tick with non-tick-borne virus. PMID:25650060

  2. Tick-borne encephalitis virus in ticks detached from humans and follow-up of serological and clinical response.

    PubMed

    Lindblom, Pontus; Wilhelmsson, Peter; Fryland, Linda; Sjöwall, Johanna; Haglund, Mats; Matussek, Andreas; Ernerudh, Jan; Vene, Sirkka; Nyman, Dag; Andreassen, Ashild; Forsberg, Pia; Lindgren, Per-Eric

    2014-02-01

    The risk of tick-borne encephalitis virus (TBEV) infection after a tick bite remains largely unknown. To address this, we investigated the presence of TBEV in ticks detached from humans in an attempt to relate viral copy number, TBEV subtype, and tick feeding time with the serological and clinical response of the tick-bitten participants. Ticks, blood samples, and questionnaires were collected from tick-bitten humans at 34 primary health care centers in Sweden and in the Åland Islands (Finland). A total of 2167 ticks was received from 1886 persons in 2008-2009. Using a multiplex quantitative real-time PCR, 5 TBEV-infected ticks were found (overall prevalence 0.23%, copy range <4×10(2)-7.7×10(6)per tick). One unvaccinated person bitten by a tick containing 7.7×10(6) TBEV copies experienced symptoms. Another unvaccinated person bitten by a tick containing 1.8×10(3) TBEV copies developed neither symptoms nor TBEV antibodies. The remaining 3 persons were protected by vaccination. In contrast, despite lack of TBEV in the detached ticks, 2 persons developed antibodies against TBEV, one of whom reported symptoms. Overall, a low risk of TBEV infection was observed, and too few persons got bitten by TBEV-infected ticks to draw certain conclusions regarding the clinical outcome in relation to the duration of the blood meal and virus copy number. However, this study indicates that an antibody response may develop without clinical symptoms, that a bite by an infected tick not always leads to an antibody response or clinical symptoms, and a possible correlation between virus load and tick feeding time. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Tick-induced allergies: mammalian meat allergy, tick anaphylaxis and their significance

    PubMed Central

    2015-01-01

    Serious tick-induced allergies comprise mammalian meat allergy following tick bites and tick anaphylaxis. Mammalian meat allergy is an emergent allergy, increasingly prevalent in tick-endemic areas of Australia and the United States, occurring worldwide where ticks are endemic. Sensitisation to galactose-α-1,3-galactose (α-Gal) has been shown to be the mechanism of allergic reaction in mammalian meat allergy following tick bite. Whilst other carbohydrate allergens have been identified, this allergen is unique amongst carbohydrate food allergens in provoking anaphylaxis. Treatment of mammalian meat anaphylaxis involves avoidance of mammalian meat and mammalian derived products in those who also react to gelatine and mammalian milks. Before initiating treatment with certain therapeutic agents (e.g., cetuximab, gelatine-containing substances), a careful assessment of the risk of anaphylaxis, including serological analysis for α-Gal specific-IgE, should be undertaken in any individual who works, lives, volunteers or recreates in a tick endemic area. Prevention of tick bites may ameliorate mammalian meat allergy. Tick anaphylaxis is rare in countries other than Australia. Tick anaphylaxis is secondarily preventable by prevention and appropriate management of tick bites. Analysis of tick removal techniques in tick anaphylaxis sufferers offers insights into primary prevention of both tick and mammalian meat anaphylaxis. Recognition of the association between mammalian meat allergy and tick bites has established a novel cause and effect relationship between an environmental exposure and subsequent development of a food allergy, directing us towards examining environmental exposures as provoking factors pivotal to the development of other food allergies and refocusing our attention upon causation of allergy in general. PMID:25653915

  4. Tick-borne infectious diseases in Australia.

    PubMed

    Graves, Stephen R; Stenos, John

    2017-04-17

    Tick bites in Australia can lead to a variety of illnesses in patients. These include infection, allergies, paralysis, autoimmune disease, post-infection fatigue and Australian multisystem disorder. Rickettsial (Rickettsia spp.) infections (Queensland tick typhus, Flinders Island spotted fever and Australian spotted fever) and Q fever (Coxiella burnetii) are the only systemic bacterial infections that are known to be transmitted by tick bites in Australia. Three species of local ticks transmit bacterial infection following a tick bite: the paralysis tick (Ixodes holocyclus) is endemic on the east coast of Australia and causes Queensland tick typhus due to R. australis and Q fever due to C. burnetii; the ornate kangaroo tick (Amblyomma triguttatum) occurs throughout much of northern, central and western Australia and causes Q fever; and the southern reptile tick (Bothriocroton hydrosauri) is found mainly in south-eastern Australia and causes Flinders Island spotted fever due to R. honei. Much about Australian ticks and the medical outcomes following tick bites remains unknown. Further research is required to increase understanding of these areas.

  5. Reducing tick bite risk in Finland - combining citizen science and GIS for predictive modelling of tick occurrence

    NASA Astrophysics Data System (ADS)

    Sormunen, Jani; Kulha, Niko; Klemola, Tero

    2017-04-01

    Ticks (Acari: Ixodidae) and tick-borne diseases constitute a growing welfare problem in northern Europe and Russia. Surveys conducted in Russia, Sweden and Norway have revealed a northwards shift in distribution and an increase in tick abundance over the past few decades. In southwestern Finland, surveys have revealed a similar increase in tick abundance, as well as the presence of novel tick-borne pathogens. As avoiding risk areas and removing attached ticks as quickly as possible are the best available methods for preventing tick-borne diseases, accessible and up-to-date data on tick occurrence is essential. However, consistently tracking the nationwide distribution of ticks is impossible using traditional collection methods. Therefore, GIS-based predictive modelling for tick occurrence is required. In May 2015, a national tick collection campaign was launched by the University of Turku tick project, with the objective of mapping the current geographical distribution of the two tick species responsible for tick-borne infections in Finland, Ixodes ricinus and Ixodes persulcatus. During the collection campaign, citizens were asked to send any ticks they found to the University of Turku by letter, along with information on the collection locality. The campaign ended in September 2015 and was a great success, with nearly 7000 letters delivered to the University. These letters contained more than 20 000 individual ticks from all around Finland. The geographic data from the letters was converted into coordinate points after the campaign was concluded. Data from the national tick collection campaign revealed not only a northwards shift in the distribution of I. ricinus, but also novel foci for I. persulcatus in Finland. Strikingly, while they were otherwise found throughout Finland, I. persulcatus were absent from the south-southwestern coast, where I. ricinus is nevertheless abundant. The exact cause for this phenomenon is unclear, as I. persulcatus are found further south in nearby Estonia and Russia. Using the location and tick species data from the collection campaign, as well as nationwide data sets regarding several different environmental factors (e.g. temperature sum, soil type), we seek to identify potential environmental causes for the realized geographical distributions of these two tick species in Finland. Particularly, we seek to identify factors limiting tick occurrence in certain areas, especially I. persulcatus occurrence in southern Finland. The ultimate goal is to determine whether quantifiable environmental factors linked to tick occurrence can be found, and, if found, use them to apply GIS models to map and predict changes in tick distribution in Finland. In the poster presented here, we showcase the methodology used in assessing effects of different environmental factors on tick occurrence, and present preliminary results from GIS analysis of coordinate, tick species and environmental data.

  6. A quantitative evaluation of the extent of fluralaner uptake by ticks (Ixodes ricinus, Ixodes scapularis) in fluralaner (Bravecto) treated vs. untreated dogs using the parameters tick weight and coxal index.

    PubMed

    Williams, Heike; Demeler, Janina; Taenzler, Janina; Roepke, Rainer K A; Zschiesche, Eva; Heckeroth, Anja R

    2015-06-30

    Fluralaner is a new antiparasitic drug that was recently introduced as Bravecto chewable tablets for the treatment of tick and flea infestations in dogs. Most marketed tick products exert their effect via topical application and contact exposure to the parasite. In contrast, Bravecto delivers its acaricidal activity through systemic exposure. Tick exposure to fluralaner occurs after attachment to orally treated dogs, which induces a tick-killing effect within 12 h. The fast onset of killing lasts over the entire treatment interval (12 weeks) and suggests that only marginal uptake by ticks is required to induce efficacy. Three laboratory studies were conducted to quantify the extent of uptake by comparison of ticks' weight and coxal index obtained from Bravecto-treated and negative-control dogs. Three studies were conducted using experimental tick infestation with either Ixodes ricinus or Ixodes scapularis after oral administration of fluralaner to dogs. All studies included a treated (Bravecto chewable tablets, MSD Animal Health) and a negative control group. Each study had a similar design for assessing vitality and weighing of ticks collected from dogs of both groups. Additionally, in one study the coxal index (I. ricinus) was calculated as a ratio of tick's ventral coxal gap and dorsal width of scutum. Tick weight data and coxal indices from Bravecto-treated and negative-control groups were compared via statistical analysis. Ticks collected from Bravecto-treated dogs weighed significantly less (p ≤ 0.0108) than ticks collected from negative-control dogs, and their coxal index was also significantly lower (p < 0.0001). The difference in tick weights was demonstrated irrespective of the tick species investigated (I. ricinus, I. scapularis). At some assessments the mean tick weights of Bravecto-treated dogs were significantly lower than those of unfed pre-infestation (baseline) ticks. The demonstrated tick-killing efficacy was in the range of 94.6 - 100%. Tick weights and coxal indices confirm that a minimal uptake results in a sufficient exposure of ticks to fluralaner (Bravecto) and consequently in a potent acaricidal effect.

  7. Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania.

    PubMed

    Andersson, Martin O; Marga, Georgeta; Banu, Teofilia; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-05-01

    Romania has a highly diverse tick fauna. Consequently, a high diversity of tick-transmitted pathogens might be a potential threat to humans. However, only a limited number of tick species regularly infest humans, and pathogens present in such species are therefore of particular interest from a medical perspective. In this study, 297 ticks were collected from humans during 2013 and 2014. Ixodes ricinus was the predominant tick species, accounting for 272 specimens or 91.6% of the ticks in the study. Nevertheless, other tick species were also found to infest humans: Dermacentor marginatus constituted 7% of the ticks found on humans (21/297), Haemaphysalis punctata 1% (3/297), and Haemaphysalis concinna 0.3% (1/297). Ticks were tested by PCR for a wide range of tick-borne pathogens. In total, 11.8% of the ticks carried human pathogenic bacteria, while no viral or protozoan pathogens were detected. The most frequently detected pathogen was Rickettsia spp., occurring in 5.4% of the ticks (16/297) and comprising three species: Rickettsia (R.) raoultii, R. monacensis, and R. helvetica. Borrelia s.l. occurred in 3% (9/297) of the ticks. "Candidatus Neoehrlichia mikurensis" occurred in 1.7% (5/297) and Anaplasma phagocytophilum in 1.3% (4/297). Anaplasma bovis was detected in an H. punctata and Borrelia miyamotoi in an I. ricinus. These results point to the need for further studies on the medical importance of tick-borne pathogens in Romania.

  8. Rickettsial and other tick-borne infections.

    PubMed

    Flicek, Barbara Fouts

    2007-03-01

    Tick bites are best prevented by people avoiding tick-infested areas. When this is not possible, tick bites may be prevented by the wearing of long trousers that are tucked into boots. The best method to avoid tick bites is twofold: application of a topical deet (N,N-diethyl-m-toluamide) repellent to exposed skin, and treatment of clothing with permethrin. This system is currently used by the US Army to protect soldiers. Ticks can crawl underneath clothing and bite untreated portions of the body; therefore, treating clothing is imperative. Permethrin is nontoxic to humans, and can be used in any age group. Permethrin is commercially available. Checking clothing regularly while in tick-infested areas is highly recommended to back up the few hours of protection provided by the insect repellents. It is also recommended that the entire body be carefully screened for ticks and other parasites by campers and hunters while they are staying in and after leaving infested areas. Any tick found should be removed immediately. Removing ticks may not be easy. It is best to use blunt, rounded forceps, and a magnifying glass to remove ticks, especially when immature ticks are found. The forceps are used to grasp the mouthparts of the tick as close as possible to the skin, and then the tick is pulled upward, perpendicular to the skin, with a continuous and steady action. Usually any mouth parts of the tick retained in the skin are eliminated uneventfully by the body. Other methods of removing ticks, such as using fingers, lighted cigarettes, petroleum jelly, or suntan oil, should be avoided. Killing the tick in situ may increase the risk of regurgitation by the tick and the transmission of infectious agents. Most stick bites are uncomplicated, and result only in benign cutaneous inflammatory reactions that may be pruritic for a few days. As a result of mouthparts being retained at the feeding site, a granuloma may rarely develop. There are no data to indicate that antimicrobial prophylaxsis is beneficial to the tick-bitten patient to prevent disease. It must be kept in mind that the risk of transmission of disease increases with the duration of attachment and generally requires greater than 24 to 48 hours. The degree of tick engorgement or the time since tick exposure and discovery of the tick may be used to establish the likely duration of attachment and the risk of disease transmission. Reducing and controlling tick populations is difficult. Habitat modifications, including vegetation management by cutting, burning, and herbicide treatment, and drainage of wet areas are one strategy for tick control, but their effects are often short-lived, and they can cause severe ecologic damage. Chemicals used to control ticks may cause environmental contamination, and therefore, toxicity for humans and animals. Biologic control methods for ticks include the promotion of natural predators. Natural predators of ticks are beetles, spiders, and ants, and parasites such as insects, mites and nematodes. Tick control is best based on the concept of integrated pest management, in which different control methods are adapted to one area or against one tick species with due consideration to their environmental effects. Tick-borne diseases are increasing in prevalence. Perhaps it is because people are undertaking more outdoor activities, which result in contact with ticks and their pathogens. Clinicians should be aware of the clinical sign of tick-transmitted diseases, because morbidity and mortality as a result of these diseases increases substantially if there are delays in diagnosis and treatment. Tick-borne illness occur in distinctive geographic areas. The reporting of these illnesses and diseases to the health department enables the gathering of information and statistics. The public should be informed about the risks of disease in tick-infested areas and the means of preventing infections. The most common diseases are caused by Rickettsia, Borrelia, and Ehrichia, but with continued study, new pathogens and diseases will continue to emerge.

  9. Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research: a review.

    PubMed

    Ghosh, Srikant; Nagar, Gaurav

    2014-12-01

    Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. The diseases spread by ticks are a major constraint to animal productivity while causing morbidity and mortality in both animals and humans. A number of tick species have been recognised since long as vectors of lethal pathogens, viz. Crimean-Congo haemorrhagic fever virus (CCHFV), Kyasanur forest disease virus (KFDV), Babesia spp, Theileria, Rickettsia conorii, Anaplasma marginale, etc. and the damages caused by them are well-recognised. There is a need to reassess the renewed threat posed by the tick vectors and to prioritize the tick control research programme. This review is focused on the major tick-borne human and animal diseases in India and the progress in vector control research with emphasis on acaricide resistance, tick vaccine and the development of potential phytoacaricides as an integral part of integrated tick control programme.

  10. Experimental Transmission of Karshi (Mammalian Tick-Borne Flavivirus Group) Virus by Ornithodoros Ticks >2,900 Days after Initial Virus Exposure Supports the Role of Soft Ticks as a Long-Term Maintenance Mechanism for Certain Flaviviruses.

    PubMed

    Turell, Michael J

    2015-01-01

    Members of the mammalian tick-borne flavivirus group, including tick-borne encephalitis virus, are responsible for at least 10,000 clinical cases of tick-borne encephalitis each year. To attempt to explain the long-term maintenance of members of this group, we followed Ornithodoros parkeri, O. sonrai, and O. tartakovskyi for >2,900 days after they had been exposed to Karshi virus, a member of the mammalian tick-borne flavivirus group. Ticks were exposed to Karshi virus either by allowing them to feed on viremic suckling mice or by intracoelomic inoculation. The ticks were then allowed to feed individually on suckling mice after various periods of extrinsic incubation to determine their ability to transmit virus by bite and to determine how long the ticks would remain infectious. The ticks remained efficient vectors of Karshi virus, even when tested >2,900 d after their initial exposure to virus, including those ticks exposed to Karshi virus either orally or by inoculation. Ornithodoros spp. ticks were able to transmit Karshi virus for >2,900 days (nearly 8 years) after a single exposure to a viremic mouse. Therefore, these ticks may serve as a long-term maintenance mechanism for Karshi virus and potentially other members of the mammalian tick-borne flavivirus group.

  11. Records of ticks on humans in Rio Grande do Sul state, Brazil.

    PubMed

    Reck, José; Souza, Ugo; Souza, Getúlio; Kieling, Eduardo; Dall'Agnol, Bruno; Webster, Anelise; Michel, Thais; Doyle, Rovaina; Martins, Thiago F; Labruna, Marcelo B; Marks, Fernanda; Ott, Ricardo; Martins, João Ricardo

    2018-05-18

    More than seventy tick species have been reported in Brazil. Despite the emergence of tick-borne diseases in Neotropical region, there are still limited data available on tick species parasitizing humans in Brazil. Rio Grande do Sul is the southernmost state of Brazil, comprising the only part of Brazilian territory inside the Pampa biome, as well as the transition between subtropical and temperate zones. Here, we report on human parasitism by ticks in Rio Grande do Sul state between 2004 and 2017. Seventy cases of human parasitism by ticks were recorded, with a total of 81 tick specimens collected. These included 11 tick species belonging to three genera of Ixodidae (hard-ticks), Amblyomma, Haemaphysalis and Rhipicephalus; and one genus of Argasidae, Ornithodoros. The most prevalent tick species associated to cases of human parasitism were Amblyomma parkeri (24%), Rhipicephalus sanguineus sensu lato (22%), Amblyomma aureolatum (15%) and Amblyomma ovale (12%). A spatial analysis showed two major hot spots of human parasitism by ticks in Rio Grande do Sul state. The findings of this study highlight the need for permanent monitoring of human parasitism by ticks in order to provide a better understanding of tick and tick-borne disease eco-epidemiology, and the early identification of potential cases of tick-borne diseases, particularly in spotted fever endemic regions. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Molecular Ecological Insights into Neotropical Bird–Tick Interactions

    PubMed Central

    Esser, Helen J.; Loaiza, Jose R.; Herre, Edward Allen; Aguilar, Celestino; Quintero, Diomedes; Alvarez, Eric; Bermingham, Eldredge

    2016-01-01

    In the tropics, ticks parasitize many classes of vertebrate hosts. However, because many tropical tick species are only identifiable in the adult stage, and these adults usually parasitize mammals, most attention on the ecology of tick-host interactions has focused on mammalian hosts. In contrast, immature Neotropical ticks are often found on wild birds, yet difficulties in identifying immatures hinder studies of birds’ role in tropical tick ecology and tick-borne disease transmission. In Panama, we found immature ticks on 227 out of 3,498 individually–sampled birds representing 93 host species (24% of the bird species sampled, and 13% of the Panamanian land bird fauna). Tick parasitism rates did not vary with rainfall or temperature, but did vary significantly with several host ecological traits. Likewise, Neotropical–Nearctic migratory birds were significantly less likely to be infested than resident species. Using a molecular library developed from morphologically–identified adult ticks specifically for this study, we identified eleven tick species parasitizing birds, indicating that a substantial portion of the Panamanian avian species pool is parasitized by a diversity of tick species. Tick species that most commonly parasitized birds had the widest diversity of avian hosts, suggesting that immature tick species are opportunistic bird parasites. Although certain avian ecological traits are positively associated with parasitism, we found no evidence that individual tick species show specificity to particular avian host ecological traits. Finally, our data suggest that the four principal vectors of Rocky Mountain Spotted Fever in the Neotropics rarely, if ever, parasitize Panamanian birds. However, other tick species that harbor newly–discovered rickettsial parasites of unknown pathogenicity are frequently found on these birds. Given our discovery of broad interaction between Panamanian tick and avian biodiversity, future work on tick ecology and the dynamics of emerging tropical tick-borne pathogens should explicitly consider wild bird as hosts. PMID:27203693

  13. Partial pathogen protection by tick-bite sensitization and epitope recognition in peptide-immunized HLA DR3 transgenic mice.

    PubMed

    Shattuck, Wendy M C; Dyer, Megan C; Desrosiers, Joe; Fast, Loren D; Terry, Frances E; Martin, William D; Moise, Leonard; De Groot, Anne S; Mather, Thomas N

    2014-01-01

    Ticks are notorious vectors of disease for humans, and many species of ticks transmit multiple pathogens, sometimes in the same tick bite. Accordingly, a broad-spectrum vaccine that targets vector ticks and pathogen transmission at the tick/host interface, rather than multiple vaccines against every possible tickborne pathogen, could become an important tool for resolving an emerging public health crisis. The concept for such a tick protective vaccine comes from observations of an acquired tick resistance (ATR) that can develop in non-natural hosts of ticks following sensitization to tick salivary components. Mice are commonly used as models to study immune responses to human pathogens but normal mice are natural hosts for many species of ticks and fail to develop ATR. We evaluated HLA DR3 transgenic (tg) "humanized" mice as a potential model of ATR and assessed the possibility of using this animal model for tick protective vaccine discovery studies. Serial tick infestations with pathogen-free Ixodes scapularis ticks were used to tick-bite sensitize HLA DR3 tg mice. Sensitization resulted in a cytokine skew favoring a Th2 bias as well as partial (57%) protection to infection with Lyme disease spirochetes (Borrelia burgdorferi) following infected tick challenge when compared to tick naïve counterparts. I. scapularis salivary gland homogenate (SGH) and a group of immunoinformatic-predicted T cell epitopes identified from the I. scapularis salivary transcriptome were used separately to vaccinate HLA DR3 tg mice, and these mice also were assessed for both pathogen protection and epitope recognition. Reduced pathogen transmission along with a Th2 skew resulted from SGH vaccination, while no significant protection and a possible T regulatory bias was seen in epitope-vaccinated mice. This study provides the first proof-of-concept for using HLA DR tg "humanized" mice for studying the potential tick protective effects of immunoinformatic- or otherwise-derived tick salivary components as tickborne disease vaccines.

  14. Anaplasmosis

    MedlinePlus

    ... Illness (STARI) Tick Paralysis Tick-borne Relapsing Fever Tularemia News & Views Find A Physician Donate Physician’s Resources ... Illness (STARI) Tick Paralysis Tick-borne Relapsing Fever Tularemia Anaplasmosis Anaplasmosis Tick species that transmit anaplasmosis: Deer ...

  15. Correlation between Tick Density and Pathogen Endemicity, New Hampshire

    PubMed Central

    Walk, Seth T.; Xu, Guang; Stull, Jason W.

    2009-01-01

    To assess the endemicity of tick-borne pathogens in New Hampshire, we surveyed adult tick vectors. Pathogens were more prevalent in areas of high tick density, suggesting a correlation between tick establishment and pathogen endemicity. Infection rates in ticks correlated with disease frequency in humans. PMID:19331738

  16. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases

    PubMed Central

    de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.

    2017-01-01

    Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499

  17. Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite

    PubMed Central

    Mateos-Hernández, Lourdes; Villar, Margarita; Moral, Angel; GarcíaRodríguez, Carmen; Arias, Teresa Alfaya; de la Osa, Verónica; Brito, Francisco Feo; Fernández de Mera, Isabel G.; Alberdi, Pilar; Ruiz-Fons, Francisco; Cabezas-Cruz, Alejandro; Estrada-Peña, Agustín; de la Fuente, José

    2017-01-01

    Tick-borne infectious diseases and allergies are a growing problem worldwide. Tick bite allergy has been associated with the direct effect of immunoglobulin E (IgE) response to tick salivary antigens, or secondary to the induction of allergy to red meat consumption through IgE antibodies against the carbohydrate α-Gal (Gal α 1-3Gal β 1-(3)4GlcNAc-R). However, despite the growing burden of this pathology, the proteins associated with anaphylaxis to tick bite have not been characterized. To address this question, a comparative proteomics approach was used to characterize tick proteins producing an IgE antibody response in a healthy individual with record of tick bites, which had not resulted in any allergic reactions, and two patients with anaphylactic reactions to Rhipicephalus bursa or Hyalomma marginatum tick bites. Both patients and the healthy individual were red meat tolerant. The results supported a patient-specific IgE antibody response to tick species responsible for the anaphylaxis to tick bite. Both patients and the healthy individual serologically recognized tick proteins with and without α-Gal modifications, with proteins differentially recognized by patients but not control sera. These proteins could be used as potential antigens for diagnostics, treatment and prevention of tick bite-induced allergies. PMID:28423486

  18. Research on the ecology of ticks and tick-borne pathogens—methodological principles and caveats

    PubMed Central

    Estrada-Peña, Agustín; Gray, Jeremy S.; Kahl, Olaf; Lane, Robert S.; Nijhof, Ard M.

    2013-01-01

    Interest in tick-transmitted pathogens has experienced an upsurge in the past few decades. Routine application of tools for the detection of fragments of foreign DNA in ticks, together with a high degree of interest in the quantification of disease risk for humans, has led to a marked increase in the number of reports on the eco-epidemiology of tick-borne diseases. However, procedural errors continue to accumulate in the scientific literature, resulting in misleading information. For example, unreliable identification of ticks and pathogens, erroneous interpretations of short-term field studies, and the hasty acceptance of some tick species as vectors have led to ambiguities regarding the vector role of these arthropods. In this review, we focus on the ecological features driving the life cycle of ticks and the resulting effects on the eco-epidemiology of tick-transmitted pathogens. We review the factors affecting field collections of ticks, and we describe the biologically and ecologically appropriate procedures for describing tick host-seeking activity and its correlation with environmental traits. We detail the climatic variables that have biological importance on ticks and explain how they should be properly measured and analyzed. We also provide evidence to critically reject the use of some environmental traits that are being increasingly reported as the drivers of the behavior of ticks. With the aim of standardization, we propose unambiguous definitions of the status of hosts and ticks regarding their ability to maintain and spread a given pathogen. We also describe laboratory procedures and standards for evaluating the vectorial capacity of a tick or the reservoir role of a host. This approach should provide a coherent framework for the reporting of research findings concerning ticks and tick-borne diseases. PMID:23964348

  19. Climate, niche, ticks, and models: what they are and how we should interpret them.

    PubMed

    Estrada-Peña, Agustín

    2008-12-01

    Ticks spend most of their life cycle in the environment, and all tick life cycle stages are dependent on a complex combination of climate variables. Furthermore, host availability and vegetation significantly modulate the dynamics of tick populations. Tick recruitment is dependent on successful reproduction, which in turn requires sufficient adult tick densities, available blood meal sources, and egg survival. Though many animals can serve as hosts, there are several determinants of host suitability. For example, host availability in time and space is an important determinant of tick bionomics. Shelter and protection from environmental extremes are critical to tick survival. Questing and diapausing ticks are vulnerable to extremes of temperature and humidity. There are concerns about how predicted climate change may alter several critical features of host-parasite relationships of ticks, the potential for invasion of new areas or alteration of patterns of pathogen transmission in particular. However, modeling approaches that relate known occurrences of tick species to climate (and/or landscape) features and predict geographic occurrences are not completely fulfilling our needs to understand how the "tick panorama" can change as a consequence of these climate trends. This is a short review about the concept of ecological niche as applied to ticks, as well as some raised concerns about its evaluation and strict definition, and its usefulness to map geographical suitability for ticks. Comments about how climate, hosts, and landscape configuration are briefly discussed regarding its applicability to tick mapping and with reference about their impact on tick abundance. I will further comment on already published observations about observed changes in the geographical range of ticks in parts of Europe.

  20. Research on the ecology of ticks and tick-borne pathogens--methodological principles and caveats.

    PubMed

    Estrada-Peña, Agustín; Gray, Jeremy S; Kahl, Olaf; Lane, Robert S; Nijhof, Ard M

    2013-01-01

    Interest in tick-transmitted pathogens has experienced an upsurge in the past few decades. Routine application of tools for the detection of fragments of foreign DNA in ticks, together with a high degree of interest in the quantification of disease risk for humans, has led to a marked increase in the number of reports on the eco-epidemiology of tick-borne diseases. However, procedural errors continue to accumulate in the scientific literature, resulting in misleading information. For example, unreliable identification of ticks and pathogens, erroneous interpretations of short-term field studies, and the hasty acceptance of some tick species as vectors have led to ambiguities regarding the vector role of these arthropods. In this review, we focus on the ecological features driving the life cycle of ticks and the resulting effects on the eco-epidemiology of tick-transmitted pathogens. We review the factors affecting field collections of ticks, and we describe the biologically and ecologically appropriate procedures for describing tick host-seeking activity and its correlation with environmental traits. We detail the climatic variables that have biological importance on ticks and explain how they should be properly measured and analyzed. We also provide evidence to critically reject the use of some environmental traits that are being increasingly reported as the drivers of the behavior of ticks. With the aim of standardization, we propose unambiguous definitions of the status of hosts and ticks regarding their ability to maintain and spread a given pathogen. We also describe laboratory procedures and standards for evaluating the vectorial capacity of a tick or the reservoir role of a host. This approach should provide a coherent framework for the reporting of research findings concerning ticks and tick-borne diseases.

  1. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    PubMed Central

    Tabor, Ala E.; Ali, Abid; Rehman, Gauhar; Rocha Garcia, Gustavo; Zangirolamo, Amanda Fonseca; Malardo, Thiago; Jonsson, Nicholas N.

    2017-01-01

    Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding), infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also contained higher numbers of eosinophils, mast cells and basophils with up-regulated proteases, cathepsins, keratins, collagens and extracellular matrix proteins in response to feeding ticks. Here we review immunological and molecular determinants that explore the cattle tick Rhipicephalus microplus-host resistance phenomenon as well as contemplating new insights and future directions to study tick resistance and susceptibility, in order to facilitate interventions for tick control. PMID:29322033

  2. Crimean-Congo Hemorrhagic Fever Virus Clade IV (Asia 1) in Ticks of Western Iran.

    PubMed

    Kayedi, Mohammad Hassan; Chinikar, Sadegh; Mostafavi, Ehsan; Khakifirouz, Sahar; Jalali, Tahmineh; Hosseini-Chegeni, Asadolah; Naghizadeh, Ali; Niedrig, Matthias; Fooks, Anthony R; Shahhosseini, Nariman

    2015-09-01

    Crimean-Congo Hemorrhagic Fever virus (CCHFV) is transmitted through the bite of an infected tick, or by direct contact with CCHFV-infected patients' blood or the products of infected livestock. In 2012, ticks were collected in eight regions of Lorestan Province, Iran. In total, 434 ticks were collected. Reverse transcriptase polymerase chain reaction was used for the detection of CCHFV RNA. Of 434 ticks, 419 (96.6%) ticks were from the family Ixodidae (hard ticks) and 15 (3.5%) ticks were from the family Argasidae (soft ticks). The presence of CCHFV RNA was detected in 29 (6.7%) of 434 ticks. The infected tick species include Hyalomma asiaticum (n = 7, 7.4%), Hyalomma anatolicum (n = 12, 13.2%), Hyalomma marginatum (n = 1, 16.7%), and Rhipicephalus sanguineus (n = 9, 4.3%). These empirical data demonstrated that the majority of CCHFV-positive ticks belonged to the Ixodidae. None of the Argasidae and Haemaphysalis sulcata species was infected with CCHFV. The phylogenetic analyses of the tick-derived CCHFV strains revealed that all 29 viral strains fell in clade IV (Asia 1). The most abundant species of tick collected in this study was R. sanguineus followed by different species of Hyalomma. Given the infection rate among collected ticks, H. marginatum was the most abundant infected tick species (16.7%) followed by H. anatolicum (13.2%), H. asiaticum (7.4%), and R. sanguineus (4.3%). © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The diversity and prevalence of hard ticks attacking human hosts in Eastern Siberia (Russian Federation) with first description of invasion of non-endemic tick species.

    PubMed

    Khasnatinov, Maxim Anatolyevich; Liapunov, Alexander Valeryevich; Manzarova, Ellina Lopsonovna; Kulakova, Nina Viktorovna; Petrova, Irina Viktorovna; Danchinova, Galina Anatolyevna

    2016-02-01

    Hard ticks are the vectors of many pathogens including tick-borne encephalitis virus and the Lyme disease agent Borrelia burgdorferi sensu lato. In Eastern Siberia, Ixodes persulcatus, Dermacentor nuttalli, Dermacentor silvarum and Haemaphysalis concinna are regarded as aggressive to humans. Recently, significant changes in world tick fauna have been reported and this affects the spread of tick-borne pathogens. We studied the current species diversity, population structure and prevalence of tick-borne pathogens of hard ticks (Acari: Ixodidae) that attacked humans in Eastern Siberia (Irkutsk region, Russia). In total, 31,892 individual ticks were identified and analysed during the years 2007-2014. The majority (85.4%) of victims was bitten by I. persulcatus, 14.55% of attacks on humans were caused by D. nuttalli and D. silvarum, whereas H. concinna was documented only in 15 cases (0.05%). The seasonal activity and the age/gender structure of the tick population were studied as well. Among all the studied ticks, three unconventional species, i.e. Rhipicephalus sanguineus, Dermacentor reticulatus and Amblyomma americanum, were identified. Analysis of tick bite histories indicates at least three events of invasion of non-endemic ticks into the ecosystems of northern Eurasia with harsh continental climates. Invading ticks are able to reach the adult life stage and are aggressive to the local human population. Phylogenetic analysis of mt 16S rRNA gene fragments suggests multiple independent routes of tick migration to Eastern Siberia. Possible implications to human health and epidemiology of tick-borne infections are discussed.

  4. Detection of tick mediated host stress in bovine feces by the southern cattle tick, Rhipicephalus microplus

    USDA-ARS?s Scientific Manuscript database

    The standard method of detecting Cattle Fever Ticks (Rhipicephalus (B.) annulatus and R. (B.) microplus) in the state-federal tick eradication program is physical examination of restrained cattle to find attached ticks. Ticks modulate host responses to blood feeding resulting in fecal chemistry chan...

  5. Biological control of ticks

    USGS Publications Warehouse

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  6. Emerging Tick-Borne Viruses in the Twenty-First Century

    PubMed Central

    Mansfield, Karen L.; Jizhou, Lv; Phipps, L. Paul; Johnson, Nicholas

    2017-01-01

    Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified. PMID:28744449

  7. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.

    PubMed

    Galay, Remil Linggatong; Miyata, Takeshi; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-01-01

    Ticks (Parasitiformes: Ixodida) are known for their obligate blood feeding habit and their role in transmitting pathogens to various vertebrate hosts. Tick control using chemical acaricides is extensively used particularly in livestock management, but several disadvantages arise from resistance development of many tick species, and concerns on animal product and environmental contamination. Vaccination offers better protection and more cost-effective alternative to application of chemical acaricides, addressing their disadvantages. However, an ideal anti-tick vaccine targeting multiple tick species and all the tick stages is still wanting. Here, we describe the procedures involved in the evaluation of a vaccine candidate antigen against ticks at the laboratory level, from the preparation of recombinant proteins, administration to the rabbit host and monitoring of antibody titer, to tick infestation challenge and determination of the effects of immunization to ticks.

  8. Investigation of Bartonella infection in ixodid ticks from California.

    PubMed

    Chang, Chao-chin; Hayashidani, Hideki; Pusterla, Nicola; Kasten, Rickie W; Madigan, John E; Chomel, Bruno B

    2002-07-01

    A total of 1253 ixodid ticks (254 tick pools) collected between the end of 1995 and the spring of 1997 from six California counties (El Dorado, Los Angeles, Orange, Santa Cruz, Shasta and Sonoma) were examined for the presence of Bartonella DNA by PCR of the citrate synthase gene. Of 1,119 adult Ixodes pacificus ticks tested, 26 (11.6%) of 224 pools, each containing five ticks, were positive (minimum percentage of ticks harboring detectable Bartonella DNA, 2.3%). Bartonella PCR-positive ticks were identified in five counties but none of the ticks from Los Angeles County was positive. Among 47 nymphal I. pacificus ticks collected in Sonoma County, one (10%) positive pool out of 10 pools was identified (minimum percentage of ticks harboring detectable Bartonella DNA, 2.1%). Among the 54 Dermacentor occidentalis grouped in 12 pools from Orange County, one pool (8.3%) was PCR positive for Bartonella and similarly one pool (14.3%) was positive among the 30 Dermacentor variabilis ticks grouped in seven pools. None of the three D. occidentalis from El Dorado County were positive. None of the nine tick pools positive for Ehrlichia phagocytophila were positive for Bartonella. Following our previous findings of Bartonella PCR-positive adult I. pacificus ticks in central coastal California, this is the first preliminary report of the presence of Bartonella DNA in I. pacificus nymphs and in Dermacentor sp. ticks. Distribution of Bartonella among ixodid ticks appears widespread in California.

  9. Interaction of the tick immune system with transmitted pathogens

    PubMed Central

    Hajdušek, Ondřej; Šíma, Radek; Ayllón, Nieves; Jalovecká, Marie; Perner, Jan; de la Fuente, José; Kopáček, Petr

    2013-01-01

    Ticks are hematophagous arachnids transmitting a wide variety of pathogens including viruses, bacteria, and protozoans to their vertebrate hosts. The tick vector competence has to be intimately linked to the ability of transmitted pathogens to evade tick defense mechanisms encountered on their route through the tick body comprising midgut, hemolymph, salivary glands or ovaries. Tick innate immunity is, like in other invertebrates, based on an orchestrated action of humoral and cellular immune responses. The direct antimicrobial defense in ticks is accomplished by a variety of small molecules such as defensins, lysozymes or by tick-specific antimicrobial compounds such as microplusin/hebraein or 5.3-kDa family proteins. Phagocytosis of the invading microbes by tick hemocytes is likely mediated by the primordial complement-like system composed of thioester-containing proteins, fibrinogen-related lectins and convertase-like factors. Moreover, an important role in survival of the ingested microbes seems to be played by host proteins and redox balance maintenance in the tick midgut. Here, we summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens, represented by spirochetes (Borrelia), rickettsiae (Anaplasma), and protozoans (Babesia). Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens. PMID:23875177

  10. Are ticks venomous animals?

    PubMed Central

    2014-01-01

    Introduction As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. Results Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. Conclusions Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary proteins, we consider that ticks should be referred to as venomous ectoparasites. PMID:25006341

  11. TickBot: a novel robotic device for controlling tick populations in the natural environment.

    PubMed

    Gaff, Holly D; White, Alexis; Leas, Kyle; Kelman, Pamela; Squire, James C; Livingston, David L; Sullivan, Gerald A; Baker, Elizabeth W; Sonenshine, Daniel E

    2015-03-01

    A semi-autonomous 4-wheeled robot (TickBot) was fitted with a denim cloth treated with an acaricide (permethrin™) and tested for its ability to control ticks in a tick-infested natural environment in Portsmouth, Virginia. The robot's sensors detect a magnetic field signal from a guide wire encased in 80m polyethylene tubing, enabling the robot to follow the trails, open areas and other terrain where the tubing was located. To attract ticks to the treated area, CO2 was distributed through the same tubing, fitted with evenly spaced pores and flow control valves, which permitted uniform CO2 distribution. Tests were done to determine the optimum frequency for TickBot to traverse the wire-guided treatment site as well as the duration of operation that could be accomplished on a single battery charge. Prior to treatment, dragging was done to determine the natural abundance of ticks in the test site. Controls were done without CO2 and without permethrin. TickBot proved highly effective in reducing the overall tick densities to nearly zero with the treatment that included both carbon dioxide pretreatment and the permethrin treated cloth. Following a 60min traverse of the treatment areas, adult tick numbers, almost entirely Amblyomma americanum, was reduced to zero within 1h and remained at or near zero for 24h. Treatments without CO2 also showed reduction of ticks to near zero within 1h, but the populations were no different than the control sections at 4h. This study demonstrates the efficacy of TickBot as a tick control device to significantly reduce the risk of tick bites and disease transmission to humans and companion animals visiting a previously tick-infested natural environment. Continued deployment of TickBot for additional days or weeks can assure a relatively tick-safe environment for enjoyment by the public. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Distribution pattern and number of ticks on lizards.

    PubMed

    Dudek, Krzysztof; Skórka, Piotr; Sajkowska, Zofia Anna; Ekner-Grzyb, Anna; Dudek, Monika; Tryjanowski, Piotr

    2016-02-01

    The success of ectoparasites depends primarily on the site of attachment and body condition of their hosts. Ticks usually tend to aggregate on vertebrate hosts in specific areas, but the distribution pattern may depend on host body size and condition, sex, life stage or skin morphology. Here, we studied the distribution of ticks on lizards and tested the following hypothesis: occurrence or high abundance of ticks is confined with body parts with smaller scales and larger interscalar length because such sites should provide ticks with superior attachment conditions. This study was performed in field conditions in central Poland in 2008-2011. In total, 500 lizards (Lacerta agilis) were caught and 839 ticks (Ixodes ricinus, larvae and nymphs) were collected from them. Using generalised linear mixed models, we found that the ticks were most abundant on forelimbs and their axillae, with 90% of ticks attached there. This part of the lizard body and the region behind the hindlimb were covered by the smallest scales with relatively wide gaps between them. This does not fully support our hypothesis that ticks prefer locations with easy access to skin between scales, because it does not explain why so few ticks were in the hindlimb area. We found that the abundance of ticks was positively correlated with lizard body size index (snout-vent length). Tick abundance was also higher in male and mature lizards than in female and young individuals. Autotomy had no effect on tick abundance. We found no correlation between tick size and lizard morphology, sex, autotomy and body size index. The probability of occurrence of dead ticks was positively linked with the total number of ticks on the lizard but there was no relationship between dead tick presence and lizard size, sex or age. Thus lizard body size and sex are the major factors affecting the abundance of ticks, and these parasites are distributed nearly exclusively on the host's forelimbs and their axillae. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Molecular Detection of Tick-Borne Pathogens in Humans with Tick Bites and Erythema Migrans, in the Netherlands

    PubMed Central

    Jahfari, Setareh; Hofhuis, Agnetha; Fonville, Manoj; van der Giessen, Joke; van Pelt, Wilfrid; Sprong, Hein

    2016-01-01

    Background Tick-borne diseases are the most prevalent vector-borne diseases in Europe. Knowledge on the incidence and clinical presentation of other tick-borne diseases than Lyme borreliosis and tick-borne encephalitis is minimal, despite the high human exposure to these pathogens through tick bites. Using molecular detection techniques, the frequency of tick-borne infections after exposure through tick bites was estimated. Methods Ticks, blood samples and questionnaires on health status were collected from patients that visited their general practitioner with a tick bite or erythema migrans in 2007 and 2008. The presence of several tick-borne pathogens in 314 ticks and 626 blood samples of this cohort were analyzed using PCR-based methods. Using multivariate logistic regression, associations were explored between pathogens detected in blood and self-reported symptoms at enrolment and during a three-month follow-up period. Results Half of the ticks removed from humans tested positive for Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, Rickettsia monacensis, Borrelia miyamotoi and several Babesia species. Among 92 Borrelia burgdorferi s. l. positive ticks, 33% carried another pathogen from a different genus. In blood of sixteen out of 626 persons with tick bites or erythema migrans, DNA was detected from Candidatus Neoehrlichia mikurensis (n = 7), Anaplasma phagocytophilum (n = 5), Babesia divergens (n = 3), Borrelia miyamotoi (n = 1) and Borrelia burgdorferi s. l. (n = 1). None of these sixteen individuals reported any overt symptoms that would indicate a corresponding illness during the three-month follow-up period. No associations were found between the presence of pathogen DNA in blood and; self-reported symptoms, with pathogen DNA in the corresponding ticks (n = 8), reported tick attachment duration, tick engorgement, or antibiotic treatment at enrolment. Conclusions Based on molecular detection techniques, the probability of infection with a tick-borne pathogen other than Lyme spirochetes after a tick bite is roughly 2.4%, in the Netherlands. Similarly, among patients with erythema migrans, the probability of a co-infection with another tick-borne pathogen is approximately 2.7%. How often these infections cause disease symptoms or to what extend co-infections affect the course of Lyme borreliosis needs further investigations. PMID:27706159

  14. Cluster of tick-borne infections at Fort Chaffee, Arkansas: Rickettsiae and Borrelia burgdorferi in ixodid ticks.

    PubMed

    Kardatzke, J T; Neidhardt, K; Dzuban, D P; Sanchez, J L; Azad, A F

    1992-07-01

    Human intrusion into pristine habitats increases the likelihood of acquiring infectious agents from potentially infective ticks. As part of a larger human serological investigation into tick-borne illnesses, 3,000 ixodid ticks were collected during May, August, and November 1990 at Fort Chaffee, Arkansas. Ticks were examined to determine whether they harbor rickettsiae, ehrlichiae, and Borrelia burgdorferi, and to assess relationship to human exposure to tick-borne infections at Fort Chaffee, Ark. The overall tick infection rates with SFG rickettsiae, B. burgdorferi, and ehrlichiae were 4.8, 0.1, and 0.3%, respectively.

  15. Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda's enduring paradigm.

    PubMed

    Randolph, Sarah E

    2011-12-01

    During the 1990s, Milan Labuda's experimental results established a new paradigm for the study of tick-borne viruses that has since been strengthened by its demonstrated effectiveness in explaining the epidemiology of tick-borne encephalitis (TBE). This brief review summarizes the essential features of the transmission of tick-borne pathogens such as TBE virus. Leukocytes migrate between tick feeding sites, bearing infective virions and providing a transport route for the virus between co-feeding ticks independent of a systemic viraemia. Such tick-borne pathogens are thus transmitted from tick to tick via vertebrates; the ticks are the reservoirs as well as the vectors, while the vertebrate is the transient bridge. The aim is to bring the related but non-synonymous terms (co-feeding and non-systemic) to the attention of workers who use simple PCR screening to identify additional vertebrate reservoir hosts of vector-borne pathogens that are not in fact maintained in nature through systemic transmission. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Wild birds and urban ecology of ticks and tick-borne pathogens, Chicago, Illinois, USA, 2005-2010.

    PubMed

    Hamer, Sarah A; Goldberg, Tony L; Kitron, Uriel D; Brawn, Jeffrey D; Anderson, Tavis K; Loss, Scott R; Walker, Edward D; Hamer, Gabriel L

    2012-10-01

    Bird-facilitated introduction of ticks and associated pathogens is postulated to promote invasion of tick-borne zoonotic diseases into urban areas. Results of a longitudinal study conducted in suburban Chicago, Illinois, USA, during 2005-2010 show that 1.6% of 6,180 wild birds captured in mist nets harbored ticks. Tick species in order of abundance were Haemaphysalis leporispalustris, Ixodes dentatus, and I. scapularis, but 2 neotropical tick species of the genus Amblyomma were sampled during the spring migration. I. scapularis ticks were absent at the beginning of the study but constituted the majority of ticks by study end and were found predominantly on birds captured in areas designated as urban green spaces. Of 120 ticks, 5 were infected with Borrelia burgdorferi, spanning 3 ribotypes, but none were infected with Anaplasma phagocytophilum. Results allow inferences about propagule pressure for introduction of tick-borne diseases and emphasize the large sample sizes required to estimate this pressure.

  17. Wild Birds and Urban Ecology of Ticks and Tick-borne Pathogens, Chicago, Illinois, USA, 2005–2010

    PubMed Central

    Goldberg, Tony L.; Kitron, Uriel D.; Brawn, Jeffrey D.; Anderson, Tavis K.; Loss, Scott R.; Walker, Edward D.; Hamer, Gabriel L.

    2012-01-01

    Bird-facilitated introduction of ticks and associated pathogens is postulated to promote invasion of tick-borne zoonotic diseases into urban areas. Results of a longitudinal study conducted in suburban Chicago, Illinois, USA, during 2005–2010 show that 1.6% of 6,180 wild birds captured in mist nets harbored ticks. Tick species in order of abundance were Haemaphysalis leporispalustris, Ixodes dentatus, and I. scapularis, but 2 neotropical tick species of the genus Amblyomma were sampled during the spring migration. I. scapularis ticks were absent at the beginning of the study but constituted the majority of ticks by study end and were found predominantly on birds captured in areas designated as urban green spaces. Of 120 ticks, 5 were infected with Borrelia burgdorferi, spanning 3 ribotypes, but none were infected with Anaplasma phagocytophilum. Results allow inferences about propagule pressure for introduction of tick-borne diseases and emphasize the large sample sizes required to estimate this pressure. PMID:23017244

  18. Proteomic Analysis of Cattle Tick Rhipicephalus (Boophilus) microplus Saliva: A Comparison between Partially and Fully Engorged Females

    PubMed Central

    Terra, Renata Maria Soares; Martins, João Ricardo; Mulenga, Albert; Sherman, Nicholas E.; Fox, Jay W.; Yates, John R.; Termignoni, Carlos; Pinto, Antônio F. M.; da Silva Vaz, Itabajara

    2014-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship. PMID:24762651

  19. Spatial disaggregation of tick occurrence and ecology at a local scale as a preliminary step for spatial surveillance of tick-borne diseases: general framework and health implications in Belgium.

    PubMed

    Obsomer, Valerie; Wirtgen, Marc; Linden, Annick; Claerebout, Edwin; Heyman, Paul; Heylen, Dieter; Madder, Maxime; Maris, Jo; Lebrun, Maude; Tack, Wesley; Lempereur, Laetitia; Hance, Thierry; Van Impe, Georges

    2013-06-22

    The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control. In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities. Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal. This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems.

  20. The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit.

    PubMed

    Bell-Sakyi, Lesley; Darby, Alistair; Baylis, Matthew; Makepeace, Benjamin L

    2018-05-31

    Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Nuttalliella namaqua: a living fossil and closest relative to the ancestral tick lineage: implications for the evolution of blood-feeding in ticks.

    PubMed

    Mans, Ben J; de Klerk, Daniel; Pienaar, Ronel; Latif, Abdalla A

    2011-01-01

    Ticks are monophyletic and composed of the hard (Ixodidae) and soft (Argasidae) tick families, as well as the Nuttalliellidae, a family with a single species, Nuttalliella namaqua. Significant biological differences in lifestyle strategies for hard and soft ticks suggest that various blood-feeding adaptations occurred after their divergence. The phylogenetic relationships between the tick families have not yet been resolved due to the lack of molecular data for N. namaqua. This tick possesses a pseudo-scutum and apical gnathostoma as observed for ixodids, has a leathery cuticle similar to argasids and has been considered the evolutionary missing link between the two families. Little knowledge exists with regard to its feeding biology or host preferences. Data on its biology and systematic relationship to the other tick families could therefore be crucial in understanding the evolution of blood-feeding behaviour in ticks. Live specimens were collected and blood meal analysis showed the presence of DNA for girdled lizards from the Cordylid family. Feeding of ticks on lizards showed that engorgement occurred rapidly, similar to argasids, but that blood meal concentration occurs via malpighian excretion of water. Phylogenetic analysis of the 18S nuclear and 16S mitochondrial genes indicate that N. namaqua grouped basal to the main tick families. The data supports the monophyly of all tick families and suggests the evolution of argasid-like blood-feeding behaviour in the ancestral tick lineage. Based on the data and considerations from literature we propose an origin for ticks in the Karoo basin of Gondwanaland during the late Permian. The nuttalliellid family almost became extinct during the End Permian event, leaving N. namaqua as the closest living relative to the ancestral tick lineage and the evolutionary missing link between the tick families.

  2. [Tick infestation and tick prophylaxis in dogs in the area of Berlin/Brandenburg--results of a questionnaire study].

    PubMed

    Beck, Stephanie; Schein, Eberhard; Baldermann, Claudia; von Samson-Himmelstjerna, Georg; Kohn, Barbara

    2013-01-01

    Ticks can transmit different pathogens to humans and animals. Dogs are frequently exposed to tick infestation, which underscores the importance of tick control measures. The objective of this study was to examine the awareness of dog owners regarding tick infestation and tick prophylaxis by a questionnaire survey. During the period from March to December 2010 a total of 616 owners of 670 dogs completed the questionnaire. According to the questionnaire results, 92% of the dogs were previously infested by ticks; 31% of these showed a moderate tick infestation (1-2 ticks a month), almost one in ten dogs was infested by eight or more ticks a month. 17% of the dogs were examined for ticks by the respective owner not at all or only at irregular intervals, 61% of the dogs were examined at least once a day. A tick prophylaxis was performed in 469 dogs (71%). In 353 dogs (53%), registered pharmaceutical products with appropriate label claims were employed. Spot-on products were used most frequently (93%), followed by collars (5%) and sprays (1%).These products were not used as recommended in 56% of the dogs. For further 33% of the dogs, it was not possible to decide if the products were used correctly or not. According to the dog owner statements, tick borne diseases were diagnosed in approximately 2% of the dogs. Dog specific characters, such as coat length, size, age, and walking habits were significant factors influencing the frequency of tick infestation. In summary it can be concluded that nearly every dog in the area of Berlin/Brandenburg is infested by ticks. In the majority of cases the prophylactic and/or therapeutic measures to prevent infestation are not performed correctly.

  3. Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19

    PubMed Central

    Kim, Tae K.; Radulovic, Zeljko; Mulenga, Albert

    2016-01-01

    Amblyomma americanum tick serine protease inhibitor (serpin, AAS) 19, is a highly conserved protein that is characterized by its functional domain being 100% conserved across tick species. We also reported that AAS19 was an immunogenic tick saliva protein with anti-haemostatic functions and an inhibitor of trypsin-like proteases including five of the eight serine protease factors in the blood clotting cascade. In this study the goal was to validate the importance of AAS19 in A. americanum tick physiology, assess immunogenicity and investigate tick vaccine efficacy of yeast-expressed recombinant (r) AAS19. We confirm that AAS19 is important to A. americanum fitness and blood meal feeding. AAS19 mRNA disruption by RNAi silencing caused ticks to obtain blood meals that were 50% smaller than controls, and treated ticks being morphologically deformed with 100% of the deformed ticks dying in incubation. We show that rAAS19 is highly immunogenic in that two 500 µg inoculations mixed with TiterMax Gold adjuvant provoked antibody titers of more than 1:320000 that specifically reacted with native AAS19 in unfed and partially fed tick tissue. Since AAS19 is injected into animals during tick feeding, we challenge infested immunized rabbits twice to test if tick infestations of immunized rabbits could act as booster. While in the first infestation significantly smaller tick blood meals were observed on one of the two immunized rabbits, smaller blood meals were observed on both rabbits, but 60% of ticks that engorged on immunized rabbits in the second infestation failed to lay eggs. It is notable that ticks fed faster on immunized animals despite obtaining smaller blood meals. We conclude that rAAS19 is a potential component of cocktail tick vaccine. PMID:26746129

  4. Urban Breeding Corvids as Disseminators of Ticks and Emerging Tick-Borne Pathogens.

    PubMed

    Sándor, Attila D; Kalmár, Zsuzsa; Matei, Ioana; Ionică, Angela Monica; Mărcuţan, Ioan-Daniel

    2017-02-01

    Crows (Corvidae) are common city dwellers worldwide and are increasingly important subjects of epidemiology studies. Although their importance as hosts and transmitters of a number of zoonotic parasites and pathogens is well known, there are no studies on their importance as tick hosts. After mosquitoes, ticks are the most important vectors of zoonotic pathogens, especially for those causing emerging zoonotic diseases. Pathogenic bacteria, especially Borrelia spp., Rickettsia spp., and Anaplasma spp., vectored by ticks, are the cause for most vector-borne diseases in Europe. Here we report on ticks and tick-borne pathogens harbored by urban breeding crows. A total of 36 birds (33.33%, n = 108) hosted ticks, with 91 individual ticks belonging to 6 species (Haemaphysalis concinna, Haemaphysalis parva, Haemaphysalis punctata, Hyalomma marginatum, Ixodes arboricola, and Ixodes ricinus). Rickettsia spp. DNA was found in 6.6% of ticks and 1.9% of bird tissues, whereas Anaplasma phagocytophilum was found in 5.9% of ticks and 0.9% of birds. Two rickettsial genospecies were located, Rickettsia helvetica and Rickettsia monacensis. This is the first study to determine such a diverse tick spectrum feeding on urban corvids, while highlighting their importance as tick hosts and raising concerns about their potential risk to human health.

  5. Molecular survey of hard ticks in endemic areas of tick-borne diseases in China.

    PubMed

    Lu, Xin; Lin, Xian-Dan; Wang, Jian-Bo; Qin, Xin-Cheng; Tian, Jun-Hua; Guo, Wen-Ping; Fan, Fei-Neng; Shao, Renfu; Xu, Jianguo; Zhang, Yong-Zhen

    2013-06-01

    Over the past several years, there was a substantial increase in the number of cases of known and novel tick-borne infections in humans in China. To better understand the ticks associated with these infections, we collected hard ticks from animals or around livestock shelters in 29 localities in 5 provinces (Beijing, Henan, Hubei, Inner Mongolia, and Zhejiang) where cases of tick-borne illness were reported. We collected 2950 hard ticks representing 7 species of 4 genera (Dermacentor sinicus, Haemaphysalis flava, Haemaphysalis longicornis, Ixodes granulatus, Ixodes persulcatus, Rhipicephalus microplus, and Rhipicephalus sanguineus). These ticks were identified to species using morphological characters initially. We then sequenced the mitochondrial small subunit rRNA (12S rRNA) gene, cytochrome oxidase subunit 1 (COI) gene, and the second internal transcribed spacer (ITS2) gene of these ticks, and conducted phylogenetic analyses. Our analyses showed that the molecular and morphological data are consistent in the identification of the 7 tick species. Furthermore, all these 7 tick species from China were genetically closely related to the same species or related species found outside China. Rapid and accurate identification and long-term monitoring of these ticks will be of significance to the prevention and control of tick-borne diseases in China. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Anti-tick biological control agents: assessment and future perspectives

    USGS Publications Warehouse

    Samish, M.; Ginsberg, H.S.; Glazer, I.; Bowman, Alan. S.; Nuttall, Patricia A.

    2008-01-01

    Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. Ticks: Biology, Disease and Control is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.

  7. Prevention of tick-borne diseases.

    PubMed

    Piesman, Joseph; Eisen, Lars

    2008-01-01

    Tick-borne diseases are on the rise. Lyme borreliosis is prevalent throughout the Northern Hemisphere, and the same Ixodes tick species transmitting the etiologic agents of this disease also serve as vectors of pathogens causing human babesiosis, human granulocytic anaplasmosis, and tick-borne encephalitis. Recently, several novel agents of rickettsial diseases have been described. Despite an explosion of knowledge in the fields of tick biology, genetics, molecular biology, and immunology, transitional research leading to widely applied public health measures to combat tick-borne diseases has not been successful. Except for the vaccine against tick-borne encephalitis virus, and a brief campaign to reduce this disease in the former Soviet Union through widespread application of DDT, success stories in the fight against tick-borne diseases are lacking. Both new approaches to tick and pathogen control and novel ways of translating research findings into practical control measures are needed to prevent tick-borne diseases in the twenty-first century.

  8. Epidemiological survey of ticks and tick-borne pathogens in pet dogs in south-eastern China.

    PubMed

    Zhang, Jianwei; Liu, Qingbiao; Wang, Demou; Li, Wanmeng; Beugnet, Frédéric; Zhou, Jinlin

    2017-01-01

    To understand the epidemiology of tick infestation and tick-borne diseases in pet dogs in south-eastern China and to develop a reference for their prevention and treatment, we collected 1550 ticks parasitizing 562 dogs in 122 veterinary clinics from 20 cities of south-eastern China. Dogs were tested for common tick-borne pathogens; collected ticks were identified and processed for the detection of tick-borne pathogens. The use of an in vitro ELISA diagnostic kit for antibody detection (SNAP®4Dx® Plus) on dog sera found the infection rates with Borrelia burgdorferi sensu lato, Ehrlichia canis, and Anaplasma spp. to be 0.4%, 1.3% and 2.7%, respectively. By using a specific ELISA method, the infection rate with Babesia gibsoni was 3.9%. Rhipicephalus sanguineus sensu lato, Haemaphysalis longicornis and Rhipicephalus haemaphysaloides were the major tick species identified on pet dogs. PCR tests were conducted to detect five tick-borne pathogens in 617 ticks. The infection rate was 10.2% for E. canis, 3.4% for Anaplasma platys, 2.3% for B. gibsoni, 0.3% for B. burgdorferi s.l. and 0% for Babesia canis. Some ticks were co-infected with two (1.46%) or three pathogens (0.16%). These results indicate the infestation of pet dogs by ticks infected with tick-borne pathogens in south-eastern China, and the need for effective treatment and routine prevention of tick infestations in dogs. © J. Zhang et al., published by EDP Sciences, 2017.

  9. The ecology of ticks and epidemiology of tick-borne viral diseases.

    PubMed

    Estrada-Peña, Agustín; de la Fuente, José

    2014-08-01

    A number of tick-borne diseases of humans have increased in incidence and geographic range over the past few decades, and there is concern that they will pose an even greater threat to public health in future. Although global warming is often cited as the underlying mechanism favoring the spread of tick-borne diseases, climate is just one of many factors that determine which tick species are found in a given geographic region, their population density, the likelihood that they will be infected with microbes pathogenic for humans and the frequency of tick-human contact. This article provides basic information needed for microbiologists to understand the many factors that affect the geographic range and population density of ticks and the risk of human exposure to infected ticks. It first briefly summarizes the life cycle and basic ecology of ticks and how ticks and vertebrate hosts interact, then reviews current understanding of the role of climate, sociodemographic factors, agricultural development and changes in human behavior that affect the incidence of tick-borne diseases. These concepts are then illustrated in specific discussions of tick-borne encephalitis and Crimean-Congo hemorrhagic fever. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Tick-borne pathogens and the vector potential of ticks in China.

    PubMed

    Yu, Zhijun; Wang, Hui; Wang, Tianhong; Sun, Wenying; Yang, Xiaolong; Liu, Jingze

    2015-01-14

    Ticks, as obligate blood-sucking ectoparasites, attack a broad range of vertebrates and transmit a great diversity of pathogenic microorganisms. They are considered second only to mosquitoes as vectors of human disease, and the most important vector of pathogens of domestic and wild animals. Of the 117 described species in the Chinese tick fauna, 60 are known to transmit one or more diseases: 36 species isolated within China and 24 species isolated outside China. Moreover, 38 of these species carry multiple pathogens, indicating the potentially vast role of these vectors in transmitting pathogens. Spotted fever is the most common tick-borne disease, and is carried by at least 27 tick species, with Lyme disease and human granulocytic anaplasmosis ranked as the second and third most widespread tick-borne diseases, carried by 13 and 10 species, respectively. Such knowledge provides us with clues for the identification of tick-associated pathogens and suggests ideas for the control of tick-borne diseases in China. However, the numbers of tick-associated pathogens and tick-borne diseases in China are probably underestimated because of the complex distribution and great diversity of tick species in this country.

  11. Tick infestation on wild snakes in northern part of western Ghats of India.

    PubMed

    Pandit, Pranav; Bandivdekar, Ruta; Geevarghese, G; Pande, Satish; Mandke, Omkar

    2011-05-01

    In total, 167 individuals of 30 species of snakes belonging to 22 genera and five families were examined for tick infestation from November 2008 to March 2010. Only two species of snakes, Ptyas mucosa (L., 1758) (Indian rat snake) and Naja naja (L., 1758) (spectacled cobra), were found infested by ticks. All ticks collected were identified to be Amblyomma gervaisi [previously Aponomma gervaisi (Lucas, 1847) 1. The average prevalence of these ticks on Indian rat snakes (n=48) was 29.16%, with abundance of 7.02 ticks per individual; on spectacled cobras (n=20), average prevalence was 30.00%, with abundance of 6.9 ticks per individual. The nymphs and males were predominant. All the ticks were found on the dorsal aspect of the body of the snake, and no ticks were recorded on the head, tail, or ventral body. The rate of tick infestation was highest in scrubland and was lowest in evergreen forests. Female Indian rat snakes showed higher tick infestation rates than male Indian rat snakes. Using Mann-Whitney U test, we found that longer snakes of both species had significantly higher rate of tick infestation in both the species of snakes.

  12. Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks.

    PubMed

    Raileanu, Cristian; Moutailler, Sara; Pavel, Ionuţ; Porea, Daniela; Mihalca, Andrei D; Savuta, Gheorghe; Vayssier-Taussat, Muriel

    2017-01-01

    Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., " Candidatus Neoehrlichia mikurensis", and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus , 19 Haemaphysalis punctata , and 4 Dermacentor reticulatus ) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., " Candidatus Neoehrlichia mikurensis", and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s.s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The most common association was between B. garinii and B. afzelii (4.3%), followed by B. garinii and B. lusitaniae (3.0%). The most frequent dual co-infections were between Borrelia spp. and Rickettsia spp., (1.3%), and between Borrelia spp. and " Candidatus Neoehrlichia mikurensis" (1.3%). The diversity of tick-borne pathogens detected in this study and the frequency of co-infections should influence all infection risk evaluations following a tick bite.

  13. Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks

    PubMed Central

    Raileanu, Cristian; Moutailler, Sara; Pavel, Ionuţ; Porea, Daniela; Mihalca, Andrei D.; Savuta, Gheorghe; Vayssier-Taussat, Muriel

    2017-01-01

    Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus, 19 Haemaphysalis punctata, and 4 Dermacentor reticulatus) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., “Candidatus Neoehrlichia mikurensis”, and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s.s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The most common association was between B. garinii and B. afzelii (4.3%), followed by B. garinii and B. lusitaniae (3.0%). The most frequent dual co-infections were between Borrelia spp. and Rickettsia spp., (1.3%), and between Borrelia spp. and “Candidatus Neoehrlichia mikurensis” (1.3%). The diversity of tick-borne pathogens detected in this study and the frequency of co-infections should influence all infection risk evaluations following a tick bite. PMID:28261565

  14. Pilot study assessing the effectiveness of factory-treated, long-lasting permethrin-impregnated clothing for the prevention of tick bites during occupational tick exposure in highly infested military training areas, Germany.

    PubMed

    Faulde, Michael K; Rutenfranz, Martin; Keth, Alexander; Hepke, Jürgen; Rogge, Mareike; Görner, Andreas

    2015-02-01

    The protective effectiveness of factory-based permethrin-impregnated polymer-coated battle dress uniforms (PTBDUs) against tick bites was evaluated at four military training areas in southwestern and central Germany where tick bite incidence is known to be high. Data were analyzed by comparing tick bite incidence using non-permethrin-treated BDUs (NTBDUs) during 2009 versus PTBDUs during 2010 and 2011, the first two years after their formal introduction for in-country use in the German Bundeswehr. During 2009, 262 individual tick bites were reported at the four training sites, resulting in a tick bite incidence of 8.8 % per exposed person when wearing NTBDUs only. In 2010 and 2011, one tick bite case occurred under field conditions each year that PTBDUs were worn, corresponding to a protective effectiveness of 99.6 and 98.6 %. These data imply an annual tick bite incidence of 0.035 and 0.078 % per exposed person, respectively. Between 2010 and 2011, a 0.8 % decline in the protective effectiveness of PTBDUs was observed. Five tick bite incidents occurred while wearing non-impregnated parkas over correctly worn PTBDUs. Ixodes ricinus ticks were collected by standard tick drags from 2009 to 2011, with high mean annual densities ranging from 28.9 to 106.5 ticks per 100 m(2), while single drags revealed tick densities between zero and 381 ticks per 100 m(2). Overall, 4596 I. ricinus ticks (54 ♂, 82 ♀, 1776 nymphs, and 2684 larvae) were collected, of which 128 (2.8 %; mean annual range, 0-10.1 %) were Borrelia burgdorferi s.l. positive. The Borrelia genospecies distribution was as follows: 112 (87.5 %) Borrelia afzelii, 10 (7.8 %) B. burgdorferi s.s., and 6 (4.7 %) Borrelia garinii. Neither the tick density means from 2009 to 2011 nor associated B. burgdorferi s.l. prevalences differed significantly among the military locations investigated. The documented tick bite reductions clearly demonstrate the powerful protective effectiveness of properly worn PTBDUs against tick bites. Nevertheless, all apparel worn over PTBDUs should also be impregnated with permethrin in order to prevent tick infestation and subsequent bites.

  15. Modeling the impact of climate and landscape on the efficacy of white tailed deer vaccination for cattle tick control in northeastern Mexico.

    PubMed

    Estrada-Peña, Agustín; Carreón, Diana; Almazán, Consuelo; de la Fuente, José

    2014-01-01

    Cattle ticks are distributed worldwide and affect animal health and livestock production. White tailed deer (WTD) sustain and spread cattle tick populations. The aim of this study was to model the efficacy of anti-tick vaccination of WTD to control tick infestations in the absence of cattle vaccination in a territory where both host species coexist and sustain cattle tick populations. Agent-based models that included land cover/landscape properties (patch size, distances to patches) and climatic conditions were built in a GIS environment to simulate WTD vaccine effectiveness under conditions where unvaccinated cattle shared the landscape. Published and validated information on tick life cycle was used to build models describing tick mortality and developmental rates. Data from simulations were applied to a large territory in northeastern Mexico where cattle ticks are endemic and WTD and cattle share substantial portions of the habitat. WTD movements were simulated together with tick population dynamics considering the actual landscape and climatic features. The size of the vegetation patches and the distance between patches were critical for the successful control of tick infestations after WTD vaccination. The presence of well-connected, large vegetation patches proved essential for tick control, since the tick could persist in areas of highly fragmented habitat. The continued application of one yearly vaccination on days 1-70 for three years reduced tick abundance/animal/patch by a factor of 40 and 60 for R. annulatus and R. microplus, respectively when compared to non-vaccinated controls. The study showed that vaccination of WTD alone during three consecutive years could result in the reduction of cattle tick populations in northeastern Mexico. Furthermore, the results of the simulations suggested the possibility of using vaccines to prevent the spread and thus the re-introduction of cattle ticks into tick-free areas.

  16. Novel Rickettsia and emergent tick-borne pathogens: A molecular survey of ticks and tick-borne pathogens in Shimba Hills National Reserve, Kenya.

    PubMed

    Mwamuye, Micky M; Kariuki, Edward; Omondi, David; Kabii, James; Odongo, David; Masiga, Daniel; Villinger, Jandouwe

    2017-02-01

    Ticks are important vectors of emerging and re-emerging zoonoses, the majority of which originate from wildlife. In recent times, this has become a global public health concern that necessitates surveillance of both known and unknown tick-borne pathogens likely to be future disease threats, as well as their tick vectors. We carried out a survey of the diversity of ticks and tick-borne pathogens in Kenya's Shimba Hills National Reserve (SHNR), an area with intensified human-livestock-wildlife interactions, where we collected 4297 questing ticks (209 adult ticks, 586 nymphs and 3502 larvae). We identified four tick species of two genera (Amblyomma eburneum, Amblyomma tholloni, Rhipicephalus maculatus and a novel Rhipicephalus sp.) based on both morphological characteristics and molecular analysis of 16S rRNA, internal transcribed spacer 2 (ITS 2) and cytochrome oxidase subunit 1 (CO1) genes. We pooled the ticks (3-8 adults, 8-15 nymphs or 30 larvae) depending on species and life-cycle stages, and screened for bacterial, arboviral and protozoal pathogens using PCR with high-resolution melting analysis and sequencing of unique melt profiles. We report the first molecular detection of Anaplasma phagocytophilum, a novel Rickettsia-like and Ehrlichia-like species, in Rh. maculatus ticks. We also detected Ehrlichia chaffeensis, Coxiella sp., Rickettsia africae and Theileria velifera in Am. eburneum ticks for the first time. Our findings demonstrate previously unidentified tick-pathogen relationships and a unique tick diversity in the SHNR that may contribute to livestock, and possibly human, morbidity in the region. This study highlights the importance of routine surveillance in similar areas to elucidate disease transmission dynamics, as a critical component to inform the development of better tick-borne disease diagnosis, prevention and control measures. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Effects of wildlife and cattle on tick abundance in central Kenya.

    PubMed

    Keesing, Felicia; Allan, Brian F; Young, Truman P; Ostfeld, Richard S

    2013-09-01

    In African savannas, large mammals, both wild and domestic, support an abundant and diverse population of tick ectoparasites. Because of the density of ticks and the many pathogens that they vector, cattle in East Africa are often treated with acaricides. While acaricides are known to be effective at reducing tick burdens on cattle, their effects on the overall abundance and community composition of ticks in savanna ecosystems are less well understood. It is also not known how well tick populations can be maintained in the absence of large mammals. We evaluated the effects of wildlife and of acaricide-treated cattle on host-seeking tick populations in a long-term, exclusion experiment in central Kenya. Over seven years, we sampled larval, nymphal, and adult ticks monthly on replicated treatment plots that controlled for the presence of cattle and for the presence of two guilds of large wild mammals: megaherbivores (giraffes and elephants) and all other large wild herbivores (> 15 kg). Two species of ticks were found in this habitat; across all surveys, 93% were Rhipicephalus pulchellus and 7% were R. praetextatus. The presence of acaricide-treated cattle dramatically reduced the abundance of host-seeking nymphal and adult ticks but did not affect the abundance of host-seeking larval ticks. The abundance of larval ticks was determined by the presence of large wild mammals, which appear to import gravid female ticks into the experimental plots. On plots with no large mammals, either wild or domestic, larval and nymphal ticks were rare. Adult R. pulchellus were most abundant in plots that allowed wildlife but excluded cattle. Adult R. praetextatus were relatively abundant in plots without any large mammals. These differences suggest that these ticks utilize different members of the host community. The reduction in ticks that results from the presence of acaricide-treated cattle has potential health benefits for humans and wildlife, but these benefits must be weighed against potential costs, including reduced availability of food for birds such as oxpeckers that feed on ticks.

  18. Widespread Rickettsia spp. Infections in Ticks (Acari: Ixodoidea) in Taiwan.

    PubMed

    Kuo, Chi-Chien; Shu, Pei-Yun; Mu, Jung-Jung; Lee, Pei-Lung; Wu, Yin-Wen; Chung, Chien-Kung; Wang, Hsi-Chieh

    2015-09-01

    Ticks are second to mosquitoes as the most important disease vectors, and recent decades have witnessed the emergence of many novel tick-borne rickettsial diseases, but systematic surveys of ticks and tick-borne rickettsioses are generally lacking in Asia. We collected and identified ticks from small mammal hosts between 2006 and 2010 in different parts of Taiwan. Rickettsia spp. infections in ticks were identified by targeting ompB and gltA genes with nested polymerase chain reaction. In total, 2,732 ticks were collected from 1,356 small mammals. Rhipicephalus haemaphysaloides Supino (51.8% of total ticks), Haemaphysalis bandicota Hoogstraal & Kohls (28.0%), and Ixodes granulatus Supino (20.0%) were the most common tick species, and Rattus losea Swinhoe (44.7% of total ticks) and Bandicota indica Bechstein (39.9%) were the primary hosts. The average Rickettsia infective rate in 329 assayed ticks was 31.9% and eight Rickettsia spp. or closely related species were identified. This study shows that rickettsiae-infected ticks are widespread in Taiwan, with a high diversity of Rickettsia spp. circulating in the ticks. Because notifiable rickettsial diseases in Taiwan only include mite-borne scrub typhus and flea-borne murine typhus, more studies are warranted for a better understanding of the real extent of human risks to rickettsioses in Taiwan. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. West African Cattle Farmers' Perception of Tick-Borne Diseases.

    PubMed

    Adehan, Safiou B; Adakal, Hassane; Gbinwoua, Donald; Yokossi, Daté; Zoungrana, Sébastien; Toé, Patrice; Ouedraogo, Mathieu; Gbaguidi, A Michel; Adoligbé, Camus; Fandohan, A Belarmin; Hounmanou, Gildas; Glèlè Kakaï, Romain; Farougou, Souaïbou; De Clercq, Eva M

    2018-03-13

    Worldwide, cattle production is struggling to face the negative impacts caused by ticks and Rhipicephalus (Boophilus) microplus is one of the most harmful ticks for livestock. Most of the people in West Africa depend on cattle farming and subsistence agriculture. The presence of ticks on cattle is a major problem faced by smallholder farmers who fight for their livelihood. National and regional tick control programs could assist these rural communities in protecting their livelihoods against ticks and tick-borne diseases, but only if they take into account the targeted herders and their perception on cattle management and tick control. This paper aims to provide a better insight in the socio-economic characteristics of Beninese cattle farmers, and their perception on tick burden, as well as to document common tick control strategies. Different tick species and their seasonality are well understood by cattle herders. For tick control, many still use manual tick removal, especially in the north of the country. The high cost of acaricides, the lack of financial means of African farmers, and of the local stockbreeders in particular, limits the use of acaricides in livestock breeding in Benin. While aiming to increase the meat or milk production of their animals, stockbreeders who can afford it sometimes turn to an abusive use of acaricides, which might in time lead to an increase in tick resistance. This study remains one of the rare studies to report extensively on the perceptions of West African cattle herders.

  20. Methods for rapid transfer and localization of lyme disease pathogens within the tick gut.

    PubMed

    Kariu, Toru; Coleman, Adam S; Anderson, John F; Pal, Utpal

    2011-02-14

    Lyme disease is caused by infection with the spirochete pathogen Borrelia burgdorferi, which is maintained in nature by a tick-rodent infection cycle. A tick-borne murine model has been developed to study Lyme disease in the laboratory. While naíve ticks can be infected with B. burgdorferi by feeding them on infected mice, the molting process takes several weeks to months to complete. Therefore, development of more rapid and efficient tick infection techniques, such as a microinjection-based procedure, is an important tool for the study of Lyme disease. The procedure requires only hours to generate infected ticks and allows control over the delivery of equal quantities of spirochetes in a cohort of ticks. This is particularly important as the generation of B. burgdorferi infected ticks by the natural feeding process using mice fails to ensure 100% infection rate and potentially results in variation of pathogen burden amongst fed ticks. Furthermore, microinjection can be used to infect ticks with B. burgdorferi isolates in cases where an attenuated strain is unable to establish infection in mice and thus can not be naturally acquired by ticks. This technique can also be used to deliver a variety of other biological materials into ticks, for example, specific antibodies or double stranded RNA. In this article, we will demonstrate the microinjection of nymphal ticks with in vitro-grown B. burgdorferi. We will also describe a method for localization of Lyme disease pathogens in the tick gut using confocal immunofluorescence microscopy.

  1. Review of cattle ticks (Acari, Ixodida) in Ivory Coast and geographic distribution of Rhipicephalus (Boophilus) microplus, an emerging tick in West Africa.

    PubMed

    Boka, O M; Achi, L; Adakal, H; Azokou, A; Yao, P; Yapi, Y G; Kone, M; Dagnogo, K; Kaboret, Y Y

    2017-04-01

    The exotic tick Rhipicephalus (Boophilus) microplus was discovered in Ivory Coast in 2007 and then gradually in other countries in West Africa. It is known to induce significant losses in farming and to replace other species of the same genus. In order to contribute to improve health and productivity of cattle in Ivory Coast regarding the emergence of this dreaded tick, a study was conducted to determine the current geographic distribution of the tick R. (B.) microplus and review cattle ticks in general. To this end, 23,460 ticks were collected from 180 farms located throughout the country. Ten species of ticks belonging to the genus Rhipicephalus (including those of the subgenus Boophilus), Hyalomma and Ambyomma were identified. It was found that the exotic tick R. (B.) microplus has invaded the entire Ivorian territory and is now the main cattle tick (63.6% of ticks collected), followed by Amblyomma variegatum that remains still dominant in the North. The population of indigenous species of Rhipicephalus (Boophilus) is in drastic decline.

  2. Long-term studies on the economic impact of ticks on Sanga cattle in Zambia.

    PubMed

    de Castro, J J; James, A D; Minjauw, B; Di Giulio, G U; Permin, A; Pegram, R G; Chizyuka, H G; Sinyangwe, P

    1997-01-01

    Three different tick control policies were tested in groups of traditionally managed Sanga cattle in the Central Province of Zambia over a period of 3 years. One group was given strategic tick control using 12 pyrethroid acaricide spray applications between the onset and the end of the wet season (October to March). The productivity of this herd was compared with that of a group with no tick control and a group under an intensive tick control regimen of spraying every week in the wet season and every 2 weeks in the dry season (36 applications per year). The highest output was associated with intensive tick control, followed by strategic control and then no tick control policies. However, when the costs of tick control were taken into account, the strategic tick control policy produced the best economic result, followed by the intensive and then the no tick control policies. Neither the strategic nor the intensive tick control policy was sufficient to prevent the transmission of East Coast fever (ECF) infection when this disease was introduced to the area.

  3. Ticks and Fleas Infestation on East Hedgehogs (Erinaceus concolor) in Van Province, Eastern Region of Turkey

    PubMed Central

    Goz, Yaşar; Yilmaz, Ali Bilgin; Aydin, Abdulalim; Dicle, Yalçın

    2016-01-01

    Background: Ixodid ticks (Acari: İxodidae) and fleas (Siphonaptera) are the major vectors of pathogens threatening animals and human healths. The aim of our study was to detect the infestation rates of East Hedgehogs (Erinaceus concolor) with ticks and fleas in Van Province, eastern region of Turkey. Methods: We examined fleas and ticks infestation patterns in 21 hedgehogs, collected from three suburbs with the greater of number gardens. In order to estimate flea and tick infestation of hedgehogs, we immobilized the ectoparasites by treatment the body with a insecticide trichlorphon (Neguvon®-Bayer). Results: On the hedgehogs, 60 ixodid ticks and 125 fleas were detected. All of the ixodid ticks were Rhipicephalus turanicus and all of the fleas were Archaeopsylla erinacei. Infestation rate for ticks and fleas was detected 66.66 % and 100 %, respectively. Conclusion: We detected ticks (R. turanicus) and fleas (A. erinacei) in hedgehogs at fairly high rates. Since many ticks and fleas species may harbor on hedgehogs and transmit some tick-borne and flea-borne patogens, this results are the important in terms of veterinary and public health. PMID:27047971

  4. Biocontrol of ticks by entomopathogenic nematodes. Research update.

    PubMed

    Samish, M; Alekseev, E; Glazer, I

    2000-01-01

    Entomopathogenic nematodes (EPNs) are lethal to ticks even though they do not use their normal propagation cycle within tick cadavers. The tick Boophilus annulatus was found to be far more susceptible to EPNs than Hyalomma excavatum, Rhipicephalus bursa, or Rhipicephalus sanguineus. Ticks seem to be less susceptible to nematodes when feeding on a host. Preimaginal tick stages were less susceptible to nematodes than adult ticks. The mortality rate of unfed females was highest, followed by unfed males, and engorged females. The virulence of nematodes to ticks varied greatly among different nematode strains. In most cases, the Heterorhabditis sp. strains were the most virulent strains tested in petri dishes. In buckets containing sandy soil sprayed with 50 nematodes/cm2 and engorged B. annulatus females, the LT50 of the ticks was less than five days. The addition of manure to soil or a manure extract to petri dishes reduced nematode virulence. Since ticks spend most of their life cycle in the upper humid layer of the ground, and many nematode strains share this same ecological niche, the use of EPNs for biocontrol of ticks appears promising.

  5. Tick infestation and prophylaxis of dogs in northeastern Germany: a prospective study.

    PubMed

    Beck, Stephanie; Schreiber, Cécile; Schein, Eberhard; Krücken, Jürgen; Baldermann, Claudia; Pachnicke, Stefan; von Samson-Himmelstjerna, Georg; Kohn, Barbara

    2014-04-01

    Ticks transmit various important pathogens to humans and animals, and dogs are frequently exposed to tick infestation. The objective of this study was to examine tick infestation and the characteristics of tick prophylaxis of dogs in the Berlin/Brandenburg area. A total of 441 dogs (392 owners) was examined from March 2010 to April 2011. The dog owners participated in the study for a period of 1-13 months (10.33±2.85; median 11.00). The prevalences of a total of 1728 ticks collected from 251 (57%) of these dogs were: 46.0% Ixodes ricinus, 45.1% Dermacentor reticulatus, 8.8% Ixodes hexagonus, and 0.1% Rhipicephalus sanguineus. The ticks were 75.2% adult females and 24.4% adult males, and 0.4% were nymphs. The average prevalence of apparent infestation of tick-positive dogs was 0.78 ticks/month (median 0.38). Tick infestation was highest in October (5.9±5.8 ticks/dog) and lowest in December (1±0 tick/dog). The highest frequency of infestation was observed during May (117 dogs). The number of ticks found on dogs by owners on a single day varied from one to 70 (median 1). The scutal index indicated that more than 60% of I. ricinus and more than 40% of D. reticulatus had been removed after they had fed for more than 2 days. The heads, necks, chests, and limbs of the dogs were the most common attachment sites. Data for tick prophylaxis with substances licensed for dogs by the Medicinal Products Act (MPA) were available for 124 dogs; a total of 1195 ticks was obtained from these dogs. About two-thirds of the ticks were collected from dogs that were treated incorrectly (n=96) or were not treated (n=60). One third of the ticks were collected from dogs (n=96) that had been treated correctly. Dog-specific characteristics such as length of coat (p=0.011) and body size (p=0.040) played significant roles in tick infestation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Comparative Metagenomic Profiling of Symbiotic Bacterial Communities Associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus Ticks.

    PubMed

    Kurilshikov, Alexander; Livanova, Natalya N; Fomenko, Nataliya V; Tupikin, Alexey E; Rar, Vera A; Kabilov, Marsel R; Livanov, Stanislav G; Tikunova, Nina V

    2015-01-01

    Ixodes persulcatus, Ixodes pavlovskyi, and Dermacentor reticulatus ticks inhabiting Western Siberia are responsible for the transmission of a number of etiological agents that cause human and animal tick-borne diseases. Because these ticks are abundant in the suburbs of large cities, agricultural areas, and popular tourist sites and frequently attack people and livestock, data regarding the microbiomes of these organisms are required. Using metagenomic 16S profiling, we evaluate bacterial communities associated with I. persulcatus, I. pavlovskyi, and D. reticulatus ticks collected from the Novosibirsk region of Russia. A total of 1214 ticks were used for this study. DNA extracted from the ticks was pooled according to tick species and sex. Sequencing of the V3-V5 domains of 16S rRNA genes was performed using the Illumina Miseq platform. The following bacterial genera were prevalent in the examined communities: Acinetobacter (all three tick species), Rickettsia (I. persulcatus and D. reticulatus) and Francisella (D. reticulatus). B. burgdorferi sensu lato and B. miyamotoi sequences were detected in I. persulcatus and I. pavlovskyi but not in D. reticulatus ticks. The pooled samples of all tick species studied contained bacteria from the Anaplasmataceae family, although their occurrence was low. DNA from A. phagocytophilum and Candidatus Neoehrlichia mikurensis was first observed in I. pavlovskyi ticks. Significant inter-species differences in the number of bacterial taxa as well as intra-species diversity related to tick sex were observed. The bacterial communities associated with the I. pavlovskyi ticks displayed a higher biodiversity compared with those of the I. persulcatus and D. reticulatus ticks. Bacterial community structure was also diverse across the studied tick species, as shown by permutational analysis of variance using the Bray-Curtis dissimilarity metric (p = 0.002). Between-sex variation was confirmed by PERMANOVA testing in I. persulcatus (p = 0.042) and I. pavlovskyi (p = 0.042) ticks. Our study indicated that 16S metagenomic profiling could be used for rapid assessment of the occurrence of medically important bacteria in tick populations inhabiting different natural biotopes and therefore the epidemic danger of studied foci.

  7. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding

    PubMed Central

    Pinto, Antônio F. M.; Moresco, James; Yates, John R.; da Silva Vaz, Itabajara; Mulenga, Albert

    2016-01-01

    Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick feeding phases. These data set the foundation for in depth I. scapularis tick feeding physiology and TBD transmission studies. PMID:26751078

  8. Adverse moisture events predict seasonal abundance of Lyme disease vector ticks (Ixodes scapularis)

    USGS Publications Warehouse

    Berger, Kathryn A.; Ginsberg, Howard S.; Dugas, Katherine D.; Hamel, Lutz H.; Mather, Thomas N.

    2014-01-01

    Background: Lyme borreliosis (LB) is the most commonly reported vector-borne disease in north temperate regions worldwide, affecting an estimated 300,000 people annually in the United States alone. The incidence of LB is correlated with human exposure to its vector, the blacklegged tick (Ixodes scapularis). To date, attempts to model tick encounter risk based on environmental parameters have been equivocal. Previous studies have not considered (1) the differences between relative humidity (RH) in leaf litter and at weather stations, (2) the RH threshold that affects nymphal blacklegged tick survival, and (3) the time required below the threshold to induce mortality. We clarify the association between environmental moisture and tick survival by presenting a significant relationship between the total number of tick adverse moisture events (TAMEs - calculated as microclimatic periods below a RH threshold) and tick abundance each year.Methods: We used a 14-year continuous statewide tick surveillance database and corresponding weather data from Rhode Island (RI), USA, to assess the effects of TAMEs on nymphal populations of I. scapularis. These TAMEs were defined as extended periods of time (>8 h below 82% RH in leaf litter). We fit a sigmoid curve comparing weather station data to those collected by loggers placed in tick habitats to estimate RH experienced by nymphal ticks, and compiled the number of historical TAMEs during the 14-year record.Results: The total number of TAMEs in June of each year was negatively related to total seasonal nymphal tick densities, suggesting that sub-threshold humidity episodes >8 h in duration naturally lowered nymphal blacklegged tick abundance. Furthermore, TAMEs were positively related to the ratio of tick abundance early in the season when compared to late season, suggesting that lower than average tick abundance for a given year resulted from tick mortality and not from other factors.Conclusions: Our results clarify the mechanism by which environmental moisture affects blacklegged tick populations, and offers the possibility to more accurately predict tick abundance and human LB incidence. We describe a method to forecast LB risk in endemic regions and identify the predictive role of microclimatic moisture conditions on tick encounter risk.

  9. Comparative in vitro anti-tick efficacy of commercially available products and newly developed phyto-formulations against field collected and resistant tick lines of Rhipicephalus (Boophilus) microplus.

    PubMed

    Ajith Kumar, K G; Sharma, Anil Kumar; Kumar, Sachin; Ray, D D; Rawat, A K S; Srivastava, Sharad; Ghosh, Srikant

    2016-12-01

    Rhipicephalus ( Boophilus ) microplus is considered as one of the most widely distributed tick species ecto-parasitizing on livestock and causes fatal diseases with significant production loss. To address the problem of controlling acaricide resistant tick infestations on animals, attention has been paid to develop eco-friendly phyto-acaricides. The present study was undertaken to evaluate the comparative anti-tick activities of commercially available herbal and chemical products with chemically characterized phyto-formulations developed recently against field ticks and resistant tick lines of R. ( B. ) microplus . The chemical product Butox ® Vet was found nearly passive against all the tested resistant tick lines. However, one of the commercial polyherbal product, Zerokeet ® showed an efficacy (E%) of 41.8-75.4 % ([Formula: see text]) using recommended dilution (1:2) against field ticks and resistant tick lines. However, the other commercial product, Erina ® EP has very limited efficacy against all the tested tick. In comparison, the newly developed phyto-formulation, NBA/13/B/2 and NAC-01 conferred an E% of 82.4-91.3 % ([Formula: see text]) and 62.3-94.6 % ([Formula: see text]), respectively, against tested resistant ticks. Results indicated higher marketing potentiality of newly developed formulation in the existing tick problem scenario.

  10. Passive tick surveillance, dog seropositivity, and incidence of human Lyme disease

    USGS Publications Warehouse

    Johnson, Jaree L.; Ginsberg, Howard S.; Zhioua, Elyes; Whitworth, Ulysses G.; Markowski, Daniel; Hyland, Kerwin E.; Hu, Renjie

    2004-01-01

    Data on nymphal Ixodes scapularis ticks submitted by the public to the University of Rhode Island Tick Research Laboratory for testing from 1991 to 2000 were compared with human case data from the Rhode Island Department of Health to determine the efficacy of passive tick surveillance at assessing human risk of Lyme disease. Numbers of ticks submitted were highly correlated with human cases by county (r = 0.998, n = 5 counties) and by town (r = 0.916, n = 37 towns), as were the numbers of positive ticks submitted (r = 0.989 by county, r = 0.787 by town). Human cases were correlated with ticks submitted by town each year, and with positive ticks in all but 2 years. Thus, passive tick surveillance effectively assessed geographical risk of human Lyme disease. In contrast, tick submissions through time were not correlated with human cases from year to year. Dog seropositivity was significantly correlated with human cases by county in both years tested, but by town in only one of two years. Numbers of ticks submitted were correlated with dog seropositivity by county but not by town, apparently because of high variability among towns with small sample sizes. Our results suggest that passive tick surveillance, using ticks submitted by the public for Lyme spirochete testing, can be used to assess the geographical distribution of Lyme disease risk, but cannot reliably predict Lyme incidence from year to year.

  11. Hyalomma ticks on northward migrating birds in southern Spain: Implications for the risk of entry of Crimean-Congo haemorrhagic fever virus to Great Britain.

    PubMed

    England, Marion E; Phipps, Paul; Medlock, Jolyon M; Atkinson, Peter M; Atkinson, Barry; Hewson, Roger; Gale, Paul

    2016-06-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a zoonotic virus transmitted by Hyalomma ticks, the immature stages of which may be carried by migratory birds. In this study, a total of 12 Hyalomma ticks were recovered from five of 228 migratory birds trapped in Spring, 2012 in southern Spain along the East Atlantic flyway. All collected ticks tested negative for CCHFV. While most birds had zero Hyalomma ticks, two individuals had four and five ticks each and the statistical distribution of Hyalomma tick counts per bird is over-dispersed compared to the Poisson distribution, demonstrating the need for intensive sampling studies to avoid underestimating the total number of ticks. Rates of tick exchange on migratory birds during their northwards migration will affect the probability that a Hyalomma tick entering Great Britain is positive for CCHFV. Drawing on published data, evidence is presented that the latitude of a European country affects the probability of entry of Hyalomma ticks on wild birds. Further data on Hyalomma infestation rates and tick exchange rates are required along the East Atlantic flyway to further our understanding of the origin of Hyalomma ticks (i.e., Africa or southern Europe) and hence the probability of entry of CCHFV into GB. © 2016 The Society for Vector Ecology.

  12. A quantitative synthesis of the role of birds in carrying ticks and tick-borne pathogens in North America.

    PubMed

    Loss, Scott R; Noden, Bruce H; Hamer, Gabriel L; Hamer, Sarah A

    2016-12-01

    Birds play a central role in the ecology of tick-borne pathogens. They expand tick populations and pathogens across vast distances and serve as reservoirs that maintain and amplify transmission locally. Research into the role of birds for supporting ticks and tick-borne pathogens has largely been descriptive and focused in small areas. To expand inference beyond these studies, we conducted a quantitative review at the scale of North America to identify avian life history correlates of tick infestation and pathogen prevalence, calculate species-level indices of importance for carrying ticks, and identify research gaps limiting understanding of tick-borne pathogen transmission. Across studies, 78 of 162 bird species harbored ticks, yielding an infestation prevalence of 1981 of 38,929 birds (5.1 %). Avian foraging and migratory strategies interacted to influence infestation. Ground-foraging species, especially non-migratory ground foragers, were disproportionately likely to have high prevalence and intensity of tick infestation. Studies largely focused on Borrelia burgdorferi, the agent of Lyme disease, and non-migratory ground foragers were especially likely to carry B. burgdorferi-infected ticks, a finding that highlights the potential importance of resident birds in local pathogen transmission. Based on infestation indices, all "super-carrier" bird species were passerines. Vast interior areas of North America, many bird and tick species, and most tick-borne pathogens, remain understudied, and research is needed to address these gaps. More studies are needed that quantify tick host preferences, host competence, and spatiotemporal variation in pathogen prevalence and vector and host abundance. This information is crucial for predicting pathogen transmission dynamics under future global change.

  13. Tick-borne pathogens and associated co-infections in ticks collected from domestic animals in central China.

    PubMed

    Chen, Zhuo; Liu, Qin; Liu, Ji-Qi; Xu, Bian-Li; Lv, Shan; Xia, Shang; Zhou, Xiao-Nong

    2014-05-22

    Ticks can transmit a number of pathogens to humans and domestic animals. Tick borne diseases (TBDs), which may lead to organ failure and death have been recently reported in China. 98.75% of the total cases (>1000) in Henan provinces have been reported in Xinyang city. Therefore, the aims of this study were to investigate the fauna of ticks and detect the potential pathogens in ticks in Xinyang, the region of central China. Ticks were collected from 10 villages of Xinyang from April to December 2012, from domestic animals including sheep, cattle and dogs. Then identification of ticks and detection of tick-borne pathogens, including Babesia spp., Theileria spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., tick-borne encephalitis virus (TBEV), Borrelia burgdorferi sensu lato, Leishmania infantum, were undertaken by using polymerase chain reaction assay (PCR) and sequence analysis. Moreover, the co-infection patterns of various pathogens were compared among locations where ticks were collected. A total of 308 ticks were collected. Two species of Ixodidae were found, namely Haemaphysalis longicornis (96.75%) and Rhipicephalus microplus (3.25%). Five genera of pathogens, namely Theileria spp. (3.25%), Anaplasma spp. (2.92%), Babesia spp. (1.95%), Ehrlichia spp. (2.92%) and Rickettsia spp. (0.65%), were detected in 7 villages. Co-infections by two pathogens were diagnosed in 11.11% of all infected ticks. Both human and animal pathogens were abundant in ticks in the study areas. Humans and animals in these regions were at a high risk of exposure to piroplasmosis, since piroplasm had the highest rates of infection and co-infection in positive ticks.

  14. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali

    PubMed Central

    Diarra, Adama Zan; Almeras, Lionel; Berenger, Jean-Michel; Koné, Abdoulaye K.; Bocoum, Zakaria; Dabo, Abdoulaye; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe

    2017-01-01

    Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali. PMID:28742123

  15. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali.

    PubMed

    Diarra, Adama Zan; Almeras, Lionel; Laroche, Maureen; Berenger, Jean-Michel; Koné, Abdoulaye K; Bocoum, Zakaria; Dabo, Abdoulaye; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe

    2017-07-01

    Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali.

  16. Why are there so few Rickettsia conorii conorii-infected Rhipicephalus sanguineus ticks in the wild?

    PubMed

    Socolovschi, Cristina; Gaudart, Jean; Bitam, Idir; Huynh, Thi Phong; Raoult, Didier; Parola, Philippe

    2012-01-01

    Rickettsia conorii conorii is the etiological agent of Mediterranean spotted fever, which is transmitted by the brown dog tick, Rhipicephalus sanguineus. The relationship between the Rickettsia and its tick vector are still poorly understood one century after the first description of this disease. An entomological survey was organized in Algeria to collect ticks from the houses of patients with spotted fever signs. Colonies of R. conorii conorii-infected and non-infected ticks were established under laboratory conditions. Gimenez staining and electron microscopy on the ovaries of infected ticks indicated heavy rickettsial infection. The transovarial transmission of R. conorii conorii in naturally infected Rh. sanguineus ticks was 100% at eleven generations, and the filial infection rate was up to 99% according to molecular analyses. No differences in life cycle duration were observed between infected and non-infected ticks held at 25°C, but the average weight of engorged females and eggs was significantly lower in infected ticks than in non-infected ticks. The eggs, larvae and unfed nymphs of infected and non-infected ticks could not tolerate low (4°C) or high (37°C) temperatures or long starvation periods. R. conorii conorii-infected engorged nymphs that were exposed to a low or high temperature for one month experienced higher mortality when they were transferred to 25°C than non-infected ticks after similar exposure. High mortality was observed in infected adults that were maintained for one month at a low or high temperature after tick-feeding on rabbits. These preliminary results suggest that infected quiescent ticks may not survive the winter and may help explain the low prevalence of infected Rh. sanguineus in nature. Further investigations on the influence of extrinsic factors on diapaused R. conorii-infected and non-infected ticks are required.

  17. Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission.

    PubMed

    Olds, Cassandra L; Mwaura, Stephen; Odongo, David O; Scoles, Glen A; Bishop, Richard; Daubenberger, Claudia

    2016-09-02

    Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination.

  18. Genome characterization of Long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks.

    PubMed

    Tokarz, Rafal; Sameroff, Stephen; Leon, Maria Sanchez; Jain, Komal; Lipkin, W Ian

    2014-02-11

    Ticks are implicated as hosts to a wide range of animal and human pathogens. The full range of microbes harbored by ticks has not yet been fully explored. As part of a viral surveillance and discovery project in arthropods, we used unbiased high-throughput sequencing to examine viromes of ticks collected on Long Island, New York in 2013. We detected and sequenced the complete genome of a novel rhabdovirus originating from a pool of Amblyomma americanum ticks. This virus, which we provisionally name Long Island tick rhabdovirus, is distantly related to Moussa virus from Africa. The Long Island tick rhabdovirus may represent a novel species within family Rhabdoviridae.

  19. Assessment of Polymicrobial Infections in Ticks in New York State

    PubMed Central

    Tokarz, Rafal; Jain, Komal; Bennett, Ashlee; Briese, Thomas

    2010-01-01

    Abstract Ixodes scapularis ticks are clinically important hematophagous vectors. A single tick bite can lead to a polymicrobial infection. We determined the prevalence of polymicrobial infection with Borrelia burgdorferi, Anaplasma phagocytophilum, Babesia microti, Borrelia miyamotoi, and Powassan virus in 286 adult ticks from the two counties in New York State where Lyme disease is endemic, utilizing a MassTag multiplex polymerase chain reaction assay. Seventy-one percent of the ticks harbored at least one organism; 30% had a polymicrobial infection. Infections with three microbes were detected in 5% of the ticks. One tick was infected with four organisms. Our results show that coinfection is a frequent occurrence in ticks in the two counties surveyed. PMID:19725770

  20. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    PubMed

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more abundant in larval and in nymphal salivary glands from ticks feeding on susceptible bovines. Compared with tick-susceptible hosts, genes encoding enzymes producing volatile compounds exhibit significantly lower expression in resistant hosts, which may render them less attractive to larvae; resistant hosts expose ticks to an earlier inflammatory response, which in ticks is associated with significantly lower expression of genes encoding salivary proteins that suppress host immunity, inflammation and coagulation.

  1. Spatial disaggregation of tick occurrence and ecology at a local scale as a preliminary step for spatial surveillance of tick-borne diseases: general framework and health implications in Belgium

    PubMed Central

    2013-01-01

    Background The incidence of tick-borne diseases is increasing in Europe. Sub national information on tick distribution, ecology and vector status is often lacking. However, precise location of infection risk can lead to better targeted prevention measures, surveillance and control. Methods In this context, the current paper compiled geolocated tick occurrences in Belgium, a country where tick-borne disease has received little attention, in order to highlight the potential value of spatial approaches and draw some recommendations for future research priorities. Results Mapping of 89,289 ticks over 654 sites revealed that ticks such as Ixodes ricinus and Ixodes hexagonus are largely present while Dermacentor reticulatus has a patchy distribution. Suspected hot spots of tick diversity might favor pathogen exchanges and suspected hot spots of I. ricinus abundance might increase human-vector contact locally. This underlines the necessity to map pathogens and ticks in detail. While I. ricinus is the main vector, I. hexagonus is a vector and reservoir of Borrelia burgdorferi s.l., which is active the whole year and is also found in urban settings. This and other nidiculous species bite humans less frequently, but seem to harbour pathogens. Their role in maintaining a pathogenic cycle within the wildlife merits investigation as they might facilitate transmission to humans if co-occurring with I. ricinus. Many micro-organisms are found abroad in tick species present in Belgium. Most have not been recorded locally but have not been searched for. Some are transmitted directly at the time of the bite, suggesting promotion of tick avoidance additionally to tick removal. Conclusion This countrywide approach to tick-borne diseases has helped delineate recommendations for future research priorities necessary to design public health policies aimed at spatially integrating the major components of the ecological cycle of tick-borne diseases. A systematic survey of tick species and associated pathogens is called for in Europe, as well as better characterisation of species interaction in the ecology of tick-borne diseases, those being all tick species, pathogens, hosts and other species which might play a role in tick-borne diseases complex ecosystems. PMID:23800283

  2. Morphometric Analysis of Chemoreception Organ in Male and Female Ticks (Acari: Ixodidae).

    PubMed

    Josek, Tanya; Allan, Brian F; Alleyne, Marianne

    2018-05-04

    The Haller's organ plays a crucial role in a tick's ability to detect hosts. Even though this sensory organ is vital to tick survival, the morphology of this organ is not well understood. The objective of this study was to characterize variation in the morphological components of the Haller's organ of three medically important tick species using quantitative methods. The Haller's organs of Ixodes scapularis Say (Ixodida: Ixodidae) (black-legged tick), Amblyomma americanum (L.) (Ixodida: Ixodidae) (lone star tick), and Dermacentor variabilis (Say) (Ixodida: Ixodidae) (American dog tick) were morphologically analyzed using environmental scanning electron microscopy and geometric morphometrics, and the results were statistically interpreted using canonical variate analysis. Our data reveal significant, quantitative differences in the morphology of the Haller's organ among all three tick species and that in D. variabilis the sensory structure is sexually dimorphic. Studies like this can serve as a quantitative basis for further studies on sensor physiology, behavior, and tick species life history, potentially leading to novel methods for the prevention of tick-borne disease.

  3. Tick-borne rickettsial pathogens in questing ticks, removed from humans and animals in Mexico.

    PubMed

    Sosa-Gutierrez, Carolina G; Vargas-Sandoval, Margarita; Torres, Javier; Gordillo-Pérez, Guadalupe

    2016-09-30

    Tick-borne rickettsial diseases (TBRD) are commonly encountered in medical and veterinary clinical settings. The control of these diseases is difficult, requiring disruption of a complex transmission chain involving a vertebrate host and ticks. The geographical distribution of the diseases is related to distribution of the vector, which is an indicator of risk for the population. A total of 1107 were collected by tick drag from forests, ecotourism parks and hosts at 101 sites in 22 of the 32 states of Mexico. Collected ticks were placed in 1.5 mL cryovials containing 70% ethanol and were identified to species. Ticks were pooled according to location/host of collection, date of collection, sex, and stage of development. A total of 51 ticks were assayed by polymerase chain reaction (PCR) to confirm species identification using morphological methods. A total of 477 pools of ticks were assayed using PCR techniques for selected tick-borne pathogens. Anaplasma phagocytophilum was the most commonly detected pathogen (45 pools), followed by, Ehrlichia (E.) canis (42), Rickettsia (R.) rickettsii (11), E. chaffeensis (8), and R. amblyommii (1). Rhipicephalus sanguineus was the tick most frequently positive for selected pathogens. Overall, our results indicate that potential tick vectors positive for rickettsial pathogens are distributed throughout the area surveyed in Mexico.

  4. Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records

    USGS Publications Warehouse

    Ginsberg, Howard S.

    2008-01-01

    Ticks are often infected with more than one pathogen, and several field surveys have documented nonrandom levels of coinfection. Levels of coinfection by pathogens in four tick species were analyzed using published infection data. Coinfection patterns of pathogens in field-collected ticks include numerous cases of higher or lower levels of coinfection than would be expected due to chance alone, but the vast majority of these cases can be explained on the basis of vertebrate host associations of the pathogens, without invoking interactions between pathogens within ticks. Nevertheless, some studies have demonstrated antagonistic interactions, and some have suggested potential mutualisms, between pathogens in ticks. Negative or positive interactions between pathogens within ticks can affect pathogen prevalence, and thus transmission patterns. Probabilistic projections suggest that the effect on transmission depends on initial conditions. When the number of tick bites is relatively low (e.g., for ticks biting humans) changes in prevalence in ticks are predicted to have a commensurate effects on pathogen transmission. In contrast, when the number of tick bites is high (e.g., for wild animal hosts) changes in pathogen prevalence in ticks have relatively little effect on levels of transmission to reservoir hosts, and thus on natural transmission cycles.

  5. The first detection of the tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks collected from the lowland European bison (Bison bonasus bonasus L.).

    PubMed

    Biernat, Beata; Karbowiak, Grzegorz; Stańczak, Joanna; Masny, Aleksander; Werszko, Joanna

    2016-01-01

    Tick borne encephalitis virus (TBEV) (Flaviviridae, Flavivirus) is the causative agent of tick-borne encephalitis (TBE), a potentially fatal neurological infection. The disease is endemic in a large region in Eurasia, where is transmitted mainly by hard ticks: Ixodes ricinus and I. persulcatus. It is known that also Dermacentor reticulatus is involved in a circulation of TBEV, but the knowledge of its importance in the TBE epidemiology is still insufficient. The Białowieża Primeval Forest is located in eastern Poland and it is a well-known endemic focus of tick-borne encephalitis. The aim of this study was to identify the prevalence of tick-borne encephalitis virus (TBEV) in Dermacentor reticulatus ticks collected from European bison (Bison bonasus bonasus), an important host of hard ticks in the Białowieża Primeval Forest. In the years 2008-2009, a total of 114 adult D. reticulatus ticks were collected from 7 European bison and examined individually for the presence of TBEV RNA using nested RT-PCR assay. Positive results were noted in 18.42% of ticks. This is the first record of TBEV infection in ticks collected from European bison.

  6. Ticks infesting wild and domestic animals and humans of Sri Lanka with new host records.

    PubMed

    Liyanaarachchi, D R; Rajakaruna, R S; Dikkumbura, A W; Rajapakse, R P V J

    2015-02-01

    An island-wide collection of tick species infesting humans, domesticated and wild animals and questing ticks in domestic and peridomestic environments was carried out during 2009-2011. A total of 30,461 ticks were collected from 30 different hosts and free living stages from the ground. The collection consisted of 22 tick species from 30 different hosts recording 12 tick species from humans, 19 from domesticated animals and 21 from wild animals, with a total of 97 new host records. The most common tick species on humans were Dermacentor auratus and Amblyomma testudinairum, while Haemaphysalis intermedia, Rhipicephalus microplus and Rhipicephalus sanguineus were common in domesticated and wild animals sharing 20 host species. Among the questing ticks, immature D. auratus was the most abundant. Humans and domesticated animals were mostly infested by the nymphal stages while adult ticks were found on wild animals. High number of new host records could be due to domestic animals picking tick species from wildlife and vise versa at the human/animal interface. Habitat destruction due to forest fragmentation has lead to wild animals roaming in urban and semi-urban neighbourhoods increasing the interactions of wild animals with domesticated animals. Wild animals play a significant role as a reservoir of many tick borne infections which can easily be spread to domesticated animals and then to humans via tick infestations. Data in this paper are useful for those interested in tick infesting wild and domestic animals and humans in describing the zoonotic potential of tick borne infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Spotted fever Rickettsia species in Hyalomma and Ixodes ticks infesting migratory birds in the European Mediterranean area

    PubMed Central

    2014-01-01

    Background A few billion birds migrate annually between their breeding grounds in Europe and their wintering grounds in Africa. Many bird species are tick-infested, and as a result of their innate migratory behavior, they contribute significantly to the geographic distribution of pathogens, including spotted fever rickettsiae. The aim of the present study was to characterize, in samples from two consecutive years, the potential role of migrant birds captured in Europe as disseminators of Rickettsia-infected ticks. Methods Ticks were collected from a total of 14,789 birds during their seasonal migration northwards in spring 2009 and 2010 at bird observatories on two Mediterranean islands: Capri and Antikythira. All ticks were subjected to RNA extraction followed by cDNA synthesis and individually assayed with a real-time PCR targeting the citrate synthase (gltA) gene. For species identification of Rickettsia, multiple genes were sequenced. Results Three hundred and ninety-eight (2.7%) of all captured birds were tick-infested; some birds carried more than one tick. A total number of 734 ticks were analysed of which 353 ± 1 (48%) were Rickettsia-positive; 96% were infected with Rickettsia aeschlimannii and 4% with Rickettsia africae or unidentified Rickettsia species. The predominant tick taxon, Hyalomma marginatum sensu lato constituted 90% (n = 658) of the ticks collected. The remaining ticks were Ixodes frontalis, Amblyomma sp., Haemaphysalis sp., Rhipicephalus sp. and unidentified ixodids. Most ticks were nymphs (66%) followed by larvae (27%) and adult female ticks (0.5%). The majority (65%) of ticks was engorged and nearly all ticks contained visible blood. Conclusions Migratory birds appear to have a great impact on the dissemination of Rickettsia-infected ticks, some of which may originate from distant locations. The potential ecological, medical and veterinary implications of such Rickettsia infections need further examination. PMID:25011617

  8. The Phenology of Ticks and the Effects of Long-Term Prescribed Burning on Tick Population Dynamics in Southwestern Georgia and Northwestern Florida

    PubMed Central

    Gleim, Elizabeth R.; Conner, L. Mike; Berghaus, Roy D.; Levin, Michael L.; Zemtsova, Galina E.; Yabsley, Michael J.

    2014-01-01

    Some tick populations have increased dramatically in the past several decades leading to an increase in the incidence and emergence of tick-borne diseases. Management strategies that can effectively reduce tick populations while better understanding regional tick phenology is needed. One promising management strategy is prescribed burning. However, the efficacy of prescribed burning as a mechanism for tick control is unclear because past studies have provided conflicting data, likely due to a failure of some studies to simulate operational management scenarios and/or account for other predictors of tick abundance. Therefore, our study was conducted to increase knowledge of tick population dynamics relative to long-term prescribed fire management. Furthermore, we targeted a region, southwestern Georgia and northwestern Florida (USA), in which little is known regarding tick dynamics so that basic phenology could be determined. Twenty-one plots with varying burn regimes (burned surrounded by burned [BB], burned surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by unburned [UBUB]) were sampled monthly for two years while simultaneously collecting data on variables that can affect tick abundance (e.g., host abundance, vegetation structure, and micro- and macro-climatic conditions). In total, 47,185 ticks were collected, of which, 99% were Amblyomma americanum, 0.7% were Ixodes scapularis, and fewer numbers of Amblyomma maculatum, Ixodes brunneus, and Dermacentor variabilis. Monthly seasonality trends were similar between 2010 and 2011. Long-term prescribed burning consistently and significantly reduced tick counts (overall and specifically for A. americanum and I. scapularis) regardless of the burn regimes and variables evaluated. Tick species composition varied according to burn regime with A. americanum dominating at UBUB, A. maculatum at BB, I. scapularis at UBB, and a more even composition at BUB. These data indicate that regular prescribed burning is an effective tool for reducing tick populations and ultimately may reduce risk of tick-borne disease. PMID:25375797

  9. Population-based passive tick surveillance and detection of expanding foci of blacklegged ticks Ixodes scapularis and the Lyme disease agent Borrelia burgdorferi in Ontario, Canada.

    PubMed

    Nelder, Mark P; Russell, Curtis; Lindsay, L Robbin; Dhar, Badal; Patel, Samir N; Johnson, Steven; Moore, Stephen; Kristjanson, Erik; Li, Ye; Ralevski, Filip

    2014-01-01

    We identified ticks submitted by the public from 2008 through 2012 in Ontario, Canada, and tested blacklegged ticks Ixodes scapularis for Borrelia burgdorferi and Anaplasma phagocytophilum. Among the 18 species of ticks identified, I. scapularis, Dermacentor variabilis, Ixodes cookei and Amblyomma americanum represented 98.1% of the 14,369 ticks submitted. Rates of blacklegged tick submission per 100,000 population were highest in Ontario's Eastern region; D. variabilis in Central West and Eastern regions; I. cookei in Eastern and South West regions; and A. americanum had a scattered distribution. Rates of blacklegged tick submission per 100,000 population were highest from children (0-9 years old) and older adults (55-74 years old). In two health units in the Eastern region (i.e., Leeds, Grenville & Lanark District and Kingston-Frontenac and Lennox & Addington), the rate of submission for engorged and B. burgdorferi-positive blacklegged ticks was 47× higher than the rest of Ontario. Rate of spread for blacklegged ticks was relatively faster and across a larger geographic area along the northern shore of Lake Ontario/St. Lawrence River, compared with slower spread from isolated populations along the northern shore of Lake Erie. The infection prevalence of B. burgdorferi in blacklegged ticks increased in Ontario over the study period from 8.4% in 2008 to 19.1% in 2012. The prevalence of B. burgdorferi-positive blacklegged ticks increased yearly during the surveillance period and, while increases were not uniform across all regions, increases were greatest in the Central West region, followed by Eastern and South West regions. The overall infection prevalence of A. phagocytophilum in blacklegged ticks was 0.3%. This study provides essential information on ticks of medical importance in Ontario, and identifies demographic and geographic areas for focused public education on the prevention of tick bites and tick-borne diseases.

  10. Population-Based Passive Tick Surveillance and Detection of Expanding Foci of Blacklegged Ticks Ixodes scapularis and the Lyme Disease Agent Borrelia burgdorferi in Ontario, Canada

    PubMed Central

    Nelder, Mark P.; Russell, Curtis; Lindsay, L. Robbin; Dhar, Badal; Patel, Samir N.; Johnson, Steven; Moore, Stephen; Kristjanson, Erik; Li, Ye; Ralevski, Filip

    2014-01-01

    We identified ticks submitted by the public from 2008 through 2012 in Ontario, Canada, and tested blacklegged ticks Ixodes scapularis for Borrelia burgdorferi and Anaplasma phagocytophilum. Among the 18 species of ticks identified, I. scapularis, Dermacentor variabilis, Ixodes cookei and Amblyomma americanum represented 98.1% of the 14,369 ticks submitted. Rates of blacklegged tick submission per 100,000 population were highest in Ontario's Eastern region; D. variabilis in Central West and Eastern regions; I. cookei in Eastern and South West regions; and A. americanum had a scattered distribution. Rates of blacklegged tick submission per 100,000 population were highest from children (0–9 years old) and older adults (55–74 years old). In two health units in the Eastern region (i.e., Leeds, Grenville & Lanark District and Kingston-Frontenac and Lennox & Addington), the rate of submission for engorged and B. burgdorferi-positive blacklegged ticks was 47× higher than the rest of Ontario. Rate of spread for blacklegged ticks was relatively faster and across a larger geographic area along the northern shore of Lake Ontario/St. Lawrence River, compared with slower spread from isolated populations along the northern shore of Lake Erie. The infection prevalence of B. burgdorferi in blacklegged ticks increased in Ontario over the study period from 8.4% in 2008 to 19.1% in 2012. The prevalence of B. burgdorferi-positive blacklegged ticks increased yearly during the surveillance period and, while increases were not uniform across all regions, increases were greatest in the Central West region, followed by Eastern and South West regions. The overall infection prevalence of A. phagocytophilum in blacklegged ticks was 0.3%. This study provides essential information on ticks of medical importance in Ontario, and identifies demographic and geographic areas for focused public education on the prevention of tick bites and tick-borne diseases. PMID:25171252

  11. The phenology of ticks and the effects of long-term prescribed burning on tick population dynamics in southwestern Georgia and northwestern Florida.

    PubMed

    Gleim, Elizabeth R; Conner, L Mike; Berghaus, Roy D; Levin, Michael L; Zemtsova, Galina E; Yabsley, Michael J

    2014-01-01

    Some tick populations have increased dramatically in the past several decades leading to an increase in the incidence and emergence of tick-borne diseases. Management strategies that can effectively reduce tick populations while better understanding regional tick phenology is needed. One promising management strategy is prescribed burning. However, the efficacy of prescribed burning as a mechanism for tick control is unclear because past studies have provided conflicting data, likely due to a failure of some studies to simulate operational management scenarios and/or account for other predictors of tick abundance. Therefore, our study was conducted to increase knowledge of tick population dynamics relative to long-term prescribed fire management. Furthermore, we targeted a region, southwestern Georgia and northwestern Florida (USA), in which little is known regarding tick dynamics so that basic phenology could be determined. Twenty-one plots with varying burn regimes (burned surrounded by burned [BB], burned surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by unburned [UBUB]) were sampled monthly for two years while simultaneously collecting data on variables that can affect tick abundance (e.g., host abundance, vegetation structure, and micro- and macro-climatic conditions). In total, 47,185 ticks were collected, of which, 99% were Amblyomma americanum, 0.7% were Ixodes scapularis, and fewer numbers of Amblyomma maculatum, Ixodes brunneus, and Dermacentor variabilis. Monthly seasonality trends were similar between 2010 and 2011. Long-term prescribed burning consistently and significantly reduced tick counts (overall and specifically for A. americanum and I. scapularis) regardless of the burn regimes and variables evaluated. Tick species composition varied according to burn regime with A. americanum dominating at UBUB, A. maculatum at BB, I. scapularis at UBB, and a more even composition at BUB. These data indicate that regular prescribed burning is an effective tool for reducing tick populations and ultimately may reduce risk of tick-borne disease.

  12. Tick-borne Diseases in Animals and USDA Research on Tick Control

    USDA-ARS?s Scientific Manuscript database

    Tick-borne diseases represent a major threat to animal health in the United States. The cattle industry in the United States has benefited greatly from the continued USDA efforts through the Cattle Fever Tick Eradication Program in preventing the re-introduction of cattle ticks and associated pathog...

  13. Detection of tick-borne encephalitis virus in I. ricinus ticks collected from autumn migratory birds in Latvia.

    PubMed

    Kazarina, Alisa; Japiņa, Kristīne; Keišs, Oskars; Salmane, Ineta; Bandere, Dace; Capligina, Valentina; Ranka, Renāte

    2015-03-01

    Birds have a potential of spreading ticks via bird migration routes. In this study, we screened 170 ticks removed during autumn 2010 from 55 birds belonging to 10 species for the presence of tick-borne encephalitis virus (TBEV). In total, TBEV RNA was detected in 14% of I. ricinus tick samples obtained from different birds species. The results of this study indicate the possible role of migrating birds in the dispersal of TBEV-infected ticks along the southward migration route. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Genome characterization of Long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks

    PubMed Central

    2014-01-01

    Background Ticks are implicated as hosts to a wide range of animal and human pathogens. The full range of microbes harbored by ticks has not yet been fully explored. Methods As part of a viral surveillance and discovery project in arthropods, we used unbiased high-throughput sequencing to examine viromes of ticks collected on Long Island, New York in 2013. Results We detected and sequenced the complete genome of a novel rhabdovirus originating from a pool of Amblyomma americanum ticks. This virus, which we provisionally name Long Island tick rhabdovirus, is distantly related to Moussa virus from Africa. Conclusions The Long Island tick rhabdovirus may represent a novel species within family Rhabdoviridae. PMID:24517260

  15. Ticks and tick-borne diseases in Oklahoma.

    PubMed

    Moody, E K; Barker, R W; White, J L; Crutcher, J M

    1998-11-01

    Tick-borne diseases are common in Oklahoma, especially the eastern part of the state where tick prevalence is highest. Three species of hard ticks are present in Oklahoma that are known vectors of human disease--the American dog tick (Rocky Mountain spotted fever; RMSF), the lone star tick (ehrlichiosis) and the black-legged tick (Lyme disease). Oklahoma consistently ranks among the top states in numbers of reported RMSF cases, and Ehrlichiosis may be as prevalent as RMSF. Although Lyme disease is frequently reported in Oklahoma, over-diagnosing of this disease due to false-positive test results is common; positive or equivocal screening tests should be confirmed by Western immunoblot. At present, it is unclear whether the disease seen here is Lyme disease or another Lyme-like disease. If true Lyme disease is present in the state, it is probably rare. Physicians should be aware of the most recent recommendations for diagnosis, therapy and prevention of tick-borne diseases.

  16. Transmission risk of Borrelia burgdorferi sensu lato from Ixodes ricinus ticks to humans in southwest Germany.

    PubMed Central

    Maiwald, M.; Oehme, R.; March, O.; Petney, T. N.; Kimmig, P.; Naser, K.; Zappe, H. A.; Hassler, D.; von Knebel Doeberitz, M.

    1998-01-01

    The risk of Borrelia burgdorferi infection and the value of antibiotic prophylaxis after tick bite are controversial. In this study, performed in two areas of southwestern Germany, ticks were collected from 730 patients and examined by the polymerase chain reaction (PCR) for B. burgdorferi. To assess whether transmission of B. burgdorferi occurred, the patients were clinically and serologically examined after tick removal and during follow-up examinations. Data from all tick bites gave a total transmission rate of 2.6% (19 patients). Eighty-four ticks (11.3%) were PCR positive. Transmission occurred to 16 (26.7%) of 60 patients who were initially seronegative and could be followed up after the bite of an infected tick. These results indicate that the transmission rate from infected ticks in Europe is higher than previously assumed. Examination of ticks and antibiotic prophylaxis in the case of positivity appears to be indicated. PMID:9747761

  17. Emerging Tick-borne Rickettsia and Ehrlichia at Joint Base Langley-Eustis, Fort Eustis, Virginia.

    PubMed

    Miller, Melissa K; Jiang, Ju; Truong, Melissa; Yarina, Tamasin; Evans, Holly; Christensen, Timothy P; Richards, Allen L

    2016-01-01

    Four species of ticks known to parasitize humans (Amblyomma americanum (lone star tick), Dermacentor variabilis (American dog tick), Amblyomma maculatum (Gulf Coast tick), and Ixodes scapularis (black-legged tick)) were collected at Joint Base Langley-Eustis, Fort Eustis, Virginia during 2009. These ticks were tested individually (adults and nymphs) and in pools of 15 (larvae) for pathogens of public health importance within the genera: Rickettsia, Borrelia, and Ehrlichia, by quantitative real-time polymerase chain reaction (qPCR) assays and, where appropriate, multilocus sequence typing (MLST). Of the 340 A americanum ticks tested, a minimum of 65 (19%), 4 (1%), 4 (1%), and one (<1%) were positive for Rickettsia amblyommii, B lonestari, E ewingii and E chaffeensis, respectively. One of 2 (50%) A maculatum ticks collected was found to be positive for R parkeri by MLST and qPCR analyses. All 33 D variabilis ticks were negative for evidence of rickettsial infections. Likewise, no pathogenic organisms were detected from the single Ixodes scapularis tick collected. Pathogenic rickettsiae and ehrlichiae are likely emerging and cause under-recognized diseases, which threaten people who live, work, train, or otherwise engage in outdoor activities at, or in the vicinity of, Fort Eustis, Virginia.

  18. Distribution of tick-borne diseases in China

    PubMed Central

    2013-01-01

    As an important contributor to vector-borne diseases in China, in recent years, tick-borne diseases have attracted much attention because of their increasing incidence and consequent significant harm to livestock and human health. The most commonly observed human tick-borne diseases in China include Lyme borreliosis (known as Lyme disease in China), tick-borne encephalitis (known as Forest encephalitis in China), Crimean-Congo hemorrhagic fever (known as Xinjiang hemorrhagic fever in China), Q-fever, tularemia and North-Asia tick-borne spotted fever. In recent years, some emerging tick-borne diseases, such as human monocytic ehrlichiosis, human granulocytic anaplasmosis, and a novel bunyavirus infection, have been reported frequently in China. Other tick-borne diseases that are not as frequently reported in China include Colorado fever, oriental spotted fever and piroplasmosis. Detailed information regarding the history, characteristics, and current epidemic status of these human tick-borne diseases in China will be reviewed in this paper. It is clear that greater efforts in government management and research are required for the prevention, control, diagnosis, and treatment of tick-borne diseases, as well as for the control of ticks, in order to decrease the tick-borne disease burden in China. PMID:23617899

  19. Molecular epidemiological survey of bacterial and parasitic pathogens in hard ticks from eastern China.

    PubMed

    Liu, Xiang-Ye; Gong, Xiang-Yao; Zheng, Chen; Song, Qi-Yuan; Chen, Ting; Wang, Jing; Zheng, Jie; Deng, Hong-Kuan; Zheng, Kui-Yang

    2017-03-01

    Ticks are able to transmit various pathogens-viruses, bacteria, and parasites-to their host during feeding. Several molecular epidemiological surveys have been performed to evaluate the risk of tick-borne pathogens in China, but little is known about pathogens circulating in ticks from eastern China. Therefore, this study aimed to investigate the presence of bacteria and parasites in ticks collected from Xuzhou, a 11258km 2 region in eastern China. In the present study, ticks were collected from domestic goats and grasses in urban districts of Xuzhou region from June 2015 to July 2016. After tick species identification, the presence of tick-borne bacterial and parasitic pathogens, including Anaplasma phagocytophilum, Borrelia burgdorferi, Rickettsia sp., Bartonella sp., Babesia sp., and Theileria sp., was established via conventional or nested polymerase chain reaction assays (PCR) and sequence analysis. Finally, a total of 500 questing adult ticks, identified as Haemaphysalis longicornis, were investigated. Among them, 28/500 tick samples (5.6%) were infected with A. phagocytophilum, and 23/500 (4.6%) with Theileria luwenshuni, whereas co-infection with these pathogens was detected in only 1/51 (2%) of all infected ticks. In conclusion, H. longicornis is the dominant tick species in the Xuzhou region and plays an important role in zoonotic pathogen transmission. Both local residents and animals are at a significant risk of exposure to anaplasmosis and theileriosis, due to the high rates of A. phagocytophilum and T. luwenshuni tick infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex

    PubMed Central

    Van Treuren, Will; Ponnusamy, Loganathan; Brinkerhoff, R. Jory; Gonzalez, Antonio; Parobek, Christian M.; Juliano, Jonathan J.; Andreadis, Theodore G.; Falco, Richard C.; Ziegler, Lorenza Beati; Hathaway, Nicholas; Keeler, Corinna; Emch, Michael; Bailey, Jeffrey A.; Roe, R. Michael; Apperson, Charles S.; Knight, Rob

    2015-01-01

    Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex. PMID:26150449

  1. Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens.

    PubMed

    Dietrich, Muriel; Gómez-Díaz, Elena; McCoy, Karen D

    2011-05-01

    The ubiquity of ticks and their importance in the transmission of pathogens involved in human and livestock diseases are reflected by the growing number of studies focusing on tick ecology and the epidemiology of tick-borne pathogens. Likewise, the involvement of wild birds in dispersing pathogens and their role as reservoir hosts are now well established. However, studies on tick-bird systems have mainly focused on land birds, and the role of seabirds in the ecology and epidemiology of tick-borne pathogens is rarely considered. Seabirds typically have large population sizes, wide geographic distributions, and high mobility, which make them significant potential players in the maintenance and dispersal of disease agents at large spatial scales. They are parasitized by at least 29 tick species found across all biogeographical regions of the world. We know that these seabird-tick systems can harbor a large diversity of pathogens, although detailed studies of this diversity remain scarce. In this article, we review current knowledge on the diversity and global distribution of ticks and tick-borne pathogens associated with seabirds. We discuss the relationship between seabirds, ticks, and their pathogens and examine the interesting characteristics of these relationships from ecological and epidemiological points of view. We also highlight some future research directions required to better understand the evolution of these systems and to assess the potential role of seabirds in the epidemiology of tick-borne pathogens.

  2. Chemical control of ticks on cattle and the resistance of these parasites to acaricides.

    PubMed

    George, J E; Pound, J M; Davey, R B

    2004-01-01

    Toward the end of the nineteenth century a complex of problems related to ticks and tick-borne diseases of cattle created a demand for methods to control ticks and reduce losses of cattle. The discovery and use of arsenical solutions in dipping vats for treating cattle to protect them against ticks revolutionized tick and tick-borne disease control programmes. Arsenic dips for cattle were used for about 40 years before the evolution of resistance of ticks to the chemical, and the development and marketing of synthetic organic acaricides after World War II provided superior alternative products. Most of the major groups of organic pesticides are represented on the list of chemicals used to control ticks on cattle. Unfortunately, the successive evolution of resistance of ticks to acaricides in each chemical group with the concomitant reduction in the usefulness of a group of acaricides is a major reason for the diversity of acaricides. Whether a producer chooses a traditional method for treating cattle with an acaricide or uses a new method, he must recognize the benefits, limitations and potential problems with each application method and product. Simulation models and research were the basis of recommendations for tick control strategies advocating approaches that reduced reliance on acaricides. These recommendations for controlling ticks on cattle are in harmony with recommendations for reducing the rate of selection for acaricide resistance. There is a need to transfer knowledge about tick control and resistance mitigation strategies to cattle producers.

  3. Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex.

    PubMed

    Estrada-Peña, Agustín; Sprong, Hein; Cabezas-Cruz, Alejandro; de la Fuente, José; Ramo, Ana; Coipan, Elena Claudia

    2016-09-23

    The bacteria of the Borrelia burgdorferi (s.l.) (BBG) complex constitute a group of tick-transmitted pathogens that are linked to many vertebrate and tick species. The ecological relationships between the pathogens, the ticks and the vertebrate carriers have not been analysed. The aim of this study was to quantitatively analyse these interactions by creating a network based on a large dataset of associations. Specifically, we examined the relative positions of partners in the network, the phylogenetic diversity of the tick's hosts and its impact on BBG circulation. The secondary aim was to evaluate the segregation of BBG strains in different vectors and reservoirs. BBG circulates through a nested recursive network of ticks and vertebrates that delineate closed clusters. Each cluster contains generalist ticks with high values of centrality as well as specialist ticks that originate nested sub-networks and that link secondary vertebrates to the cluster. These results highlighted the importance of host phylogenetic diversity for ticks in the circulation of BBG, as this diversity was correlated with high centrality values for the ticks. The ticks and BBG species in each cluster were not significantly associated with specific branches of the phylogeny of host genera (R 2  = 0.156, P = 0.784 for BBG; R 2  = 0.299, P = 0.699 for ticks). A few host genera had higher centrality values and thus higher importance for BBG circulation. However, the combined contribution of hosts with low centrality values could maintain active BBG foci. The results suggested that ticks do not share strains of BBG, which were highly segregated among sympatric species of ticks. We conclude that BBG circulation is supported by a highly redundant network. This network includes ticks with high centrality values and high host phylogenetic diversity as well as ticks with low centrality values. This promotes ecological sub-networks and reflects the high resilience of BBG circulation. The functional redundancy in BBG circulation reduces disturbances due to the removal of vertebrates as it allows ticks to fill other biotic niches.

  4. Tick infestations in extensively grazed cattle and efficacy trial of high-cis cypermethrin pour-on preparation for control of ticks in Mvomero district in Tanzania.

    PubMed

    Hezron E, Nonga; Adrian, Muwonge; Robinson H, Mdegela

    2012-11-19

    This study aimed at determining the extent of tick infestations in extensively grazed cattle and assess the efficacy of Ecotix® acaricide (2.5% high cis cypermethrin) in Mvomero district in Tanzania. A total of 1200 Tanzanian short horn Zebu (TSHZ) from two farms in two villages were qualitatively assessed for tick infestations and 40 animals (grouped in 10s from each farm) were separated in their herds and quantitatively examined to establish the tick load. The animals were grouped in treatment regime groups (TxRG 1, 2, 3, and 4), TxRG 1 being the control group was treated with water. Ecotix® was applied on day 0 for TxRG 2, days 0 and 7 for TxRG 3 and days 0, 7 and 14 for TxRG 4 and tick load was monitored for 28 days. All the animals examined were infested with ticks. The identified ticks were Rhipicephalus appendiculatus (55%), Amblyomma variegatum (18%), R. (Boophilus) microplus (12.9%), R. (B) decoloratus (7.1%), R. evertsi evertsi (4.4%) and R. composites (2.6%). The overall mean (mean±SEM) tick density on day zero was 63±30 ticks per animal (ranging from 20-160). The mean tick density on day zero was 44.6±25.4, 74.6±30.3, 55.0±26.2 and 77±33.5 for groups one, two, three and four respectively. Post-treatment quantitative assessment of tick burden revealed that the TxRG 1 animals maintained a tick load throughout the study period. A significant decrease in tick load in animals in groups TxRG 2, 3 and 4 (P=0.0001) with increasing frequency of Ecotix® application was recorded. There was however no significant difference in tick reduction between TxRG 3 and 4 (P=0.0986). Thus TxRG 3 would be sufficient for the monthly tick treatment and with this regime, the farmer would save up to 2.5 USD per animal during six months of dry season. The study revealed a high tick infestation among the TSHZ kept in extensive grazing systems in Mvomero district and that when treated with Ecotix® as pour-on preparation using a two application regime per month, the tick control strategy was effective.

  5. Tick parasites of rodents in Romania: host preferences, community structure and geographical distribution.

    PubMed

    Mihalca, Andrei D; Dumitrache, Mirabela O; Sándor, Attila D; Magdaş, Cristian; Oltean, Miruna; Györke, Adriana; Matei, Ioana A; Ionică, Angela; D'Amico, Gianluca; Cozma, Vasile; Gherman, Călin M

    2012-11-21

    Ticks are among the most important vectors of zoonotic diseases in temperate regions of Europe, with widespread distribution and high densities, posing an important medical risk. Most ticks feed on a variety of progressively larger hosts, with a large number of small mammal species typically harbouring primarily the immature stages. However, there are certain Ixodidae that characteristically attack micromammals also during their adult stage. Rodents are widespread hosts of ticks, important vectors and competent reservoirs of tick-borne pathogens. Micromammal-tick associations have been poorly studied in Romania, and our manuscript shows the results of a large scale study on tick infestation epidemiology in rodents from Romania. Rodents were caught using snap-traps in a variety of habitats in Romania, between May 2010 and November 2011. Ticks were individually collected from these rodents and identified to species and development stage. Frequency, mean intensity, prevalence and its 95% confidence intervals were calculated using the EpiInfo 2000 software. A p value of <0.05 was considered statistically significant. We examined 423 rodents (12 species) collected from six counties in Romania for the presence of ticks. Each collected tick was identified to species level and the following epidemiological parameters were calculated: prevalence, mean intensity and mean abundance. The total number of ticks collected from rodents was 483, with eight species identified: Ixodes ricinus, I. redikorzevi, I. apronophorus, I. trianguliceps, I. laguri, Dermacentor marginatus, Rhipicephalus sanguineus and Haemaphysalis sulcata. The overall prevalence of tick infestation was 29.55%, with a mean intensity of 3.86 and a mean abundance of 1.14. Only two polyspecific infestations were found: I. ricinus + I. redikorzevi and I. ricinus + D. marginatus. Our study showed a relatively high diversity of ticks parasitizing rodents in Romania. The most common tick in rodents was I. ricinus, followed by I. redikorzevi. Certain rodents seem to host a significantly higher number of tick species than others, the most important within this view being Apodemus flavicollis and Microtus arvalis. The same applies for the overall prevalence of tick parasitism, with some species more commonly infected (M. arvalis, A. uralensis, A. flavicollis and M. glareolus) than others. Two rodent species (Mus musculus, Rattus norvegicus) did not harbour ticks at all. Based on our results we may assert that rodents generally can act as good indicators for assessing the distribution of certain tick species.

  6. Identification of Tick-Borne Pathogens in Ticks Feeding on Humans in Turkey

    PubMed Central

    Orkun, Ömer; Karaer, Zafer; Çakmak, Ayşe; Nalbantoğlu, Serpil

    2014-01-01

    Background The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara. Methodology/Principal Findings A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca) were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph) and Ha. parva). Conclusions/Significance This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey. More epidemiological studies are warranted for B. rossi, which is very pathogenic for dogs, because the presented results suggest that B. rossi might have a wide distribution in Turkey. Furthermore, we recommend that tick-borne pathogens, especially R. aeschlimannii, R. slovaca, and B. burgdorferi sensu stricto, should be taken into consideration in patients who had a tick bite in Turkey. PMID:25101999

  7. Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen

    PubMed Central

    2014-01-01

    Background Despite the use of chemical acaricides, tick infestations continue to affect animal health and production worldwide. Tick vaccines have been proposed as a cost-effective and environmentally friendly alternative for tick control. Vaccination with the candidate tick protective antigen, Subolesin (SUB), has been shown experimentally to be effective in controlling vector infestations and pathogen infection. Furthermore, Escherichia coli membranes containing the chimeric antigen composed of SUB fused to Anaplasma marginale Major Surface Protein 1a (MSP1a) (SUB-MSP1a) were produced using a simple low-cost process and proved to be effective for the control of cattle tick, Rhipicephalus (Boophilus) microplus and R. annulatus infestations in pen trials. In this research, field trials were conducted to characterize the effect of vaccination with SUB-MSP1a on tick infestations and the prevalence of tick-borne pathogens in a randomized controlled prospective study. Methods Two cattle and two sheep farms with similar geographical locations and production characteristics were randomly assigned to control and vaccinated groups. Ticks were collected, counted, weighed and classified and the prevalence of tick-borne pathogens at the DNA and serological levels were followed for one year prior to and 9 months after vaccination. Results Both cattle and sheep developed antibodies against SUB in response to vaccination. The main effect of the vaccine in cattle was the 8-fold reduction in the percent of infested animals while vaccination in sheep reduced tick infestations by 63%. Female tick weight was 32-55% lower in ticks collected from both vaccinated cattle and sheep when compared to controls. The seroprevalence of Babesia bigemina was lower by 30% in vaccinated cattle, suggesting a possible role for the vaccine in decreasing the prevalence of this tick-borne pathogen. The effect of the vaccine in reducing the frequency of one A. marginale msp4 genotype probably reflected the reduction in the prevalence of a tick-transmitted strain as a result of the reduction in the percent of tick-infested cattle. Conclusions These data provide evidence of the dual effect of a SUB-based vaccine for controlling tick infestations and pathogen infection/transmission and provide additional support for the use of the SUB-MSP1a vaccine for tick control in cattle and sheep. PMID:24398155

  8. Control of tick infestations and pathogen prevalence in cattle and sheep farms vaccinated with the recombinant Subolesin-Major Surface Protein 1a chimeric antigen.

    PubMed

    Torina, Alessandra; Moreno-Cid, Juan A; Blanda, Valeria; Fernández de Mera, Isabel G; de la Lastra, José M Pérez; Scimeca, Salvatore; Blanda, Marcellocalogero; Scariano, Maria Elena; Briganò, Salvatore; Disclafani, Rosaria; Piazza, Antonio; Vicente, Joaquín; Gortázar, Christian; Caracappa, Santo; Lelli, Rossella Colomba; de la Fuente, José

    2014-01-08

    Despite the use of chemical acaricides, tick infestations continue to affect animal health and production worldwide. Tick vaccines have been proposed as a cost-effective and environmentally friendly alternative for tick control. Vaccination with the candidate tick protective antigen, Subolesin (SUB), has been shown experimentally to be effective in controlling vector infestations and pathogen infection. Furthermore, Escherichia coli membranes containing the chimeric antigen composed of SUB fused to Anaplasma marginale Major Surface Protein 1a (MSP1a) (SUB-MSP1a) were produced using a simple low-cost process and proved to be effective for the control of cattle tick, Rhipicephalus (Boophilus) microplus and R. annulatus infestations in pen trials. In this research, field trials were conducted to characterize the effect of vaccination with SUB-MSP1a on tick infestations and the prevalence of tick-borne pathogens in a randomized controlled prospective study. Two cattle and two sheep farms with similar geographical locations and production characteristics were randomly assigned to control and vaccinated groups. Ticks were collected, counted, weighed and classified and the prevalence of tick-borne pathogens at the DNA and serological levels were followed for one year prior to and 9 months after vaccination. Both cattle and sheep developed antibodies against SUB in response to vaccination. The main effect of the vaccine in cattle was the 8-fold reduction in the percent of infested animals while vaccination in sheep reduced tick infestations by 63%. Female tick weight was 32-55% lower in ticks collected from both vaccinated cattle and sheep when compared to controls. The seroprevalence of Babesia bigemina was lower by 30% in vaccinated cattle, suggesting a possible role for the vaccine in decreasing the prevalence of this tick-borne pathogen. The effect of the vaccine in reducing the frequency of one A. marginale msp4 genotype probably reflected the reduction in the prevalence of a tick-transmitted strain as a result of the reduction in the percent of tick-infested cattle. These data provide evidence of the dual effect of a SUB-based vaccine for controlling tick infestations and pathogen infection/transmission and provide additional support for the use of the SUB-MSP1a vaccine for tick control in cattle and sheep.

  9. Identification of tick-borne pathogens in ticks feeding on humans in Turkey.

    PubMed

    Orkun, Ömer; Karaer, Zafer; Çakmak, Ayşe; Nalbantoğlu, Serpil

    2014-08-01

    The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara. A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca) were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph) and Ha. parva). This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey. More epidemiological studies are warranted for B. rossi, which is very pathogenic for dogs, because the presented results suggest that B. rossi might have a wide distribution in Turkey. Furthermore, we recommend that tick-borne pathogens, especially R. aeschlimannii, R. slovaca, and B. burgdorferi sensu stricto, should be taken into consideration in patients who had a tick bite in Turkey.

  10. Host specialization in ticks and transmission of tick-borne diseases: a review

    PubMed Central

    McCoy, Karen D.; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock. PMID:24109592

  11. Host specialization in ticks and transmission of tick-borne diseases: a review.

    PubMed

    McCoy, Karen D; Léger, Elsa; Dietrich, Muriel

    2013-01-01

    Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.

  12. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway.

    PubMed

    Soleng, A; Edgar, K S; Paulsen, K M; Pedersen, B N; Okbaldet, Y B; Skjetne, I E B; Gurung, D; Vikse, R; Andreassen, Å K

    2018-01-01

    This study investigated the geographical distribution of Ixodes ricinus and prevalence of the tick-borne encephalitis virus (TBEV) in northern Norway. Flagging for questing I. ricinus ticks was performed in areas ranging from Vikna in Nord-Trøndelag County, located 190km south of the Arctic Circle (66.3°N), to Steigen in Nordland County, located 155km north of the Arctic Circle. We found that ticks were abundant in both Vikna (64.5°N) and Brønnøy (65.1°N). Only a few ticks were found at locations ∼66°N, and no ticks were found at several locations up to 67.5°N. Real-time PCR (RT-PCR) analyses of the collected ticks (nymphs and adults) for the presence of TBEV revealed a low prevalence (0.1%) of TBEV among the nymphs collected in Vikna, while a prevalence of 0% to 3% was found among nymphs collected at five locations in Brønnøy. Adult ticks collected in Vikna and Brønnøy had higher rates of TBEV infection (8.6% and 0%-9.0%, respectively) than the nymphs. No evidence of TBEV was found in the few ticks collected further north of Brønnøy. This is the first report of TBEV being detected at locations up to 65.1°N. It remains to be verified whether viable populations of I. ricinus exist at locations north of 66°N. Future studies are warranted to increase our knowledge concerning tick distribution, tick abundance, and tick-borne pathogens in northern Norway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. A Roadmap for Tick-Borne Flavivirus Research in the "Omics" Era.

    PubMed

    Grabowski, Jeffrey M; Hill, Catherine A

    2017-01-01

    Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis , the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, "omic" studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the "omics era," and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030.

  14. A Roadmap for Tick-Borne Flavivirus Research in the “Omics” Era

    PubMed Central

    Grabowski, Jeffrey M.; Hill, Catherine A.

    2017-01-01

    Tick-borne flaviviruses (TBFs) affect human health globally. Human vaccines provide protection against some TBFs, and antivirals are available, yet TBF-specific control strategies are limited. Advances in genomics offer hope to understand the viral complement transmitted by ticks, and to develop disruptive, data-driven technologies for virus detection, treatment, and control. The genome assemblies of Ixodes scapularis, the North American tick vector of the TBF, Powassan virus, and other tick vectors, are providing insights into tick biology and pathogen transmission and serve as nucleation points for expanded genomic research. Systems biology has yielded insights to the response of tick cells to viral infection at the transcript and protein level, and new protein targets for vaccines to limit virus transmission. Reverse vaccinology approaches have moved candidate tick antigenic epitopes into vaccine development pipelines. Traditional drug and in silico screening have identified candidate antivirals, and target-based approaches have been developed to identify novel acaricides. Yet, additional genomic resources are required to expand TBF research. Priorities include genome assemblies for tick vectors, “omic” studies involving high consequence pathogens and vectors, and emphasizing viral metagenomics, tick-virus metabolomics, and structural genomics of TBF and tick proteins. Also required are resources for forward genetics, including the development of tick strains with quantifiable traits, genetic markers and linkage maps. Here we review the current state of genomic research on ticks and tick-borne viruses with an emphasis on TBFs. We outline an ambitious 10-year roadmap for research in the “omics era,” and explore key milestones needed to accomplish the goal of delivering three new vaccines, antivirals and acaricides for TBF control by 2030. PMID:29312896

  15. Molecular detection of severe fever with thrombocytopenia syndrome and tick-borne encephalitis viruses in ixodid ticks collected from vegetation, Republic of Korea, 2014.

    PubMed

    Yun, Seok-Min; Lee, Ye-Ji; Choi, WooYoung; Kim, Heung-Chul; Chong, Sung-Tae; Chang, Kyu-Sik; Coburn, Jordan M; Klein, Terry A; Lee, Won-Ja

    2016-07-01

    Ticks play an important role in transmission of arboviruses responsible for emerging infectious diseases, and have a significant impact on human, veterinary, and wildlife health. In the Republic of Korea (ROK), little is known about information regarding the presence of tick-borne viruses and their vectors. A total of 21,158 ticks belonging to 3 genera and 6 species collected at 6 provinces and 4 metropolitan areas in the ROK from March to October 2014 were assayed for selected tick-borne pathogens. Haemaphysalis longicornis (n=17,570) was the most numerously collected, followed by Haemaphysalis flava (n=3317), Ixodes nipponensis (n=249), Amblyomma testudinarium (n=11), Haemaphysalis phasiana (n=8), and Ixodes turdus (n=3). Ticks were pooled (adults 1-5, nymphs 1-30, and larvae 1-50) and tested by one-step reverse transcription polymerase chain reaction (RT-PCR) or nested RT-PCR for the detection of severe fever with thrombocytopenia virus (SFTSV), tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), and Langat virus (LGTV). The overall maximum likelihood estimation (MLE) [estimated numbers of viral RNA positive ticks/1000 ticks] for SFTSV and TBEV was 0.95 and 0.43, respectively, while, all pools were negative for POWV, OHFV, and LGTV. The purpose of this study was to determine the prevalence of SFTSV, TBEV, POWV, OHFV, and LGTV in ixodid ticks collected from vegetation in the ROK to aid our understanding of the epidemiology of tick-borne viral diseases. Results from this study emphasize the need for continuous tick-based arbovirus surveillance to monitor the emergence of tick-borne diseases in the ROK. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Tick infestation in birds and prevalence of pathogens in ticks collected from different places in Germany.

    PubMed

    Klaus, Christine; Gethmann, Jörn; Hoffmann, Bernd; Ziegler, Ute; Heller, Martin; Beer, Martin

    2016-07-01

    The importance of ticks and tick-borne pathogens for human and animal health has been increasing over the past decades. For their transportation and dissemination, birds may play a more important role than wingless hosts. In this study, tick infestation of birds in Germany was examined. Eight hundred ninety-two captured birds were infested with ticks and belonged to 48 different species, of which blackbirds (Turdus merula) and song thrushes (Turdus philomelos) were most strongly infested. Ground feeders were more strongly infested than non-ground feeders, sedentary birds more strongly than migratory birds, and short-distance migratory birds more strongly than long-distance migratory birds. Mean tick infestation per bird ranged between 2 (long-distance migratory bird) and 4.7 (sedentary bird), in some single cases up to 55 ticks per bird were found. With the exception of three nymphs of Haemaphysalis spp., all ticks belonged to Ixodes spp., the most frequently detected tick species was Ixodes ricinus. Birds were mostly infested by nymphs (65.1 %), followed by larvae (32.96 %). Additionally, ticks collected from birds were examined for several pathogens: Tick-borne encephalitis virus (TBEV) and Sindbisvirus with real-time RT-PCR, Flaviviruses, Simbuviruses and Lyssaviruses with broad-range standard RT-PCR-assays, and Borrelia spp. with a Pan-Borrelia real-time PCR. Interestingly, no viral pathogens could be detected, but Borrelia spp. positive ticks were collected from 76 birds. Borrelia (B.) garinii, B. valaisiaina, B. burgdorferi s.s. and B. afzelii were determined. The screening of ticks and birds for viral pathogens with broad range PCR-assays was tested and the use as an "early warning system" is discussed.

  17. Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland.

    PubMed

    Lommano, Elena; Dvořák, Charles; Vallotton, Laurent; Jenni, Lukas; Gern, Lise

    2014-10-01

    From 2007 to 2010, 4558 migrating and breeding birds of 71 species were caught and examined for ticks in Switzerland. A total of 1205 specimens were collected; all were Ixodes ricinus ticks except one Ixodes frontalis female, which was found on a common chaffinch (Fringilla coelebs) for the first time in Switzerland. Each tick was analysed individually for the presence of Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum and tick-borne encephalitis virus (TBEV). Altogether, 11.4% of birds (22 species) were infested by ticks and 39.8% of them (15 species) were carrying infected ticks. Bird species belonging to the genus Turdus were the most frequently infested with ticks and they were also carrying the most frequently infected ticks. Each tick-borne pathogen for which we tested was identified within the sample of bird-feeding ticks: Borrelia spp. (19.5%) and Rickettsia helvetica (10.5%) were predominantly detected whereas A. phagocytophilum (2%), Rickettsia monacensis (0.4%) and TBEV (0.2%) were only sporadically detected. Among Borrelia infections, B. garinii and B. valaisiana were largely predominant followed by B. afzelii, B. bavariensis, B. miyamotoi and B. burgdorferi ss. Interestingly, Candidatus Neoehrlichia mikurensis was identified in a few ticks (3.3%), mainly from chaffinches. Our study emphasizes the role of birds in the natural cycle of tick-borne pathogens that are of human medical and veterinary relevance in Europe. According to infection detected in larvae feeding on birds we implicate the common blackbird (Turdus merula) and the tree pipit (Anthus trivialis) as reservoir hosts for Borrelia spp., Rickettsia spp. and A. phagocytophilum. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Potential role of ticks as vectors of bluetongue virus.

    PubMed

    Bouwknegt, Chantal; van Rijn, Piet A; Schipper, Jacqueline J M; Hölzel, Dennis; Boonstra, Jan; Nijhof, Ard M; van Rooij, Eugène M A; Jongejan, Frans

    2010-10-01

    When the first outbreak of bluetongue virus serotype 8 (BTV8) was recorded in North-West Europe in August 2006 and renewed outbreaks occurred in the summer of 2007 and again in 2008, the question was raised how the virus survived the winter. Since most adult Culicoides vector midges are assumed not to survive the northern European winter, and transovarial transmission in Culicoides is not recorded, we examined the potential vector role of ixodid and argasid ticks for bluetongue virus. Four species of ixodid ticks (Ixodes ricinus, Ixodes hexagonus, Dermacentor reticulatus and Rhipicephalus bursa) and one soft tick species, Ornithodoros savignyi, ingested BTV8-containing blood either through capillary feeding or by feeding on artificial membranes. The virus was taken up by the ticks and was found to pass through the gut barrier and spread via the haemolymph into the salivary glands, ovaries and testes, as demonstrated by real-time reverse transcriptase PCR (PCR-test). BTV8 was detected in various tissues of ixodid ticks for up to 21 days post feeding and in Ornithodoros ticks for up to 26 days. It was found after moulting in adult Ixodes hexagonus and was also able to pass through the ovaries into the eggs of an Ornithodoros savignyi tick. This study demonstrates that ticks can become infected with bluetongue virus serotype 8. The transstadial passage in hard ticks and transovarial passage in soft ticks suggest that ticks have potential vectorial capacity for bluetongue virus. Further studies are required to investigate transmission from infected ticks to domestic livestock. This route of transmission could provide an additional clue in the unresolved mystery of the epidemiology of Bluetongue in Europe by considering ticks as a potential overwintering mechanism for bluetongue virus.

  19. Potential role of ticks as vectors of bluetongue virus

    PubMed Central

    Bouwknegt, Chantal; van Rijn, Piet A.; Schipper, Jacqueline J. M.; Hölzel, Dennis; Boonstra, Jan; Nijhof, Ard M.; van Rooij, Eugène M. A.

    2010-01-01

    When the first outbreak of bluetongue virus serotype 8 (BTV8) was recorded in North-West Europe in August 2006 and renewed outbreaks occurred in the summer of 2007 and again in 2008, the question was raised how the virus survived the winter. Since most adult Culicoides vector midges are assumed not to survive the northern European winter, and transovarial transmission in Culicoides is not recorded, we examined the potential vector role of ixodid and argasid ticks for bluetongue virus. Four species of ixodid ticks (Ixodes ricinus, Ixodes hexagonus, Dermacentor reticulatus and Rhipicephalus bursa) and one soft tick species, Ornithodoros savignyi, ingested BTV8-containing blood either through capillary feeding or by feeding on artificial membranes. The virus was taken up by the ticks and was found to pass through the gut barrier and spread via the haemolymph into the salivary glands, ovaries and testes, as demonstrated by real-time reverse transcriptase PCR (PCR-test). BTV8 was detected in various tissues of ixodid ticks for up to 21 days post feeding and in Ornithodoros ticks for up to 26 days. It was found after moulting in adult Ixodes hexagonus and was also able to pass through the ovaries into the eggs of an Ornithodoros savignyi tick. This study demonstrates that ticks can become infected with bluetongue virus serotype 8. The transstadial passage in hard ticks and transovarial passage in soft ticks suggest that ticks have potential vectorial capacity for bluetongue virus. Further studies are required to investigate transmission from infected ticks to domestic livestock. This route of transmission could provide an additional clue in the unresolved mystery of the epidemiology of Bluetongue in Europe by considering ticks as a potential overwintering mechanism for bluetongue virus. PMID:20358393

  20. Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission.

    PubMed

    Hermance, Meghan E; Santos, Rodrigo I; Kelly, Brent C; Valbuena, Gustavo; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host's skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation.

  1. Prevalence, Diversity, and Load of Borrelia species in Ticks That Have Fed on Humans in Regions of Sweden and Åland Islands, Finland with Different Lyme Borreliosis Incidences

    PubMed Central

    Wilhelmsson, Peter; Lindblom, Pontus; Fryland, Linda; Ernerudh, Jan; Forsberg, Pia; Lindgren, Per-Eric

    2013-01-01

    The incidence of Lyme borreliosis (LB) in a region may reflect the prevalence of Borrelia in the tick population. Our aim was to investigate if regions with different LB incidences can be distinguished by studying the prevalence and diversity of Borrelia species in their respective tick populations. The Borrelia load in a feeding tick increases with the duration of feeding, which may facilitate a transmission of Borrelia Spirochetes from tick to host. Therefore, we also wanted to investigate how the Borrelia load in ticks that have fed on humans varies with the duration of tick feeding. During 2008 and 2009, ticks that had bitten humans were collected from four regions of Sweden and Finland, regions with expected differences in LB incidence. The duration of tick feeding was estimated and Borrelia were detected and quantified by a quantitative PCR assay followed by species determination. Out of the 2,154 Ixodes ricinus ticks analyzed, 26% were infected with Borrelia and seven species were identified. B. spielmanii was detected for the first time in the regions. The tick populations collected from the four regions exhibited only minor differences in both prevalence and diversity of Borrelia species, indicating that these variables alone cannot explain the regions’ different LB incidences. The number of Borrelia cells in the infected ticks ranged from fewer than ten to more than a million. We also found a lower number of Borrelia cells in adult female ticks that had fed for more than 36 hours, compared to the number of Borrelia cells found in adult female ticks that had fed for less than 36 hours. PMID:24278437

  2. Mining a differential sialotranscriptome of Rhipicephalus microplus guides antigen discovery to formulate a vaccine that reduces tick infestations.

    PubMed

    Maruyama, Sandra R; Garcia, Gustavo R; Teixeira, Felipe R; Brandão, Lucinda G; Anderson, Jennifer M; Ribeiro, José M C; Valenzuela, Jesus G; Horackova, Jana; Veríssimo, Cecília J; Katiki, Luciana M; Banin, Tamy M; Zangirolamo, Amanda F; Gardinassi, Luiz G; Ferreira, Beatriz R; de Miranda-Santos, Isabel K F

    2017-04-26

    Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.

  3. Concurrent micro-RNA mediated silencing of tick-borne flavivirus replication in tick vector and in the brain of vertebrate host.

    PubMed

    Tsetsarkin, Konstantin A; Liu, Guangping; Kenney, Heather; Hermance, Meghan; Thangamani, Saravanan; Pletnev, Alexander G

    2016-09-13

    Tick-borne viruses include medically important zoonotic pathogens that can cause life-threatening diseases. Unlike mosquito-borne viruses, whose impact can be restrained via mosquito population control programs, for tick-borne viruses only vaccination remains the reliable means of disease prevention. For live vaccine viruses a concern exists, that spillovers from viremic vaccinees could result in introduction of genetically modified viruses into sustainable tick-vertebrate host transmission cycle in nature. To restrict tick-borne flavivirus (Langat virus, LGTV) vector tropism, we inserted target sequences for tick-specific microRNAs (mir-1, mir-275 and mir-279) individually or in combination into several distant regions of LGTV genome. This caused selective attenuation of viral replication in tick-derived cells. LGTV expressing combinations of target sequences for tick- and vertebrate CNS-specific miRNAs were developed. The resulting viruses replicated efficiently and remained stable in simian Vero cells, which do not express these miRNAs, however were severely restricted to replicate in tick-derived cells. In addition, simultaneous dual miRNA targeting led to silencing of virus replication in live Ixodes ricinus ticks and abolished virus neurotropism in highly permissive newborn mice. The concurrent restriction of adverse replication events in vertebrate and invertebrate hosts will, therefore, ensure the environmental safety of live tick-borne virus vaccine candidates.

  4. Tick Passage Results in Enhanced Attenuation of Babesia bovis

    PubMed Central

    McElwain, Terry F.; Ueti, Massaro W.; Scoles, Glen A.; Reif, Kathryn E.; Lau, Audrey O. T.

    2014-01-01

    Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, but when retained, attenuated B. bovis can revert to virulence following tick passage. This study provides data showing that tick passage of the partially attenuated B. bovis T2Bo derivative strain further decreased virulence compared with intravenous inoculation of the same strain in infected animals. Ticks that acquired virulent or attenuated parasites by feeding on infected cattle were transmission fed on naive, splenectomized animals. While there was no significant difference between groups in the number of parasites in the midgut, hemolymph, or eggs of replete female ticks after acquisition feeding, animals infected with the attenuated parasites after tick transmission showed no clinical signs of babesiosis, unlike those receiving intravenous challenge with the same attenuated strain prior to tick passage. Additionally, there were significantly fewer parasites in blood and tissues of animals infected with tick-passaged attenuated parasites. Sequencing analysis of select B. bovis genes before and after tick passage showed significant differences in parasite genotypes in both peripheral blood and cerebral samples. These results provide evidence that not only is tick transmissibility retained by the attenuated T2Bo strain, but also it results in enhanced attenuation and is accompanied by expansion of parasite subpopulations during tick passage that may be associated with the change in disease phenotype. PMID:25114111

  5. Detection of the Agent of Heartwater, Cowdria ruminantium, in Amblyomma Ticks by PCR: Validation and Application of the Assay to Field Ticks

    PubMed Central

    Peter, Trevor F.; Barbet, Anthony F.; Alleman, Arthur R.; Simbi, Bigboy H.; Burridge, Michael J.; Mahan, Suman M.

    2000-01-01

    We have previously reported that the pCS20 PCR detection assay for Cowdria ruminantium, the causative agent of heartwater disease of ruminants, is more sensitive than xenodiagnosis and the pCS20 DNA probe for the detection of infection in the vector Amblyomma ticks. Here, we further assessed the reliability of the PCR assay and applied it to field ticks. The assay detected DNA of 37 isolates of C. ruminantium originating from sites throughout the distribution of heartwater and had a specificity of 98% when infected ticks were processed concurrently with uninfected ticks. The assay did not detect DNA of Ehrlichia chaffeensis, which is closely related to C. ruminantium. PCR sensitivity varied with tick infection intensity and was high (97 to 88%) with ticks bearing 107 to 104 organisms but dropped to 61 and 28%, respectively, with ticks bearing 103 and 102 organisms. The assay also detected C. ruminantium in collections of Amblyomma hebraeum and Amblyomma variegatum field ticks from 17 heartwater-endemic sites in four southern African countries. Attempts at tick transmission of infection to small ruminants failed with four of these collections. The pCS20 PCR assay is presently the most characterized and reliable test for C. ruminantium in ticks and thus is highly useful for field and laboratory epidemiological investigations of heartwater. PMID:10747140

  6. The Influence of Prescribed Fire, Habitat, and Weather on Amblyomma americanum (Ixodida: Ixodidae) in West-Central Illinois, USA.

    PubMed

    Gilliam, Mary E; Rechkemmer, Will T; McCravy, Kenneth W; Jenkins, Seán E

    2018-03-22

    The distribution of Amblyomma americanum (L.) is changing and reports of tick-borne disease transmitted by A. americanum are increasing in the USA. We used flagging to collect ticks, surveyed vegetation and collected weather data in 2015 and 2016. A. americanum dominated collections in both years (97%). Ticks did not differ among burn treatments; however, tick abundance differed between years among total, adult, and larval ticks. Habitat variables showed a weak negative correlation to total ticks in respect to: Shannon diversity index, percent bare ground, perennial cover, and coarse woody debris. Nymphal ticks showed a weak negative correlation to percent bare ground and fewer adults were collected in areas with more leaf litter and coarse woody debris. Conversely, we found larvae more often in areas with more total cover, biennials, vines, shrubs, and leaf litter, suggesting habitat is important for this life stage. We compared weather variables to tick presence and found, in 2015, temperature, precipitation, humidity, and sample period influenced tick collection and were life stage specific. In 2016, temperature, precipitation, humidity, wind, and sample period influenced tick collection and were also life stage specific. These results indicate that spring burns in an oak woodland do not reduce ticks; other variables such as habitat and weather are more influential on tick abundance or presence at different life stages.

  7. Evidence of Powassan/deer tick virus in adult black-legged ticks (Ixodes scapularis) recovered from hunter-harvested white-tailed deer (Odocoileus virginianus) in Pennsylvania: A public health perspective.

    PubMed

    Campagnolo, E R; Tewari, D; Farone, T S; Livengood, J L; Mason, K L

    2018-04-29

    Studies reporting tick infection rates for Powassan virus (POWV), an emerging zoonotic arthropod-borne pathogen responsible for POWV disease in the Commonwealth of Pennsylvania, are limited. To determine the presence and ascertain a statewide prevalence of POWV, ticks were collected from 9,912 hunter-harvested white-tailed deer (Odocoileus virginianus) heads presented to six regional Pennsylvania Game Commission Chronic Wasting Disease sampling stations in early December of 2013, 2014 and 2015. Of the 2,973 ticks recovered, 1,990 (66.9%) were identified as adult Ixodes scapularis (black-legged tick). The 1,990 I. scapularis ticks were PCR-tested for the presence of POWV. The ticks had a statewide Powassan/deer tick virus infection rate of 0.05%, providing evidence of this pathogen in Pennsylvania's adult I. scapularis ticks and supporting the need for more comprehensive pathogen prevalence assessment strategies, as well as increased public health awareness for this emerging zoonotic arthropod-borne pathogen of public health concern. © 2018 Blackwell Verlag GmbH.

  8. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission.

    PubMed

    Šimo, Ladislav; Kazimirova, Maria; Richardson, Jennifer; Bonnet, Sarah I

    2017-01-01

    As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.

  9. Ticks and tick-borne pathogens in wild birds in Greece.

    PubMed

    Diakou, Anastasia; Norte, Ana Cláudia; Lopes de Carvalho, Isabel; Núncio, Sofia; Nováková, Markéta; Kautman, Matej; Alivizatos, Haralambos; Kazantzidis, Savas; Sychra, Oldřich; Literák, Ivan

    2016-05-01

    Wild birds are common hosts of ticks and can transport them for long distances, contributing to the spreading of tick-borne pathogens. The information about ticks on birds and tick-borne pathogens in Greece is limited. The present study aimed to evaluate the prevalence and species of ticks infesting wild resident birds (mostly small passerines) in Greece, and to assess Borrelia and Rickettsia infection in the collected ticks. Detection of Borrelia burgdorferi s.l. was performed by nested PCR targeting the flaB gene. Rickettsia spp. were detected by PCR targeting the gltA and ompA genes. Seven (2 %) out of 403 birds examined in northern Greece in 2013 were infested with 15 ticks, identified as Ixodes frontalis, Ixodes acuminatus, Hyalomma marginatum, Hyalomma aegyptium and Hyalomma sp. All ticks were negative for Borrelia spp. while four of them were positive for rickettsiae (Rickettsia aeschlimannii in H. aegyptium and Rickettsia sp. in I. frontalis, H. aegyptium and H. marginatum). Ixodes acuminatus is reported for the first time in Greece and Sylvia borin is reported as a new host record for I. acuminatus.

  10. Transovarial silencing of the subolesin gene in three-host ixodid tick species after injection of replete females with subolesin dsRNA.

    PubMed

    Kocan, Katherine M; Manzano-Roman, Raúl; de la Fuente, José

    2007-05-01

    RNA interference (RNAi) has become the most powerful experimental tool for the study of gene function in ticks. Subolesin, initially called 4D8, was found to be protective against tick infestations when used as a vaccine and was shown to be highly conserved among ixodid tick species at the nucleotide and protein levels. RNAi caused systemic silencing of subolesin and demonstrated that this protein is involved in regulation of tick feeding, reproduction, and development. Recently, these results were extended to the one-host tick Rhipicephalus (Boophilus) microplus in which injection of dsRNA into replete females resulted in transovarial silencing of subolesin expression in eggs and larvae. Herein, we report transovarial silencing of subolesin by RNAi in the three-host ticks, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. Silencing of subolesin expression by RNAi in these tick species also affected subolesin expression in eggs and larvae. Transovarial RNAi appears to be a common mechanism in ixodid ticks and provides a simple method for the rapid characterization of tick genes involved in oviposition, embryogenesis, and larval development.

  11. Lumpy skin disease: Attempted propagation in tick cell lines and presence of viral DNA in field ticks collected from naturally-infected cattle

    PubMed Central

    Tuppurainen, E.S.M.; Venter, E.H.; Coetzer, J.A.W.; Bell-Sakyi, L.

    2015-01-01

    Lumpy skin disease (LSD) is of substantial economic importance for the cattle industry in Africa and the Near and Middle East. Several insect species are thought to transmit the disease mechanically. Recent transmission studies have demonstrated the first evidence for a role of hard (ixodid) ticks as vectors of lumpy skin disease virus (LSDV). The aim of this study was to attempt in vitro growth of the virus in Rhipicephalus spp. tick cell lines and investigate in vivo the presence of the virus in ticks collected from cattle during LSD outbreaks in Egypt and South Africa. No evidence was obtained for replication of LSDV in tick cell lines although the virus was remarkably stable, remaining viable for 35 days at 28 °C in tick cell cultures, in growth medium used for tick cells and in phosphate buffered saline. Viral DNA was detected in two-thirds of the 56 field ticks, making this the first report of the presence of potentially virulent LSDV in ticks collected from naturally infected animals. PMID:25468765

  12. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission

    PubMed Central

    Šimo, Ladislav; Kazimirova, Maria; Richardson, Jennifer; Bonnet, Sarah I.

    2017-01-01

    As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood—thus assuring adequate feeding—is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host. PMID:28690983

  13. Pet ownership increases human risk of encountering ticks.

    PubMed

    Jones, E H; Hinckley, A F; Hook, S A; Meek, J I; Backenson, B; Kugeler, K J; Feldman, K A

    2018-02-01

    We examined whether pet ownership increased the risk for tick encounters and tickborne disease among residents of three Lyme disease-endemic states as a nested cohort within a randomized controlled trial. Information about pet ownership, use of tick control for pets, property characteristics, tick encounters and human tickborne disease were captured through surveys, and associations were assessed using univariate and multivariable analyses. Pet-owning households had 1.83 times the risk (95% CI = 1.53, 2.20) of finding ticks crawling on and 1.49 times the risk (95% CI = 1.20, 1.84) of finding ticks attached to household members compared to households without pets. This large evaluation of pet ownership, human tick encounters and tickborne diseases shows that pet owners, whether of cats or dogs, are at increased risk of encountering ticks and suggests that pet owners are at an increased risk of developing tickborne disease. Pet owners should be made aware of this risk and be reminded to conduct daily tick checks of all household members, including the pets, and to consult their veterinarian regarding effective tick control products. © 2017 Blackwell Verlag GmbH.

  14. The microbiome of neotropical ticks parasitizing on passerine migratory birds.

    PubMed

    Budachetri, Khemraj; Williams, Jaclyn; Mukherjee, Nabanita; Sellers, Michael; Moore, Frank; Karim, Shahid

    2017-01-01

    Seasonal migration of passerine birds between temperate North America and tropical Central and South America is an ecological phenomenon. Migration of birds has been associated with the introduction of ectoparasites like ticks or tick-borne pathogens across the avian migration routes. In this study, the microbial diversity was determined in the ticks and bird DNA samples using 454 pyrosequencing of bacterial 16S rRNA gene. Tick DNA samples showed the dominance of genera Lactococcus, Francisella, Raoultella, Wolbachia and Rickettsia across all the ticks, but birds DNA did not share common microbial diversity with ticks. Furthermore, "Candidatus Rickettsia amblyommii" infection in the 91 ticks collected off the songbirds was also quantified by qPCR assay. Interestingly, "Candidatus R. amblyommii" was tested positive in 24 ticks (26% infection), and infection varied from as low as three copies to thousands of copies, but bird blood samples showed no amplification. Our results provide evidence that songbirds serve as transport carrier for immature ticks, and less likely to be a reservoir for "Candidatus R. amblyommii". Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Knowledge, attitudes, and practices regarding ticks and tick-borne diseases, Finland.

    PubMed

    Zöldi, Viktor; Turunen, Topi; Lyytikäinen, Outi; Sane, Jussi

    2017-10-01

    Tick-borne encephalitis (TBE) and Lyme borreliosis (LB) are endemic in Finland, with tens and thousands of cases, respectively, reported annually. We performed a field survey to investigate people's knowledge, attitudes and practices (KAP) regarding ticks, tick-borne diseases, and prevention strategies. The KAP were assessed using a pre-validated anonymous questionnaire consisting of 39 questions and statements. On two consecutive days in July 2016, convenience sampling was used in the cities of Parainen and Kotka, located in high-risk areas of tick-borne diseases, particularly of TBE. In attitudes and practices sections, each question was scored and analysed with ordered logistic regression model. In total, 101 individuals responded. The TBE vaccination rate among respondents was 40%. The best known preventive measures were having vaccination against TBE (88%), and wearing long sleeves and pants against ticks (81%). Two-thirds incorrectly identified the ring-like rash as a symptom of TBE. Of all respondents, 78% could not exclude that TBE can be treated with antibiotics; 55% that vaccine protects against LB; and 46% that it protects against ticks. The minority (14%) believed tick repellents to be effective. Among preventive behaviour, the quick removal of an attached tick was most frequently applied (97%). Repellents were used by 21% when visiting tick-infested areas. Significant associations were found between the vaccination status and having a correct belief that the vaccine protects against TBE (P<0.001) but not against ticks (P<0.05), or LB (P<0.001). KAP is a quick and easy tool to get a rough estimation on people's awareness regarding ticks and tick-borne diseases. We identified gaps in knowledge and misbeliefs. Our results can be used in public health communication tools on tick-borne diseases, especially those on intervention strategies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Community-Based Control of the Brown Dog Tick in a Region with High Rates of Rocky Mountain Spotted Fever, 2012–2013

    PubMed Central

    Drexler, Naomi; Miller, Mark; Gerding, Justin; Todd, Suzanne; Adams, Laura; Dahlgren, F. Scott; Bryant, Nelva; Weis, Erica; Herrick, Kristen; Francies, Jessica; Komatsu, Kenneth; Piontkowski, Stephen; Velascosoltero, Jose; Shelhamer, Timothy; Hamilton, Brian; Eribes, Carmen; Brock, Anita; Sneezy, Patsy; Goseyun, Cye; Bendle, Harty; Hovet, Regina; Williams, Velda; Massung, Robert; McQuiston, Jennifer H.

    2014-01-01

    Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003–2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives. PMID:25479289

  17. Community-based control of the brown dog tick in a region with high rates of Rocky Mountain spotted fever, 2012-2013.

    PubMed

    Drexler, Naomi; Miller, Mark; Gerding, Justin; Todd, Suzanne; Adams, Laura; Dahlgren, F Scott; Bryant, Nelva; Weis, Erica; Herrick, Kristen; Francies, Jessica; Komatsu, Kenneth; Piontkowski, Stephen; Velascosoltero, Jose; Shelhamer, Timothy; Hamilton, Brian; Eribes, Carmen; Brock, Anita; Sneezy, Patsy; Goseyun, Cye; Bendle, Harty; Hovet, Regina; Williams, Velda; Massung, Robert; McQuiston, Jennifer H

    2014-01-01

    Rocky Mountain spotted fever (RMSF) transmitted by the brown dog tick (Rhipicephalus sanguineus sensu lato) has emerged as a significant public health risk on American Indian reservations in eastern Arizona. During 2003-2012, more than 250 RMSF cases and 19 deaths were documented among Arizona's American Indian population. The high case fatality rate makes community-level interventions aimed at rapid and sustained reduction of ticks urgent. Beginning in 2012, a two year pilot integrated tick prevention campaign called the RMSF Rodeo was launched in a ∼ 600-home tribal community with high rates of RMSF. During year one, long-acting tick collars were placed on all dogs in the community, environmental acaricides were applied to yards monthly, and animal care practices such as spay and neuter and proper tethering procedures were encouraged. Tick levels, indicated by visible inspection of dogs, tick traps and homeowner reports were used to monitor tick presence and evaluate the efficacy of interventions throughout the project. By the end of year one, <1% of dogs in the RMSF Rodeo community had visible tick infestations five months after the project was started, compared to 64% of dogs in Non-Rodeo communities, and environmental tick levels were reduced below detectable levels. The second year of the project focused on use of the long-acting collar alone and achieved sustained tick control with fewer than 3% of dogs in the RMSF Rodeo community with visible tick infestations by the end of the second year. Homeowner reports of tick activity in the domestic and peridomestic setting showed similar decreases in tick activity compared to the non-project communities. Expansion of this successful project to other areas with Rhipicephalus-transmitted RMSF has the potential to reduce brown dog tick infestations and save human lives.

  18. Tick Bites

    MedlinePlus

    ... that go outdoors, you need to beware of ticks. Ticks are small bloodsucking parasites. Many species transmit diseases ... of the diseases you can get from a tick bite are Lyme disease, ehrlichiosis, Rocky Mountain spotted ...

  19. Molecular detection of Theileria, Babesia, and Hepatozoon spp. in ixodid ticks from Palestine.

    PubMed

    Azmi, Kifaya; Ereqat, Suheir; Nasereddin, Abedelmajeed; Al-Jawabreh, Amer; Baneth, Gad; Abdeen, Ziad

    2016-07-01

    Ixodid ticks transmit various infectious agents that cause disease in humans and livestock worldwide. A cross-sectional survey on the presence of protozoan pathogens in ticks was carried out to assess the impact of tick-borne protozoa on domestic animals in Palestine. Ticks were collected from herds with sheep, goats and dogs in different geographic districts and their species were determined using morphological keys. The presence of piroplasms and Hepatozoon spp. was determined by PCR amplification of a 460-540bp fragment of the 18S rRNA gene followed by RFLP or DNA sequencing. A PCR-RFLP method based on the 18S rRNA was used in order to detect and to identify Hepatozoon, Babesia and Theileria spp. A total of 516 ticks were collected from animals in six Palestinian localities. Five tick species were found: Rhipicephalus sanguineus sensu lato, Rhipicephalus turanicus, Rhipicephalus bursa, Haemaphysalis parva and Haemaphysalis adleri. PCR-based analyses of the ticks revealed Theileria ovis (5.4%), Hepatozoon canis (4.3%), Babesia ovis (0.6%), and Babesia vogeli (0.4%). Theileria ovis was significantly associated with ticks from sheep and with R. turanicus ticks (p<0.01). H. canis was detected only in R. sanguineus s.l. and was significantly associated with ticks from dogs (p<0.01). To our knowledge, this is the first report describing the presence of these pathogens in ticks collected from Palestine. Communicating these findings with health and veterinary professionals will increase their awareness, and contribute to improved diagnosis and treatment of tick-borne diseases. Copyright © 2016. Published by Elsevier GmbH.

  20. Translating ecology, physiology, biochemistry and population genetics research to meet the challenge of tick and tick-borne diseases in North America

    PubMed Central

    Esteve-Gassent, Maria D.; Castro-Arellano, Ivan; Feria-Arroyo, Teresa P.; Patino, Ramiro; Li, Andrew Y.; Medina, Raul F.; Pérez de León, Adalberto A.; Rodríguez-Vivas, Roger Iván

    2016-01-01

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern US and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multi host-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks. PMID:27062414

  1. Investigation of tick-borne bacteria (Rickettsia spp., Anaplasma spp., Ehrlichia spp. and Borrelia spp.) in ticks collected from Andean tapirs, cattle and vegetation from a protected area in Ecuador.

    PubMed

    Pesquera, Cristina; Portillo, Aránzazu; Palomar, Ana M; Oteo, José A

    2015-01-24

    Ixodid ticks play an important role in the transmission and ecology of infectious diseases. Information about the circulation of tick-borne bacteria in ticks is lacking in Ecuador. Our aims were to investigate the tick species that parasitize Andean tapirs and cattle, and those present in the vegetation from the buffer zone of the Antisana Ecological Reserve and Cayambe-Coca National Park (Ecuador), and to investigate the presence of tick-borne bacteria. Tick species were identified based on morphologic and genetic criteria. Detection of tick-borne bacteria belonging to Rickettsia, Anaplasma, Ehrlichia and Borrelia genera was performed by PCRs. Our ticks included 91 Amblyomma multipunctum, 4 Amblyomma spp., 60 Rhipicephalus microplus, 5 Ixodes spp. and 1 Ixodes boliviensis. A potential Candidatus Rickettsia species closest to Rickettsia monacensis and Rickettsia tamurae (designated Rickettsia sp. 12G1) was detected in 3 R. microplus (3/57, 5.3%). In addition, Anaplasma spp., assigned at least to Anaplasma phagocytophilum (or closely related genotypes) and Anaplasma marginale, were found in 2 A. multipunctum (2/87, 2.3%) and 13 R. microplus (13/57, 22.8%). This is the first description of Rickettsia sp. in ticks from Ecuador, and the analyses of sequences suggest the presence of a potential novel Rickettsia species. Ecuadorian ticks from Andear tapirs, cattle and vegetation belonging to Amblyomma and Rhipicephalus genera were infected with Anaplasmataceae. Ehrlichia spp. and Borrelia burgdorferi sensu lato were not found in any ticks.

  2. Tick abundance: a one year study on the impact of flood events along the banks of the river Danube, Austria.

    PubMed

    Weiler, Martin; Duscher, Georg Gerhard; Wetscher, Monika; Walochnik, Julia

    2017-02-01

    The abundance of questing ticks depends on various factors. In this study, the impact of a major flood event on tick abundance and activity was observed. Ticks were collected on a weekly basis in two approximately 2 km 2 large floodplain areas on the inner and the outer bank of the river Danube north of Vienna, Austria. In 2013 before a 200 year flood event, an average of 55 ticks per hour was collected in the area on the outer bank and 21 ticks per hour in the area on the inner bank. After the flood event the tick activity was massively reduced, with 12 ticks per hour on the outer bank and 1.1 ticks per hour on the inner bank. The most distinctive factor between the two areas was the level of sediment after the flooding, with almost no sediment in the outer bank, whereas on the inner bank the average height of sediment was 270 mm. Our data indicate the residual sediment has a greater impact on tick abundance and activity than the flooding itself. Besides the direct effect of ticks being buried under the sediment, there may be important indirect effects of the sediment on the habitat of the ticks and/or the host animals. We assume that this is the reason for the generally significantly lower numbers of questing ticks in this area on the inner bank of the Danube in this region, with periodical flood events.

  3. Ticks (Acari: Ixodidae) associated with wildlife and vegetation of Haller park along the Kenyan coastline.

    PubMed

    Wanzala, W; Okanga, S

    2006-09-01

    This artcile describes the results obtained from a tick survey conducted in Haller park along the Kenyan coastline. The survey aimed at evaluating tick-host associations, assessing tick population density, and providing baseline information for planning future tick control and management in the park. Ticks (2,968) were collected by handpicking from eight species of wildlife and by dragging in 14 selected sites within the park. A considerable proportion of ticks were also collected from leaves, stems, and bark of most dominant trees, namely, Casuarina equisetifolia L. (Forst. and Forst.), Cocos nucifera L., Adansonia digitata L., Musa paradisiaca L., and Azadiracta indica Adr. Juss. Dragging was conducted in sites predominantly occupied by Cynodon dactylon L. (Pers.), Cenchrus ciliaris L., Stenotaphrum dimidiatum L. (Kuntze.) Brongn., and Brachiaria xantholeuca Hack. Ex Schinz Stapf. and Loudetia kagerensis K. Schum. Hutch. Eight tick species were identified, and the collection included Rhipicephalus pravus Dönitz 1910, Rhipicephalus pulchellus Gerstäcker 1873, Hyalomma marginatum rufipes Koch 1844, Amblyomma gemma Dönitz 1910, Amblyomma hebraeum Koch 1844, Amblyomma sparsum Neumann 1899, Amblyomma nuttalli Dönitz 1909, and Boophilus decoloratus Koch 1844. Given that the identified tick species are known to parasitize humans as well as livestock, there exist risks of emergence of zoonotic infections mediated by tick vectors. In the recreational environment of Haller park, where tick vectors share habitats with hosts, there is a need to develop sustainable and effective tick control and management strategies to minimize economic losses that tick infestation may cause.

  4. Tick front-of-pack label has a positive nutritional impact on foods sold in New Zealand.

    PubMed

    Thomson, Rachel K; McLean, Rachael M; Ning, Sherry X; Mainvil, Louise A

    2016-11-01

    Nutritional impact of the Tick front-of-pack labelling programme was evaluated by investigating nutrient changes to the purchased food supply and the nutritional quality of Tick v. non-Tick products. Factors influencing manufacturers' decisions to develop and license Tick products were also explored. Observational, cross-sectional and change over time data. New Zealand food supply, 2011-2013. Forty-five newly licensed Tick products from five food categories were analysed: Edible Oil Spreads, Yoghurt & Dairy Desserts, Frozen Desserts, Ready Meals and Processed Poultry. Four manufacturers of these products were interviewed. Eligible products (31 % of all Tick products in these categories) removed 4·1 million megajoules of energy, 156·0 tonnes of saturated fat, 15·4 tonnes of trans-fat and 4·0 tonnes of sodium from food products sold in New Zealand over three years. In each food category, these Tick products were, on average, 14-76 % lower in energy, saturated fat, trans-fat and sodium than non-Tick products, indicating healthier options. Participating manufacturers reported that international market trends and consumer demand for tasty, healthy foods primarily influenced Tick product development and sales. Tick was used as part of their marketing strategy as it was perceived as a credible, well-recognised logo for New Zealand consumers. Tick was cited as the primary initiative encouraging saturated fat reduction. The Tick Programme is continuing to encourage manufacturers to make meaningful improvements to the nutritional quality of the New Zealand food supply. Over time, these changes are likely to influence population nutrient intakes and reduce CVD risk factors.

  5. Variation in the Microbiota of Ixodes Ticks with Regard to Geography, Species, and Sex.

    PubMed

    Van Treuren, Will; Ponnusamy, Loganathan; Brinkerhoff, R Jory; Gonzalez, Antonio; Parobek, Christian M; Juliano, Jonathan J; Andreadis, Theodore G; Falco, Richard C; Ziegler, Lorenza Beati; Hathaway, Nicholas; Keeler, Corinna; Emch, Michael; Bailey, Jeffrey A; Roe, R Michael; Apperson, Charles S; Knight, Rob; Meshnick, Steven R

    2015-09-01

    Ixodes scapularis is the principal vector of Lyme disease on the East Coast and in the upper Midwest regions of the United States, yet the tick is also present in the Southeast, where Lyme disease is absent or rare. A closely related species, I. affinis, also carries the pathogen in the South but does not seem to transmit it to humans. In order to better understand the geographic diversity of the tick, we analyzed the microbiota of 104 adult I. scapularis and 13 adult I. affinis ticks captured in 19 locations in South Carolina, North Carolina, Virginia, Connecticut, and New York. Initially, ticks from 4 sites were analyzed by 454 pyrosequencing. Subsequently, ticks from these sites plus 15 others were analyzed by sequencing with an Illumina MiSeq machine. By both analyses, the microbiomes of female ticks were significantly less diverse than those of male ticks. The dissimilarity between tick microbiomes increased with distance between sites, and the state in which a tick was collected could be inferred from its microbiota. The genus Rickettsia was prominent in all locations. Borrelia was also present in most locations and was present at especially high levels in one site in western Virginia. In contrast, members of the family Enterobacteriaceae were very common in North Carolina I. scapularis ticks but uncommon in I. scapularis ticks from other sites and in North Carolina I. affinis ticks. These data suggest substantial variations in the Ixodes microbiota in association with geography, species, and sex. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Powassan/Deer Tick Virus and Borrelia Burgdorferi Infection in Wisconsin Tick Populations

    PubMed Central

    Thomm, Angela M.; Harrington, Yvette A.; Ketter, Ellen; Patitucci, Jacob M.; Carrigan, Donald R.

    2017-01-01

    Abstract Powassan/Deer Tick Virus (POWV/DTV) is an emerging cause of arboviral neuroinvasive disease in the upper Midwest. These studies describe the prevalence and geographic distribution of Wisconsin ticks carrying POWV/DTV as well as the high frequency of Ixodes scapularis ticks coinfected with both POWV/DTV and Borrelia burgdorferi, the causative agent of Lyme disease. These findings suggest that concurrent transmission of POWV/DTV and B. Burgdorferi from coinfected ticks is likely to occur in humans. PMID:28488932

  7. Some effects of irradiation on the tick Rhipicephalus appendiculatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purnell, R.E.; Dargie, J.D.; Gilliver, B.

    1972-06-01

    A series of experiments to study the effects of gamma irradiation on the tick, Rhipicephalus appendiculatus, is described. It was intended to define the tolerance limits to irradiation of different stages of the tick so that a subsequent series of experiments could be carried out to study the effects on developmental stages of Theileria parva in the tick and also to explore the possibility of producing sterile male ticks in spite of the obvious difficulties of attempting to use this technique for tick eradication. (auth)

  8. Powassan/Deer Tick Virus and Borrelia Burgdorferi Infection in Wisconsin Tick Populations.

    PubMed

    Knox, Konstance K; Thomm, Angela M; Harrington, Yvette A; Ketter, Ellen; Patitucci, Jacob M; Carrigan, Donald R

    2017-07-01

    Powassan/Deer Tick Virus (POWV/DTV) is an emerging cause of arboviral neuroinvasive disease in the upper Midwest. These studies describe the prevalence and geographic distribution of Wisconsin ticks carrying POWV/DTV as well as the high frequency of Ixodes scapularis ticks coinfected with both POWV/DTV and Borrelia burgdorferi, the causative agent of Lyme disease. These findings suggest that concurrent transmission of POWV/DTV and B. Burgdorferi from coinfected ticks is likely to occur in humans.

  9. Prevalence of tick-borne pathogens in ticks collected from migratory birds in Latvia.

    PubMed

    Capligina, Valentina; Salmane, Ineta; Keišs, Oskars; Vilks, Karlis; Japina, Kristine; Baumanis, Viesturs; Ranka, Renate

    2014-02-01

    Migratory birds act as hosts and long-distance vectors for several tick-borne infectious agents. Here, feeding Ixodes ticks were collected from migratory birds during the autumn migration period in Latvia and screened for the presence of epidemiologically important non-viral pathogens. A total of 93 DNA samples of ticks (37 larvae and 56 nymphs) removed from 41 birds (order Passeriformes, 9 species) was tested for Lyme borreliosis spirochaetes, Anaplasma phagocytophilum, Rickettsia spp., and Babesia spp. Borrelia burgdorferi DNA was detected in 18% of the tick samples, and a majority of infected ticks were from thrush (Turdus spp.) birds. Among the infected ticks, Borrelia valaisiana was detected in 41% of cases, Borrelia garinii in 35%, and mixed Bo. valaisiana and Bo. garinii infection in 24%. Anaplasma phagocytophilum DNA was detected in 2% of ticks, R. helvetica in 12%, and Babesia spp. pathogens in 4% of ticks. Among these samples, 3 Babesia species were identified: Ba. divergens, Ba. microti, and Ba. venatorum. Coinfection with different pathogens that included mixed infections with different Borrelia genospecies was found in 20% of nymphal and 3% of larval Ixodes ticks. These results suggest that migratory birds may support the circulation and spread of medically significant zoonoses in Europe. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Identification of a glycine-rich protein from the tick Rhipicephalus haemaphysaloides and evaluation of its vaccine potential against tick feeding.

    PubMed

    Zhou, Jinlin; Gong, Haiyan; Zhou, Yongzhi; Xuan, Xuenan; Fujisaki, Kozo

    2006-12-01

    A cDNA coding a glycine-rich protein was identified from the Rhipicephalus haemaphysaloides tick. The cDNA named here as RH50 was 1,823 bp, including a single open reading frame (ORF) of 1,518 nucleotides. The ORF encodes a polypeptide of 506 amino acid residues with a size of 50 kDa, as calculated by a computer. The predicted amino acid sequence of RH50 showed a low homology to sequences of some known extracellular matrix-like proteins. The native protein was identified in both the fed tick salivary gland lysates and extracts of cement material using the serum against the recombinant protein. Reverse transcription polymerase chain reaction results showed that RH50 mRNA was only transcribed in partially fed tick salivary glands, not in unfed tick salivary glands or partially fed tick midgut, fat body, or ovary. The differential expression of RH50 protein in fed tick salivary glands was confirmed by immunofluorescence. The low attachment rate both in the adult and nymphal tick, and the high mortality of immature ticks (nymph) feeding on recombinant RH50-immunized rabbits were found. These results show that the RH50 protein could be a useful candidate for anti-tick vaccine development.

  11. Hormonal interference with pheromone systems in parasitic acarines, especially ixodid ticks. Annual technical report No. 4, 1 May 1983-30 April 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonenshine, D.E.; Oliver, J.H. Jr.; Homsher, P.J.

    1984-05-01

    The most important result of recent project research was the demonstration of the juvenoid JH III by radioimmunoassay. This assay revealed an estimated 78 pg/tick in the hemolymph of partially fed Hyalomma dromedarii females, and an estimated 3 pg/tick in the hemolymph of partially fed D. variabilis. Other studies, especially digestion of tritium labelled JH III, provided additional evidence suggesting the presence of this hormone in adult ticks. The implications of these findings for our understanding of sex pheromone regulation in ticks is discussed. Other studies described in this report deal with the source of ecdysteroid in teh camel tick,more » Hyalomma dromedarii, the American dog tick, Dermacentor variabilis, and the soft tick, Ornithodoros parkeri. Studies done at ODU, using radioimmunoassay high performance liquid chromatography, and autoradiography, provide new evidence implicating the tick synganglion - lateral nerve plexus as an important site of ecdysteroid activity in the ixodid ticks. Other studies with ecdysteriods suggest that metabolism of ecdysone or 20-hydroxyecdysone (or both) to inactive metabolites, possibly including polar conjugates. If confirmed, these findings indicate the presence of only a single active ecdysteriod hormone in ticks, 20-hydroxyecdysone.« less

  12. [The ecology of ticks, tick-borne diseases and biological tick control in Baden-Württemberg].

    PubMed

    Sebastian, P; Mackenstedt, U; Wassermann, M; Wurst, E; Hartelt, K; Petney, T; Pfäffle, M; Littwin, N; Steidle, J L M; Selzer, P; Norra, S; Böhnke, D; Gebhardt, R; Kahl, O; Dautel, H; Oehme, R

    2014-05-01

    Ticks and tick-borne diseases are of great significance for the health of humans and animals. However, the factors influencing their distribution and dynamics are inadequately known. In a project financed by the Baden-Württemberg Ministry of the Environment, Climate and Energy Industry, as part of the program BWPLUS, interdisciplinary specialists work together to determine the influence of weather, (micro)climate, habitat, land use, human activities, and the population dynamics of host animals on the distribution and abundance of ticks and the diseases that they transmit in Baden-Württemberg. The project comprises four modules: the large-scale distribution of ticks in Baden-Württemberg (module 1), detailed studies of host-tick-pathogen interaction in relation to the microclimate (module 2), and the spatial occurrence of important tick-borne pathogens (module 3). The fourth module involves the comprehensive analysis and synthesis of all data in order to determine the relative importance of the factors studied and to develop a risk model. Recently, intensive investigations into tick control have been undertaken using various entomopathogenic fungi and nematodes as well as a parasitoid wasp. Our aim was to determine whether these natural enemies could be used to effectively reduce the number of free-living ticks.

  13. Coxiella Detection in Ticks from Wildlife and Livestock in Malaysia

    PubMed Central

    Khoo, Jing-Jing; Lim, Fang-Shiang; Chen, Fezshin; Phoon, Wai-Hong; Khor, Chee-Sieng; Pike, Brian L.; Chang, Li-Yen

    2016-01-01

    Abstract Recent studies have shown that ticks harbor Coxiella-like bacteria, which are potentially tick-specific endosymbionts. We recently described the detection of Coxiella-like bacteria and possibly Coxiella burnetii in ticks found from rural areas in Malaysia. In the present study, we collected ticks, including Haemaphysalis bispinosa, Haemaphysalis hystricis, Dermacentor compactus, Dermacentor steini, and Amblyomma sp. from wildlife and domesticated goats from four different locations in Malaysia. Coxiella 16s rRNA genomic sequences were detected by PCR in 89% of ticks tested. Similarity analysis and phylogenetic analyses of the 16s rRNA and rpoB partial sequences were performed for 10 representative samples selected based on the tick species, sex, and location. The findings here suggested the presence of C. burnetii in two samples, each from D. steini and H. hystricis. The sequences of both samples clustered with published C. burnetii sequences. The remaining eight tick samples were shown to harbor 16s rRNA sequences of Coxiella-like bacteria, which clustered phylogenetically according to the respective tick host species. The findings presented here added to the growing evidence of the association between Coxiella-like bacteria and ticks across species and geographical boundaries. The importance of C. burnetii found in ticks in Malaysia warrants further investigation. PMID:27763821

  14. Vector biodiversity did not associate with tick-borne pathogen prevalence in small mammal communities in northern and central California.

    PubMed

    Foley, Janet; Piovia-Scott, Jonah

    2014-04-01

    Vector and host abundance affect infection transmission rates, prevalence, and persistence in communities. Biological diversity in hosts and vectors may provide "rescue" hosts which buffer against pathogen extinction and "dilution" hosts which reduce the force of infection in communities. Anaplasma phagocytophilum is a tick-transmitted zoonotic pathogen that circulates in small mammal and tick communities characterized by varying levels of biological diversity. We examined the prevalence of A. phagocytophilum in Ixodes spp. ticks in 11 communities in northern and central California. A total of 1020 ticks of 8 species was evaluated. Five percent of ticks (5 species) were PCR-positive, with the highest prevalence (6-7%) in I. pacificus and I. ochotonae. In most species, adults had a higher prevalence than nymphs or larvae. PCR prevalence varied between 0% and 40% across sites; the infection probability in ticks increased with infestation load and prevalence in small mammals, but not tick species richness, diversity, evenness, or small mammal species richness. No particular tick species was likely to "rescue" infection in the community; rather the risk of A. phagocytophilum infection is related to exposure to particular tick species and life stages, and overall tick abundance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. A Prospective Study among Patients Presenting at the General Practitioner with a Tick Bite or Erythema Migrans in the Netherlands

    PubMed Central

    Hofhuis, Agnetha; Herremans, Tineke; Notermans, Daan W.; Sprong, Hein; Fonville, Manoj; van der Giessen, Joke W. B.; van Pelt, Wilfrid

    2013-01-01

    Background We performed a nationwide prospective study on the transmission risk for Borrelia to humans, investigating symptoms and serology at enrolment and three months after tick bites, and after standard treatment for erythema migrans (EM). Aiming to quantify the infection risk at point of care by physicians, we explored risk factors such as tick testing for Borrelia and assessment of the duration of the tick's blood meal. Methods and Findings Questionnaires, blood samples and ticks from patients who consulted one of 307 general practitioners for tick bites (n = 327) or EM (n = 283) in 2007 and 2008, were collected at enrolment and three months later at follow-up. Borrelia burgdorferi sensu lato DNA was detected in 29.3% of 314 ticks, using PCR/reverse line blot and real-time PCR on the OspA gene. Seroconversion in C6 ELISA, IgM or IgG immunoblots for Borrelia-specific antibodies was observed in 3.2% of tick bite cases. Fourteen tick bite cases had evidence of early Borrelia infection, of which EM developed among seven cases. The risk of developing EM after tick bites was 2.6% (95%CI: 1.1%–5.0%), and the risk of either EM or seroconversion was 5.1% (95%CI: 2.9%–8.2%). Participants with Borrelia-positive ticks had a significantly higher risk of either EM or seroconversion (odds ratio 4.8, 95%CI: 1.1–20.4), and of seroconversion alone (odds ratio 11.1, 95%CI: 1.1–108.9). A third (34%) of the cases enrolled with EM did not recall preceding tick bites. Three EM cases (1%) reported persisting symptoms, three months after standard antibiotic treatment for EM. Conclusions One out of forty participants developed EM within three months after tick bites. The infection risk can be assessed by tick testing for Borrelia at point of care by physicians. However, further refining is needed considering sensitivity and specificity of tick tests, accuracy of tick attachment time and engorgement. PMID:23696884

  16. Ticks threatening lineage of Anatolian wild sheep (Ovis gmelinii anatolica) and determination of their tick-borne pathogens.

    PubMed

    Orkun, Ömer; Emir, Hasan; Karaer, Zafer

    2016-09-15

    We aimed to determine the ticks of the Anatolian wild sheep and to define their tick-borne pathogens while molecularly studying their relationships with those of the domestic sheep. Furthermore, another aim of this study is to investigate tick paralysis resulting in the death of the Anatolian wild sheep. Ticks and blood samples were collected from the wild sheep whilst tick samples were also collected from hares, guinea fowls, chickens, and a turkey living in the Anatolian wild sheep breeding area. While PCR amplification was carried out for the detection of Babesia spp., Theileria spp. and Anaplasma spp. in blood samples, CCHF virus was screened in the tick samples in addition to the above-mentioned pathogens. Theileria spp. was detected in blood samples of 45 wild sheep. A total of 3494 ticks were collected from 52 Anatolian wild sheep, 5 hares, 5 guinea fowls, 2 chickens, and 1 turkey whereas 98 ticks were collected from the ground. B. ovis and T. ovis were detected in tick pools (Rh. bursa and H. excavatum) that were collected from the wild sheep. The paralysis was diagnosed in both of the hind legs of the newborn lambs infested with a great number of ticks. We also report that the tick species (H. excavatum and Rh. bursa) are determined to cause tick paralysis and tick toxicosis, which are associated with mortality especially in lambs. T. ovis and B. ovis were detected and studied for the first time in Anatolian wild sheep and in their ticks. The results of phylogenetic analyses showed that T. ovis and B. ovis isolates are genetically very close to the isolates that were previously obtained from the domestic small ruminants. We show that the Anatolian wild sheep can play the role of a reservoir for T. ovis. The presence of the CCHF virus has also been clearly shown and it has been observed that this virus, which is very pathogenic for humans, is anywise circulating in the region. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Ticks

    USGS Publications Warehouse

    Ginsberg, H.S.; Faulde, M.K.

    2008-01-01

    The most common vector-borne diseases in both Europe and North America are transmitted by ticks. Lyme borreliosis (LB), a tick-borne bacterial zoonosis, is the most highly prevalent. Other important tick-borne diseases include TBE (tick-borne encephalitis) and Crimean-Congo haemorrhagic fever in Europe, Rocky Mountain spotted fever (RMSF) in North America, and numerous less common tick-borne bacterial, viral, and protozoan diseases on both continents. The major etiological agent of LB is Borrelia burgdorferi in North America, while in Europe several related species of Borrelia can also cause human illness. These Borrelia genospecies differ in clinical manifestations, ecology (for example, some have primarily avian and others primarily mammalian reservoirs), and transmission cycles, so the epizootiology of LB is more complex in Europe than in North America. Ticks dwell predominantly in woodlands and meadows, and in association with animal hosts, with only limited colonization of human dwellings by a few species. Therefore, suburbanization has contributed substantially to the increase in tick-borne disease transmission in North America by fostering increased exposure of humans to tick habitat. The current trend toward suburbanization in Europe could potentially result in similar increases in transmission of tick-borne diseases. Incidence of tick-borne diseases can be lowered by active public education campaigns, targeted at the times and places of greatest potential for encounter between humans and infected ticks. Similarly, vaccines (e.g., against TBE) are most effective when made available to people at greatest risk, and for high-prevalence diseases such as LB. Consultation with vector-borne disease experts during the planning stages of new human developments can minimize the potential for residents to encounter infected ticks (e.g., by appropriate dwelling and landscape design). Furthermore, research on tick vectors, pathogens, transmission ecology, and on geographic distribution, spread, and management of tick-borne diseases can lead to innovative and improved methods to lower the incidence of these diseases. Surveillance programs to monitor the distribution and spread of ticks, associated pathogens, and their reservoirs, can allow better-targeted management efforts, and provide data to assess effectiveness and to improve management programs.

  18. Fatal Tick-Borne Encephalitis Virus Infections Caused by Siberian and European Subtypes, Finland, 2015.

    PubMed

    Kuivanen, Suvi; Smura, Teemu; Rantanen, Kirsi; Kämppi, Leena; Kantonen, Jonas; Kero, Mia; Jääskeläinen, Anu; Jääskeläinen, Anne J; Sane, Jussi; Myllykangas, Liisa; Paetau, Anders; Vapalahti, Olli

    2018-05-01

    In most locations except for Russia, tick-borne encephalitis is mainly caused by the European virus subtype. In 2015, fatal infections caused by European and Siberian tick-borne encephalitis virus subtypes in the same Ixodes ricinus tick focus in Finland raised concern over further spread of the Siberian subtype among widespread tick species.

  19. 9 CFR 72.6 - Interstate movement of cattle from quarantined areas not eradicating ticks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... quarantined areas not eradicating ticks. 72.6 Section 72.6 Animals and Animal Products ANIMAL AND PLANT HEALTH... areas not eradicating ticks. Cattle in quarantined areas where tick eradication is not being conducted 3... inspector just prior to final dipping, found to be apparently free of ticks, and be certified as such by...

  20. 9 CFR 72.6 - Interstate movement of cattle from quarantined areas not eradicating ticks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quarantined areas not eradicating ticks. 72.6 Section 72.6 Animals and Animal Products ANIMAL AND PLANT HEALTH... areas not eradicating ticks. Cattle in quarantined areas where tick eradication is not being conducted 3... inspector just prior to final dipping, found to be apparently free of ticks, and be certified as such by...

  1. 9 CFR 72.6 - Interstate movement of cattle from quarantined areas not eradicating ticks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quarantined areas not eradicating ticks. 72.6 Section 72.6 Animals and Animal Products ANIMAL AND PLANT HEALTH... areas not eradicating ticks. Cattle in quarantined areas where tick eradication is not being conducted 3... inspector just prior to final dipping, found to be apparently free of ticks, and be certified as such by...

  2. Ticks on Deer and Cattle in the Cattle Fever Tick Permanent Quarantine Zone, 2012

    USDA-ARS?s Scientific Manuscript database

    Ticks were sampled from hosts in the cattle fever tick permanent quarantine zone along the Texas-Mexico border on five occasions in 2012. Three sample events involved white-tailed deer populations in Zapata and Starr Counties and two were from a cattle herd in Kinney County. Six species of ticks (n ...

  3. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks from three islands in north-western Norway.

    PubMed

    Paulsen, Katrine M; Pedersen, Benedikte N; Soleng, Arnulf; Okbaldet, Yohannes B; Pettersson, John H-O; Dudman, Susanne G; Ottesen, Preben; Vik, Inger Sofie Samdal; Vainio, Kirsti; Andreassen, Åshild

    2015-09-01

    Tick-borne encephalitis (TBE) is the most important viral tick-borne disease in Europe and can cause severe disease in humans. In Norway, human cases have been reported only from the southern coast. The aim of this study was to investigate the prevalence of tick-borne encephalitis virus (TBEV) in questing Ixodes ricinus ticks from the north-western part of Norway. A total of 4509 ticks were collected by flagging in May and June 2014. A subpopulation of 2220 nymphs and 162 adult ticks were analysed by real-time PCR and positive samples were confirmed by pyrosequencing. The estimated prevalence of TBEV was 3.08% among adult ticks from Sekken in Møre og Romsdal County and 0.41% among nymphs from both Hitra and Frøya in Sør-Trøndelag County. This study indicates that TBEV might be more widespread than the distribution of reported human cases suggests. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  4. Tick-borne flavivirus infection in Ixodes scapularis larvae: development of a novel method for synchronous viral infection of ticks

    PubMed Central

    Mitzel, Dana N.; Wolfinbarger, James B.; Daniel Long, R.; Masnick, Max; Best, Sonja M.; Bloom, Marshall E.

    2007-01-01

    Following a bite from an infected tick, tick-borne flaviviruses cause encephalitis, meningitis and hemorrhagic fever in humans. Although these viruses spend most of their time in the tick, little is known regarding the virus-vector interactions. We developed a simple method for synchronously infecting Ixodes scapularis larvae with Langat virus (LGTV) by immersion in media containing the virus. This technique resulted in approximately 96% of ticks becoming infected. LGTV infection and replication were demonstrated by both viral antigen expression and the accumulation of viral RNA. Furthermore, ticks transmitted LGTV to 100% of the mice and maintained the virus through molting into the next life stage. This technique circumvents limitations present in the current methods by mimicking the natural route of infection and by using attenuated virus strains to infect ticks; thereby, making this technique a powerful tool to study both virus and tick determinants of replication, pathogenesis and transmission. PMID:17490700

  5. Disrupting the Amblyomma americanum (L.) CD147 receptor homolog prevents ticks from feeding to repletion and blocks spontaneous detachment of ticks from their host.

    PubMed

    Mulenga, Albert; Khumthong, Rabuesak

    2010-07-01

    The CD147 receptor is a cell-surface glycoprotein in the IgG family that plays pivotal roles in intercellular interactions involved with numerous physiological and pathological processes such as extracellular matrix remodeling. We previously found an Amblyomma americanum (Aam) tick CD147 receptor homolog among genes that were up regulated in response to tick feeding stimuli. This study characterizes an AamCD147 receptor protein that is 72-83% conserved in other tick species and possess characteristic CD147 receptor sequence features: an extracellular (EC) region containing two IgG domains, a transmembrane and the cytoplasmic domains. Likewise, the AamCD147 EC domain folds into secondary structures that are consistent to the human homolog: an amino-terminus beta-barrel that is linked to 2-carboxy-terminus beta-sheets with consensus disulfide bonds conserved in each of the 2 domains. CD147 receptor signaling and regulatory mechanisms are putatively conserved in ticks as revealed by in silico analysis that show presence in the tick genome of CD147 receptor signaling protein homologs, cyclophilin (CyP) A and B, and chaperones that transport it to the plasma membrane, caveolin-1 and CyP60. The AamCD147 receptor has a dichotomous expression pattern of where it is up regulated in response to feeding in the salivary gland but remains constant at the midgut and ovary levels suggesting that it may regulate different functions in different tick organs. We speculate that biological functions of the AamCD147 receptor are essential to tick feeding success as revealed by RNAi-mediated silencing that caused ticks to obtain smaller blood meals, of which approximately 69% were below threshold to trigger spontaneous detachment of ticks from the host. These ticks showed unusual cuticle tenderness and assumed a reddish coloration, a phenomenon that has been attributed to tick midgut damage allowing red blood cells to leak into tick hemolymph. On the basis of the CD147 receptor being linked to tissue growth regulation in mammals, we speculate that silencing of the AamCD147 receptor blocked progression of the tick intermolt growth, a process that precedes tick engorgement and their spontaneous detachment of from the host to end feeding. The results are discussed in context of advances in tick molecular physiology. 2010 Elsevier Ltd. All rights reserved.

  6. Tick imbedded in the skin (image)

    MedlinePlus

    This is a close-up photograph of a tick embedded in the skin. Ticks are important because they can carry diseases such as Rocky Mountain spotted fever, tularemia, Colorado tick fever, Lyme disease, and others.

  7. Avoiding Ticks

    MedlinePlus

    ... ticks that bite humans How ticks spread disease Diseases transmitted by ticks Trends in tickborne diseases Tickborne diseases ... Emerging and Zoonotic Infectious Diseases (NCEZID) Division of Vector-Borne Diseases (DVBD) Email Recommend Tweet YouTube Instagram Listen Watch ...

  8. Importance of ticks and their chemical and immunological control in livestock*

    PubMed Central

    Rajput, Zahid Iqbal; Hu, Song-hua; Chen, Wan-jun; Arijo, Abdullah G.; Xiao, Chen-wen

    2006-01-01

    The medical and economic importance of ticks has long been recognized due to their ability to transmit diseases to humans and animals. Ticks cause great economic losses to livestock, and adversely affect livestock hosts in several ways. Loss of blood is a direct effect of ticks acting as potential vector for haemo-protozoa and helminth parasites. Blood sucking by large numbers of ticks causes reduction in live weight and anemia among domestic animals, while their bites also reduce the quality of hides. However, major losses caused by ticks are due to their ability to transmit protozoan, rickettsial and viral diseases of livestock, which are of great economic importance world-wide. There are quite a few methods for controlling ticks, but every method has certain shortcomings. The present review is focused on ticks importance and their control. PMID:17048307

  9. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunitymore » to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.« less

  10. A survey of tick-borne pathogens in dogs and their ticks in the Pantanal biome, Brazil.

    PubMed

    Melo, A L T; Witter, R; Martins, T F; Pacheco, T A; Alves, A S; Chitarra, C S; Dutra, V; Nakazato, L; Pacheco, R C; Labruna, M B; Aguiar, D M

    2016-03-01

    Tick and blood samples collected from domestic dogs in the Brazilian Pantanal were tested by molecular methods for the presence of tick-borne protozoa and bacteria. Among 320 sampled dogs, 3.13% were infected by Babesia vogeli (Piroplasmida: Babesiidae), 8.75% by Hepatozoon canis (Eucoccidiorida: Hepatozoidae), 7.19% by Anaplasma platys (Rickettsiales: Anaplasmataceae), and 0.94% by an unclassified Anaplasma sp. In three tick species collected from dogs, the following tick-borne agents were detected: (a) B. vogeli, An. platys and Ehrlichia canis (Rickettsiales: Anaplasmataceae), infecting Rhipicephalus sanguineus sensu lato (Ixodida: Ixodidae) ticks; (b) H. canis, an unclassified Anaplasma sp. and Rickettsia amblyommii (Rickettsiales: Rickettsiaceae), infecting Amblyomma cajennense sensu lato (Ixodida: Ixodidae) ticks, and (c) Rickettsia sp. strain Atlantic rainforest, an emerging human pathogen, infecting Amblyomma ovale ticks. Molecular analysis, based on a mitochondrial gene, revealed that the Am. cajennense s.l. ticks of the present study corresponded to Amblyomma sculptum, a member of the Am. cajennense species complex, and that Rh. sanguineus s.l. belonged to the tropical lineage. Whereas dogs are exposed to a number of tick-borne bacterial and protozoan agents in the Pantanal biome, humans are potentially exposed to infection by spotted fever group rickettsiae (e.g. R. amblyommii and Rickettsia sp. strain Atlantic rainforest) because both Am. sculptum and Am. ovale are among the most important human-biting ticks in Brazil. © 2015 The Royal Entomological Society.

  11. Molecular and morphological identification of a human biting tick, Amblyomma testudinarium (Acari: Ixodidae), in Taiwan.

    PubMed

    Chao, Li-Lian; Lu, Chun-Wei; Lin, Ying-Fang; Shih, Chien-Ming

    2017-04-01

    Genetic identity and morphological features of a human biting tick, Amblyomma testudinarium, were determined for the first time in Taiwan. Morphological features of adult male and female ticks of Am. testudinarium were observed and photographed by a stereo- microscope. The genetic identity was analyzed by comparing the sequences of mitochondrial 16S ribosomal DNA gene obtained from 18 strains of ticks representing 10 species of Amblyomma, and four outgroup species of Dermacentor and Rhipicephalus ticks. Nine major clades could be easily distinguished by neighbour-joining analysis and were congruent by maximum-parsimony method. All these Am. testudinarium ticks collected from Taiwan and Japan were genetically affiliated to a monophyletic group with highly homogeneous sequence (99.8-100% similarity), and can be discriminated from other species of Amblyomma and other genera of ticks (Dermacentor and Rhipicephalus) with a sequence divergence ranging from 6.9 to 23.9%. Moreover, intra- and inter-species analysis based on the genetic distance (GD) values indicated a lower level (GD < 0.003) within the same lineage of Am. testudinarium ticks collected from Taiwan and Japan, as compared with other lineage groups (GD > 0.108) of Amblyomma ticks, as well as outgroup (GD > 0.172) species. Our results provide the first distinguished features of adult Am. testudinarium ticks and the first genetic identification of Am. testudinarium ticks collected from humans in Taiwan. Seasonal prevalence, host range, and vectorial capacity of this tick species in Taiwan need to be further clarified.

  12. Pilot study assessing the effectiveness of long-lasting permethrin-impregnated clothing for the prevention of tick bites.

    PubMed

    Vaughn, Meagan F; Meshnick, Steven R

    2011-07-01

    Tick-borne diseases such as Lyme disease, Rocky Mountain spotted fever, and ehrlichiosis are a significant concern for many thousands of workers who have frequent and unavoidable exposure to tick-infested habitats. Many North Carolina state employees with outdoor occupations report multiple tick bites each year, indicating that existing tick preventive strategies may be underutilized or ineffective. Treatment of clothing with permethrin, a nontoxic chemical with insecticidal, knockdown, and repellent properties, is highly effective against ticks. However, most permethrin products must be reapplied after several washings to maintain insecticidal activity. Recently, a factory-based method for long-lasting permethrin impregnation of clothing has been developed by Insect Shield, Inc., that allows clothing to retain insecticidal activity for over 70 washes. A nonrandomized open label pilot study was conducted to determine the effectiveness of Insect Shield-treated clothing for the prevention of tick bites among 16 outdoor workers from the North Carolina Division of Water Quality under actual field conditions. Participants completed questionnaires at the start of follow-up (March, 2008) and at the end of follow-up (September, 2008), and tick bites and outdoor work hours were reported on weekly tick bite logs for the entire follow-up period. Subjects wearing Insect Shield-treated clothing had a 93% reduction (p < 0.0001) in the total incidence of tick bites compared to subjects using standard tick bite prevention measures. This study provides preliminary evidence that long-lasting permethrin-impregnated clothing may be highly effective against tick bites.

  13. Parasitism by Ixodes didelphidis and I. loricatus (Acari: Ixodidae) on small wild mammals from an Atlatic Forest in the State of Sao Paulo, Brazil.

    PubMed

    Barros-Battesti, D M; Yoshinari, N H; Bonoldi, V L; De Castro Gomes, A

    2000-11-01

    From January 1995 to June 1996, ticks were studied in a fragment of Atlantic Forest in a residential area in the city of Itapevi, State of Sao Paulo, Brazil. Cases of human Lyme disease-like illness were registered in this area during the spring of 1992. The monthly relative density of ticks was determined and the influence of seasonal climatic conditions was evaluated as well as the relationship between ticks and hosts. Ticks (n = 88) were collected from small mammals captured (n = 134) in monthly trappings where the traps were operated for five consecutive days. Immature ticks (n = 42, 47.7%) were identified as Ixodes spp. The adult ticks (n = 46, 52.3%) were identified as Ixodes didelphidis Fonseca and Aragão (n = 19, 21.6%), I. loricatus Neumann (n = 26, 29.5%) and Amblyomma cajennense (F.) (n = 1, 1.1%). The monthly correlations between tick numbers and meteorological data were not significant. The correlation between the different stages of ticks and the two seasons (cold-dry and warm-rainy) indicated that both immature and adult ticks showed a seasonal pattern of abundance. The highest numbers of immature ticks were observed on rodents, during the cold-dry season (from April to September) with a peak in August 1995. Adults ticks were predominant during the warm-rainy season (from October to March) with a peak in January 1995. Adult ticks were only collected on marsupials.

  14. Highly variable acquisition rates of Ixodes scapularis (Acari: Ixodidae) by birds on an Atlantic barrier island.

    PubMed

    Mitra, S S; Buckley, P A; Buckley, F G; Ginsberg, H S

    2010-11-01

    Acquisition of ticks by bird hosts is a central process in the transmission cycles of many tick-borne zoonoses, but tick recruitment by birds has received little direct study. We documented acquisition of Ixodes scapularis Say on birds at Fire Island, NY, by removing ticks from mist-netted birds, and recording the number of ticks on birds recaptured within 4 d of release. Eight bird species acquired at least 0.8 ticks bird(-1) day(-1) during the seasonal peak for at least one age class of I. scapularis. Gray Catbirds, Eastern Towhees, Common Yellowthroats, and Northern Waterthrushes collectively accounted for 83% of all tick acquisitions; and six individuals apportioned among Black-billed Cuckoo, Gray Catbird, Eastern Towhee, and Common Yellowthroat were simultaneously infested with both larvae and nymphs. Bird species with the highest acquisition rates were generally ground foragers, whereas birds that did not acquire ticks in our samples generally foraged above the ground. Tick acquisition by birds did not differ between deciduous and coniferous forests. Among the 15 bird species with the highest recruitment rates, acquisition of nymphs was not correlated with acquisition of larvae. Tick acquisition rates by individual bird species were not correlated with the reservoir competence of those species for Lyme borreliae. However, birds with high tick acquisition rates can contribute large numbers of infected ticks, and thus help maintain the enzootic cycle, even if their levels of reservoir competence are relatively low.

  15. Tick parasites of rodents in Romania: host preferences, community structure and geographical distribution

    PubMed Central

    2012-01-01

    Background Ticks are among the most important vectors of zoonotic diseases in temperate regions of Europe, with widespread distribution and high densities, posing an important medical risk. Most ticks feed on a variety of progressively larger hosts, with a large number of small mammal species typically harbouring primarily the immature stages. However, there are certain Ixodidae that characteristically attack micromammals also during their adult stage. Rodents are widespread hosts of ticks, important vectors and competent reservoirs of tick-borne pathogens. Micromammal-tick associations have been poorly studied in Romania, and our manuscript shows the results of a large scale study on tick infestation epidemiology in rodents from Romania. Methods Rodents were caught using snap-traps in a variety of habitats in Romania, between May 2010 and November 2011. Ticks were individually collected from these rodents and identified to species and development stage. Frequency, mean intensity, prevalence and its 95% confidence intervals were calculated using the EpiInfo 2000 software. A p value of <0.05 was considered statistically significant. Results We examined 423 rodents (12 species) collected from six counties in Romania for the presence of ticks. Each collected tick was identified to species level and the following epidemiological parameters were calculated: prevalence, mean intensity and mean abundance. The total number of ticks collected from rodents was 483, with eight species identified: Ixodes ricinus, I. redikorzevi, I. apronophorus, I. trianguliceps, I. laguri, Dermacentor marginatus, Rhipicephalus sanguineus and Haemaphysalis sulcata. The overall prevalence of tick infestation was 29.55%, with a mean intensity of 3.86 and a mean abundance of 1.14. Only two polyspecific infestations were found: I. ricinus + I. redikorzevi and I. ricinus + D. marginatus. Conclusions Our study showed a relatively high diversity of ticks parasitizing rodents in Romania. The most common tick in rodents was I. ricinus, followed by I. redikorzevi. Certain rodents seem to host a significantly higher number of tick species than others, the most important within this view being Apodemus flavicollis and Microtus arvalis. The same applies for the overall prevalence of tick parasitism, with some species more commonly infected (M. arvalis, A. uralensis, A. flavicollis and M. glareolus) than others. Two rodent species (Mus musculus, Rattus norvegicus) did not harbour ticks at all. Based on our results we may assert that rodents generally can act as good indicators for assessing the distribution of certain tick species. PMID:23171665

  16. [Amblyomma spp. case related to overseas travel].

    PubMed

    Beyhan, Yunus Emre; Mungan, Mesut; Babür, Cahit

    2014-01-01

    Ticks are a threat to human health by blood sucking and vectoring many disease agents. Tick-borne diseases are seen all over the world and play an important role in the dissemination of diseases. Although many of the tick species are present in Turkey, Amblyomma genus is seen more in South America and Africa. In this case,a person returning to the country after travelling to Africa who presented to the hospital complaining of tick bites and brought ticks to the parasitology laboratory was identified as Ablyomma spp. nymph. This case is a report concerning care of tick bites when travelling abroad and shows that these ticks can transmit disease agents from abroad.

  17. Awareness of tick-borne disease and compliance with using tick preventive products of dog owners in Hong Kong.

    PubMed

    Boost, Maureen V; Tung, Choi-Yin; Ip, Claudia Hoi-Ki; Man, July Fung-Oi; Hui, Toni Wing-Tung; Leung, Candy Fung-Yee; Mak, Maggie Yuen-Wa; Yuen, Queeny; O'Donoghue, Margaret M

    2017-02-01

    Tick-borne disease in dogs is common in South-east Asia and includes babesiosis and ehrlichiosis. These diseases can be largely prevented by compliant use of tick preventive products. This study investigated knowledge of ticks and tick-borne disease and use of tick preventive agents by a large sample of dog owners in Hong Kong. A total of 492 valid questionnaires were completed by owners attending veterinary practices, approached by researchers at common dog-walking areas, or targeted via local social media sites for pet owners. A high proportion of respondents were aware of tick-borne disease (79%) and this correlated well with use of preventive products. However, 18% of owners did not use any protection, mainly due to lack of knowledge of the risk of disease. Targeted advice stressing the importance of tick protection use and frequent follow-up at veterinary clinics could help reduce the risk of tick-borne disease. It would be beneficial if veterinarians provided training of frontline staff at the clinics to ensure they provide essential information to clients in an easily understandable format. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway.

    PubMed

    Kjelland, Vivian; Paulsen, Katrine M; Rollum, Rikke; Jenkins, Andrew; Stuen, Snorre; Soleng, Arnulf; Edgar, Kristin S; Lindstedt, Heidi H; Vaino, Kirsti; Gibory, Moustafa; Andreassen, Åshild K

    2018-04-12

    The aim of this study was to determine the occurrence of tick-borne pathogens of medical importance in questing ticks collected from five recreationally used islands along the Norwegian coastline. Furthermore, since coinfection may affect the disease severity, this study aimed to determine the extent of coinfection in individual ticks or co-localization of tick-borne pathogens. In all, 4158 questing Ixodes ricinus ticks were analyzed. For detection of tick-borne encephalitis virus (TBEV), nymphs (3690) were analyzed in pools of ten. To detect Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis, 468 nymphs were analyzed individually. A total of five nymph pools was infected with TBEV, giving an overall prevalence of 0.14%. In the individually analyzed ticks, B. burgdorferi s. l. (15.6%), Candidatus N. mikurensis (11%), A. phagocytophilum (1.4%) and B. miyamotoi (0.9%) were detected. Coinfection was found in 3.3% of the ticks, and the only dual infection observed was with B. afzelii and Candidatus N. mikurensis. This association was significantly higher than what would occur by random chance. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. Aggregation in the tick Ixodes ricinus (Acari: Ixodidae): use and reuse of questing vantage points.

    PubMed

    Healy, John A E; Bourke, Patrick

    2008-03-01

    Ongoing work in oak woods in Killarney National Park in southwestern Ireland is focusing on the factors influencing the fine-scale aggregated distribution of Ixodes ricinus L. (Acari: Ixodidae) on the ground. The extent of reuse of stems of vegetation as questing points by adult ticks was determined by paint-marking stems on which ticks were found, counting and removing these ticks, and subsequently reexamining the same stems for ticks on two further occasions. Overall, an estimated 2,967 stems in 123 separate rush plants (Juncus effusus L.) were examined. Statistical analysis of the data demonstrated a highly significant reoccupancy by ticks of stems previously and recently used. Furthermore, it is shown that the extent of stem reuse by ticks is significantly and positively correlated with the numbers of ticks originally observed on those stems. Although other factors may be involved in generating clumping of ticks, the results are compatible with the proposition that aggregation of I. ricinus on the ground is pheromone-mediated. The findings are discussed in relation to what is known about the powers of lateral movement of I. ricinus on the ground and the possible implications for the performance of tick traps.

  20. Lumpy skin disease: attempted propagation in tick cell lines and presence of viral DNA in field ticks collected from naturally-infected cattle.

    PubMed

    Tuppurainen, E S M; Venter, E H; Coetzer, J A W; Bell-Sakyi, L

    2015-03-01

    Lumpy skin disease (LSD) is of substantial economic importance for the cattle industry in Africa and the Near and Middle East. Several insect species are thought to transmit the disease mechanically. Recent transmission studies have demonstrated the first evidence for a role of hard (ixodid) ticks as vectors of lumpy skin disease virus (LSDV). The aim of this study was to attempt in vitro growth of the virus in Rhipicephalus spp. tick cell lines and investigate in vivo the presence of the virus in ticks collected from cattle during LSD outbreaks in Egypt and South Africa. No evidence was obtained for replication of LSDV in tick cell lines although the virus was remarkably stable, remaining viable for 35 days at 28°C in tick cell cultures, in growth medium used for tick cells and in phosphate buffered saline. Viral DNA was detected in two-thirds of the 56 field ticks, making this the first report of the presence of potentially virulent LSDV in ticks collected from naturally infected animals. Crown Copyright © 2014. Published by Elsevier GmbH. All rights reserved.

  1. Molecular identification of tick-borne pathogens in Nigerian ticks.

    PubMed

    Ogo, Ndudim Isaac; de Mera, Isabel G Fernández; Galindo, Ruth C; Okubanjo, Oluyinka O; Inuwa, Hauwa Mairo; Agbede, Rowland I S; Torina, Alessandra; Alongi, Angelina; Vicente, Joaquín; Gortázar, Christian; de la Fuente, José

    2012-07-06

    A molecular epidemiology investigation was undertaken in two Nigerian states (Plateau and Nassarawa) to determine the prevalence of pathogens of veterinary and public health importance associated with ticks collected from cattle and dogs using PCR, cloning and sequencing or reverse line blot techniques. A total of 218 tick samples, Amblyomma variegatum (N=153), Rhipicephalus (Boophilus) decoloratus (N=45), and Rhipicephalus sanguineus (N=20) were sampled. Pathogens identified in ticks included piroplasmids (Babesia spp., Babesia bigemina and Babesia divergens), Anaplasma marginale and Rickettsia africae. Piroplasmids were identified in A. variegatum, A. marginale was found in R. decoloratus, while R. africae was detected in all tick species examined. Ehrlichia spp. and Theileria spp. were not identified in any of the ticks examined. Of the 218 ticks examined, 33 (15.1%) contained pathogen DNA, with the presence of B. divergens and R. africae that are zoonotic pathogens of public health and veterinary importance. The variety of tick-borne pathogens identified in this study suggests a risk for the emergence of tick-borne diseases in domestic animals and humans, especially amongst the Fulani pastoralists in Plateau and Nassarawa states of Nigeria. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Establishment of an Artificial Tick Feeding System to Study Theileria lestoquardi Infection

    PubMed Central

    Tajeri, Shahin; Razmi, Gholamreza; Haghparast, Alireza

    2016-01-01

    The establishment of good experimental models for Theileria sp. infection is important for theileriosis research. Routinely, infection of ticks is accomplished by feeding on parasite-infected animals (sheep, cows and horses), which raises practical and ethical problems, driving the search for alternative methods of tick infection. Artificial tick feeding systems are based mainly on rearing ticks on host-derived or hand-made artificial membranes. We developed a modified feeding assay for infecting nymphal stages of Hyalomma anatolicum ticks with Theileria lestoquardi, a highly pathogenic parasite of sheep. We compared two different membranes: an artificial silicone membrane and a natural alternative using mouse skin. We observed high attachment rates with mouse skin, whereas in vitro feeding of H. anatolicum nymphs on silicone membranes was unsuccessful. We could infect H. anatolicum nymphs with T. lestoquardi and the emerging adult ticks transmitted infective parasites to sheep. In contrast, similar infections with Rhipicephalus bursa, a representative tick with short mouth-parts that was proposed as a vector for T. lestoquardi, appeared not to be a competent vector tick species. This is the first report of an experimentally controlled infection of H. anatolicum with T. lestoquardi and opens avenues to explore tick-parasite dynamics in detail. PMID:28036364

  3. Tick Infestation of the Eyelid and Removal With Forceps and Punch Biopsy.

    PubMed

    Park, Jongyeop; Suh, Eoksoo

    2016-11-01

    Ocular tick infestation can occur in any age group or sex with exposure in an endemic setting. All parts of the ocular tissue have been reported to be susceptible to tick infestation. The authors present a rare patient with tick infestation of eyelid.An 88-year-old woman was referred for a yellowish lesion of the right upper eyelid. She had a history of sting 2 days before presentation, and developed eyelid swelling with mucopurulent discharge the next day. Slit lamp examination showed blepharitis and revealed that the lesion was the body of a hard tick, firmly attached to eyelid. First, blunt forceps were used for removal of the tick under a surgical microscope. However, attempted removal resulted in the disembodiement of the parasite and retention of the mouthparts in the skin. The retained tick parts were excised en bloc by skin punch biopsy. The tick was identified as Ixodes nipponensis. Subsequent treatment was given for blepharitis and skin lesion.This case introduces a rare patient with tick infestation of eyelid, and the proper management. Less than 20 documented patients with tick infestation of eyelid have been reported worldwide, and this is the first patient from South Korea in ophthalmological society.

  4. Vertebrate Ticks Distribution and Their Role as Vectors in Relation to Road Edges and Underpasses.

    PubMed

    Delgado, Juan D; Abreu-Yanes, Estefanía; Abreu-Acosta, Néstor; Flor, Manuel D; Foronda, Pilar

    2017-06-01

    Roads fragment vertebrate populations and affect the dynamics and dispersal patterns of vertebrate parasites. We evaluated how vertebrate ticks distribute near roads and road underpasses in human-caused road-fragmented landscapes in Seville, SW Spain. We sampled 49 stations with 93 individualized sampling points and assessed tick abundance. We explored the relationship between tick presence and abundance and distance to the nearest road and underpass (drainage culverts and other passages used by vertebrates), and landscape features through categorical regression and nonparametric statistics. The presence of the tick-borne pathogens Borrelia sp. and Bartonella sp. was also analyzed by PCR. We found preliminary evidence of high relative tick abundance next to roads and in the vicinity of road underpasses. Plant cover type was related to tick presence in this road context. Implications of road permeability and edge effect in patterns of vertebrate-tick relationships in road fragmentation contexts are discussed. Both Borrelia sp. and Bartonella sp. were detected in the ticks analyzed. This is the first report of these bacteria in ticks from Seville. The results confirm the potential risk of acquiring Lyme disease and bartonellosis in this area.

  5. TRANSLATING ECOLOGY, PHYSIOLOGY, BIOCHEMISTRY, AND POPULATION GENETICS RESEARCH TO MEET THE CHALLENGE OF TICK AND TICK-BORNE DISEASES IN NORTH AMERICA.

    PubMed

    Esteve-Gassent, Maria D; Castro-Arellano, Ivan; Feria-Arroyo, Teresa P; Patino, Ramiro; Li, Andrew Y; Medina, Raul F; de León, Adalberto A Pérez; Rodríguez-Vivas, Roger Iván

    2016-05-01

    Emerging and re-emerging tick-borne diseases threaten public health and the wellbeing of domestic animals and wildlife globally. The adoption of an evolutionary ecology framework aimed to diminish the impact of tick-borne diseases needs to be part of strategies to protect human and animal populations. We present a review of current knowledge on the adaptation of ticks to their environment, and the impact that global change could have on their geographic distribution in North America. Environmental pressures will affect tick population genetics by selecting genotypes able to withstand new and changing environments and by altering the connectivity and isolation of several tick populations. Research in these areas is particularly lacking in the southern United States and most of Mexico with knowledge gaps on the ecology of these diseases, including a void in the identity of reservoir hosts for several tick-borne pathogens. Additionally, the way in which anthropogenic changes to landscapes may influence tick-borne disease ecology remains to be fully understood. Enhanced knowledge in these areas is needed in order to implement effective and sustainable integrated tick management strategies. We propose to refocus ecology studies with emphasis on metacommunity-based approaches to enable a holistic perspective addressing whole pathogen and host assemblages. Network analyses could be used to develop mechanistic models involving multihost-pathogen communities. An increase in our understanding of the ecology of tick-borne diseases across their geographic distribution will aid in the design of effective area-wide tick control strategies aimed to diminish the burden of pathogens transmitted by ticks. © 2016 Wiley Periodicals, Inc.

  6. Surveillance of tick-borne encephalitis virus in wild birds and ticks in Tomsk city and its suburbs (Western Siberia).

    PubMed

    Mikryukova, Tamara P; Moskvitina, Nina S; Kononova, Yulia V; Korobitsyn, Igor G; Kartashov, Mikhail Y; Tyuten Kov, Oleg Y; Protopopova, Elena V; Romanenko, Vladimir N; Chausov, Evgeny V; Gashkov, Sergey I; Konovalova, Svetlana N; Moskvitin, Sergey S; Tupota, Natalya L; Sementsova, Alexandra O; Ternovoi, Vladimir A; Loktev, Valery B

    2014-03-01

    To study the role of wild birds in the transmission of tick borne encephalitis virus (TBEV), we investigated randomly captured wild birds bearing ixodid ticks in a very highly endemic TBE region located in Tomsk city and its suburbs in the south of Western Siberia, Russia. The 779 wild birds representing 60 species were captured carrying a total of 841 ticks, Ixodes pavlovskyi Pom., 1946 (n=531), Ixodes persulcatus P. Sch., 1930 (n=244), and Ixodes plumbeus Leach. 1815 (n=66). The highest average number of ticks per bird in a particular species was found for the fieldfare (Turdus pilaris Linnaeus, 1758) (5.60 ticks/bird) and the tree pipit (Anthus trivialis Linnaeus, 1758) (13.25 ticks/bird). Samples from wild birds and ticks collected in highly endemic periods from 2006 to 2011 were tested for the TBEV markers using monoclonal modified enzyme immunoassay (EIA) and RT-PCR. TBEV RNA and antigen were found in 9.7% and 22.8% samples collected from wild birds, respectively. TBEV markers were also detected in 14.1% I. persulcatus ticks, 5.2% I. pavlovskyi, and 4.2% I. plumbeus ticks collected from wild birds. Two TBEV strains were also isolated on PKE (pig kidney embryo) cells from fieldfare and Blyth's reed warbler (Acrocephalus dumetorum Blyth, 1849). Sequencing of 5'-NCR of TBEV revealed that all TBEV isolates belong to Far Eastern (dominate) and Siberian genotypes. Several phylogenetic subgroups included TBEV sequences novel for the Tomsk region. Our data suggest that wild birds are potential disseminators of TBEV, TBEV-infected ixodid ticks, and possibly other tick-borne infections. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Crimean-Congo hemorrhagic fever virus in ticks in Turkey: A broad range tick surveillance study.

    PubMed

    Orkun, Ömer; Karaer, Zafer; Çakmak, Ayşe; Nalbantoğlu, Serpil

    2017-08-01

    In Turkey, Crimean-Congo hemorrhagic fever (CCHF) outbreaks started in northern regions in 2002. Human cases still continue to increase and the disease spreads in many other provinces of Turkey. The ecological role of the vector tick species occurring in Turkey is not certain exactly. Therefore, we planned a broad range tick study in three different ecological and geographical areas extending from the West Black Sea regions down to the Central Anatolia. The aim of this study was to determine and characterize CCHFV molecularly in feeding-ticks collected from various wild and domestic animals and from humans as well as in questing and unfed ticks. In this study, 4283 tick samples derived from 21 tick species were collected from 76 villages and 10 central districts in total. All tick pools were screened for the presence of CCHFV RNA by two nested RT-PCRs. PCR assays were positive for 27 (3.6%) of 736 pools. CCHFV was detected in Hyalomma marginatum, Dermacentor marginatus, Rhipicephalus bursa, Rhipicephalus turanicus, Hyalomma excavatum and Haemaphysalis parva pools. As a result of the phylogenetic analysis, it was determined that the obtained CCHFV sequences are clustered into Europe 1 clade. CCHFV was detected among ticks obtained from cattle, goats, wild boar, hare, and the ground. The presence of CCHFV in ticks obtained from various domestic and wild hosts and the nature, and thereby the distribution patterns of the virus in different ecological areas were presented in this study. Furthermore, CCHFV was also detected in unusual tick species. Consequently, these results indicate that tick surveillance studies in large-scale and wide varieties contribute to the ecology and epidemiology of CCHF in that region, and can be used as an early-warning system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia.

    PubMed

    Khoo, Jing-Jing; Chen, Fezshin; Kho, Kai Ling; Ahmad Shanizza, Azzy Iyzati; Lim, Fang-Shiang; Tan, Kim-Kee; Chang, Li-Yen; AbuBakar, Sazaly

    2016-07-01

    Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus.

    PubMed

    Jacquet, Maxime; Genné, Dolores; Belli, Alessandro; Maluenda, Elodie; Sarr, Anouk; Voordouw, Maarten J

    2017-05-25

    The population dynamics of vector-borne pathogens inside the arthropod vector can have important consequences for vector-to-host transmission. Tick-borne spirochete bacteria of the Borrelia burgdorferi (sensu lato) species complex cause Lyme borreliosis in humans and spend long periods of time (>12 months) in their Ixodes tick vectors. To date, few studies have investigated the dynamics of Borrelia spirochete populations in unfed Ixodes nymphal ticks. Larval ticks from our laboratory colony of I. ricinus were experimentally infected with B. afzelii, and killed at 1 month and 4 months after the larva-to-nymph moult. The spirochete load was also compared between engorged larval ticks and unfed nymphs (from the same cohort) and between unfed nymphs and unfed adult ticks (from the same cohort). The spirochete load of B. afzelii in each tick was estimated using qPCR. The mean spirochete load in the 1-month-old nymphs (~14,000 spirochetes) was seven times higher than the 4-month-old nymphs (~2000 spirochetes). Thus, the nymphal spirochete load declined by 80% over a period of 3 months. An engorged larval tick acquired ~100 spirochetes, and this population was 20 times larger in a young, unfed nymph. The spirochete load also appeared to decline in adult ticks. Comparison between wild and laboratory populations found that lab ticks were more susceptible to acquiring B. afzelii. The spirochete load of B. afzelii declines dramatically over time in domesticated I. ricinus nymphs under laboratory conditions. Future studies should investigate whether temporal declines in spirochete load occur in wild Ixodes ticks under natural conditions and whether these declines influence the tick-to-host transmission of Borrelia.

  10. Evaluation of the vector competence of six ixodid tick species for Rangelia vitalii (Apicomplexa, Piroplasmorida), the agent of canine rangeliosis.

    PubMed

    Soares, João F; Costa, Francisco B; Girotto-Soares, Aline; Da Silva, Aleksandro S; França, Raqueli T; Taniwaki, Sueli A; Dall'Agnol, Bruno; Reck, José; Hagiwara, Mitika K; Labruna, Marcelo B

    2018-05-04

    Rangelia vitalii is the etiologic agent of canine rangeliosis, a severe piroplasmosis that affects domestic dogs in Brazil, Uruguay and Argentina. While R. vitalii is one of the most pathogenic tick-borne pathogens for dogs in the world, its tick vector has remained unknown. The present study evaluated the vector competence of Rhipicephalus sanguineus sensu lato (both tropical and temperate species), Amblyomma aureolatum, Amblyomma ovale, Amblyomma tigrinum, and Amblyomma sculptum for R. vitalii. These six tick species were selected for the study because they comprise the main tick species infesting dogs within the distribution area of canine rangeliosis in South America. Acquisition feeding of the above six tick species was performed on domestic dogs showing clinical signs of canine rangeliosis, after being experimentally infected through intravenous inoculation or infestation with R. vitalii-infected ticks. Thereafter, engorged ticks were evaluated for transstadial and transovarial passages of R. vitalii through molecular analysis after molting or oviposition and egg hatching. The resultant ticks were evaluated for their competence to transmit R. vitalii to susceptible dogs. Among the six tick species, only A. aureolatum was able to acquire and perpetuate R. vitalii by transstadial and transovarial passages, as demonstrated by >5% infection rates of ticks after hatching or molting. When exposed to transmission feeding, only A. aureolatum ticks were competent to transmit R. vitalii to dogs, which became severely ill, and the results confirmed by molecular methods and blood smear examination to have acquired rangeliosis. Results of the present study, coupled with epidemiological data, indicate that A. aureolatum is a natural vector of R. vitalii. Our results also indicate that R. vitalii is the first Piroplasmorida agent to be transovarially transmitted in Amblyomma ticks. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. The effect of tick size on trading volume share in three competing stock markets

    NASA Astrophysics Data System (ADS)

    Nagumo, Shota; Shimada, Takashi; Ito, Nobuyasu

    2016-09-01

    The relationship between tick sizes and trading volume share in two and three competing markets is studied theoretically. By introducing a simple model which is equipped with multiple markets and non-strategic traders, we analytically calculate the share. It is shown that share is shifted from a market with a larger tick size to a market with a smaller tick size, and the size of share-shift is determined by difference between tick sizes not by ratio between tick sizes in both cases of two markets and three markets.

  12. Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand.

    PubMed

    Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2016-07-01

    A total of 79 ticks collected from Sambar deer (Cervus unicolor), Barking deer (Muntiacus muntjak) and Wild boar (Sus scrofa) were examined by PCR for the presence of Rickettsia, Anaplasma, Coxiella, and Francisella bacteria. Of the 79 ticks, 13% tested positive for Rickettsia, 15% tested positive for Anaplasma, 4% tested positive for Coxiella, and 3% tested positive for Francisella. Interestingly, triple infection with Anaplasma, Rickettsia and Francisella was determined in a Dermacentor auratus tick. Moreover, another triple infection with Rickettsia, Anaplasma, and Coxiella was found in a Haemaphysalis lagrangei tick. Double infection of Rickettsia with Coxiella was also detected in another H. lagrangei tick. From the phylogenetic analyses, we found a Rickettsia sp. with a close evolutionary relationship to Rickettsia bellii in the H. lagrangei tick. We also found the first evidence of a Rickettsia sp. that is closely related to Rickettsia tamurae in Rhipicephalus (Boophilus) microplus ticks from Thailand. H. lagrangei and Haemaphysalis obesa ticks collected from Sambar deer tested positive for Anaplasma species form the same clade with Anaplasma bovis. In contrast, other H. lagrangei ticks collected from Sambar deer and D. auratus ticks collected from Wild boar were also reported for the first time to be infected with an Anaplasma species that is closely related to Anaplasma platys. The phylogenetic analysis of the 16S rRNA gene of Coxiella bacteria revealed that Coxiella symbionts from H. lagrangei formed a distinctly different lineage from Coxiella burnetii (a human pathogen). Additionally, Francisella bacteria identified in D. auratus ticks were found to be distantly related to a group of pathogenic Francisella species. The identification of these bacteria in several feeding ticks suggests the risk of various emerging tick-borne diseases and endosymbionts in humans, wildlife, and domestic animals in Thailand. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Infection with Colorado tick fever virus among humans and ticks in a national park and forest, Wyoming, 2010.

    PubMed

    Geissler, Aimee L; Thorp, Emily; Van Houten, Clayton; Lanciotti, Robert S; Panella, Nicolas; Cadwell, Betsy L; Murphy, Tracy; Staples, J Erin

    2014-09-01

    Colorado tick fever (CTF) is an underreported tick-borne viral disease occurring in the western United States. CTF illness includes fever, headache, and severe myalgia lasting for weeks. Wyoming has one of the highest CTF incidence rates with approximately 30% of infected persons reporting tick exposure in a Wyoming National Park or Forest before symptom onset. We assessed CTF virus infections among humans and Dermacentor andersoni ticks in Grand Teton National Park (GRTE) and Bridger-Teton National Forest (BTNF). In June of 2010, 526 eligible employees were approached to participate in a baseline and 3-month follow-up serosurvey and risk behavior survey. Seropositivity was defined as antibody titers against CTF virus ≥10, as measured by the plaque reduction neutralization test. Ticks were collected at 27 sites within GRTE/BTNF and tested by RT-PCR for the CTF virus. A total of 126 (24%) employees participated in the baseline and follow-up study visits. Three (2%) employees were seropositive for CTF virus infection at baseline. During the study, 47 (37%) participants found unattached ticks on themselves, and 12 (10%) found attached ticks; however, no participants seroconverted against CTF virus. Walking through sagebrush (p=0.04) and spending time at ≥7000 feet elevation (p<0.01) were significantly associated with tick exposure. Ninety-nine percent (174/176) of ticks were D. andersoni, and all were found at ≥7000 feet elevation in sagebrush areas; 37 (21%) ticks tested positive for CTF virus and were found at 10 (38%) of 26 sites sampled. Although no GRTE or BTNF employees were infected with CTF virus during the study period, high rates of infected ticks were identified in areas with sagebrush at ≥7000 feet. CTF education and personal protection measures against tick exposure should be targeted to visitors and employees traveling to the high-risk environs identified in this study.

  14. Tick-Borne Transmission of Murine Gammaherpesvirus 68

    PubMed Central

    Hajnická, Valeria; Kúdelová, Marcela; Štibrániová, Iveta; Slovák, Mirko; Bartíková, Pavlína; Halásová, Zuzana; Pančík, Peter; Belvončíková, Petra; Vrbová, Michaela; Holíková, Viera; Hails, Rosemary S.; Nuttall, Patricia A.

    2017-01-01

    Herpesviruses are a large group of DNA viruses infecting mainly vertebrates. Murine gammaherpesvirus 68 (MHV68) is often used as a model in studies of the pathogenesis of clinically important human gammaherpesviruses such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This rodent virus appears to be geographically widespread; however, its natural transmission cycle is unknown. Following detection of MHV68 in field-collected ticks, including isolation of the virus from tick salivary glands and ovaries, we investigated whether MHV68 is a tick-borne virus. Uninfected Ixodes ricinus ticks were shown to acquire the virus by feeding on experimentally infected laboratory mice. The virus survived tick molting, and the molted ticks transmitted the virus to uninfected laboratory mice on which they subsequently fed. MHV68 was isolated from the tick salivary glands, consistent with transmission via tick saliva. The virus survived in ticks without loss of infectivity for at least 120 days, and subsequently was transmitted vertically from one tick generation to the next, surviving more than 500 days. Furthermore, the F1 generation (derived from F0 infected females) transmitted MHV68 to uninfected mice on which they fed, with MHV68 M3 gene transcripts detected in blood, lung, and spleen tissue of mice on which F1 nymphs and F1 adults engorged. These experimental data fulfill the transmission criteria that define an arthropod-borne virus (arbovirus), the largest biological group of viruses. Currently, African swine fever virus (ASFV) is the only DNA virus recognized as an arbovirus. Like ASFV, MHV68 showed evidence of pathogenesis in ticks. Previous studies have reported MHV68 in free-living ticks and in mammals commonly infested with I. ricinus, and neutralizing antibodies to MHV68 have been detected in large mammals (e.g., deer) including humans. Further studies are needed to determine if these reports are the result of tick-borne transmission of MHV68 in nature, and whether humans are at risk of infection. PMID:29164067

  15. 2-Cys peroxiredoxin is required in successful blood-feeding, reproduction, and antioxidant response in the hard tick Haemaphysalis longicornis.

    PubMed

    Kusakisako, Kodai; Galay, Remil Linggatong; Umemiya-Shirafuji, Rika; Hernandez, Emmanuel Pacia; Maeda, Hiroki; Talactac, Melbourne Rio; Tsuji, Naotoshi; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-08-19

    Ticks are obligate hematophagous arthropods that feed on vertebrate blood that contains iron. Ticks also concentrate host blood with iron; this concentration of the blood leads to high levels of iron in ticks. The host-derived iron reacts with oxygen in the tick body and this may generate high levels of reactive oxygen species, including hydrogen peroxide (H2O2). High levels of H2O2 cause oxidative stress in organisms and therefore, antioxidant responses are necessary to regulate H2O2. Here, we focused on peroxiredoxin (Prx), an H2O2-scavenging enzyme in the hard tick Haemaphysalis longicornis. The mRNA and protein expression profiles of 2-Cys peroxiredoxin (HlPrx2) in H. longicornis were investigated in whole ticks and internal organs, and developmental stages, using real-time PCR and Western blot analysis during blood-feeding. The localization of HlPrx2 proteins in tick tissues was also observed by immunostaining. Moreover, knockdown experiments of HlPrx2 were performed using RNA interference to evaluate its function in ticks. Real-time PCR showed that HlPrx2 gene expression in whole ticks and internal organs was significantly upregulated by blood-feeding. However, protein expression, except in the midgut, was constant throughout blood-feeding. Knockdown of the HlPrx2 gene caused significant differences in the engorged body weight, egg weight and hatching rate for larvae as compared to the control group. Finally, detection of H2O2 after knockdown of HlPrxs in ticks showed that the concentration of H2O2 significantly increased before and after blood-feeding. Therefore, HlPrx2 can be considered important for successful blood-feeding and reproduction through the regulation of H2O2 concentrations in ticks before and after blood-feeding. This study contributes to the search for a candidate target for tick control and further understanding of the tick's oxidative stress coping mechanism during blood-feeding.

  16. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Frangoulidis, Dimitrios; Tomaso, Herbert; Waldenström, Jonas; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-03-20

    Ticks are transmitting a wide range of bacterial pathogens that cause substantial morbidity and mortality in domestic animals. The full pathogen burden transmitted by tick vectors is incompletely studied in many geographical areas, and extensive studies are required to fully understand the diversity and distribution of pathogens transmitted by ticks. We sampled 824 ticks of 11 species collected in 19 counties in Romania. Ticks were collected mainly from dogs, but also from other domestic and wild animals, and were subjected to molecular screening for pathogens. Rickettsia spp. was the most commonly detected pathogen, occurring in 10.6% (87/824) of ticks. Several species were detected: Rickettsia helvetica, R. raoultii, R. massiliae, R. monacensis, R. slovaca and R. aeschlimannii. A single occurrence of the zoonotic bacterium Bartonella vinsonii berkhoffii was detected in a tick collected from a dog. Anaplasma phagocytophilum occurred in four samples, and sequences similar to Anaplasma marginale/ovis were abundant in ticks from ruminants. In addition, molecular screening showed that ticks from dogs were carrying an Ehrlichia species identical to the HF strain as well as the enigmatic zoonotic pathogen "Candidatus Neoehrlichia mikurensis". An organism similar to E. chaffeensis or E. muris was detected in an Ixodes ricinus collected from a fox. We describe an abundant diversity of bacterial tick-borne pathogens in ticks collected from animal hosts in Romania, both on the level of species and genotypes/strains within these species. Several findings were novel for Romania, including Bartonella vinsonii subsp. berkhoffii that causes bacteremia and endocarditis in dogs. "Candidatus Neoehrlichia mikurensis" was detected in a tick collected from a dog. Previously, a single case of infection in a dog was diagnosed in Germany. The results warrant further studies on the consequences of tick-borne pathogens in domestic animals in Romania.

  17. Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission

    PubMed Central

    Hermance, Meghan E.; Santos, Rodrigo I.; Kelly, Brent C.; Valbuena, Gustavo; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host’s skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation. PMID:27203436

  18. Seasonality of Ixodes ricinus ticks on vegetation and on rodents and Borrelia burgdorferi sensu lato genospecies diversity in two Lyme borreliosis-endemic areas in Switzerland.

    PubMed

    Pérez, David; Kneubühler, Yvan; Rais, Olivier; Gern, Lise

    2012-08-01

    We compared Ixodes ricinus questing density, the infestation of rodents by immature stages, and the diversity of Borrelia burgdorferi sensu lato (sl) in questing ticks and ticks collected from rodents in two Lyme borreliosis (LB)-endemic areas in Switzerland (Portes-Rouges [PR] and Staatswald [SW]) from 2003 to 2005. There were variations in the seasonal pattern of questing tick densities among years. Questing nymphs were globally more abundant at PR than at SW, but the proportion of rodents infested by immature ticks was similar (59.4% and 61%, respectively). Questing tick activity lasted from February to November with a strong decline in June. The seasonal pattern of ticks infesting rodents was different. Ticks infested rodents without decline in summer, suggesting that the risk of being bitten by ticks remains high during the summer. Rodents from SW showed the highest infestation levels (10±21.6 for larvae and 0.54±1.65 for nymphs). The proportion of rodents infested simultaneously by larvae and nymphs (co-feeding ticks) was higher at SW (28%) than at PR (11%). Apodemus flavicollis was the species the most frequently infested by co-feeding ticks, and Myodes glareolus was the most infective rodent species as measured by xenodiagnosis. At PR, the prevalence of B. burgdorferi sl in questing ticks was higher (17.8% for nymphs and 32.4% for adults) than at SW (10.4% for nymphs and 24.8% for adults), with B. afzelii as the dominant species, but B. garinii, B. burgdorferi sensu stricto, and B. valaisiana were also detected. Rodents transmitted only B. afzelii (at PR and at SW) and B. bavariensis (at SW) to ticks, and no mixed infection by additional genospecies was observed in co-feeding ticks. This implies that co-feeding transmission does not contribute to genospecies diversity. However, persistent infections in rodents and co-feeding transmission contribute to the perpetuation of B. afzelii in nature.

  19. Hepatozoon canis infection in ticks during spring and summer in Italy.

    PubMed

    Dantas-Torres, Filipe; Latrofa, Maria Stefania; Weigl, Stefania; Tarallo, Viviana Domenica; Lia, Riccardo Paolo; Otranto, Domenico

    2012-02-01

    Hepatozoon canis is a common protozoan of dogs, being among the most prevalent tick-borne pathogens infecting dogs around the world. It is primarily transmitted by Rhipicephalus sanguineus, the brown dog tick. In this study we tested ticks collected from dogs and from the environment in order to track the origin of an outbreak of H. canis infection detected in October 2009 in a private dog shelter in southern Italy. Ticks from dogs (n = 267) were collected during the spring of 2009, whereas ticks from environment (n = 300) were found on sticky traps placed in the same shelter during the summer of 2009. All ticks were tested by PCR for the detection of a H. canis 18S ribosomal RNA gene fragment. Four (1.5%, one female and three males) ticks collected from dogs were PCR positive. None of the larvae collected from the environment were positive, but a relatively high infection rate (8.0%) was detected in nymphs. These findings point out that dogs became infected during the summer, when ticks were abundant and highly infected by H. canis. Moreover, this study suggests that castor oil sticky traps might be useful to collect engorged immature ticks in highly infested environments (e.g., dog shelters). This might be particularly interesting to evaluate the level of infection by certain pathogens in free-ranging ticks R. sanguineus, as done in the present study.

  20. Capybaras and ticks in the urban areas of Uberlândia, Minas Gerais, Brazil: ecological aspects for the epidemiology of tick-borne diseases.

    PubMed

    Queirogas, V L; Del Claro, K; Nascimento, A R T; Szabó, M P J

    2012-05-01

    In Brazil capybara, the biggest existing rodent species, and associated tick species, Amblyomma cajennense and Amblyomma dubitatum, are undergoing an unplanned host and parasite population expansion in both urban and rural areas. However, scientific information about such issue, particularly in urban areas, is scanty. Such rodent and ticks are associated in some municipalities, particularly in southeastern Brazil, with the transmission of the highly lethal Rickettsia rickettsia caused spotted-fever. In this study ecological aspects related to the establishment and expansion of capybaras and ticks in urban areas of Uberlândia, Minas Gerais State, Brazil were evaluated. For this purpose, capybara and tick abundance in four urban areas and an ecological reserve was determined. Abundance of capybaras varied between areas and over the sampling period and these differences were related to human activities. A positive correlation was found between capybara and tick abundance, however, the tick species had an uneven distribution within the municipality and environmental factors rather than host availability were blamed for such. On the whole these observations show that capybara populations in urban areas are associated to high environmental infestation of ticks and the increased risk of bites and of pathogen transmission to humans. At the same time the uneven distribution of tick species might implicate in an unequal risk of tick-borne diseases within the same urban area.

  1. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health

    PubMed Central

    Rizzoli, Annapaola; Silaghi, Cornelia; Obiegala, Anna; Rudolf, Ivo; Hubálek, Zdeněk; Földvári, Gábor; Plantard, Olivier; Vayssier-Taussat, Muriel; Bonnet, Sarah; Špitalská, Eva; Kazimírová, Mária

    2014-01-01

    Tick-borne diseases represent major public and animal health issues worldwide. Ixodes ricinus, primarily associated with deciduous and mixed forests, is the principal vector of causative agents of viral, bacterial, and protozoan zoonotic diseases in Europe. Recently, abundant tick populations have been observed in European urban green areas, which are of public health relevance due to the exposure of humans and domesticated animals to potentially infected ticks. In urban habitats, small and medium-sized mammals, birds, companion animals (dogs and cats), and larger mammals (roe deer and wild boar) play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Presence of ticks infected with tick-borne encephalitis virus and high prevalence of ticks infected with Borrelia burgdorferi s.l., causing Lyme borreliosis, have been reported from urbanized areas in Europe. Emerging pathogens, including bacteria of the order Rickettsiales (Anaplasma phagocytophilum, “Candidatus Neoehrlichia mikurensis,” Rickettsia helvetica, and R. monacensis), Borrelia miyamotoi, and protozoans (Babesia divergens, B. venatorum, and B. microti) have also been detected in urban tick populations. Understanding the ecology of ticks and their associations with hosts in a European urbanized environment is crucial to quantify parameters necessary for risk pre-assessment and identification of public health strategies for control and prevention of tick-borne diseases. PMID:25520947

  2. Etiological [corrected] agents of rickettsiosis and anaplasmosis in ticks collected in Emilia-Romagna region (Italy) during 2008 and 2009.

    PubMed

    Maioli, Giulia; Pistone, Dario; Bonilauri, Paolo; Pajoro, Massimo; Barbieri, Ilaria; Mulatto, Patrizia; Patrizia, Mulatto; Vicari, Nadia; Dottori, Michele

    2012-06-01

    Ticks are the main vectors of rickettsiae of the spotted fever group, as well as of a variety of other Rickettsiales, including bacteria of the genus Anaplasma, that might cause diseases in humans and animals. Here we present the result of a survey for ticks and for tick-associated Rickettsiales in the Emilia Romagna region (Northern Italy). The study was focused on ticks collected from wild-hunted animals. Out of 392 ticks collected from these animals, 282 (72%) were identified as Ixodes ricinus, 110 (28%) as Dermacentor marginatus. The former was found on four vertebrate species, whereas the latter appeared more specific for wild boar. The presence of rickettsiae was demonstrated in 22.5% of I. ricinus (57/253) and in 29% of D. marginatus (32/110). Five ticks of the species I. ricinus were also positive for Anaplasma phagocytophilum (2%). In addition, we collected ticks by dragging in a natural park of the same region. All of the ticks captured by dragging were identified as I. ricinus. Thirty-six out of 200 analyzed ticks proved positive for Rickettsia monacensis and R. helvetica (16.5 and 1.5%, respectively). Our results highlight that that ticks present in wild areas, widely exploited for recreation and hunting in Emilia-Romagna, represent a risk for the transmission of spotted fevers and anaplasmosis to humans.

  3. Emergence of tick-borne pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Ricketsia raoultii and Babesia microti) in the Kyiv urban parks, Ukraine.

    PubMed

    Didyk, Yuliya M; Blaňárová, Lucia; Pogrebnyak, Svyatoslav; Akimov, Igor; Peťko, Branislav; Víchová, Bronislava

    2017-02-01

    To date, only limited data about the presence of ticks and circulation of tick-borne pathogens in urban parks of Kyiv in northern Ukraine are available. In total, 767 ticks (696 Ixodes ricinus and 69 Dermacentor reticulatus) collected in seven urban parks and one suburban oak wood park in Kyiv were individually analyzed by the PCR assays. Tick-borne pathogens, namely spirochetes from Borrelia burgdorferi sensu lato complex, Anaplasma phagocytophilum, and Babesia microti, were detected in 11.1% of tested I. ricinus ticks. In total, 4% of I. ricinus ticks tested positive for the presence of B. burdorferi s.l. (Borrelia afzelii and Borrelia garinii), 5.2% for A. phagocytophilum, and Ba. microti was confirmed in 1.9% of examined ticks. Mixed infections were recorded in four DNA samples, representing the prevalence of 0.6%. One female and two I. ricinus nymphs were simultaneously infected with B. afzelii and A. phagocytophilum, and one female carried B. afzelii and Ba. microti. In addition, 10.1% of D. reticulatus ticks tested positive for Rickettsia raoultii. Identification of infectious agents and their diversity, assessment of the relative epidemiological importance and determination of the prevalence in questing ticks from central parts of the cities are crucial steps towards the tick-borne diseases surveillance in urban environment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Citizen Science and Community Engagement in Tick Surveillance-A Canadian Case Study.

    PubMed

    Lewis, Julie; Boudreau, Corinne R; Patterson, James W; Bradet-Legris, Jonathan; Lloyd, Vett K

    2018-03-02

    Lyme disease is the most common tick-borne disease in North America and Europe, and on-going surveillance is required to monitor the spread of the tick vectors as their populations expand under the influence of climate change. Active surveillance involves teams of researchers collecting ticks from field locations with the potential to be sites of establishing tick populations. This process is labor- and time-intensive, limiting the number of sites monitored and the frequency of monitoring. Citizen science initiatives are ideally suited to address this logistical problem and generate high-density and complex data from sites of community importance. In 2014, the same region was monitored by academic researchers, public health workers, and citizen scientists, allowing a comparison of the strengths and weaknesses of each type of surveillance effort. Four community members persisted with tick collections over several years, collectively recovering several hundred ticks. Although deviations from standard surveillance protocols and the choice of tick surveillance sites makes the incorporation of community-generated data into conventional surveillance analyses more complex, this citizen science data remains useful in providing high-density longitudinal tick surveillance of a small area in which detailed ecological observations can be made. Most importantly, partnership between community members and researchers has proven a powerful tool in educating communities about of the risk of tick-vectored diseases and in encouraging tick bite prevention.

  5. Molecular detection of Crimean-Congo haemorrhagic fever (CCHF) virus in ticks from southeastern Iran.

    PubMed

    Mehravaran, Ahmad; Moradi, Maryam; Telmadarraiy, Zakyeh; Mostafavi, Ehsan; Moradi, Ali Reza; Khakifirouz, Sahar; Shah-Hosseini, Nariman; Varaie, Fereshteh Sadat Rasi; Jalali, Tahmineh; Hekmat, Soheila; Ghiasi, Seyed Mojtaba; Chinikar, Sadegh

    2013-02-01

    Crimean-Congo haemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. CCHF virus has been isolated from at least 31 different species of ticks. The virus is transmitted through the bite of an infected tick or by direct contact with CCHF virus-infected patients or the products of infected livestock. This study was conducted to determine the rate of CCHF virus infection in ticks in the district of Zahedan, in the province of Sistan and Baluchistan, southeastern Iran. A total of 140 ticks were collected from Sistan and Baluchistan. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used for the detection of the CCHF virus genome in the tick population. This genome was detected in 4.3% of ticks collected from livestock of different regions of Zahedan. The infected tick genera belonged to Hyalomma and Haemaphysalis. Although in the epidemiology of CCHF virus Hyalomma ticks are considered to be the most important vectors and reservoirs, the virus has also been reported to occur in other genera of ticks, which conforms to the current data in our study from Sistan and Baluchistan. Given that animals are common hosts for Hyalomma and Haemaphysalis, regular monitoring programmes for livestock should be applied for CCHF virus control. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Correlation of TBE Incidence with Red Deer and Roe Deer Abundance in Slovenia

    PubMed Central

    Knap, Nataša; Avšič-Županc, Tatjana

    2013-01-01

    Tick-borne encephalitis (TBE) is a virus infection which sometimes causes human disease. The TBE virus is found in ticks and certain vertebrate tick hosts in restricted endemic localities termed TBE foci. The formation of natural foci is a combination of several factors: the vectors, a suitable and numerous enough number of hosts and in a habitat with suitable vegetation and climate. The present study investigated the influence of deer on the incidence of tick-borne encephalitis. We were able to obtain data from deer culls. Using this data, the abundance of deer was estimated and temporal and spatial analysis was performed. The abundance of deer has increased in the past decades, as well as the incidence of tick-borne encephalitis. Temporal analysis confirmed a correlation between red deer abundance and tick-borne encephalitis occurrence. Additionally, spatial analysis established, that in areas with high incidence of tick-borne encephalitis red deer density is higher, compared to areas with no or few human cases of tick-borne encephalitis. However, such correlation could not be confirmed between roe deer density and the incidence of tick-borne encephalitis. This is presumably due to roe deer density being above a certain threshold so that availability of tick reproduction hosts has no apparent effect on ticks' host finding and consequently may not be possible to correlate with incidence of human TBE. PMID:23776668

  7. Tick Talk: Block Tick Bites and Lyme Disease

    MedlinePlus

    ... Subscribe May 2014 Print this issue Tick Talk Block Tick Bites and Lyme Disease En español Send ... Health Researchers Examine the Structure of Zika Virus Block the Buzzing, Bites, and Bumps Wise Choices To ...

  8. Assessment of acquired immune response to Rhipicephalus appendiculatus tick infestation in different goat breeds.

    PubMed

    Gopalraj, Jeyanthi B P; Clarke, Francoise C; Donkin, Edward F

    2013-01-01

    Changes in serum gamma globulin levels, numbers of replete female ticks and engorged tick mass were used as parameters to monitor the acquired immune response (antibody mediated immune response) elicited by Rhipicephalus appendiculatus adult tick infestations. Three consecutive Rhipicephalus appendiculatus adult tick infestations were applied to South African Indigenous goats (Nguni), Saanen goats and cross-bred goats (Saanen goats crossed with South African Indigenous goats [Nguni]) under laboratory conditions. During the three consecutive Rhipicephalus appendiculatus adult tick infestations the serum gamma globulin levels increased in all three breeds, whilst the mean replete female tick numbers and engorged tick mass decreased. Even though all three goat breeds exhibited an acquired immune response, the South African Indigenous goats (Nguni) response was significantly higher than that of the Saanen and cross-bred goats. However, the acquired immune response elicited by Saanen goats was significantly lower when compared with cross-bred goats.

  9. [Conjugated variability of spontaneous activity and behavioral response to olfactory stimuli in the taiga tick (Ixodes persulcatus)].

    PubMed

    Romashchenko, A V; Shnaĭder, E P; Petrovskiĭ, D V; Moshkin, M P

    2013-01-01

    According to -the automatic tracing of the movement of ticks in a Petri dish, motivational variability of the spontaneous activity and behavioral response of the taiga tick to olfactory stimuli was analyzed. In the studied sample, two groups of ticks that differ in the movement trajectory in the absence of stimulus were isolated, including ticks that mainly moved on the edge of the dish at maximum accessible height (group 1) and ticks that mainly moved at the bottom and wall of the dish (group 2). It was registered that ticks of group 1 (as opposed to ticks of group 2) demonstrated a pronounced behavioral response to olfactory stimuli (human synthetic pheromones and ammonia) and negative geotaxis. It was established that belonging to these groups depended On the time of day when the testing was performed and did not depend on the physiological age and infectious status.

  10. On the potential roles of ticks and migrating birds in the ecology of West Nile virus.

    PubMed

    Hagman, Karl; Barboutis, Christos; Ehrenborg, Christian; Fransson, Thord; Jaenson, Thomas G T; Lindgren, Per-Eric; Lundkvist, Ake; Nyström, Fredrik; Waldenström, Jonas; Salaneck, Erik

    2014-01-15

    Mosquitoes are the primary vectors of West Nile virus (WNV). Ticks have, however, been suggested to be potential reservoirs of WNV. In order to investigate their role in the spread of the virus, ticks, which had been collected from birds migrating northwards from Africa to Europe, were analyzed for the potential presence of WNV-RNA. On the Mediterranean islands Capri and Antikythira a total of 14,824 birds were captured and investigated from which 747 ticks were collected. Most of the identified ticks (93%) were nymphs and larvae of Hyalomma marginatum sensu lato, most of which were or appear to be Hyalomma rufipes. Of these ticks 729 were individually screened for WNV-RNA. None of the ticks was found to be WNV positive. Thus, there was no evidence that Hyalomma marginatum s.l. ticks play a role in the spread of WNV from Africa to Europe.

  11. Comparison of tick resistance of crossbred Senepol × Limousin to purebred Limousin cattle.

    PubMed

    Hüe, Thomas; Hurlin, Jean-Claude; Teurlai, Magali; Naves, Michel

    2014-02-01

    The comparison of resistance to natural tick infestation by Rhipicephalus microplus (Canestrini, 1887) of crossbred Senepol × Limousin and purebred Limousin cattle was investigated. The Senepol breed, originated from St Croix Island in the Caribbean is considered as a Bos taurus breed adapted to tropical conditions. Despite its B. taurus genetic background, it is believed to have a good tick resistance, but this resistance has never been assessed previously. Tick counts under natural infestation were carried out to investigate the difference of susceptibility between crossbred Senepol × Limousin and purebred Limousin cattle. Mixed-effect models were used to assess the effect of the breed on the number of ticks. Results show that Senepol × Limousin are five times less infested by ticks than purebred Limousin. These results underline the opportunity to use Senepol cattle for crossing with susceptible B. taurus breeds in tick infested areas, to combine tick resistance with beef production abilities.

  12. Public-private partnership experience enabling translational research for anti-tick vaccine used in integrated Rhipicephalus (Boophilus) microplus and R. annulatus tick eradication in the United States of America

    USDA-ARS?s Scientific Manuscript database

    Rhipicephalus (Boophilus) microplus and R. annulatus are invasive tick species and vectors of microbes causing bovine babesiosis and anaplasmosis that were declared eradicated from the United States of America in 1943 through efforts of the Cattle Fever Tick Eradication Program. These tick disease v...

  13. Widespread dispersal of Borrelia burgdorferi-infected ticks collected from songbirds across Canada.

    PubMed

    Scott, John D; Anderson, John F; Durden, Lance A

    2012-02-01

    Millions of Lyme disease vector ticks are dispersed annually by songbirds across Canada, but often overlooked as the source of infection. For clarity on vector distribution, we sampled 481 ticks (12 species and 3 undetermined ticks) from 211 songbirds (42 species/subspecies) nationwide. Using PCR, 52 (29.5%) of 176 Ixodes ticks tested were positive for the Lyme disease spirochete, Borrelia burgdorferi s.l. Immature blacklegged ticks, Ixodes scapularis , collected from infested songbirds had a B. burgdorferi infection prevalence of 36% (larvae, 48%; nymphs, 31%). Notably, Ixodes affinis is reported in Canada for the first time and, similarly, Ixodes auritulus for the initial time in the Yukon. Firsts for bird-parasitizing ticks include I. scapularis in Quebec and Saskatchewan. We provide the first records of 3 tick species cofeeding on passerines (song sparrow, Swainson's thrush). New host records reveal I. scapularis on the blackpoll warbler and Nashville warbler. We furnish the following first Canadian reports of B. burgdorferi-positive ticks: I. scapularis on chipping sparrow, house wren, indigo bunting; I. auritulus on Bewick's wren; and I. spinipalpis on a Bewick's wren and song sparrow. First records of B. burgdorferi-infected ticks on songbirds include the following: the rabbit-associated tick, Ixodes dentatus, in western Canada; I. scapularis in Quebec, Saskatchewan, northern New Brunswick, northern Ontario; and Ixodes spinipalpis (collected in British Columbia). The presence of B. burgdorferi in Ixodes larvae suggests reservoir competency in 9 passerines (Bewick's wren, common yellowthroat, dark-eyed junco, Oregon junco, red-winged blackbird, song sparrow, Swainson's thrush, swamp sparrow, and white-throated sparrow). We report transstadial transmission (larva to nymph) of B. burgdorferi in I. auritulus. Data suggest a possible 4-tick, i.e., I. angustus, I. auritulus, I. pacificus, and I. spinipalpis, enzootic cycle of B. burgdorferi on Vancouver Island, British Columbia. Our results suggest that songbirds infested with B. burgdorferi-infected ticks have the potential to start new tick populations endemic for Lyme disease. Because songbirds disperse B. burgdorferi-infected ticks outside their anticipated range, health-care providers are advised that people can contract Lyme disease locally without any history of travel.

  14. Social-cognitive determinants of the tick check: a cross-sectional study on self-protective behavior in combatting Lyme disease.

    PubMed

    van der Heijden, Amy; Mulder, Bob C; Poortvliet, P Marijn; van Vliet, Arnold J H

    2017-11-25

    Performing a tick check after visiting nature is considered the most important preventive measure to avoid contracting Lyme disease. Checking the body for ticks after visiting nature is the only measure that can fully guarantee whether one has been bitten by a tick and provides the opportunity to remove the tick as soon as possible, thereby greatly reducing the chance of contracting Lyme disease. However, compliance to performing the tick check is low. In addition, most previous studies on determinants of preventive measures to avoid Lyme disease lack a clear definition and/or operationalization of the term "preventive measures". Those that do distinguish multiple behaviors including the tick check, fail to describe the systematic steps that should be followed in order to perform the tick check effectively. Hence, the purpose of this study was to identify determinants of systematically performing the tick check, based on social cognitive theory. A cross-sectional self-administered survey questionnaire was filled out online by 508 respondents (M age  = 51.7, SD = 16.0; 50.2% men; 86.4% daily or weekly nature visitors). Bivariate correlations and multivariate regression analyses were conducted to identify associations between socio-cognitive determinants (i.e. concepts related to humans' intrinsic and extrinsic motivation to perform certain behavior), and the tick check, and between socio-cognitive determinants and proximal goal to do the tick check. The full regression model explained 28% of the variance in doing the tick check. Results showed that performing the tick check was associated with proximal goal (β = .23, p < 0.01), self-efficacy (β = .22, p < 0.01), self-evaluative outcome expectations (β = .21, p < 0.01), descriptive norm (β = .16, p < 0.01), and experience (β = .13, p < 0.01). Our study is among the first to examine the determinants of systematic performance of the tick check, using an extended version of social cognitive theory to identify determinants. Based on the results, a number of practical recommendations can be made to promote the performance of the tick check.

  15. Prevalence of ticks and tick-borne pathogens: Babesia and Borrelia species in ticks infesting cats of Great Britain.

    PubMed

    Davies, Saran; Abdullah, Swaid; Helps, Chris; Tasker, Séverine; Newbury, Hannah; Wall, Richard

    2017-09-15

    In a study of tick and tick-borne pathogen prevalence, between May and October 2016, 278 veterinary practices in Great Britain examined 1855 cats. Six-hundred and one cats were found to have attached ticks. The most frequently recorded tick species was Ixodes ricinus (57.1%), followed by Ixodes hexagonus (41.4%) and Ixodes trianguliceps (1.5%). Male cats, 4-6 years of age living in rural areas were most likely to be carrying a tick; hair length and tick treatment history had no significant association with attachment. For cats that were parasitized by ticks in large urban areas, I. hexagonus was the most frequent species recorded. Molecular analysis was possible for 541 individual tick samples, others were too damaged for analysis; Babesia spp., and Borrelia burgdorferi sensu lato were identified in 1.1% (n=6) and 1.8% (n=10) of these, respectively. Babesia spp. included Babesia vulpes sp. nov./Babesia microti-like (n=4) in I. hexagonus and Babesia venatorum (n=2) in I. ricinus. Borrelia burgdorferi s.l. species included Borrelia garinii (n=6) and Borrelia afzelii (n=4). The majority of B. burgorferi s.l. cases were found in I. ricinus, with B. afzelii in one I. hexagonus nymph. No Borrelia or Babesia spp. were present in I. trianguliceps. To determine a true prevalence for ticks on cats, practices that only submitted questionnaires from cats with ticks and practices that submitted fewer than 5 returns per week were removed; amongst those considered to have adhered strictly to the collection protocol, feline tick prevalence amongst cats that had access to the outdoors was 6.6%. These results show that ticks can be found on cats throughout Great Britain, which harbour a range of species of Babesia and B. burgdorferi s.l. and that cats, particularly in green spaces within urban areas, may form an important host for I. hexagonus, a known vector of pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Lyme borreliae prevalence and genospecies distribution in ticks removed from humans.

    PubMed

    Waindok, Patrick; Schicht, Sabine; Fingerle, Volker; Strube, Christina

    2017-08-01

    Lyme borreliosis (LB) is the most important human tick-borne disease, but Borrelia genospecies cause different clinical manifestations. Ticks of the genus Ixodes removed from humans between 2006 and 2012 were analysed for Borrelia burgdorferi sensu lato (sl) infections. The majority of ticks originated from the Greater Hanover region in Northern Germany. The engorgement status varied over the entire spectrum from unengorged (no evidence of started blood feeding) to fully engorged. In the present study, prevalence data for B. burgdorferi sl 2011 and 2012 were obtained by quantitative real-time PCR and compared to those from a former study including years 2006-2010 (Strube et al., 2011) to evaluate B. burgdorferi sl infections in ticks affecting humans over a 7-year period. In 2011, 34.2% (70/205) of adult ticks, 22.2% (94/423) of nymphs, 8.3% of larvae (1/12) as well 3 of 6 not differentiated ticks were Borrelia positive. In 2012, 31.8% (41/129) of adult ticks, 20.4% of nymphs (69/337) as well as 1 of 4 of the not differentiated ticks were determined positive. Total Borrelia infection rates decreased significantly from 23.1% in 2006 to 17.1% in 2010, followed by a significant increase to 26.0% in 2011 and 23.4% in 2012. Furthermore, B. burgdorferi sl genospecies distribution in 2006-2012 was determined in the present study by applying Reverse Line Blot technique. Borrelia genospecies differentiation was successful in 641 (67.3%) out of 953 positive tick samples. The most frequently occurring genospecies was B. afzelii (40.5% of infected ticks), followed by B. garinii/B. bavariensis (12.4%). Amongst the 641 ticks analysed for their genospecies, 74 (11.5%) carried more than one genospecies, of which 69 (10.7%) were double-infected and five (0.8%) were triple-infected. Comparison of genospecies distribution in ticks removed from humans with those from questing ticks flagged in the same geographical area revealed that ticks removed from humans were significantly more frequently infected with B. afzelii (p=0.0004), but significantly less infected with B. burgdorferi sensu stricto (p=0.0001). Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Borrelia afzelii ospC genotype diversity in Ixodes ricinus questing ticks and ticks from rodents in two Lyme borreliosis endemic areas: contribution of co-feeding ticks.

    PubMed

    Pérez, David; Kneubühler, Yvan; Rais, Olivier; Jouda, Fatima; Gern, Lise

    2011-09-01

    In Europe, the Lyme borreliosis (LB) agents like Borrelia burgdorferi sensu stricto (ss), B. afzelii, and B. garinii are maintained in nature by enzoonotic transmission cycles between vertebrate hosts and Ixodes ricinus ticks. The outer surface protein C is a highly antigenic protein expressed by spirochaetes during transmission from ticks to mammals as well as during dissemination in the vertebrate hosts. Previous studies based on analysis of ospC gene sequences have led to the classification of ospC genotypes into ospC groups. The aim of this study was to analyse and compare ospC group distribution among isolates of the rodent-associated genospecies, B. afzelii, at 3 levels (questing ticks, ticks feeding on rodents, and xenodiagnostic ticks). Isolates were obtained during a study carried out in 2 LB endemic areas located on the Swiss Plateau [Portes-Rouges (PR) and Staatswald (SW)], where rodents were differently infested by co-feeding ticks (Pérez et al., unpublished data). Overall, we identified 10 different ospC groups with different distributions among isolates from questing ticks, ticks that detached from rodents, and xenodiagnostic ticks at the 2 sites. We observed a higher ospC diversity among isolates from ticks that fed on rodents at SW, and mixed infections with 2 ospC groups were also more frequent among isolates from ticks that fed on rodents at SW (n=18) than at PR (n=1). At both sites, B. afzelii isolates obtained from larvae that were feeding on the rodents simultaneously with nymphs displayed a higher diversity of ospC groups (mean number of ospC groups: 2.25 for PR and 1.75 for SW) than isolates from larvae feeding without nymphs (mean number of ospC groups: 1.17 for PR and 1 for SW). We suggest that co-feeding transmission of Borrelia, previously described in laboratory models, contributes in nature in promoting and maintaining ospC diversity within local tick populations. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Human tick infestation pattern, tick-bite rate, and associated Borrelia burgdorferi s.l. infection risk during occupational tick exposure at the Seedorf military training area, northwestern Germany.

    PubMed

    Faulde, Michael K; Rutenfranz, Martin; Hepke, Jürgen; Rogge, Mareike; Görner, Andreas; Keth, Alexander

    2014-09-01

    The human tick infestation pattern, tick bite rate, and associated Borrelia burgdorferi s.l.-infection risk were investigated during occupational tick exposure of military personnel at the Seedorf military training area, northwestern Germany, from January to December 2009. Borrelia burgdorferi s.l. seroconversion rates were monitored from April to September 2009. Continuous occupational health surveillance and education were established. Feeding ticks were mostly removed by medical personnel, transferred to 70% ethanol, identified, and tested for B. burgdorferi s.l. Pre- and post-exposure sera were screened for B. burgdorferi s.l. antibodies. A total of 710 feeding ticks was removed, 704 (99.2%) of which were I. ricinus, 5 were I. hexagonus (0.7%), and one was H. concinna (0.1%). Of the I. ricinus specimens, 63.9% were nymphs, 24.7% larvae, 10.9% adult females, and 0.5% adult males. The tick bite rate among occupationally exposed personnel was 42.2% from April to September 2009. Up to 18 simultaneously feeding ticks per person per exposure incident were detected. The mean number of attached ticks was 2.0±2.2 per person per exposure incident. Overall, 86.4% of all feeding ticks were removed from patients within less than 24h after attachment. Borrelia burgdorferi s.l. DNA could be detected in 3.5% of larval, 4.4% of nymphal, 13% of adult female, and 33.3% of adult male ticks, indicating a mean prevalence of 5.3%. Among the genospecies detected, B. afzelii accounted for 84%, B. burgdorferi s.s. for 11%, B. garinii for 3%, and B. spielmanii for 3%. The overall seroconversion rate in 566 personnel exposed from April to September was 1.7%, and 0.7% acquired clinical Lyme borreliosis. Experiences reported herein indicate the need to further improve personal protection measures, health education, and medical staff training in order to minimize exposure to ticks and optimize diagnosis of tick-borne diseases. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Identification of tick-borne encephalitis virus in ticks collected in southeastern Hungary.

    PubMed

    Pintér, Réka; Madai, Mónika; Vadkerti, Edit; Németh, Viktória; Oldal, Miklós; Kemenesi, Gábor; Dallos, Bianka; Gyuranecz, Miklós; Kiss, Gábor; Bányai, Krisztián; Jakab, Ferenc

    2013-09-01

    Tick-borne encephalitis virus (TBEV) is an arthropod-borne viral pathogen causing infections in Europe and is responsible for most arbovirus central nervous system infections in Hungary. Assessing the TBEV prevalence in ticks through detection of genomic RNA is a broadly accepted approach to estimate the transmission risk from a tick bite. For this purpose, 2731 ticks were collected from the neighboring area of the town of Dévaványa, located in southeastern Hungary, which is considered a low-risk-transmission area for TBEV. Altogether, 2300 ticks were collected from the vegetation, while 431 were collected from rodents. Samples were pooled and then screened for TBEV with a newly designed semi-nested RT-PCR (RT-snPCR) targeting the NS1 genomic region. PCR results were confirmed by direct sequencing of the second round amplicons. Among the 3 different collected tick species (Ixodes ricinus, Haemaphysalis concinna, Dermacentor marginatus), I. ricinus was the only species that tested positive for TBEV. TBEV-positive ticks were collected from small mammals or from the vegetation. One nymphal pool and 4 larval pools tested positive for TBEV. The only positive nymphal pool was unfed and came from vegetation, while ticks of the 4 positive larval pools were collected from rodents. Minimal TBEV prevalence in ticks was 0.08% for unfed nymphs and 0.78% for feeding larvae. Our results indicate that further long-term investigations on the occurrence of TBEV are needed to better describe the geographic distribution and the prevalence of infected ticks in Hungary. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission

    PubMed Central

    Bonnet, Sarah I.; Binetruy, Florian; Hernández-Jarguín, Angelica M.; Duron, Olivier

    2017-01-01

    Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies. PMID:28642842

  1. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission.

    PubMed

    Bonnet, Sarah I; Binetruy, Florian; Hernández-Jarguín, Angelica M; Duron, Olivier

    2017-01-01

    Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella , and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella , and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.

  2. Artificial feeding of Rhipicephalus microplus female ticks with anti calreticulin serum do not influence tick and Babesia bigemina acquisition.

    PubMed

    Antunes, Sandra; Merino, Octávio; Lérias, Joana; Domingues, Nuno; Mosqueda, Juan; de la Fuente, José; Domingos, Ana

    2015-02-01

    Ticks are obligate haematophagous ectoparasites considered the principal vectors of disease among animals. Rhipicephalus microplus and R. annulatus ticks are the most important vectors for Babesia bigemina and B. bovis, two of the most important intraerythrocytic protozoan parasites species in cattle, responsible for babesiosis which together with anaplasmosis account for substantial economic losses in the livestock industry worldwide. Anti-tick vaccines are a proved alternative to traditional tick and tick borne diseases control methods but are still limited primarily due to the lack of effective antigens. Subsequently to the identification of antigens the validation is a laborious work often expensive. Tick artificial feeding, is a low cost alternative to test antigens allowing achieving critical data. Herein, R. microplus females were successfully artificially fed using capillary tubes. Calreticulin (CRT) protein, which in a previous study has been identified as being involved in B. bigemina infection in R. annulatus ticks, was expressed as recombinant protein (rCRT) in an E. coli expression system and antibodies raised against rCRT. Anti-rCRT serum was supplemented to a blood meal, offered to partially engorged R. microplus females and their effect in feeding process as well as infection by B. bigemina was analyzed. No significant reductions in tick and egg weight were observed when ticks fed with anti-rCRT serum. Furthermore, B. bigemina infection levels did not show a statistically significant decrease when ticks fed with anti-rCRT antibodies. Results suggest that CRT is not a suitable candidate for cattle vaccination trials. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. LKR/SDH Plays Important Roles throughout the Tick Life Cycle Including a Long Starvation Period

    PubMed Central

    Battur, Banzragch; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Battsetseg, Badgar; Taylor, DeMar; Baymbaa, Badarch; Fujisaki, Kozo

    2009-01-01

    Background Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) is a bifunctional enzyme catalyzing the first two steps of lysine catabolism in plants and mammals. However, to date, the properties of the lysine degradation pathway and biological functions of LKR/SDH have been very little described in arthropods such as ticks. Methodology/Principal Findings We isolated and characterized the gene encoding lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) from a tick, Haemaphysalis longicornis, cDNA library that encodes a bifunctional polypeptide bearing domains similar to the plant and mammalian LKR/SDH enzymes. Expression of LKR/SDH was detected in all developmental stages, indicating an important role throughout the tick life cycle, including a long period of starvation after detachment from the host. The LKR/SDH mRNA transcripts were more abundant in unfed and starved ticks than in fed and engorged ticks, suggesting that tick LKR/SDH are important for the starved tick. Gene silencing of LKR/SDH by RNAi indicated that the tick LKR/SDH plays an integral role in the osmotic regulation of water balance and development of eggs in ovary of engorged females. Conclusions/Significance Transcription analysis and gene silencing of LKR/SDH indicated that tick LKR/SDH enzyme plays not only important roles in egg production, reproduction and development of the tick, but also in carbon, nitrogen and water balance, crucial physiological processes for the survival of ticks. This is the first report on the role of LKR/SDH in osmotic regulation in animals including vertebrate and arthropods. PMID:19774086

  4. Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system.

    PubMed

    Umemiya-Shirafuji, Rika; Hatta, Takeshi; Okubo, Kazuhiro; Sato, Moeko; Maeda, Hiroki; Kume, Aiko; Yokoyama, Naoaki; Igarashi, Ikuo; Tsuji, Naotoshi; Fujisaki, Kozo; Inoue, Noboru; Suzuki, Hiroshi

    2017-12-20

    Bovine piroplasmosis, a tick-borne protozoan disease, is a major concern for the cattle industry worldwide due to its negative effects on livestock productivity. Toward the development of novel therapeutic and vaccine approaches, tick-parasite experimental models have been established to clarify the development of parasites in the ticks and the transmission of the parasites by ticks. A novel tick-Babesia experimental infection model recently revealed the time course of Babesia ovata migration in its vector Haemaphysalis longicornis, which is a dominant tick species in Japan. However, there has been no research on the transovarial persistence of B. ovata DNA using this experimental infection model. Here we assessed the presence of B. ovata DNA in eggs derived from parthenogenetic H. longicornis female ticks that had engorged after semi-artificial mouse skin membrane feeding of B. ovata-infected bovine red blood cells. The oviposition period of the engorged female ticks was 21-24 days in the semi-artificial feeding. Total egg weight measured daily reached a peak by day 3 in all female ticks. Nested PCR revealed that 3 of 10 female ticks laid B. ovata DNA-positive eggs after the semi-artificial feeding. In addition, B. ovata DNA was detected at the peak of egg weight during oviposition, indicating that B. ovata exist in the eggs laid a few days after the onset of oviposition in the tick. These findings will contribute to the establishment of B. ovata-infected H. longicornis colonies under laboratory conditions.

  5. LKR/SDH plays important roles throughout the tick life cycle including a long starvation period.

    PubMed

    Battur, Banzragch; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Battsetseg, Badgar; Taylor, DeMar; Baymbaa, Badarch; Fujisaki, Kozo

    2009-09-23

    Lysine-ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) is a bifunctional enzyme catalyzing the first two steps of lysine catabolism in plants and mammals. However, to date, the properties of the lysine degradation pathway and biological functions of LKR/SDH have been very little described in arthropods such as ticks. We isolated and characterized the gene encoding lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) from a tick, Haemaphysalis longicornis, cDNA library that encodes a bifunctional polypeptide bearing domains similar to the plant and mammalian LKR/SDH enzymes. Expression of LKR/SDH was detected in all developmental stages, indicating an important role throughout the tick life cycle, including a long period of starvation after detachment from the host. The LKR/SDH mRNA transcripts were more abundant in unfed and starved ticks than in fed and engorged ticks, suggesting that tick LKR/SDH are important for the starved tick. Gene silencing of LKR/SDH by RNAi indicated that the tick LKR/SDH plays an integral role in the osmotic regulation of water balance and development of eggs in ovary of engorged females. Transcription analysis and gene silencing of LKR/SDH indicated that tick LKR/SDH enzyme plays not only important roles in egg production, reproduction and development of the tick, but also in carbon, nitrogen and water balance, crucial physiological processes for the survival of ticks. This is the first report on the role of LKR/SDH in osmotic regulation in animals including vertebrate and arthropods.

  6. Susceptibility to Ticks and Lyme Disease Spirochetes Is Not Affected in Mice Coinfected with Nematodes.

    PubMed

    Maaz, Denny; Rausch, Sebastian; Richter, Dania; Krücken, Jürgen; Kühl, Anja A; Demeler, Janina; Blümke, Julia; Matuschka, Franz-Rainer; von Samson-Himmelstjerna, Georg; Hartmann, Susanne

    2016-05-01

    Small rodents serve as reservoir hosts for tick-borne pathogens, such as the spirochetes causing Lyme disease. Whether natural coinfections with other macroparasites alter the success of tick feeding, antitick immunity, and the host's reservoir competence for tick-borne pathogens remains to be determined. In a parasitological survey of wild mice in Berlin, Germany, approximately 40% of Ixodes ricinus-infested animals simultaneously harbored a nematode of the genus Heligmosomoides We therefore aimed to analyze the immunological impact of the nematode/tick coinfection as well as its effect on the tick-borne pathogen Borrelia afzelii Hosts experimentally coinfected with Heligmosomoides polygyrus and larval/nymphal I. ricinus ticks developed substantially stronger systemic type 2 T helper cell (Th2) responses, on the basis of the levels of GATA-3 and interleukin-13 expression, than mice infected with a single pathogen. During repeated larval infestations, however, anti-tick Th2 reactivity and an observed partial immunity to tick feeding were unaffected by concurrent nematode infections. Importantly, the strong systemic Th2 immune response in coinfected mice did not affect susceptibility to tick-borne B. afzelii An observed trend for decreased local and systemic Th1 reactivity against B. afzelii in coinfected mice did not result in a higher spirochete burden, nor did it facilitate bacterial dissemination or induce signs of immunopathology. Hence, this study indicates that strong systemic Th2 responses in nematode/tick-coinfected house mice do not affect the success of tick feeding and the control of the causative agent of Lyme disease. Copyright © 2016 Maaz et al.

  7. Ticks collected from humans, domestic animals, and wildlife in Yucatan, Mexico.

    PubMed

    Rodríguez-Vivas, R I; Apanaskevich, D A; Ojeda-Chi, M M; Trinidad-Martínez, I; Reyes-Novelo, E; Esteve-Gassent, M D; Pérez de León, A A

    2016-01-15

    Domestic animals and wildlife play important roles as reservoirs of zoonotic pathogens that are transmitted to humans by ticks. Besides their role as vectors of several classes of microorganisms of veterinary and public health relevance, ticks also burden human and animal populations through their obligate blood-feeding habit. It is estimated that in Mexico there are around 100 tick species belonging to the Ixodidae and Argasidae families. Information is lacking on tick species that affect humans, domestic animals, and wildlife through their life cycle. This study was conducted to bridge that knowledge gap by inventorying tick species that infest humans, domestic animals and wildlife in the State of Yucatan, Mexico. Amblyomma ticks were observed as euryxenous vertebrate parasites because they were found parasitizing 17 animal species and human. Amblyomma mixtum was the most eryxenous species found in 11 different animal species and humans. Both A. mixtum and A. parvum were found parasitizing humans. Ixodes near affinis was the second most abundant species parasitizing six animal species (dogs, cats, horses, white-nosed coati, white-tail deer and black vulture) and was found widely across the State of Yucatan. Ixodid tick populations may increase in the State of Yucatan with time due to animal production intensification, an increasing wildlife population near rural communities because of natural habitat reduction and fragmentation. The diversity of ticks across host taxa documented here highlights the relevance of ecological information to understand tick-host dynamics. This knowledge is critical to inform public health and veterinary programs for the sustainable control of ticks and tick-borne diseases. Copyright © 2015. Published by Elsevier B.V.

  8. Characterization of the early local immune response to Ixodes ricinus tick bites in human skin.

    PubMed

    Glatz, Martin; Means, Terry; Haas, Josef; Steere, Allen C; Müllegger, Robert R

    2017-03-01

    Little is known about the immunomodulation by tick saliva during a natural tick bite in human skin, the site of the tick-host interaction. We examined the expression of chemokines, cytokines and leucocyte markers on the mRNA levels and histopathologic changes in human skin biopsies of tick bites (n=37) compared to unaffected skin (n=9). Early tick-bite skin lesions (<24 hours of tick attachment) were characterized by a predominance of macrophages and dendritic cells, elevated mRNA levels of macrophage chemoattractants (CCL2, CCL3, CCL4) and neutrophil chemoattractants (CXCL1, CXCL8), of the pro-inflammatory cytokine, IL-1β, and the anti-inflammatory cytokine, IL-5. In contrast, the numbers of lymphocytes and mRNA levels of lymphocyte cell markers (CD4, CD8, CD19), lymphocyte chemoattractants (CXCL9, CXCL10, CXCL11, CXCL13, CCL1, CCL22), dendritic cell chemoattractants (CCL20), and other pro- (IL-6, IL-12p40, IFN-γ, TNF-α) and anti-inflammatory cytokines (IL-4, IL-10, TGF-β) did not differ from normal skin. With longer tick attachment (>24 hours), the numbers of innate immune cells and mediators (not significantly) declined, whereas the numbers of lymphocytes (not significantly) increased. Natural tick bites by Ixodes ricinus ticks initially elicit a strong local innate immune response in human skin. Beyond 24 hours of tick attachment, this response usually becomes less, perhaps because of immunomodulation by tick saliva. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Variations in Ixodes ricinus density and Borrelia infections associated with cattle introduced into a woodland in The Netherlands.

    PubMed

    Gassner, Fedor; Verbaarschot, Patrick; Smallegange, Renate C; Spitzen, Jeroen; Van Wieren, Sipke E; Takken, Willem

    2008-12-01

    The effect of introduced large herbivores on the abundance of Ixodes ricinus ticks and their Borrelia infections was studied in a natural woodland in The Netherlands. Oak and pine plots, either ungrazed or grazed by cattle, were selected. Ticks were collected weekly by blanket dragging. Borrelia infections were determined by PCR and restriction fragment length polymorphism. Rodent densities were estimated using mark-release-recapture methods. On occasion, the cattle were inspected for tick infestations. Meteorological data were recorded for each habitat. Significantly more ticks were collected in the ungrazed woodland than in the grazed woodland. The ungrazed oak habitat had higher tick densities than the pine habitat, while in the grazed habitats, tick densities were similar. Borrelia infection rates ranged from zero in larvae to 26% in nymphs to 33% in adult ticks, and B. afzelii, B. burgdorferi sensu stricto, B. garinii, and B. valaisiana were the species involved. Coinfections were found in five ticks. There was no effect of the presence of cattle on Borrelia infections in the ticks. In the ungrazed area, Borrelia infections in nymphs were significantly higher in the oak habitat than in the pine habitat. More mice were captured in the ungrazed area, and these had a significantly higher tick burden than mice from the grazed area. Tick burden on cattle was low. The results suggest that grazing has a negative effect on small rodents as well as on ticks but not on Borrelia infections. Implications of these results for management of woodland reserves and risk of Lyme disease are discussed.

  10. Variations in Ixodes ricinus Density and Borrelia Infections Associated with Cattle Introduced into a Woodland in The Netherlands▿ †

    PubMed Central

    Gassner, Fedor; Verbaarschot, Patrick; Smallegange, Renate C.; Spitzen, Jeroen; Van Wieren, Sipke E.; Takken, Willem

    2008-01-01

    The effect of introduced large herbivores on the abundance of Ixodes ricinus ticks and their Borrelia infections was studied in a natural woodland in The Netherlands. Oak and pine plots, either ungrazed or grazed by cattle, were selected. Ticks were collected weekly by blanket dragging. Borrelia infections were determined by PCR and restriction fragment length polymorphism. Rodent densities were estimated using mark-release-recapture methods. On occasion, the cattle were inspected for tick infestations. Meteorological data were recorded for each habitat. Significantly more ticks were collected in the ungrazed woodland than in the grazed woodland. The ungrazed oak habitat had higher tick densities than the pine habitat, while in the grazed habitats, tick densities were similar. Borrelia infection rates ranged from zero in larvae to 26% in nymphs to 33% in adult ticks, and B. afzelii, B. burgdorferi sensu stricto, B. garinii, and B. valaisiana were the species involved. Coinfections were found in five ticks. There was no effect of the presence of cattle on Borrelia infections in the ticks. In the ungrazed area, Borrelia infections in nymphs were significantly higher in the oak habitat than in the pine habitat. More mice were captured in the ungrazed area, and these had a significantly higher tick burden than mice from the grazed area. Tick burden on cattle was low. The results suggest that grazing has a negative effect on small rodents as well as on ticks but not on Borrelia infections. Implications of these results for management of woodland reserves and risk of Lyme disease are discussed. PMID:18836006

  11. Comparison of Preferred Bite Sites between Mites and Ticks on Humans in Korea

    PubMed Central

    Jang, Mi-Sun; Kim, Choon-Mee; Kim, Dong-Min; Yoon, Na Ra; Han, Mi Ah; Kim, Hyun-Kuk; Oh, Won Sup; Yoon, Hee-Jung; Wie, Seong-Heon; Hur, Jian

    2016-01-01

    Identification of mite and tick bite sites provides important clinical information. The predominant mite species in Korea associated with scrub typhus are Leptotrombidium pallidum and Leptotrombidium scutellare. The most abundant tick species is Haemaphysalis longicornis. To date, there has been no comparative study on preferred bite sites between mites and ticks in humans. This study included a review of medical records and a field study. For mite bite sites, eschars were checked on 506 patients with scrub typhus, confirmed by indirect immunofluorescence assay or nested polymerase chain reaction on the 56-kDa type-specific antigen gene of Orientia tsutsugamushi. Tick bite sites were identified and marked on a diagram for 91 patients who experienced tick bites within the previous year through a field epidemiological investigation. The mite and tick bite sites in Koreans were compared. The most frequently observed mite bite sites were the anterior chest, including the axillae (29.1%) and the abdominal region, including the inguinal area (26.1%). Tick bite sites were most frequent on the lower extremities (33.0%), followed by the abdominal region, including the inguinal area (26.4%), and upper extremities (26.4%). The distribution was significantly different between mite and tick bite sites (P < 0.001). There was a statistically significant difference in the mite bite (P = 0.001), but not tick bite sites (P = 0.985), between men and women. This is the first report on the differences between tick and mite bite sites, and may help clinicians reach a rapid diagnosis of mite- or tick-borne infection. PMID:27645781

  12. Infections and Coinfections of Questing Ixodes ricinus Ticks by Emerging Zoonotic Pathogens in Western Switzerland

    PubMed Central

    Lommano, Elena; Bertaiola, Luce; Dupasquier, Christèle

    2012-01-01

    In Europe, Ixodes ricinus is the vector of many pathogens of medical and veterinary relevance, among them Borrelia burgdorferi sensu lato and tick-borne encephalitis virus, which have been the subject of numerous investigations. Less is known about the occurrence of emerging tick-borne pathogens like Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and Anaplasma phagocytophilum in questing ticks. In this study, questing nymph and adult I. ricinus ticks were collected at 11 sites located in Western Switzerland. A total of 1,476 ticks were analyzed individually for the simultaneous presence of B. burgdorferi sensu lato, Rickettsia spp., Babesia spp., “Candidatus Neoehrlichia mikurensis,” and A. phagocytophilum. B. burgdorferi sensu lato, Rickettsia spp., and “Candidatus Neoehrlichia mikurensis” were detected in ticks at all sites with global prevalences of 22.5%, 10.2%, and 6.4%, respectively. Babesia- and A. phagocytophilum-infected ticks showed a more restricted geographic distribution, and their prevalences were lower (1.9% and 1.5%, respectively). Species rarely reported in Switzerland, like Borrelia spielmanii, Borrelia lusitaniae, and Rickettsia monacensis, were identified. Infections with more than one pathogenic species, involving mostly Borrelia spp. and Rickettsia helvetica, were detected in 19.6% of infected ticks. Globally, 34.2% of ticks were infected with at least one pathogen. The diversity of tick-borne pathogens detected in I. ricinus in this study and the frequency of coinfections underline the need to take them seriously into consideration when evaluating the risks of infection following a tick bite. PMID:22522688

  13. Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan.

    PubMed

    Rehman, Abdul; Nijhof, Ard M; Sauter-Louis, Carola; Schauer, Birgit; Staubach, Christoph; Conraths, Franz J

    2017-04-19

    Tick infestation is the major problem for animal health that causes substantial economic losses, particularly in tropical and subtropical countries. To better understand the spatial distribution of tick species and risk factors associated with tick prevalence in livestock in Pakistan, ticks were counted and collected from 471 animals, including 179 cattle, 194 buffaloes, 80 goats and 18 sheep, on 108 livestock farms in nine districts, covering both semi-arid and arid agro-ecological zones. In total, 3,807 ticks representing four species were collected: Hyalomma anatolicum (n = 3,021), Rhipicephalus microplus (n = 715), Hyalomma dromedarii (n = 41) and Rhipicephalus turanicus (n = 30). The latter species is reported for the first time from the study area. Rhipicephalus microplus was the predominant species in the semi-arid zone, whereas H. anatolicum was the most abundant species in the arid zone. The overall proportion of tick-infested ruminants was 78.3% (369/471). It was highest in cattle (89.9%), followed by buffaloes (81.4%), goats (60.0%) and sheep (11.1%). The median tick burden significantly differed among animal species and was highest in cattle (median 58), followed by buffaloes (median 38), goats (median 19) and sheep (median 4.5). Female animals had significantly higher tick burdens than males and, in large ruminants, older animals carried more ticks than younger animals. The intensity of infestation was significantly lower in indigenous animals compared to exotic and crossbred cows. Analysis of questionnaire data revealed that the absence of rural poultry, not using any acaricides, traditional rural housing systems and grazing were potential risk factors associated with a higher tick prevalence in livestock farms. Absence of rural poultry, not performing acaricide treatments, traditional rural housing systems and grazing were important risk factors associated with higher tick prevalence in livestock farms. Age, gender, breed and animal species significantly affected the intensity of tick infestation. This report also describes the presence of R. turanicus in the Punjab Province of Pakistan for the first time. The outcomes of this study will be useful in the planning of integrated control strategies for ticks and tick-borne diseases in Pakistan.

  14. A broad-range survey of ticks from livestock in Northern Xinjiang: changes in tick distribution and the isolation of Borrelia burgdorferi sensu stricto.

    PubMed

    Wang, Yuan-Zhi; Mu, Lu-Meng; Zhang, Ke; Yang, Mei-Hua; Zhang, Lin; Du, Jing-Yun; Liu, Zhi-Qiang; Li, Yong-Xiang; Lu, Wei-Hua; Chen, Chuang-Fu; Wang, Yan; Chen, Rong-Gui; Xu, Jun; Yuan, Li; Zhang, Wan-Jiang; Zuo, Wei-Ze; Shao, Ren-Fu

    2015-09-04

    Borreliosis is highly prevalent in Xinjiang Uygur Autonomous Region, China. However, little is known about the presence of Borrelia pathogens in tick species in this region, in addition Borrelia pathogens have not been isolated from domestic animals. We collected adult ticks from domestic animals at 19 sampling sites in 14 counties in northern Xinjiang from 2012 to 2014. Ticks were identified to species by morphology and were molecularly analysed by sequences of mitochondrial 16S rDNA gene; 4-8 ticks of each species at every sampling site were sequenced. 112 live adult ticks were selected for each species in every county, and were used to culture Borrelia pathogens; the genotypes were then determined by sequences of the 5S-23S rRNA intergenic spacer and the outer surface protein A (ospA) gene. A total of 5257 adult ticks, belonging to four genera and seven species, were collected. Compared with three decades ago, the abundance of the five common tick species during the peak ixodid tick season has changed. Certain tick species, such as Rhipicephalus turanicus (Rh. turanicus), was found at Jimusaer, Yining, Fukang, and Chabuchaer Counties for the first time. Additionally, the sequence analyses showed that the Hyalomma asiaticum (Hy. asiaticum), Haemaphysalis punctata (Ha. punctata), and Dermacentor marginatus (D. marginatus) that were collected from different sampling sites (≥3 sites) shared identical 16S rDNA sequences respectively. For the tick species that were collected from the same county, such as Hy. asiaticum from Shihezi County and Rh. turanicus from Yining County, their 16S rDNA sequences showed genetic diversity. In addition, sixteen Borrelia isolates were found in Hy. asiaticum, Ha. punctata, D. marginatus and Rh. turanicus, which infested cattle, sheep, horse and camel in Yining, Chabuchaer, Shihezi and Shawan Counties. All of the isolates were genetically identified as B. Burgdorferi sensu stricto. Warmer and wetter climate may have contributed to the altered distribution and abundance of the five most common ticks in northern Xinjiang. The genetic analyses showed that certain tick species, such as Hy. asiaticum or Rh. turanicus, exhibit genetic commonness or diversity. Additionally, this study is the first to isolate B. burgdorferi sensu stricto in Hy. asiaticum asiaticum, H. punctata, D. nuttalli and D. marginatus ticks from domestic animals. These ticks may transmit borreliosis among livestock.

  15. Effectiveness of permethrin-treated clothing to prevent tick exposure in foresters in the central Appalachian region of the USA.

    PubMed

    L Richards, Stephanie; G Balanay, Jo Anne; W Harris, Jonathan

    2015-01-01

    Outdoor workers are at risk from mosquito and tick bites and the extent to which exposures are linked to vector-borne disease is not understood. This pilot study characterizes for ester exposure to mosquitoes and ticks, and assesses effectiveness of permethrin-treated clothing for prevention of tick bites. Foresters (N = 34) from Kentucky, North Carolina, Ohio, Tennessee, Virginia, and West Virginia were placed into treatment (permethrin-treated clothing) or control (untreated clothing) groups. Foresters completed questionnaires about work-related tick/mosquito exposure and 454 ticks were collected/identified from May to June 2013. A time-weighted analysis based on information submitted by foresters about time working outdoors showed that control participants received a lower rate of tick exposure (0.15 tick bites/hour; 13 bites/person) compared to treatment participants (0.27 bites/hour; 21 bites/person). However, more control participants (85 %) received at least one tick bite compared to treatment participants (52 %). Outdoor workers should be aware of available protective measures, such as permethrin-treated clothing, that may mitigate occupational risks.

  16. Ixodid ticks in the megapolis of Kyiv, Ukraine.

    PubMed

    Rogovskyy, Artem S; Nebogatkin, Igor V; Scoles, Glen A

    2017-01-01

    The Ixodidae include the most common tick species encountered in Europe. The ticks transmit a variety of bacterial and protozoan agents of medical and veterinary significance. The aim of the current work was to investigate distribution of Ixodes ricinus and Dermacentor reticulatus ticks in Kyiv, the largest and most densely populated megapolis of Ukraine. Ticks were collected at various recreational areas by flagging during May, the month that showed the highest tick abundance in the past. Sex distribution among I. ricinus ticks was relatively equal, whereas females were collected in higher numbers for D. reticulatus. As opposed to western and central Europe where nymphal ticks had been more abundant, the nymph:adult ratio for I. ricinus was reversed. Also, this report documents detection of Rhipicephalus sanguineus sensu lato (s.l.) in Kyiv region, well outside of its historically documented distribution area. Previously thought to be restricted to the southern Ukraine, a single male specimen of R. sanguineus s.l. was collected just outside the city limits. Data on tick diversity over the past 30 years, however, indicates that this finding may only be incidental. Published by Elsevier GmbH.

  17. Ticks and tick-borne novel bunyavirus collected from the natural environment and domestic animals in Jinan city, East China.

    PubMed

    Wang, Dong; Wang, Yongming; Yang, Guoliang; Liu, Huiyuan; Xin, Zheng

    2016-02-01

    Since 2011, 73 cases of the severe fever with thrombocytopenia syndrome, a novel tick-borne disease, have been reported in Jinan city through information system for disease control and prevention. Therefore, this study aimed to investigate the species, distribution, host animals of ticks and tick-borne pathogens. A total of 722 ticks were collected from two types of natural environment and six kinds of domestic animal in Jinan city. All the sampled ticks belonged to the same species, namely Haemaphysalis longicornis, and 94.7% of them were adult. The density of free-living ticks in grassland was nearly six times that in shrub. The prevalence of the goat (53.3%) was highest among the domestic animals. The host body region most frequently parasitized by H. longicornis was the head (77.8%), especially ears and periocular region. Novel bunyavirus was detected on the free-ranging goats in Jinan city. Acaricide treatment with a higher concentration on the ears, periocular region and the groin of domestic animals should be recommended to control the ticks effectively.

  18. Emerging tick-borne infections in mainland China: an increasing public health threat

    PubMed Central

    Li, Xin-Lou; Liang, Song; Yang, Yang; Yao, Hong-Wu; Sun, Ruo-Xi; Sun, Ye; Chen, Wan-Jun; Zuo, Shu-Qing; Ma, Mai-Juan; Li, Hao; Jiang, Jia-Fu; Liu, Wei; Yang, X Frank; Gray, Gregory C; Krause, Peter J; Cao, Wu-Chun

    2016-01-01

    Since the beginning of the 1980s, 33 emerging tick-borne agents have been identified in mainland China, including eight species of spotted fever group rickettsiae, seven species in the family Anaplasmataceae, six genospecies in the complex Borrelia burgdorferi sensu lato, 11 species of Babesia, and the virus causing severe fever with thrombocytopenia syndrome. In this Review we have mapped the geographical distributions of human cases of infection. 15 of the 33 emerging tick-borne agents have been reported to cause human disease, and their clinical characteristics have been described. The non-specific clinical manifestations caused by tick-borne pathogens present a major diagnostic challenge and most physicians are unfamiliar with the many tick-borne diseases that present with non-specific symptoms in the early stages of the illness. Advances in and application of modern molecular techniques should help with identification of emerging tick-borne pathogens and improve laboratory diagnosis of human infections. We expect that more novel tick-borne infections in ticks and animals will be identified and additional emerging tick-borne diseases in human beings will be discovered. PMID:26453241

  19. Infestation of the spur-thighed tortoise (Testudo graeca) by Hyalomma aegyptium in Tunisia.

    PubMed

    Gharbi, Mohamed; Rjeibi, Mohamed Ridha; Rouatbi, Mariem; Mabrouk, Moez; Mhadhbi, Moez; Amairia, Safa; Amdouni, Yosra; Boussaadoun, Mohamed Anis

    2015-04-01

    We examined 210 spur-thighed tortoises (Testudo graeca) for the presence of ticks in Tunisia during May 2014. A total number of 602 adult ticks were collected and identified leading to the estimation of parasitological indicators. All the ticks belonged to a single species: Hyalomma aegyptium. The mean infestation prevalence was 66.2%, mean overall infestation intensity and abundance were 4.33 and 2.86 ticks/tortoise respectively. Our survey showed that tortoises were significantly more infested by male ticks than females (p<0.001). The ticks were mainly present in the posterior limbs compared to other body regions (p<0.05). There was no significance variation of length and weight of tortoises according to sex (p<0.05). There was a significant correlation between the tortoises' size (length and weight) and tick infestation. This study showed high tick burdens of spur-thighed tortoises in Tunisia; further investigations are needed to determine exactly the role of this tick species in the transmission of different zoonotic pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. The occurrence of Ixodes ricinus ticks and important tick-borne pathogens in areas with high tick-borne encephalitis prevalence in different altitudinal levels of the Czech Republic Part I. Ixodes ricinus ticks and tick-borne encephalitis virus.

    PubMed

    Daniel, M; Danielová, V; Kříž, B; Růžek, D; Fialová, A; Malý, M; Materna, J; Pejčoch, M; Erhart, J

    The aim of the three-year study (2011-2013) was to monitor population density of Ixodes ricinus ticks and its infection rate with the tick-borne encephalitis virus in areas with a high incidence of tick-borne encephalitis as reported in the previous decade 2001-2010. Such a comprehensive and long-term study based on existing epidemiolo-gical findings has not previously been conducted in Europe. In the areas of the Ústí nad Labem Region, Olomouc Region, South Bohemian Region, and Highlands Region, 600 m2 plots were selected in the local optimal I. ricinus habitats where tick flagging was performed every year in the spring-summer and autumn seasons of the questing activity. In total, 18,721 I. ricinus ticks (1448 females, 1425 males, and 15,848 nymphs) were collected and investigated. The results have shown that the differences in the infection rate of I. ricinus observed between regions are driven by variation in the density of the local I. ricinus populations which is influenced by the characteris-tics of the whole local biocenosis. The overall prevalence estimate of TBE virus in Ixodes ricinus ticks at the altitudes below 600 m a.s.l. was 0.096 % (95% CI 0.055-0.156) for nymphs, and 0.477 % (95% CI 0.272-0.773) for adults. The dynamics of the seasonal variation in I. ricinus populations, depending primarily on the climatic factors, are behind the interyear differences in the infection rate of ticks and, consequently, in the epidemiological situation of tick-borne encephalitis. The nymph to adult ratio was 5.5 on average but showed great interregional variability (from 10.3 in the Ústí nad Labem Region to 1.8 in the Highlands Region). It might be used in the future as one of the indicators of the composition of the local I. ricinus population and of the level of the circulation of tick-borne pathogens in zoonotic sphere and also for use in the health risk assessment in a given area. Despite the permanent expansion of ticks and tick-borne pathogens in higher altitudes the high risk limit for human infection with tick-borne encephalitis is 600 m a.s.l. in the Czech Republic.

  1. Tissue Localization and Variation of Major Symbionts in Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and Dermacentor silvarum in China.

    PubMed

    Wang, Mengfei; Zhu, Dan; Dai, Jianfeng; Zhong, Zhengwei; Zhang, Yi; Wang, Jingwen

    2018-05-15

    Ticks are important disease vectors, as they transmit a variety of human and animal pathogens worldwide. Symbionts that coevolved with ticks confer crucial benefits to their host in nutrition metabolism, fecundity, and vector competence. Although over 100 tick species have been identified in China, general information on tick symbiosis is limited. Here, we visualized the tissue distribution of Coxiella sp. and Rickettsia sp. in lab-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides by fluorescent in situ hybridization. We found that Coxiella sp. colonized exclusively the Malpighian tubules and ovaries of H. longicornis , while Rickettsia sp. additionally colonized the midgut of R. haemaphysaloides We also investigated the population structure of microbiota in Dermacentor silvarum ticks collected from Inner Mongolia, China, and found that Coxiella , Rickettsia , and Pseudomonas are the three dominant genera. No significant difference in microbiota composition was found between male and female D. silvarum ticks. We again analyzed the tissue localization of Coxiella sp. and Rickettsia sp. and found that they displayed tissue tropisms similar to those in R. haemaphysaloides , except that Rickettsia sp. colonized the nuclei of spermatids instead of ovaries in D. silvarum Altogether, our results suggest that Coxiella sp. and Rickettsia sp. are the main symbionts in the three ticks and reside primarily in midgut, Malpighian tubules, and reproductive tissues, but their tissue distribution varies in association with species and sexes. IMPORTANCE Tick-borne diseases constitute a major public health burden, as they are increasing in frequency and severity worldwide. The presence of symbionts helps ticks to metabolize nutrients, promotes fecundity, and influences pathogen infections. Increasing numbers of tick-borne pathogens have been identified in China; however, knowledge of native ticks, especially tick symbiosis, is limited. In this study, we analyze the distribution of Coxiella sp. and Rickettsia sp. in tissues of laboratory-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides and field-collected Dermacentor silvarum We found that the localization patterns of Coxiella sp. in three Chinese tick species were similar to those of other tick species. We also found a previously undefined intracellular localization of Rickettsia sp. in tick midgut and spermatids. In addition, we demonstrate that tissue tropisms of symbionts vary between species and sexes. Our findings provide new insights into the tissue localization of symbionts in native Chinese ticks and pave the way for further understanding of their functional capabilities and symbiotic interactions with ticks. Copyright © 2018 American Society for Microbiology.

  2. Tick-borne protozoa

    USDA-ARS?s Scientific Manuscript database

    Tick-borne protozoa impose a significant health burden on humans and animals throughout the world. The virulence of tick-borne protozoa, and the geographic distribution of their tick vectors and vertebrate hosts remain in flux as they adapt to changing environmental and climatic conditions. Babesios...

  3. Effects of tick control by acaricide self-treatement of white-tailed deer on host-seeking tick infection prevalence and entomologic risk for Ixodes scapularis-borne pathogens

    USDA-ARS?s Scientific Manuscript database

    We evaluated the effects of tick control by acaricide self-treatment of white-tailed deer on the infection prevalence and entomologic risk for three I. scapularis-borne bacteria in host-seeking ticks. Ticks were collected from vegetation in areas treated with the ‘4-Poster’ device and from control a...

  4. Tick testing as a method of controlling Rocky Mountain spotted fever.

    PubMed Central

    Sacks, J J; Pinner, T A; Parker, R L

    1983-01-01

    In South Carolina, 1974-1980, only two matches were found between 536 Rocky Mountain spotted fever (RMSF) cases and 965 individuals who submitted ticks that tested rickettsial antigen positive. In neither case did the positive test prevent RMSF. Tick rickettsial positivity rates varied inversely with human RMSF attack rates in different geographic areas. A physician survey established it as unlikely that RMSF occurred in positive tick submitters (PTS), and that although not recommended, 34 per cent of asymptomatic PTS received prophylactic treatment. Only 18 per cent of positive ticks were engorged. Tick testing appears ineffective in preventing RMSF. PMID:6869643

  5. Lyme disease: a selective medium for isolation of the suspected etiological agent, a spirochete.

    PubMed Central

    Johnson, S E; Klein, G C; Schmid, G P; Bowen, G S; Feeley, J C; Schulze, T

    1984-01-01

    A simple procedure with a new selective culture medium for the isolation of the suspected etiological agent of Lyme disease from ticks is described. Live ticks (Ixodes dammini) were ground with a mortar and pestle, and the suspensions were inoculated into a selective and nonselective medium. The selective medium, which contained kanamycin and 5-fluorouracil, yielded positive spirochete cultures from 100% of the pooled ticks and from 79% of the single tick specimens. The isolation rate for the nonselective medium was 0% from the tick pools and 58% from the single tick specimens. PMID:6361065

  6. Rickettsia species in human-parasitizing ticks in Greece.

    PubMed

    Papa, Anna; Xanthopoulou, Kyriaki; Kotriotsiou, Tzimoula; Papaioakim, Miltiadis; Sotiraki, Smaragda; Chaligiannis, Ilias; Maltezos, Efstratios

    2016-05-01

    Ticks serve as vectors and reservoirs for a variety of bacterial, viral and protozoan pathogens affecting humans and animals. Unusual increased tick aggressiveness was observed in 2008-2009 in northeastern Greece. The aim of the study was to check ticks removed from persons during 2009 for infection with Rickettsia species. A total of 159 ticks were removed from 147 persons who sought medical advice in a hospital. Tick identification was performed morphologically using taxonomic keys. DNA was extracted from each individual tick and a PCR assay targeting the rickettsial outer membrane protein A gene of Rickettsia spp. was applied. Most of the adult ticks (132/153, 86.3%) were Rhipicephalus sanguineus. Rickettsiae were detected in 23 of the 153 (15.0%) adult ticks. Five Rickettsiae species were identified: R. aeschlimannii, R. africae (n=6), R. massilae (4), R. monacensis (1), and Candidatus R. barbariae (1). To our knowledge, this is the first report of R. africae, R. monacensis, and Candidatus R. barbariae in Greece. Several Rickettsia species were identified in ticks removed from humans in Greece, including those that are prevalent in northern and southern latitudes. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Prevalence of Rickettsia species in Dermacentor variabilis ticks from Ontario, Canada.

    PubMed

    Wood, Heidi; Dillon, Liz; Patel, Samir N; Ralevski, Filip

    2016-07-01

    Relatively little is known about the prevalence of rickettsial species in Dermacentor ticks in eastern Canada. In this study, Dermacentor ticks from the province of Ontario, Canada, were tested for the presence of spotted fever group rickettsial (SFGR) species, Coxiella burnetii and Francisella tularensis. Rickettsia rickettsii was not detected in any ticks tested, but R. montanensis was detected at a prevalence of 2.2% in D. variabilis (17/778). Two other SFGR species, R. parkeri and Candidatus R. andeanae, were detected individually in 2 Amblyomma maculatum ticks. Rickettsia peacockii, a non-pathogenic endosymbiont, was detected in two D. andersonii ticks. Given the highly abundant nature of D. variabilis, surveillance for human pathogens in this species of tick has important public health implications, but the lack of detection of known human pathogens indicates a low risk of infection via this tick species in Ontario. However, the detection of R. parkeri in an adventive A. maculatum tick indicates that health care providers should be aware of the possibility of spotted fever rickettsioses in individuals with a history of travel outside of Ontario and symptoms compatible with a spotted fever rickettsiosis. Coxiella burnetii and Francisella tularensis, human pathogens also potentially transmitted by D. variabilis, were not detected in a subset of the ticks. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Establishment of a novel tick-Babesia experimental infection model.

    PubMed

    Maeda, Hiroki; Hatta, Takeshi; Alim, M Abdul; Tsubokawa, Daigo; Mikami, Fusako; Matsubayashi, Makoto; Miyoshi, Takeharu; Umemiya-Shirafuji, Rika; Kawazu, Shin-Ichiro; Igarashi, Ikuo; Mochizuki, Masami; Tsuji, Naotoshi; Tanaka, Tetsuya

    2016-11-14

    Ticks are potent vectors of many deadly human and animal pathogens. Tick-borne babesiosis is a well-recognized malaria-like disease that occurs worldwide and recently has attracted increased attention as an emerging zoonosis. Although the proliferation of Babesia organisms is essential in the vectors, their detailed lifecycle with time information for migration in ticks remains unknown. A novel study model for the elucidation of the migration speed of Babesia parasites in their vector tick, Haemaphysalis longicornis, has been developed using an artificial feeding system with quantitative PCR method. The detectable DNA of Babesia parasites gradually disappeared in the tick midgut at 1 day post engorgement (DPE), and in contrary increased in other organs. The results indicated that the Babesia parasite passed the H. longicornis midgut within 24 hours post engorgement, migrated to the hemolymph, and then proliferated in the organs except the midgut. This time point may be an important curfew for Babesia parasites to migrate in the tick lumen. We also visualized the Babesia parasites in the experimentally infected ticks and in their eggs using IFAT for detecting their cytoskeletal structure, which suggested the successful tick infection and transovarial transmission of the parasite. This model will shed light on the further understanding of tick-Babesia interactions.

  9. Ehrlichia phagocytophila genogroup rickettsiae in ixodid ticks from California collected in 1995 and 1996.

    PubMed Central

    Barlough, J E; Madigan, J E; Kramer, V L; Clover, J R; Hui, L T; Webb, J P; Vredevoe, L K

    1997-01-01

    A total of 1,246 ixodid ticks collected in 1995 and 1996 from seven California counties were examined for the presence of Ehrlichia phagocytophila genogroup rickettsiae by using a nested PCR technique. Of 1,112 adult Ixodes pacificus Cooley and Kohls ticks tested, nine pools, each containing five ticks, were positive (minimum percentage of ticks harboring detectable ehrlichiae, 0.8%). Positive ticks were limited to four of the seven counties (Sonoma, El Dorado, Santa Cruz, and Orange). In Santa Cruz County, three positive pools were identified at the home of an individual with prior confirmed human granulocytic ehrlichiosis. In El Dorado County, positive ticks were found at sites where cases of granulocytic ehrlichiosis in a horse and a llama had recently occurred. Among 47 nymphal I. pacificus ticks collected in Sonoma County, one positive pool was identified. Fifty-seven adult Dermacentor occidentalis Marx and 30 adult D. variabilis Say ticks, collected chiefly in southern California, were negative. These data, although preliminary, suggest that the prevalence of E. phagocytophila genogroup rickettsiae in ixodid ticks of California may be lower than in cognate vector populations (i.e., I. scapularis Say = I. dammini Spielman, Clifford, Piesman, and Corwin) in the eastern and midwestern United States. PMID:9230373

  10. Ehrlichia phagocytophila genogroup rickettsiae in ixodid ticks from California collected in 1995 and 1996.

    PubMed

    Barlough, J E; Madigan, J E; Kramer, V L; Clover, J R; Hui, L T; Webb, J P; Vredevoe, L K

    1997-08-01

    A total of 1,246 ixodid ticks collected in 1995 and 1996 from seven California counties were examined for the presence of Ehrlichia phagocytophila genogroup rickettsiae by using a nested PCR technique. Of 1,112 adult Ixodes pacificus Cooley and Kohls ticks tested, nine pools, each containing five ticks, were positive (minimum percentage of ticks harboring detectable ehrlichiae, 0.8%). Positive ticks were limited to four of the seven counties (Sonoma, El Dorado, Santa Cruz, and Orange). In Santa Cruz County, three positive pools were identified at the home of an individual with prior confirmed human granulocytic ehrlichiosis. In El Dorado County, positive ticks were found at sites where cases of granulocytic ehrlichiosis in a horse and a llama had recently occurred. Among 47 nymphal I. pacificus ticks collected in Sonoma County, one positive pool was identified. Fifty-seven adult Dermacentor occidentalis Marx and 30 adult D. variabilis Say ticks, collected chiefly in southern California, were negative. These data, although preliminary, suggest that the prevalence of E. phagocytophila genogroup rickettsiae in ixodid ticks of California may be lower than in cognate vector populations (i.e., I. scapularis Say = I. dammini Spielman, Clifford, Piesman, and Corwin) in the eastern and midwestern United States.

  11. Risk of exposure to ticks (Ixodidae) and the prevalence of tick-borne encephalitis virus (TBEV) in ticks in Southern Poland.

    PubMed

    Cuber, Piotr; Andreassen, Åshild; Vainio, Kirsti; Asman, Marek; Dudman, Susanne; Szilman, Piotr; Szilman, Ewa; Ottesen, Preben; Ånestad, Gabriel; Cieśla-Nobis, Sabina; Solarz, Krzysztof

    2015-04-01

    The article presents the results of the first study on seasonal activity of ticks and prevalence of tick-borne encephalitis virus (TBEV) in nymphs from the Silesian Province (Southern Poland). Previous studies on the prevalence of TBEV in ticks in Poland have been conducted mostly in northern and eastern regions, but none in the Silesian Province itself. The aims of this study were to analyse the seasonal variation in tick populations and compare TBEV prevalence in nymphs from different geographical locations in the Silesia. A total of 5160 questing Ixodes ricinus ticks were collected by the flagging method from 23 localities in southern Poland in 2010. Micro-climatic parameters (air temperature and humidity) were measured in order to estimate their influence on tick population. The highest tick activity was recorded in spring and was positively correlated with relative air humidity (RH). TBEV in the Silesian Province was analysed in 1750 nymphs and an overall prevalence was 0.11% (2 pools out of 175 analysed). The results of this study show that TBEV pool prevalence in nymphs is low in accordance with the low number of TBE cases reported within the region. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Abundance of adult ticks (Acari: Ixodidae) in the Chernobyl nuclear power plant exclusion zone.

    PubMed

    Movila, A; Deriabina, T; Morozov, A; Sitnicova, N; Toderas, I; Uspenskaia, I; Alekhnovici, A

    2012-08-01

    The Chernobyl nuclear disaster resulted in contamination of vast areas in Europe. To date, there is little knowledge about the effects of radioactive contamination on tick species. We sampled ticks from vegetation and large-sized wild mammals belonging to orders Carnivora and Artiodactyla at sites with 0.76, 1.91, and 4.50 mSv/hr ionizing radiation background values in the Polesky State Radio-Ecological Reserve of the Chernobyl nuclear disaster zone in spring 2010. Altogether, 122 questing ticks were collected from vegetation. Among collected ticks, Dermacentor reticulatus (Fabricius) was, by far, the most abundant species (99.2%), followed by Ixodes ricnus (L.) (0.8%), which was collected only at the 0.76 mSv/hr site. The average sex ratio female∶male was 2.9∶1.0. In parallel with the present study, we examined 3 Sus scrofa (L.), 2 Nyctereutes procyonoides (Gray), and 1 Alces alces (L.) at the 4.50 mSv/hr site; 96 D. reticulatus ticks were found on 2 N. procyonoides specimens. The mean density and the intensity of infestation were 16 ticks per animal and 48 ticks per infested animal, respectively. Future investigations are warranted to further characterize the role of various tick vectors, vertebrate reservoirs, and diversity of tick-borne pathogens in the Chernobyl exclusion zone.

  13. Establishment of a novel tick-Babesia experimental infection model

    PubMed Central

    Maeda, Hiroki; Hatta, Takeshi; Alim, M Abdul; Tsubokawa, Daigo; Mikami, Fusako; Matsubayashi, Makoto; Miyoshi, Takeharu; Umemiya-Shirafuji, Rika; Kawazu, Shin-ichiro; Igarashi, Ikuo; Mochizuki, Masami; Tsuji, Naotoshi; Tanaka, Tetsuya

    2016-01-01

    Ticks are potent vectors of many deadly human and animal pathogens. Tick-borne babesiosis is a well-recognized malaria-like disease that occurs worldwide and recently has attracted increased attention as an emerging zoonosis. Although the proliferation of Babesia organisms is essential in the vectors, their detailed lifecycle with time information for migration in ticks remains unknown. A novel study model for the elucidation of the migration speed of Babesia parasites in their vector tick, Haemaphysalis longicornis, has been developed using an artificial feeding system with quantitative PCR method. The detectable DNA of Babesia parasites gradually disappeared in the tick midgut at 1 day post engorgement (DPE), and in contrary increased in other organs. The results indicated that the Babesia parasite passed the H. longicornis midgut within 24 hours post engorgement, migrated to the hemolymph, and then proliferated in the organs except the midgut. This time point may be an important curfew for Babesia parasites to migrate in the tick lumen. We also visualized the Babesia parasites in the experimentally infected ticks and in their eggs using IFAT for detecting their cytoskeletal structure, which suggested the successful tick infection and transovarial transmission of the parasite. This model will shed light on the further understanding of tick-Babesia interactions. PMID:27841321

  14. The role of rodents in the ecology of Ixodes ricinus and associated pathogens in Central and Eastern Europe.

    PubMed

    Mihalca, Andrei D; Sándor, Attila D

    2013-01-01

    Rodents comprise more species than any other mammal order. Most rodents are considered keystone species in their ecological communities, hence the survival of many other species in the ecosystem depend on them. From medical point of view, this is particularly important for rodent-dependent pathogens. In the particular case of tick-borne diseases, rodents are important as hosts for vector ticks and as reservoir hosts (Lyme borreliosis, human granulocytic anaplasmosis, Crimean-Congo hemorrhagic fever, Tick-borne relapsing fevers, tick-borne rickettsioses, babesiosis). Community and population ecology of rodents was shown to be correlated with disease ecology in the case of many tick-borne diseases. In Eastern Europe, several adult hard-tick species use rodents as their principal hosts: Ixodes apronophorus, I. crenulatus, I. laguri, I. redikorzevi, I. trianguliceps. However, the majority of ticks feeding on rodents are immature stages of ticks which as adults are parasitic on larger mammals. Larvae and nymphs of Ixodes ricinus, the most abundant and medically important tick from Europe, are commonly found on rodents. This is particularly important, as many rodents are synanthropic and, together with other micromammals and birds are often the only available natural hosts for ticks in urban environments. This work reviews the correlated ecology of rodents and I. ricinus.

  15. Molecular characterization of Babesia and Theileria species in ticks collected in the outskirt of Monte Romano, Lazio Region, Central Italy.

    PubMed

    Toma, Luciano; Di Luca, Marco; Mancini, Fabiola; Severini, Francesco; Mariano, Carmela; Nicolai, Giancarlo; Laghezza Masci, Valentina; Ciervo, Alessandra; Fausto, Anna Maria; Cacciò, Simone Mario

    2017-01-01

    In 2012-2013, an investigation was carried out in the Viterbo province, Lazio region, on ticks and tick-borne Apicomplexan protozoa of the Babesia and Theileria genera. This followed the reporting of high density of ticks by soldiers operating in a military shooting range, and the signaling by owners and local veterinary authorities of several cases of babesiosis among cattle. A total of 422 ticks were collected from 35 heads, whereas 96 ticks were collected by dragging. Ticks were identified as Rhipicephalus (Boophilus) annulatus Say (n = 373), Rhipicephalus bursa Canestrini & Fanzago (n = 63), Rhipicephalus sanguineus/turanicus (n = 32), Hyalomma marginatum Koch (n = 49) and Dermacentor marginatus Sulzer, 1776 (n = 1). A randomly selected sample of ticks (235 from animals and 36 by dragging) was analyzed using molecular methods to detect species of Babesia and Theileria. In total, 11 ticks collected from animals (4.7%) and two ticks (5.5%) collected by dragging were positive. Sequencing of PCR products of the small subunit ribosomal RNA gene revealed Babesia caballi (n = 2), Babesia bigemina (n = 3), Theileria sergenti/buffeli/orientalis (n = 7) and Theileria equi (n = 1). None of the detected species has been associated with human infection.

  16. Scale-dependent effects of nonnative plant invasion on host-seeking tick abundance

    PubMed Central

    Adalsteinsson, Solny A.; D’Amico, Vincent; Shriver, W. Gregory; Brisson, Dustin; Buler, Jeffrey J.

    2016-01-01

    Nonnative, invasive shrubs can affect human disease risk through direct and indirect effects on vector populations. Multiflora rose (Rosa multiflora) is a common invader within eastern deciduous forests where tick-borne disease (e.g. Lyme disease) rates are high. We tested whether R. multiflora invasion affects blacklegged tick (Ixodes scapularis) abundance, and at what scale. We sampled host-seeking ticks at two spatial scales: fine-scale, within R. multiflora-invaded forest fragments; and patch scale, among R. multiflora-invaded and R. multiflora-free forest fragments. At a fine scale, we trapped 2.3 times more ticks under R. multiflora compared to paired traps 25 m away from R. multiflora. At the patch scale, we trapped 3.2 times as many ticks in R. multiflora-free forests compared to R. multiflora-invaded forests. Thus, ticks are concentrated beneath R. multiflora within invaded forests, but uninvaded forests support significantly more ticks. Among all covariates tested, leaf litter volume was the best predictor of tick abundance; at the patch scale, R. multiflora-invaded forests had less leaf litter than uninvaded forests. We suggest that leaf litter availability at the patch-scale plays a greater role in constraining tick abundance than the fine-scale, positive effect of invasive shrubs. PMID:27088044

  17. Amblyomma maculatum SECIS binding protein 2 and putative selenoprotein P are indispensable for pathogen replication and tick fecundity.

    PubMed

    Budachetri, Khemraj; Crispell, Gary; Karim, Shahid

    2017-09-01

    Selenium, a vital trace element, is incorporated into selenoproteins to produce selenocysteine. Our previous studies have revealed an adaptive co-evolutionary process that has enabled the spotted fever-causing tick-borne pathogen Rickettsia parkeri to survive by manipulating an antioxidant defense system associated with selenium, which includes a full set of selenoproteins and other antioxidants in ticks. Here, we conducted a systemic investigation of SECIS binding protein 2 (SBP2) and putative selenoprotein P (SELENOP) by transcript silencing in adult female Gulf-coast ticks (Amblyomma maculatum). Knockdown of the SBP2 and SELENOP genes depleted the respective transcript levels of these tick selenogenes, and caused differential regulation of other antioxidants. Importantly, the selenium level in the immature and mature tick stages increased significantly after a blood meal, but the selenium level decreased in ticks after the SBP2 and SELENOP knockdowns. Moreover, the SBP2 knockdown significantly impaired both transovarial transmission of R. parkeri to tick eggs and egg hatching. Overall, our data offer new insight into the relationship between the SBP2 selenoprotein synthesis gene and the putative tick SELENOP gene. It also augments our understanding of selenoprotein synthesis, selenium maintenance and utilization, and bacterial colonization of a tick vector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species.

    PubMed

    Rothen, Julian; Githaka, Naftaly; Kanduma, Esther G; Olds, Cassandra; Pflüger, Valentin; Mwaura, Stephen; Bishop, Richard P; Daubenberger, Claudia

    2016-03-15

    The tick population of Africa includes several important genera belonging to the family Ixodidae. Many of these ticks are vectors of protozoan and rickettsial pathogens including Theileria parva that causes East Coast fever, a debilitating cattle disease endemic to eastern, central and southern Africa. Effective surveillance of tick-borne pathogens depends on accurate identification and mapping of their tick vectors. A simple and reproducible technique for rapid and reliable differentiation of large numbers of closely related field-collected ticks, which are often difficult and tedious to discriminate purely by morphology, will be an essential component of this strategy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is increasingly becoming a useful tool in arthropod identification and has the potential to overcome the limitations of classical morphology-based species identification. In this study, we applied MALDI-TOF MS to a collection of laboratory and field ticks found in Eastern Africa. The objective was to determine the utility of this proteomic tool for reliable species identification of closely related afrotropical ticks. A total of 398 ixodid ticks from laboratory maintained colonies, extracted from the hides of animals or systematically collected from vegetation in Kenya, Sudan and Zimbabwe were analyzed in the present investigation. The cytochrome c oxidase I (COI) genes from 33 specimens were sequenced to confirm the tentatively assigned specimen taxa identity on the basis of morphological analyses. Subsequently, the legs of ticks were homogenized and analyzed by MALDI-TOF MS. A collection of reference mass spectra, based on the mass profiles of four individual ticks per species, was developed and deposited in the spectral database SARAMIS™. The ability of these superspectra (SSp.) to identify and reliably validate a set of ticks was demonstrated using the remaining individual 333 ticks. Ultimately, ten different tick species within the genera Amblyomma, Hyalomma, Rhipicephalus and Rhipicephalus (Boophilus) based on molecular COI typing and morphology were included into the study analysis. The robustness of the 12 distinct SSp. developed here proved to be very high, with 319 out of 333 ticks used for validation identified correctly at species level. Moreover, these novel SSp. allowed for diagnostic specificity of 99.7 %. The failure of species identification for 14 ticks was directly linked to low quality mass spectra, most likely due to poor specimen quality that was received in the laboratory before sample preparation. Our results are consistent with earlier studies demonstrating the potential of MALDI-TOF MS as a reliable tool for differentiating ticks originating from the field, especially females that are difficult to identify after blood feeding. This work provides further evidence of the utility of MALDI-TOF MS to identify morphologically and genetically highly similar tick species and indicates the potential of this tool for large-scale monitoring of tick populations, species distributions and host preferences.

  19. Detection of Rickettsia spp in Ticks by MALDI-TOF MS

    PubMed Central

    Yssouf, Amina; Almeras, Lionel; Terras, Jérôme; Socolovschi, Cristina; Raoult, Didier; Parola, Philippe

    2015-01-01

    Background Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been shown to be an effective tool for the rapid identification of arthropods, including tick vectors of human diseases. Methodology/Principal Findings The objective of the present study was to evaluate the use of MALDI-TOF MS to identify tick species, and to determine the presence of rickettsia pathogens in the infected Ticks. Rhipicephalus sanguineus and Dermacentor marginatus Ticks infected or not by R. conorii conorii or R. slovaca, respectively, were used as experimental models. The MS profiles generated from protein extracts prepared from tick legs exhibited mass peaks that distinguished the infected and uninfected Ticks, and successfully discriminated the Rickettsia spp. A blind test was performed using Ticks that were laboratory-reared, collected in the field or removed from patients and infected or not by Rickettsia spp. A query against our in-lab arthropod MS reference database revealed that the species and infection status of all Ticks were correctly identified at the species and infection status levels. Conclusions/Significance Taken together, the present work demonstrates the utility of MALDI-TOF MS for a dual identification of tick species and intracellular bacteria. Therefore, MALDI-TOF MS is a relevant tool for the accurate detection of Rickettsia spp in Ticks for both field monitoring and entomological diagnosis. The present work offers new perspectives for the monitoring of other vector borne diseases that present public health concerns. PMID:25659152

  20. Identification of Tick Species Collected from Wild Boars and Habitats of Wild Boars and Domestic Pigs in the Republic of Korea.

    PubMed

    Chae, Jeong-Byoung; Kang, Jun-Gu; Kim, Heung-Chul; Chong, Sung-Tae; Lee, In-Yong; Shin, Nam-Shik; Chae, Joon-Seok

    2017-04-01

    Tick is one of the most important arthropods in the transmission of vector-borne diseases. In this study, we investigated the abundance and species of ticks associated with swine and their habitats to assess the risk of spread of tick-borne diseases in host species, such as wild boars. Ticks were collected from 24 grazing or traditionally reared domestic pig farms and 8 habitats of wild boars in 8 provinces and 1 city in the Republic of Korea, by using the dragging and flagging methods. Ticks were also collected directly from 49 wild boars by using fine forceps. A total of 9,846 hard ticks were collected, including 4,977 Haemaphysalis longicornis , 4,313 Haemaphysalis flava , 508 Ixodes nipponensis , 1 Ixodes turdus , and 47 Amblyomma testudinarium . A total of 240 hard ticks were collected from 49 wild boars, including 109 H. flava , 84 H. longicornis , and 47 A. testudinarium . A total of 578 hard ticks were collected from areas around domestic pig farms. Only 2 hard tick species, 546 H. longicornis and 32 H. flava , were collected from these areas. A total of 9,028 hard ticks were collected from wild boars of 8 habitats, including 4,347 H. longicornis , 4,172 H. flava , 508 I. nipponensis , and 1 I. turdus . A. testudinarium was collected only from wild boars, and I. nipponensis and I. turdus were collected only from the habitats of wild boars.

  1. Prevalence of tick-borne pathogens in Ixodes ricinus and Dermacentor reticulatus ticks from different geographical locations in Belarus.

    PubMed

    Reye, Anna L; Stegniy, Valentina; Mishaeva, Nina P; Velhin, Sviataslau; Hübschen, Judith M; Ignatyev, George; Muller, Claude P

    2013-01-01

    Worldwide, ticks are important vectors of human and animal pathogens. Besides Lyme Borreliosis, a variety of other bacterial and protozoal tick-borne infections are of medical interest in Europe. In this study, 553 questing and feeding Ixodes ricinus (n = 327) and Dermacentor reticulatus ticks (n = 226) were analysed by PCR for Borrelia, Rickettsia, Anaplasma, Coxiella, Francisella and Babesia species. Overall, the pathogen prevalence in ticks was 30.6% for I. ricinus and 45.6% for D. reticulatus. The majority of infections were caused by members of the spotted-fever group rickettsiae (24.4%), 9.4% of ticks were positive for Borrelia burgdorferi sensu lato, with Borrelia afzelii being the most frequently detected species (40.4%). Pathogens with low prevalence rates in ticks were Anaplasma phagocytophilum (2.2%), Coxiella burnetii (0.9%), Francisella tularensis subspecies (0.7%), Bartonella henselae (0.7%), Babesia microti (0.5%) and Babesia venatorum (0.4%). On a regional level, hotspots of pathogens were identified for A. phagocytophilum (12.5-17.2%), F. tularensis ssp. (5.5%) and C. burnetii (9.1%), suggesting established zoonotic cycles of these pathogens at least at these sites. Our survey revealed a high burden of tick-borne pathogens in questing and feeding I. ricinus and D. reticulatus ticks collected in different regions in Belarus, indicating a potential risk for humans and animals. Identified hotspots of infected ticks should be included in future surveillance studies, especially when F. tularensis ssp. and C. burnetii are involved.

  2. Isolation of entomopathogenic fungi from soils and Ixodes scapularis (Acari: Ixodidae) ticks: prevalence and methods.

    PubMed

    Tuininga, Amy R; Miller, Jessica L; Morath, Shannon U; Daniels, Thomas J; Falco, Richard C; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C

    2009-05-01

    Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment.

  3. Massive Infection of Seabird Ticks with Bacterial Species Related to Coxiella burnetii

    PubMed Central

    Dietrich, Muriel; Lebarbenchon, Camille; Jaeger, Audrey; Le Rouzic, Céline; Bastien, Matthieu; Lagadec, Erwan; McCoy, Karen D.; Pascalis, Hervé; Le Corre, Matthieu; Dellagi, Koussay; Tortosa, Pablo

    2014-01-01

    Seabird ticks are known reservoirs of bacterial pathogens of medical importance; however, ticks parasitizing tropical seabirds have received less attention than their counterparts from temperate and subpolar regions. Recently, Rickettsia africae was described to infect seabird ticks of the western Indian Ocean and New Caledonia, constituting the only available data on bacterial pathogens associated with tropical seabird tick species. Here, we combined a pyrosequencing-based approach with a classical molecular analysis targeting bacteria of potential medical importance in order to describe the bacterial community in two tropical seabird ticks, Amblyomma loculosum and Carios (Ornithodoros) capensis. We also investigated the patterns of prevalence and host specificity within the biogeographical context of the western Indian Ocean islands. The bacterial community of the two tick species was characterized by a strong dominance of Coxiella and Rickettsia. Our data support a strict Coxiella-host tick specificity, a pattern resembling the one found for Rickettsia spp. in the same two seabird tick species. Both the high prevalence and stringent host tick specificity suggest that these bacteria may be tick symbionts with probable vertical transmission. Detailed studies of the pathogenicity of these bacteria will now be required to determine whether horizontal transmission can occur and to clarify their status as potential human pathogens. More generally, our results show that the combination of next generation sequencing with targeted detection/genotyping approaches proves to be efficient in poorly investigated fields where research can be considered to be starting from scratch. PMID:24657860

  4. Ticks (Ixodidae) on birds migrating from Europe and Asia to Africa, 1959-61*

    PubMed Central

    Hoogstraal, Harry; Kaiser, Makram N.; Traylor, Melvin A.; Guindy, Ezzat; Gaber, Sobhy

    1963-01-01

    The need for imaginative thinking and research in the epidemiology of diseases transmitted by arthropods is made manifest by new views of the longevity and host ranges of arthropod-borne viruses, as well as by other biological and medical phenomena. Among these is the intercontinental transport of ticks by migrating birds. During the fall migration periods of 1959, 1960 and 1961, 32 086 birds (comprising 72 forms) were examined for ticks in Egypt while en route from Asia and eastern Europe to tropical Africa. Of these, 40 forms, represented by 31 434 birds, were tick-infested. The bird hosts, numbering 1040 (3.31% of the tick-infested bird forms examined), bore 1761 ticks, or 1.69 ticks per host. Common ticks taken were Hyalomma m. marginatum, Haemaphysalis punctata, and Ixodes ricinus. Ixodes frontalis and Hyalomma aegyptium were less common and Haemaphysalis sulcata, H. otophila, and H. pavlovskyi were rare. The common tick species are known to be reservoirs and vectors of pathogens causing a number of human and animal diseases in Europe and Asia. Several of the bird hosts have also been incriminated as reservoirs in their summer ranges. Over 20 strains of pathogenic viruses were isolated from these birds and their ticks in Egypt in the 1961 fall migration period. The most difficult problems in investigations such as this in many parts of the world are taxonomic ones: the correct identification of bird hosts, of immature stages of ticks and of viruses. PMID:13961632

  5. Microclimate and the zoonotic cycle of tick-borne encephalitis virus in Switzerland.

    PubMed

    Burri, C; Bastic, V; Maeder, G; Patalas, E; Gern, L

    2011-05-01

    The focal distribution of tick-borne encephalitis virus (TBEV; Flaviviridae, Flavivirus) appears to depend mainly on cofeeding transmission between infected Ixodes ricinus L. nymphs and uninfected larvae. To better understand the role of cofeeding ticks in the transmission of TBEV, we investigated tick infestation of rodents and the influence of microclimate on the seasonality of questing I. ricinus ticks. A 3-yr study was carried out at four sites, including two confirmed TBEV foci. Free-living ticks and rodents were collected monthly, and microclimatic data were recorded. A decrease in questing nymph density was observed in 2007, associated with low relative humidity and high temperatures in spring. One site, Thun, did not show this decrease, probably because of microclimatic conditions in spring that favored the questing nymph population. During the same year, the proportion of rodents carrying cofeeding ticks was lower at sites where the questing nymph density decreased, although the proportion of infested hosts was similar among years. TBEV was detected in 0.1% of questing ticks, and in 8.6 and 50.0% of larval ticks feeding on two rodents. TBEV was detected at all but one site, where the proportion of hosts with cofeeding ticks was the lowest. The proportion of hosts with cofeeding ticks seemed to be one of the factors that distinguished a TBEV focus from a non-TBEV focus. The enzootic cycle of TBEV might be disrupted when dry and hot springs occur during consecutive years.

  6. Ticks (Acari: Ixodidae) of the state of Amazonas, Brazil.

    PubMed

    Gianizella, Sergio L; Martins, Thiago F; Onofrio, Valeria C; Aguiar, Nair O; Gravena, Waleska; do Nascimento, Carlos A R; Neto, Laérzio C; Faria, Diogo L; Lima, Natália A S; Solorio, Monica R; Maranhão, Louise; Lima, Ivan J; Cobra, Iury V D; Santos, Tamily; Lopes, Gerson P; Ramalho, Emiliano E; Luz, Hermes R; Labruna, Marcelo B

    2018-02-01

    The tick fauna of Brazil is currently composed by 72 species. The state of Amazonas is the largest of Brazil, with an area of ≈ 19% of the Brazilian land. Besides its vast geographic area, only 19 tick species have been reported for Amazonas. Herein, lots containing ticks from the state of Amazonas were examined in three major tick collections from Brazil. A total of 5933 tick specimens were examined and recorded, comprising 2693 males, 1247 females, 1509 nymphs, and 484 larvae. These ticks were identified into the following 22 species: Amblyomma cajennense sensu lato, Amblyomma calcaratum, Amblyomma coelebs, Amblyomma dissimile, Amblyomma dubitatum, Amblyomma geayi, Amblyomma goeldii, Amblyomma humerale, Amblyomma latepunctatun, Amblyomma longirostre, Amblyomma naponense, Amblyomma oblongoguttatum, Amblyomma ovale, Amblyomma rotundatum, Amblyomma scalpturatum, Amblyomma varium, Dermacentor nitens, Haemaphysalis juxtakochi, Ixodes cf. Ixodes fuscipes, Ixodes luciae, Rhipicephalus microplus, Rhipicephalus sanguineus sensu lato. Ticks were collected from 17 (27.4%) out of the 62 municipalities that currently compose the state of Amazonas. The following four species are reported for the first time in the state of Amazonas: A. coelebs, A. dubitatum, H. juxtakochi, and Ixodes cf. I. fuscipes. The only tick species previously reported for Amazonas and not found in the present study is Amblyomma parvum. This study provides a great expansion of geographical and host records of ticks for the state of Amazonas, which is now considered to have a tick fauna composed by 23 species. It is noteworthy that we report 1391 Amblyomma nymphs that were identified to 13 different species.

  7. Identification and molecular characterization of spotted fever group rickettsiae in ticks collected from farm ruminants in Lebanon.

    PubMed

    Fernández de Mera, Isabel G; Blanda, Valeria; Torina, Alessandra; Dabaja, Mayssaa Fawaz; El Romeh, Ali; Cabezas-Cruz, Alejandro; de la Fuente, José

    2018-01-01

    Tick-borne diseases have become a world health concern, emerging with increasing incidence in recent decades. Spotted fever group (SFG) rickettsiae are tick-borne pathogens recognized as important agents of human tick-borne diseases worldwide. In this study, 88 adult ticks from the species Hyalomma anatolicum, Rhipicephalus annulatus, Rh. bursa, Rh. sanguineus sensu lato, and Rh. turanicus, were collected from farm ruminants in Lebanon, and SFG rickettsiae were molecularly identified and characterized in these ticks. The screening showed a prevalence of 68% for Rickettsia spp., including the species R. aeschlimannii, R. africae, R. massiliae and Candidatus R. barbariae, the latter considered an emerging member of the SFG rickettsiae. These findings contribute to a better knowledge of the distribution of these pathogens and demonstrate that SFG rickettsiae with public health relevance are found in ticks collected in Lebanon, where the widespread distribution of tick vectors and possible livestock animal hosts in contact with humans may favor transmission to humans. Few reports exist for some of the tick species identified here as being infected with SFG Rickettsia. Some of these tick species are proven vectors of the hosted rickettsiae, although this information is unknown for other of these species. Therefore, these results suggested further investigation on the vector competence of the tick species with unknown role in transmission of some of the pathogens identified in this study. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. How to Remove a Tick | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Ticks and Diseases How to Remove a Tick Past Issues / Spring - Summer 2010 Table of Contents ... with a good grasping end to remove the tick as close to the skin as possible. Do ...

  9. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade

    PubMed Central

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2014-01-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it’s plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it’s current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation aggregation. We discuss our findings in the context of tick feeding physiology. PMID:25454607

  10. Avian migrants facilitate invasions of neotropical ticks and tick-borne pathogens into the United States.

    PubMed

    Cohen, Emily B; Auckland, Lisa D; Marra, Peter P; Hamer, Sarah A

    2015-12-01

    Migratory birds have the potential to transport exotic vectors and pathogens of human and animal health importance across vast distances. We systematically examined birds that recently migrated to the United States from the Neotropics for ticks. We screened both ticks and birds for tick-borne pathogens, including Rickettsia species and Borrelia burgdorferi. Over two spring seasons (2013 and 2014), 3.56% of birds (n = 3,844) representing 42.35% of the species examined (n = 85) were infested by ticks. Ground-foraging birds with reduced fuel stores were most commonly infested. Eight tick species were identified, including seven in the genus Amblyomma, of which only Amblyomma maculatum/Amblyomma triste is known to be established in the United States. Most ticks on birds (67%) were neotropical species with ranges in Central and South America. Additionally, a single Ixodes genus tick was detected. A total of 29% of the ticks (n = 137) and no avian blood samples (n = 100) were positive for infection with Rickettsia species, including Rickettsia parkeri, an emerging cause of spotted fever in humans in the southern United States, a species in the group of Rickettsia monacensis, and uncharacterized species and endosymbionts of unknown pathogenicity. No avian tick or blood samples tested positive for B. burgdorferi, the etiologic agent of Lyme disease. An extrapolation of our findings suggests that anywhere from 4 to 39 million exotic neotropical ticks are transported to the United States annually on migratory songbirds, with uncertain consequences for human and animal health if the current barriers to their establishment and spread are overcome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not necessarily Lyme disease risk.

    PubMed

    Adalsteinsson, Solny A; Shriver, W Gregory; Hojgaard, Andrias; Bowman, Jacob L; Brisson, Dustin; D'Amico, Vincent; Buler, Jeffrey J

    2018-01-23

    Forests in urban landscapes differ from their rural counterparts in ways that may alter vector-borne disease dynamics. In urban forest fragments, tick-borne pathogen prevalence is not well characterized; mitigating disease risk in densely-populated urban landscapes requires understanding ecological factors that affect pathogen prevalence. We trapped blacklegged tick (Ixodes scapularis) nymphs in urban forest fragments on the East Coast of the United States and used multiplex real-time PCR assays to quantify the prevalence of four zoonotic, tick-borne pathogens. We used Bayesian logistic regression and WAIC model selection to understand how vegetation, habitat, and landscape features of urban forests relate to the prevalence of B. burgdorferi (the causative agent of Lyme disease) among blacklegged ticks. In the 258 nymphs tested, we detected Borrelia burgdorferi (11.2% of ticks), Borrelia miyamotoi (0.8%) and Anaplasma phagocytophilum (1.9%), but we did not find Babesia microti (0%). Ticks collected from forests invaded by non-native multiflora rose (Rosa multiflora) had greater B. burgdorferi infection rates (mean = 15.9%) than ticks collected from uninvaded forests (mean = 7.9%). Overall, B. burgdorferi prevalence among ticks was positively related to habitat features (e.g. coarse woody debris and total understory cover) favorable for competent reservoir host species. Understory structure provided by non-native, invasive shrubs appears to aggregate ticks and reservoir hosts, increasing opportunities for pathogen transmission. However, when we consider pathogen prevalence among nymphs in context with relative abundance of questing nymphs, invasive plants do not necessarily increase disease risk. Although pathogen prevalence is greater among ticks in invaded forests, the probability of encountering an infected tick remains greater in uninvaded forests characterized by thick litter layers, sparse understories, and relatively greater questing tick abundance in urban landscapes.

  12. Bioassays to evaluate non-contact spatial repellency, contact irritancy, and acute toxicity of permethrin-treated clothing against nymphal Ixodes scapularis ticks.

    PubMed

    Eisen, Lars; Rose, Dominic; Prose, Robert; Breuner, Nicole E; Dolan, Marc C; Thompson, Karen; Connally, Neeta

    2017-10-01

    Summer-weight clothing articles impregnated with permethrin are available as a personal protective measure against human-biting ticks in the United States. However, very few studies have addressed the impact of contact with summer-weight permethrin-treated textiles on tick vigor and behavior. Our aim was to generate new knowledge of how permethrin-treated textiles impact nymphal Ixodes scapularis ticks, the primary vectors in the eastern United States of the causative agents of Lyme disease, human anaplasmosis, and human babesiosis. We developed a series of bioassays designed to: (i) clarify whether permethrin-treated textiles impact ticks through non-contact spatial repellency or contact irritancy; (ii) evaluate the ability of ticks to remain in contact with vertically oriented permethrin-treated textiles, mimicking contact with treated clothing on arms or legs; and (iii) determine the impact of timed exposure to permethrin-treated textiles on the ability of ticks to move and orient toward a human finger stimulus, thus demonstrating normal behavior. Our results indicate that permethrin-treated textiles provide minimal non-contact spatial repellency but strong contact irritancy against ticks, manifesting as a "hot-foot" effect and resulting in ticks actively dislodging from contact with vertically oriented treated textile. Preliminary data suggest that the contact irritancy hot-foot response may be weaker for field-collected nymphs as compared with laboratory-reared nymphs placed upon permethrin-treated textile. We also demonstrate that contact with permethrin-treated textiles negatively impacts the vigor and behavior of nymphal ticks for >24h, with outcomes ranging from complete lack of movement to impaired movement and unwillingness of ticks displaying normal movement to ascend onto a human finger. The protective effect of summer-weight permethrin-treated clothing against tick bites merits further study. Published by Elsevier GmbH.

  13. American Black Bears as Hosts of Blacklegged Ticks (Acari: Ixodidae) in the Northeastern United States.

    PubMed

    Zolnik, Christine P; Makkay, Amanda M; Falco, Richard C; Daniels, Thomas J

    2015-09-01

    Ticks and whole blood were collected from American black bears (Ursus americanus Pallas) between October 2011 and October 2012 across four counties in northwestern New Jersey, an area where blacklegged ticks (Ixodes scapularis Say) and their associated tick-borne pathogens are prevalent. Adult American dog ticks (Dermacentor variabilis Say) were the most frequently collected tick species in late spring, whereas adult and nymphal blacklegged ticks were found in both the late spring and fall months. Additionally, for blacklegged ticks, we determined the quality of bloodmeals that females acquired from black bears compared with bloodmeals from white-tailed deer (Odocoileus virginianus Zimmerman), the most important host for the adult stage of this tick species. Measures of fecundity after feeding on each host species were not significantly different, suggesting that the bloodmeal a female blacklegged tick acquires from a black bear is of similar quality to that obtained from a white-tailed deer. These results establish the American black bear as both a host and quality bloodmeal source to I. scapularis. Thus, black bears may help support blacklegged tick populations in areas where they are both present. In addition, samples of black bear blood were tested for DNA presence of three tick-borne pathogens. Anaplasma phagocytophilum Foggie and Babesia microti Franca were found in 9.2 and 32.3% of blood samples, respectively. All blood samples were quantitative polymerase chain reaction-negative for Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt, & Brenner. Although circulating pathogens were found in blood, the status of black bears as reservoirs for these pathogens remains unknown. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Isolated populations of Ixodes lividus ticks in the Czech Republic and Belgium host genetically homogeneous Rickettsia vini.

    PubMed

    Nováková, Markéta; Heneberg, Petr; Heylen, Dieter J A; Medvecký, Matej; Muñoz-Leal, Sebastián; Šmajs, David; Literák, Ivan

    2018-03-01

    In the last two decades, the advent of molecular methods has revealed a remarkable diversity of rickettsiae (Rickettsiales: Rickettsiaceae) in invertebrates. Several species of these obligate intracellular bacteria are known to cause human infections, hence more attention has been directed towards human-biting ectoparasites. A spotted fever group Rickettsia sp. was previously detected in Ixodes lividus ticks (Ixodidae) associated with sand martins (Hirundinidae: Riparia riparia). In order to identify whether this rickettsia varies among isolated tick populations, a total of 1758 I. lividus ticks and five Ixodes ricinus ticks (Ixodidae) were collected in the Czech Republic and 148 I. lividus ticks were collected in Belgium, from nests of sand martins, European bee-eaters (Meropidae: Merops apiaster), Eurasian tree sparrows (Passeridae: Passer montanus), and from captured sand martins. We screened 165 and 78 I. lividus ticks (from the Czech Republic and Belgium, respectively) and all five I. ricinus ticks for the presence of rickettsial DNA. Only I. lividus samples were positive for Rickettsia vini, a spotted fever group rickettsia that commonly infects the tree-hole tick Ixodes arboricola (Ixodidae). Maximum likelihood analysis of the rickettsial sequences showed that the most closely related organism to R. vini corresponds to an uncharacterized rickettsia detected in Argas lagenoplastis (Argasidae), a nidicolous soft tick of the fairy martin (Hirundinidae: Petrochelidon ariel) in Australia. The observed variability of R. vini sequences from isolated tick populations was low; all 85 sequenced samples were identical to each other in five out of six partial rickettsial genes, except for the sca4 sequence (99.9% identity, 808/809 nt) that differed in I. lividus ticks from two sampling sites in the Czech Republic. Copyright © 2018 Elsevier GmbH. All rights reserved.

  15. Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan.

    PubMed

    Masatani, Tatsunori; Hayashi, Kei; Andoh, Masako; Tateno, Morihiro; Endo, Yasuyuki; Asada, Masahito; Kusakisako, Kodai; Tanaka, Tetsuya; Gokuden, Mutsuyo; Hozumi, Nodoka; Nakadohzono, Fumiko; Matsuo, Tomohide

    2017-06-01

    To reveal the distribution of tick-borne parasites, we established a novel nested polymerase chain reaction (PCR) system to detect the most common agents of tick-borne parasitic diseases, namely Babesia, Theileria, and Hepatozoon parasites. We collected host-seeking or animal-feeding ticks in Kagoshima Prefecture, the southernmost region of Kyusyu Island in southwestern Japan. Twenty of the total of 776 tick samples displayed a specific band of the appropriate size (approximately 1.4-1.6kbp) for the 18S rRNA genes in the novel nested PCR (20/776: 2.58%). These PCR products have individual sequences of Babesia spp. (from 8 ticks), Theileria spp. (from 9 ticks: one tick sample including at least two Theileria spp. sequences), and Hepatozoon spp. (from 3 ticks). Phylogenetic analyses revealed that these sequences were close to those of undescribed Babesia spp. detected in feral raccoons in Japan (5 sequences; 3 sequences being identical), Babesia gibsoni-like parasites detected in pigs in China (3 sequences; all sequences being identical), Theileria spp. detected in sika deer in Japan and China (10 sequences; 2 sequences being identical), Hepatozoon canis (one sequence), and Hepatozoon spp. detected in Japanese martens in Japan (two sequences). In summary, we showed that various tick-borne parasites exist in Kagoshima, the southern region in Japan by using the novel nested PCR system. These including undescribed species such as Babesia gibsoni-like parasites previously detected in pigs in China. Importantly, our results revealed new combinations of ticks and protozoan parasites in southern Japan. The results of this study will aid in the recognition of potential parasitic animal diseases caused by tick-borne parasites. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. The dog factor in brown dog tick Rhipicephalus sanguineus (Acari: Ixodidae) infestations in and near human dwellings.

    PubMed

    Uspensky, Igor; Ioffe-Uspensky, Inna

    2002-06-01

    Three cases of the tick Rhipicephalus sanguineus infiltration in or near human dwellings caused by dogs, and their influence on epidemiological features of human habitats have been investigated. (a) The observation of dogs kept indoors proved that single tick females could engorge and oviposit inside apartments followed by the development of subadults. (b) Abundant micropopulations of ticks were formed in small yards or gardens near the dwellings where dogs lived in kennels. (c) A huge field population of R. sanguineus was observed on a farm where watchdogs constantly patrolled along the farm perimeter. Tick abundance near the kennels and in the permanent resting sites of the dogs reached more than 30 adults per 10 min of collecting, while the number of adults on a dog reached 100. Unfed adult females under conditions of constant dog availability had a larger scutal index than females collected in the control field site. On the basis of circumstantial evidence it is possible to conclude that under the above conditions tick development may change from the normal 3-host cycle to a 2-host cycle. Ticks in the field had one complete generation per year. Ticks on the farm, as well as ticks in kennels, developed faster and a significant part of their population had two complete generations per year. R. sanguineus is the main vector and reservoir of a pathogen from the Rickettsia conorii complex, the causative agent of Israeli tick typhus. The described conglomerations of R. sanguineus create a great risk to humans who can be attacked by infected ticks in and around their homes, even in large towns. Such a feature of the tick life history most likely exists not only in Israel but in other countries as well.

  17. Two Kinds of Ferritin Protect Ixodid Ticks from Iron Overload and Consequent Oxidative Stress

    PubMed Central

    Galay, Remil Linggatong; Umemiya-Shirafuji, Rika; Bacolod, Eugene T.; Maeda, Hiroki; Kusakisako, Kodai; Koyama, Jiro; Tsuji, Naotoshi; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2014-01-01

    Ticks are obligate hematophagous parasites that have successfully developed counteractive means against their hosts' immune and hemostatic mechanisms, but their ability to cope with potentially toxic molecules in the blood remains unclear. Iron is important in various physiological processes but can be toxic to living cells when in excess. We previously reported that the hard tick Haemaphysalis longicornis has an intracellular (HlFER1) and a secretory (HlFER2) ferritin, and both are crucial in successful blood feeding and reproduction. Ferritin gene silencing by RNA interference caused reduced feeding capacity, low body weight and high mortality after blood meal, decreased fecundity and morphological abnormalities in the midgut cells. Similar findings were also previously reported after silencing of ferritin genes in another hard tick, Ixodes ricinus. Here we demonstrated the role of ferritin in protecting the hard ticks from oxidative stress. Evaluation of oxidative stress in Hlfer-silenced ticks was performed after blood feeding or injection of ferric ammonium citrate (FAC) through detection of the lipid peroxidation product, malondialdehyde (MDA) and protein oxidation product, protein carbonyl. FAC injection in Hlfer-silenced ticks resulted in high mortality. Higher levels of MDA and protein carbonyl were detected in Hlfer-silenced ticks compared to Luciferase-injected (control) ticks both after blood feeding and FAC injection. Ferric iron accumulation demonstrated by increased staining on native HlFER was observed from 72 h after iron injection in both the whole tick and the midgut. Furthermore, weak iron staining was observed after Hlfer knockdown. Taken together, these results show that tick ferritins are crucial antioxidant molecules that protect the hard tick from iron-mediated oxidative stress during blood feeding. PMID:24594832

  18. Molecular detection of emerging tick-borne pathogens in Vojvodina, Serbia.

    PubMed

    Potkonjak, Aleksandar; Gutiérrez, Ricardo; Savić, Sara; Vračar, Vuk; Nachum-Biala, Yaarit; Jurišić, Aleksandar; Kleinerman, Gabriela; Rojas, Alicia; Petrović, Aleksandra; Baneth, Gad; Harrus, Shimon

    2016-02-01

    Ticks play an important role in disease transmission globally due to their capability to serve as vectors for human and animal pathogens. The Republic of Serbia is an endemic area for a large number of tick-borne diseases. However, current knowledge on these diseases in Serbia is limited. The aim of this study was to investigate the presence of new emerging tick-borne pathogens in ticks collected from dogs and the vegetation from different parts of Vojvodina, Serbia. A total of 187 ticks, including 124 Rhipicephalus sanguineus, 45 Ixodes ricinus and 18 Dermacentor reticulatus were collected from dogs. In addition, 26 questing I. ricinus ticks were collected from the vegetation, using the flagging method, from 4 different localities in Vojvodina, Serbia. DNA was extracted from each tick individually and samples were tested by either conventional or real-time PCR assays for the presence of Rickettsia spp.-DNA (gltA and ompA gene fragments), Ehrlichia/Anaplasma spp.-DNA (16S rRNA gene fragment) and Hepatozoon spp./Babesia spp.-DNA (18S rRNA gene fragment). In addition, all I. ricinus DNA samples were tested for Bartonella spp.-DNA (ITS locus) by real-time PCR. In this study, the presence of novel emerging tick-borne pathogens including Rickettsia raoultii, Rickettsia massiliae, Babesia venatorum, Babesia microti, Hepatozoon canis and Candidatus Neoehrlichia mikurensis was identified for the first time in Serbia. Our findings also confirmed the presence of Rickettsia monacensis, Babesia canis and Anaplasma phagocytophilum in ticks from Serbia. The findings of the current study highlight the great diversity of tick-borne pathogens of human and animal importance in Serbia. Physicians, public health workers and veterinarians should increase alertness to the presence of these tick-borne pathogens in this country. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Importation of exotic ticks and tick-borne spotted fever group rickettsiae into the United States by migrating songbirds.

    PubMed

    Mukherjee, Nabanita; Beati, Lorenza; Sellers, Michael; Burton, Laquita; Adamson, Steven; Robbins, Richard G; Moore, Frank; Karim, Shahid

    2014-03-01

    Birds are capable of carrying ticks and, consequently, tick-transmitted microorganisms over long distances and across geographical barriers such as oceans and deserts. Ticks are hosts for several species of spotted fever group rickettsiae (SFGR), which can be transmitted to vertebrates during blood meals. In this study, the prevalence of this group of rickettsiae was examined in ticks infesting migratory songbirds by using polymerase chain reaction (PCR). During the 2009 and 2010 spring migration season, 2064 northward-migrating passerine songbirds were examined for ticks at Johnson Bayou, Louisiana. A total of 91 ticks was removed from 35 individual songbirds for tick species identification and spotted fever group rickettsia detection. Ticks were identified as Haemaphysalis juxtakochi (n=38, 42%), Amblyomma longirostre (n=22, 24%), Amblyomma nodosum (n=17, 19%), Amblyomma calcaratum (n=11, 12%), Amblyomma maculatum (n=2, 2%), and Haemaphysalis leporispalustris (n=1, 1%) by comparing their 12S rDNA gene sequence to homologous sequences in GenBank. Most of the identified ticks were exotic species originating outside of the United States. The phylogenetic analysis of the 71 ompA gene sequences of the rickettsial strains detected in the ticks revealed the occurrence of 6 distinct rickettsial genotypes. Two genotypes (corresponding to a total of 28 samples) were included in the Candidatus Rickettsia amblyommii clade (less than 1% divergence), 2 of them (corresponding to a total of 14 samples) clustered with Rickettsia sp. "Argentina" with less than 0.2% sequence divergence, and 2 of them (corresponding to a total of 27 samples), although closely related to the R. parkeri-R. africae lineage (2.50-3.41% divergence), exhibited sufficient genetic divergence from its members to possibly constitute a new rickettsial genotype. Overall, there does not seem to be a specific relationship between exotic tick species, the rickettsiae they harbor, or the reservoir competence of the corresponding bird species. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Repellent activities of dichloromethane extract of Allium sativum (garlic) (Liliaceae) against Hyalomma rufipes (Acari).

    PubMed

    Nchu, Felix; Magano, Solomon R; Eloff, Jacobus N

    2016-12-02

    Dichloromethane (DCM) extract of garlic (Allium sativum Linn.) bulbs was assessed for its repellent effect against the hard tick, Hyalomma rufipes (Acari: Ixodidae) using two tick behavioural bioassays; Type A and Type B repellency bioassays, under laboratory conditions. These bioassays exploit the questing behaviour of H. rufipes, a tick that in nature displays ambush strategy, seeking its host by climbing up on vegetation and attaching to a passing host. One hundred microlitres (100 µL) of the test solution containing DCM extract of garlic bulbs and DCM at concentrations of 0.35%, 0.7% or 1.4% w/v were evaluated. DCM only was used for control. Tick repellency increased significantly (R2 = 0.98) with increasing concentration (40.03% - 86.96%) yielding an EC50 of 0.45% w/v in Type B repellency bioassay. At concentration of 1.4% w/v, the DCM extract of garlic bulbs produced high repellency index of 87% (male ticks) and 87.5% (female ticks) in the Type A repellency bioassay. Only 4% avoidance of male ticks or female ticks was recorded in the Type B repellency bioassay. In the corresponding controls, the mean numbers of non-repelled male or female ticks were 80% and 41 males or 38 females of 50 ticks in the Type A and Type B repellency bioassays, respectively. The variations in the results could be attributed to the difference in tick repellent behaviours that were assessed by the two repellency bioassays; the Type A repellency bioassay assessed repellent effect of garlic extracts without discriminating between deterrence and avoidance whereas the Type B repellency bioassay only assessed avoidance response. Generally, DCM extract of garlic was repellent against H. rufipes, albeit weak tick repellency was obtained in the Type B repellency bioassay. Furthermore, this study established that the tick repellent activity of garlic extracts is predominantly by deterrence.

  1. Ticks infesting domestic dogs in the UK: a large-scale surveillance programme.

    PubMed

    Abdullah, Swaid; Helps, Chris; Tasker, Severine; Newbury, Hannah; Wall, Richard

    2016-07-07

    Recent changes in the distribution of tick vectors and the incidence of tick-borne disease, driven variously by factors such as climate change, habitat modification, increasing host abundance and the increased movement of people and animals, highlight the importance of ongoing, active surveillance. This paper documents the results of a large-scale survey of tick abundance on dogs presented to veterinary practices in the UK, using a participatory approach that allows relatively cost- and time-effective extensive data collection. Over a period of 16 weeks (April-July 2015), 1094 veterinary practices were recruited to monitor tick attachment to dogs and provided with a tick collection and submission protocol. Recruitment was encouraged through a national publicity and communication initiative. Participating practices were asked to select five dogs at random each week and undertake a thorough, standardized examination of each dog for ticks. The clinical history and any ticks were then sent to the investigators for identification. A total of 12,000 and 96 dogs were examined and 6555 tick samples from infested dogs were received. Ixodes ricinus (Linnaeus) was identified on 5265 dogs (89 %), Ixodes hexagonus Leach on 577 (9.8 %) and Ixodes canisuga Johnston on 46 (0.8 %). Ten dogs had Dermacentor reticulatus (Fabricius), one had Dermacentor variabilis (Say), three had Haemaphysalis punctata Canesteini & Fanzago and 13 had Rhipicephalus sanguineus Latreille. 640 ticks were too damaged for identification. All the R. sanguineus and the single D. variabilis were on dogs with a recent history of travel outside the UK. The overall prevalence of tick attachment was 30 % (range 28-32 %). The relatively high prevalence recorded is likely to have been inflated by the method of participant recruitment. The data presented provide a comprehensive spatial understanding of tick distribution and species abundance in the UK against which future changes can be compared. Relative prevalence maps show the highest rates in Scotland and south west England providing a valuable guide to tick-bite risk in the UK.

  2. Scouts, forests, and ticks: Impact of landscapes on human-tick contacts.

    PubMed

    De Keukeleire, Mathilde; Vanwambeke, Sophie O; Somassè, Elysée; Kabamba, Benoît; Luyasu, Victor; Robert, Annie

    2015-07-01

    Just as with forest workers or people practicing outdoor recreational activities, scouts are at high risk for tick bites and tick-borne infections. The risk of a tick bite is shaped not only by environmental and climatic factors but also by land management. The aim of this study was to assess which environmental conditions favour scout-tick contacts, and thus to better understand how these factors and their interactions influence the two components of risk: hazard (related to vector and host ecology) and exposure of humans to disease vectors. A survey was conducted in the summer of 2009 on the incidence of tick bites in scout camps taking place in southern Belgium. Joint effects of landscape composition and configuration, weather, climate, forest and wildlife management were examined using a multiple gamma regression with a log link. The landscape was characterized by buffers of varying sizes around the camps using a detailed land use map, and accounting for climate and weather variables. Landscape composition and configuration had a significant influence on scout-tick contacts: the risk was high when the camp was surrounded by a low proportion of arable land and situated in a complex and fragmented landscape. The distance to the nearest forest patch, the composition of the forest ecotone as well as weather and climatic factors were all significantly associated with scout-tick contacts. Both hazard- and exposure-related variables significantly contributed to the frequency of scout-tick contact. Our results show that environmental conditions favour scout-tick contacts. For example, we emphasize the impact of accessibility of environments suitable for ticks on the risk of contact. We also highlight the significant effect of both hazard and exposure. Our results are consistent with current knowledge, but further investigations on the effect of forest management, e.g. through its impact on forest structure, on the tick-host-pathogen system, and on humans exposure, is required. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis

    PubMed Central

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks. PMID:25815810

  4. Molecular and functional characterization of vacuolar-ATPase from the American dog tick Dermacentor variabilis.

    PubMed

    Petchampai, N; Sunyakumthorn, P; Guillotte, M L; Thepparit, C; Kearney, M T; Mulenga, A; Azad, A F; Macaluso, K R

    2014-02-01

    Vacuolar (V)-ATPase is a proton-translocating enzyme that acidifies cellular compartments for various functions such as receptor-mediated endocytosis, intracellular trafficking and protein degradation. Previous studies in Dermacentor variabilis chronically infected with Rickettsia montanensis have identified V-ATPase as one of the tick-derived molecules transcribed in response to rickettsial infection. To examine the role of the tick V-ATPase in tick-Rickettsia interactions, a full-length 2887-bp cDNA (2532-bp open reading frame) clone corresponding to the transcript of the V0 domain subunit a of D. variabilis V-ATPase (DvVATPaseV0a) gene encoding an 843 amino acid protein with an estimated molecular weight of ~96 kDa was isolated from D. variabilis. Amino acid sequence analysis of DvVATPaseV0a showed the highest similarity to VATPaseV0a from Ixodes scapularis. A potential N-glycosylation site and eight putative transmembrane segments were identified in the sequence. Western blot analysis of tick tissues probed with polyclonal antibody raised against recombinant DvVATPaseV0a revealed the expression of V-ATPase in the tick ovary. Transcriptional profiles of DvVATPaseV0a demonstrated a greater mRNA expression in the tick ovary, compared with the midgut and salivary glands; however, the mRNA level in each of these tick tissues remained unchanged after infection with R. montanensis for 1 h. V-ATPase inhibition bioassays resulted in a significant decrease in the ability of R. montanensis to invade tick cells in vitro, suggesting a role of V-ATPase in rickettsial infection of tick cells. Characterization of tick-derived molecules involved in rickettsial infection is essential for a thorough understanding of rickettsial transmission within tick populations and the ecology of tick-borne rickettsial diseases. © 2013 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  5. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis, in San Diego County, California.

    PubMed

    Gurfield, Nikos; Grewal, Saran; Cua, Lynnie S; Torres, Pedro J; Kelley, Scott T

    2017-01-01

    The Pacific coast tick, Dermacentor occidentalis Marx, is found throughout California and can harbor agents that cause human diseases such as anaplasmosis, ehrlichiosis, tularemia, Rocky Mountain spotted fever and rickettsiosis 364D. Previous studies have demonstrated that nonpathogenic endosymbiotic bacteria can interfere with Rickettsia co-infections in other tick species. We hypothesized that within D. occidentalis ticks, interference may exist between different nonpathogenic endosymbiotic or nonendosymbiotic bacteria and Spotted Fever group Rickettsia (SFGR). Using PCR amplification and sequencing of the romp A gene and intergenic region we identified a cohort of SFGR-infected and non-infected D. occidentalis ticks collected from San Diego County. We then amplified a partial segment of the 16S rRNA gene and used next-generation sequencing to elucidate the microbiomes and levels of co-infection in the ticks. The SFGR R. philipii str. 364D and R. rhipicephali were detected in 2.3% and 8.2% of the ticks, respectively, via romp A sequencing. Interestingly, next generation sequencing revealed an inverse relationship between the number of Francisella- like endosymbiont (FLE) 16S rRNA sequences and Rickettsia 16S rRNA sequences within individual ticks that is consistent with partial interference between FLE and SFGR infecting ticks. After excluding the Rickettsia and FLE endosymbionts from the analysis, there was a small but significant difference in microbial community diversity and a pattern of geographic isolation by distance between collection locales. In addition, male ticks had a greater diversity of bacteria than female ticks and ticks that weren't infected with SFGR had similar microbiomes to canine skin microbiomes. Although experimental studies are required for confirmation, our findings are consistent with the hypothesis that FLEs and, to a lesser extent, other bacteria, interfere with the ability of D. occidentalis to be infected with certain SFGR. The results also raise interesting possibilities about the effects of putative vertebrate hosts on the tick microbiome.

  6. New Borrelia species detected in ixodid ticks in Oromia, Ethiopia.

    PubMed

    Kumsa, Bersissa; Socolovschi, Cristina; Raoult, Didier; Parola, Philippe

    2015-04-01

    Little is known about Borrelia species transmitted by hard ticks in Ethiopia. The present study was conducted from November 2011 through March 2014 to address the occurrence and molecular identity of these bacteria in ixodid ticks infesting domestic animals in Oromia, Ethiopia. A total of 767 ixodid ticks collected from domestic animals were screened for Borrelia DNA by quantitative (q) real-time PCR followed by standard PCR and sequencing to identify the species. Overall, 3.8% (29/767) of the tested ticks were positive for Borrelia DNA, including 8/119 (6.7%) Amblyomma cohaerens, 1/42 (2.4%) Am. gemma, 3/53 (5.7%) Am. variegatum, 5/22 (22.7%) Amblyomma larvae, 3/60 (5%) Amblyomma nymphs, 2/139 (1.4%) Rhipicephalus (Boophilus) decoloratus, 2/31 (6.4%) Rh. decoloratus nymphs, and 5/118 (4.2%) Rh. pulchellus using 16S genus-specific qPCR. The prevalence of Borrelia DNA was significantly higher in genus Amblyomma (20/298, 6.7%) than in the genus Rhipicephalus (9/417, 2.1%) ticks (P=0.001). Sequencing of PCR products from the flaB and 16S rRNA genes of Borrelia spp. from Amblyomma ticks showed the presence of a new species between the relapsing fever and Lyme disease groups. However, Borrelia sp. detected in Rhipicephalus ticks clustered with B. theileri/B. lonestari. The human pathogenicity of the Borrelia sp. detected in Amblyomma ticks from Ethiopia has not yet been investigated, whereas the Borrelia sp. detected in Rhipicephalus ticks in our study is the causative agent of bovine borreliosis in cattle and may have veterinary importance in different parts of Ethiopia. Furthermore, the detection of previously unrecognized Borrelia species in Amblyomma and Rhipicephalus ticks in Ethiopia generates additional questions concerning the bacterial fauna in hard ticks and will prompt researchers to perform detailed studies for better understanding of ixodid ticks associated bacteria. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Contact Irritancy and Toxicity of Permethrin-Treated Clothing for Ixodes scapularis, Amblyomma americanum, and Dermacentor variabilis Ticks (Acari: Ixodidae).

    PubMed

    Prose, Robert; Breuner, Nicole E; Johnson, Tammi L; Eisen, Rebecca J; Eisen, Lars

    2018-05-24

    Clothing treated with the pyrethroid permethrin is available in the United States as consumer products to prevent tick bites. We used tick bioassays to quantify contact irritancy and toxicity of permethrin-treated clothing for three important tick vectors of human pathogens: the blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae); the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae); and the American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae). We first demonstrated that field-collected I. scapularis nymphs from Minnesota were as susceptible as laboratory-reared nymphs to a permethrin-treated textile. Field ticks examined in bioassays on the same day they were collected displayed contact irritancy by actively dislodging from a vertically oriented permethrin-treated textile, and a forced 1-min exposure resulted in all ticks being unable to move normally, thus posing no more than minimal risk of biting, 1 h after contact with the treated textile. Moreover, we documented lack of normal movement for laboratory-reared I. scapularis nymphs by 1 h after contact for 1 min with a wide range of permethrin-treated clothing, including garments made from cotton, synthetic materials, and blends. A comparison of the impact of a permethrin-treated textile across tick species and life stages revealed the strongest effect on I. scapularis nymphs (0% with normal movement 1 h after a 1-min exposure), followed by A. americanum nymphs (14.0%), I. scapularis females (38.0%), D. variabilis females (82.0%), and A. americanum females (98.0%). Loss of normal movement for all ticks 1 h after contact with the permethrin-treated textile required exposures of 1 min for I. scapularis nymphs, 2 min for A. americanum nymphs, and 5 min for female I. scapularis, D. variabilis, and A. americanum ticks. We conclude that use of permethrin-treated clothing shows promise to prevent bites by medically important ticks. Further research needs are discussed.

  8. Powassan encephalitis and Colorado tick fever.

    PubMed

    Romero, José R; Simonsen, Kari A

    2008-09-01

    This article discusses two tick-borne illnesses: Powassan encephalitis, a rare cause of central nervous system infection caused by the Powassan virus, and Colorado tick fever, an acute febrile illness caused by the Colorado tick fever virus common to the Rocky Mountain region of North America.

  9. Ticks associated with domestic dogs and cats in Florida, USA

    USDA-ARS?s Scientific Manuscript database

    Voluntary collections of ticks from domestic dogs and cats by veterinary practitioners across Florida were conducted over a 10 month period. Of the 1,337 ticks submitted, five species of ixodid ticks were identified and included Rhipicephalus sanguineus, Amblyomma americanum, A. maculatum, Dermacen...

  10. Molecular characterization of Hepatozoon felis in Rhipicephalus sanguineus ticks infested on captive lions (Panthera leo).

    PubMed

    Bhusri, Benjaporn; Sariya, Ladawan; Mongkolphan, Chalisa; Suksai, Parut; Kaewchot, Supakarn; Changbunjong, Tanasak

    2017-09-01

    Hepatozoon spp. are protozoan parasites that infect a wide range of domestic and wild animals. The infection occurs by ingestion of an infected tick. This study was carried out to detect and characterize Hepatozoon spp. in ticks collected from captive lions ( Panthera leo ) in Thailand based on the partial 18S rRNA gene sequence. A total of 30 ticks were collected and identified as Rhipicephalus sanguineus . The collected ticks were separated into 10 tick pools by sex and life stages. Of the 10 tick pools examined, only one (10%) was found to be infected with the Hepatozoon species. Sequencing and phylogenetic analysis showed a clustering of the partial 18S rRNA gene sequence like that of H. felis from the GenBank database. This is the first report of H. felis in R. sanguineus ticks collected from captive lions in Thailand. Our results indicated that R. sanguineus may be a possible vector of feline Hepatozoon in Thailand.

  11. Babesia, Theileria, and Hepatozoon species in ticks infesting animal hosts in Romania.

    PubMed

    Andersson, Martin O; Tolf, Conny; Tamba, Paula; Stefanache, Mircea; Radbea, Gabriel; Rubel, Franz; Waldenström, Jonas; Dobler, Gerhard; Chițimia-Dobler, Lidia

    2017-08-01

    Babesia spp., Theileria spp., and Hepatozoon spp. are tick-transmitted apicomplexan parasites that cause several important diseases in animals. To increase current knowledge about the diversity of tick-transmitted pathogens in Romania, we investigated the occurrence of Babesia spp., Theileria spp., and Hepatozoon spp. in a wide range of tick species infesting animal hosts. We collected 852 ticks from 10 different animal species from 20 counties in Romania. The assessment was based on detection of parasite DNA by PCR. Five different apicomplexan parasite species were detected; among them three different species of Babesia: B. canis, B. microti, and B. ovis. Hepatozoon canis was the most frequently detected parasite, found predominately in Ixodes ricinus ticks collected from domestic dogs. It was also detected in I. ricinus collected from goat, fox, and cat. Furthermore, H. canis was found in Haemaphysalis punctata and Haemaphysalis concinna ticks. In addition, Theileria buffeli was detected in Rhipicephalus bursa ticks collected from cattle.

  12. [Microorganisms of the order Rickettsiales in taiga tick (Ixodes persulcatus Sch.) from the Pre-Ural region].

    PubMed

    Nefedova, V V; Korenberg, E I; Kovalevskiĭ, Iu V; Gorelova, N B; Vorob'eva, N N

    2008-01-01

    The PCR and sequence analysis revealed DNA Ehrlichia muris, Anaplasma phagocytophilum, and Rickettsia spp. in the I. persulcatus ticks and blood samples from a patients with acute febrile illness occurring after a tick bite, registered in the seasonal peak of the tick activity of one of the highly endemic areas of Russia (Perm region). These data confirmed the validity a diagnosis of HME and HGA, which were made earlier on the basis of the clinical-serologic survey. In 10.0% of the tested taiga ticks were detected DNA of two and more agents in various combinations i.e. E. muris and Rickettsia spp, A. phagocytophilum and Rickettsia spp., and E. muris, A. phagocytophilum and Rickettsia spp. DNA of a R. helvetica was detected in I. persulcatus tick and blood tick-bitten patient with febrile episodes. Probably that R. helvetica can be etiological agent in some part of cases with the serologically unconfirmed diagnoses of acute feverish diseases developing after tick bite.

  13. Eradication and control of livestock ticks: biological, economic and social perspectives.

    PubMed

    Walker, Alan R

    2011-07-01

    Comparisons of successful and failed attempts to eradicate livestock ticks reveal that the social context of farming and management of the campaigns have greater influence than techniques of treatment. The biology of ticks is considered principally where it has contributed to control of ticks as practiced on farms. The timing of treatments by life cycle and season can be exploited to reduce numbers of treatments per year. Pastures can be managed to starve and desiccate vulnerable larvae questing on vegetation. Immunity to ticks acquired by hosts can be enhanced by livestock breeding. The aggregated distribution of ticks on hosts with poor immunity can be used to select animals for removal from the herd. Models of tick population dynamics required for predicting outcomes of control methods need better understanding of drivers of distribution, aggregation, stability, and density-dependent mortality. Changing social circumstances, especially of land-use, has an influence on exposure to tick-borne pathogens that can be exploited for disease control.

  14. [Role of Powassan virus in the etiological structure of tick-borne encephalitis in the Primorsky Kray].

    PubMed

    Leonova, G N; Isachkova, L M; Baranov, N I; Krugliak, S P

    1980-01-01

    Composite studies conducted annually in the Primorsky kray showed the tick-borne encephalitis virus to play the main etiological role in the group of encephalites with the spring-summer incidence. In 1976--1978, virological studies of 69 cases of the disease yielded 11 strains of tick-borne encephalitis virus. In 1978, from the blood of clinically normal woman after a tick bite strain 555 was first isolated which was identified as Powassan virus, and antigenemia was observed for 53 days using the fluorescent antibody technique. In the same period, serological examinations of the blood sera from 117 patients demonstrated antibody to tick-borne encephalitis virus in 69.2%, to Powassan virus in 4,3% and to both viruses simultaneously in 4.3%. Besides, antibody to tick-borne encephalitis virus, Powassan virus and both viruses simultaneously was found in patients with progredient forms of tick-borne encephalitis and in subjects with the history of tick attachment.

  15. Extraction of Total Nucleic Acids From Ticks for the Detection of Bacterial and Viral Pathogens

    PubMed Central

    Crowder, Chris D.; Rounds, Megan A.; Phillipson, Curtis A.; Picuri, John M.; Matthews, Heather E.; Halverson, Justina; Schutzer, Steven E.; Ecker, David J.; Eshoo, Mark W.

    2010-01-01

    Ticks harbor numerous bacterial, protozoal, and viral pathogens that can cause serious infections in humans and domestic animals. Active surveillance of the tick vector can provide insight into the frequency and distribution of important pathogens in the environment. Nucleic-acid based detection of tick-borne bacterial, protozoan, and viral pathogens requires the extraction of both DNA and RNA (total nucleic acids) from ticks. Traditional methods for nucleic acid extraction are limited to extraction of either DNA or the RNA from a sample. Here we present a simple bead-beating based protocol for extraction of DNA and RNA from a single tick and show detection of Borrelia burgdorferi and Powassan virus from individual, infected Ixodes scapularis ticks. We determined expected yields for total nucleic acids by this protocol for a variety of adult tick species. The method is applicable to a variety of arthropod vectors, including fleas and mosquitoes, and was partially automated on a liquid handling robot. PMID:20180313

  16. Invasive potential of cattle fever ticks in the southern United States

    PubMed Central

    2014-01-01

    Abstract' Background For >100 years cattle production in the southern United States has been threatened by cattle fever. It is caused by an invasive parasite-vector complex that includes the protozoan hemoparasites Babesia bovis and B. bigemina, which are transmitted among domestic cattle via Rhipicephalus tick vectors of the subgenus Boophilus. In 1906 an eradication effort was started and by 1943 Boophilus ticks had been confined to a narrow tick eradication quarantine area (TEQA) along the Texas-Mexico border. However, a dramatic increase in tick infestations in areas outside the TEQA over the last decade suggests these tick vectors may be poised to re-invade the southern United States. We investigated historical and potential future distributions of climatic habitats of cattle fever ticks to assess the potential for a range expansion. Methods We built robust spatial predictions of habitat suitability for the vector species Rhipicephalus (Boophilus) microplus and R. (B.) annulatus across the southern United States for three time periods: 1906, present day (2012), and 2050. We used analysis of molecular variance (AMOVA) to identify persistent tick occurrences and analysis of bias in the climate proximate to these occurrences to identify key environmental parameters associated with the ecology of both species. We then used ecological niche modeling algorithms GARP and Maxent to construct models that related known occurrences of ticks in the TEQA during 2001–2011 with geospatial data layers that summarized important climate parameters at all three time periods. Results We identified persistent tick infestations and specific climate parameters that appear to be drivers of ecological niches of the two tick species. Spatial models projected onto climate data representative of climate in 1906 reproduced historical pre-eradication tick distributions. Present-day predictions, although constrained to areas near the TEQA, extrapolated well onto climate projections for 2050. Conclusions Our models indicate the potential for range expansion of climate suitable for survival of R. microplus and R. annulatus in the southern United States by mid-century, which increases the risk of reintroduction of these ticks and cattle tick fever into major cattle producing areas. PMID:24742062

  17. [Survey on ticks and detection of new bunyavirus in some vect in the endemic areas of fever, thrombocytopenia and leukopenia syndrome (FTLS) in Henan province].

    PubMed

    Liu, Yang; Huang, Xue-yong; Du, Yan-hua; Wang, Hai-feng; Xu, Bian-li

    2012-06-01

    To investigate the distribution, species, seasonal fluctuation of ticks and detect new bunyavirus in some hematophagus in the endemic areas of fever thrombocytopenia and leukopenia syndrome (FTLS) in Henan province. From March to December 2011, the free ticks were collected manually with white cloth from the grassland and the parasitic ticks were collected from the host skin by hand searching in Xinyang and Jiyuan. The density and seasonal fluctuation of ticks were analyzed after classification of the specimen. The hematophagus were collected including gadfly (38 in 16 groups), cattle lice (224 in 16 groups), mosquitoes (238 in 17 groups) and ticks (825 in 77 groups), then RNA of new bunyavirus were detected by RT-PCR. A total of 12 388 ticks were collected in Xinyang and Jiyuan, consisting of 2 families, 5 geniuses and 6 species. In Xinyang city, 622 ticks were identified, consisting of 2 families, 3 geniuses and 3 species, including 2 (0.32%) Ornithodoros lahorensis, 451 (72.51%) Haemaphysalis longicornis and 117 (18.81%) Boophilus microplus. In Jiyuan city, 11 766 ticks were identified, consisting of 1 family, 4 geniuses and 5 species, including 7718 (65.60%) Haemaphysalis longicornis, 164 (1.39%) H.anatolicum anatolicum and 710 (6.03%) other ticks such as H. detritum, Boophilus microplus and Rhipicephalus sanguineus. Haemaphysalis longicornis were found in both districts as the predominant species in Henan province. Ticks were active from March to October. The average density was 160 per person hour and the peak was from May to July with density 278, 209 and 542 per person hour respectively. The results was positive in RNA detection of new bunyavirus in 11 groups of tick and 3 groups of gadfly by RT-PCR. The results were negative in all other hematophagus. Ornithodoros lahorensis, Haemaphysalis longicornis, Boophilus microplus, H.anatolicum anatolicum, Rhipicephalus sanguineus and H. detritum were found in Henan province. Haemaphysalis longicornis was the predominant species. The density of ticks varied with the seasons. The detection of new bunyavirus by PCR was positive in some ticks and gadflies.

  18. Determinants and protective behaviours regarding tick bites among school children in the Netherlands: a cross-sectional study.

    PubMed

    Beaujean, Desiree J M A; Gassner, Fedor; Wong, Albert; Steenbergen van, Jim E; Crutzen, Rik; Ruwaard, Dirk

    2013-12-09

    Lyme borreliosis (LB) is the most common tick-borne disease in the United States and Europe. The incidence is 13.4 per 100,000 inhabitants in the United States and more than 300 per 100,000 inhabitants in Europe. Children are at highest risk of LB. In the Netherlands in 2007, the incidence of tick bites in children between 10-14 years varied from 7,000 -11,000 per 100,000, depending on age. This study among Dutch school children aimed to examine the knowledge, perceived threat, and perceived importance of protective behaviour in relation to tick bites and their potential consequences. In April 2012, the municipal health services (MHS) contacted primary schools to recruit children 9-13 years by telephone, e-mail, or advertisement in MHS newsletters. In total, 1,447 children from 40 schools participated in this study by completing a specifically developed and pretested compact paper questionnaire. Regression models were used to determine which covariates (e.g. forest cover, previous education, knowledge) are associated with our response variables. 70% (n = 1,015) of the children answered at least six out of seven knowledge questions correctly. The vast majority (93%; n = 1345) regarded body checks as very or somewhat important, 18% (n = 260) was routinely checked by their parents. More frequent body checks were associated with good knowledge about ticks and tick-borne diseases and knowing persons who got ill after tick bite. Children in areas with a higher forest cover were more likely to be checked frequently. Most children have a good knowledge of ticks and the potential consequences of tick bites. Knowing persons who personally got ill after tick-bite is associated with a good knowledge score and leads to higher susceptibility and better appreciation of the need for body checks. Perceived severity is associated with a good knowledge score and with knowing persons who got ill after tick-bite. Is seems to be useful to additionally address children in health education regarding ticks and tick-borne diseases. The relationship between health education programs for children (and their parents) about ticks and their possible consequences and prevention of these deserves further study.

  19. The Detection of Spotted Fever Group Rickettsia DNA in Tick Samples From Pastoral Communities in Kenya.

    PubMed

    Koka, Hellen; Sang, Rosemary; Kutima, Helen Lydia; Musila, Lillian

    2017-05-01

    In this study, ticks from pastoral communities in Kenya were tested for Rickettsia spp. infections in geographical regions where the presence of tick-borne arboviruses had previously been reported. Rickettsial and arbovirus infections have similar clinical features which makes differential diagnosis challenging when both diseases occur. The tick samples were tested for Rickettsia spp. by conventional PCR using three primer sets targeting the gltA, ompA, and ompB genes followed by amplicon sequencing. Of the tick pools screened, 25% (95/380) were positive for Rickettsia spp. DNA using the gltA primer set. Of the tick-positive pools, 60% were ticks collected from camels. Rickettsia aeschlimannii and R. africae were the main Rickettsia spp. detected in the tick pools sequenced. The findings of this study indicate that multiple Rickettsia species are circulating in ticks from pastoral communities in Kenya and could contribute to the etiology of febrile illness in these areas. Diagnosis and treatment of rickettsial infections should be a public health priority in these regions. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Diversity of spotted fever group Rickettsia infection in hard ticks from Suifenhe, Chinese-Russian border.

    PubMed

    Cheng, Cheng; Fu, Weiming; Ju, Wendong; Yang, Liwei; Xu, Ning; Wang, Yan-Mei; Li, Hui; Wang, Yan-Lu; Hu, Man-Xia; Wen, Jing; Jiao, Dan; Geng, Cong; Sun, Yi

    2016-07-01

    In order to investigate the diversity of spotted fever group (SFG) Rickettsia infection in hard ticks, ticks were harvested from the forest areas in Suifenhe city, along the Chinese-Russian border and conventional PCR was carried out using universal SFG Rickettsia primers targeting gltA and ompA genes to screen for their infection with SFG Rickettsia organisms. Results showed that of the 215 ticks belonging to Ixodes persulcatus, Haemaphysalis concinna and Haemaphysalis japonica Warburton, 1908 species, 138 (64.2%) were positive for SFG Rickettsia. Three species of SFG Rickettsia were detected, Rickettsia raoultii, Rickettsia heilongjiangensis and Candidatus Rickettsia tarasevichiae. No co-infection with different species of SFG Rickettsia was found in any individual tick among the three tick species. We detected more than one SFG Rickettsia species in ticks from each of the three tick species with an overlapping distribution and potentially similar transmission cycles of SFG Rickettsia in the areas surveyed. Consequently, different pathogenic rickettsial species may be involved in human cases of rickettsiosis after a bite of the three above-mentioned tick species in that area Rickettsia. Copyright © 2016. Published by Elsevier GmbH.

  1. Vector prevalence and detection of Crimean-Congo haemorrhagic fever virus in Golestan Province, Iran.

    PubMed

    Sedaghat, Mohammad Mehdi; Sarani, Moslem; Chinikar, Sadegh; Telmadarraiy, Zakiye; Moghaddam, Abdolreza Salahi; Azam, Kamal; Nowotny, Norbert; Fooks, Anthony R; Shahhosseini, Nariman

    2017-01-01

    Crimean-Congo haemorrhagic fever virus (CCHFV) causes severe disease with fatality rate of 30%. The virus is transmitted to humans through the bite of an infected tick, direct contact with the products of infected livestock as well as nosocomially. The disease occurs sporadically throughout many of African, Asian and European countries. Different species of ticks serve either as vector or reservoir for CCHFV. This study was aimed to determine the prevalence of CCHFV in hard ticks (Ixodidae) in the Golestan Province of Iran. A molecular survey was conducted on hard ticks (Ixodidae) isolated from six counties in Golestan Province, north of Iran during 2014-15. The ticks were identified using morphological characteristics and presence of CCHFV RNA was detected using RT-PCR. Data revealed the presence of CCHFV in 5.3% of the ticks selected for screening. The infected ticks belonged to Hyalomma dromedarii, Hy. anatolicum, Hy. marginatum and Rhipicephalus sanguineus species. The study demonstrated that Hyalomma ticks are the main vectors of CCHFV in Golestan Province. Thus, preventive strategies such as using acaricides and repellents in order to avoid contact with Hyalomma ticks are proposed.

  2. The application of lambda-cyhalothrin in tick control.

    PubMed

    Jurisic, Aleksandar D; Petrovic, Aleksandra P; Rajkovic, Dragana V; Nicin, Slobodan Dj

    2010-09-01

    In recent years, in urban areas of Novi Sad, unique ecological conditions, specific floristic and faunistic composition and poor habits of citizens in sense of public health, facilitate the development and maintenance of ticks. Regarding the importance of ticks as vectors of severe human and animal diseases, complex and detailed studies are conducted with an aim to find the most efficient methods for tick control. Two tick species, Ixodes ricinus and Dermacentor marginatus, were identified during a 3-year period on the territory of Municipality of Novi Sad. During 2006, the efficacy of the pyrethroid lambda-cyhalothrin in tick control varied from 60.7 to 100%. The highest efficacy recorded in 2007 was 92.3%. The efficacy of lambda-cyhalothrin in 2008 varied from 39.1 to 100%. Lambda-cyhalothrin showed high efficacy in tick control at localities which were improved before the application (mowed, litter removed, abundance control and euthanasia of abandoned cats and dogs). The results of this research indicate that lambda-cyhalothrin has a toxic effect on ticks and could be used as efficient acaricide for tick control, although its efficacy depends on formulation, terrain features and methods of application.

  3. Feeding of ticks on animals for transmission and xenodiagnosis in Lyme disease research.

    PubMed

    Embers, Monica E; Grasperge, Britton J; Jacobs, Mary B; Philipp, Mario T

    2013-08-31

    Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.

  4. The effects of the brown ear-tick, Rhipicephalus appendiculatus, on milk production of Sanga cattle.

    PubMed

    Norval, R A; Sutherst, R W; Kurki, J; Kerr, J D; Gibson, J D

    1997-04-01

    Lactating Sanga cows of the Mashona breed from Zimbabwe, receiving either a low or high level of nutritional supplement, were exposed to two levels of infestation of adults of the brown ear-tick, Rhipicephalus appendiculatus in the highveld of Zimbabwe. The effect of the ticks on the milk yield was measured over an 11-week period during the rainy season from January to April 1986. A technique in which calves were weighed before and after suckling was used to estimate milk yield. There were significant treatment effects of ticks (P < 0.05) on milk production but no significant differences in liveweight gain between calves from tick-free and tick-infested dams. The loss in milk production was poorly related to the number of female ticks that engorged, being 9 g (SEM 4) per tick. A Friesian x Hereford (Bos taurus) reference group of cattle carried 50% more ticks than the Mashona cows, illustrating a difference in resistance between the breeds. Thirteen screw-worm (Chrysomya bezziana) strikes were recorded amongst the thirty-two Mashona cows compared with twenty-one amongst the ten Friesian x Hereford animals between January and the end of March.

  5. Emergence of multi-acaricide resistant Rhipicephalus ticks and its implication on chemical tick control in Uganda.

    PubMed

    Vudriko, Patrick; Okwee-Acai, James; Tayebwa, Dickson Stuart; Byaruhanga, Joseph; Kakooza, Steven; Wampande, Edward; Omara, Robert; Muhindo, Jeanne Bukeka; Tweyongyere, Robert; Owiny, David Okello; Hatta, Takeshi; Tsuji, Naotoshi; Umemiya-Shirafuji, Rika; Xuan, Xuenan; Kanameda, Masaharu; Fujisaki, Kozo; Suzuki, Hiroshi

    2016-01-04

    Acaricide failure has been on the rise in the western and central cattle corridor of Uganda. In this study, we identified the tick species associated with acaricide failure and determined their susceptibility to various acaricide molecules used for tick control in Uganda. In this cross sectional study, tick samples were collected and identified to species level from 54 purposively selected farms (from 17 districts) that mostly had a history of acaricide failure. Larval packet test was used to screen 31 tick populations from 30 farms for susceptibility at discriminating dose (DD) and 2 × DD of five panels of commercial acaricide molecules belonging to the following classes; amidine, synthetic pyrethroid (SP), organophosphate (OP) and OP-SP co-formulations (COF). Resistance was assessed based on World Health Organization criteria for screening insecticide resistance. Of the 1357 ticks identified, Rhipicephalus (Rhipicephalus) appendiculatus and Rhipicephalus (Boophilus) decoloratus were the major (95.6%) tick species in farms sampled. Resistance against SP was detected in 90.0% (27/30) of the tick populations tested. Worryingly, 60.0% (18/30) and 63.0% (19/30) of the above ticks were super resistant (0% mortality) against 2 × DD cypermethrin and deltamethrin, respectively. Resistance was also detected against COF (43.3%), OP chlorfenvinphos (13.3%) and amitraz (12.9%). In two years, 74.1% (20/27) of the farms had used two to three acaricide molecules, and 55.6% (15/27) rotated the molecules wrongly. Multi-acaricide resistance (at least 2 molecules) was detected in 55.2% (16/29) of the resistant Rhipicephalus ticks and significantly associated with R. decoloratus (p = 0.0133), use of both SP and COF in the last 2 years (p < 0.001) and Kiruhura district (p = 0.0339). Despite emergence of amitraz resistance in the greater Bushenyi area, it was the most efficacious molecule against SP and COF resistant ticks. This study is the first to report emergence of super SP resistant and multi-acaricide resistant Rhipicephalus ticks in Uganda. Amitraz was the best acaricide against SP and COF resistant ticks. However, in the absence of technical interventions, farmer-led solutions aimed at troubleshooting for efficacy of multitude of acaricides at their disposal are expected to potentially cause negative collateral effects on future chemical tick control options, animal welfare and public health.

  6. Protective value of prophylactic antibiotic treatment of tick bite for Lyme disease prevention: an animal model.

    PubMed

    Piesman, Joseph; Hojgaard, Andrias

    2012-06-01

    Clinical studies have demonstrated that prophylactic antibiotic treatment of tick bites by Ixodes scapularis in Lyme disease hyperendemic regions in the northeastern United States can be effective in preventing infection with Borrelia burgdorferi sensu stricto, the Lyme disease spirochete. A large clinical trial in Westchester County, NY (USA), demonstrated that treatment of tick bite with 200mg of oral doxycycline was 87% effective in preventing Lyme disease in tick-bite victims (Nadelman, R.B., Nowakowski, J., Fish, D., Falco, R.C., Freeman, K., McKenna, D., Welch, P., Marcus, R., Agúero-Rosenfeld, M.E., Dennis, D.T., Wormser, G.P., 2001. Prophylaxis with single-dose doxycycline for the prevention of Lyme disease after an Ixodes scapularis tick bite. N. Engl. J. Med. 345, 79-84.). Although this excellent clinical trial provided much needed information, the authors enrolled subjects if the tick bite occurred within 3 days of their clinical visit, but did not analyze the data based on the exact time between tick removal and delivery of prophylaxis. An animal model allows for controlled experiments designed to determine the point in time after tick bite when delivery of oral antibiotics would be too late to prevent infection with B. burgdorferi. Accordingly, we developed a tick-bite prophylaxis model in mice that gave a level of prophylactic protection similar to what had been observed in clinical trials and then varied the time post tick bite of antibiotic delivery. We found that two treatments of doxycycline delivered by oral gavage to mice on the day of removal of a single potentially infectious nymphal I. scapularis protected 74% of test mice compared to controls. When treatment was delayed until 24 h after tick removal, only 47% of mice were protected; prophylactic treatment was totally ineffective when delivered ≥2 days after tick removal. Although the dynamics of antibiotic treatment in mice may differ from humans, and translation of animal studies to patient management must be approached with caution, we believe our results emphasize the point that antibiotic prophylactic treatment of tick bite to prevent Lyme disease is more likely to be efficacious if delivered promptly after potentially infectious ticks are removed from patients. There is only a very narrow window for prophylactic treatment to be effective post tick removal. Published by Elsevier GmbH.

  7. Temporal pattern of questing tick Ixodes ricinus density at differing elevations in the coastal region of western Norway

    PubMed Central

    2014-01-01

    Background Climate change can affect the activity and distribution of species, including pathogens and parasites. The densities and distribution range of the sheep tick (Ixodes ricinus) and it’s transmitted pathogens appears to be increasing. Thus, a better understanding of questing tick densities in relation to climate and weather conditions is urgently needed. The aim of this study was to test predictions regarding the temporal pattern of questing tick densities at two different elevations in Norway. We predict that questing tick densities will decrease with increasing elevations and increase with increasing temperatures, but predict that humidity levels will rarely affect ticks in this northern, coastal climate with high humidity. Methods We described the temporal pattern of questing tick densities at ~100 and ~400 m a.s.l. along twelve transects in the coastal region of Norway. We used the cloth lure method at 14-day intervals during the snow-free season to count ticks in two consecutive years in 20 m2 plots. We linked the temporal pattern of questing tick densities to local measurements of the prevailing weather. Results The questing tick densities were much higher and the season was longer at ~100 compared to at ~400 m a.s.l. There was a prominent spring peak in both years and a smaller autumn peak in one year at ~100 m a.s.l.; but no marked peak at ~400 m a.s.l. Tick densities correlated positively with temperature, from low densities <5°C, then increasing and levelling off >15-17°C. We found no evidence for reduced questing densities during the driest conditions measured. Conclusions Tick questing densities differed even locally linked to elevation (on the same hillside, a few kilometers apart). The tick densities were strongly hampered by low temperatures that limited the duration of the questing seasons, whereas the humidity appeared not to be a limiting factor under the humid conditions at our study site. We expect rising global temperatures to increase tick densities and lead to a transition from a short questing season with low densities in the current cold and sub-optimal tick habitats, to longer questing seasons with overall higher densities and a marked spring peak. PMID:24725997

  8. Ixodidae ticks in the megapolis of Kyiv, Ukraine

    USDA-ARS?s Scientific Manuscript database

    The Ixodidae include the most common tick species encountered in Europe. The ticks transmit a variety of bacterial and protozoan agents of medical and veterinary significance. The aim of the current work was to investigate distribution of Ixodes ricinus and Dermacentor reticulatus ticks in Kyiv, the...

  9. Molecular biology of tick Acetylcholinesterases – a minireview

    USDA-ARS?s Scientific Manuscript database

    Ticks are important hematophagous arthropod ectoparasites and like mosquitoes, are vectors for a wide variety of human and animal pathogens. Ticks have significant world-wide health and economic impacts. In the U.S., major impacts include the ability of the blacklegged tick, Ixodes scapularis, to tr...

  10. Ixodid ticks in the megapolis of Kyiv, Ukraine

    USDA-ARS?s Scientific Manuscript database

    The Ixodidae include the most common tick species encountered in Europe. The ticks transmit a variety of bacterial and protozoan agents of medical and veterinary significance. The aim of the current work was to investigate distribution of Ixodidae ticks in Kyiv, the largest and most densely populate...

  11. Hey! A Tick Bit Me!

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Hey! A Tick Bit Me! KidsHealth / For Kids / Hey! A Tick Bit Me! Print en español ¡Ay! ¡ ... tick collar. More on this topic for: Kids Hey! A Brown Recluse Spider Bit Me! Hey! A ...

  12. Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector.

    PubMed

    Durand, Jonas; Herrmann, Coralie; Genné, Dolores; Sarr, Anouk; Gern, Lise; Voordouw, Maarten J

    2017-02-01

    Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others. Copyright © 2017 American Society for Microbiology.

  13. Ticks and Tick-Borne Pathogens Associated with Feral Swine in Edwards Plateau and Gulf Prairies and Marshes Ecoregions of Texas

    DTIC Science & Technology

    2011-05-01

    for previous exposure to tick-borne pathogens in the genera Rickettsia and Ehrlichia (N=888) and Borrelia (N=849). Prevalence percentages by...immunoassay were 27.59%, 13.18%, and 2.12% for Rickettsia , Ehrlichia, and Borrelia, respectively. Samples positive by ELISA for exposure to Borrelia were...pathogen transmissions cycles in Texas. 15. SUBJECT TERMS Ticks, feral swine, bacteria, tick-borne pathogens, pigs, ecology, Rickettsia , Borrelia

  14. Molecular detection of zoonotic tick-borne pathogens from ticks collected from ruminants in four South African provinces.

    PubMed

    Mtshali, Khethiwe; Khumalo, Zth; Nakao, Ryo; Grab, Dennis J; Sugimoto, Chihiro; Thekisoe, Omm

    2016-01-01

    Ticks carry and transmit a remarkable array of pathogens including bacteria, protozoa and viruses, which may be of veterinary and/or of medical significance. With little to no information regarding the presence of tick-borne zoonotic pathogens or their known vectors in southern Africa, the aim of our study was to screen for Anaplasma phagocytophilum, Borrelia burgdorferi, Coxiella burnetii, Rickettsia species and Ehrlichia ruminantium in ticks collected and identified from ruminants in the Eastern Cape, Free State, KwaZulu-Natal and Mpumalanga Provinces of South Africa. The most abundant tick species identified in this study were Rhipicephalus evertsi evertsi (40%), Rhipicephalus species (35%), Amblyomma hebraeum (10%) and Rhipicephalus decoloratus (14%). A total of 1634 ticks were collected. DNA was extracted, and samples were subjected to PCR amplification and sequencing. The overall infection rates of ticks with the target pathogens in the four Provinces were as follows: A. phagocytophilum, 7%; C. burnetii, 7%; E. ruminantium, 28%; and Rickettsia spp., 27%. The presence of B. burgdorferi could not be confirmed. The findings of this study show that zoonotic pathogens are present in ticks in the studied South African provinces. This information will aid in the epidemiology of tick-borne zoonotic diseases in the country as well as in raising awareness about such diseases in the veterinary, medical and tourism sectors, as they may be the most affected.

  15. Review of methods to prevent and reduce the risk of Lyme disease.

    PubMed

    Lindsay, L R; Ogden, N H; Schofield, S W

    2015-06-04

    Cases of Lyme disease and areas with self-sustaining populations of vector ticks are increasing in Canada. This trend is expected to continue. Preventing Lyme disease will therefore become relevant to an increasing number of Canadians. To summarize methods for reducing the risk of tick bites and preventing transmission once a tick is feeding. A literature search was conducted to identify methods to reduce the risk of tick bites and the abundance of vector ticks, as well as the risk of becoming infected with the Lyme disease pathogen, Borrelia burgdorferi (BB), if bitten by a vector tick. Current approaches to reducing the risk of tick bites or preventing infection with BB once bitten are largely reliant on the individual. They include use of topical repellents, use of protective clothing, avoidance of risk areas and removing ticks soon (ideally within a day) after they attach. These methods are efficacious, but constrained by user adherence. Other approaches such as landscape modification or the use of acaricides to control ticks, have shown promise in other countries, but have not been widely adopted in Canada. Lyme disease will continue to present a threat in Canada. In additional to the existing interventions for prevention of tick bites and Lyme disease, there is a need for new tools to help reduce the risk of Lyme disease to Canadians.

  16. Reverse transcription PCR-based detection of Crimean-Congo hemorrhagic fever virus isolated from ticks of domestic ruminants in Kurdistan province of Iran.

    PubMed

    Fakoorziba, Mohammad Reza; Golmohammadi, Parvaneh; Moradzadeh, Rahmatollah; Moemenbellah-Fard, Mohammad Djaefar; Azizi, Kourosh; Davari, Behrooz; Alipour, Hamzeh; Ahmadnia, Sara; Chinikar, Sadegh

    2012-09-01

    Crimean-Congo hemorrhagic fever (CCHF) is a potentially fatal viral vector-borne zoonosis which has a mortality rate of up to 30% without treatment in humans. CCHF virus is transmitted to humans by ticks, predominantly from the Hyalomma genus. Following the report of two confirmed and one suspected death due to CCHF virus in Kurdistan province of Iran in 2007, this study was undertaken to determine the fauna of hard ticks on domestic ruminants (cattle, sheep, and goats) and their possible infection with CCHF virus using reverse transcription PCR technique. This is the first detection of CCHF virus in ticks from the Kurdistan province of Iran. Overall, 414 ixodid ticks were collected from two districts in this province. They represented four genera from which 10 separate species were identified. The Hyalomma genus was the most abundant tick genus (70%). It was the only genus shown to be infected with the CCHF virus using RT-PCR technique. The number of ticks positive for CCHF virus was 5 out of 90 (5.6%) adult ticks. The three remaining genera (Haemaphysalis, Rhipicephalus, and Dermacentor) were all negative following molecular survey. Four of the five virally-infected ticks were from cattle mainly in the Sanandaj district. We concluded that CCHF virus is present in the Hyalomma ticks on domestic ruminants (cattle) in Kurdistan province of Iran.

  17. Relatively low prevalence of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected in the Lehigh Valley region of eastern Pennsylvania.

    PubMed

    Edwards, Marten J; Barbalato, Laura A; Makkapati, Amulya; Pham, Katerina D; Bugbee, Louise M

    2015-09-01

    Several human pathogens are transmitted by the blacklegged tick, Ixodes scapularis. These include the spirochetes that cause Lyme disease (Borrelia burgdorferi) which is endemic to the Lehigh Valley region of eastern Pennsylvania. Emerging and currently rare tick-borne diseases have been of increasing concern in this region, including tick-borne relapsing fever (caused by Borrelia miyamotoi), human granulocytic anaplasmosis (caused by Anaplasma phagocytophilum), and human babesiosis (caused by Babesia microti). Real-time PCR assays and in some instances, conventional PCR followed by DNA sequencing, were used to screen 423 DNA samples that were prepared from questing adult and nymph stage I. scapularis ticks for infection with four tick-borne human pathogens. B. burgdorferi was detected in 23.2% of the sampled ticks, while B. miyamotoi, B. microti and a human variant of A. phagocytophilum were detected in less than 0.5% of the ticks. Our results are consistent with those expected in a region where Lyme disease is prevalent and human cases of tick-borne relapsing fever, babesiosis and human granulocytic anaplasmosis are not currently widespread. It is expected that this study will serve as a baseline for future studies of tick-borne pathogens in an area that is in close proximity to regions of high endemicity for Lyme disease, human granulocytic anaplasmosis and human babesiosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Molecular (ticks) and serological (humans) study of Crimean-Congo hemorrhagic fever virus in the Iberian Peninsula, 2013-2015.

    PubMed

    Palomar, Ana M; Portillo, Aránzazu; Santibáñez, Sonia; García-Álvarez, Lara; Muñoz-Sanz, Agustín; Márquez, Francisco J; Romero, Lourdes; Eiros, José M; Oteo, José A

    Crimean-Congo hemorrhagic fever (CCHF) is a viral disease, mainly transmitted through tick bite, of great importance in Public Health. In Spain, Crimean-Congo hemorrhagic fever virus (CCHFV) was detected for the first time in 2010 in Hyalomma lusitanicum ticks collected from deer in Cáceres. The aim of this study was to investigate the presence of CCHFV in ticks from Cáceres, and from other Spanish areas, and to evaluate the presence of antibodies against the virus in individuals exposed to tick bites. A total of 2053 ticks (1333 Hyalomma marginatum, 680 H. lusitanicum and 40 Rhipicephalus bursa) were analyzed using molecular biology techniques (PCR) for CCHFV detection. The determination of specific IgG antibodies against CCHFV in 228 serum samples from humans with regular contact with ticks (at risk of acquiring the infection) was performed by indirect immunofluorescence assay. The CCHFV was not amplified in ticks, nor were antibodies against the virus found in the serum samples analyzed. The absence of the CCHFV in the ticks studied and the lack of antibodies against the virus in individuals exposed to tick bites would seem to suggest a low risk of acquisition of human infection by CCHFV in Spain. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  19. Past and future perspectives on mathematical models of tick-borne pathogens.

    PubMed

    Norman, R A; Worton, A J; Gilbert, L

    2016-06-01

    Ticks are vectors of pathogens which are important both with respect to human health and economically. They have a complex life cycle requiring several blood meals throughout their life. These blood meals take place on different individual hosts and potentially on different host species. Their life cycle is also dependent on environmental conditions such as the temperature and habitat type. Mathematical models have been used for the more than 30 years to help us understand how tick dynamics are dependent on these environmental factors and host availability. In this paper, we review models of tick dynamics and summarize the main results. This summary is split into two parts, one which looks at tick dynamics and one which looks at tick-borne pathogens. In general, the models of tick dynamics are used to determine when the peak in tick densities is likely to occur in the year and how that changes with environmental conditions. The models of tick-borne pathogens focus more on the conditions under which the pathogen can persist and how host population densities might be manipulated to control these pathogens. In the final section of the paper, we identify gaps in the current knowledge and future modelling approaches. These include spatial models linked to environmental information and Geographic Information System maps, and development of new modelling techniques which model tick densities per host more explicitly.

  20. A review of Hyalomma scupense (Acari, Ixodidae) in the Maghreb region: from biology to control.

    PubMed

    Gharbi, Mohamed; Darghouth, Mohamed Aziz

    2014-01-01

    Hyalomma scupense (syn. Hyalomma detritum) is a two-host domestic endophilic tick of cattle and secondarily other ungulates in the Maghreb region (Africa). This species transmits several pathogens, among which two are major livestock diseases: Theileria annulata and Theileria equi. Various other pathogens are also transmitted by this tick species, such as Anaplasma phagocytophilum and Ehrlichia bovis. Hyalomma scupense is common in sub-humid and semi-arid areas of several regions in the world, mainly in the Maghreb region. In this region, adults attach to animals during the summer season; larvae and nymphs attach to their hosts during autumn, but there is a regional difference in H. scupense phenology. There is an overlap between immature and adult ticks, leading in some contexts to a dramatic modification of the epidemiology of tick-borne diseases. This tick species attaches preferentially to the posterior udder quarters and thighs. Tick burdens can reach 130 ticks per animal, with a mean of 60 ticks. Calves are 70 times less infested than adult cattle. The control can be implemented through six options: (i) rehabilitation of the farm buildings by roughcasting and smoothing the outer and inner surfaces of the enclosures and walls. This control option should be recommended to be combined with a thorough cleaning of the farm and its surrounding area. With regard to Theileria annulata infection, this control option is the most beneficial. (ii) Acaricide application to animals during the summer season, targeting adults. (iii) Acaricide application during the autumn period for the control of the immature stages. (iv) Acaricide application to the walls: many field veterinarians have suggested this option but it is only partially efficient since nymphs enter deep into the cracks and crevices. It should be used if there is a very high tick burden or if there is a high risk of tick-borne diseases. (v) Manual tick removal: this method is not efficient since the ticks can feed on several other animal species in the farm. This control option can lead to a reduction of the tick population, but not a decrease in tick-borne disease incidence. (vi) Vaccination: this control option consists of injecting the protein Hd86; trials have shown a partial effect on nymphs, with no effect on adult ticks. Combination of two of these control options is recommended in regions where there are high burdens of important tick vectors. Further studies are needed to improve our knowledge on this tick species in the Maghreb region, since the number of published studies on Hyalomma scupense in this region is very limited. © M. Gharbi et al., published by EDP Sciences, 2014.

  1. Detection of Rickettsia hoogstraalii, Rickettsia helvetica, Rickettsia massiliae, Rickettsia slovaca and Rickettsia aeschlimannii in ticks from Sardinia, Italy.

    PubMed

    Chisu, Valentina; Leulmi, Hamza; Masala, Giovanna; Piredda, Mariano; Foxi, Cipriano; Parola, Philippe

    2017-03-01

    Tick-borne diseases represent a large proportion of infectious diseases that have become a world health concern. The presence of Rickettsia spp. was evaluated by standard PCR and sequencing in 123 ticks collected from several mammals and vegetation in Sardinia, Italy. This study provides the first evidence of the presence of Rickettsia hoogstralii in Haemaphysalis punctata and Haemaphysalis sulcata ticks from mouflon and Rickettsia helvetica in Ixodes festai ticks from hedgehog. In addition, Rickettsia massiliae, Rickettsia slovaca and Rickettsia aeschlimannii were detected in Rhipicephalus sanguineus, Dermacentor marginatus and Hyalomma marginatum marginatum ticks from foxes, swine, wild boars, and mouflon. The data presented here increase our knowledge of tick-borne diseases in Sardinia and provide a useful contribution toward understanding their epidemiology. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. [Ticks and transmission of some important diseases by ticks].

    PubMed

    Gazyağci, Aycan Nuriye; Aydenızöz, Meral

    2010-01-01

    Ticks which are commonly found all around the world are ectoparasites which are obliged to suck blood from vertebrates such as mammals and birds during all of their periods of develeopment. They may cause toxicities and paralyses in the course of blood sucking through saliva injection and the attachment sites may become ports of entry for secondary agents. Healthy animals that are severely infested by ticks can show a decreased yield and anemia. Young and sick animals can even die. Besides this, ticks are both biological and mechanical vectors for viruses, bacteria, rickettsias, spirochaetas, protozoons and helminths. Ten percent of the ticks identified in the world are associated with 200 diseases. In this review the taxonomy and morphology of ticks, some of the important diseases they carry and the diagnosis and treatment of these diseases are mentioned.

  3. Molecular identification of tick-borne pathogens in asymptomatic individuals with human immunodeficiency virus type 1 (HIV-1) infection: a retrospective study.

    PubMed

    Welc-Falęciak, Renata; Kowalska, Justyna D; Bednarska, Małgorzata; Szatan, Magdalena; Pawełczyk, Agnieszka

    2018-05-18

    The studies on the occurrence and diversity of tick-borne infections in HIV-infected individuals have been few, and the subject has been relatively neglected when compared with other common infections associated with HIV. In HIV-positive patients in whom a serological diagnostics is complicated due to reduced positive predictive value, a method where the microorganism is detected directly is of great value. Therefore, we performed a molecular study to ascertain the prevalence and incidence of tick-borne infections in HIV-infected persons in Poland, an endemic area for Ixodes ricinus ticks. Genomic DNA was isolated from whole blood of tested patients. Detection of tick-borne pathogens was performed by amplification and sequencing of different loci. Molecular and phylogenetic analyses of obtained nucleotide sequences were performed. Serum samples were analyzed for antibodies against tick-borne pathogens by using commercial tests in all patients. Among 148 studied blood samples from HIV-infected patients, two cases (1.4%) of infection with tick-borne pathogen were reported. No symptoms of tick-borne infection were observed in these cases. In one case a patient was infected with Anaplasma phagocytophilum - the agent of human granulocytic anaplasmosis (HGA) and in the other with Borrelia garinii. Our study revealed the first case of HIV positive patient infected with A. phagocytophilum. Asymptomatic tick-borne infection can occur in HIV-positive patients. The detailed history of tick bites, especially in endemic tick areas, should be considered as part of anamnesis in routine clinical care of HIV-positive patients.

  4. Rocky Mountain spotted fever from an unexpected tick vector in Arizona.

    PubMed

    Demma, Linda J; Traeger, Marc S; Nicholson, William L; Paddock, Christopher D; Blau, Dianna M; Eremeeva, Marina E; Dasch, Gregory A; Levin, Michael L; Singleton, Joseph; Zaki, Sherif R; Cheek, James E; Swerdlow, David L; McQuiston, Jennifer H

    2005-08-11

    Rocky Mountain spotted fever is a life-threatening, tick-borne disease caused by Rickettsia rickettsii. This disease is rarely reported in Arizona, and the principal vectors, Dermacentor species ticks, are uncommon in the state. From 2002 through 2004, a focus of Rocky Mountain spotted fever was investigated in rural eastern Arizona. We obtained blood and tissue specimens from patients with suspected Rocky Mountain spotted fever and ticks from patients' homesites. Serologic, molecular, immunohistochemical, and culture assays were performed to identify the causative agent. On the basis of specific laboratory criteria, patients were classified as having confirmed or probable Rocky Mountain spotted fever infection. A total of 16 patients with Rocky Mountain spotted fever infection (11 with confirmed and 5 with probable infection) were identified. Of these patients, 13 (81 percent) were children 12 years of age or younger, 15 (94 percent) were hospitalized, and 2 (12 percent) died. Dense populations of Rhipicephalus sanguineus ticks were found on dogs and in the yards of patients' homesites. All patients with confirmed Rocky Mountain spotted fever had contact with tick-infested dogs, and four had a reported history of tick bite preceding the illness. R. rickettsii DNA was detected in nonengorged R. sanguineus ticks collected at one home, and R. rickettsii isolates were cultured from these ticks. This investigation documents the presence of Rocky Mountain spotted fever in eastern Arizona, with common brown dog ticks (R. sanguineus) implicated as a vector of R. rickettsii. The broad distribution of this common tick raises concern about its potential to transmit R. rickettsii in other settings. Copyright 2005 Massachusetts Medical Society.

  5. Molecular detection of Rickettsia conorii and other zoonotic spotted fever group rickettsiae in ticks, Romania.

    PubMed

    Ionita, Mariana; Silaghi, Cornelia; Mitrea, Ioan Liviu; Edouard, Sophie; Parola, Philippe; Pfister, Kurt

    2016-02-01

    The diverse tick fauna as well as the abundance of tick populations in Romania represent potential risks for both human and animal health. Spotted fever group (SFG) rickettsiae are recognized as important agents of emerging human tick-borne diseases worldwide. However, the epidemiology of rickettsial diseases has been poorly investigated in Romania. In urban habitats, companion animals which are frequently exposed to tick infestation, play a role in maintenance of tick populations and as reservoirs of tick-borne pathogens. Therefore, the aim of the present study was to investigate the occurrence of SFG rickettsiae in ticks infesting dogs in a greater urban area in South-eastern Romania. Adult ixodid ticks (n=205), including Rhipicephalus sanguineus sensu lato (n=120), Dermacentor reticulatus (n=76) and Ixodes ricinus (n=9) were collected from naturally infested dogs and were screened for SFG rickettsiae using conventional PCR followed by sequencing. Additionally, ticks were screened for DNA of Babesia spp., Hepatozoon spp., Ehrlichia canis, and Anaplasma platys. Four zoonotic SFG rickettsiae were identified: Rickettsia raoultii (16%) and Rickettsia slovaca (3%) in D. reticulatus, Rickettsia monacensis (11%) in I. ricinus, and Rickettsia conorii (0.8%) in Rh. sanguineus s.l. Moreover, pathogens of veterinary importance, such as B. canis (21%) in D. reticulatus and E. canis (7.5%) in Rh. sanguineus s.l. were identified. The findings expand the knowledge on distribution of SFG rickettsiae as well as canine pathogens in Romania. Additionally, this is the first report describing the molecular detection of R. conorii in ticks from Romania. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence.

    PubMed

    Kenney, Joan L; Anishchenko, Michael; Hermance, Meghan; Romo, Hannah; Chen, Ching-I; Thangamani, Saravanan; Brault, Aaron C

    2018-05-21

    The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.

  7. Male discrimination of receptive and unreceptive female calls by temporal features

    PubMed Central

    Elliott, Taffeta M.; Kelley, Darcy B.

    2012-01-01

    Summary In murky, crowded ponds in South Africa, female clawed frogs, Xenopus laevis (Daudin), vocalize to signal reproductive state. Female calls consist of acoustically similar clicks delivered in trains with characteristic rates. The rapping call of a sexually receptive female has a more rapid click rate [81 ms mean interclick interval (ICI)] than the ticking call of an unreceptive female (219 ms ICI). Rapping stimulates male advertisement calling, whereas ticking suppresses an already calling male. We examined how males label and discriminate female click rates. A labeling boundary experiment revealed that males perceive click rates between the means of rapping and ticking as lying on a continuum. They respond to 98 and 160 ms ICI as though to rapping and ticking, respectively. However, calling evoked by a click rate equally common to both calls (120 ms ICI) did not differ from the response to either rapping or ticking. A second experiment evaluated whether males discriminate click rates both labeled as ticking (180 and 219 ms ICI). Ticking suppresses advertising males, and suppressed males habituate (resume calling) to prolonged ticking. Both ticking stimuli suppressed males with equal effectiveness, and males habituated in equivalent amounts of time. When the stimulus was switched during habituation, no dishabituation occurred. We conclude that male labeling of click trains as rapping or ticking reflects an ambiguity resulting from the overlap in ICIs naturally occurring in the calls. Males do not respond differentially to click rates within the ticking category. Males thus combine discriminating and non-discriminating strategies in responding to the salient feature of female calls. PMID:17690231

  8. Detection of human bacterial pathogens in ticks collected from Louisiana black bears (Ursus americanus luteolus)

    PubMed Central

    Leydet, Brian F.; Liang, Fang-Ting

    2013-01-01

    There are 4 major human-biting tick species in the northeastern United States, which include: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. The black bear is a large mammal that has been shown to be parasitized by all the aforementioned ticks. We investigated the bacterial infections in ticks collected from Louisiana black bears (Ursus americanus subspecies luteolus). Eighty-six ticks were collected from 17 black bears in Louisiana from June 2010 to March 2011. All 4 common human-biting tick species were represented. Each tick was subjected to polymerase chain reaction (PCR) targeting select bacterial pathogens and symbionts. Bacterial DNA was detected in 62% of ticks (n=53). Rickettsia parkeri, the causative agent of an emerging spotted fever group rickettsiosis, was identified in 66% of A. maculatum, 28% of D. variabilis, and 11% of I. scapularis. The Lyme disease bacterium, Borrelia burgdorferi, was detected in 2 I. scapularis, while one Am. americanum was positive for Borrelia bissettii, a putative human pathogen. The rickettsial endosymbionts Candidatus Rickettsia andeanae, rickettsial endosymbiont of I. scapularis, and Rickettsia amblyommii were detected in their common tick hosts at 21%, 39%, and 60%, respectively. All ticks were PCR-negative for Anaplasma phagocytophilum, Ehrlichia spp., and Babesia microti. This is the first reported detection of R. parkeri in vector ticks in Louisiana; we also report the novel association of R. parkeri with I. scapularis. Detection of both R. parkeri and Bo. burgdorferi in their respective vectors in Louisiana demands further investigation to determine potential for human exposure to these pathogens. PMID:23415850

  9. Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection.

    PubMed

    McAuley, Alexander J; Sawatsky, Bevan; Ksiazek, Thomas; Torres, Maricela; Korva, Miša; Lotrič-Furlan, Stanka; Avšič-Županc, Tatjana; von Messling, Veronika; Holbrook, Michael R; Freiberg, Alexander N; Beasley, David W C; Bente, Dennis A

    2017-01-01

    The tick-borne encephalitis complex contains a number of flaviviruses that share close genetic homology, and are responsible for significant human morbidity and mortality with widespread geographical range. Although many members of this complex have been recognised for decades, licenced human vaccines with broad availability are only available for tick-borne encephalitis virus. While tick-borne encephalitis virus vaccines have been demonstrated to induce significant protective immunity, as determined by virus-neutralisation titres, vaccine breakthrough (clinical infection following complete vaccination), has been described. The aim of this study was to confirm the cross-neutralisation of tick-borne flaviviruses using mouse immune ascitic fluids, and to determine the magnitude of cross-neutralising antibody titres in sera from donors following tick-borne encephalitis vaccination, infection, and vaccine breakthrough. The results demonstrate that there is significant cross-neutralisation of representative members of the tick-borne encephalitis complex following vaccination and/or infection, and that the magnitude of immune responses varies based upon the exposure type. Donor sera successfully neutralised most of the viruses tested, with 85% of vaccinees neutralising Kyasanur forest disease virus and 73% of vaccinees neutralising Alkhumra virus. By contrast, only 63% of vaccinees neutralised Powassan virus, with none of these neutralisation titres exceeding 1:60. Taken together, the data suggest that tick-borne encephalitis virus vaccination may protect against most of the members of the tick-borne encephalitis complex including Kyasanur forest disease virus and Alkhumra virus, but that the neutralisation of Powassan virus following tick-borne encephalitis vaccination is minimal.

  10. Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila

    PubMed Central

    Kurscheid, Sebastian; Lew-Tabor, Ala E; Rodriguez Valle, Manuel; Bruyeres, Anthea G; Doogan, Vivienne J; Munderloh, Ulrike G; Guerrero, Felix D; Barrero, Roberto A; Bellgard, Matthew I

    2009-01-01

    Background The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle industries world wide. With the availability of sequence reads from the first Chelicerate genome project (the Ixodes scapularis tick) and extensive R. microplus ESTs, we investigated evidence for putative RNAi proteins and studied RNA interference in tick cell cultures and adult female ticks targeting Drosophila homologues with known cell viability phenotype. Results We screened 13,643 R. microplus ESTs and I. scapularis genome reads to identify RNAi related proteins in ticks. Our analysis identified 31 RNAi proteins including a putative tick Dicer, RISC associated (Ago-2 and FMRp), RNA dependent RNA polymerase (EGO-1) and 23 homologues implicated in dsRNA uptake and processing. We selected 10 R. microplus ESTs with >80% similarity to D. melanogaster proteins associated with cell viability for RNAi functional screens in both BME26 R. microplus embryonic cells and female ticks in vivo. Only genes associated with proteasomes had an effect on cell viability in vitro. In vivo RNAi showed that 9 genes had significant effects either causing lethality or impairing egg laying. Conclusion We have identified key RNAi-related proteins in ticks and along with our loss-of-function studies support a functional RNAi pathway in R. microplus. Our preliminary studies indicate that tick RNAi pathways may differ from that of other Arthropods such as insects. PMID:19323841

  11. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus detected from ticks of one humped camels (Camelus dromedarius) population in northeastern Iran.

    PubMed

    Champour, Mohsen; Chinikar, Sadegh; Mohammadi, Gholamreza; Razmi, Gholamreza; Shah-Hosseini, Nariman; Khakifirouz, Sahar; Mostafavi, Ehsan; Jalali, Tahmineh

    2016-03-01

    A comprehensive study was conducted on camel ticks to assess the epidemiological aspects of the infection in camels. From May 2012 to January 2013, 11 cities and towns from the Khorasan provinces, northeastern Iran, were randomly selected as a "cluster" and at least 14 camels were sampled from each cluster. A total of 200 camels were examined in this study, reverse transcriptase polymerase chain reaction was used for the detection of the Crimean-Congo hemorrhagic fever virus (CCHFV) genome. Tick infestation was observed in 171 of the 200 camels, 480 ixodid ticks were collected, and one genus was identified as Hyalomma. Four species were reported to be the major tick species infesting camels. Among these, Hyalomma dromedarii was the most predominant tick species (90.7 %), followed by H. anatolicum (6 %), H. marginatum (2.9 %), and H. asiaticum (0.4 %). The genome of the CCHFV was detected in 49 (10.2 %) of the 480 ticks. The CCHFV RNA was detected in two of the four tick species, and the viral genome was detected from tick samples in three South Khorasan cities. The positivity rate of ticks was as follows: Boshroyeh, 25 out of 480 (5.2 %); Birjand, 17 out of 480 (3.5 %); and Nehbandan, 7 out of 480 (1.5 %). We recommend the use of acaricides to prevent disease transmission to humans and to reduce the tick population in camels. Care should be taken by abattoir workers and by those who work closely with camels.

  12. Isolation of Entomopathogenic Fungi From Soils and Ixodes scapularis (Acari: Ixodidae) Ticks: Prevalence and Methods

    PubMed Central

    Tuininga, Amy R.; Miller, Jessica L.; Morath, Shannon U.; Daniels, Thomas J.; Falco, Richard C.; Marchese, Michael; Sahabi, Sadia; Rosa, Dieshia; Stafford, Kirby C.

    2009-01-01

    Entomopathogenic fungi are commonly found in forested soils that provide tick habitat, and many species are pathogenic to Ixodes scapularis Say, the blacklegged tick. As a first step to developing effective biocontrol strategies, the objective of this study was to determine the best methods to isolate entomopathogenic fungal species from field-collected samples of soils and ticks from an Eastern deciduous forest where I. scapularis is common. Several methods were assessed: (1) soils, leaf litter, and ticks were plated on two types of media; (2) soils were assayed for entomopathogenic fungi using the Galleria bait method; (3) DNA from internal transcribed spacer (ITS) regions of the nuclear ribosomal repeat was extracted from pure cultures obtained from soils, Galleria, and ticks and was amplified and sequenced; and (4) DNA was extracted directly from ticks, amplified, and sequenced. We conclude that (1) ticks encounter potentially entomopathogenic fungi more often in soil than in leaf litter, (2) many species of potentially entomopathogenic fungi found in the soil can readily be cultured, (3) the Galleria bait method is a sufficiently efficient method for isolation of these fungi from soils, and (4) although DNA extraction from ticks was not possible in this study because of small sample size, DNA extraction from fungi isolated from soils and from ticks was successful and provided clean sequences in 100 and 73% of samples, respectively. A combination of the above methods is clearly necessary for optimal characterization of entomopathogenic fungi associated with ticks in the environment. PMID:19496427

  13. Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis.

    PubMed

    Kocan, Katherine M; Zivkovic, Zorica; Blouin, Edmour F; Naranjo, Victoria; Almazán, Consuelo; Mitra, Ruchira; de la Fuente, José

    2009-07-16

    The cattle pathogen, Anaplasma marginale, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of A. marginale (reticulated and dense) occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in Dermacentor variabilis ticks in response to infection with A. marginale, were silenced by RNA interference (RNAi) to determine the effect of silencing on the A. marginale developmental cycle. These four genes encoded for putative glutathione S-transferase (GST), salivary selenoprotein M (SelM), H+ transporting lysosomal vacuolar proton pump (vATPase) and subolesin. The impact of gene knockdown on A. marginale tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on A. marginale development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen. The results of this RNAi and light microscopic analyses of tick tissues infected with A. marginale after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.

  14. 9 CFR 72.1 - Ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus, or Rhipicephalus evertsi...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Ticks [Boophilus annulatus (Margaropus... ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.1 Ticks [Boophilus annulatus (Margaropus annulatus... prohibited. No animals infested with ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus...

  15. 9 CFR 72.1 - Ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus, or Rhipicephalus evertsi...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Ticks [Boophilus annulatus (Margaropus... ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.1 Ticks [Boophilus annulatus (Margaropus annulatus... prohibited. No animals infested with ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus...

  16. 9 CFR 72.1 - Ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus, or Rhipicephalus evertsi...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Ticks [Boophilus annulatus (Margaropus... ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.1 Ticks [Boophilus annulatus (Margaropus annulatus... prohibited. No animals infested with ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus...

  17. 9 CFR 72.1 - Ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus, or Rhipicephalus evertsi...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Ticks [Boophilus annulatus (Margaropus... ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.1 Ticks [Boophilus annulatus (Margaropus annulatus... prohibited. No animals infested with ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus...

  18. The bacterial microbiome of dermacentor andersoni ticks influences pathogen susceptibility

    USDA-ARS?s Scientific Manuscript database

    Ticks are of medical and veterinary importance due to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Al...

  19. [Diseases transmitted by ticks locally and abroad].

    PubMed

    Gétaz, L; Loutan, L; Mezger, N

    2012-05-09

    This article provides a brief overview of some diseases transmitted by ticks. These vectors do not transmit only Lyme disease and tickborne-encephalitis, even in Switzerland. Several tick-borne diseases cause nonspecific flu-like symptoms. Nevertheless sometimes severe, some of these diseases can be treated with specific treatments. Repellents, appropriate clothes impregnated with permethrine and prompt removal of the tick are effective preventive measures to limit the risk of infection. There is an effective vaccine which protects against tick-borne encephalitis.

  20. Managing Rocky Mountain spotted fever.

    PubMed

    Minniear, Timothy D; Buckingham, Steven C

    2009-11-01

    Rocky Mountain spotted fever is caused by the tick-borne bacterium Rickettsia rickettsii. Symptoms range from moderate illness to severe illness, including cardiovascular compromise, coma and death. The disease is prevalent in most of the USA, especially during warmer months. The trademark presentation is fever and rash with a history of tick bite, although tick exposure is unappreciated in over a third of cases. Other signature symptoms include headache and abdominal pain. The antibiotic therapy of choice for R. rickettsii infection is doxycycline. Preventive measures for Rocky Mountain spotted fever and other tick-borne diseases include: wearing long-sleeved, light colored clothing; checking for tick attachment and removing attached ticks promptly; applying topical insect repellent; and treating clothing with permethrin.

  1. Detection of Rickettsia and Anaplasma from hard ticks in Thailand.

    PubMed

    Malaisri, Premnika; Hirunkanokpun, Supanee; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2015-12-01

    We collected a total of 169 adult hard ticks and 120 nymphs from under the leaves of plants located along tourist nature trails in ten localities. The results present data examining the vector competence of ticks of different genera and the presence of Rickettsia and Anaplasma species. The ticks belonged to three genera, Amblyomma, Dermacentor, and Haemaphysalis, comprising 11 species. Rickettsia bacteria were detected at three collection sites, while Anaplasma bacteria were detected at only one site. Phylogenetic analysis revealed new rickettsia genotypes from Thailand that were closely related to Rickettsia tamurae, Rickettsia monacensis, and Rickettsia montana. This study was also the first to show that Anaplasma bacteria are found in Haemaphysalis shimoga ticks and are closely related evolutionarily to Anaplasma bovis. These results provide additional information for the geographical distribution of tick species and tick-borne bacteria in Thailand and can therefore be applied for ecotourism management. © 2015 The Society for Vector Ecology.

  2. Widespread distribution of ticks and selected tick-borne pathogens in Kentucky (USA).

    PubMed

    Lockwood, Bessie H; Stasiak, Iga; Pfaff, Madeleine A; Cleveland, Christopher A; Yabsley, Michael J

    2018-03-01

    The geographical distribution of Ixodes scapularis and Amblyomma maculatum ticks is poorly understood in Kentucky. We conducted a convenience survey of wildlife species (white-tailed deer (Odocoileus virginianus), elk (Cervus canadensis) and black bears (Ursus americanus)) for ticks from October 2015 to January 2017. We detected four tick species including Amblyomma americanum, Dermacentor albipictus, I. scapularis and A. maculatum. Although the former two tick species were previously known to be widely distributed in Kentucky, we also found that I. scapularis and A. maculatum were also widespread. Because of the limited data available for pathogens from I. scapularis and A. maculatum, we tested them for Borrelia and Rickettsia spp. by polymerase chain reaction assays. Prevalence of Borrelia burgdorferi sensu stricto and Rickettsia parkeri were 11% and 3%, respectively. These data indicate that public health measures are important to prevent tick-borne diseases in Kentucky. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Effect of different East Coast Fever control strategies on fertility, milk production and weight gain of Sanga cattle in the Central Province of Zambia.

    PubMed

    Minjauw, B; Otte, J; James, A D; de Castro, J J; Sinyangwe, P

    1997-12-01

    Five different East Coast Fever (ECF) (Theileria parva infection) control strategies, based on tick control and/or ECF immunization, were tested in groups of traditionally managed Sanga cattle in the Central Province of Zambia over a period of 2.5 years. Two groups were kept under intensive tick control (sprayed weekly), one group immunized and one non-immunized. Two further groups were under no tick control, one group immunized and one non-immunized, while a fifth group was immunized against ECF and maintained under strategic tick control (18 sprays per year). Tick control increased milk production and weight gain but not fertility. Immunization had neither marked detrimental nor beneficial effects on the cattle productivity. The combination of strategic tick control and immunization resulted in the highest level of production and at the same time reduced the potential risk from other tick-borne diseases.

  4. Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses.

    PubMed

    Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X

    1993-05-01

    The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.

  5. Short report: duration of tick attachment required for transmission of powassan virus by deer ticks.

    PubMed

    Ebel, Gregory D; Kramer, Laura D

    2004-09-01

    Infected deer ticks (Ixodes scapularis) were allowed to attach to naive mice for variable lengths of time to determine the duration of tick attachment required for Powassan (POW) virus transmission to occur. Viral load in engorged larvae detaching from viremic mice and in resulting nymphs was also monitored. Ninety percent of larval ticks acquired POW virus from mice that had been intraperitoneally inoculated with 10(5) plaque-forming units (PFU). Engorged larvae contained approximately 10 PFU. Transstadial transmission efficiency was 22%, resulting in approximately 20% infection in nymphs that had fed as larvae on viremic mice. Titer increased approximately 100-fold during molting. Nymphal deer ticks efficiently transmitted POW virus to naive mice after as few as 15 minutes of attachment, suggesting that unlike Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum, no grace period exists between tick attachment and POW virus transmission.

  6. Perpetuation of the Lyme disease spirochete Borrelia lusitaniae by lizards.

    PubMed

    Richter, Dania; Matuschka, Franz-Rainer

    2006-07-01

    To determine whether the Lyme disease spirochete Borrelia lusitaniae is associated with lizards, we compared the prevalence and genospecies of spirochetes present in rodent- and lizard-associated ticks at a site where this spirochete frequently infects questing ticks. Whereas questing nymphal Ixodes ricinus ticks were infected mainly by Borrelia afzelii, one-half of the infected adult ticks harbored B. lusitaniae at our study site. Lyme disease spirochetes were more prevalent in sand lizards (Lacerta agilis) and common wall lizards (Podarcis muralis) than in small rodents. Although subadult ticks feeding on rodents acquired mainly B. afzelii, subadult ticks feeding on lizards became infected by B. lusitaniae. Genetic analysis confirmed that the spirochetes isolated from ticks feeding on lizards are members of the B. lusitaniae genospecies and resemble type strain PotiB2. At our central European study site, lizards, which were previously considered zooprophylactic for the agent of Lyme disease, appear to perpetuate B. lusitaniae.

  7. Methods for control of tick vectors of Lyme Borreliosis

    USGS Publications Warehouse

    Jaenson, T.G.T.; Fish, D.; Ginsberg, H.S.; Gray, J.S.; Mather, T.N.; Piesman, J.

    1991-01-01

    During the IVth International Conference on Lyme Borreliosis in Stockholm, 1990, a workshop on control of Lyme disease vectors briefly reviewed: basic ecological principles for tick control; biocontrol of ticks; chemical control, including the use of repellents and use of permethrin-treated rodent nest material; tick control by habitat modification; and reduction of tick host availability. It was concluded that, although much research work remains, Lyme borreliosis is to a large extent a preventable infection. Avoidance of heavily tick-infested areas, personal protection using proper clothing, and prompt removal of attached ticks remain the most effective protective measures. Many other prophylactic measures are available and could be efficiently integrated into schemes to reduce the abundance of vectors. However, since the ecology of the infection varies greatly between different localities it may be necessary to apply different combinations of control methods in different endemic regions.

  8. Rickettsia Species in Ticks Removed from Humans in Istanbul, Turkey

    PubMed Central

    Gargili, Aysen; Palomar, Ana M.; Midilli, Kenan; Portillo, Aránzazu; Kar, Sırrı

    2012-01-01

    Abstract A total of 167 ticks collected from humans in Istanbul (Turkey) in 2006 were screened for Rickettsia species, and nested PCRs targeting gltA and ompA rickettsial fragment genes were carried out. Rickettsia monacensis (51), R. aeschlimannii (8), R. conorii subsp. conorii (3), R. helvetica (2), R. raoultii (1), R. africae (1), R. felis (1), and other Rickettsia spp. (2), were detected. To our knowledge, these Rickettsia species (except R. conorii) had never been reported in ticks removed from humans in Turkey. The presence of R. africae also had not been previously described, either in Hyalomma ticks or in any European tick species. In addition, R. aeschlimannii and R. felis had not been found associated with Rhipicephalus bursa specimens. The presence of human pathogenic Rickettsia in ticks removed from humans provides information about the risk of tick-borne rickettsioses in Turkey. PMID:22925016

  9. Detection of Babesia spp. in Dogs and Their Ticks From Peninsular Malaysia: Emphasis on Babesia gibsoni and Babesia vogeli Infections in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae).

    PubMed

    Prakash, Batah Kunalan; Low, Van Lun; Vinnie-Siow, Wei Yin; Tan, Tiong Kai; Lim, Yvonne Ai-Lian; Morvarid, Akhavan Rezaei; AbuBakar, Sazaly; Sofian-Azirun, Mohd

    2018-05-12

    Canine babesiosis is an emerging tick-borne disease with a worldwide distribution, including Malaysia. While the prevalence of Babesia has been documented from dogs in Malaysia, occurrence of Babesia has been relatively little studied in their tick vectors. Accordingly, a total of 240 dogs and 140 Rhipicephalus sanguineus sensu lato (s.l.) (Acari: Ixodidae) ticks from Malaysia were molecularly screened for the presence of Babesia protozoa in the present study. Babesia gibsoni was only detected in ticks (1.4%), whereas Babesia vogeli was detected in both ticks (1.4%) and dogs (2.1%). This study highlights the detection of B. gibsoni and B. vogeli for the first time, in both adult and nymphal stages of R. sanguineus s.l. in Malaysia, suggesting the potential role of this tick species in transmitting canine babesiosis.

  10. Perpetuation of the Lyme Disease Spirochete Borrelia lusitaniae by Lizards

    PubMed Central

    Richter, Dania; Matuschka, Franz-Rainer

    2006-01-01

    To determine whether the Lyme disease spirochete Borrelia lusitaniae is associated with lizards, we compared the prevalence and genospecies of spirochetes present in rodent- and lizard-associated ticks at a site where this spirochete frequently infects questing ticks. Whereas questing nymphal Ixodes ricinus ticks were infected mainly by Borrelia afzelii, one-half of the infected adult ticks harbored B. lusitaniae at our study site. Lyme disease spirochetes were more prevalent in sand lizards (Lacerta agilis) and common wall lizards (Podarcis muralis) than in small rodents. Although subadult ticks feeding on rodents acquired mainly B. afzelii, subadult ticks feeding on lizards became infected by B. lusitaniae. Genetic analysis confirmed that the spirochetes isolated from ticks feeding on lizards are members of the B. lusitaniae genospecies and resemble type strain PotiB2. At our central European study site, lizards, which were previously considered zooprophylactic for the agent of Lyme disease, appear to perpetuate B. lusitaniae. PMID:16820453

  11. Occurrence of Amblyomma dissimile on wild crocodylians in southern Mexico.

    PubMed

    Charruau, Pierre; Pérez-Flores, Jonathan; Cedeño-Vázquez, J Rogelio; Gonzalez-Solis, David; González-Desales, Giovany A; Monroy-Vilchis, Octavio; Desales-Lara, Marco A

    2016-09-26

    Ticks are common ectoparasites of amphibians and reptiles but very few reports of such parasites on crocodylians exist worldwide. Herein, we report the first detailed observations of Amblyomma dissimile Koch, 1844 on the 3 crocodylian species present in Mexico, with the first report of tick parasitism on Crocodylus acutus and the second on Caiman crocodilus chiapasius. This is also the first report of A. dissimile in the state of Quintana Roo. Proportions of infested individuals found in this study ranged from 0.51 to 1.96%, suggesting that tick parasitism in crocodylians is likely opportunistic and occurs when individuals leave the water for terrestrial activities. Tick parasitism does not represent a major threat to crocodylians. The increasing habitat destruction/fragmentation and cattle expansion in southeastern Mexico, however, could increase tick populations and trigger tick parasitism and tick-borne diseases in herpetofauna and other vertebrates, including humans. Thus, studies are needed to better understand these relationships.

  12. 76 FR 8709 - Environmental Impact Statement; Proposed Cattle Fever Tick Control Barrier in South Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... tick control barrier using game fencing to keep cattle fever ticks and southern cattle ticks out of... zone include horseback patrols, a segmented barrier consisting of game fencing, and treatments applied... determined that the installation of additional game fencing in the permanent quarantine zone would...

  13. The Use of Humor in a CBI Science Lesson To Enhance Retention.

    ERIC Educational Resources Information Center

    Snetsinger, Wendy; Grabowski, Barbara

    This research experiment studied the effect of humor versus non-humor on learning and retention of a computer-based instructional (CBI) lesson on tick identification. The experiment also surveyed the subjects' enjoyment of the lesson material, their personal experiences with ticks, and their concerns about ticks and tick-borne diseases.…

  14. 28 CFR 0.64-3 - Delegation respecting designation of certain Department of Agriculture employees (Tick Inspectors...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certain Department of Agriculture employees (Tick Inspectors) to carry and use firearms. 0.64-3 Section 0... Division § 0.64-3 Delegation respecting designation of certain Department of Agriculture employees (Tick... 7, U.S. Code, concerning the designation of certain Department of Agriculture employees (Tick...

  15. 28 CFR 0.64-3 - Delegation respecting designation of certain Department of Agriculture employees (Tick Inspectors...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certain Department of Agriculture employees (Tick Inspectors) to carry and use firearms. 0.64-3 Section 0... Division § 0.64-3 Delegation respecting designation of certain Department of Agriculture employees (Tick... 7, U.S. Code, concerning the designation of certain Department of Agriculture employees (Tick...

  16. 28 CFR 0.64-3 - Delegation respecting designation of certain Department of Agriculture employees (Tick Inspectors...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certain Department of Agriculture employees (Tick Inspectors) to carry and use firearms. 0.64-3 Section 0... Division § 0.64-3 Delegation respecting designation of certain Department of Agriculture employees (Tick... 7, U.S. Code, concerning the designation of certain Department of Agriculture employees (Tick...

  17. 28 CFR 0.64-3 - Delegation respecting designation of certain Department of Agriculture employees (Tick Inspectors...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certain Department of Agriculture employees (Tick Inspectors) to carry and use firearms. 0.64-3 Section 0... Division § 0.64-3 Delegation respecting designation of certain Department of Agriculture employees (Tick... 7, U.S. Code, concerning the designation of certain Department of Agriculture employees (Tick...

  18. 28 CFR 0.64-3 - Delegation respecting designation of certain Department of Agriculture employees (Tick Inspectors...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certain Department of Agriculture employees (Tick Inspectors) to carry and use firearms. 0.64-3 Section 0... Division § 0.64-3 Delegation respecting designation of certain Department of Agriculture employees (Tick... 7, U.S. Code, concerning the designation of certain Department of Agriculture employees (Tick...

  19. 9 CFR 72.21 - Animals infested with or exposed to ticks subject to same restrictions as cattle.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ticks subject to same restrictions as cattle. 72.21 Section 72.21 Animals and Animal Products ANIMAL AND... exposed to ticks subject to same restrictions as cattle. Animals other than cattle which are infested with ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus, or Rhipicephalus evertsi evertsi...

  20. 9 CFR 72.21 - Animals infested with or exposed to ticks subject to same restrictions as cattle.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ticks subject to same restrictions as cattle. 72.21 Section 72.21 Animals and Animal Products ANIMAL AND... exposed to ticks subject to same restrictions as cattle. Animals other than cattle which are infested with ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus, or Rhipicephalus evertsi evertsi...

  1. 9 CFR 72.21 - Animals infested with or exposed to ticks subject to same restrictions as cattle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ticks subject to same restrictions as cattle. 72.21 Section 72.21 Animals and Animal Products ANIMAL AND... exposed to ticks subject to same restrictions as cattle. Animals other than cattle which are infested with ticks [Boophilus annulatus (Margaropus annulatus), Boophilus microplus, or Rhipicephalus evertsi evertsi...

  2. Spatial multi-criteria decision analysis for modelling suitable habitats of Ornithodoros soft ticks in the Western Palearctic region

    USDA-ARS?s Scientific Manuscript database

    Ticks are economically and medically important due to the injuries inflicted through their bite, and their ability to transmit pathogens to humans, livestock, and wildlife. Whereas hard ticks have been intensively studied, little is known about soft ticks, even though they can transmit several patho...

  3. Advancing integrated tick management to mitigate burden of tick-borne diseases

    USDA-ARS?s Scientific Manuscript database

    More than half of the world’s population is at risk of exposure to vector-borne pathogens. Annually, more than 1 billion people are infected and more than 1 million die from vector-borne diseases, including those caused by pathogens transmitted by ticks. The problem with tick borne diseases (TBD) is...

  4. Diagnosis of Queensland tick typhus and African tick bite fever by PCR of lesion swabs.

    PubMed

    Wang, Jin Mei; Hudson, Bernard J; Watts, Matthew R; Karagiannis, Tom; Fisher, Noel J; Anderson, Catherine; Roffey, Paul

    2009-06-01

    We report 3 cases of Queensland tick typhus (QTT) and 1 case of African tick bite fever in which the causative rickettsiae were detected by PCR of eschar and skin lesions in all cases. An oral mucosal lesion in 1 QTT case was also positive.

  5. Experimental Transmission of Karshi and Langat (Tick-Borne Encephalitis Virus Complex) Viruses by Ornithodoros Ticks (Acari: Argasidae)

    DTIC Science & Technology

    2004-01-01

    mosquitoes and Ornithodoros ticks were evaluated for their potential to transmit Karshi and Langat (tick-borne encephalitis virus complex) viruses in the...orally exposed to Langat virus, were able to transmit this virus after more than 3 years, the longest interval tested. Therefore, Ornithodoros spp

  6. Update on Tick-Borne Rickettsioses around the World: a Geographic Approach

    PubMed Central

    Paddock, Christopher D.; Socolovschi, Cristina; Labruna, Marcelo B.; Mediannikov, Oleg; Kernif, Tahar; Abdad, Mohammad Yazid; Stenos, John; Bitam, Idir; Fournier, Pierre-Edouard; Raoult, Didier

    2013-01-01

    SUMMARY Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group of the genus Rickettsia. These zoonoses are among the oldest known vector-borne diseases. However, in the past 25 years, the scope and importance of the recognized tick-associated rickettsial pathogens have increased dramatically, making this complex of diseases an ideal paradigm for the understanding of emerging and reemerging infections. Several species of tick-borne rickettsiae that were considered nonpathogenic for decades are now associated with human infections, and novel Rickettsia species of undetermined pathogenicity continue to be detected in or isolated from ticks around the world. This remarkable expansion of information has been driven largely by the use of molecular techniques that have facilitated the identification of novel and previously recognized rickettsiae in ticks. New approaches, such as swabbing of eschars to obtain material to be tested by PCR, have emerged in recent years and have played a role in describing emerging tick-borne rickettsioses. Here, we present the current knowledge on tick-borne rickettsiae and rickettsioses using a geographic approach toward the epidemiology of these diseases. PMID:24092850

  7. Modelling the transmission dynamics of Theileria annulata: model structure and validation for the Turkish context

    PubMed Central

    SUTTON, A. J.; KARAGENC, T.; BAKIRCI, S.; SARALI, H.; PEKEL, G.; MEDLEY, G. F.

    2012-01-01

    SUMMARY A mathematical model that describes the transmission dynamics of Theileria annulata is proposed that consists of 2 host components: the Hyalomma tick population and a compartmental model of T. annulata infection in the cattle population. The model was parameterized using data describing tick infestation and the infection status of cattle in Turkey from 2006 to 2008. The tick attachment rates are highly seasonal and because of the temporal separation of infectious and susceptible ticks virtually all ticks are infected by carrier cattle, so that annual peaks of disease in cattle do not impact on infection in the Hyalomma tick population. The impact of intervention measures that target the tick population both on the host and in the environment and their impact on the transmission of T. annulata were investigated. Interventions that have a limited ‘one-off’ impact and interventions that have a more permanent impact were both considered. The results from the model show the importance of targeting ticks during the period when they have left their first host as nymphs but have yet to feed on their second host. PMID:22309815

  8. Multiple pruritic papules from lone star tick larvae bites.

    PubMed

    Fisher, Emily J; Mo, Jun; Lucky, Anne W

    2006-04-01

    Ticks are the second most common vectors of human infectious diseases in the world. In addition to their role as vectors, ticks and their larvae can also produce primary skin manifestations. Infestation by the larvae of ticks is not commonly recognized, with only 3 cases reported in the literature. The presence of multiple lesions and partially burrowed 6-legged tick larvae can present a diagnostic challenge for clinicians. We describe a 51-year-old healthy woman who presented to our clinic with multiple erythematous papules and partially burrowed organisms 5 days after exposure to a wooded area in southern Kentucky. She was treated with permethrin cream and the lesions resolved over the following 3 weeks without sequelae. The organism was later identified as the larva of Amblyomma species, the lone star tick. Multiple pruritic papules can pose a diagnostic challenge. The patient described herein had an unusually large number of pruritic papules as well as tick larvae present on her skin. Recognition of lone star tick larvae as a cause of multiple bites may be helpful in similar cases.

  9. Pathogenicity of Steinernema carpocapsae and Steinernema glaseri (Nematoda:Steinernematidae) to Ixodes Scapularis (Acari:Ixodidae)

    USGS Publications Warehouse

    Zhioua, E.; LeBrun, R.A.; Ginsberg, H.S.; Aeschliman, A.

    1995-01-01

    The entomopathogenic nematodes Steinernema carpocapsae (Weiser) and S. glaseri (Steiner) are pathogenic to engorged adult, blacklegged ticks, Ixodes scapularis (Say), but not to unfed females, engorged nymphs, or engorged larvae. Nematodes apparently enter the tick through the genital pore, thus precluding infection of immature ticks. The timing of tick mortality, and overall mortality after 17 d, did not differ between infections by S. carpocapsae and S. glaseri. These nematodes typically do not complete their life cycles or produce infective juveniles in I. scapularis. However, both species successfully produced infective juveniles when the tick body was slit before nematode infection. Mortality of engorged I. scapularis females infected by S. carpocapsae was greater than uninfected controls, but did not vary significantly with nematode concentration (50-3,000 infective juveniles per 5-cm-diameter petri dish). The LC50 was 347.8 infective juveniles per petri dish (5 ticks per dish). Hatched egg masses of infected ticks weighed less than those of uninfected controls. Mortality of infected ticks was greatest between 20 and 30?C, and was lower at 15?C.

  10. Update on Tick-Borne Bacterial Diseases in Travelers.

    PubMed

    Eldin, Carole; Parola, Philippe

    2018-05-22

    Ticks are the second most important vectors of infectious diseases after mosquitoes worldwide. The growth of international tourism including in rural and remote places increasingly exposes travelers to tick bite. Our aim was to review the main tick-borne infectious diseases reported in travelers in the past 5 years. In recent years, tick-borne bacterial diseases have emerged in travelers including spotted fever group (SFG) rickettsioses, borrelioses, and diseases caused by bacteria of the Anaplasmataceae family. African tick-bite fever, due to Rickettsia africae, is the most frequent agent reported in travelers returned from Sub-Saharan areas. Other SFG agents are increasingly reported in travelers, and clinicians should be aware of them. Lyme disease can be misdiagnosed in Southern countries. Organisms causing tick-borne relapsing fever are neglected pathogens worldwide, and reports in travelers have allowed the description of new species. Infections due to Anaplasmataceae bacteria are more rarely described in travelers, but a new species of Neoehrlichia has recently been detected in a traveler. The treatment of these infections relies on doxycycline, and travelers should be informed before the trip about prevention measures against tick bites.

  11. New tick records in Rondônia, Western Brazilian Amazon.

    PubMed

    Labruna, Marcelo Bahia; Barbieri, Fábio Silva; Martins, Thiago Fernandes; Brito, Luciana Gatto; Ribeiro, Francisco Dimas Sales

    2010-01-01

    In the present study, we provide new tick records from Vilhena Municipality, in the Southeast of the State of Rondônia, Northern Brazil. Ticks collected from a capybara, Hydrochoerus hydrochaeris (Linnaeus), were identified as Amblyomma romitii Tonelli-Rondelli (1 female), and Amblyomma sp. (1 larva). Ticks collected from a harpy eagle, Harpia harpyja (Linnaeus), were identified as Amblyomma cajennense (Fabricius) (16 nymphs) and Haemaphysalis juxtakochi Cooley (1 nymph). Ticks collected from a yellow-footed tortoise, Chelonoidis denticulada (Linnaeus), were identified as Amblyomma rotundatum Koch (10 females, 2 nymphs), and Amblyomma sp. (2 larvae). The present record of A. romitii is the first in the State of Rondônia, and represents the southernmost record for this tick species, indicating that its distribution area is much larger than currently recognized. Although both A. cajennense and H. juxtakochi have been reported parasitizing various bird species, we provide the first tick records on a harpy eagle. A. rotundatum is widespread in the State of Rondônia, and has been previously reported on the yellow-footed tortoise. The present records increase the tick fauna of Rondônia to 26 species.

  12. Assessing the Contribution of Songbirds to the Movement of Ticks and Borrelia burgdorferi in the Midwestern United States During Fall Migration.

    PubMed

    Schneider, Sarah C; Parker, Christine M; Miller, James R; Page Fredericks, L; Allan, Brian F

    2015-03-01

    The geographic distributions of Ixodes scapularis (black-legged tick) and the bacterium Borrelia burgdorferi (the causative agent of Lyme disease) are expanding in the USA. To assess the role of migratory songbirds in the spread of this tick and pathogen, we captured passerines in central Illinois during the fall of 2012. We compared forested sites in regions where I. scapularis populations were either previously or not yet established. Ticks were removed from birds and blood samples were taken from select avian species. Ticks were identified by morphology and molecular techniques were used to detect B. burgdorferi and other tick-borne pathogens in ticks and avian blood samples. Ixodes spp. were detected on 10 of 196 migrants (5.1%), with I. scapularis larvae found on 2 individuals. Borrelia burgdorferi sensu stricto was detected in the blood of 9 of 29 birds sampled (31%), yet only 1 infected bird was infested by ticks. The ticks were mostly Haemaphysalis leporispalustris and I. dentatus larvae, and none tested positive for B. burgdorferi. Infestation of birds by Ixodes spp. differed significantly by region, while B. burgdorferi infection did not. These data suggest that migratory birds may play a larger role in the dispersal of B. burgdorferi than previously realized.

  13. Prevalence of Amblyomma gervaisi ticks on captive snakes in Tamil Nadu.

    PubMed

    Catherine, B R; Jayathangaraj, M G; Soundararajan, C; Bala Guru, C; Yogaraj, D

    2017-12-01

    Ticks are the important ectoparasites that occur on snakes and transmit rickettsiosis, anaplasmosis and ehrlichiosis. A total of 62 snakes (Reticulated python, Indian Rock Python, Rat snakes and Spectacled cobra) were examined for tick infestation at Chennai Snake Park Trust (Guindy), Arignar Anna Zoological Park (Vandalur) and Rescue centre (Velachery) in Tamil Nadu from September, 2015 to June, 2016. Ticks from infested snakes were collected and were identified as Amblyomma gervaisi (previously known as Aponomma gervaisi ). Overall occurrence of tick infestation on snakes was 66.13%. Highest prevalence of tick infestation was observed more on Reticulated Python ( Python reticulatus , 90.91%) followed by Indian Rock Python ( Python molurus , 88.89%), Spectacled cobra ( Naja naja, 33.33%) and Rat snake ( Ptyas mucosa, 21.05%). Highest prevalence of ticks were observed on snakes reared at Chennai Snake Park Trust, Guindy (83.33%), followed by Arignar Anna Zoological Park, Vandalur (60.00%) and low level prevalence of 37.50% on snakes at Rescue centre, Velachery. Among the system of management, the prevalence of ticks were more on captive snakes (70.37%) than the free ranging snakes (37.5%). The presences of ticks were more on the first quarter when compared to other three quarters and were highly significant ( P  ≤ 0.01).

  14. Virulence of recurrent infestations with Borrelia-infected ticks in a Borrelia-amplifying bird

    NASA Astrophysics Data System (ADS)

    Heylen, Dieter J. A.; Müller, Wendt; Vermeulen, Anke; Sprong, Hein; Matthysen, Erik

    2015-11-01

    Lyme disease cases caused by Borrelia burgdorferi s.l. bacteria is increasing steadily in Europe, in part due to the expansion of the vector, Ixodes ricinus. Wild reservoir hosts are typically recurrently infested. Understanding the impact of these cumulative parasite exposures on the host’s health is, therefore, central to predict the distribution of tick populations and their pathogens. Here, we have experimentally investigated the symptoms of disease caused by recurrent infestations in a common songbird (Parus major). Birds were exposed three times in succession to ticks collected in a Borrelia endemic area. Health and immune measures were analyzed in order to investigate changes in response to tick infestation and Borrelia infection rate. Nitric oxide levels increased with the Borrelia infection rate, but this effect was increasingly counteracted by mounting tick infestation rates. Tick infestations equally reduced haematocrit during each cycle. But birds overcompensated in their response to tick feeding, having higher haematocrit values during tick-free periods depending on the number of ticks they had been previously exposed to. Body condition showed a similar overshooting response in function of the severity of the Borrelia infection. The observed overcompensation increases the bird’s energetic needs, which may result in an increase in transmission events.

  15. Parasites of domestic and wild animals in South Africa. XXII. Ixodid ticks on domestic dogs and on wild carnivores.

    PubMed

    Horak, I G; Guillarmod, A J; Moolman, L C; de Vos, V

    1987-12-01

    Ixodid ticks were collected from 4 dogs on smallholdings near Grahamstown, eastern Cape Province, on 1 or more occasions each week for periods ranging from 9-36 months. Fourteen tick species were recovered and the seasonal abundance of adult Haemaphysalis leachi and adult Rhipicephalus simus was determined. Complete collections of ticks were made from 50 caracals (Felis caracal) in the Cradock, Graaff-Reinet and Southwell regions in the eastern Cape Province. The animals from Cradock and Graaff-Reinet harboured 13 ixodid tick species. The caracals from Southwell were infested with 11 tick species and the seasonal abundance of Ixodes pilosus on these animals was determined. A small-spotted genet (Genetta genetta), 1 bat-eared fox (Otocyon megalotis), 1 aardwolf (Proteles cristatus) and 6 black-backed jackal (Canis mesomelas) from various localities in the eastern Cape Province were examined for ticks and 9 species were collected. Complete tick collections were made from a side-striped jackal (Canis adustus), 2 wild dogs (Lycaon pictus), a spotted hyaena (Crocuta crocuta), a several (Felis serval), 2 African civets (Civettictis civetta), 2 leopards (Panthera pardus) and a lion (Panthera leo) in the Kruger National Park in the north-eastern Transvaal. Twelve ixodid tick specis were recovered from these animals.

  16. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay

    PubMed Central

    Tagliafierro, Teresa; Cucura, D. Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W. Ian

    2017-01-01

    ABSTRACT Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum, Borrelia burgdorferi, Borrelia miyamotoi, Babesia microti, and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis. Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area. PMID:28435891

  17. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan Virus in Ticks by a Multiplex Real-Time Reverse Transcription-PCR Assay.

    PubMed

    Tokarz, Rafal; Tagliafierro, Teresa; Cucura, D Moses; Rochlin, Ilia; Sameroff, Stephen; Lipkin, W Ian

    2017-01-01

    Ixodes scapularis ticks are implicated in transmission of Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia miyamotoi , Babesia microti , and Powassan virus. We describe the establishment and implementation of the first multiplex real-time PCR assay with the capability to simultaneously detect and differentiate all five pathogens in a single reaction. The application of this assay for analysis of ticks at sites in New York and Connecticut revealed a high prevalence of B. microti in ticks from Suffolk County, NY. These findings are consistent with reports of a higher incidence of babesiosis from clinicians managing the care of patients with tick-borne diseases in this region. IMPORTANCE The understanding of pathogen prevalence is an important factor in the determination of human risks for tick-borne diseases and can help guide diagnosis and treatment. The implementation of our assay addresses a critical need in surveillance of tick-borne diseases, through generation of a comprehensive assessment of pathogen prevalence in I. scapularis . Our finding of a high frequency of ticks infected with Babesia microti in Suffolk County, NY, implicates this agent as a probable frequent cause of non-Lyme tick-borne disease in this area.

  18. Detection of tick-borne bacteria and babesia with zoonotic potential in Argas (Carios) vespertilionis (Latreille, 1802) ticks from British bats.

    PubMed

    Lv, Jizhou; Fernández de Marco, Maria Del Mar; Goharriz, Hooman; Phipps, L Paul; McElhinney, Lorraine M; Hernández-Triana, Luis M; Wu, Shaoqiang; Lin, Xiangmei; Fooks, Anthony R; Johnson, Nicholas

    2018-01-30

    Ticks host a wide range of zoonotic pathogens and are a significant source of diseases that affect humans and livestock. However, little is known about the pathogens associated with bat ticks. We have collected ectoparasites from bat carcasses over a seven year period. Nucleic acids (DNA and RNA) were extracted from 296 ticks removed from bats and the species designation was confirmed in all ticks as Argas (Carios) vespertilionis. A subset of these samples (n = 120) were tested for the presence of zoonotic pathogens by molecular methods. Babesia species, Rickettsia spp., within the spotted fever group (SFG), and Ehrlichia spp. were detected in ticks removed from 26 bats submitted from 14 counties across England. The prevalence of Rickettsia spp. was found to be highest in Pipistrellus pipistrellus from southern England. This study suggests that the tick species that host B. venatorum may include the genus Argas in addition to the genus Ixodes. As A. vespertilionis has been reported to feed on humans, detection of B. venatorum and SFG Rickettsia spp. could present a risk of disease transmission in England. No evidence for the presence of flaviviruses or Issyk-Kul virus (nairovirus) was found in these tick samples.

  19. Detection and phylogenetic characterization of Theileria spp. and Anaplasma marginale in Rhipicephalus bursa in Portugal.

    PubMed

    Ferrolho, Joana; Antunes, Sandra; Santos, Ana S; Velez, Rita; Padre, Ludovina; Cabezas-Cruz, Alejandro; Santos-Silva, Maria Margarida; Domingos, Ana

    2016-04-01

    Ticks are obligatory blood-sucking arthropod (Acari:Ixodida) ectoparasites of domestic and wild animals as well as humans. The incidence of tick-borne diseases is rising worldwide, challenging our approach toward diagnosis, treatment and control options. Rhipicephalus bursa Canestrini and Fanzago, 1877, a two-host tick widely distributed in the Palearctic Mediterranean region, is considered a multi-host tick that can be commonly found on sheep, goats and cattle, and occasionally on horses, dogs, deer and humans. R. bursa is a species involved in the transmission of several tick-borne pathogens with a known impact on animal health and production. The aim of this study was to estimate R. bursa prevalence in Portugal Mainland and circulating pathogens in order to contribute to a better knowledge of the impact of this tick species. Anaplasma marginale and Theileria spp. were detected and classified using phylogenetic analysis. This is the first report of Theileria annulata and Theileria equi detection in R. bursa ticks feeding on cattle and horses, respectively, in Portugal. This study contributes toward the identification of currently circulating pathogens in this tick species as a prerequisite for developing future effective anti-tick control measures. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, Howard S.; Zhioua, Elyes; Mitra, Shaibal; Fischer, Jason L.; Buckley, P.A.; Verret, Frank; Underwood, H. Brian; Buckley, Francine G.

    2004-01-01

    Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.

  1. Prevalence, intensity and population dynamics of hard ticks (Acari: Ixodidae) on sheep in the humid tropics of Mexico.

    PubMed

    Coronel-Benedett, Karen C; Ojeda-Robertos, Nadia Florencia; González-Garduño, Roberto; Ibañez, Francisco Martínez; Rodríguez-Vivas, Roger Iván

    2018-01-01

    Hard ticks are a perennial problem in livestock systems throughout Mexico. No data are currently available on tick prevalence, infestation intensity and population dynamics for sheep in the humid tropics of Mexico. Blackbelly sheep (n = 30) in Tabasco state, Mexico, were examined every 3 weeks for 1 year, and all Ixodidae ticks were counted and removed for analysis. Tick species were identified, infestation prevalence and intensity calculated per animal, and infestation per body zone determined. Overall infestation on the studied animals was 51.9%. Four tick species were identified (Amblyomma mixtum, A. imitator, Rhipicephalus microplus and R. annulatus), the most abundant being A. mixtum (94.9%). Prevalence was highest during the northwinds season (61.9%), followed by the dry (48.5%) and rainy (47.3%) seasons; however, the intensity (2.01-2.07 ticks/sheep) did not differ between seasons. Infestation was most frequent in certain zones including the axilla, crotch, udder, abdomen, thorax and rib area. Sheep in the humid tropics of Tabasco, Mexico, are parasitized by four hard tick species and prevalence is highest in the northwinds season. The present data constitute an important baseline for developing sustainable tick control programs for sheep in the humid tropics of Mexico.

  2. Hepatozoon canis in German red foxes (Vulpes vulpes) and their ticks: molecular characterization and the phylogenetic relationship to other Hepatozoon spp.

    PubMed

    Najm, Nour-Addeen; Meyer-Kayser, Elisabeth; Hoffmann, Lothar; Pfister, Kurt; Silaghi, Cornelia

    2014-07-01

    In this study, the prevalence of Hepatozoon spp. in red foxes (Vulpes vulpes) and their ticks from Germany, as well as molecular characterizations and phylogenetic relationship to other Hepatozoon spp. were investigated. DNA extracts of 261 spleen samples and 1,953 ticks were examined for the presence of Hepatozoon spp. by a conventional polymerase chain reaction (PCR) targeting the 18S rRNA gene. The ticks included four tick species: Ixodes ricinus, Ixodes canisuga, Ixodes hexagonus and Dermacentor reticulatus. A total of 118/261 foxes (45.2%) and 148/1,953 ticks (7.5%) were Hepatozoon PCR-positive. Amplicons from 36 positive foxes and 41 positive ticks were sequenced. All sequences obtained from foxes and 39/41 from ticks had a 99% similarity to Hepatozoon canis, whereas two ticks' sequences had a 99% identity to Hepatozoon sp. The obtained Hepatozoon sequences in this study were phylogenetically related to other Hepatozoon sequences detected in other countries, which may represent strain variants. The high prevalence of H. canis DNA in red foxes in this study supports the suggested role of those animals in distribution of this parasite. Furthermore, detection of DNA of H. canis in foxes and all examined tick species collected from those foxes allows speculating about previously undescribed potential vectors for H. canis and suggests a potential role of the red fox in its natural endemic cycles.

  3. Interacting effects of wildlife loss and climate on ticks and tick-borne disease.

    PubMed

    Titcomb, Georgia; Allan, Brian F; Ainsworth, Tyler; Henson, Lauren; Hedlund, Tyler; Pringle, Robert M; Palmer, Todd M; Njoroge, Laban; Campana, Michael G; Fleischer, Robert C; Mantas, John Naisikie; Young, Hillary S

    2017-09-13

    Both large-wildlife loss and climatic changes can independently influence the prevalence and distribution of zoonotic disease. Given growing evidence that wildlife loss often has stronger community-level effects in low-productivity areas, we hypothesized that these perturbations would have interactive effects on disease risk. We experimentally tested this hypothesis by measuring tick abundance and the prevalence of tick-borne pathogens ( Coxiella burnetii and Rickettsia spp . ) within long-term, size-selective, large-herbivore exclosures replicated across a precipitation gradient in East Africa. Total wildlife exclusion increased total tick abundance by 130% (mesic sites) to 225% (dry, low-productivity sites), demonstrating a significant interaction of defaunation and aridity on tick abundance. When differing degrees of exclusion were tested for a subset of months, total tick abundance increased from 170% (only mega-herbivores excluded) to 360% (all large wildlife excluded). Wildlife exclusion differentially affected the abundance of the three dominant tick species, and this effect varied strongly over time, likely due to differences among species in their host associations, seasonality, and other ecological characteristics. Pathogen prevalence did not differ across wildlife exclusion treatments, rainfall levels, or tick species, suggesting that exposure risk will respond to defaunation and climate change in proportion to total tick abundance. These findings demonstrate interacting effects of defaunation and aridity that increase disease risk, and they highlight the need to incorporate ecological context when predicting effects of wildlife loss on zoonotic disease dynamics. © 2017 The Author(s).

  4. Prevalence of tick-borne pathogens in questing Ixodes ricinus ticks in urban and suburban areas of Switzerland.

    PubMed

    Oechslin, Corinne P; Heutschi, Daniel; Lenz, Nicole; Tischhauser, Werner; Péter, Olivier; Rais, Olivier; Beuret, Christian M; Leib, Stephen L; Bankoul, Sergei; Ackermann-Gäumann, Rahel

    2017-11-09

    Throughout Europe, Ixodes ricinus transmits numerous pathogens. Its widespread distribution is not limited to rural but also includes urbanized areas. To date, comprehensive data on pathogen carrier rates of I. ricinus ticks in urban areas of Switzerland is lacking. Ixodes ricinus ticks sampled at 18 (sub-) urban collection sites throughout Switzerland showed carrier rates of 0% for tick-borne encephalitis virus, 18.0% for Borrelia burgdorferi (sensu lato), 2.5% for Borrelia miyamotoi, 13.5% for Rickettsia spp., 1.4% for Anaplasma phagocytophilum, 6.2% for "Candidatus Neoehrlichia mikurensis", and 0.8% for Babesia venatorum (Babesia sp., EU1). Site-specific prevalence at collection sites with n > 45 ticks (n = 9) significantly differed for B. burgdorferi (s.l.), Rickettsia spp., and "Ca. N. mikurensis", but were not related to the habitat type. Three hundred fifty eight out of 1078 I. ricinus ticks (33.2%) tested positive for at least one pathogen. Thereof, about 20% (71/358) were carrying two or three different potentially disease-causing agents. Using next generation sequencing, we could detect true pathogens, tick symbionts and organisms of environmental or human origin in ten selected samples. Our data document the presence of pathogens in the (sub-) urban I. ricinus tick population in Switzerland, with carrier rates as high as those in rural regions. Carriage of multiple pathogens was repeatedly observed, demonstrating the risk of acquiring multiple infections as a consequence of a tick bite.

  5. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland

    PubMed Central

    2014-01-01

    Background Ixodes ricinus is a major vector for a range of microbial pathogens and the most prevalent and widely distributed tick species on the European continent, occurring in both natural and urban habitats. Nevertheless, little is known about the relative density of ticks in these two ecologically distinct habitats and the diversity of tick-borne pathogens that they carry. Methods We compared densities of questing I. ricinus nymphs and adults in urban and natural habitats in Central and Northeastern Poland, assessed the prevalence and rate of co-infection with A. phagocytophilum, Rickettsia, Ehrlichia and ‘Ca. Neoehrlichia spp.’ in ticks, and compared the diversity of tick-borne pathogens using molecular assays (PCR). Results Of the 1325 adults and nymphs, 6.2% were infected with at least one pathogen, with 4.4%, 1.7% and less than 0.5% being positive for the DNA of Rickettsia spp., A. phagocytophilum, Ehrlichia spp. and Ca. N. mikurensis, respectively. Although tick abundance was higher in natural habitats, the prevalence of the majority of pathogens was higher in urban forested areas. Conclusion We conclude that: (i) zoonotic genetic variants of A. phagocytophilum are widely distributed in the Polish tick population, (ii) although the diversity of tick borne pathogens was higher in natural habitats, zoonotic species/strains were detected only in urban forests, (iii) and we provide the first description of Ca. N. mikurensis infections in ticks in Poland. PMID:24661311

  6. Repeated Amblyomma testudinarium tick bites are associated with increased galactose-α-1,3-galactose carbohydrate IgE antibody levels: A retrospective cohort study in a single institution.

    PubMed

    Hashizume, Hideo; Fujiyama, Toshiharu; Umayahara, Takatsune; Kageyama, Reiko; Walls, Andrew F; Satoh, Takahiro

    2018-06-01

    Alpha-gal syndrome is a hypersensitivity reaction to red meat mediated by IgE antibody specific to galactose-α-1,3-galactose carbohydrate (alpha-gal). Amblyomma tick bites are associated with this condition, but the pathophysiology is not understood. To clarify the mechanism of development of alpha-gal syndrome after tick bites. We compared alpha-gal antibody levels between patients with and without a history of tick bites and examined histologic stainings of tick bite lesions between patients with and without detectable alpha-gal IgE antibody. Patients who had ≥2 tick bites had higher levels of alpha-gal IgE antibody compared with those with only 1 tick bite or healthy individuals. On histologic investigation, greater numbers of basophils and eosinophils, but not mast cells, were observed infiltrating lesions of patients with ≥2 tick bites compared with those with 1 tick bite. Type 2 cytokine-producing T-cell infiltration was predominantly observed in such patients. The study was conducted at a single institution in Japan. In Amblyomma tick bite lesions, basophils; eosinophils; and type 2, cytokine-producing T cells infiltrate the skin and alpha-gal IgE antibodies are produced. These findings provide a potential mechanistic connection between Amblyomma bites and red meat hypersensitivity. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  7. Epidemiology of Tick-Borne Borreliosis in Morocco

    PubMed Central

    Diatta, Georges; Souidi, Yassine; Granjon, Laurent; Arnathau, Céline; Durand, Patrick; Chauvancy, Gilles; Mané, Youssouph; Sarih, M'hammed; Belghyti, Driss; Renaud, François; Trape, Jean-François

    2012-01-01

    Background The presence in Morocco of Argasid ticks of the Ornithodoros erraticus complex, the vector of tick-borne relapsing fever (TBRF) in North Africa, has been known since 1919, but the disease is rarely diagnosed and few epidemiological data are available. Methodology/Principal Findings Between 2006 and 2011, we investigated the presence of Ornithodoros ticks in rodent burrows in 34 sites distributed across Morocco. We also collected small mammals in 10 sites and we investigated TBRF in febrile patients in Kenitra district. The prevalence of Borrelia infections was assessed by nested PCR amplification in ticks and the brain tissue of small mammals, and by evaluation of thick blood films in patients. A high proportion of burrows were infested with ticks of the O. erraticus complex in all regions of Morocco, with a mean of 39.5% for the whole country. Borrelia infections were found in 39/382 (10.2%) of the ticks and 12/140 (8.6%) of the rodents and insectivores studied by PCR amplification, and 102 patients tested positive by thick blood film. Five small mammalian species were found infected: Dipodillus campestris, Meriones shawi, Gerbillus hoogstrali, Gerbillus occiduus and Atelerix algirus. Three Borrelia species were identified in ticks and/or rodents: B. hispanica, B. crocidurae and B. merionesi. Conclusions/Significance Tick populations belonging to O. erraticus complex are widely distributed in Morocco and a high proportion of ticks and small mammals are infected by Borrelia species. Although rarely diagnosed, TBRF may be a common cause of morbidity in all regions of Morocco. PMID:23029574

  8. Prevalence of tick-borne encephalitis virus in ixodid ticks collected from the republic of Korea during 2011-2012.

    PubMed

    Yun, Seok-Min; Song, Bong Gu; Choi, Wooyoung; Park, Won Il; Kim, Sung Yun; Roh, Jong Yul; Ryou, Jungsang; Ju, Young Ran; Park, Chan; Shin, E-Hyun

    2012-12-01

    In this study, we demonstrated that TBEV-infected ticks have been distributed in the ROK, combined with our previous results. These results suggest that TBEV may exist in the ROK, and H. longicornis, H. flava, and I. nipponensis may be potential vectors of TBEV. In addition, these results emphasize the need for further epidemiological research of TBEV. We examined for the presence of RNA of TBEV by reverse transcriptase-nested polymerase chain reaction (RT-nested PCR) using ixodid ticks captured in 25 localities of 10 provinces. Ticks were collected by the flagging and dragging method or using sentinel BG traps at forests, grass thickets, and grassland. A total of 13,053 ticks belonging to two genera and four species were collected and pooled (1292 pools), according to collection site, species of tick, and developmental stage. Among 1292 pools, the envelope (E) protein gene of TBEV was detected using RT-nested PCR in 10 pools (3 pools of the 1,331 adult ticks and 7 pools of the 11,169 nymph ticks) collected from Gangwon-do province, Jeonrabuk-do province, and Jeju Island. The minimum infection rates for TBEV of Haemaphysalis longicornis, Haemaphysalis flava, and Ixodes nipponensis were 0.06%, 0.17%, and 2.38%, respectively. Phylogenetic analysis based on the partial E protein gene was performed to identify relationships between the TBEV strains. This showed that 10 Korean strains clustered with the Western subtype. In this study, we investigated the prevalence of tick-borne encephalitis virus (TBEV) in ixodid ticks from various regions of the Republic of Korea (ROK) during 2011-2012 to identify whether TBEV is circulating and to determine the endemic regions of TBEV.

  9. Genetic variability of Rickettsia spp. in Ixodes persulcatus/Ixodes trianguliceps sympatric areas from Western Siberia, Russia: Identification of a new Candidatus Rickettsia species.

    PubMed

    Igolkina, Yana P; Rar, Vera A; Yakimenko, Valeriy V; Malkova, Marina G; Tancev, Aleksey K; Tikunov, Artem Yu; Epikhina, Tamara I; Tikunova, Nina V

    2015-08-01

    Rickettsia spp. are the causative agents of a number of diseases in humans. These bacteria are transmitted by arthropods, including ixodid ticks. DNA of several Rickettsia spp. was identified in Ixodes persulcatus ticks, however, the association of Ixodes trianguliceps ticks with Rickettsia spp. is unknown. In our study, blood samples of small mammals (n=108), unfed adult I. persulcatus ticks (n=136), and I. persulcatus (n=12) and I. trianguliceps (n=34) ticks feeding on voles were collected in two I. persulcatus/I. trianguliceps sympatric areas in Western Siberia. Using nested PCR, ticks and blood samples were studied for the presence of Rickettsia spp. Three distinct Rickettsia species were found in ticks, but no Rickettsia species were found in the blood of examined voles. Candidatus Rickettsia tarasevichiae DNA was detected in 89.7% of unfed I. persulcatus, 91.7% of engorged I. persulcatus and 14.7% of I. trianguliceps ticks. Rickettsia helvetica DNA was detected in 5.9% of I. trianguliceps ticks. In addition, a new Rickettsia genetic variant was found in 32.4% of I. trianguliceps ticks. Sequence analysis of the 16S rRNA, gltA, ompA, оmpB and sca4 genes was performed and, in accordance with genetic criteria, a new Rickettsia genetic variant was classified as a new Candidatus Rickettsia species. We propose to name this species Candidatus Rickettsia uralica, according to the territory where this species was initially identified. Candidatus Rickettsia uralica was found to belong to the spotted fever group. The data obtained in this study leads us to propose that Candidatus Rickettsia uralica is associated with I. trianguliceps ticks. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tick Salivary Cholinesterase: A Probable Immunomodulator of Host-parasite Interactions.

    PubMed

    Temeyer, Kevin B; Tuckow, Alexander P

    2016-05-01

    The southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini), is the most economically important cattle ectoparasite in the world. Rhipicephalus microplus and Rhipicephalus annulatus (Say) continue to threaten U.S. cattle producers despite eradication and an importation barrier based on inspection, dipping of imported cattle in organophosphate (OP) acaricide, and quarantine of infested premises. OP acaricides inhibit acetylcholinesterase (AChE), essential to tick central nervous system function. Unlike vertebrates, ticks possess at least three genes encoding AChEs, differing in amino acid sequence and biochemical properties. Genomic analyses of R. microplus and the related tick, Ixodes scapularis, suggest that ticks contain many genes encoding different AChEs. This work is the first report of a salivary cholinesterase (ChE) activity in R. microplus, and discusses complexity of the cholinergic system in ticks and significance of tick salivary ChE at the tick-host interface. It further provides three hypotheses that the salivary ChE plausibly functions 1) to reduce presence of potentially toxic acetylcholine present in the large bloodmeal imbibed during rapid engorgement, 2) to modulate the immune response (innate and/or acquired) of the host to tick antigens, and 3) to influence transmission and establishment of pathogens within the host animal. Ticks are vectors for a greater number and variety of pathogens than any other parasite, and are second only to mosquitoes (owing to malaria) as vectors of serious human disease. Saliva-assisted transmission (SAT) of pathogens is well-known; however, the salivary components participating in the SAT process remain to be elucidated. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  11. Influence of laboratory animal hosts on the life cycle of Hyalomma marginatum and implications for an in vivo transmission model for Crimean-Congo hemorrhagic fever virus

    PubMed Central

    Gargili, Aysen; Thangamani, Saravanan; Bente, Dennis

    2013-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is one of the most geographically widespread arboviruses and causes a severe hemorrhagic syndrome in humans. The virus circulates in nature in a vertebrate-tick cycle and ticks of the genus Hyalomma are the main vectors and reservoirs. Although the tick vector plays a central role in the maintenance and transmission of CCHFV in nature, comparatively little is known of CCHFV-tick interactions. This is mostly due to the fact that establishing tick colonies is laborious, and working with CCHFV requires a biosafety level 4 laboratory (BSL4) in many countries. Nonetheless, an in vivo transmission model is essential to understand the epidemiology of the transmission cycle of CCHFV. In addition, important parameters such as vectorial capacity of tick species, levels of infection in the host necessary to infect the tick, and aspects of virus transmission by tick bite including the influence of tick saliva, cannot be investigated any other way. Here, we evaluate the influence of different laboratory animal species as hosts supporting the life cycle of Hyalomma marginatum, a two-host tick. Rabbits were considered the host of choice for the maintenance of the uninfected colonies due to high larval attachment rates, shorter larval-nymphal feeding times, higher nymphal molting rates, high egg hatching rates, and higher conversion efficiency index (CEI). Furthermore, we describe the successful establishment of an in vivo transmission model for CCHFV in a BSL4 biocontainment setting using interferon knockout mice. This will give us a new tool to study the transmission and interaction of CCHFV with its tick vector. PMID:23971007

  12. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management

    PubMed Central

    Bogovic, Petra; Strle, Franc

    2015-01-01

    Tick-borne encephalitis is an infection of central nervous system caused by tick-borne encephalitis virus transmitted to humans predominantly by tick bites. During the last few decades the incidence of the disease has been increasing and poses a growing health problem in almost all endemic European and Asian countries. Most cases occur during the highest period of tick activity, in Central Europe mainly from April to November. Tick-borne encephalitis is more common in adults than in children. Clinical spectrum of the disease ranges from mild meningitis to severe meningoencephalitis with or without paralysis. Rare clinical manifestations are an abortive form of the disease and a chronic progressive form. A post-encephalitic syndrome, causing long-lasting morbidity that often affects the quality of life develops in up to 50% of patients after acute tick-borne encephalitis. Clinical course and outcome vary by subtype of tick-borne encephalitis virus (the disease caused by the European subtype has milder course and better outcome than the disease caused by Siberian and Far-Easter subtypes), age of patients (increasing age is associated with less favorable outcome), and host genetic factors. Since clinical features and laboratory results of blood and cerebrospinal fluid are nonspecific, the diagnosis must be confirmed by microbiologic findings. The routine laboratory confirmation of the tick-borne encephalitis virus infection is based mainly on the detection of specific IgM and IgG antibodies in serum (and cerebrospinal fluid), usually by enzyme-linked immunosorbent assay. There is no specific antiviral treatment for tick-borne encephalitis. Vaccination can effectively prevent the disease and is indicated for persons living in or visiting tick-borne encephalitis endemic areas. PMID:25984517

  13. Gene Expression of Tissue-Specific Molecules in Ex vivo Dermacentor variabilis (Acari: Ixodidae) During Rickettsial Exposure

    PubMed Central

    SUNYAKUMTHORN, PIYANATE; PETCHAMPAI, NATTHIDA; GRASPERGE, BRITTON J.; KEARNEY, MICHAEL T.; SONENSHINE, DANIEL E.; MACALUSO, KEVIN R.

    2014-01-01

    Ticks serve as both vectors and the reservoir hosts capable of transmitting spotted fever group Rickettsia by horizontal and vertical transmission. Persistent maintenance of Rickettsia species in tick populations is dependent on the specificity of the tick and Rickettsia relationship that limits vertical transmission of particular Rickettsia species, suggesting host-derived mechanisms of control. Tick-derived molecules are differentially expressed in a tissue-specific manner in response to rickettsial infection; however, little is known about tick response to specific rickettsial species. To test the hypothesis that tissue-specific tick-derived molecules are uniquely responsive to rickettsial infection, a bioassay to characterize the tick tissue-specific response to different rickettsial species was used. Whole organs of Dermacentor variabilis (Say) were exposed to either Rickettsia montanensis or Rickettsia amblyommii, two Rickettsia species common, or absent, in field-collected D. variabilis, respectively, for 1 and 12 h and harvested for quantitative real time-polymerase chain reaction assays of putative immune-like tick-derived factors. The results indicated that tick genes are differently expressed in a temporal and tissue-specific manner. Genes encoding glutathione S-transferase 1 (dvgst1) and Kunitz protease inhibitor (dvkpi) were highly expressed in midgut, and rickettsial exposure downregulated the expression of both genes. Two other genes encoding glutathione S-transferase 2 (dvgst2) and β-thymosin (dvβ-thy) were highly expressed in ovary, with dvβ-thy expression significantly downregulated in ovaries exposed to R. montanensis, but not R. amblyommii, at 12-h postexposure, suggesting a selective response. Deciphering the tissue-specific molecular interactions between tick and Rickettsia will enhance our understanding of the key mechanisms that mediate rickettsial infection in ticks. PMID:24180114

  14. Savicalin, a lipocalin from hemocytes of the soft tick, Ornithodoros savignyi.

    PubMed

    Cheng, Paul H; Mans, Ben J; Neitz, Albert W H; Gaspar, Anabella R M

    2010-11-01

    Savicalin, is a lipocalin found in the hemocytes of the soft tick, Ornithodoros savignyi. It could be assigned to the tick lipocalin family based on BLAST analysis. Savicalin is the first non-salivary gland lipocalin described in ticks. The mature sequence is composed of 188 amino acids with a molecular mass of 21481.9 Da. A homolog for savicalin was found in a whole body EST-library from a related soft tick O. porcinus, while other tick salivary gland derived lipocalins retrieved from the non-redundant sequence database are more distantly related. Homology modeling supports the inclusion of savicalin into the lipocalin family. The model as well as multiple alignments suggests the presence of five disulphide bonds. Two conserved disulphide bonds are found in hard and soft tick lipocalins. A third disulphide bond is shared with the TSGP4-clade of leukotriene C4 binding soft tick lipocalins and a fourth is shared with a lipocalin from the hard tick Ixodes scapularis. The fifth disulphide bond is unique and links strands D-E. Phylogenetic analysis showed that savicalin is a distant relative of salivary gland derived lipocalins, but groups within a clade that is possibly non-salivary gland derived. It lacks the biogenic amine-binding motif associated with tick histamine and serotonin binding proteins. Expression profiles indicate that savicalin is found in hemocytes, midgut and ovaries, but not in the salivary glands. Up-regulation occurs in hemocytes after bacterial challenge and in midguts and ovaries after feeding. Given its tissue distribution and up-regulation of expression, it is possible that this lipocalin functions in tick development after feeding or in an anti-microbial capacity.

  15. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia

    PubMed Central

    Tokarevich, Nikolay K.; Tronin, Andrey A.; Blinova, Olga V.; Buzinov, Roman V.; Boltenkov, Vitaliy P.; Yurasova, Elena D.; Nurse, Jo

    2011-01-01

    Background The increase in tick-borne encephalitis (TBE) incidence is observed in recent decades in a number of subarctic countries. The reasons of it are widely discussed in scientific publications. The objective of this study was to understand if the climate change in Arkhangelsk Oblast (AO) situated in the north of European subarctic zone of Russia has real impact on the northward expansion of Ixodid ticks and stipulates the increase in TBE incidence. Methods This study analyzes: TBE incidence in AO and throughout Russia, the results of Ixodid ticks collecting in a number of sites in AO, and TBE virus prevalence in those ticks, the data on tick bite incidence in AO, and meteorological data on AO mean annual air temperatures and precipitations. Results It is established that in recent years TBE incidence in AO tended to increase contrary to its apparent decrease nationwide. In last 10 years, there was nearly 50-fold rise in TBE incidence in AO when compared with 1980–1989. Probably, the increase both in mean annual air temperatures and temperatures during tick active season resulted in the northward expansion of Ixodes Persulcatus, main TBE virus vector. The Ixodid ticks expansion is confirmed both by the results of ticks flagging from the surface vegetation and by the tick bite incidence in the population of AO locations earlier free from ticks. Our mathematical (correlation and regression) analysis of available data revealed a distinct correlation between TBE incidence and the growth of mean annual air temperatures in AO in 1990–2009. Conclusion Not ruling out other factors, we conclude that climate change contributed much to the TBE incidence increase in AO. PMID:22028678

  16. Acquisition and transmission of Theileria parva by vector tick, Rhipicephalus appendiculatus.

    PubMed

    Konnai, Satoru; Imamura, Saiki; Nakajima, Chie; Witola, William Harold; Yamada, Shinji; Simuunza, Martin; Nambota, Andrew; Yasuda, Jun; Ohashi, Kazuhiko; Onuma, Misao

    2006-08-01

    In order to investigate the transmission dynamics of Theileria parva (T. parva) by the brown ear tick, Rhipicephalus appendiculatus (R. appendiculatus), under experimental conditions, detection of T. parva in ticks and cattle was performed by a quantitative real-time PCR assay. A calf inoculated with a T. parva mixture became PCR-positive for T. parva infection on day 8 post-inoculation, and subsequently, nymphal ticks were introduced and maintained to feed on the infected calf for 6 days. Engorged nymphs were collected daily and allowed to molt into adults, and overall, 70.8% (121/171) of the adult ticks acquired the T. parva infection. Furthermore, the T. parva infection rate in ticks under field conditions was monitored by real-time PCR in R. appendiculatus ticks collected from a traditionally managed pastoral land of Zambia, on which Sanga breed cattle are traditionally reared and the area has endemic East Coast fever (ECF). A total of 70 cattle were randomly selected in the same area and 67 (95.7%) were found to be serologically positive for R. appendiculatus tick antigen (RIM36). Twenty-nine (43.3%) of the 67 serologically positive cattle were real-time PCR-positive for T. parva, although no piroplasms could be detected in the blood smears. Unexpectedly, out of 614 R. appendiculatus nymphal and adult ticks collected by flagging vegetation, 4.1% were positive for T. parva DNA. However, since the rate of transmission of T. parva from infected cattle to ticks and vice versa and the serological evidence of exposure to R. appendiculatus ticks in naturally exposed cattle were relatively high, it would be wise in such a case to consider vector control as well as vaccination against ECF as control measures.

  17. The relationship between the Southern Oscillation Index, rainfall and the occurrence of canine tick paralysis, feline tick paralysis and canine parvovirus in Australia.

    PubMed

    Rika-Heke, Tamara; Kelman, Mark; Ward, Michael P

    2015-07-01

    The aim of this study was to describe the association between climate, weather and the occurrence of canine tick paralysis, feline tick paralysis and canine parvovirus in Australia. The Southern Oscillation Index (SOI) and monthly average rainfall (mm) data were used as indices for climate and weather, respectively. Case data were extracted from a voluntary national companion animal disease surveillance resource. Climate and weather data were obtained from the Australian Government Bureau of Meteorology. During the 4-year study period (January 2010-December 2013), a total of 4742 canine parvovirus cases and 8417 tick paralysis cases were reported. No significant (P ≥ 0.05) correlations were found between the SOI and parvovirus, canine tick paralysis or feline tick paralysis. A significant (P < 0.05) positive cross-correlation was found between parvovirus occurrence and rainfall in the same month (0.28), and significant negative cross-correlations (-0.26 to -0.36) between parvovirus occurrence and rainfall 4-6 months previously. Significant (P < 0.05) negative cross-correlations (-0.34 to -0.39) were found between canine tick paralysis occurrence and rainfall 1-3 months previously, and significant positive cross-correlations (0.29-0.47) between canine tick paralysis occurrence and rainfall 7-10 months previously. Significant positive cross-correlations (0.37-0.68) were found between cases of feline tick paralysis and rainfall 6-10 months previously. These findings may offer a useful tool for the management and prevention of tick paralysis and canine parvovirus, by providing an evidence base supporting the recommendations of veterinarians to clients thus reducing the impact of these diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Epidemiological study of relapsing fever borreliae detected in Haemaphysalis ticks and wild animals in the western part of Japan.

    PubMed

    Furuno, Kiwa; Lee, Kyunglee; Itoh, Yukie; Suzuki, Kazuo; Yonemitsu, Kenzo; Kuwata, Ryusei; Shimoda, Hiroshi; Watarai, Masahisa; Maeda, Ken; Takano, Ai

    2017-01-01

    The genus Borrelia comprises arthropod-borne bacteria, which are infectious agents in vertebrates. They are mainly transmitted by ixodid or argasid ticks. In Hokkaido, Japan, Borrelia spp. were found in deer and Haemaphysalis ticks between 2011 and 2013; however, the study was limited to a particular area. Therefore, in the present study, we conducted large-scale surveillance of ticks and wild animals in the western part of the main island of Japan. We collected 6,407 host-seeking ticks from two regions and 1,598 larvae obtained from 32 engorged female ticks and examined them to elucidate transovarial transmission. In addition, we examined whole blood samples from 190 wild boars and 276 sika deer, as well as sera from 120 wild raccoons. We detected Borrelia spp. in Haemaphysalis flava, Haemaphysalis megaspinosa, Haemaphysalis kitaokai, Haemaphysalis longicornis, and Haemaphysalis formosensis. In addition, we isolated a strain from H. megaspinosa using Barbour-Stoenner-Kelly medium. The minimum infection rate of ticks was less than 5%. Transovarial transmission was observed in H. kitaokai. Phylogenetic analysis of the isolated strain and DNA fragments amplified from ticks identified at least four bacterial genotypes, which corresponded to the tick species detected. Bacteria were detected in 8.4%, 15%, and 0.8% of wild boars, sika deer, and raccoons, respectively. In this study, we found seasonal differences in the prevalence of bacterial genotypes in sika deer during the winter and summer. The tick activity season corresponds to the season with a high prevalence of animals. The present study suggests that a particular bacterial genotype detected in this study are defined by a particular tick species in which they are present.

  19. Habitat and Vegetation Variables Are Not Enough When Predicting Tick Populations in the Southeastern United States

    PubMed Central

    Trout Fryxell, R. T.; Moore, J. E.; Collins, M. D.; Kwon, Y.; Jean-Philippe, S. R.; Schaeffer, S. M.; Odoi, A.; Kennedy, M.; Houston, A. E.

    2015-01-01

    Two tick-borne diseases with expanding case and vector distributions are ehrlichiosis (transmitted by Amblyomma americanum) and rickettiosis (transmitted by A. maculatum and Dermacentor variabilis). There is a critical need to identify the specific habitats where each of these species is likely to be encountered to classify and pinpoint risk areas. Consequently, an in-depth tick prevalence study was conducted on the dominant ticks in the southeast. Vegetation, soil, and remote sensing data were used to test the hypothesis that habitat and vegetation variables can predict tick abundances. No variables were significant predictors of A. americanum adult and nymph tick abundance, and no clustering was evident because this species was found throughout the study area. For A. maculatum adult tick abundance was predicted by NDVI and by the interaction between habitat type and plant diversity; two significant population clusters were identified in a heterogeneous area suitable for quail habitat. For D. variabilis no environmental variables were significant predictors of adult abundance; however, D. variabilis collections clustered in three significant areas best described as agriculture areas with defined edges. This study identified few landscape and vegetation variables associated with tick presence. While some variables were significantly associated with tick populations, the amount of explained variation was not useful for predicting reliably where ticks occur; consequently, additional research that includes multiple sampling seasons and locations throughout the southeast are warranted. This low amount of explained variation may also be due to the use of hosts for dispersal, and potentially to other abiotic and biotic variables. Host species play a large role in the establishment, maintenance, and dispersal of a tick species, as well as the maintenance of disease cycles, dispersal to new areas, and identification of risk areas. PMID:26656122

  20. Babesia spp. identified by PCR in ticks collected from domestic and wild ruminants in southern Switzerland.

    PubMed

    Hilpertshauser, Heidi; Deplazes, Peter; Schnyder, Manuela; Gern, Lise; Mathis, Alexander

    2006-10-01

    Concurrent infections with vector-borne pathogens affected a cattle herd in Switzerland, and one of the pathogens was identified as Babesia bigemina, which had never been observed in this country before. Therefore, a survey of the occurrence of ruminant Babesia spp. and their tick vectors in Switzerland was conducted. A total of 2,017 ticks were collected from sheep, goats, cattle, and wild ruminants (deer, roe deer, and chamois) in southern parts of Switzerland and identified morphologically. The vast majority of the ticks (99.2%) were Ixodes ricinus, but 14 ticks from sheep and goats were identified as Dermacentor marginatus and two ticks from wild ruminants were identified as Hemaphysalis punctata. PCR analyses of 700 ticks revealed the presence of Babesia divergens (n = 6), Babesia sp. genotype EU1 (n = 14), and B. major (n = 2), whose suggested occurrence was confirmed in this study by molecular analysis, and the presence of novel Babesia sp. genotype CH1 (n = 4), which is closely related to B. odocoilei and to Babesia sp. genotype RD61 reported from North America. The identification of B. divergens and B. major in ticks collected from wild ruminants cast doubt on the postulated strict host specificity of these bovine Babesia species. Furthermore, the zoonotic Babesia sp. genotype EU1 was detected in ticks collected from domestic animals but was obtained predominantly from ticks collected from wild ruminants. More than one tick containing DNA of different Babesia spp. were collected from two red deer. Hence, the role of these game animals as reservoir hosts of Babesia spp. seems to be important but requires further investigation.

  1. Efficacy of a novel oral formulation of sarolaner (Simparica™) against five common tick species infesting dogs in the United States.

    PubMed

    Six, Robert H; Everett, William R; Young, David R; Carter, Lori; Mahabir, Sean P; Honsberger, Nicole A; Myers, Melanie R; Holzmer, Susan; Chapin, Sara; Rugg, Jady J

    2016-05-30

    The efficacy of a single oral treatment with sarolaner (Simparica™, Zoetis), a novel isoxazoline compound, was evaluated against five tick species known to infest dogs in the United States. A total of 10 laboratory studies, two against each species, were conducted using adult purpose-bred mongrels or Beagle dogs. In each study, 16 dogs were randomly allocated to one of two treatment groups based on pre-treatment host-suitability tick counts. Dogs were infested with approximately 50 unfed adult Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, Ixodes scapularis or Rhipicephalus sanguineus ticks on Days -2, 5, 12, 19, 26 and 33. On Day 0, dogs were treated with a placebo or a sarolaner tablet providing a minimum dose of 2 mg/kg. Tick counts were conducted 48h after treatment and after each subsequent weekly re-infestation. There were no treatment-related adverse reactions during any of the studies. Dogs in the placebo-treated group maintained tick infestations throughout the studies. Geometric mean live tick counts were significantly lower (P≤0.0001) in the sarolaner-treated group compared to the tick counts in the placebo group at all timepoints. Treatment with sarolaner resulted in ≥99.6% efficacy against existing infestations of all five tick species within 48h. The efficacy against weekly post-treatment re-infestations of all tick species was ≥96.9% for at least 35 days after treatment. Thus, a single dose of sarolaner administered orally at the minimum dosage of 2mg/kg, resulted in excellent efficacy within 48h against existing tick infestations, and against weekly re-infestations for 35 days after treatment. These studies confirmed that administration of the minimum dose of sarolaner will provide rapid treatment of existing infestations and give at least one month of control against re-infestation by the common tick species affecting dogs in the US. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Comparative analysis of the roles of Ixodes persulcatus and I. trianguliceps ticks in natural foci of ixodid tick-borne borrelioses in the Middle Urals, Russia.

    PubMed

    Korenberg, Edward I; Kovalevskii, Yurii V; Gorelova, Natalya B; Nefedova, Valentina V

    2015-04-01

    Long-term studies on natural foci of ixodid tick-borne borrelioses (ITBB) have been performed in Chusovskoi district of Perm region, the Middle Urals, where the vectors of these infections are represented by two ixodid tick species: the taiga tick Ixodes persulcatus and many times less abundant vole tick I. trianguliceps. Over 10 years, more than 6000 half-engorged ticks were collected from small forest mammals using the standard procedure, and 1027 I. persulcatus and 1142 I. trianguliceps ticks, individually or in pools, were used to inoculate BSK-2 medium. As a result, 199 Borrelia isolates were obtained. Among them, 177 isolates were identified, and the rrf(5S)-rrl(23S) intergenic spacer sequence was determined in 57 isolates. The prevalence of Borrelia infection in I. persulcatus larvae and nymphs averaged 31.0 and 53.3%, while that in I. trianguliceps larvae, nymphs, and adult ticks was five to ten times lower: 2.6, 10.2, and 8.1%, respectively. Each of the two tick species was found to carry both ITBB agents circulating in the Middle Ural foci (Borrelia garinii and B. afzelii), but the set of genogroups and genovariants of these spirochetes in I. trianguliceps proved to be far less diverse. According to the available data, this tick, compared to I. persulcatus, is generally less susceptible to Borrelia infection (especially by B. afzelii). Taking into account of its relatively low abundance, it appears that I. trianguliceps cannot seriously influence the course of epizootic process in ITBB foci of the study region, whereas highly abundant I. persulcatus with the high level of Borrelia infection is obviously a key component of these parasitic systems. A similar situation may well be typical for the entire geographic range shared by the two tick species. Copyright © 2015. Published by Elsevier GmbH.

  3. Influence of altitude on tick-borne encephalitis infection risk in the natural foci of the Altai Republic, Southern Siberia.

    PubMed

    Shchuchinova, L D; Kozlova, I V; Zlobin, V I

    2015-04-01

    The Altai Republic is a highly endemic area as far as tick-borne encephalitis (TBE) is concerned. The aim of the research was to study the effect of altitude on the risk of tick-borne encephalitis infection in the Altai Republic. The paper analyzes the following data: the study of ixodid ticks collected from the vegetation in 116 sites at the 200-2383m elevation above sea level in 2012-2014, TBE virus prevalence of these vectors, tick-bite incidence rate, and TBE incidence rate of the population. Species identification of 4503 specimens has shown that the most common species are Dermacentor nuttalli (45.3%), Ixodes persulcatus (33.1%), Dermacentor silvarum (9.4%), Dermacentor reticulatus (8.9%), and Haemaphysalis concinna (5.0%). A total of 2997 adult ixodid ticks were studied for the presence of the TBE virus; 2163 samples were examined by ELISA, while 834 specimens were tested by PCR. The TBE virus prevalence of Dermacentor spp. ticks in both reactions was significantly higher than of Ixodes persulcatus ticks (p<0.001). The work shows that the altitude is an important factor in the development of the epidemiological situation of tick-borne encephalitis: the higher the elevation of the area above sea level, the smaller the range of vectors. There is also a change of a leading species: in middle altitude (800-1700m above sea level) the virus is transmitted by ticks of D. nuttalli along with I. persulcatus, and in high mountains (above 1700m above sea level) D. nuttalli becomes an absolute dominant species. However, these species of ticks are less effective vectors than I. persulcatus. With the increase of altitude the tick-bite incidence rate decreases (r=-0.78, p<0.05), and TBE incidence also reduces (r=-0.67, p<0.05). Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Immunomodulatory effects of tick saliva on dermal cells exposed to Borrelia burgdorferi, the agent of Lyme disease.

    PubMed

    Scholl, Dorothy C; Embers, Monica E; Caskey, John R; Kaushal, Deepak; Mather, Thomas N; Buck, Wayne R; Morici, Lisa A; Philipp, Mario T

    2016-07-08

    The prolonged feeding process of ixodid ticks, in combination with bacterial transmission, should lead to a robust inflammatory response at the blood-feeding site. Yet, factors present in tick saliva may down-regulate such responses, which may be beneficial to spirochete transmission. The primary goal of this study was to test the hypothesis that tick saliva, in the context of Borrelia burgdorferi, can have widespread effects on the production of immune mediators in skin. A cross-section of tick feeding on skin was examined histologically. Human THP-1 cells stimulated with B. burgdorferi and grown in the presence or absence of tick saliva were examined by human DNA microarray, cytokine bead array, sandwich ELISA, and qRT-PCR. Similar experiments were also conducted using dermal fibroblasts. Tick feeding on skin showed dermal infiltration of histiocytes and granulocytes at the bite location. Changes in monocytic transcript levels during co-culture with B. burgdorferi and saliva indicated that tick saliva had a suppressive effect on the expression of certain pro-inflammatory mediators, such as IL-8 (CXCL8) and TLR2, but had a stimulatory effect on specific molecules such as the Interleukin 10 receptor, alpha subunit (IL-10RA), a known mediator of the immunosuppressive signal of IL-10. Stimulated cell culture supernatants were analyzed via antigen-capture ELISA and cytokine bead array for inflammatory mediator production. Treatment of monocytes with saliva significantly reduced the expression of several key mediators including IL-6, IL-8 and TNF-alpha. Tick saliva had an opposite effect on dermal fibroblasts. Rather than inhibiting, saliva enhanced production of pro-inflammatory mediators, including IL-8 and IL-6 from these sentinel skin cells. The effects of ixodid tick saliva on resident skin cells is cell type-dependent. The response to both tick and pathogen at the site of feeding favors pathogen transmission, but may not be wholly suppressed by tick saliva.

  5. Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus

    PubMed Central

    Boyer, Pierre H.; Boulanger, Nathalie; Nebbak, Amira; Collin, Elodie; Jaulhac, Benoit; Almeras, Lionel

    2017-01-01

    Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been demonstrated to be useful for tick identification at the species level. More recently, this tool has been successfully applied for the detection of bacterial pathogens directly in tick vectors. The present work has assessed the detection of Borrelia burgdorferi sensu lato in Ixodes ricinus tick vector by MALDI-TOF MS. To this aim, experimental infection model of I. ricinus ticks by B. afzelii was carried out and specimens collected in the field were also included in the study. Borrelia infectious status of I. ricinus ticks was molecularly controlled using half-idiosome to classify specimens. Among the 39 ticks engorged on infected mice, 14 were confirmed to be infected by B. afzelii. For field collection, 14.8% (n = 12/81) I. ricinus ticks were validated molecularly as infected by B. burgdorferi sl. To determine the body part allowing the detection of MS protein profile changes between non-infected and B. afzelii infected specimens, ticks were dissected in three compartments (i.e. 4 legs, capitulum and half-idiosome) prior to MS analysis. Highly reproducible MS spectra were obtained for I. ricinus ticks according to the compartment tested and their infectious status. However, no MS profile change was found when paired body part comparison between non-infected and B. afzelii infected specimens was made. Statistical analyses did not succeed to discover, per body part, specific MS peaks distinguishing Borrelia-infected from non-infected ticks whatever their origins, laboratory reared or field collected. Despite the unsuccessful of MALDI-TOF MS to classify tick specimens according to their B. afzelii infectious status, this proteomic tool remains a promising method for rapid, economic and accurate identification of tick species. Moreover, the singularity of MS spectra between legs and half-idiosome of I. ricinus could be used to reinforce this proteomic identification by submission of both these compartments to MS. PMID:28950023

  6. Ecological Factors Characterizing the Prevalence of Bacterial Tick-Borne Pathogens in Ixodes ricinus Ticks in Pastures and Woodlands ▿ §

    PubMed Central

    Halos, Lénaïg; Bord, Séverine; Cotté, Violaine; Gasqui, Patrick; Abrial, David; Barnouin, Jacques; Boulouis, Henri-Jean; Vayssier-Taussat, Muriel; Vourc'h, Gwenaël

    2010-01-01

    Ecological changes are recognized as an important driver behind the emergence of infectious diseases. The prevalence of infection in ticks depends upon ecological factors that are rarely taken into account simultaneously. Our objective was to investigate the influences of forest fragmentation, vegetation, adult tick hosts, and habitat on the infection prevalence of three tick-borne bacteria, Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Rickettsia sp. of the spotted fever group, in questing Ixodes ricinus ticks, taking into account tick characteristics. Samples of questing nymphs and adults were taken from 61 pastures and neighboring woodlands in central France. The ticks were tested by PCR of pools of nymphs and individual adults. The individual infection prevalence was modeled using multivariate regression. The highest infection prevalences were found in adult females collected in woodland sites for B. burgdorferi sensu lato and A. phagocytophilum (16.1% and 10.7%, respectively) and in pasture sites for Rickettsia sp. (8.7%). The infection prevalence in nymphs was lower than 6%. B. burgdorferi sensu lato was more prevalent in woodlands than in pastures. Forest fragmentation favored B. burgdorferi sensu lato and A. phagocytophilum prevalence in woodlands, and in pastures, the B. burgdorferi sensu lato prevalence was favored by shrubby vegetation. Both results are probably because large amounts of edges or shrubs increase the abundance of small vertebrates as reservoir hosts. The Rickettsia sp. prevalence was maximal on pasture with medium forest fragmentation. Female ticks were more infected by B. burgdorferi sensu lato than males and nymphs in woodland sites, which suggests an interaction between the ticks and the bacteria. This study confirms the complexity of the tick-borne pathogen ecology. The findings support the importance of small vertebrates as reservoir hosts and make a case for further studies in Europe on the link between the composition of the reservoir host community and the infection prevalence in ticks. PMID:20453131

  7. Molecular Detection and Identification of Spotted Fever Group Rickettsiae in Ticks Collected from the West Bank, Palestinian Territories

    PubMed Central

    Ereqat, Suheir; Nasereddin, Abedelmajeed; Al-Jawabreh, Amer; Azmi, Kifaya; Harrus, Shimon; Mumcuoglu, Kosta; Apanaskevich, Dimtry; Abdeen, Ziad

    2016-01-01

    Background Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group (SFG) rickettsiae. Although Spotted Fever is prevalent in the Middle East, no reports for the presence of tick-borne pathogens are available or any studies on the epidemiology of this disease in the West Bank. We aimed to identify the circulating hard tick vectors and genetically characterize SFG Rickettsia species in ixodid ticks from the West Bank-Palestinian territories. Methodology/Principal Findings A total of 1,123 ixodid ticks belonging to eight species (Haemaphysalis parva, Haemaphysalis adleri, Rhipicephalus turanicus, Rhipicephalus sanguineus, Rhipicephalus bursa, Hyalomma dromedarii, Hyalomma aegyptium and Hyalomma impeltatum) were collected from goats, sheep, camels, dogs, a wolf, a horse and a tortoise in different localities throughout the West Bank during the period of January-April, 2014. A total of 867 ticks were screened for the presence of rickettsiae by PCR targeting a partial sequence of the ompA gene followed by sequence analysis. Two additional genes, 17 kDa and 16SrRNA were also targeted for further characterization of the detected Rickettsia species. Rickettsial DNA was detected in 148 out of the 867 (17%) tested ticks. The infection rates in Rh. turanicus, Rh. sanguineus, H. adleri, H. parva, H. dromedarii, and H. impeltatum ticks were 41.7, 11.6, 16.7, 16.2, 11.8 and 20%, respectively. None of the ticks, belonging to the species Rh. bursa and H. aegyptium, were infected. Four SFG rickettsiae were identified: Rickettsia massiliae, Rickettsia africae, Candidatus Rickettsia barbariae and Candidatus Rickettsia goldwasserii. Significance The results of this study demonstrate the geographic distribution of SFG rickettsiae and clearly indicate the presence of at least four of them in collected ticks. Palestinian clinicians should be aware of emerging tick-borne diseases in the West Bank, particularly infections due to R. massiliae and R. africae. PMID:26771654

  8. Molecular Detection and Identification of Spotted Fever Group Rickettsiae in Ticks Collected from the West Bank, Palestinian Territories.

    PubMed

    Ereqat, Suheir; Nasereddin, Abedelmajeed; Al-Jawabreh, Amer; Azmi, Kifaya; Harrus, Shimon; Mumcuoglu, Kosta; Apanaskevich, Dimtry; Abdeen, Ziad

    2016-01-01

    Tick-borne rickettsioses are caused by obligate intracellular bacteria belonging to the spotted fever group (SFG) rickettsiae. Although Spotted Fever is prevalent in the Middle East, no reports for the presence of tick-borne pathogens are available or any studies on the epidemiology of this disease in the West Bank. We aimed to identify the circulating hard tick vectors and genetically characterize SFG Rickettsia species in ixodid ticks from the West Bank-Palestinian territories. A total of 1,123 ixodid ticks belonging to eight species (Haemaphysalis parva, Haemaphysalis adleri, Rhipicephalus turanicus, Rhipicephalus sanguineus, Rhipicephalus bursa, Hyalomma dromedarii, Hyalomma aegyptium and Hyalomma impeltatum) were collected from goats, sheep, camels, dogs, a wolf, a horse and a tortoise in different localities throughout the West Bank during the period of January-April, 2014. A total of 867 ticks were screened for the presence of rickettsiae by PCR targeting a partial sequence of the ompA gene followed by sequence analysis. Two additional genes, 17 kDa and 16SrRNA were also targeted for further characterization of the detected Rickettsia species. Rickettsial DNA was detected in 148 out of the 867 (17%) tested ticks. The infection rates in Rh. turanicus, Rh. sanguineus, H. adleri, H. parva, H. dromedarii, and H. impeltatum ticks were 41.7, 11.6, 16.7, 16.2, 11.8 and 20%, respectively. None of the ticks, belonging to the species Rh. bursa and H. aegyptium, were infected. Four SFG rickettsiae were identified: Rickettsia massiliae, Rickettsia africae, Candidatus Rickettsia barbariae and Candidatus Rickettsia goldwasserii. The results of this study demonstrate the geographic distribution of SFG rickettsiae and clearly indicate the presence of at least four of them in collected ticks. Palestinian clinicians should be aware of emerging tick-borne diseases in the West Bank, particularly infections due to R. massiliae and R. africae.

  9. Brown dog tick, Rhipicephalus sanguineus sensu lato, infestation of susceptible dog hosts is reduced by slow release of semiochemicals from a less susceptible host.

    PubMed

    de Oliveira Filho, Jaires Gomes; Ferreira, Lorena Lopes; Sarria, André Lucio Franceschini; Pickett, John A; Birkett, Michael A; Mascarin, Gabriel Moura; de León, Adalberto A Pérez; Borges, Lígia Miranda Ferreira

    2017-01-01

    Domestic dog breeds are hosts for the brown dog tick, Rhipicephalus sanguineus sensu lato, but infestation levels vary among breeds. Beagles are less susceptible to tick infestations than English cocker spaniels due to enhanced production of 2-hexanone and benzaldehyde that act as volatile tick repellents. We report the use of prototype slow-release formulations of these compounds to reduce the burden of R. sanguineus s. l. on English cocker spaniel dogs. Twelve dogs were randomly assigned to two groups with six dogs each. The treated group received collars with slow-release formulations of the compounds attached, while the control group received collars with clean formulations attached. Five environmental infestations were performed, with the number of ticks (at all stages) on the dogs being counted twice a day for 45days. The counts on the number of tick stages found per dog were individually fitted to linear mixed effects models with repeated measures and normal distribution for errors. The mean tick infestation in the treated group was significantly lower than in the control group. For larvae and nymphs, a decrease in tick infestation was observed at the fifth count, and for adults, lower average counts were observed in all counts. The compounds did not interfere with the distribution of the ticks on the body of the dogs, as a similar percentage of ticks was found on the anterior half of the dogs (54.5% for the control group and 56.2% for the treated group). The biological and reproductive parameters of the ticks were not affected by the repellents. This study highlights for the first time the potential use of a novel allomone (repellent)-based formulation for reduction of tick infestation on susceptible dogs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Control of Hyalomma lusitanicum (Acari: Ixodidade) Ticks Infesting Oryctolagus cuniculus (Lagomorpha: Leporidae) Using the Entomopathogenic Fungus Beauveria bassiana (Hyocreales: Clavicipitaceae) in Field Conditions.

    PubMed

    González, J; Valcárcel, F; Pérez-Sánchez, J L; Tercero-Jaime, J M; Cutuli, M T; Olmeda, A S

    2016-11-01

    Entomopathogenic fungi are widely used to control arthropods not just in agricultural settings but also in Veterinary Medicine and Public Health. These products have been employed to control tick populations and tick-borne diseases. The effectiveness of these control measures not only depends on the fungi, but also on the tick species and environmental conditions. In Mesomediterranean areas, tick species are adapted to extreme climatic conditions and it is therefore especially important to develop suitable tick control strategies. The aim of this study was to evaluate the effectiveness of a new method of tick control which entails the application of a commercial strain of Beauveria bassiana (Balsamo, Vuillemin) on wild rabbit burrows under field conditions. Aqueous solutions of the product were applied using a mist blower sprayer into 1,717 burrows. Two trials were performed, one in spring and the other in summer. The parasitic index (PI) was calculated for 10 rabbits per treatment per time point on day +30, +60, and +90 posttreatment and efficiency was calculated by comparing the PI for ticks in treated and untreated rabbits. A total of 20,234 ixodid ticks were collected. Hyalomma lusitanicum Koch, 1844 was the most abundant tick feeding on rabbits. Treatment significantly reduced the PI in spring (by 78.63% and 63.28% on day +30 and +60, respectively; P < 0.05), but appeared to be less effective in summer, with a marginally significant tick reduction of 35.72% on day +30 (P = 0.05). Results suggest that the efficacy of applications inside burrows could be temperature-dependent and that such applications could be an economic alternative to rabbit tick control during at least two months using a diluted solution of B. bassiana conidia. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Ticks and rickettsiae from wildlife in Belize, Central America.

    PubMed

    Lopes, Marcos G; May Junior, Joares; Foster, Rebecca J; Harmsen, Bart J; Sanchez, Emma; Martins, Thiago F; Quigley, Howard; Marcili, Arlei; Labruna, Marcelo B

    2016-02-02

    The agents of spotted fevers in Latin America are Rickettsia rickettsii, R. parkeri, Rickettsia sp. strain Atlantic rainforest, and R. massiliae. In Continental Central America, R. rickettsii remains the only known pathogenic tick-borne rickettsia. In the present study, ticks were collected from wild mammals in natural areas of Belize. Besides providing new data of ticks from Belize, we investigated rickettsial infection in some of these ticks. Our results provide ticks harboring rickettsial agents for the first time in Central America. Between 2010 and 2015, wild mammals were lived-trapped in the tropical broadleaf moist forests of central and southern Belize. Ticks were collected from the animals and identified to species by morphological and molecular analysis (DNA sequence of the tick mitochondrial 16S RNA gene). Some of the ticks were tested for rickettsial infection by molecular methods (DNA sequences of the rickettsial gltA and ompA genes). A total of 84 ticks were collected from 8 individual hosts, as follows: Amblyomma pacae from 3 Cuniculus paca; Amblyomma ovale and Amblyomma coelebs from a Nasua narica; A. ovale from an Eira Barbara; A. ovale, Amblyomma cf. oblongoguttatum, and Ixodes affinis from a Puma concolor; and A. ovale, A. coelebs, A. cf. oblongoguttatum, and I. affinis from two Panthera onca. Three rickettsial agents were detected: Rickettsia amblyommii in A. pacae, Rickettsia sp. strain Atlantic rainforest in A. ovale, and Rickettsia sp. endosymbiont in Ixodes affinis. The present study provides unprecedented records of ticks harboring rickettsial agents in the New World. An emerging rickettsial pathogen of South America, Rickettsia sp. strain Atlantic rainforest, is reported for the first time in Central America. Besides expanding the distribution of 3 rickettsial agents in Central America, our results highlight the possible occurrence of Rickettsia sp. strain Atlantic rainforest-caused spotted fever human cases in Belize, since its possible vector, A. ovale, is recognized as one of the most important human-biting ticks in the Neotropical region.

  12. A molecular survey of Babesia spp. and Theileria spp. in red foxes (Vulpes vulpes) and their ticks from Thuringia, Germany.

    PubMed

    Najm, Nour-Addeen; Meyer-Kayser, Elisabeth; Hoffmann, Lothar; Herb, Ingrid; Fensterer, Veronika; Pfister, Kurt; Silaghi, Cornelia

    2014-06-01

    Wild canines which are closely related to dogs constitute a potential reservoir for haemoparasites by both hosting tick species that infest dogs and harbouring tick-transmitted canine haemoparasites. In this study, the prevalence of Babesia spp. and Theileria spp. was investigated in German red foxes (Vulpes vulpes) and their ticks. DNA extracts of 261 spleen samples and 1953 ticks included 4 tick species: Ixodes ricinus (n=870), I. canisuga (n=585), I. hexagonus (n=485), and Dermacentor reticulatus (n=13) were examined for the presence of Babesia/Theileria spp. by a conventional PCR targeting the 18S rRNA gene. One hundred twenty-one out of 261 foxes (46.4%) were PCR-positive. Out of them, 44 samples were sequenced, and all sequences had 100% similarity to Theileria annae. Similarly, sequencing was carried out for 65 out of 118 PCR-positive ticks. Theileria annae DNA was detected in 61.5% of the sequenced samples, Babesia microti DNA was found in 9.2%, and Babesia venatorum in 7.6% of the sequenced samples. The foxes were most positive in June and October, whereas the peak of tick positivity was in October. Furthermore, the positivity of the ticks was higher for I. canisuga in comparison to the other tick species and for nymphs in comparison to adults. The high prevalence of T. annae DNA in red foxes in this study suggests a reservoir function of those animals for T. annae. To our knowledge, this is the first report of T. annae in foxes from Germany as well as the first detection of T. annae and B. microti in the fox tick I. canisuga. Detection of DNA of T. annae and B. microti in three tick species collected from foxes adds new potential vectors for these two pathogens and suggests a potential role of the red fox in their natural endemic cycles. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Impact of air temperature variation on the ixodid ticks habitat and tick-borne encephalitis incidence in the Russian Arctic: the case of the Komi Republic.

    PubMed

    Tokarevich, N; Tronin, A; Gnativ, B; Revich, B; Blinova, O; Evengard, B

    2017-01-01

    The causes of the recent rise of tick-borne encephalitis (TBE) incidence in Europe are discussed. Our objective was to estimate the impact of air temperature change on TBE incidence in the European part of the Russian Arctic. We analysed the TBE incidence in the Komi Republic (RK) over a 42-year period in relation to changes in local annual average air temperature, air temperature during the season of tick activity, tick abundance, TBE-prevalence in ticks, tick-bite incidence rate, and normalised difference vegetation index within the area under study. In 1998-2011 in RK a substantial growth of TBE virus (TBEV) prevalence both in questing and feeding ticks was observed. In 1992-2011 there was 23-fold growth of the tick-bite incidence rate in humans, a northward shift of the reported tick bites, and the season of tick bites increased from 4 to 6 months. In 1998-2011 there was more than 6-fold growth of average annual TBE incidence compared with 1970-1983 and 1984-1997 periods. This resulted both from the northward shift of TBE, and its growth in the south. In our view it was related to local climate change as both the average annual air temperature, and the air temperature during the tick activity season grew substantially. We revealed in RK a strong correlation between the change in the air temperature and that in TBE incidence. The satellite data showed NDVI growth within RK, i.e. alteration of the local ecosystem under the influence of climate change. The rise in TBE incidence in RK is related considerably to the expansion of the range of Ixodes persulcatus. The territory with reported TBE cases also expanded northward. Climate change is an important driver of TBE incidence rate growth.

  14. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey

    PubMed Central

    Karasartova, Djursun; Gureser, Ayse Semra; Gokce, Tuncay; Celebi, Bekir; Yapar, Derya; Keskin, Adem; Celik, Selim; Ece, Yasemin; Erenler, Ali Kemal; Usluca, Selma; Mumcuoglu, Kosta Y.

    2018-01-01

    Background Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey. Methodology/Principal findings From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%), R. slovaca (4.5%), R. raoultii (2.2%), R. hoogstraalii (1.9%), R. sibirica subsp. mongolitimonae (1.2%), R. monacensis (0.31%), and Rickettsia spp. (1.2%). In addition, the following pathogens were identified: Borrelia afzelii (0.31%), Anaplasma spp. (0.31%), Ehrlichia spp. (0.93%), Babesia microti (0.93%), Babesia ovis (0.31%), Babesia occultans (3.4%), Theileria spp. (1.6%), Hepatozoon felis (0.31%), Hepatozoon canis (0.31%), and Hemolivia mauritanica (2.1%). All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp. Conclusions/Significance Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with a tick infestation should be followed for a variety of pathogens with medical importance. PMID:29649265

  15. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey.

    PubMed

    Karasartova, Djursun; Gureser, Ayse Semra; Gokce, Tuncay; Celebi, Bekir; Yapar, Derya; Keskin, Adem; Celik, Selim; Ece, Yasemin; Erenler, Ali Kemal; Usluca, Selma; Mumcuoglu, Kosta Y; Taylan-Ozkan, Aysegul

    2018-04-01

    Tick-borne diseases are increasing all over the word, including Turkey. The aim of this study was to determine the bacterial and protozoan vector-borne pathogens in ticks infesting humans in the Corum province of Turkey. From March to November 2014 a total of 322 ticks were collected from patients who attended the local hospitals with tick bites. Ticks were screened by real time-PCR and PCR, and obtained amplicons were sequenced. The dedected tick was belonging to the genus Hyalomma, Haemaphysalis, Rhipicephalus, Dermacentor and Ixodes. A total of 17 microorganism species were identified in ticks. The most prevalent Rickettsia spp. were: R. aeschlimannii (19.5%), R. slovaca (4.5%), R. raoultii (2.2%), R. hoogstraalii (1.9%), R. sibirica subsp. mongolitimonae (1.2%), R. monacensis (0.31%), and Rickettsia spp. (1.2%). In addition, the following pathogens were identified: Borrelia afzelii (0.31%), Anaplasma spp. (0.31%), Ehrlichia spp. (0.93%), Babesia microti (0.93%), Babesia ovis (0.31%), Babesia occultans (3.4%), Theileria spp. (1.6%), Hepatozoon felis (0.31%), Hepatozoon canis (0.31%), and Hemolivia mauritanica (2.1%). All samples were negative for Francisella tularensis, Coxiella burnetii, Bartonella spp., Toxoplasma gondii and Leishmania spp. Ticks in Corum carry a large variety of human and zoonotic pathogens that were detected not only in known vectors, but showed a wider vector diversity. There is an increase in the prevalence of ticks infected with the spotted fever group and lymphangitis-associated rickettsiosis, while Ehrlichia spp. and Anaplasma spp. were reported for the first time from this region. B. microti was detected for the first time in Hyalomma marginatum infesting humans. The detection of B. occultans, B. ovis, Hepatozoon spp., Theileria spp. and Hemolivia mauritanica indicate the importance of these ticks as vectors of pathogens of veterinary importance, therefore patients with a tick infestation should be followed for a variety of pathogens with medical importance.

  16. Molecular survey of Coxiella burnetii in wildlife and ticks at wildlife-livestock interfaces in Kenya.

    PubMed

    Ndeereh, David; Muchemi, Gerald; Thaiyah, Andrew; Otiende, Moses; Angelone-Alasaad, Samer; Jowers, Michael J

    2017-07-01

    Coxiella burnetii is the causative agent of Q fever, a zoonotic disease of public health importance. The role of wildlife and their ticks in the epidemiology of C. burnetii in Kenya is unknown. This study analysed the occurrence and prevalence of the pathogen in wildlife and their ticks at two unique wildlife-livestock interfaces of Laikipia and Maasai Mara National Reserve (MMNR) with the aim to determine the potential risk of transmission to livestock and humans. Blood from 79 and 73 animals in Laikipia and MMNR, respectively, and 756 and 95 ixodid ticks in each of the areas, respectively, was analysed. Ticks were pooled before analyses into 137 and 29 samples in Laikipia and MMNR, respectively, of one to eight non-engorged ticks according to species and animal host. Real-time PCR amplifying the repetitive insertion element IS1111a of the transposase gene was used to detect C. burnetii DNA. Although none of the animals and ticks from MMNR tested positive, ticks from Laikipia had an overall pooled prevalence of 2.92% resulting in a maximum-likelihood estimate of prevalence of 0.54%, 95% CI 0.17-1.24. Ticks positive for C. burnetii DNA belonged to the genus Rhipicephalus at a pooled prevalence of 2.96% (maximum-likelihood estimate of prevalence of 0.54%, 95% CI 0.17-1.26). These ticks were Rhipicephalus appendiculatus, R. pulchellus and R. evertsi at pooled prevalence of 3.77, 3.03 and 2.04%, respectively. The presence of C. burnetii in ticks suggests circulation of the pathogen in Laikipia and demonstrates they may play a potential role in the epidemiology of Q fever in this ecosystem. The findings warrant further studies to understand the presence of C. burnetii in domestic animals and their ticks within both study areas.

  17. Amblyomma americanum (L.) (Acari: Ixodidae) tick salivary gland serine protease inhibitor (serpin) 6 is secreted into tick saliva during tick feeding

    PubMed Central

    Chalaire, Katelyn Cox; Kim, Tae Kwon; Garcia-Rodriguez, Heidy; Mulenga, Albert

    2011-01-01

    In order to successfully feed and transmit disease agents, ticks are thought to inject serine protease inhibitors (serpins) into the host to modulate host defense responses to tick feeding, such as inflammation, the complement activation pathway and blood coagulation. In this study, we show that Amblyomma americanum (Aam) serpin (S) 6 is putatively injected into the host during tick feeding, in that the antibody to recombinant (r) AamS6 specifically reacted with the expected ∼43/45 kDa AamS6 protein band on western blots of pilocarpine-induced tick saliva. Additionally, antibodies to tick saliva proteins that were generated by repeated 48 h infestations of rabbits with adult A. americanum specifically reacted with rAamS6. We speculate that AamS6 is associated with regulating events at the start of the tick feeding process, as temporal and spatial RT-PCR and western blot analyses revealed that both AamS6 mRNA and protein are strongly expressed during the first 24–72 h of feeding time before starting to fade from 96 h. The AamS6 protein has an apparently slow turnover rate in that, although the injection of AamS6 dsRNA into unfed ticks triggered complete disruption of the AamS6 mRNA by the 48 h feeding time point, western blot analysis of protein extracts of the same animals showed that the AamS6 protein that may have been expressed prior to disruption of the AamS6 mRNA was not depleted. We speculate that the presence of the AamS6 protein in ticks despite the complete disruption of the AamS6 mRNA explains the observation that RNAi-mediated silencing of the AamS6 mRNA did not affect the ability of A. americanum ticks to attach onto host skin, successfully feed and lay eggs. These findings are discussed in regards to advances in the molecular biology of ticks. PMID:21270316

  18. Microbial Invasion vs. Tick Immune Regulation.

    PubMed

    Sonenshine, Daniel E; Macaluso, Kevin R

    2017-01-01

    Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins, fibrinogen-related lectins and convertase factors (Hajdušek et al., 2013). Ticks also express reactive oxygen species (ROS) as well as glutathione-S-transferase, superoxide dismutase, heat shock proteins and even protease inhibitors that kill or inhibit microbes. Nevertheless, many tick-borne microorganisms are able to evade the tick's innate immune system and survive within the tick's body. The examples that follow describe some of the many different strategies that have evolved to enable ticks to transmit the agents of human and/or animal disease.

  19. Ticks are more suitable than red foxes for monitoring zoonotic tick-borne pathogens in northeastern Italy.

    PubMed

    Da Rold, Graziana; Ravagnan, Silvia; Soppelsa, Fabio; Porcellato, Elena; Soppelsa, Mauro; Obber, Federica; Citterio, Carlo Vittorio; Carlin, Sara; Danesi, Patrizia; Montarsi, Fabrizio; Capelli, Gioia

    2018-03-20

    Northeastern Italy is a hotspot for several tick-borne pathogens, transmitted to animals and humans mainly by Ixodes ricinus. Here we compare the results of molecular monitoring of ticks and zoonotic TBPs over a six-year period, with the monitoring of red foxes (Vulpes vulpes) in an endemic area. In the period 2011-2016, 2,578 ticks were collected in 38 sites of 20 municipalities of Belluno Province. Individual adults (264), pooled larvae (n = 330) and nymphs (n = 1984) were screened for tick-borne encephalitis virus, Borrelia burgdorferi (s.l.), Rickettsia spp., Babesia spp., Anaplasma phagocytophilum and "Candidatus Neoehrlichia mikurensis" by specific SYBR green real-time PCR assays and sequencing. The spleens of 97 foxes, culled in the period 2015-2017 during sport hunting or population control programs, were also screened. Overall, nine different pathogens were found in I. ricinus nymph and adult ticks: Rickettsia helvetica (3.69%); R. monacensis (0.49%); four species of the B. burgdorferi (s.l.) complex [B. afzelii (1.51%); B. burgdorferi (s.s.) (1.25%); B. garinii (0.18%); and B. valaisiana (0.18%)]; A. phagocytophilum (3.29%); "Candidatus N. mikurensis" (1.73%); and Babesia venatorum (0.04%). Larvae were collected and screened in the first year only and two pools (0.6%) were positive for R. helvetica. Tick-borne encephalitis virus was not found in ticks although human cases do occur in the area. The rate of infection in ticks varied widely according to tick developmental stage, site and year of collection. As expected, adults were the most infected, with 27.6% harboring at least one pathogen compared to 7.3% of nymphs. Pathogens with a minimum infection rate above 1% were recorded every year. None of the pathogens found in ticks were detectable in the foxes, 52 (54%) of which were instead positive for Babesia cf. microti (also referred to as Babesia microti-like, "Theileria annae", "Babesia annae" and "Babesia vulpes"). The results show that foxes cannot be used as sentinel animals to monitor tick-borne pathogens in the specific epidemiological context of northeastern Italy. The high prevalence of Babesia cf. microti in foxes and its absence in ticks strongly suggests that I. ricinus is not the vector of this pathogen.

  20. Lyme disease risk in southern California: abiotic and environmental drivers of Ixodes pacificus (Acari: Ixodidae) density and infection prevalence with Borrelia burgdorferi.

    PubMed

    MacDonald, Andrew J; Hyon, David W; Brewington, John B; O'Connor, Kerry E; Swei, Andrea; Briggs, Cheryl J

    2017-01-05

    Tick-borne diseases, particularly Lyme disease, are emerging across the northern hemisphere. In order to manage emerging diseases and predict where emergence will likely occur, it is necessary to understand the factors influencing the distribution, abundance and infection prevalence of vector species. In North America, Lyme disease is the most common vector-borne disease and is transmitted by blacklegged ticks. This study aimed to explore the abiotic and environmental drivers of density and infection prevalence of western blacklegged ticks (Ixodes pacificus) in southern California, an understudied and densely populated region of North America. Over the course of this two-year study, densities of I. pacificus adults were consistently positively associated with host availability for juvenile ticks and dense oak woodland habitat. Densities of nymphal and larval I. pacificus, on the other hand were primarily predicted by host availability for juvenile ticks in the first year of the study, and by habitat characteristics such as dense leaf litter in the second year. Infection with the causative agent of Lyme disease, Borrelia burgdorferi (sensu stricto), and related spirochetes was not predicted by the abiotic conditions promoting I. pacificus populations, but rather by diversity of the tick community, and in particular by the presence of two Ixodes tick species that do not generally feed on humans (Ixodes spinipalpis and Ixodes peromysci). Borrelia spp. infection was not detected in the I. pacificus populations sampled, but was detected in other vector species that may maintain enzootic transmission of the pathogen on the landscape. This study identified dense oak woodlands as high-risk habitats for I. pacificus tick encounter in southern California. The shift in relative importance of host availability to habitat characteristics in predicting juvenile tick abundance occurred as California's historic drought intensified, suggesting that habitat providing suitable microclimates for tick survivorship became centrally important to patterns of abundance in the face of deleterious abiotic conditions. These results underscore the need for further investigation of the effects of climate change on tick-borne disease in California. Finally, despite low risk of human Lyme disease infection posed by I. pacificus in southern California, evidence of infection was found in other tick species, suggesting that enzootic transmission of tick-borne borreliae may be occurring in southern California, and involve parallel enzootic cycles with other tick and host species but not necessarily humans.

  1. Rhipicephalus appendiculatus ticks transmit Theileria parva from persistently infected cattle in the absence of detectable parasitemia: implications for East Coast fever epidemiology.

    PubMed

    Olds, Cassandra L; Mason, Kathleen L; Scoles, Glen A

    2018-03-02

    East Coast fever (ECF) is a devastating disease of cattle and a significant constraint to improvement of livestock production in sub-Saharan Africa. The protozoan parasite causing ECF, Theileria parva, undergoes obligate sexual stage development in its tick vector Rhipicephalus appendiculatus. Tick-borne acquisition and transmission occurs transstadially; larval and nymphal ticks acquire infection while feeding and transmit to cattle when they feed after molting to the next stage. Much of the current knowledge relating to tick-borne acquisition and transmission of T. parva has been derived from studies performed during acute infections where parasitemia is high. In contrast, tick-borne transmission during the low-level persistent infections characteristic of endemic transmission cycles is rarely studied. Cattle were infected with one of two stocks of T. parva (Muguga or Marikebuni). Four months post-infection when parasites were no longer detectable in peripheral blood by PCR, 500 R. appendiculatus nymphs were fed to repletion on each of the cattle. After they molted to the adult stage, 20 or 200 ticks, respectively, were fed on two naïve cattle for each of the parasite stocks. After adult ticks fed to repletion, cattle were tested for T. parva infection by nested PCR and dot blot hybridization. Once they had molted to adults the ticks that had fed as nymphs on Muguga and Marikebuni infected cattle successfully transmitted Theileria parva to all naïve cattle, even though T. parva infection was not detectable by nested PCR on salivary gland genomic DNA of a sample of individual ticks. However, a salivary gland homogenate from a single Marikebuni infected tick was able to infect primary bovine lymphocytes. Infection was detected by nested p104 PCR in 3 of 4 calves and detected in all 4 calves by T. parva 18S nested PCR/dot blot hybridization. We show that R. appendiculatus ticks are able to acquire T. parva parasites from infected cattle even in the absence of detectable parasitemia. Although infection was undetectable in a sample of individual ticks, cumulatively as few as 20 ticks were able to transmit T. parva to naïve cattle. These results have important implications for our understanding of T. parva transmission by R. appendiculatus in ECF endemic regions.

  2. Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases?

    PubMed

    Benelli, Giovanni; Pavela, Roman; Canale, Angelo; Mehlhorn, Heinz

    2016-07-01

    Arthropods are dangerous vectors of agents of deadly diseases, which may hit as epidemics or pandemics in the increasing world population of humans and animals. Among them, ticks transmit more pathogen species than any other group of blood-feeding arthropods worldwide. Thus, the effective and eco-friendly control of tick vectors in a constantly changing environment is a crucial challenge. A number of novel routes have been attempted to prevent and control tick-borne diseases, including the development of (i) vaccines against viruses vectored by ticks; (ii) pheromone-based control tools, with special reference to the "lure and kill" techniques; (iii) biological control programmes relying on ticks' natural enemies and pathogens; and (iv) the integrated pest management practices aimed at reducing tick interactions with livestock. However, the extensive employment of acaricides and tick repellents still remains the two most effective and ready-to-use strategies. Unfortunately, the first one is limited by the rapid development of resistance in ticks, as well as by serious environmental concerns. On the other hand, the exploitation of plants as sources of effective tick repellents is often promising. Here, we reviewed current knowledge concerning the effectiveness of plant extracts as acaricides or repellents against tick vectors of public health importance, with special reference to Ixodes ricinus, Ixodes persulcatus, Amblyomma cajennense, Haemaphysalis bispinosa, Haemaphysalis longicornis, Hyalomma anatolicum, Hyalomma marginatum rufipes, Rhipicephalus appendiculatus, Rhipicephalus (Boophilus) microplus, Rhipicephalus pulchellus, Rhipicephalus sanguineus and Rhipicephalus turanicus. Eighty-three plant species from 35 botanical families were selected. The most frequent botanical families exploited as sources of acaricides and repellents against ticks were Asteraceae (15 % of the selected studies), Fabaceae (9 %), Lamiaceae (10 %), Meliaceae (5 %), Solanaceae (6 %) and Verbenaceae (5 %). Regression equation analyses showed that the literature grew by approximately 20 % per year (period: 2005-2015). Lastly, in the final section, insights for future research are discussed. We focused on some caveats for future data collection and analysis. Current critical points mainly deal with (a) not uniform methods used, which prevent proper comparison of the results; (b) inaccurate tested concentrations, frequently 100 % concentration corresponded to the gross extract, where the exact amounts of extracted substances are unknown; and (c) not homogeneous size of tested tick instars and species. Overall, the knowledge summarized in this review may be helpful for comparative screening among extensive numbers of plant-borne preparations, in order to develop newer and safer tick control tools.

  3. Using Risk Group Profiles as a Lightweight Qualitative Approach for Intervention Development: An Example of Prevention of Tick Bites and Lyme Disease

    PubMed Central

    van Velsen, Lex; van Gemert - Pijnen, Julia EWC; Maat, Angelique; van Steenbergen, Jim E; Crutzen, Rik

    2013-01-01

    Background Many public health campaigns use a one-size-fits-all strategy to achieve their desired effect. Public health campaigns for tick bites and Lyme disease (LD) in many countries convey all relevant preventive measures to all members of the public. Although preventing tick bites (eg, by wearing protective clothing or using repellants) and checking for tick bites after visiting a risk area are effective and cost-efficient methods to prevent an individual from contracting a tick-borne disease, public compliance to these methods is low. Objective We aimed to identify the group of individuals within the general Dutch population that are at high risk of being bitten by a tick or developing LD and to describe their characteristics, knowledge, and perceptions. The incidence of patients visiting their general practitioner for tick bites and erythema migrans (the first sign of LD) has increased tremendously in the last decades in the Netherlands and other European countries; therefore, our efforts can be used to counter this troubling trend. Methods We conducted in-depth semi-structured interviews to identify individuals belonging to the average risk group. Participants were recruited in two ways. Patients who visited two municipal health services travel health clinics (one in a high-endemic area and one in a low-endemic area) were asked to participate. This resulted in 18 interviews. Further, parents were recruited using the convenience sampling method, which resulted in 7 interviews. We discontinued interviewing when the point of data saturation was reached. We analyzed the results immediately after each interview to identify the point of data saturation. Data saturation is when the new interviews provided no new information compared to the previous interviews. The interviews were transcribed and analyzed using inductive thematic analysis. Results We identified four groups at risk of being bitten by ticks and developing LD among the general Dutch population. The groups were as follows: (1) outdoor people that check for tick bites, (2) outdoor people that do not check for tick bites, (3) parents that check their children for tick bites, and (4) parents that do not check their children for tick bites. Previous experience with ticks or LD was the main denominator between the groups. Checking for tick bites is a more easily adopted measure than preventing tick bites. Therefore, for all groups, public health efforts in the future should primarily emphasize on the importance of checking for tick bites. Conclusions The lightweight qualitative approach presented in this paper is highly relevant in tailoring public health efforts toward specific groups. The profiles of members in each risk group and the motivations underlying the behaviors of the members in each risk group can be used to determine the features and content of a targeted communication strategy about ticks and LD. PMID:24172875

  4. Research Strategies to Reduce Tick Densities and the Risk of Tick-borne Disease Transmission through Host-Targeted Control

    USDA-ARS?s Scientific Manuscript database

    While white-tailed deer are not reservoir hosts for the Lyme disease agent, Borrelia burgdorferi, they are the keystone host animal on which adult female blacklegged ticks engorge on blood that is essential to production of tick eggs and completion of the life cycle. This session explores current re...

  5. Exploring the use of anti-tick vaccine as tool for integrated eradication of the cattle fever tick, Rhipicephalus (Boophilus) annulatus

    USDA-ARS?s Scientific Manuscript database

    Bovine babesiosis, also known as cattle fever, is a tick-borne protozoal disease foreign to the United States. It was eradicated by eliminating the vector species, Rhipicephalus (Boophilus) annulatus and R. (B.) microplus, through the efforts of the Cattle Fever Tick Eradication Program (CFTEP), wit...

  6. Tick-Borne Encephalitis Virus in Ticks and Roe Deer, the Netherlands.

    PubMed

    Jahfari, Setareh; de Vries, Ankje; Rijks, Jolianne M; Van Gucht, Steven; Vennema, Harry; Sprong, Hein; Rockx, Barry

    2017-06-01

    We report the presence of tick-borne encephalitis virus (TBEV) in the Netherlands. Serologic screening of roe deer found TBEV-neutralizing antibodies with a seroprevalence of 2%, and TBEV RNA was detected in 2 ticks from the same location. Enhanced surveillance and awareness among medical professionals has led to the identification of autochthonous cases.

  7. 9 CFR 72.12 - Cattle; exposure to tick infestation after treatment or inspection prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Cattle; exposure to tick infestation... (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.12 Cattle; exposure to tick infestation after treatment or inspection prohibited. The cattle shall not be exposed to tick infestation...

  8. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... and premises of tick-infested animals; destruction or treating required. The litter and manure removed... which have contained interstate shipments of tick-infested animals, shall be destroyed or treated by the...

  9. 9 CFR 95.28 - Hay or straw and similar material from tick-infested areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... tick-infested areas. 95.28 Section 95.28 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... THE UNITED STATES § 95.28 Hay or straw and similar material from tick-infested areas. Hay or straw, grass, or similar material from tick-infested pastures, ranges, or premises may disseminate the...

  10. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... premises or inclosures which have contained interstate shipments of tick-infested animals, shall be...

  11. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... premises or inclosures which have contained interstate shipments of tick-infested animals, shall be...

  12. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... premises or inclosures which have contained interstate shipments of tick-infested animals, shall be...

  13. 9 CFR 95.28 - Hay or straw and similar material from tick-infested areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... tick-infested areas. 95.28 Section 95.28 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... THE UNITED STATES § 95.28 Hay or straw and similar material from tick-infested areas. Hay or straw, grass, or similar material from tick-infested pastures, ranges, or premises may disseminate the...

  14. 9 CFR 72.12 - Cattle; exposure to tick infestation after treatment or inspection prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Cattle; exposure to tick infestation... (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.12 Cattle; exposure to tick infestation after treatment or inspection prohibited. The cattle shall not be exposed to tick infestation...

  15. 9 CFR 95.28 - Hay or straw and similar material from tick-infested areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... tick-infested areas. 95.28 Section 95.28 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... THE UNITED STATES § 95.28 Hay or straw and similar material from tick-infested areas. Hay or straw, grass, or similar material from tick-infested pastures, ranges, or premises may disseminate the...

  16. 9 CFR 72.12 - Cattle; exposure to tick infestation after treatment or inspection prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Cattle; exposure to tick infestation... (INCLUDING POULTRY) AND ANIMAL PRODUCTS BOVINE BABESIOSIS § 72.12 Cattle; exposure to tick infestation after treatment or inspection prohibited. The cattle shall not be exposed to tick infestation after treatment and...

  17. 9 CFR 72.24 - Litter and manure from carriers and premises of tick-infested animals; destruction or treating...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... premises of tick-infested animals; destruction or treating required. 72.24 Section 72.24 Animals and Animal... manure from carriers and premises of tick-infested animals; destruction or treating required. The litter... premises or inclosures which have contained interstate shipments of tick-infested animals, shall be...

  18. 9 CFR 72.18 - Movement interstate; specification by the Deputy Administrator, Veterinary Services of treatment...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... treatment required when dipping facilities unavailable. (a) Tick-infested cattle. Cattle of the free area which are tick-infested may be moved interstate for any purpose after they have been treated in the same... Administrator, APHIS. (b) Tick-exposed cattle. Cattle of the free area which have been exposed to tick...

  19. 9 CFR 72.12 - Cattle; exposure to tick infestation after treatment or inspection prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Cattle; exposure to tick infestation... (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.12 Cattle; exposure to tick infestation after treatment or inspection prohibited. The cattle shall not be exposed to tick infestation...

  20. Acetylcholinesterase 1 in populations of organophosphate-resistant North American strains of the cattle tick, Rhipicephalus microplus (Acari: Ixodidae)

    USDA-ARS?s Scientific Manuscript database

    Rhipicephalus microplus, the cattle fever tick, is a global economic problem to the cattle industry due to direct infestation of cattle and pathogens transmitted during feeding. Cattle fever tick outbreaks continue to occur along the Mexico-U.S. border even though the tick has been eradicated from t...

  1. Evaluation of four bed bug traps for surveillances of brown dog ticks (Acari: Ixodidae)

    USDA-ARS?s Scientific Manuscript database

    The brown dog tick can be a serious residential pest due to its unique ability, among ticks, to complete its lifecycle indoors. A single engorged and fertilized female tick can oviposit around 4,000 eggs, allowing indoor establishment to be rapid and easy to miss in early-stage infestations. Acari...

  2. Repellency and toxicity of five ant defensive compounds against the lone star tick, Amblyomma americanum (Acari: Ixodidae)

    USDA-ARS?s Scientific Manuscript database

    + The lone star tick, Amblyomma americanum, is a vector of several important human and animal diseases. This tick species has rapidly expanded in its geographic distribution, and its aggressive behavior has increased the risk of tick-borne diseases in these new areas. Repellents are recommended by t...

  3. Dermacentor andersoni transmission of Francisella tularensis subsp. novicida reflects bacterial colonization, dissemination and replication coordinated with tick feeding.

    USDA-ARS?s Scientific Manuscript database

    Ticks serve as biological vectors for a wide variety of bacterial pathogens which must be able to efficiently colonize specific tick tissues prior to transmission. The bacterial determinants of tick colonization are largely unknown, a knowledge gap attributed in large part to the paucity of tools t...

  4. Quantification of brown dog tick repellents, 2-hexanone and benzaldehyde, and release from tick-resistant beagles, Canis lupus familiaris

    USDA-ARS?s Scientific Manuscript database

    We have recently shown that repellency of the tick Rhipicephalus sanguineus sensu lato by the tick resistant dog breed Beagle is mediated by volatile organic compounds 2-hexanone and benzaldehyde present in Beagle dog odour. Ectoparasite location on animal hosts is affected by variation in odour com...

  5. 9 CFR 72.12 - Cattle; exposure to tick infestation after treatment or inspection prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cattle; exposure to tick infestation... (INCLUDING POULTRY) AND ANIMAL PRODUCTS TEXAS (SPLENETIC) FEVER IN CATTLE § 72.12 Cattle; exposure to tick infestation after treatment or inspection prohibited. The cattle shall not be exposed to tick infestation...

  6. Identification of Dermacentor reticulatus Ticks Carrying Rickettsia raoultii on Migrating Jackal, Denmark

    PubMed Central

    Klitgaard, Kirstine; Chriél, Mariann; Isbrand, Anastasia; Jensen, Tim K.

    2017-01-01

    From a migrating golden jackal (Canis aureus), we retrieved 21 live male Dermacentor reticulatus ticks, a species not previously reported from wildlife in Denmark. We identified Rickettsia raoultii from 18 (86%) of the ticks. This bacterium is associated with scalp eschar and neck lymphadenopathy after tick bite syndrome among humans. PMID:29148376

  7. Cattle fever tick, Rhipicephalus annulatus (Acari: Ixodidae), and the quest for discovery of its natural enemies in the Balkan Region

    USDA-ARS?s Scientific Manuscript database

    Cattle fever tick, Rhipicephalus annulatus (CFT), is a hard tick native to the Mediterranean region that is invasive in the southwestern USA. The tick is known to develop on cattle and white tailed deer, and it transmits two lethal diseases, piroplasmosis and babesiosis. Extensive use of acaricides...

  8. Immunological control of ticks and tick-borne diseases that impact cattle health and production in Mexico

    USDA-ARS?s Scientific Manuscript database

    The cattle industry is one of the most important agroeconomic activities in Mexico. The national herd is estimated to include approximately 33.5 million head of cattle. Ticks and tick-borne diseases are principal factors with a negative impact on cattle health and production in Mexico. The most econ...

  9. Attempted transmission of Ehrlichia risticii, causative agent of Potomac horse fever, by the ticks, Dermacentor variabilis, Rhipicephalus sanguineus, Ixodes scapularis and Amblyomma americanum.

    PubMed

    Hahn, N E; Fletcher, M; Rice, R M; Kocan, K M; Hansen, J W; Hair, J A; Barker, R W; Perry, B D

    1990-01-01

    Dermacentor variabilis, Rhipicephalus sanguineus, Amblyomma americanum, and Ixodes scapularis ticks were investigated for their ability to transmit Potomac horse fever. Larval and nymphal ticks were exposed to Ehrlichia risticii by feeding on mice inoculated with the organism. Molted exposed ticks were then allowed to feed on susceptible ponies or mice. No evidence of transmission, either clinically or by detection of antibodies to E. risticii in mice or ponies, was observed for any tick species examined.

  10. Ticks and tick-borne diseases: a One Health perspective.

    PubMed

    Dantas-Torres, Filipe; Chomel, Bruno B; Otranto, Domenico

    2012-10-01

    Tick-borne diseases are common occurrences in both the medical and veterinary clinical settings. In addition to the constraints related to their diagnosis and clinical management, the control and prevention of these diseases is often difficult, because it requires the disruption of a complex transmission chain, involving vertebrate hosts and ticks, which interact in a constantly changing environment. We provide a contemporary review of representative tick-borne diseases of humans and discuss aspects linked to their medical relevance worldwide. Finally, we emphasize the importance of a One Health approach to tick-borne diseases, calling physicians and veterinarians to unify their efforts in the management of these diseases, several of which are zoonoses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Borrelia miyamotoi, Other Vector-Borne Agents in Cat Blood and Ticks in Eastern Maryland.

    PubMed

    Shannon, Avery B; Rucinsky, Renee; Gaff, Holly D; Brinkerhoff, R Jory

    2017-12-01

    We collected blood and tick samples in eastern Maryland to quantify vector-borne pathogen exposure and infection in healthy cats and to assess occupational disease risk to veterinary professionals and others who regularly interact with household pets. Thirty-six percent of healthy cats parasitized by ticks at time of examination (9/25) were exposed to, and 14% of bloods (7/49) tested PCR-positive for, at least one vector-borne pathogen including several bloods and ticks with Borrelia miyamotoi, a recently recognized tick-borne zoonotic bacterium. There was no indication that high tick burdens were associated with exposure to vector-borne pathogens. Our results underscore the potential importance of cats to human vector-borne disease risk.

  12. Ticks and Tickborne Diseases Affecting Military Personnel

    DTIC Science & Technology

    1989-09-01

    36 Rocky Mountain Spotted Fever ........................ 38 Boutonneuse Fever ...40 Siberian Tick Typhus ................................ 40 Tularemia ........................................... 41 Colorado Tick Fever ...42 Tickborne Relapsing Fever ........................... 43 Tickborne Encephalitis .............................. 43 Crimean

  13. Immunofluorescent detection in the ovary of host antibodies against a secretory ferritin injected into female Haemaphysalis longicornis ticks.

    PubMed

    Galay, Remil Linggatong; Matsuo, Tomohide; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Kusakisako, Kodai; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2018-04-01

    Due to the continuous threat of ticks and tick-borne diseases to human and animal health worldwide, and the drawbacks of chemical acaricide application, many researchers are exploring vaccination as an alternative tick control method. Earlier studies have shown that host antibodies can circulate in the ticks, but it has not been confirmed whether these antibodies can be passed on to the eggs. We previously reported that ticks infesting rabbits immunized with a recombinant secretory ferritin of Haemaphysalis longicornis (HlFER2) had reduced egg production and hatching. Here we attempted to detect the presence of antibodies against HlFER2 in the ovary and eggs of female ticks through immunofluorescent visualization. Purified anti-HlFER2 antibodies or rabbit IgG for control was directly injected to engorged female H. longicornis. Ovaries and eggs after oviposition were collected and prepared for an indirect immunofluorescent antibody test. Positive fluorescence was detected in ovaries one day post-injection of anti-HlFER2 antibodies. Through silencing of Hlfer2 gene, we also determined whether the injected antibodies can specifically bind to native HlFER2. Immunofluorescence was observed in the oocytes of dsLuciferase control ticks injected with anti-HlFER2 antibodies, but not in the oocytes of Hlfer2-silenced ticks also injected with anti-HlFER2 antibodies. Our current findings suggest that host antibodies can be passed on to the oocytes, which is significant in formulating a vaccine that can disrupt tick reproduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Efficacy of a Novel Topical Combination of Fipronil 9.8% and (S)-Methoprene 8.8% against Ticks and Fleas in Naturally Infested Dogs.

    PubMed

    Nambi, Ayyanampakkam Pandurangan; Rathi, Badal; S, Kavitha; Dudhatra, Ghanshyam; Yamini, Hamsa S; Ali Bhat, Abid

    2016-01-01

    The efficacy of a novel topical combination of fipronil 9.8% (w/v) and (S)-methoprene 8.8% (w/v) (Fiprofort® Plus) was tested against ticks and fleas in naturally infested dogs. A total of fifty dogs were allocated in the study with ticks infestation (n = 35) and fleas infestation (n = 15). On day 0, thirty-five tick and fifteen flea infested dogs received the test formulation, a combination of fipronil 9.8% (w/v) and (S)-methoprene 8.8% (w/v) spot-on solution. Ticks and flea counts were taken on days 0 (pretreatment) and 3, 7, 14, 21, 28, and 35 after treatment. Blood samples were collected for evaluation of haematological parameters on days 0 (pretreatment) and 7, 21, and 35 after treatment. All the adult ticks and fleas collected were identified as Rhipicephalus sanguineus and Ctenocephalides felis, respectively. The efficacy of spot-on formulation against ticks was 34.00% (day 3), 53.14% (day 7), 62.71% (day 14), 65.48% (day 21), 59.80% (day 28), and 58.82% (day 35), whereas against fleas it was 38.00% (day 3), 64.34% (day 7), 89.67% (day 14), 95.40% (day 21), 100.00% (day 28), and 100.00% (day 35). Haematological parameters for ticks and fleas infested dogs were statistically nonsignificant as compared to control. The combination of fipronil and (S)-methoprene eliminated the existing ticks and fleas infestation and prevented the dogs from flea and tick infestation for four weeks.

  15. Facilitative ecological interactions between invasive species: Arundo donax stands as favorable habitat for cattle ticks (Acari: Ixodidae) along the U.S.-Mexico border.

    PubMed

    Racelis, A E; Davey, R B; Goolsby, J A; Pérez de León, A A; Varner, K; Duhaime, R

    2012-03-01

    The cattle tick, Rhipicephalus (Boophilus) spp. is a key vector of protozoa that cause bovine babesiosis. Largely eradicated from most of the United States, the cattle tick continues to infest south Texas, and recent outbreaks in this area may signal a resurgence of cattle tick populations despite current management efforts. An improved understanding of the dynamic ecology of cattle fever ticks along the U.S.-Mexico border is required to devise strategies for sustainable eradication efforts. Management areas of the cattle tick overlap considerably with dense, wide infestations of the non-native, invasive grass known as giant reed (Arundo donax L.). Here we show that stands of giant reed are associated with abiotic and biotic conditions that are favorable to tick survival, especially when compared with other nearby habitats (open pastures of buffelgrass (Pennisetum ciliare) and closed canopy native forests). Overhead canopies in giant reed stands and native riparian forests reduce daily high temperature, which was the best abiotic predictor of oviposition by engorged females. In sites where temperatures were extreme, specifically open grasslands, fewer females laid eggs and the resulting egg masses were smaller. Pitfall trap collections of ground dwelling arthropods suggest a low potential for natural suppression of tick populations in giant reed stands. The finding that A. donax infestations present environmental conditions that facilitate the survival and persistence of cattle ticks, as well or better than native riparian habitats and open grasslands, represents an alarming complication for cattle fever tick management in the United States.

  16. The embryogenesis of the tick Rhipicephalus (Boophilus) microplus: the establishment of a new chelicerate model system.

    PubMed

    Santos, Vitória Tobias; Ribeiro, Lupis; Fraga, Amanda; de Barros, Cíntia Monteiro; Campos, Eldo; Moraes, Jorge; Fontenele, Marcio Ribeiro; Araújo, Helena Marcolla; Feitosa, Natalia Martins; Logullo, Carlos; da Fonseca, Rodrigo Nunes

    2013-12-01

    Chelicerates, which include spiders, ticks, mites, scorpions, and horseshoe crabs, are members of the phylum Arthropoda. In recent years, several molecular experimental studies of chelicerates have examined the embryology of spiders; however, the embryology of other groups, such as ticks (Acari: Parasitiformes), has been largely neglected. Ticks and mites are believed to constitute a monophyletic group, the Acari. Due to their blood-sucking activities, ticks are also known to be vectors of several diseases. In this study, we analyzed the embryonic development of the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). First, we developed an embryonic staging system consisting of 14 embryonic stages. Second, histological analysis and antibody staining unexpectedly revealed the presence of a population of tick cells with similar characteristics to the spider cumulus. Cumulus cell populations also exist in other chelicerates; these cells are responsible for the breaking of radial symmetry through bone morphogenetic protein signaling. Third, it was determined that the posterior (opisthosomal) embryonic region of R. microplus is segmented. Finally, we identified the presence of a transient ventral midline furrow and the formation and regression of a fourth leg pair; these features may be regarded as hallmarks of late tick embryogenesis. Importantly, most of the aforementioned features are absent from mite embryos, suggesting that mites and ticks do not constitute a monophyletic group or that mites have lost these features. Taken together, our findings provide fundamental common ground for improving knowledge regarding tick embryonic development, thereby facilitating the establishment of a new chelicerate model system. Copyright © 2013 Wiley Periodicals, Inc.

  17. Identification of a follistatin-related protein from the tick Haemaphysalis longicornis and its effect on tick oviposition.

    PubMed

    Zhou, Jinlin; Liao, Min; Hatta, Takeshi; Tanaka, Miho; Xuan, Xuenan; Fujisaki, Kozo

    2006-05-10

    The identification of ovary-associated molecules will lead to a better understanding of the physiology of tick reproduction and vector-pathogen interactions. A gene encoding a follistatin-related protein (FRP) was obtained by random sequencing from the ovary cDNA library of the tick Haemaphysalis longicornis. The full-length cDNA is 1157 bp, including an intact ORF encoding an expected protein with 289 amino acids. Three distinct domains were present in the deduced amino acids, namely, the follistatin-like domain, KAZAL, and two calcium-binding motifs, EFh. The sequence shows homology with the follistatin-related protein (FRP), which was thought to play some roles in the negative regulation of cellular growth. RT-PCR showed that the gene was expressed throughout the developing stages and mainly in the ovary as well as in fat body, hemocytes, salivary glands, and midgut. This gene was expressed in GST-fused recombinant protein with an expected size. The mouse antiserum against the recombinant protein recognized a 56-kDa native protein in both tick ovary and hemolymph. The recombinant proteins were found to have binding activity for both activin A and bone morphogenetic protein-2 (BMP-2). Silencing of FRP by RNAi showed a decrease in tick oviposition, which is consistent with the effect of a recombinant protein vaccine on the adult tick. These results showed that the tick FRP might be involved in tick oviposition. This is the first report of a member of follistatin family proteins in Chelicerata, which include ticks, spiders, and scorpions.

  18. Protective immunity against tick infestation in cattle vaccinated with recombinant trypsin inhibitor of Rhipicephalus microplus.

    PubMed

    Andreotti, Renato; Cunha, Rodrigo Casquero; Soares, Mariana Aparecida; Guerrero, Felix D; Leite, Fábio P Leivas; de León, Adalberto A Pérez

    2012-10-19

    The cattle tick, Rhipicephalus microplus, is regarded as the most economically important ectoparasite of livestock globally. Control is achieved primarily through the use of acaricides. This approach is hampered by the development of resistance to commercial acaricides among cattle tick populations. Vaccination against R. microplus infestation is another technology that can be integrated for effective cattle tick control. Proteins belonging to the Kunitz-BPTI family are abundant in cattle tick salivary glands, midgut, and ovaries. These organs are attractive targets for the development of a novel cattle tick vaccine. Efficacy assessment against cattle tick infestation in bovines using a vaccine containing the recombinant form of a member of the Kunitz family from R. microplus produced in a yeast expression system is reported for the first time here. The yeast Pichia pastoris was bioengineered to produce the recombinant version of a trypsin inhibitor that is expressed in cattle tick larvae (rRmLTI). Immunization with rRmLTI afforded 32% efficacy against R. microplus. The estimated molecular weight of rRmLTI was 46 kDa. Structural homology to the native form of the larval trypsin inhibitor was documented by recognition of rRmLTI in Western-blots using polyclonal antibodies from mice immunized with cattle tick larval extract or rRmLTI. Bioinformatics analysis of the partial nucleotide and deduced amino acid sequences indicated that the rRmLTI closely resembles BmTI-6, which is a three-headed Kunitz protein present in cattle tick ovary and fat tissue. Published by Elsevier Ltd.

  19. Mutation in the Sodium Channel Gene Corresponds With Phenotypic Resistance of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) to Pyrethroids.

    PubMed

    Klafke, G M; Miller, R J; Tidwell, J; Barreto, R; Guerrero, F D; Kaufman, P E; Pérez de León, A A

    2017-11-07

    The brown dog tick, Rhipicephalus sanguineus sensu lato (Latreille), is a cosmopolitan ectoparasite and vector of pathogens that kill humans and animals. Pyrethroids represent a class of synthetic acaricides that have been used intensely to try to control the brown dog tick and mitigate the risk of tick-borne disease transmission. However, acaricide resistance is an emerging problem in the management of the brown dog tick. Understanding the mechanism of resistance to acaricides, including pyrethroids, is important to adapt brown dog tick control strategies. The main objective of this study was to determine if target-site mutations associated with pyrethroid resistance in other pests could be associated with phenotypic resistance detected in a brown dog tick population from Florida. We amplified segment 6 of the domain III of the voltage-sensitive sodium channel protein, using cDNAs synthesized from pyrethroid-susceptible and pyrethroid-resistant tick strains. A single nucleotide point mutation (SNP) identified in a highly conserved region of domain III S6 in the resistant ticks resulted in an amino acid change from phenylalanine to leucine. This mutation is characteristic of resistance phenotypes in other tick species, and is the first report of this mutation in R. sanguineus. Molecular assays based on this knowledge could be developed to diagnose the risk for pyrethroid resistance, and to inform decisions on integrated brown dog tick management practices. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A Preliminary Investigation on Ticks (Acari: Ixodidae) Infesting Birds in Kızılırmak Delta, Turkey.

    PubMed

    Keskin, Adem; Erciyas-Yavuz, Kiraz

    2016-01-01

    Ticks are mandatory blood-feeding ectoparasites of mammals, birds, reptiles, and even amphibians. Turkey has a rich bird fauna and is located on the main migration route for many birds. However, information on ticks infesting birds is very limited. In the present study, we aimed to determine ticks infesting birds in Kızılırmak Delta, Turkey. In 2014 autumn bird migration season, a total of 7,452 birds belonging to 79 species, 52 genera, 35 families, and 14 orders were examined for tick infestation. In total, 287 (234 larvae, 47 nymphs, 6♀) ticks were collected from 54 passerine birds (prevalence = 0.72%) belonging to 12 species. Ticks were identified as Amblyomma sp., Dermacentor marginatus (Sulzer), Haemaphysalis concinna Koch, Haemaphysalis punctata Canestrini and Fanzago, Hyalomma sp., Ixodes frontalis (Panzer), and Ixodes ricinus (L). The most common tick species were I. frontalis (223 larvae, 23 nymphs, 6♀) followed by I. ricinus (3 larvae, 12 nymphs) and H. concinna (4 larvae, 6 nymphs). Based on our results, it can be said that Erithacus rubecula (L.) is the main host of immature I. frontalis, whereas Turdus merula L. is the most important carrier of immature stages of some ticks in Kızılırmak Delta, Turkey. To the best of our knowledge, most of the tick-host associations found in this study have never been documented in the literature. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Top