Sample records for tidal marsh evolution

  1. The effects of tidal range on saltmarsh morphology

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  2. A coupled geomorphic and ecological model of tidal marsh evolution.

    PubMed

    Kirwan, Matthew L; Murray, A Brad

    2007-04-10

    The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.

  3. Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates

    USGS Publications Warehouse

    Greenberg, Russell; Maldonado, Jesus; Droege, Sam; McDonald, M.V.

    2006-01-01

    Globally, tidal marshes are found in small pockets or narrow bands totaling only approximately 45,000 square kilometers. The combination of salinity, low floristic and structural complexity, and regular tidal inundation, as well as unpredictable catastrophic flooding, provides a unique selective environment that shapes local adaptations, including those that are morphological, physiological, demographic, and behavioral. Although tidal marshes support a low diversity of nonaquatic vertebrate species, a high proportion of these inhabitants, at least along North American coastlines, are restricted to or have subspecies restricted to tidal marshes. Tidal marshes and their endemic fauna face broad threats from a variety of human-caused environmental changes. Future research should focus on global inventories, intercontinental comparative work, and investigation to determine why almost all presently described endemic taxa appear to be found in North America.

  4. Influence of tidal range on the stability of coastal marshland

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2010-01-01

    Early comparisons between rates of vertical accretion and sea level rise across marshes in different tidal ranges inspired a paradigm that marshes in high tidal range environments are more resilient to sea level rise than marshes in low tidal range environments. We use field-based observations to propose a relationship between vegetation growth and tidal range and to adapt two numerical models of marsh evolution to explicitly consider the effect of tidal range on the response of the marsh platform channel network system to accelerating rates of sea level rise. We find that the stability of both the channel network and vegetated platform increases with increasing tidal range. Our results support earlier hypotheses that suggest enhanced stability can be directly attributable to a vegetation growth range that expands with tidal range. Accretion rates equilibrate to the rate of sea level rise in all experiments regardless of tidal range, suggesting that comparisons between accretion rate and tidal range will not likely produce a significant relationship. Therefore, our model results offer an explanation to widely inconsistent field-based attempts to quantify this relationship while still supporting the long-held paradigm that high tidal range marshes are indeed more stable.

  5. Predicting tidal marsh survival or submergence to sea-level rise using Holocene data

    NASA Astrophysics Data System (ADS)

    Horton, B.; Shennan, I.; Bradley, S.; Cahill, N.; Kirwan, M. L.; Kopp, R. E.; Shaw, T.

    2017-12-01

    Rising sea level threatens to permanently submerge tidal marsh environments if they cannot accrete faster than the rate of relative sea-level rise (RSLR). But regional and global model simulations of the future ability of marshes to maintain their elevation with respect to the tidal frame are uncertain. The compilation of empirical data for tidal marsh vulnerability is, therefore, essential to address disparities across these simulations. A hitherto unexplored source of empirical data are Holocene records of tidal marsh evolution. In particular, the marshes of Great Britain have survived and submerged while RSLR varied between -7.7 and 15.2 mm/yr, primarily because of the interplay between global ice-volume changes and regional isostatic processes. Here, we reveal the limits to marsh vulnerability are revealed through the analysis of over 400 reconstructions of tidal marsh submergence and conversion to tidal mud flat or open water from 54 regions in Great Britain during the Holocene. Holocene records indicate a 90% probability of tidal marsh submergence at sites with RSLR exceeding 7.3 mm/yr (95% CI: 6.6-8.6 mm/yr). Although most modern tidal marshes in Great Britain have not yet reached these sea-level rise limits, our empirical data suggest widespread concern over their ability to survive rates of sea-level rise in the 21st century under high emission scenarios. Integrating over the uncertainties in both sea-level rise predictions and the response of tidal marshes to sea-level rise, all of Great Britain has a >80% probability of marsh submergence under RCP 8.5 by 2100, with areas of south and eastern England, where the rate of RSLR is increased by glacio-isostatic subsidence, achieving this probability by 2040.

  6. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise

    PubMed Central

    Mariotti, Giulio; Fagherazzi, Sergio

    2013-01-01

    High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming. PMID:23513219

  7. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise.

    PubMed

    Mariotti, Giulio; Fagherazzi, Sergio

    2013-04-02

    High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming.

  8. Avian communities in tidal salt marshes of San Francisco Bay: a review of functional groups by foraging guild and habitat association

    USGS Publications Warehouse

    Takekawa, John Y.; Woo, Isa; Gardiner, Rachel J.; Casazza, Michael L.; Ackerman, Joshua T.; Nur, Nadav; Liu, Leonard; Spautz, Hildie; Palaima, Arnas

    2011-01-01

    The San Francisco Bay estuary is highly urbanized, but it supports the largest remaining extent of tidal salt marshes on the west coast of North America as well as a diverse native bird community. San Francisco Bay tidal marshes are occupied by more than 113 bird species that represent 31 families, including five subspecies from three families that we denote as tidal-marsh obligates. To better identify the niche of bird species in tidal marshes, we present a review of functional groups based on foraging guilds and habitat associations. Foraging guilds describe the method by which species obtain food from tidal marshes, while habitat associations describe broad areas within the marsh that have similar environmental conditions. For example, the ubiquitous song sparrows (Alameda Melospiza melodia pusillula, Suisun M. m. maxillaris, and San Pablo M. m. samuelis) are surface-feeding generalists that consume prey from vegetation and the ground, and they are found across the entire marsh plain into the upland–marsh transition. In contrast, surface-feeding California black rails (Laterallus jamaicensis coturniculus) are cryptic, and generally restricted in their distribution to the mid- and high-marsh plain. Although in the same family, the endangered California clapper rail (Rallus longirostris obsoletus) has become highly specialized, foraging primarily on benthic fauna within marsh channels when they are exposed at low tide. Shorebirds such as the black-necked stilt (Himantopus mexicanus) typically probe in mud flats to consume macroinvertebrate prey, and are generally restricted to foraging on salt pans within the marsh plain, in ponds, or on mud flats during transitional stages of marsh evolution. The abundance and distribution of birds varies widely with changing water depths and vegetation colonization during different stages of restoration. Thus, tidal-marsh birds represent a rich and diverse community in bay marshes, with niches that may be distinguished by the food resources they consume and the habitats that they occupy along the tidal gradient.

  9. Modelling Watershed and Estuarine Controls on Salt Marsh Distributions

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.

    2017-12-01

    The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.

  10. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  11. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  12. Evolution of sediment metal concentrations in a tidal marsh restoration project.

    PubMed

    Teuchies, Johannes; Beauchard, Olivier; Jacobs, Sander; Meire, Patrick

    2012-03-01

    The combination of flood prevention and tidal marsh restoration will be implemented on a large scale in the Schelde estuary (Belgium). Densely populated and industrialized, this estuary was found to be severely contaminated with trace metals. In this study we evaluated the effect of tidal restoration on sediment trace metal concentrations. To asses historical contamination of embanked-, a restored- and natural tidal areas, deep sediment cores were sampled while the evolution of metal concentrations was determined by means of superficial samples taken during 10 sampling campaigns spread over the first 3 years of the restoration project. Metal concentrations in the natural tidal marsh reflected the estuaries' contamination history. Fertilization by irrigation caused high metal concentrations in superficial soil layers of some embanked areas. However, reintroduction of the tide resulted in deposition of a new sediment layer with lower metal concentrations, comparable to the natural tidal marsh. Despite diagenetic mobility of manganese no diagenetic movements of the trace metals were observed during these first three years. Removal of metals from the estuary and burial of contaminated sediments in the restored site emphasize the potential of these restoration projects to decrease metal contamination risks. However, more research under field conditions on the effects of changes in land use and inundation related changes in metal bioavailability is needed to draw clear conclusions on the environmental consequences. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Interannual (1999-2005) morphodynamic evolution of macro-tidal salt marshes in Mont-Saint-Michel Bay (France)

    NASA Astrophysics Data System (ADS)

    Détriché, Sébastien; Susperregui, Anne-Sophie; Feunteun, Eric; Lefeuvre, Jean-Claude; Jigorel, Alain

    2011-04-01

    This paper provides a detailed study on the sedimentation patterns and the recent morphodynamic evolution affecting the macro-tidal salt marshes located west of the Mont-Saint-Michel (France). Twenty-two stations along three transects on the marshes were seasonally monitored for marsh surface level variations from 1999 to 2005, using a sediment erosion bar. The corresponding erosion/accretion rates were obtained together with data on topography, vegetation cover, and grain size of surface sediment. To examine the mechanisms contributing to the salt marsh sedimentation, the data and their evolution were treated with respect to tides, relative mean regional sea level, and wind speed/frequency variations. From 1999 to 2005, the marsh was globally accreting (from 3.45 to 38.11 mm yr -1 in the low marsh, up to 4.91 mm yr -1 in the middle marsh, and up to 1.35 mm yr -1 in the high marsh), while the study was conducted during a window of decreasing trend in mean regional sea level (-2.45 mm yr -1 according to regional-averaged time series). These sedimentation rates are one of the highest recorded worldwide; however, the sedimentation was not found to be continuous over the period in question. This pattern is illustrated by the strong extension of the marshes from 1999 to 2002, and the relative stability observed from 2003 to 2005. The imported and reworked sediments are trapped and fixed by the dense vegetation ( Puccinellia maritima, Halimione portulacoides), inducing the general seaward extension of the marshes. The processes governing sediment budget (accretion/erosion) show annual, seasonal, and spatial variability on the marsh. Spatial variations display contrasted patterns of erosion/sedimentation between the low, middle, and high marsh, and between the different transects. These patterns are a result of distance from sediment sources, strong heterogeneity in vegetation cover (human induced or not), and contrasting topographic and micro-topographic characteristics. The higher accretion rates are observed in distal settings in the low marsh, and strongly decrease toward the middle and high marsh. This evolution results from a decrease in accommodation space/water column thickness, and frequency of inundation coupled with an increase in station elevation, but also from the cumulated effects of vegetation cover and micro-topography. The vegetation cover of the low and middle marsh enhance the settling and fixing of fine sediments imported through tides or dispersed by flood and ebb currents. The seasonal evolution of the marshes is marked by contrasting effects of water storage in the sediment. The overall seasonal sediment budget is controlled by the variation of the frequency of inundation relative to tidal range and marshes topography. Autumns are influenced by the tide (equinoxes), relative mean regional sea level, and variations in wind speed/frequency. Winter wind speed and frequency in relation with tidal variations appear to be the main parameters regulating winter marsh evolution. Summers are predominantly under the influence of local variations in water storage (desiccation) while external parameters generally display a low influence. Although it is not governed by any one parameter, springtime sediment budget seems to result from strong interaction between the above-cited parameters, despite the significant frequency of inundation (equinoxes).

  14. Unsupervised detection of salt marsh platforms: a topographic method

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.

    2018-03-01

    Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.

  15. The impact of invasive plants on tidal-marsh vertebrate species: common reed (Phragmites australis) and smooth cordgrass (Spartina alterniflora) as case studies

    USGS Publications Warehouse

    Guntenspergen, Glenn R.; Nordby, J. Cully

    2006-01-01

    Large areas of tidal marsh in the contiguous US and the Maritime Provinces of Canada are threatened by invasive plant species. Our understanding of the impact these invasions have on tidal-marsh vertebrates is sparse. In this paper, we focus on two successful invasive plant taxa that have spread outside their native range --common reed (Phragmites australis) and smooth cordgrass (Spartina a/terniflora). A cryptic haplotype of common reed has expanded its range in Atlantic Coast tidal marshes and smooth cordgrass, a native dominant plant of Atlantic Coast low-marsh habitat, has expanded its range and invaded intertidal-marsh habitats of the Pacific Coast. The invasions of common reed in Atlantic Coast tidal marshes and smooth cordgrass in Pacific Coast tidal marshes appear to have similar impacts. The structure and composition of these habitats has been altered and invasion and dominance by these two taxa can lead to profound changes in geomorphological processes, altering the vertical relief and potentially affecting invertebrate communities and the entire trophic structure of these systems. Few studies have documented impacts of invasive plant taxa on tidal-marsh vertebrate species in North America. However, habitat specialists that are already considered threatened or endangered are most likely to be affected. Extensive experimental studies are needed to examine the direct impact of invasive plant species on native vertebrate species. Careful monitoring of sites during the initial stages of plant invasion and tracking ecosystem changes through time are essential. Since tidal marshes are the foci for invasion by numerous species, we also need to understand the indirect impacts of invasion of these habitats on the vertebrate community. We also suggest the initiation of studies to determine if vertebrate species can compensate behaviorally for alterations in their habitat caused by invasive plant species, as well as the potential for adaptation via rapid evolution. Finally, we urge natural-resource managers to consider the impact various invasive plant control strategies will have on native vertebrate communities.

  16. Rapid response of tidal channel networks to sea-level variations (Venice Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Rizzetto, Federica; Tosi, Luigi

    2012-07-01

    The aim of the present paper is to examine the effects of long- and short-term sea-level fluctuations (i.e. relative sea-level rise and tides) on the geomorphologic evolution of modern tidal channels through the joint interpretation of channel modifications, the 1938-2010 yearly time series of relative sea-level rise, and the variations of strength and frequency of high tides which occurred in the same period. We analyzed a salt marsh area not particularly modified by human interventions, located in the northern Venice Lagoon, Italy. The availability of a long historical record of high-resolution aerial photographs provided us the opportunity to reconstruct in detail the evolution of the drainage patterns from 1938 to the present. Results from our analyses gave us information about the degree of control of long- and short-term sea-level fluctuations on planimetric development of tidal channels and provided demonstration of the rapid response of the drainage network to these oscillations. We found that both relative sea-level rise and high tide frequency greatly influenced salt marsh margin shift and meander evolution of tidal channels in the long term, but short-term sinuosity changes of creeks were often also closely related to tide variations. Channels nearer the marsh margin were more exposed to the action of the increasing tides.

  17. Automated Detection of Salt Marsh Platforms : a Topographic Method

    NASA Astrophysics Data System (ADS)

    Goodwin, G.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method: this also suggests that these areas must be carefully considered when analysing erosion and accretion processes. Ultimately, we have shown that automatic detection of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.

  18. Autocyclic erosion in tidal marshes

    NASA Astrophysics Data System (ADS)

    Singh Chauhan, Poornendu P.

    2009-09-01

    A common mode whereby destruction of coastal lowlands occurs is frontal erosion. The edge cliffing, nonetheless, is also an inherent aspect of salt marsh development in many northwest European tidal marshes. Quite a few geomorphologists in the earlier half of the past century recognized such edge erosion as a definite repetitive stage within an autocyclic mode of marsh growth. A shift in research priorities during the past decades (primarily because of coastal management concerns, however) has resulted in an enhanced focus on sediment-flux measurement campaigns on salt marshes. This, somewhat "object-oriented" strategy hindered any further development of the once-established autocyclic growth concept, which virtually has gone into oblivion in recent times. This work makes an attempt to resurrect the notion of autocyclicity by employing its premises to address edge erosion in tidal marshes. Through a review of intertidal morphosedimentology the underlying framework for autocyclicity is envisaged. The phenomenon is demonstrated in the Holocene salt marsh plain of Moricambe basin in NW England that displays several distinct phases of marsh retreat in the form of abandoned clifflets. The suite of abandoned shorelines and terraces has been identified in detailed field mapping that followed analysis of topographic maps and aerial photographs. Vertical trends in marsh plain sediments are recorded in trenches for signs of past marsh front movements. The characteristic sea level history of the area offers an opportunity to differentiate the morphodynamic variability induced in the autocyclic growth of the marsh plain in scenarios of rising and falling sea level and the accompanied change in sediment budget. The ideas gathered are incorporated to construct a conceptual model that links temporal extent of marsh erosion to inner tidal flat sediment budget and sea level tendency. The review leads to recognition of the necessity of adopting an holistic approach in the morphodynamic investigations where marshes should be treated as a component within the "marsh-mudflat system" as each element apparently modulates evolution of the other, with an eventual linkage to subtidal channels.

  19. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss?

    NASA Astrophysics Data System (ADS)

    Mariotti, G.

    2016-12-01

    Ponds are un-vegetated rounded depressions commonly present on marsh platforms. The role of ponds on the long-term morphological evolution of tidal marshes is unclear - at times ponds expand but eventually recover the marsh platform, at other times ponds never recover and lead to permanent marsh loss. Existing field observations indicate that episodic disturbances of the marsh vegetation cause the formation of small (1-10 m) isolated ponds, even if the vegetated platform keeps pace with Relative Sea Level Rise (RSLR), and that isolated ponds tend to deepen and enlarge until they eventually connect to the channel network. Here I implement a simple model to study the vertical and planform evolution of a single connected pond. A newly connected pond recovers if its bed lies above the limit for marsh plant growth, or if the inorganic deposition rate is larger than the RSLR rate. A pond that cannot accrete faster than RSLR will deepen and enlarge, eventually entering a runaway erosion by wave edge retreat. A large tidal range, a large sediment supply, and a low rate of RSLR favor pond recovery. The model suggests that inorganic sediment deposition alone controls pond recovery, even in marshes where organic matter dominates accretion of the vegetated platform. As such, halting permanent marsh loss by pond collapse requires to increase inorganic sediment deposition. Because pond collapse is possible even if the vegetated platform keeps pace with RSLR, I conclude that marsh resilience to RSLR is less than previously quantified.

  20. Coatal salt marshes and mangrove swamps in China

    NASA Astrophysics Data System (ADS)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  1. Rapid evolution of a marsh tidal creek network in response to sea level rise.

    NASA Astrophysics Data System (ADS)

    Hughes, Z. J.; Fitzgerald, D. M.; Mahadevan, A.; Wilson, C. A.; Pennings, S. C.

    2008-12-01

    In the Santee River Delta (SRD), South Carolina, tidal creeks are extending rapidly onto the marsh platform. A time-series of aerial photographs establishes that these channels were initiated in the 1950's and are headward eroding at a rate of 1.9 m /yr. Short-term trends in sea level show an average relative sea level rise (RSLR) of 4.6 mm/yr over a 20-year tide gauge record from nearby Winyah Bay and Charleston Harbor (1975-1995). Longer-term (85-year) records in Charleston suggest a rate of 3.2 mm/yr. RSLR in the SRD is likely even higher as sediment cores reveal that the marsh is predominantly composed of fine-grained sediment, making it highly susceptible to compaction and subsidence. Furthermore, loss in elevation will have been exacerbated by the decrease in sediment supply due to the damming of the Santee River in 1939. The rapid rate of headward erosion indicates that the marsh platform is in disequilibrium; unable to keep pace with RSLR through accretionary processes and responding to an increased volume and frequency of inundation through the extension of the drainage network. The observed tidal creeks show no sinuosity and a distinctive morphology associated with their young age and biological mediation during their evolution. Feedbacks between tidal flow, vegetation and infauna play a strong role in the morphological development of the creeks. The creek heads are characterized by a region denuded of vegetation, the edges of which are densely populated and burrowed by Uca Pugnax (fiddler crab). Crab burrowing destabilizes sediment, destroys rooting and impacts drainage. Measured infiltration rates are three orders of magnitude higher in the burrowed regions than in a control area (1000 ml/min and 0.6 ml/min respectively). Infiltration of oxygenated water enhances decomposition of organic matter and root biomass is reduced within the creek head (marsh=4.3 kg/m3, head=0.6 kg/m3). These processes lead to the removal and collapse of the soils, producing topographically depressed regions at the creek heads. The depression focuses the ebb tidal flow into the creeks leading to strong ebb dominance in the creek heads and a net loss of suspended sediment through them. Thus the headward incision of tidal creeks is initiated by biologically driven subsidence at the creek heads. The results of this study provide an alternative scenario to marsh submergence as a response to increasing SLR and clear evidence of the importance of biological feedback in the evolving morphology of marsh tidal creeks.

  2. Tidal Flushing Restores the Physiological Condition of Fish Residing in Degraded Salt Marshes

    PubMed Central

    Dibble, Kimberly L.; Meyerson, Laura A.

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration. PMID:23029423

  3. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    PubMed

    Dibble, Kimberly L; Meyerson, Laura A

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.

  4. Critical role of wind-wave induced erosion on the morphodynamic evolution of shallow tidal basins

    NASA Astrophysics Data System (ADS)

    D'Alpaos, Andrea; Carniello, Luca; Rinaldo, Andrea

    2014-05-01

    Wind-wave induced erosion processes are among the chief processes which govern the morphodynamic evolution of shallow tidal basins, both in the vertical and in the horizontal plane. Wind-wave induced bottom shear stresses can promote the disruption of the polymeric microphytobenthic biofilm and lead to the erosion of tidal-flat surfaces and to the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Moreover, the impact of wind-waves on salt-marsh margins can lead to the lateral erosion of marsh boundaries thus promoting the disappearance of salt-marsh ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analyses of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. The interarrival time of wave-induced erosion events is, in fact, an exponentially distributed random variable, as well as the duration and intensity of overthreshold events. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon from the 19th to the 21st century, shows that the interarrival times of erosion events have dramatically decreased through the last two centuries, whereas the intensities of erosion events have experienced a surprisingly high increase. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.

  5. Changing tidal hydrodynamics during different stages of eco-geomorphological development of a tidal marsh: A numerical modeling study

    NASA Astrophysics Data System (ADS)

    Stark, J.; Meire, P.; Temmerman, S.

    2017-03-01

    The eco-geomorphological development of tidal marshes, from initially low-elevated bare tidal flats up to a high-elevated marsh and its typical network of channels and creeks, induces long-term changes in tidal hydrodynamics in a marsh, which will have feedback effects on the marsh development. We use a two-dimensional hydrodynamic model of the Saeftinghe marsh (Netherlands) to study tidal hydrodynamics, and tidal asymmetry in particular, for model scenarios with different input bathymetries and vegetation coverages that represent different stages of eco-geomorphological marsh development, from a low elevation stage with low vegetation coverage to a high and fully vegetated marsh platform. Tidal asymmetry is quantified along a 4 km marsh channel by (1) the difference in peak flood and peak ebb velocities, (2) the ratio between duration of the rising tide and the falling tide and (3) the time-integrated dimensionless bed shear stress during flood and ebb. Although spatial variations in tidal asymmetry are large and the different indicators for tidal asymmetry do not always respond similarly to eco-geomorphological changes, some general trends can be obtained. Flood-dominance prevails during the initial bare stage of a low-lying tidal flat. Vegetation establishment and platform expansion lead to marsh-scale flow concentration to the bare channels, causing an increase in tidal prism in the channels along with a less flood-dominant asymmetry of the horizontal tide. The decrease in flood-dominance continues as the platform grows vertically and the sediment-demand of the platform decreases. However, when the platform elevation gets sufficiently high in the tidal frame and part of the spring-neap cycle is confined to the channels, the discharge in the channels decreases and tidal asymmetry becomes more flood-dominant again, indicating an infilling of the marsh channels. Furthermore, model results suggest that hydro-morphodynamic feedbacks based on tidal prism to channel cross-sectional area relationships keep the marsh channels from filling in completely by enhancing ebb-dominance as long as the tidal volume and flow velocities remain sufficiently high. Overall, this study increases insight into the hydro-morphodynamic interactions between tidal flow and marsh geomorphology during various stages of eco-geomorphological development of marshes and marsh channels in particular.

  6. Marsh Pool and Tidal Creek Morphodynamics: Dynamic Equilibrium of New England Saltmarshes?

    NASA Astrophysics Data System (ADS)

    Wilson, C.; FitzGerald, D. M.; Hughes, Z. J.

    2012-12-01

    Under natural conditions, high saltmarsh platforms in New England exhibit poor drainage, creating waterlogged pannes (where short-form Spartina alterniflora dominates) and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. It is well accepted that a legacy of ditching practices (either for agriculture or mosquito control purposes) provide "overdrainage" of saltmarshes (after Redfield, 1972) and a shift in biogeochemical conditions: lowering of groundwater tables, aeration of soil, and decrease in preserved belowground biomass. Analysis of historical imagery in the Plum Island Estuary of Massachusetts reveals closure and decrease in length of anthropogenic ditches in recent decades is closely linked to marsh pool evolution. Field analyses including stratigraphic transects and elevation surveys suggest these marshes are reverting to natural drainage conditions. Further, an important dynamic interaction exists between saltmarsh pools and natural tidal creeks: creeks incise into pool areas, causing drainage of the pools, and formation of an unvegetated mudflat which can be rapidly recolonized by halophytic Spartina alterniflora vegetation. It was determined that pool and creek dynamics are cyclic in nature. The marsh platform is in dynamic equilibrium with respect to elevation and sea-level whereby marsh elevation may be lost (due to degradation of organic matter and formation of a pool) however may be regained (by creek incision into pools, restoration of tidal exchange, and rapid vertical accretion with Spartina alterniflora recolonization. Since vertical accretion in saltmarshes is a function of both organic and inorganic contributions to the marsh subsurface, it is hypothesized that cannibalization of existing muds is supplying inorganic material in this sediment starved system.

  7. Hydrogeology and analysis of ground-water-flow system, Sagamore Marsh area, southeastern Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.; Barlow, Paul M.

    1996-01-01

    A study of the hydrogeology and an analysis of the ground-water-flow system near Sagamore Marsh, southeastern Massachusetts, was undertaken to improve the understanding of the current (1994­ 95) hydrogeologic conditions near the marsh and how the ground-water system might respond to proposed changes in the tidal-stage regime of streams that flood and drain the marsh. Sagamore Marsh is in a coastal area that is bounded to the east by Cape Cod Bay and to the south by the Cape Cod Canal. The regional geology is characterized by deltaic and glaciolacustrine sediments. The sediments consist of gravel, sand, silt, and clay and are part of the Plymouth-Carver regional aquifer system. The glacial sediments are hounded laterally by marine sand, silt, and clay along the coast. The principal aquifer in the area consists of fine to coarse glacial sand and is locally confined by fine-grained glaciolacustrine deposits consisting of silt and sandy clay and fine-grained salt-marsh sediments consisting of peat and clay. The aquifer is underlain by finer grained glaciolacustrine sediments in upland areas and by marine clay along the coast.Shallow ground water discharges primarily along the edge of the marsh, whereas deeper ground water flows beneath the marsh and discharges to Cape Cod Bay. Tidal pulses originating from Cape Cod Bay and from tidal channels in the marsh are rapidly attenuated in the subsurface. Tidal ranges in Cape Cod Bay and in the tidal channels were on the order of 9 and 1.5 feet, respectively, whereas tidal ranges in the ground-water levels were less than 0.2 foot. Tidal pulses measured in the water table beneath a barrier beach between the marsh and Cape Cod Bay were more in phase with tidal pulses from Cape Cod Bay than with tidal pulses from the tidal channels in Sagamore Marsh, whereas tidal pulses in the regional aquifer were more in phase with tidal pulses from the tidal channels. A 5-day aquifer test at a public-supply well adjacent to the marsh gave a transmissivity of the regional aquifer of 9,300 to 10,900 feet squared per day and a hydraulic conductivity of 181 to 213 feet per day, assuming a saturated thickness of the aquifer of 51.3 feet. The regional aquifer became unconfined near the pumped well during the test. The ratio of tidal ranges in the tidal channel to the ranges in the underlying aquifer at two sites (the lower and upper marsh) indicated aquifer diffusivities for the marsh sediments of 380 and 170 feet squared per day; these values correspond to hydraulic conductivities of 2.5 x 10-3 and 1.7 x 10-3 feet per day, respectively. The maximum distances from the tidal channel at the lower and upper marsh sites where tidal ranges would exceed 0.01 foot, as calculated from aquifer diffusivities and current (1995) tidal ranges in the tidal channels, were 24.4 and 26.7 feet, respectively. The maximum distances from the tidal channel where tidal pulses in the ground water would exceed 0.01 foot, using potential increased tidal stages resulting from proposed tidal-stage modifications and predicted by the U.S. Army Corps of Engineers, were 37.1 and 42.0 feet, respectively. A numerical model of the marsh and surrounding aquifer system indicated that the contributing area for the supply well adjacent to the marsh, for current (1994) pumping conditions, extends toward Great Herring Pond, about 2 miles northwest (upgradient) of the well, and does not extend beneath the marsh. The model also indicates that the predicted increases in tidal stages in the marsh will have a negligible effect on local ground-water levels.

  8. Tidal Marshes: The Boundary between Land and Ocean.

    ERIC Educational Resources Information Center

    Gosselink, James

    An overview of the ecology of the tidal marshes along the gulf coast of the United States is presented. The following topics are included: (1) the human impact on tidal marshes; (2) the geologic origins of tidal marshes; (3) a description of the physical characteristics and ecosystem of the marshlands; (4) a description of the marshland food chain…

  9. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    USGS Publications Warehouse

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of accelerated MHWL rise (acceleration of 0.02 cm a-1), the CRT marsh is much less able to keep up with the MHWL rise; after 75 years the CRT elevation is already 0.21 m lower than for the natural marsh. In conclusion, this study demonstrates that although short-term (4 years) ΔE rates are similar in a restored CRT marsh and natural tidal marsh, these ecosystems may evolve differently in response to sea-level rise in the longer term (10–100 years).

  10. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    USGS Publications Warehouse

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  11. A Study of the Invertebrates and Fishes of Salt Marshes in Two Oregon Estuaries.

    DTIC Science & Technology

    1981-06-01

    TAXON Level Level Debris TAXON Level Level Debris Marsh Marsh Line Marsh Marsh Line Cnidaria Coleopr era Halaoampa s? p. A Carabidae A A A Turbellaria A...HAB ITAT H fAB ITAT TAXON Tidal Tidal Flat Tidal Tidal Flat Lan Creek Sandy Mudd TAXON PA Creek SandyMdd Cnidaria A A Tanaidacea Nemertea A A Pancolus...INVERTEBRATES Phylum Protozoa Subphylum Sarcomastigophora Class Rhizopodea Order Foraminifera Phylum Cnidaria Class Anthozoa Subclass Zoantharia Order

  12. Environmental threats to tidal-marsh vertebrates of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, John Y.; Woo, I.; Spautz, Hildie; Nur, N.; Letitia, Grenier J.; Malamud-Roam, K.; Cully, Nordby J.; Cohen, A.N.; Malamud-Roam, F.; Wainwright-De La Cruz, S.E.; ,

    2006-01-01

    The San Francisco Bay and delta system comprises the largest estuary along the Pacific Coast of the Americas and the largest remaining area for tidal-marsh vertebrates, yet tidal marshes have been dramatically altered since the middle of the 19th century. Although recent efforts to restore ecological functions are notable, numerous threats to both endemic and widespread marsh organisms, including habitat loss, are still present. The historic extent of wetlands in the estuary included 2,200 km2 of tidal marshes, of which only 21% remain, but these tidal marshes comprise >90% of all remaining tidal marshes in California. In this paper, we present the most prominent environmental threats to tidal-marsh vertebrates including habitat loss (fragmentation, reductions in available sediment, and sea-level rise), habitat deterioration (contaminants, water quality, and human disturbance), and competitive interactions (invasive species, predation, mosquito and other vector control, and disease). We discuss these threats in light of the hundreds of proposed and ongoing projects to restore wetlands in the estuary and suggest research needs to support future decisions on restoration planning.

  13. Broad timescale forcing and geomorphic mediation of tidal marsh flow and temperature dynamics

    USGS Publications Warehouse

    Enwright, Christopher; Culberson, Steven; Burau, Jon R.

    2013-01-01

    Tidal marsh functions are driven by interactions between tides, landscape morphology, and emergent vegetation. Less often considered are the diurnal pattern of tide extremes and seasonal variation of solar insolation in the mix of tidal marsh driver interactions. This work demonstrates how high-frequency hydroperiod and water temperature variability emerges from disparate timescale interactions between tidal marsh morphology, tidal harmonics, and meteorology in the San Francisco Estuary. We compare the tidal and residual flow and temperature response of neighboring tidal sloughs, one possessing natural tidal marsh morphology, and one that is modified for water control. We show that the natural tidal marsh is tuned to lunar phase and produces tidal and fortnight water temperature variability through interacting tide, meteorology, and geomorphic linkages. In contrast, temperature variability is dampened in the modified slough where overbank marsh plain connection is severed by levees. Despite geomorphic differences, a key finding is that both sloughs are heat sinks in summer by latent heat flux-driven residual upstream water advection and sensible and long-wave heat transfer. The precession of a 335-year tidal harmonic assures that these dynamics will shift in the future. Water temperature regulation appears to be a key function of natural tidal sloughs that depends critically on geomorphic mediation. We investigate approaches to untangling the relative influence of sun versus tide on residual water and temperature transport as a function of system morphology. The findings of this study likely have ecological consequences and suggest physical process metrics for tidal marsh restoration performance.

  14. Expansive Tidal Marshes on the North American Eastern Seaboard: Relics of Colonial Deforestation?

    NASA Astrophysics Data System (ADS)

    Murray, A.; Kirwan, M.

    2013-12-01

    Experiments using a numerical model of tidal marsh ecomorphodynamic evolution suggest that changes in sediment supply (suspended sediment concentrations) reaching tidal marshes can play a role as strong as sea-level-rise rate in determining the extent and elevation of coastal wetlands. Testing a model-generated hypothesis, sediment coring and radiocarbon dating in the Plum Island Estuary marshes, Massachusetts, USA, suggested that marshes prograded rapidly and substantially following colonial deforestation (Kirwan et al., Geology, 2011). This controversial claim has been questioned, in part because historical maps from 1780 and 1830 show that the marsh had already attained most of its modern extent by that time--which is earlier than some of the of the radiocarbon mid-point dates (Priestas et al., Geology Forum, Dec. 2012). However, given the uncertainties in the radiocarbon dates, and in identifying the earliest marsh-derived layers in sediment cores, the maps and the dating are broadly consistent (Kirwan and Murray, Geology Forum, Dec. 2012). In addition, previous studies have shown that considerable land-use change had already occurred in this small coastal watershed by the late 17th Century, with local laws against tree cutting in place by 1660, and evidence for regional deforestation by 1700. Our field evidence, combined with the historical maps, indicates that this early colonial development lead to an expansion of marshes by approximately 50 percent within the studied area. Given the widespread and pervasive nature of subsequent land-use changes on the Eastern Seaboard from colonial through civil war periods, many of the currently expansive marshes on the East Coast may be relict. Numerical modeling suggests that when sediment concentrations fall below the values required to form a marsh, the marsh will be metastable, with vegetation feedbacks able to maintain the relict morphology and ecology, but susceptible to irreversible loss in response to disturbances. Thus, the field investigations in one location may have wide reaching implications for explaining and mitigating observed marsh degradation.

  15. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and an eventual lateral equilibrium are possible only with large allochthonous sediment supply. Once marshes expanded, marsh retreat can be prevented by a sediment supply smaller than the one that filled the basin. At the GCE, the Altamaha River allows for enhanced allochthonous supply directly to the salt marsh platform, reducing the importance of waves on the tidal flat. As a result, infilling or retreat become the prevalent behaviors. For the VCR, the presence of seagrass decreases near bed shear stresses and sediment flux to the salt marsh platform, however, seagrass also reduces the wave energy acting on the boundary of the marsh reducing boundary erosion. Results indicate that the reduction in wave power allows for seagrass to provide a strong stabilizing affect on the coupled salt marsh tidal flat system, but as external sediment supply increases and light conditions decline the system reverts to that of a bare tidal flat. Across all systems and with current rates of sea level rise, retreat is a more likely marsh loss modality than drowning.

  16. Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh

    USGS Publications Warehouse

    Roman, C.T.; Raposa, K.B.; Adamowicz, S.C.; James-Pirri, M.J.; Catena, J.G.

    2002-01-01

    Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide-restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide-restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7-ha tide-restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3-ha Spartina -dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide-restored marsh had changed from its pre-restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide-restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide-restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.

  17. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  18. Tidal fluxes of mercury and methylmercury for Mendall Marsh, Penobscot River estuary, Maine.

    PubMed

    Turner, R R; Mitchell, C P J; Kopec, A D; Bodaly, R A

    2018-05-08

    Tidal marshes are both important sites of in situ methylmercury production and can be landscape sources of methylmercury to adjacent estuarine systems. As part of a regional investigation of the Hg-contaminated Penobscot River and Bay system, the tidal fluxes of total suspended solids, total mercury and methylmercury into and out of a regionally important mesohaline fluvial marsh complex, Mendall Marsh, were intensively measured over several tidal cycles and at two spatial scales to assess the source-sink function of the marsh with respect to the Penobscot River. Over four tidal cycles on the South Marsh River, the main channel through which water enters and exits Mendall Marsh, the marsh was a consistent sink over typical 12-h tidal cycles for total suspended solids (8.2 to 41 g m -2 ), total Hg (9.2 to 47 μg m -2 ), total filter-passing Hg (0.4 to 1.1 μg m -2 ), and total methylmercury (0.2 to 1.4 μg m -2 ). The marsh's source-sink function was variable for filter-passing methylmercury, acting as a net source during a large spring tide that inundated much of the marsh area and that is likely to occur during approximately 17% of tidal cycles. Additional measurements on a small tidal channel draining approximately 1% of the larger marsh area supported findings at the larger scale, but differences in the flux magnitude of filter-passing fractions suggest a highly non-conservative transport of these fractions through the tidal channels. Overall the results of this investigation demonstrate that Mendall Marsh is not a significant source of mercury or methylmercury to the receiving aquatic systems (Penobscot River and Bay). While there is evidence of a small net export of filter-passing (<0.4 μm pore size) methylmercury under some tidal conditions, the mass involved represents <3% of the mass of filter-passing methylmercury carried by the Penobscot River. Copyright © 2018. Published by Elsevier B.V.

  19. The role of tidal marsh restoration in fish management in the San Francisco Estuary

    USGS Publications Warehouse

    Herbold, Bruce; Baltz, Donald; Brown, Larry R.; Grossinger, Robin; Kimmerer, Wim J.; Lehman, Peggy W.; Moyle, Peter B.; Nobriga, Matthew L.; Simenstad, Charles A.

    2015-01-01

    Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary). Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011). Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha) and the Bay Delta Conservation Plan (26,305 ha). In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012). In the Sacramento–San Joaquin Delta (Delta), one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013). The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010). This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium.

  20. Soil-geomorphology relationships and landscape evolution in a southwestern Atlantic tidal salt marsh in Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Ríos, Ileana; Bouza, Pablo José; Bortolus, Alejandro; Alvarez, María del Pilar

    2018-07-01

    Salt marshes in Patagonia ecosystem are nowadays fully recognized by ecological, pollution and phytoremediation studies but a soil genesis and geomorphology approach is currently unknown. The aim of this study was to establish the soil-geomorphology relationship in Fracasso salt marsh and to determine the successional vegetation dynamics associated with the landscape evolution. This work was carried out in Fracasso salt marsh sited in Península Valdés, Argentina, where an integrated study on soil-geomorphology relationship and landscape evolution was performed along with sedimentological analysis and vegetation changes (C3 photosynthesis pathway vs. C4 photosynthesis pathway plants). This last was determined through the δ13C composition from soil organic matter (SOM). Soil descriptions and laboratory analysis of soil samples were performed. A marked relationship between the vegetation unit, the dominant landform and the type of associated soil was found. Limonium brasiliense (Lb) and Sarcocornia perennis (Sp), both C3 plants, are dominant in levees associated with tidal creeks, and soils were classified as Typic Fluvaquents, while Spartina alterniflora (Sa) soils were classified as Sodic Endoaquents and Sodic Psammaquents. Although no sulfidic materials were identified by incubation test, they were identified by hydrogen peroxide treatment in Sa soils, and now are considered potential acid sulfate soils (PASS). Sedimentological analysis from deepest sandy C horizons indicates a beach depositional environment. On the other hand, the δ13C stable isotope composition of SOM preserved into these buried soil acting as parent materials shows the dominance of C4 plants presumably belonging to Spartina species, suggesting a possible colonization and stabilization as the pioneer salt marsh.

  1. Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium

    NASA Astrophysics Data System (ADS)

    Van Damme, Stefan; Frank, Dehairs; Micky, Tackx; Olivier, Beauchard; Eric, Struyf; Britta, Gribsholt; Oswald, Van Cleemput; Patrick, Meire

    2009-11-01

    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a freshwater tidal marsh along the Scheldt estuary (Belgium), covering oxygen, nutrients (N, P and Si), carbon, chlorophyll, suspended matter, chloride and sulfate. The role of seepage from the marsh was also investigated. A ranking between the parameters revealed that oxygenation was the strongest effect of the marsh on the estuarine water. Particulate parameters showed overall import. Export of dissolved silica (DSi) was more important than exchange of any other nutrient form. Export of DSi and import of total dissolved nitrogen (DIN) nevertheless contributed about equally to the increase of the Si:N ratio in the seepage water. The marsh had a counteracting effect on the long term trend of nutrient ratios in the estuary.

  2. Natural and human-induced driving factors in the evolution of tidal channels: case studies in the Venice Lagoon (Italy).

    NASA Astrophysics Data System (ADS)

    Rizzetto, Federica

    2013-04-01

    Coastal wetlands are largely affected by a complex variety of both natural and anthropogenic factors, which induce evident, often irreversible, geomorphological transformations. In particular, this research focuses on the main processes that influence the evolution of tidal channels in salt marshes and shows the results derived from the analysis of some case studies in the Venice Lagoon (northwestern Adriatic Sea, Italy). Here tidal network has been recognized as significantly sensitive to sea-level rise and tide oscillations (Rizzetto and Tosi, 2011; Rizzetto and Tosi, 2012), but it is also vulnerable to human impact. The sites were selected in areas characterized by low anthropogenic pressure to prevent strong human interferences from completely masking the effects of natural forces. The interpretation of a large number of high-resolution aerial photographs, taken since the mid 1930s, allowed identifying in detail tidal channel evolution, both in the long- and in the short-term. The observation of historical and recent topographic maps completed the study and provided other important data to define the modifications occurred in the past two centuries. The channel planform changes were determined through the morphometric analysis of the tidal network, carried out using a Geographic Information System software. These modifications were interpreted in the light of sea-level oscillations (i.e. relative sea-level rise and strength/frequency of high tides, which are increasing owing to climate changes), variations of sediment supply, and human activities occurred in the past century. The joint analysis of all the data allowed distinguishing the changes induced by both relative sea-level rise and high tides on planform pattern and evolution of tidal channels, and identifying the effects of human interferences, which magnified the impact of natural factors (e.g. groundwater exploitation responsible for high subsidence rates between 1950 and 1970 and, consequently, for an increase of relative sea-level rise in the same period) and/or produced other hydrodynamic, morphological, sedimentological modifications in the salt marshes, often resulting in erosion. References Rizzetto F., Tosi L., 2011. Aptitude of modern salt marshes to counteract relative sea-level rise, Venice Lagoon (Italy). Geology, 39 (8), 755-758. doi: 10.1130/G31736.1. Rizzetto F., Tosi L., 2012. Rapid response of tidal channel networks to sea-level variations (Venice Lagoon, Italy). Global and Planetary Change, 92-93, 191-197, doi: 10.1016/j.gloplacha.2012.05.022.

  3. 75 FR 22618 - Eastern Neck National Wildlife Refuge, Kent County, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... habitats are highly diverse, and include tidal marsh, open water, and woodland. The refuge's managed... protection and restoration of shoreline, tidal marsh, and submerged aquatic vegetation; invasive plant and... protection and restoration of the refuge's shoreline and tidal marshes. Priorities under this alternative are...

  4. Can salt marshes survive sea level rise ?

    NASA Astrophysics Data System (ADS)

    Tambroni, N.; Seminara, G.

    2008-12-01

    Stability of salt marshes is a very delicate issue depending on the subtle interplay among hydrodynamics, morphodynamics and ecology. In fact, the elevation of the marsh platform depends essentially on three effects: i) the production of soil associated with sediments resuspended by tidal currents and wind waves in the adjacent tidal flats, advected to the marsh and settling therein; ii) production of organic sediments by the salt marsh vegetation; iii) soil 'loss' driven by sea level rise and subsidence. In order to gain insight into the mechanics of the process, we consider a schematic configuration consisting of a salt marsh located at the landward end of a tidal channel connected at the upstream end with a tidal sea, under different scenarios of sea level rise. We extend the simple 1D model for the morphodynamic evolution of a tidal channel formulated by Lanzoni and Seminara (2002, Journal of Geophysical Research-Oceans, 107, C1) allowing for sediment resuspension in the channel and vegetation growth in the marsh using the depth dependent model of biomass productivity of Spartina proposed by Morris et al. (2002, Ecology, 83, pp. 2869 - 2877). We first focus on the case of a tide dominated salt marsh neglecting wind driven sediment resuspension in the shoal. Results show that the production of biomass plays a crucial role on salt marsh stability and, provided productivity is high enough, it may turn out to be sufficient to counteract the effects of sea level rise even in the absence of significant supply of mineral sediments. The additional effect of wind resuspension is then introduced. Note that the wind action is twofold: on one hand, it generates wind waves the amplitude of which is strongly dependent on shoal depth and wind fetch; on the other hand, it generates currents driven by the surface setup induced by the shear stress acting on the free surface. Here, each contribution is analysed separately. Results show that the values of bottom stress induced by wind setup are small compared with those associated with wind waves. However, the permanence of wind currents makes them as significant as the oscillating tidal currents in determining the direction and the intensity of the residual sediment flux. Marshes are typically characterised by a variety of vegetation species competing for habitat space within the intertidal zone: we analyze this feature by considering the case of two different species. Preliminary results show that the presence of a species characterised by a narrower habitat range, lower optimum elevation and biomass productivity, has a positive feedback on the growth of the other species. Moreover, the presence of an invader raises marsh elevation above the value reached in the presence of just one species. Finally, we investigate the effect of a reduction of the amount of sediments supplied from the sea.

  5. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean

    USGS Publications Warehouse

    Wang, Zhaohui Aleck; Kroeger, Kevin D.; Ganju, Neil K.; Gonneea, Meagan; Chu, Sophie N.

    2016-01-01

    Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.

  6. Patterns of sediment accumulation in the tidal marshes of Maine

    USGS Publications Warehouse

    Wood, M.E.; Kelley, J.T.; Belknap, D.F.

    1989-01-01

    One year's measurements of surficial sedimentation rates (1986-1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr-1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes. ?? 1989 Estuarine Research Federation.

  7. Predictors of specialist avifaunal decline in coastal marshes.

    PubMed

    Correll, Maureen D; Wiest, Whitney A; Hodgman, Thomas P; Shriver, W Gregory; Elphick, Chris S; McGill, Brian J; O'Brien, Kathleen M; Olsen, Brian J

    2017-02-01

    Coastal marshes are one of the world's most productive ecosystems. Consequently, they have been heavily used by humans for centuries, resulting in ecosystem loss. Direct human modifications such as road crossings and ditches and climatic stressors such as sea-level rise and extreme storm events have the potential to further degrade the quantity and quality of marsh along coastlines. We used an 18-year marsh-bird database to generate population trends for 5 avian species (Rallus crepitans, Tringa semipalmata semipalmata, Ammodramus nelsonii subvirgatus, Ammodramus caudacutus, and Ammodramus maritimus) that breed almost exclusively in tidal marshes, and are potentially vulnerable to marsh degradation and loss as a result of anthropogenic change. We generated community and species trends across 3 spatial scales and explored possible drivers of the changes we observed, including marsh ditching, tidal restriction through road crossings, local rates of sea-level rise, and potential for extreme flooding events. The specialist community showed negative trends in tidally restricted marshes (-2.4% annually from 1998 to 2012) but was stable in unrestricted marshes across the same period. At the species level, we found negative population trends in 3 of the 5 specialist species, ranging from -4.2% to 9.0% annually. We suggest that tidal restriction may accelerate degradation of tidal marsh resilience to sea-level rise by limiting sediment supply necessary for marsh accretion, resulting in specialist habitat loss in tidally restricted marshes. Based on our findings, we predict a collapse of the global population of Saltmarsh Sparrows (A. caudacutus) within the next 50 years and suggest that immediate conservation action is needed to prevent extinction of this species. We also suggest mitigation actions to restore sediment supply to coastal marshes to help sustain this ecosystem into the future. © 2016 Society for Conservation Biology.

  8. Evaluating physical and biological influences on sedimentation in a tidal freshwater marsh with 7Be

    NASA Astrophysics Data System (ADS)

    Palinkas, Cindy M.; Engelhardt, Katharina A. M.; Cadol, Dan

    2013-09-01

    Key differences exist between tidal fresh- and saltwater marshes, such as the relative importance of mineral versus organic sedimentation and plant species diversity, that likely result in different drivers of sedimentation. In tidal freshwater marshes, we hypothesize that vegetation composition, along with physical marsh features (i.e., elevation and tidal channels), play a critical role in sedimentation. This hypothesis is evaluated in Dyke Marsh Preserve (Potomac River, VA, USA) by examining sediment character (grain size, organic content) and deposition rates across the marsh in spring and summer 2010 and 2011. 7Be is especially well suited to capture seasonal sedimentation patterns owing to its short half-life (53.3 d) and ability to assess both sediment deposition and erosion. However, its use in marshes can be challenging, especially due the presence of vegetation. In this study, 7Be-derived sedimentation rates are compared with sediment deposition observed on ceramic tiles to assess its utility in tidal freshwater marshes, and biophysical influences on sediment deposition are examined through statistical models. 7Be- and tile-derived sedimentation rates show similar spatial and temporal patterns, with highest rates occurring at sites closer to tidal channels, highlighting the importance of sediment availability. In addition, complex feedbacks between sedimentation and the plant community are discussed.

  9. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    PubMed Central

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  10. Hydrologically mediated iron reduction/oxidation fluctuations and dissolved organic carbon exports in tidal wetlands

    NASA Astrophysics Data System (ADS)

    Guimond, J. A.; Seyfferth, A.; Michael, H. A.

    2017-12-01

    Salt marshes are biogeochemical hotspots where large quantities of carbon are processed and stored. High primary productivity and deposition of carbon-laden sediment enable salt marsh soils to accumulate and store organic carbon. Conversely, salt marshes can laterally export carbon from the marsh platform to the tidal channel and eventually the ocean via tidal pumping. However, carbon export studies largely focus on tidal channels, missing key physical and biogeochemical mechanisms driving the mobilization of dissolved organic carbon (DOC) within the marsh platform and limiting our understanding of and ability to predict coastal carbon dynamics. We hypothesize that iron redox dynamics mediate the mobilization/immobilization of DOC in the top 30 cm of salt marsh sediment near tidal channels. The mobilized DOC can then diffuse into the flooded surface water or be advected to tidal channels. To elucidate DOC dynamics driven by iron redox cycles, we measured porewater DOC, Fe(II), total iron, total sulfate, pH, redox potential, and electrical conductivity (EC) beside the creek, at the marsh levee, and in the marsh interior in a mid-latitude tidal salt marsh in Dover, Delaware. Samples were collected at multiple tide stages during a spring and neap tide at depths of 5-75cm. Samples were also collected from the tidal channel. Continuous Eh measurements were made using in-situ electrodes. A prior study shows that DOC and Fe(II) concentrations vary spatially across the marsh. Redox conditions near the creek are affected by tidal oscillations. High tides saturate the soil and decrease redox potential, whereas at low tide, oxygen enters the sediment and increases the Eh. This pattern is always seen in the top 7-10cm of sediment, with more constant low Eh at depth. However, during neap tides, this signal penetrates deeper. Thus, between the creek and marsh levee, hydrology mediates redox conditions. Based on porewater chemistry, if DOC mobilization can be linked to redox cycles, then hydrologic oscillations can be tied to DOC dynamics and predicted with hydrologic models. By elucidating the mechanisms driving the mobilization of DOC, we can begin to better understand, quantify, and forecast coastal carbon dynamics.

  11. Final report (2002-2004): Benthic macroinvertebrate communities of reconstructed freshwater tidal wetlands in the Anacostia River, Washington, D.C

    USGS Publications Warehouse

    Brittingham, K.D.; Hammerschlag, R.S.

    2006-01-01

    Considerable work has been conducted on the benthic communities of inland aquatic systems, but there remains a paucity of effort on freshwater tidal wetlands. This study characterized the benthic macroinvertebrate communities of recently reconstructed urban freshwater tidal wetlands along the Anacostia River in Washington, D.C. The focus of the study was on the two main areas of Kingman Marsh, which were reconstructed by the U.S. Army Corps of Engineers in 2000 using Anacostia dredge material. Populations from this 'new' marsh were compared to those of similarly reconstructed Kenilworth Marsh (1993) just one half mile upstream, the relic reference Dueling Creek Marsh in the upper Anacostia estuary and the outside reference Patuxent freshwater tidal marsh in an adjacent watershed. Benthic macro invertebrate organisms were collected using selected techniques for evaluation including the Ekman bottom grab sampler, sediment corer, D-net and Hester-Dendy sampler. Samples were collected at least seasonally from tidal channels, tidal mudflats, three vegetation/sediment zones (low, middle and high marsh), and pools over a 3-year period (late 2001-2004). The macroinvertebrate communities present at the marsh sites proved to be good indicators of disturbance and stress (Kingman Marsh), pollution, urban vs. rural location (Kenilworth and Patuxent), and similarities between reconstructed and remnant wetlands (Kenilworth and Dueling Creek). Macroinvertebrate density was significantly greater at Kingman Marsh than Kenilworth Marsh due to more numerous chironomids and oligochaetes. This may reflect an increase in unvegetated sediments at Kingman (even at elevations above natural mudflat) due to grazing pressure from over-abundant resident Canada geese. Unvegetated sediments yielded greater macroinvertebrate abundance but lower richness than vegetated marsh sites. Data collected from this study provides information on the extent that benthic macroinvertebrate communities can serve as indicators of the relative success of freshwater tidal marsh reconstruction.

  12. Effects Of Five Years Of Nitrogen And Phosphorus Additions On A Zizaniopsis miliacea Tidal Freshwater Marsh

    EPA Science Inventory

    The purpose of this experiment was to determine if nitrogen (N) or phosphorus (P) acts as the limiting nutrient for tidal freshwater marsh vegetation. To answer this question, we added N, P, and N + P to a tidal freshwater marsh dominated by Zizaniopsis miliacea (Michx.) ...

  13. Salt Marsh Ecosystem Responses to Restored Tidal Connectivity across a 14y Chronosequence

    NASA Astrophysics Data System (ADS)

    Capooci, M.; Spivak, A. C.; Gosselin, K.

    2016-02-01

    Salt marshes support valuable ecosystem services. Yet, human activities negatively impact salt marsh function and contribute to their loss at a global scale. On Cape Cod, MA, culverts and impoundments under roads and railways restricted tidal exchange and resulted in salt marsh conversion to freshwater wetlands. Over the past 14 y, these structures have been removed or replaced, restoring tidal connectivity between marshes and a saltwater bay. We evaluated differences in plant community composition, sediment properties, and pore water chemistry in marshes where tidal connectivity was restored using a space-for-time, or chronosequence approach. Each restored marsh was paired with a nearby, natural salt marsh to control for variability between marshes. In each restored and natural salt marsh we evaluated the plant community by measuring species-specific percent cover and biomass and collected sediment cores for bulk density and pore water analyses. Plant communities responded rapidly: salt-tolerant species, such as Spartina alterniflora, became established while freshwater species, including Phragmites australis, were less abundant within 3 y of restoration. The number of plant species was generally greater in marshes restored within 10 y, compared to older and natural marshes. Sediment bulk density varied with depth and across sites. This likely reflects differences in site history and local conditions. Deeper horizons (24-30cm) generally had higher values in restored sites while surface values (0-3cm) were similar in restored and natural marshes. Porewater pH and sulfide were similar in restored and natural marshes, suggesting rapid microbial responses to seawater reintroduction. Overall, marsh properties and processes reflecting biological communities responded rapidly to tidal restoration. However, variability between study locations underscores the potential importance of site history, local hydrology, and geomorphology in shaping marsh biogeochemistry.

  14. Spatial patterns in salt marsh porewater dissolved organic matter over a spring-neap tidal cycle: insight to the impact of hydrodynamics on lateral carbon fluxes

    NASA Astrophysics Data System (ADS)

    Guimond, J. A.; Yu, X.; Duque, C.; Michael, H. A.

    2016-12-01

    Salt marshes are a hydrologically complex ecosystem. Tides deliver saline surface water to salt marshes via tidal creeks, and freshwater is introduced through lateral groundwater flow and vertical infiltration from precipitation. Locally, sediment heterogeneity, tides, weather, and topography introduce spatial and temporal complexities in groundwater-surface water interactions, which, in turn, can have a large impact on salt marsh biogeochemistry and the lateral fluxes of nutrients and carbon between the marsh platform and tidal creek. In this study, we investigate spatial patterns of porewater fluorescent dissolved organic matter (fDOM) and redox potential over a spring-neap tidal cycle in a mid-latitude tidal salt marsh in Dover, Delaware. Porewater samplers were used in conjunction with a peristaltic pump and YSI EXO Sonde to measure porewater fDOM, electrical conductivity, redox potential and pH from 0.5, 1.0, 1.5, 2.0, and 2.3 meters deep, as well as surface water from the creek and marsh platform. Eh was also measured continuously every 15 minutes with multi-level in-situ redox sensors at 0, 3, and 5m from the tidal creek, and water level and salinity were measured every 15 minutes continuously in 6 wells equipped with data loggers. Preliminary analyses indicate porewater salinity is dependent on the slope of the marsh platform, the elevation of the sample location, and the distance from a tidal creek. Near-creek redox analyses show tidal oscillations up to 300 mV; redox oscillations in the marsh interior show longer timescale changes. The observed redox oscillations coincide with the water level fluctuations at these locations. Therefore, lateral transport of carbon is determined by both hydrologic flow and biogeochemical processes. Results from this study provide insight into the timescales over which salt marsh hydrology impacts porewater biogeochemistry and the mechanisms controlling regional carbon cycling.

  15. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia.

    PubMed

    Savidge, William B; Brink, Jonathan; Blanton, Jackson O

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  16. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia

    NASA Astrophysics Data System (ADS)

    Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  17. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths. Observed patterns in water optical and biogeochemical variables were very consistent among different marsh systems and throughout the year, despite continued tidal exchange, implying rapid transformation of marsh DOM in the estuary through both photochemical and microbial processes. These findings illustrate the importance of tidal marsh ecosystems as sources, sinks and/or transformers of biologically important nutrients, carbon and colored dissolved organic compounds, and their influence on short-term biological, optical and biogeochemical variability in coastal waters.

  18. Plant distributions along salinity and tidal gradients in Oregon tidal marshes

    EPA Science Inventory

    Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...

  19. CO2 and CH4 fluxes in a Spartina salt marsh and brackish Phragmites marsh in Massachusetts

    NASA Astrophysics Data System (ADS)

    Tang, J.; Wang, F.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    Coastal salt marshes play an important role in global and regional carbon cycling. Tidally restricted marshes reduce salinity and provide a habitat suitable for Phragmites invasion. We measured greenhouse gas (GHG) emissions (CO2 and CH4) continuously with the eddy covariance method and biweekly with the static chamber method in a Spartina salt marsh and a Phragmites marsh on Cape Cod, Massachusetts, USA. We did not find significant difference in CO2 fluxes between the two sites, but the CH4 fluxes were much higher in the Phragmites site than the Spartina marsh. Temporally, tidal cycles influence the CO2 and CH4 fluxes in both sites. We found that the salt marsh was a significant carbon sink when CO2 and CH4 fluxes were combined. Restoring tidally restricted marshes will significantly reduce CH4 emissions and provide a strong ecosystem carbon service.

  20. Environmental extremes and biotic interactions facilitate depredation of endangered California Ridgway’s rail in a San Francisco Bay tidal marsh

    USGS Publications Warehouse

    Overton, Cory T.; Bobzien, Steven; Grefsrud, Marcia

    2016-01-01

    On 23 December 2015 while performing a high tide population survey for endangered Ridgway’s rails (Rallus obsoletus obsoletus; formerly known as the California clapper rail) and other rail species at Arrowhead Marsh, Martin Luther King Jr. Regional Shoreline, Oakland, California, the authors observed a series of species interactions resulting in the predation of a Ridgway’s rail by an adult female peregrine falcon (Falco peregrinus). High tide surveys are performed during the highest tides of the year when tidal marsh vegetation at Arrowhead Marsh becomes inundated, concentrating the tidal marsh obligate species into the limited area of emergent vegetation remaining as refuge cover. Annual mean tide level (elevation referenced relative to mean lower low water) at Arrowhead Marsh is 1.10 m, mean higher high water is 2.04 m (NOAA National Ocean Service 2014) and the average elevation of the marsh surface is 1.60 m (Overton et al. 2014). Tidal conditions on the day of the survey were predicted to be 2.42 m. Observed tides at the nearby Alameda Island tide gauge were 8 cm higher than predicted due to a regional low-pressure system and warmer than average sea surface temperatures (NOAA National Ocean Service 2014). The approximately 80 cm deep inundation of the marsh plain was sufficient to completely submerge tidal marsh vegetation and effectively remove 90% of refugia habitats.

  1. Marshes to mudflats—Effects of sea-level rise on tidal marshes along a latitudinal gradient in the Pacific Northwest

    USGS Publications Warehouse

    Thorne, Karen M.; Dugger, Bruce D.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Powelson, Katherine W.; Gutenspergen, Glenn R.; Takekawa, John Y.

    2015-11-17

    In the Pacific Northwest, coastal wetlands support a wealth of ecosystem services including habitat provision for wildlife and fisheries and flood protection. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the effects of sea-level rise on nine tidal marshes in Washington and Oregon between 2012 and 2015, with the goal of providing scientific data to support future coastal planning and conservation. We compiled physical and biological data, including coastal topography, tidal inundation, vegetation structure, as well as recent and historical sediment accretion rates, to assess and model how sea-level rise may alter these ecosystems in the future. Multiple factors, including initial elevation, marsh productivity, sediment availability, and rates of sea-level rise, affected marsh persistence. Under a low sea-level rise scenario, all marshes remained vegetated with little change in the present configuration of communities of marsh plants or gradually increased proportions of middle-, high-, or transition-elevation zones of marsh vegetation. However, at most sites, mid sea-level rise projections led to loss of habitat of middle and high marshes and a gain of low marshes. Under a high sea-level rise scenario, marshes at most sites eventually converted to intertidal mudflats. Two sites (Grays Harbor and Willapa) seemed to have the most resilience to a high rate of rise in sea-level, persisting as low marsh until at least 2110. Our main model finding is that most tidal marsh study sites are resilient to sea-level rise over the next 50–70 years, but that sea-level rise will eventually outpace marsh accretion and drown most habitats of high and middle marshes by 2110.

  2. POTENTIAL ENTRAPMENT OF OIL IN A TIDAL MARSH IN LONG ISLAND NEW YORK

    EPA Science Inventory

    This presentation describes hydraulic and biological characteristics of a tidal marsh located on the southern shore of Long Island, NY, coupled with transport simulations which indicated potential for entrapment of spilled oil in the marsh.

  3. Radiocarbon dating of plant macrofossils from tidal-marsh sediment

    USGS Publications Warehouse

    Kemp, A.C.; Nelson, Alan R.; Horton, B.P.

    2013-01-01

    Tidal-marsh sediment is an archive of Holocene environmental changes, including movements of sea and land levels, and extreme events such as hurricanes, earthquakes, and tsunamis. Accurate and precise radiocarbon dating of environmental changes is necessary to estimate rates of change and the recurrence interval (frequency) of events. Plant macrofossils preserved in growth position (or deposited soon after death) in tidal-marsh sediment are ideal samples for dating such changes. In this chapter, we focus on the selection of plant macrofossils for radiocarbon dating and the application of ages from different types of macrofossils to varied research projects, and make recommendations for selection and preparation of tidal-marsh samples for dating.

  4. Migration Rate Of Tidal Meanders: Inferences From The Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Finotello, A.; D'Alpaos, A.; Ghinassi, M.; Lanzoni, S.; Marani, M.; Rinaldo, A.

    2015-12-01

    Meandering channels are ubiquitous features of tidal landscapes. However, despite their fundamental role on the eco-morphodynamic evolution of these landscapes, tidal meanders have received less attention when compared to their fluvial counterparts. Improving current understanding of tidal meander migration, a largely-examined topic in fluvial landscapes, is a key step to highlight analogies and differences between tidal and fluvial cases. The migration of about 400 meander bends, belonging to 40 salt-marsh channels in the Northern Venice Lagoon (Italy), from 1968 to nowadays, has been investigated by means of both a classical method in fluvial frameworks and new procedure. Similarities with fluvial meanders occur, although important difference also emerge. Meanders cutting through the San Felice marsh follow the relationship between cartesian length and channel width, typical of meanders developed within different settings. However, meander migration rates proved to be smaller than those characterizing fluvial meanders. Indeed, the analysis of meander migration suggests a mean migration rate of about 0.10 m/year, consistent with the few data available in the literature. As for the fluvial case, the maximum-potential migration rate (i.e. the envelope curve of the relationship between migration rate and bend radius, both divided by channel width) reaches a maximum for radius-over-width ratio included between 2 and 3, regardless of the considered method. Nevertheless, the new-proposed method allows us to provide a more objective and continuous characterization. By using this new procedure, the channel curvature has finally been Fourier-analyzed, confirming the importance of even harmonics along the curvature spectrum. A correlation between migration rates and dominant harmonics seems to drive the evolution of tidal meanders and might represent a key-feature to distinguish them from their fluvial counterparts.

  5. Hydrological controls on methylmercury distribution and flux in a tidal marsh

    USGS Publications Warehouse

    Zhang, Hua; Moffett, Kevan B.; Windham-Myers, Lisamarie; Gorelick, Steven M.

    2014-01-01

    The San Francisco Estuary, California, contains mercury (Hg) contamination originating from historical regional gold and Hg mining operations. We measured hydrological and geochemical variables in a tidal marsh of the Palo Alto Baylands Nature Preserve to determine the sources, location, and magnitude of hydrological fluxes of methylmercury (MeHg), a bioavailable Hg species of ecological and health concern. Based on measured concentrations and detailed finite-element simulation of coupled surface water and saturated-unsaturated groundwater flow, we found pore water MeHg was concentrated in unsaturated pockets that persisted over tidal cycles. These pockets, occurring over 16% of the marsh plain area, corresponded to the marsh root zone. Groundwater discharge (e.g., exfiltration) to the tidal channel represented a significant source of MeHg during low tide. We found that nonchannelized flow accounted for up to 20% of the MeHg flux to the estuary. The estimated net flux of filter-passing (0.45 μm) MeHg toward estuary was 10 ± 5 ng m–2 day–1 during a single 12-h tidal cycle, suggesting an annual MeHg load of 1.17 ± 0.58 kg when the estimated flux was applied to present tidal marshes and planned marsh restorations throughout the San Francisco Estuary.

  6. Carbon sequestration by Australian tidal marshes.

    PubMed

    Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E

    2017-03-10

    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO 2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha -1 (range 14-963 Mg OC ha -1 ). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha -1 yr -1 . Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO 2 -equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1 , with a CO 2 -equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO 2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  7. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh

    USGS Publications Warehouse

    Raposa, K.B.; Roman, C.T.

    2001-01-01

    Many New England salt marshes remain tide-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but responses by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the tide-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the tide-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.

  8. Tidal salt marshes of the southeast Atlantic Coast: A community profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegert, R.G.; Freeman, B.J.

    1990-09-01

    This report is part of a series of community profiles on the ecology of wetland and marine communities. This particular profile considers tidal marshes of the southeastern Atlantic coast, from North Carolina south to northern Florida. Alone among the earth's ecosystems, coastal communities are subjected to a bidirectional flooding sometimes occurring twice each day; this flooding affects successional development, species composition, stability, and productivity. In the tidally influenced salt marsh, salinity ranges from less than 1 ppt to that of seawater. Dominant plant species include cordgrasses (Spartina alterniflora and S. cynosuroides), black needlerush (Juncus romerianus), and salt marsh bulrush (Scirpusmore » robustus). Both terrestrail and aquatic animals occur in salt marshes and include herons, egrets ospreys (Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), alligators (Alligator Mississippiensis), manatees (Trichecus manatus), oysters, mussels, and fiddler crabs. Currently, the only significant direct commercial use of the tidal salt marshes is by crabbers seeking the blue crab Callinectes sapidus, but the marshes are quite important recreationally, aesthetically, and educationally. 151 refs., 45 figs., 6 tabs.« less

  9. Hydrodynamic Restoration to Vulnerable Marsh Ecosystems to Improve Response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Orescanin, M. M.; Hamilton, R. P., Jr.

    2016-12-01

    Rising sea levels pose imminent threats to low-lying marsh ecosystems owing to delicate balances between water levels, salinity, and sediment transport. Further complications arise from human modifications to these low-lying coastal areas that modify topography, thus altering tidal exchanges. The Milford Neck Conservation Area, near Milford, DE, is a salt marsh system on Delaware Bay that has undergone morphological modifications owing to both human activity and natural processes resulting in damage to the surrounding marsh habitats. A century-old abandoned canal acted as a physical barrier to any tidal exchange for upland marsh for decades, allowing land at low elevations to be dry and used for agricultural activities. However, a breach to the system in the 1980s created a link to Delaware Bay that flooded salt hay fields, creating a large area of open water. Owing to tidal restrictions in the system, it has been difficult to transport sufficient sediment and water into the system to promote natural marsh growth. At the same time, the eroding barrier beach increases vulnerability to sea level rise and storms of increasing severity and frequency, and places upland forest at risk of episodic salt intrusion. To increase the effectiveness of this area as a barrier to sea level rise, it is necessary to increase marsh resiliency. Hydrodynamic measurements collected during fall 2015 and spring/summer 2016 show tidal choking in the system that limits exchange of salt water from Delaware Bay and prevents drainage from storm runoff. Numerical model results using the hydrodynamic model, CMS-flow, confirm tidal choking in this system and suggest localized areas are responsible for the most significant reduction in tidal exchange between the marsh and Delaware Bay. Analysis of hypsometry of the area combined with potential for improving tidal flushing suggest the possibility of restoring close to 400 acres of open water and damaged marsh.

  10. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-05-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ± 0.004 Mg/ha). Estimated C stocks for predefined jurisdictional areas ranged from 1023 ± 39 Mg in the Nisqually National Wildlife Refuge in Washington to 507,761 ± 14,822 Mg in the Terrebonne and St. Mary Parishes in Louisiana. This modeling and data synthesis effort will allow for aboveground C stocks in tidal marshes to be included in the coastal wetland section of the U.S. National Greenhouse Gas Inventory. With the increased availability of free post-processed satellite data, we provide a tractable means of modeling tidal marsh aboveground biomass and carbon at the global extent as well.

  11. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    PubMed

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level rise. These results also emphasize the importance of adjacent uplands for long-term marsh survival and incorporating such areas in conservation planning efforts.

  12. Estuaries and Tidal Marshes. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  13. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes

    PubMed Central

    Fagherazzi, Sergio; Carniello, Luca; D'Alpaos, Luigi; Defina, Andrea

    2006-01-01

    Shallow tidal basins are characterized by extensive tidal flats and salt marshes that lie within specific ranges of elevation, whereas intermediate elevations are less frequent in intertidal landscapes. Here we show that this bimodal distribution of elevations stems from the characteristics of wave-induced sediment resuspension and, in particular, from the reduction of maximum wave height caused by dissipative processes in shallow waters. The conceptual model presented herein is applied to the Venice Lagoon, Italy, and demonstrates that areas at intermediate elevations are inherently unstable and tend to become either tidal flats or salt marshes. PMID:16707583

  14. Temporal variability in the importance of hydrologic, biotic, and climatic descriptors of dissolved oxygen dynamics in a shallow tidal-marsh creek

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Munoz-Carpena, R.; Neale, P.; Tzortziou, M.; Megonigal, P.

    2017-12-01

    Due to strong abiotic forcing, dissolved oxygen (DO) in shallow tidal creeks often disobeys the conventional explanation of general aquatic DO cycling as biologically-regulated. In the present work, we seek to quantify the relative importance of abiotic (hydrologic and climatic), and biotic (primary productivity as represented by chlorophyll-a) descriptors of tidal creek DO. By fitting multiple linear regression models of DO to hourly chlorophyll-a, water quality, hydrology, and weather data collected in a tidal creek of a Chesapeake Bay marsh (Maryland, USA), temporal shifts (summer - early winter) in the relative importance of tidal creek DO descriptors were uncovered. Moreover, this analysis identified an alternative approach to evaluating tidal stage as a driver of DO by dividing stage into two DO-relevant variables: stage above and below bankfull depth. Within the hydrologic variable class, stage below bankfull depth dominated as an important descriptor, thus highlighting the role of pore water drainage and mixing as influential processes forcing tidal creek DO. Study findings suggest that tidal creek DO dynamics are explained by a balance of hydrologic, climatic, and biotic descriptors during warmer seasons due to many of these variables (i.e., chlorophyll-a, water temperature) acting as tracers of estuarine-marsh water mixing; conversely, in early winter months when estuarine and marsh waters differ less distinctly, hydrologic variables increase in relative importance as descriptors of tidal creek DO. These findings underline important distinctions in the underlying mechanisms dictating DO variability in shallow tidal marsh-creek environments relative to open water estuarine systems.

  15. Temporal variability in the importance of hydrologic, biotic, and climatic descriptors of dissolved oxygen dynamics in a shallow tidal-marsh creek

    NASA Astrophysics Data System (ADS)

    Nelson, Natalie G.; Muñoz-Carpena, Rafael; Neale, Patrick J.; Tzortziou, Maria; Megonigal, J. Patrick

    2017-08-01

    Due to strong abiotic forcing, dissolved oxygen (DO) in shallow tidal creeks often disobeys the conventional explanation of general aquatic DO cycling as biologically regulated. In the present work, we seek to quantify the relative importance of abiotic (hydrologic and climatic), and biotic (primary productivity as represented by chlorophyll-a) descriptors of tidal creek DO. By fitting multiple linear regression models of DO to hourly chlorophyll-a, water quality, hydrology, and weather data collected in a tidal creek of a Chesapeake Bay marsh (Maryland, USA), temporal shifts (summer-early winter) in the relative importance of tidal creek DO descriptors were uncovered. Moreover, this analysis identified an alternative approach to evaluating tidal stage as a driver of DO by dividing stage into two DO-relevant variables: stage above and below bankfull depth. Within the hydrologic variable class, stage below bankfull depth dominated as an important descriptor, thus highlighting the role of pore water drainage and mixing as influential processes forcing tidal creek DO. Study findings suggest that tidal creek DO dynamics are explained by a balance of hydrologic, climatic, and biotic descriptors during warmer seasons due to many of these variables (i.e., chlorophyll-a, water temperature) acting as tracers of estuarine-marsh water mixing; conversely, in early winter months when estuarine and marsh waters differ less distinctly, hydrologic variables increase in relative importance as descriptors of tidal creek DO. These findings underline important distinctions in the underlying mechanisms dictating DO variability in shallow tidal marsh-creek environments relative to open water estuarine systems.

  16. Carbon sequestration by Australian tidal marshes

    PubMed Central

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574

  17. Wave exposure of Corte Madera Marsh, Marin County, California-a field investigation

    USGS Publications Warehouse

    Lacy, Jessica R.; Hoover, Daniel J.

    2011-01-01

    Tidal wetlands provide valuable habitat, are an important source of primary productivity, and can help to protect the shoreline from erosion by attenuating approaching waves. These functions are threatened by the loss of tidal marshes, whether due to erosion, sea-level rise, or land-use practices. Erosion protection by wetlands is expected to vary geographically, because wave attenuation in marshes depends on vegetation type, density, and height and wave attenuation over mudflats depends on slope and sediment properties. In macrotidal northern European marshes, a 50 percent reduction in wave height within tens of meters of vegetated salt marsh has been observed. This study was designed to evaluate the role of mudflats and marshes in attenuating waves at a site in San Francisco Bay. In prehistoric times, the shoreline of San Francisco Bay was ringed with tidal wetlands, with mudflats at lower elevations and marshes above. Most of the marshes around the Bay emerged 2,000-4,000 years ago, after the rate of sea-level rise slowed to approximately 1 mm/year. Approximately 80 percent of the acreage of tidal marsh and 40 percent of the acreage of tidal mudflats in San Francisco Bay have been lost to filling and draining since 1800. Tidal wetlands are particularly susceptible to impacts from sea-level rise because the vegetation at each elevation is adapted to a specific tidal-inundation regime. The maintenance of suitable marsh-plain elevations depends on a supply of sediment that can keep up with the rate of sea-level rise. Sea-level rise, which according to recent projections may reach 75 to 190 cm by the year 2100, poses a significant threat to wetlands in San Francisco Bay, where landward migration is frequently impossible due to urbanization of the adjacent landscape. In this study, we collected data in Corte Madera Bay and Marsh to determine whether, and to what degree, waves are attenuated as they transit the Bay and, during high tides, the marsh. Corte Madera Bay was selected as a study site because of its exposure to wind waves, as well as its history of shoreline erosion and marsh restoration and monitoring. Data were collected in the winter of 2010, along a cross-shore transect extending from offshore of the subtidal mudflats into the tidal marsh. This study forms part of the Innovative Wetland Adaptation in the Lower Corte Madera Creek Watershed Project initiated by the Bay Conservation and Development Commission (BCDC) (http://www.bcdc.ca.gov/planning/climate_change/WetlandAdapt.shtml). Objectives- This study was designed to address the following questions: * What are the characteristics of waves and currents in the study area, and how do they vary over time? * Do wave heights or orbital velocities decrease, or wave periods change, as waves pass over the mudflats? * Do wave heights decrease, or wave periods change, as waves pass over the marsh?

  18. Wave attenuation across a tidal marsh in San Francisco Bay

    USGS Publications Warehouse

    Foster-Martinez, Madeline R.; Lacy, Jessica; Ferner, Matthew C.; Variano, Evan A.

    2018-01-01

    Wave attenuation is a central process in the mechanics of a healthy salt marsh. Understanding how wave attenuation varies with vegetation and hydrodynamic conditions informs models of other marsh processes that are a function of wave energy (e.g. sediment transport) and allows for the incorporation of marshes into coastal protection plans. Here, we examine the evolution of wave height across a tidal salt marsh in San Francisco Bay. Instruments were deployed along a cross-shore transect, starting on the mudflat and crossing through zones dominated by Spartina foliosa and Salicornia pacifica. This dataset is the first to quantify wave attenuation for these vegetation species, which are abundant in the intertidal zone of California estuaries. Measurements were collected in the summer and winter to assess seasonal variation in wave attenuation. Calculated drag coefficients of S. foliosa and S. pacifica were similar, indicating equal amounts of vegetation would lead to similar energy dissipation; however, S. pacifica has much greater biomass close to the bed (<20 cm) and retains biomass throughout the year, and therefore, it causes more total attenuation. S. foliosa dies back in the winter, and waves often grow across this section of the marsh. For both vegetation types, attenuation was greatest for low water depths, when the vegetation was emergent. For both seasons, attenuation rates across S. pacifica were the highest and were greater than published attenuation rates across similar (Spartina alterniflora) salt marshes for the comparable depths. These results can inform designs for marsh restorations and management plans in San Francisco Bay and other estuaries containing these species.

  19. Distribution of macroalgae and sediment chlorophyll A along salinity and elevation gradients in Oregon tidal marshes

    EPA Science Inventory

    Algae contribute to trophic and biogeochemical processes in tidal wetlands. We investigated patterns of sediment pigment content and macroalgal abundance and diversity in marshes in four Oregon estuaries representing a variety of vegetation types, salinity regimes, and tidal ele...

  20. Effects of climate change on tidal marshes along a latitudinal gradient in California

    USGS Publications Warehouse

    Thorne, Karen M.; MacDonald, Glen M.; Ambrose, Rich F.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Brown, Lauren N.; Holmquist, James R.; Guntenspergen, Glenn R.; Powelson, Katherine W.; Barnard, Patrick L.; Takekawa, John Y.

    2016-08-05

    Public SummaryThe coastal region of California supports a wealth of ecosystem services including habitat provision for wildlife and fisheries. Tidal marshes, mudflats, and shallow bays within coastal estuaries link marine, freshwater and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise (SLR) are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the projected effects of three recent SLR scenarios produced for the West Coast of North America on tidal marshes in California. We compiled physical and biological data, including coastal topography, tidal inundation, plant composition, and sediment accretion to project how SLR may alter these ecosystems in the future. The goal of our research was to provide results that support coastal management and conservation efforts across California. Under a low SLR scenario, all study sites remained vegetated tidal wetlands, with most sites showing little elevation and vegetation change relative to sea level. At most sites, mid SLR projections led to increases in low marsh habitat at the expense of middle and high marsh habitat. Marshes at Morro Bay and Tijuana River Estuary were the most vulnerable to mid SLR with many areas becoming intertidal mudflat. Under a high SLR scenario, most sites were projected to lose vegetated habitat, eventually converting to intertidal mudflats. Our results suggest that California marshes are vulnerable to major habitat shifts under mid or high rates of SLR, especially in the latter part of the century. Loss of vegetated tidal marshes in California due to SLR is expected to impact ecosystem services that are dependent on coastal wetlands such as wildlife habitat, carbon sequestration, improved water quality, and coastal protection from storms.

  1. Impact of Coastal Development and Marsh Width Variability on Groundwater Quality in Estuarine Tidal Creeks

    NASA Astrophysics Data System (ADS)

    Shanahan, M.; Wilson, A. M.; Smith, E. M.

    2017-12-01

    Coastal upland development has been shown to negatively impact surface water quality in tidal creeks in the southeastern US, but less is known about its impact on groundwater. We sampled groundwater in the upland and along the marsh perimeter of tidal creeks located within developed and undeveloped watersheds. Samples were analyzed for salinity, dissolved organic carbon, nitrogen and phosphorus concentrations. Groundwater samples collected from the upland in developed and undeveloped watersheds were compared to study the impact of development on groundwater entering the marsh. Groundwater samples collected along the marsh perimeter were analyzed to study the impact of marsh width variability on groundwater quality within each creek. Preliminary results suggest a positive correlation between salinity and marsh width in undeveloped watersheds, and a higher concentration of nutrients in developed versus undeveloped watersheds.

  2. Hydrologic modeling as a predictive basis for ecological restoration of salt marshes

    USGS Publications Warehouse

    Roman, C.T.; Garvine, R.W.; Portnoy, J.W.

    1995-01-01

    Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.

  3. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    NASA Astrophysics Data System (ADS)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground C stocks in tidal marshes to be included for the first time in the 2018 U.S. EPA Greenhouse Gas Inventory for coastal wetlands. As technical barriers have been reduced through the availability of free post-processed satellite data, cloud computing platforms and open source software, this approach can potentially be applied globally as well.

  4. A one-dimensional diffusion analogy model for estimation of tide heights in selected tidal marshes in Connecticut

    USGS Publications Warehouse

    Bjerklie, David M.; O’Brien, Kevin; Rozsa, Ron

    2013-01-01

    A one-dimensional diffusion analogy model for estimating tide heights in coastal marshes was developed and calibrated by using data from previous tidal-marsh studies. The method is simpler to use than other one- and two-dimensional hydrodynamic models because it does not require marsh depth and tidal prism information; however, the one-dimensional diffusion analogy model cannot be used to estimate tide heights, flow velocities, and tide arrival times for tide conditions other than the highest tide for which it is calibrated. Limited validation of the method indicates that it has an accuracy within 0.3 feet. The method can be applied with limited calibration information that is based entirely on remote sensing or geographic information system data layers. The method can be used to estimate high-tide heights in tidal wetlands drained by tide gates where tide levels cannot be observed directly by opening the gates without risk of flooding properties and structures. A geographic information system application of the method is demonstrated for Sybil Creek marsh in Branford, Connecticut. The tidal flux into this marsh is controlled by two tide gates that prevent full tidal inundation of the marsh. The method application shows reasonable tide heights for the gates-closed condition (the normal condition) and the one-gate-open condition on the basis of comparison with observed heights. The condition with all tide gates open (two gates) was simulated with the model; results indicate where several structures would be flooded if the gates were removed as part of restoration efforts or if the tide gates were to fail.

  5. Resolving the Intricacies of Lateral Exports of Inorganic Carbon and Alkalinity from Coastal Salt Marshes

    NASA Astrophysics Data System (ADS)

    Wang, A. Z.; Chu, S. N.; Kroeger, K. D.; Gonneea, M. E.; Ganju, N. K.

    2017-12-01

    Dynamic lateral exports of dissolved inorganic carbon (DIC) and total alkalinity (Alk) via tidal exchange from highly productive intertidal marshes are an important piece of puzzle in the coastal carbon cycle, challenging our capability of assessing coastal carbon budgets and projecting future changes under anthropogenic pressure. The effects of these exports on seawater chemistry are profound yet complicated to study. This study presents the latest development of assessing lateral DIC and Alk fluxes from tidal marshes and examining their effects on seawater chemistry and coastal carbon budgets. The study evaluates different approaches to quantify these exports in order to obtain insights on the best and efficient way to capture the dynamics of such exports. A state-of-the-art DIC sensor, Channelized Optical System (CHANOS), was deployed to establish the true DIC fluxes. They are compared to the fluxes derived from empirical modeling and traditional bottle measurements. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and Alk over a same tidal cycle. However, their generation is decoupled as a result of deferential effects of aerobic and anaerobic respirations. This creates complex scenarios of large swings of seawater chemistry and buffering capacity in tidal water over tidal and seasonal cycles. Marsh exports of DIC and Alk may have complex implications for the future, more acidified ocean. The latest estimates of marsh DIC and Alk exports suggest they are a major term in the marsh carbon budget and can be translated into one of the primary components in the coastal carbon cycle.

  6. Guide to Common Tidal Marsh Invertebrates of the Northeastern Gulf of Mexico.

    ERIC Educational Resources Information Center

    Heard, Richard W.

    The major groups of marine and estuarine macroinvertebrates of the tidal marshes of the northern Gulf of Mexico are described in this guide for students, taxonomists and generalists. Information on the recognition characteristics, distribution, habitat, and biology of salt marsh species from the coelenterate, annelid, mollusk and arthropod phyla…

  7. Is saltmarsh restoration success constrained by matching natural environments or altered succession? A test using niche models.

    PubMed

    Sullivan, Martin J P; Davy, Anthony J; Grant, Alastair; Mossman, Hannah L

    2018-05-01

    Restored habitats, such as saltmarsh created through managed realignment, sometimes fail to meet targets for biological equivalence with natural reference sites. Understanding why this happens is important in order to improve restoration outcomes.Elevation in the tidal frame and sediment redox potential are major controls on the distribution of saltmarsh plants. We use niche models to characterize 10 species' responses to these, and test whether differences in species occurrence between restored and natural saltmarshes in the UK result from failure to recreate adequate environmental conditions.Six species occurred less frequently in recently restored marshes than natural marshes. Failure of restored marshes to achieve the elevation and redox conditions of natural marshes partially explained the underrepresentation of five of these species, but did not explain patterns of occurrence on older (>50 years) restored marshes.For all species, an effect of marsh age remained after controlling for differences in environmental conditions. This could be due to differences in successional mechanism between restored and natural marshes. In recently restored marshes, high-marsh species occurred lower in the tidal frame and low-marsh species occurred higher in the tidal frame than in natural marshes. This supports the hypothesis that competition is initially weaker in restored marshes, because of the availability of bare sediment across the whole tidal frame. Species that establish outside their normal realized niche, such as Atriplex portulacoides , may inhibit subsequent colonization of other species that occurred less frequently than expected on older restored marshes. Synthesis and applications . Niche models can be used to test whether abiotic differences between restored sites and their natural counterparts are responsible for discrepancies in species occurrence. In saltmarshes, simply replicating environmental conditions will not result in equivalent species occurrence.

  8. Cullinan Ranch Tidal Marsh Restoration Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Cullinan Ranch Tidal Marsh Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  9. Changes in lagoonal marsh morphology at selected northeastern Atlantic coast sites of significance to migratory waterbirds

    USGS Publications Warehouse

    Erwin, R.M.; Sanders, G.M.; Prosser, D.J.

    2004-01-01

    Five lagoonal salt marsh areas, ranging from 220 ha to 3,670 ha, were selected from Cape Cod, Massachusetts to the southern DelMarVa peninsula, Virginia, USA to examine the degree to which Spartina marsh area and microhabitats had changed from the early or mid- 1900s to recent periods. We chose areas based on their importance to migratory bird populations, agency concerns about marsh loss and sea-level rise, and availability of historic imagery. We georeferenced and processed aerial photographs from a variety of sources ranging from 1932 to 1994. Of particular interest were changes in total salt marsh area, tidal creeks, tidal flats, tidal and non-tidal ponds, and open water habitats. Nauset Marsh, within Cape Cod National Seashore, experienced an annual marsh loss of 0.40% (19% from 1947 to 1994) with most loss attributed to sand overwash and conversion to open water. At Forsythe National Wildlife Refuge in southern New Jersey, annual loss was 0.27% (17% from 1932 to 1995), with nearly equal attribution of loss to open water and tidal pond expansion. At Curlew Bay, Virginia, annual loss was 0.20% (9% from 1949 to 1994) and almost entirely due to perimeter erosion to open water. At Gull Marsh, Virginia, a site chosen because of known erosional losses, we recorded the highest annual loss rate, 0.67% per annum, again almost entirely due to erosional, perimeter loss. In contrast, at the southernmost site, Mockhorn Island Wildlife Management Area, Virginia, there was a net gain of 0.09% per annum (4% from 1949 to 1994), with tidal flats becoming increasingly vegetated. Habitat. implications for waterbirds are considerable; salt marsh specialists such as laughing gulls (Larus atricilla), Forster's terns (Sterna forsteri), black rail, (Laterallus jamaicensis), seaside sparrow (Ammodramus maritimus), and saltmarsh sharp-tailed sparrow (Ammodramus caudacutus) are particularly at risk if these trends continue, and all but the laughing gull are species of concern to state and federal managers.

  10. Multi-scale functional mapping of tidal marsh vegetation for restoration monitoring

    NASA Astrophysics Data System (ADS)

    Tuxen Bettman, Karin

    2007-12-01

    Nearly half of the world's natural wetlands have been destroyed or degraded, and in recent years, there have been significant endeavors to restore wetland habitat throughout the world. Detailed mapping of restoring wetlands can offer valuable information about changes in vegetation and geomorphology, which can inform the restoration process and ultimately help to improve chances of restoration success. I studied six tidal marshes in the San Francisco Estuary, CA, US, between 2003 and 2004 in order to develop techniques for mapping tidal marshes at multiple scales by incorporating specific restoration objectives for improved longer term monitoring. I explored a "pixel-based" remote sensing image analysis method for mapping vegetation in restored and natural tidal marshes, describing the benefits and limitations of this type of approach (Chapter 2). I also performed a multi-scale analysis of vegetation pattern metrics for a recently restored tidal marsh in order to target the metrics that are consistent across scales and will be robust measures of marsh vegetation change (Chapter 3). Finally, I performed an "object-based" image analysis using the same remotely sensed imagery, which maps vegetation type and specific wetland functions at multiple scales (Chapter 4). The combined results of my work highlight important trends and management implications for monitoring wetland restoration using remote sensing, and will better enable restoration ecologists to use remote sensing for tidal marsh monitoring. Several findings important for tidal marsh restoration monitoring were made. Overall results showed that pixel-based methods are effective at quantifying landscape changes in composition and diversity in recently restored marshes, but are limited in their use for quantifying smaller, more fine-scale changes. While pattern metrics can highlight small but important changes in vegetation composition and configuration across years, scientists should exercise caution when using metrics in their studies or to validate restoration management decisions, and multi-scale analyses should be performed before metrics are used in restoration science for important management decisions. Lastly, restoration objectives, ecosystem function, and scale can each be integrated into monitoring techniques using remote sensing for improved restoration monitoring.

  11. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    USGS Publications Warehouse

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-01-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ± 0.004 Mg/ha). Estimated C stocks for predefined jurisdictional areas ranged from 1023 ± 39 Mg in the Nisqually National Wildlife Refuge in Washington to 507,761 ± 14,822 Mg in the Terrebonne and St. Mary Parishes in Louisiana. This modeling and data synthesis effort will allow for aboveground C stocks in tidal marshes to be included in the coastal wetland section of the U.S. National Greenhouse Gas Inventory. With the increased availability of free post-processed satellite data, we provide a tractable means of modeling tidal marsh aboveground biomass and carbon at the global extent as well.

  12. Lessons from the past: isotopes of an endangered rail as indicators of underlying change to tidal marsh habitats

    USGS Publications Warehouse

    Merritt, Angela M.; Casazza, Michael L.; Overton, Cory T.; Takekawa, John Y.; Hahn, Thomas P.; Hull, Joshua M.

    2017-01-01

    Introduction: Tidal marsh systems along the Pacific coast of the United States have experienced substantial stress and loss of area and ecosystem function, which we examined by using the endangered California Ridgway’s Rail, Rallus obsoletus obsoletus (‘rail’) as an indicator of its tidal marsh habitat in the San Francisco Estuary. We organized a collection of historical (1885-1940) and modern (2005-2014) rail feathers and analyzed the feather isotope means for delta carbon (δ13C), sulfur (δ34S), and nitrogen (δ15N) by region and time period.Outcomes: Feather isotopes represented the primary foraging habitat during historical then modern time periods. Neither individual nor regional rail feather isotopes suggested freshwater or terrestrial foraging by the rail. Three regions with both historic and modern feather isotopes revealed non-uniform spatial shifts in isotope levels consistent with a marine based food web and significant δ15N enrichment.Discussion: Our results supported the rail’s status as a generalist forager and obligate tidal marsh species throughout the historic record. The variable isoscape trends generated from feather isotope means illustrated a modern loss of the isotopic homogeneity between regions of historical tidal marsh, which correlated with spatially-explicit habitat alterations such as increasing biological invasions and sewage effluent over time.Conclusion: These findings have reinforced the importance of tidal marsh conservation in the face of ongoing underlying changes to these important ecosystems.

  13. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    USGS Publications Warehouse

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  14. Endangered species management and ecosystem restoration: Finding the common ground

    USGS Publications Warehouse

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose strategies for moderating harmful effects of restoration while meeting the needs of both endangered species and the imperiled native marsh ecosystem.

  15. Sears Point Tidal Marsh Restoration Project: Phase II

    EPA Pesticide Factsheets

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase II, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  16. Sears Point Tidal Marsh Restoration Project: Phase I

    EPA Pesticide Factsheets

    Information about the SFBWQP Sears Point Tidal Marsh Restoration Project: Phase I project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  17. Tidal saltmarsh fragmentation and persistence of San Pablo Song Sparrows (Melospiza melodia samuelis): Assessing benefits of wetland restoration in San Francisco Bay

    USGS Publications Warehouse

    Takekawa, John Y.; Sacks, B.N.; Woo, I.; Johnson, M.L.; Wylie, G.D.; ,

    2006-01-01

    The San Pablo Song Sparrow (Melospiza melodia samuelis) is one of three morphologically distinct Song Sparrow subspecies in tidal marshes of the San Francisco Bay estuary. These subspecies are rare, because as the human population has grown, diking and development have resulted in loss of 79% of the historic tidal marshes. Hundreds of projects have been proposed in the past decade to restore tidal marshes and benefit endemic populations. To evaluate the value of these restoration projects for Song Sparrows, we developed a population viability analysis (PVA) model to examine persistence of samuelis subspecies in relation to parcel size, connectivity, and catastrophe in San Pablo Bay. A total of 101 wetland parcels were identified from coverages of modern and historic tidal marshes. Parcels were grouped into eight fragments in the historical landscape and 10 in the present landscape. Fragments were defined as a group of parcels separated by >1 km, a distance that precluded regular interchange. Simulations indicated that the historic (circa 1850) samuelis population was three times larger than the modern population. However, only very high levels (>70% mortality) of catastrophe would threaten their persistence. Persistence of populations was sensitive to parcel size at a carrying capacity of <10 pairs, but connectivity of parcels was found to have little importance because habitats were dominated by a few large parcels. Our analysis indicates little risk of extinction of the samuelis subspecies with the current extent of tidal marshes, but the vulnerability of the small-est parcels suggests that restoration should create larger continuous tracts. Thus, PVA models may be useful tools for balancing the costs and benefits of restoring habitats for threatened tidal-marsh populations in wetland restoration planning.

  18. Experimental salt marsh islands: A model system for novel metacommunity experiments

    NASA Astrophysics Data System (ADS)

    Balke, Thorsten; Lõhmus, Kertu; Hillebrand, Helmut; Zielinski, Oliver; Haynert, Kristin; Meier, Daniela; Hodapp, Dorothee; Minden, Vanessa; Kleyer, Michael

    2017-11-01

    Shallow tidal coasts are characterised by shifting tidal flats and emerging or eroding islands above the high tide line. Salt marsh vegetation colonising new habitats distant from existing marshes are an ideal model to investigate metacommunity theory. We installed a set of 12 experimental salt marsh islands made from metal cages on a tidal flat in the German Wadden Sea to study the assembly of salt marsh communities in a metacommunity context. Experimental plots at the same elevation were established within the adjacent salt marsh on the island of Spiekeroog. For both, experimental islands and salt marsh enclosed plots, the same three elevational levels were realised while creating bare patches open for colonisation and vegetated patches with a defined transplanted community. One year into the experiment, the bare islands were colonised by plant species with high fecundity although with a lower frequency compared to the salt marsh enclosed bare plots. Initial plant community variations due to species sorting along the inundation gradient were evident in the transplanted vegetation. Competitive exclusion was not observed and is only expected to unfold in the coming years. Our study highlights that spatially and temporally explicit metacommunity dynamics should be considered in salt marsh plant community assembly and disassembly.

  19. Emerson Parcel of Dutch Slough Tidal Marsh Restoration Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Emerson Parcel of Dutch Slough Tidal Marsh Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  20. Subsurface flow and vegetation patterns in tidal environments

    NASA Astrophysics Data System (ADS)

    Ursino, Nadia; Silvestri, Sonia; Marani, Marco

    2004-05-01

    Tidal environments are characterized by a complex interplay of hydrological, geomorphic, and biological processes, and their understanding and modeling thus require the explicit description of both their biotic and abiotic components. In particular, the presence and spatial distribution of salt marsh vegetation (a key factor in the stabilization of the surface soil) have been suggested to be related to topographic factors and to soil moisture patterns, but a general, process-based comprehension of this relationship has not yet been achieved. The present paper describes a finite element model of saturated-unsaturated subsurface flow in a schematic salt marsh, driven by tidal fluctuations and evapotranspiration. The conditions leading to the establishment of preferentially aerated subsurface zones are studied, and inferences regarding the development and spatial distribution of salt marsh vegetation are drawn, with important implications for the overall ecogeomorphological dynamics of tidal environments. Our results show that subsurface water flow in the marsh induces complex water table dynamics, even when the tidal forcing has a simple sinusoidal form. The definition of a space-dependent aeration time is then proposed to characterize root aeration. The model shows that salt marsh subsurface flow depends on the distance from the nearest creek or channel and that the subsurface water movement near tidal creeks is both vertical and horizontal, while farther from creeks, it is primarily vertical. Moreover, the study shows that if the soil saturated conductivity is relatively low (10-6 m s-1, values quite common in salt marsh areas), a persistently unsaturated zone is present below the soil surface even after the tide has flooded the marsh; this provides evidence of the presence of an aerated layer allowing a prolonged presence of oxygen for aerobic root respiration. The results further show that plant transpiration increases the extent and persistence of the aerated layer, thereby introducing a strong positive feedback: Pioneer plants on marsh edges have the effect of increasing soil oxygen availability, thus creating the conditions for the further development of other plant communities.

  1. Simulation of Water Levels and Salinity in the Rivers and Tidal Marshes in the Vicinity of the Savannah National Wildlife Refuge, Coastal South Carolina and Georgia

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.; Daamen, Ruby C.; Kitchens, Wiley M.

    2006-01-01

    The Savannah Harbor is one of the busiest ports on the East Coast of the United States and is located downstream from the Savannah National Wildlife Refuge, which is one of the Nation?s largest freshwater tidal marshes. The Georgia Ports Authority and the U.S. Army Corps of Engineers funded hydrodynamic and ecological studies to evaluate the potential effects of a proposed deepening of Savannah Harbor as part of the Environmental Impact Statement. These studies included a three-dimensional (3D) model of the Savannah River estuary system, which was developed to simulate changes in water levels and salinity in the system in response to geometry changes as a result of the deepening of Savannah Harbor, and a marsh-succession model that predicts plant distribution in the tidal marshes in response to changes in the water-level and salinity conditions in the marsh. Beginning in May 2001, the U.S. Geological Survey entered into cooperative agreements with the Georgia Ports Authority to develop empirical models to simulate the water level and salinity of the rivers and tidal marshes in the vicinity of the Savannah National Wildlife Refuge and to link the 3D hydrodynamic river-estuary model and the marsh-succession model. For the development of these models, many different databases were created that describe the complexity and behaviors of the estuary. The U.S. Geological Survey has maintained a network of continuous streamflow, water-level, and specific-conductance (field measurement to compute salinity) river gages in the study area since the 1980s and a network of water-level and salinity marsh gages in the study area since 1999. The Georgia Ports Authority collected water-level and salinity data during summer 1997 and 1999 and collected continuous water-level and salinity data in the marsh and connecting tidal creeks from 1999 to 2002. Most of the databases comprise time series that differ by variable type, periods of record, measurement frequency, location, and reliability. Understanding freshwater inflows, tidal water levels, and specific conductance in the rivers and marshes is critical to enhancing the predictive capabilities of a successful marsh succession model. Data-mining techniques, including artificial neural network (ANN) models, were applied to address various needs of the ecology study and to integrate the riverine predictions from the 3D model to the marsh-succession model. ANN models were developed to simulate riverine water levels and specific conductance in the vicinity of the tidal marshes for the full range of historical conditions using data from the river gaging networks. ANN models were also developed to simulate the marsh water levels and pore-water salinities using data from the marsh gaging networks. Using the marsh ANN models, the continuous marsh network was hindcasted to be concurrent with the long-term riverine network. The hindcasted data allow ecologists to compute hydrologic parameters?such as hydroperiods and exposure frequency?to help analyze historical vegetation data. To integrate the 3D hydrodynamic model, the marsh-succession model, and various time-series databases, a decision support system (DSS) was developed to support the various needs of regulatory and scientific stakeholders. The DSS required the development of a spreadsheet application that integrates the database, 3D hydrodynamic model output, and ANN riverine and marsh models into a single package that is easy to use and can be readily disseminated. The DSS allows users to evaluate water-level and salinity response for different hydrologic conditions. Savannah River streamflows can be controlled by the user as constant flow, a percentage of historical flows, a percentile daily flow hydrograph, or as a user-specified hydrograph. The DSS can also use output from the 3D model at stream gages near the Savannah National Wildlife Refuge to simulate the effects in the tidal marshes. The DSS is distributed with a two-dimensional (

  2. Tidal regime dictates the cascading consumptive and nonconsumptive effects of multiple predators on a marsh plant.

    PubMed

    Kimbro, David L

    2012-02-01

    Prey perception of predators can dictate how prey behaviorally balance the need to avoid being eaten with the need to consume resources, and this perception and consequent behavior can be strongly influenced by physical processes. Physical factors, however, can also alter the density and diversity of predators that pursue prey. Thus, it remains uncertain to what extent variable risk perception and antipredator behavior vs. variation in predator consumption of prey underlie prey-resource dynamics and give rise to large-scale patterns in natural systems. In an experimental food web where tidal inundation of marsh controls which predators access prey, crab and conch (predators) influenced the survivorship and antipredator behavior of snails (prey) irrespective of whether tidal inundation occurred on a diurnal or mixed semidiurnal schedule. Specifically, cues of either predator caused snails to ascend marsh leaves; snail survivorship was reduced more by unrestrained crabs than by unrestrained conchs; and snail survivorship was lowest with multiple predators than with any single predator despite interference. In contrast to these tidally consistent direct consumptive and nonconsumptive effects, indirect predator effects differed with tidal regime: snail grazing of marsh leaves in the presence of predators increased in the diurnal tide but decreased in the mixed semidiurnal tidal schedule, overwhelming the differences in snail density that resulted from direct predation. In addition, results suggest that snails may increase their foraging to compensate for stress-induced metabolic demand in the presence of predator cues. Patterns from natural marshes spanning a tidal inundation gradient (from diurnal to mixed semidiurnal tides) across 400 km of coastline were consistent with experimental results: despite minimal spatial variation in densities of predators, snails, abiotic stressors, and marsh productivity, snail grazing on marsh plants increased and plant biomass decreased on shorelines exposed to a diurnal tide. Because both the field and experimental results can be explained by tidal-induced variation in risk perception and snail behavior rather than by changes in snail density, this study reinforces the importance of nonconsumptive predator effects in complex natural systems and at large spatial scales.

  3. Delayed recolonization of foraminifera in a suddenly flooded tidal (former freshwater) marsh in Oregon (USA): Implications for relative sea-level reconstructions

    NASA Astrophysics Data System (ADS)

    Milker, Yvonne; Horton, Benjamin P.; Khan, Nicole S.; Nelson, Alan R.; Witter, Robert C.; Engelhart, Simon E.; Ewald, Michael; Brophy, Laura; Bridgeland, William T.

    2016-04-01

    Stratigraphic sequences beneath salt marshes along the U.S. Pacific Northwest coast preserve 7000 years of plate-boundary earthquakes at the Cascadia subduction zone. The sequences record rapid rises in relative sea level during regional coseismic subsidence caused by great earthquakes and gradual falls in relative sea level during interseismic uplift between earthquakes. These relative sea-level changes are commonly quantified using foraminiferal transfer functions with the assumption that foraminifera rapidly recolonize salt marshes and adjacent tidal flats following coseismic subsidence. The restoration of tidal inundation in the Ni-les'tun unit (NM unit) of the Bandon Marsh National Wildlife Refuge (Oregon), following extensive dike removal in August 2011, allowed us to directly observe changes in foraminiferal assemblages that occur during rapid "coseismic" (simulated by dike removal with sudden tidal flooding) and "interseismic" (stabilization of the marsh following flooding) relative sea-level changes analogous to those of past earthquake cycles. We analyzed surface sediment samples from 10 tidal stations at the restoration site (NM unit) from mudflat to high marsh, and 10 unflooded stations in the Bandon Marsh control site. Samples were collected shortly before and at 1- to 6-month intervals for 3 years after tidal restoration of the NM unit. Although tide gauge and grain-size data show rapid restoration of tides during approximately the first 3 months after dike removal, recolonization of the NM unit by foraminifera was delayed at least 10 months. Re-establishment of typical tidal foraminiferal assemblages, as observed at the control site, required 31 months after tidal restoration, with Miliammina fusca being the dominant pioneering species. If typical of past recolonizations, this delayed foraminiferal recolonization affects the accuracy of coseismic subsidence estimates during past earthquakes because significant postseismic uplift may shortly follow coseismic subsidence at subduction zones. Depending on the location and dimensions of past plate-boundary earthquake ruptures, delayed recolonization of foraminifera may result in an underestimation of coseismic subsidence for past earthquakes at Cascadia.

  4. Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes

    USGS Publications Warehouse

    Janousek, Christopher; Buffington, Kevin J.; Guntenspergen, Glenn R.; Thorne, Karen M.; Dugger, Bruce D.; Takekawa, John Y.

    2017-01-01

    The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.

  5. Salt marsh vegetation promotes efficient tidal channel networks

    PubMed Central

    Kearney, William S.; Fagherazzi, Sergio

    2016-01-01

    Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes. Biology feeds back into channel morphodynamics through the influence of vegetation on both flow and the cohesive strength of channel banks. Determining how vegetation affects channel networks is essential in understanding the biological functioning of intertidal ecosystems and their ecosystem services. However, the processes that control the formation of an efficient tidal channel network remain unclear. Here we compare the channel networks of vegetated salt marshes in Massachusetts and the Venice Lagoon to unvegetated systems in the arid environments of the Gulf of California and Yemen. We find that the unvegetated systems are dissected by less efficient channel networks than the vegetated salt marshes. These differences in network geometry reflect differences in the branching and meandering of the channels in the network, characteristics that are related to the density of vegetation on the marsh. PMID:27430165

  6. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  7. San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project

    EPA Pesticide Factsheets

    Information about the SFBWQP San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  8. Salt Marsh Formation in the Lower Hudson River Estuary

    NASA Technical Reports Server (NTRS)

    Merley, Michael; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Salt marshes are constant depositional environments and as a result contain accurate indicators of past relative sea level rise and salinity. The Hudson River marshes are at least twice as deep when compared to coastal marshes on either side of the mouth of the Hudson. The reason for this difference in sedimentation is unclear. This study uses macrofossil data as well as sediment stratigraphy in order to understand the formation and evolution of these marshes. The composition of seeds, roots, shoots and foraminifera, are used to indicate past sea levels. The four sites involved in this study are, from south to north, the Arthur Kill Marsh in Staten Island (40 36 N, 74 77W), Piermont marsh (N 4100; 73 55W) Croton Point (41 14 N; 73 50W) and Iona Island (41 18N, 73 58W). These are all tidally influenced but with increasing distances from the New York Bight, which gives a good spectrum of tidal influence. AMS-C14 dates on basal macrofossils will document the time of each marsh formation. Basal material from Arthur Kill (8 m) includes freshwater seeds such as Viola, Potomageton and Alnus along with Salix buds. Basal material from Croton Point (10 m) includes fibrous woody material, foraminifera and Zanichellia seeds and other brackish vegetational components. The basal material from Piermont (13.77 m) is lacking any identifiable macrofossils between 150 and 500 microns. The basal material from Iona Island (10 m) has vegetation such as Scirpus and Cyperus seeds, probably implying a brackish environment. The freshwater origin of the Arthur Kill marsh in Staten Island is significant because it predates either sea level rise or the western channel incision. Additional implications for this study include evidence for changes in river channel geomorphology. Reasons for the relatively deeper river marshes include possible basal clay compaction, high production due to river and marine nutrients as well as tectonic activity. This study provides the groundwork for more high-resolution studies of these marshes to understand the fluctuations in salinity caused by relative sea level rise, tectonic faulting and/or changes in precipitation/evaporation.

  9. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    NASA Astrophysics Data System (ADS)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites affected by this process yields an average net accretion rate of 3.5 mm/yr, similar to the long term rate of 3-5 mm/yr derived from dated organic material from the base of marsh cores and local sea level rise of 3.8 mm/yr since 1984 recorded at the Washington, DC tide gage. The Potomac River shore sites affected by berm sedimentation average 45 mm/yr of accretion, though the majority of this was deposited as a 20-cm-thick packet in the winter of 2009-2010. Some additional elevation control is provided by a land survey of the marsh performed in 1992 in conjunction with a hydraulic modeling study, which indicates an average of 11 mm/yr of accretion across the marsh. All available evidence suggests that marsh surfaces have the capacity to keep up with sea level rise; however, rapid bank erosion poses a severe threat to the sustainability of the marsh.

  10. South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. Rhode Island Salt Marshes: Elevation Capital and Resilience to Sea Level Rise

    EPA Science Inventory

    Tidal salt marsh is especially sensitive to deterioration due to the effects of accelerated sea level rise when combined with other anthropogenically linked stressors, including crab herbivory, changes in tidal hydrology, nutrient loading, dam construction, changes in temperature...

  12. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.

    PubMed

    Rochlin, Ilia; Morris, James T

    2017-08-01

    The 18.6-yr lunar-nodal cycle drives changes in tidal amplitude globally, affecting coastal habitat formation, species and communities inhabiting rocky shores, and salt marsh vegetation. However, the cycle's influence on salt marsh fauna lacked sufficient long-term data for testing its effect. We circumvented this problem by using salt marsh mosquito records obtained over a period of over four decades in two estuaries in the northeastern USA. Salt marsh mosquito habitat is near the highest tide level where the impact of the nodal cycle on flood frequency is greatest. Wavelet spectral and cross-correlation analyses revealed periodicity in salt marsh mosquito abundance that was negatively correlated with tidal amplitude. Tidal amplitude was a significant predictor of salt marsh mosquito abundance with the cycle maxima coinciding with lower mosquito populations, possibly due to access by predatory fish. However, these effects were detected only at the location with extensive salt marsh habitat and astronomical tides and were weakened or lacked significance at the location with small microtidal salt marshes and wind-driven tides. Mosquitoes can serve as proxy indicators for numerous invertebrate species on the salt marsh. These predictable cycles and their effects need to be taken into consideration when investigating, restoring, or managing intertidal communities that are also facing sea-level rise. © 2017 by the Ecological Society of America.

  13. More than 100 Years of Background-Level Sedimentary Metals, Nisqually River Delta, South Puget Sound, Washington

    USGS Publications Warehouse

    Takesue, Renee K.; Swarzenski, Peter W.

    2011-01-01

    The Nisqually River Delta is located about 25 km south of the Tacoma Narrows in the southern reach of Puget Sound. Delta evolution is controlled by sedimentation from the Nisqually River and erosion by strong tidal currents that may reach 0.95 m/s in the Nisqually Reach. The Nisqually River flows 116 km from the Cascade Range, including the slopes of Mount Rainier, through glacially carved valleys to Puget Sound. Extensive tidal flats on the delta consist of late-Holocene silty and sandy strata from normal river streamflow and seasonal floods and possibly from distal sediment-rich debris flows associated with volcanic and seismic events. In the early 1900s, dikes and levees were constructed around Nisqually Delta salt marshes, and the reclaimed land was used for agriculture and pasture. In 1974, U.S. Fish and Wildlife Service established the Nisqually National Wildlife Refuge on the reclaimed land to protect migratory birds; its creation has prevented further human alteration of the Delta and estuary. In October 2009, original dikes and levees were removed to restore tidal exchange to almost 3 km2 of man-made freshwater marsh on the Nisqually Delta.

  14. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon

    NASA Astrophysics Data System (ADS)

    Marani, Marco; D'Alpaos, Andrea; Lanzoni, Stefano; Carniello, Luca; Rinaldo, Andrea

    2007-06-01

    Looking across a tidal landscape, can one foresee the signs of impending shifts among different geomorphological structures? This is a question of paramount importance considering the ecological, cultural and socio-economic relevance of tidal environments and their worldwide decline. In this Letter we argue affirmatively by introducing a model of the coupled tidal physical and biological processes. Multiple equilibria, and transitions among them, appear in the evolutionary dynamics of tidal landforms. Vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions drive the bio-geomorphic evolution of the system. Our approach provides general quantitative routes to model the fate of tidal landforms, which we illustrate in the case of the Venice lagoon (Italy), for which a large body of empirical observations exists spanning at least five centuries. Such observations are reproduced by the model, which also predicts that salt marshes in the Venice lagoon may not survive climatic changes in the next century if IPCC's scenarios of high relative sea level rise occur.

  15. The distribution and utility of sea-level indicators in Eurasian sub-Arctic salt marshes (White Sea, Russia).

    NASA Astrophysics Data System (ADS)

    Nikitina, Daria; Kemp, Andrew; Horton, Benjamin; Van, Christopher; Potapova, Marina; Culver, Stephen; Repkina, Tatyana; Hill, David

    2017-04-01

    We investigated the utility of foraminifera, diatoms and bulk-sediment geochemistry (δ13C and parameters measured by RockEval pyrolysis) as sea-level indicators in Eurasian sub-Arctic salt marshes. At three salt marshes in Dvina Bay (White Sea, Russia), we collected surface sediment samples along transects sequentially crossing sub-tidal, tidal-flat, salt-marsh and Taiga forest environments. Foraminifera formed bipartite assemblages, where elevations below mean high higher water (MHHW) were dominated by Miliammina spp. and elevations between MHHW and the highest occurrence of foraminifera were dominated by Jadammina macrescens and Balticammina pseudomacrescens. Both assemblages existed on all three transects and we conclude that foraminifera are sea-level indicators in Eurasian sub-Arctic salt marshes. Five, high-diversity groups of diatoms were identified and they displayed geographic variability among the study sites (<15 km apart). RockEval pyrolysis and δ13C measurements recognized two groups (clastic-dominated environments below MHHW and organic-rich environments above MHHW). Since one group included sub-tidal elevations and the other supra-tidal elevations, we conclude that the measured geochemical parameters do not meet the criteria for being stand-alone sea-level indicators. Core JT2012 captured a regressive sediment sequence of clastic, tidal-flat sediment overlain by salt-marsh organic silt and freshwater peat. The salt-marsh sediment accumulated at 2804 ± 52 years BP years before present and preserved foraminifera (J. macrescens and B. pseudomacrescens) with a high degree of analogy to modern assemblages indicating that relative sea level was 2.60 ± 0.47 m above present at this time. Diatoms confirm that marine influence decreased through time, but the lack of analogy between modern and core assemblages limits their utility as sea-level indicators in this setting.

  16. Impact and Recovery Pattern of a Spring Fire on a Pacific Coast Marsh - Observations and Implications for Endangered Species

    NASA Astrophysics Data System (ADS)

    Brown, L. N.; Willis, K. S.; Ambrose, R. F.; MacDonald, G. M.

    2015-12-01

    The flammability of California coastal marsh vegetation is highest in winter and spring when dominant high marsh plants such as Sarcocornia pacifica are dormant. With climate change the number of cool-season fires are increasing in the state, and marsh systems are becoming more vulnerable to fire disturbance. Very little information exists in peer-reviewed or grey literature on the presence of fire in Pacific Coast tidal marshes. In 1993, the Green Meadows fire in Ventura County, California burned a small portion of tidally influenced Sarcocornia­-dominated marsh at Point Mugu. After the May 2013 Springs Fire burned a similar portion of the salt marsh vegetation, we conducted a two-year vegetation recovery survey using transects of surface vegetation plots and MODIS derived NDVI remote sensing monitoring. Recovery during the first year was limited. Sixteen months into the recovery period, percent plant coverage reached an average of approximately 60% for all plots in the burned area, as opposed to an average of 100% in control plots, and remained at that level for the duration of the study. NDVI did not approach near pre-fire conditions until 19 months after the fire. While recovery may have been influenced by California's current extreme drought conditions, the recurrence of fire and rate of recovery raise many important questions as to the role of fire in Pacific coast tidal marshes. For example, the lack of Salicornia cover over more than an entire breeding season would be detrimental to protected species such as Rallus obsoletus. Fire adds new vulnerabilities on critical tidal marsh habitat already taxed by the threat of sea-level rise, coastal squeeze and invasive species.

  17. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    USGS Publications Warehouse

    Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  18. Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution

    NASA Astrophysics Data System (ADS)

    Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.

    2016-12-01

    Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and sedimentation models owing to the different time scales of the physical and ecological processes. The coupled model is being applied to Delaware marsh evolution in response to rising sea level and changing sediment supplies.

  19. Evolution of the Parnaíba Delta (NE Brazil) during the late Holocene

    NASA Astrophysics Data System (ADS)

    Szczygielski, Agata; Stattegger, Karl; Schwarzer, Klaus; da Silva, André Giskard Aquino; Vital, Helenice; Koenig, Juliane

    2015-04-01

    Sedimentary processes and the evolution of the wave- and tide-dominated, asymmetric Parnaíba Delta during the late Holocene were investigated based on geochemical and sedimentological analyses of sediment cores collected in 2010, as well as satellite images and historical maps. This is a rare case of pristine deltas essentially unaffected by human activities worldwide. The lowermost part of the main Parnaíba River distributary exhibits several low-sinuosity bends and several anastomosing bifurcation patterns in the east, whereas three NW-SE-oriented tidal channels drain a large mangrove area in the west. Dating of various materials in sediment cores from the tidal flats, tidal channels and supratidal marshes revealed that the oldest sediment (4,853 to 4,228 cal. years BP) is paleo-mangrove soil from the main river distributary. Present-day mangroves and marshes up to 200 years old exhibit high sedimentation rates reaching 3.4 cm/year. The asymmetry of the delta is explained not only by the wind- and wave-induced westward-directed longshore drift but also by neotectonic processes, as revealed by satellite images. Faulting and eastward tilting may have triggered delta lobe switching from west to east. This would explain the erosional character and unusual updrift orientation of the main river-mouth channel. Consistent with existing knowledge on mangrove ecosystems worldwide, sediment carbon and nitrogen signatures lie in the range of freshwater or marine dissolved organic carbon and C3 terrestrial plants. In the western tidal channels, the low Corg/Ntot ratios (16-21) of young mangrove soil (deposited in the last 16 years) reflect a stronger influence of marine plants compared to older mangroves (1,390-1,525 cal. years BP; ratios of 20-37). Thus, there would have been a greater influence of the Parnaíba River on tidal-channel sedimentology 1,400 to 1,500 years ago, entailing a natural connection between the present-day tidal channels and the river in ancient times, which was abandoned later during delta lobe switching. This is substantiated by historical maps that indeed show this connection between the main distributary and the tidal-channel system.

  20. Inundation Effects on Growth and Decomposition of Two Tidal Marsh Plant Species, Spartina Alterniflora and Typha Angustifolia

    EPA Science Inventory

    Tidal marshes of southern New England have exhibited substantial changes over the past century: multiple anthropogenic stressors, such as enhanced rates of sea level rise, hydrological modifications, the introduction of invasive species, and increased nutrient loading have result...

  1. Impacts of salt marsh plants on tidal channel initiation and inheritance

    NASA Astrophysics Data System (ADS)

    Schwarz, Christian; Ye, Qinghua; van der Wal, Daphne; Zhang, Liquan; Ysebaert, Tom; Herman, Peter MJ

    2013-04-01

    Tidal channel networks are the most prominent and striking features visible in tidal wetlands. They serve as major pathways for the exchange of water, sediments, nutrients and contaminants between the wetland and the adjacent open water body. Previous studies identified topography guided sheet flows, as the predominate process for tidal channel initiation. Guided through differences in local topography, sheet flows are able to locally exceed bottom shear stress thresholds, initiating scouring and incision of tidal channels, which then further grow through head ward erosion. The fate of these channels after plant colonization is described in literature as being inherited into the salt marsh through vegetation induced bank stabilization (further referred to as vegetation stabilized channel inheritance). In this study we present a combination of flume experiments and modelling simulations elucidating the impact of vegetation on tidal channel initiation. We first studied the impact of plant properties (stiff: Spartina alterniflora versus flexible: Scirpus mariqueter) on local sediment transport utilizing a flume experiment. Then a coupled hydrodynamic morphodynamic plant growth model was set up to simulate plant colonization by these two different species in the pioneer zone at the mudflat - salt marsh transition. Based on the model we investigated the ramifications of interactions between vegetation, sediment and flow on tidal channel initiation. We specifically compared the effect of vegetation properties (such as stiffness, growth velocity and stress tolerance) on emerging channel patterns, hypothesizing that vegetation mediated channel incision (vegetation induced flow routing and differential sedimentation/erosion patterns leading to tidal channel incision) plays an active role in intertidal landscape evolution. We finally extended our model simulation by imposing pre-existing mudflat channels with different maximum depths, to investigate the impact of existing channels on vegetation mediated channel incision. This simulated landscape development was then compared to aerial photographs from the Scheldt estuary (the Netherlands) and the Yangtze estuary (China). Our results suggest a significant impact of plant properties on tidal channel network emergence, specifically in respect to network drainage density and channel width. This emphasizes the repercussions of vegetation mediated channel incision on estuarine landscape development. Further do our results point to the existence of a threshold in pre-existing mudflat channel depth favoring either vegetation stabilized channel inheritance or vegetation mediated channel incision processes. Increasing depth in mudflat channels favors flow routing via these channels, leaving less flow and momentum remaining for the interaction between vegetation, sediment and flow and therefore vegetation mediated channel incision. This threshold will be influenced by field specific parameters such as hydrodynamics (tidal range, waves, and flow), sediments and predominant plant species. Hence our study not only demonstrates to importance of plant properties on landscape development it also shows that vegetation stabilized channel inheritance or vegetation mediated channel incision are two occurring mechanisms depending on ecosystem properties, adding important information for salt marsh management and conservation.

  2. The effect of Hurricane Katrina on nekton communities in the tidal freshwater marshes of Breton Sound, Louisiana, USA

    USGS Publications Warehouse

    Piazza, Bryan P.; La Peyre, M.K.

    2009-01-01

    Hurricanes are climatically-induced resource pulses that affect community structure through the combination of physical and chemical habitat change. Estuaries are susceptible to hurricane pulses and are thought to be resilient to habitat change, because biotic communities often return quickly to pre-hurricane conditions. Although several examples provide evidence of quick recovery of estuarine nekton communities following a hurricane, few studies take place in tidal freshwater habitat where physical habitat effects can be extensive and may not be readily mitigated. We examined nekton communities (density, biomass, ?? and ?? diversity, % occurrence by residence status) in tidal freshwater marshes in Breton Sound, Louisiana, before and after a direct hit by Hurricane Katrina (2005). Vegetative marsh loss in the study area was extensive, and elevated salinity persisted for almost 6 months. Post-Katrina nekton density and biomass increased significantly, and the nekton community shifted from one of tidal freshwater/resident species to one containing brackish/migrant species, many of which are characterized by pelagic and benthic life history strategies. By spring 2007, the nekton community had shifted back to tidal freshwater/resident species, despite the enduring loss of vegetated marsh habitat. ?? 2009 Elsevier Ltd.

  3. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    PubMed

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China. © 2014 John Wiley & Sons Ltd.

  4. Dietary mercury exposure to endangered California Clapper Rails in San Francisco Bay.

    PubMed

    Casazza, Michael L; Ricca, Mark A; Overton, Cory T; Takekawa, John Y; Merritt, Angela M; Ackerman, Joshua T

    2014-09-15

    California Clapper Rails (Rallus longirostris obsoletus) are an endangered waterbird that forage in tidal-marsh habitats that pose risks from mercury exposure. We analyzed total mercury (Hg) in six macro-invertebrate and one fish species representing Clapper Rail diets from four tidal-marshes in San Francisco Bay, California. Mercury concentrations among individual taxa ranged from lowest at Colma Creek (mean range: 0.09-0.2 μg/g dw) to highest at Cogswell (0.2-0.7), Laumeister (0.2-0.9) and Arrowhead Marshes (0.3-1.9). These spatial patterns for Hg matched patterns reported previously in Clapper Rail blood from the same four marshes. Over 25% of eastern mudsnails (Ilyanassa obsolete) and staghorn sculpin (Leptocottus armatus) exceeded dietary Hg concentrations (ww) often associated with avian reproductive impairment. Our results indicate that Hg concentrations vary considerably among tidal-marshes and diet taxa, and Hg concentrations of prey may provide an appropriate proxy for relative exposure risk for Clapper Rails. Copyright © 2014. Published by Elsevier Ltd.

  5. Dietary mercury exposure to endangered California Clapper Rails in San Francisco Bay

    USGS Publications Warehouse

    Casazza, Michael L.; Ricca, Mark A.; Overton, Cory T.; Takekawa, John Y.; Merritt, Angela M.; Ackerman, Joshua T.

    2015-01-01

    California Clapper Rails (Rallus longirostris obsoletus) are an endangered waterbird that forage in tidal-marsh habitats that pose risks from mercury exposure. We analyzed total mercury (Hg) in six macro-invertebrate and one fish species representing Clapper Rail diets from four tidal-marshes in San Francisco Bay, California. Mercury concentrations among individual taxa ranged from lowest at Colma Creek (mean range: 0.09–0.2 μg/g dw) to highest at Cogswell (0.2–0.7), Laumeister (0.2–0.9) and Arrowhead Marshes (0.3–1.9). These spatial patterns for Hg matched patterns reported previously in Clapper Rail blood from the same four marshes. Over 25% of eastern mudsnails (Ilyanassa obsolete) and staghorn sculpin (Leptocottus armatus) exceeded dietary Hg concentrations (ww) often associated with avian reproductive impairment. Our results indicate that Hg concentrations vary considerably among tidal-marshes and diet taxa, and Hg concentrations of prey may provide an appropriate proxy for relative exposure risk for Clapper Rails.

  6. Links Between Watershed Activities and the Degradation of Coastal, Tidal Salt Marshes in Southern New England USA

    EPA Science Inventory

    Human activities (e.g., land development, wastewater) in coastal watersheds in New England USA are linked with community- and system-level changes in tidal, organic-rich salt marshes. Significant relationships between various indicators of watershed activities and ecosystem stru...

  7. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    NASA Astrophysics Data System (ADS)

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-03-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20-25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  8. Dynamics and fate of SOC in tidal marshes along a salinity gradient (Scheldt estuary, Belgium)

    NASA Astrophysics Data System (ADS)

    Van de Broek, Marijn; Temmermann, Stijn; Merckx, Roel; Wang, Zhengang; Govers, Gerard

    2016-04-01

    Coastal ecosystems have been attributed the potential to store large amounts of organic carbon (OC), often referred to as blue carbon, of which a considerable amount is stored in tidal marsh soils. Large uncertainties still exist with respect to the amount and controlling factors of soil organic carbon (SOC) stored in these ecosystems. Moreover, most research has focused on SOC dynamics of saltmarshes, while brackish and freshwater marshes are often even more productive and thus receive even larger organic carbon inputs. Therefore, in this study the OC dynamics of tidal marsh soils along an estuarine gradient are studied in order to contribute to our knowledge of 1) the stocks, 2) the controlling factors and 3) the fate of SOC in tidal marshes with different environmental characteristics. This research thus contributes to a better understanding of the potential of coastal environments to store organic carbon under future climatic changes. Soil and vegetation samples are collected in tidal salt-, brackish- and freshwater marshes in the Scheldt estuary (Belgium - The Netherlands). At each tidal marsh, three replicate soil cores up to 1.5m depth in 0.03m increments are collected at locations with both a low and a high elevation. These cores are analyzed for OC, stable C and N isotopes, bulk density and texture. Incubation experiments of topsoil samples were conducted and both aboveground and belowground biomass were collected. The results show that SOC stocks (range: 13,5 - 35,4 kg OC m-2), standing biomass (range: 2000 - 7930 g DW m-2) and potential soil respiration of CO2 (range: 0,03 - 0,12 % per unit OC per day) decrease with increasing salinity. This shows that both the amount of OC from local macrophytes and the quality of the organic matter are important factors controlling the SOC stocks. In addition, based on the analysis of stable C and N isotopes, it appears that when a significant fraction of SOC is derived from local macrophytes, higher SOC stocks are found, while a change in aboveground vegetation type can have large effects on SOC accumulation. Moreover, as these marsh soils have been dated before, the observed depth patterns in SOC can be linked to historical changes (e.g. changes in vegetation). A calibrated model simulating sediment deposition in these marshes is coupled to a two-pool OC model to study the effect of sediment deposition rate on the fate of SOC, with most input information being collected at the field sites. This allows us to calculate the residence time of OC in these tidal marsh soils, a measure that is very uncertain, also for other ecosystems. The part concerning modelling is however still under progress at the moment of writing. This study shows to which extent OC stocks and dynamics of tidal marsh soils along a temperate estuary are controlled by 1) the amount and quality of OC input and 2) the contribution from different sources of OC, and uses these finding to construct a 1D model to simulate these dynamics through time.

  9. Assessing tidal marsh vulnerability to sea-level rise in the Skagit Delta

    USGS Publications Warehouse

    Hood, W. Gregory; Grossman, Eric E.; Curt Veldhuisen,

    2016-01-01

    Historical aerial photographs, from 1937 to the present, show Skagit Delta tidal marshes prograding into Skagit Bay for most of the record, but the progradation rates have been steadily declining and the marshes have begun to erode in recent decades despite the large suspended sediment load provided by the Skagit River. In an area of the delta isolated from direct riverine sediment supply by anthropogenic blockage of historical distributaries, 0.5-m tall marsh cliffs along with concave marsh profiles indicate wave erosion is contributing to marsh retreat. This is further supported by a “natural experiment” provided by rocky outcrops that shelter high marsh in their lee, while being bounded by 0.5-m lower eroded marsh to windward and on either side. Coastal wetlands with high sediment supply are thought to be resilient to sea level rise, but the case of the Skagit Delta shows this is not necessarily true. A combination of sea level rise and wave-generated erosion may overwhelm sediment supply. Additionally, anthropogenic obstruction of historical distributaries and levee construction along the remaining distributaries likely increase the jet momentum of river discharge, forcing much suspended sediment to bypass the tidal marshes and be exported from Skagit Bay. Adaptive response to the threat of climate change related sea level rise and increased wave frequency or intensity should consider the efficacy of restoring historical distributaries and managed retreat of constrictive river levees to maximize sediment delivery to delta marshes.

  10. Wetlands: Tidal

    USGS Publications Warehouse

    Conner, William H.; Krauss, Ken W.; Baldwin, Andrew H.; Hutchinson, Stephen

    2014-01-01

    Tidal wetlands are some of the most dynamic areas of the Earth and are found at the interface between the land and sea. Salinity, regular tidal flooding, and infrequent catastrophic flooding due to storm events result in complex interactions among biotic and abiotic factors. The complexity of these interactions, along with the uncertainty of where one draws the line between tidal and nontidal, makes characterizing tidal wetlands a difficult task. The three primary types of tidal wetlands are tidal marshes, mangroves, and freshwater forested wetlands. Tidal marshes are dominated by herbaceous plants and are generally found at middle to high latitudes of both hemispheres. Mangrove forests dominate tropical coastlines around the world while tidal freshwater forests are global in distribution. All three wetland types are highly productive ecosystems, supporting abundant and diverse faunal communities. Unfortunately, these wetlands are subject to alteration and loss from both natural and anthropogenic causes.

  11. Response of plant productivity to experimental flooding in a stable and a submerging marsh

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.

    2015-01-01

    Recent models of tidal marsh evolution rely largely on the premise that plants are most productive at an optimal flooding regime that occurs when soil elevations are somewhere between mean sea level and mean high tide. Here, we use 4 years of manipulative “marsh organ” flooding experiments to test the generality of this conceptual framework and to examine how the optimal flooding frequency may change between years and locations. In our experiments, above and belowground growth of Schoenoplectus americanus was most rapid when flooded about 40% of the time in a rapidly submerging marsh and when flooded about 25% of the time in a historically stable marsh. Optimum flooding durations were nearly identical in each year of the experiment and did not differ for above and belowground growth. In contrast, above and belowground growth of Spartina patensdecreased monotonically with increased flooding in all years and at both sites, indicating no optimal flooding frequency or elevation relative to sea level. Growth patterns in both species suggest a wider tolerance to flooding, and greater biomass for a given flooding duration, in the rapidly deteriorating marsh.

  12. Assessing Salt Marsh Recovery Utilizing Improved Computer-Aided Tomography Technology (CTT)

    EPA Science Inventory

    In 2001 the Padanarum marsh, a small 7.2-acre marsh in Dartmouth, MA, was chosen as a Tidal Hydrology Restoration site. The site was initially characterized as a brackish mostly freshwater deteriorating marsh. In May 2003 the seawater input to this marsh was increased by replacin...

  13. Tidal Wetlands and Coastal Ocean Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Hopkinson, C.; Wang, S. R.; Forbrich, I.; Giblin, A. E.; Cai, W. J.

    2017-12-01

    Recent overviews of coastal ocean C dynamics have tidal wetlands in a prominent position: a local sink for atmospheric CO2, a local store of OC, and a source of DIC and OC for the adjacent estuary and nearshore ocean. Over the past decade there have been great strides made in quantifying and understanding these flows and linkages. GPP and R of the wetlands are not nearly as imbalanced as thought 30 yrs ago. Heterotrophy of adjacent estuarine waters is not solely due to the respiration of OC exported from the marsh, rather we see the marsh directly respiring into the water during tidal inundation and accumulated marsh DIC draining into tidal creeks. Organic carbon burial on the marsh is still a relatively minor flux, but it is large relative to marsh NEE. Using literature and unpublished data on marsh DIC export, we used examples from Sapelo Island GA USA and Plum Island MA USA to constrain estimates of NEP and potential OC export. P. There remain large uncertainties in quantifying C dynamics of coupled wetland - estuary systems. Gas exchange from the water to atmosphere is one of the largest uncertainties. Work at Sapelo suggests that upwards of 40% of all daily exchange occurs from water flooding the marsh, which is but a few hours a day. This estimate is based on the intercept value for gas exchange vs wind velocity. Another major uncertainty comes from converting between O2 based estimates of metabolism to C. At Sapelo we find PQ and RQ values diverging greatly from Redfield. Finally, C dynamics of the coastal ocean, especially the role of tidal wetlands is likely to change substantially in the future. Studies at Plum Island show a reversal of the 4000 yr process of marsh progradation with marshes eroding away at their edges because of inadequate sediment supply and rising sea level. The fate of eroded OC is questionable. Landward transgression with SLR is the only likely counter to continued wetland loss - but that's a complex social issue requiring new modeling approaches.

  14. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    PubMed

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  15. South San Francisco Bay tidal marsh vegetation and elevation surveys-Corkscrew Marsh, Bird Island, and Palo Alto Baylands, California, 1983

    USGS Publications Warehouse

    Orlando, James L.; Drexler, Judy Z.; Dedrick, Kent G.

    2005-01-01

    Changes in the topography and ecology of the San Francisco Bay Estuary ('Estuary') during the past 200 years have resulted in the loss of nearly 80 percent of the historical salt marsh in the region. Currently, numerous projects are being undertaken by federal, state, and local governments in an attempt to restore wetland habitat and ecosystem function at a number of locations within the Estuary. Much information is needed concerning the historical topographic and ecologic characteristics of the Estuary to facilitate these restoration efforts. This report presents previously unpublished vegetation and elevation data collected in 1983 by the California State Lands Commission at Corkscrew marsh, Bird Island, and Palo Alto Baylands, all located in South San Francisco Bay. These precise and detailed elevation and plant surveys represent a snapshot of South Bay flora before invasion by the Atlantic smooth cordgrass, Spartina alterniflora. Such precise elevation data are rare for relatively undisturbed marshes in the San Francisco Bay; publication of these historical data may facilitate wetland restoration efforts. Marsh-surface and tidal-channel elevations were determined at a total of 962 stations by differential leveling to established tidal benchmark stations at each site and referenced to Mean Lower Low Water (MLLW) relative to the National Tidal Datum Epoch (1960-78). In addition, presence or absence of nine salt marsh species, percentage plant cover, and percentage bare soil were recorded for 1-square meter quadrats at 648 stations where elevations were determined. Collectively, over the three sites, salt marsh vegetation ranged in elevation from 0.98 to 2.94 m above MLLW. S. foliosa and Salicornia virginica were the most frequently observed plant species. Atriplex patula, Deschampsia cespitosa, and Limonium californicum were each recorded at only one of the three sites.

  16. TRANSPORT STUDIES IN THE LOCK LAKE TIDAL MARSH OF SOUTHERN LONG ISLAND

    EPA Science Inventory

    Ground water discharges directly into the Great South Bay and also via a sideways route into the Lock Lake tidal marsh at East Patchogue, New York. Data collected from the site were used to assess the transport of ground water contaminants into the waters of the Bay and potentia...

  17. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation

    PubMed Central

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L.; van der Wal, Daphne; Herman, Peter M. J.; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R.; Bouma, Tjeerd J.

    2017-01-01

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this ‘critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems. PMID:28598430

  18. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation

    NASA Astrophysics Data System (ADS)

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L.; van der Wal, Daphne; Herman, Peter M. J.; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R.; Bouma, Tjeerd J.

    2017-06-01

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this `critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems.

  19. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation.

    PubMed

    van Belzen, Jim; van de Koppel, Johan; Kirwan, Matthew L; van der Wal, Daphne; Herman, Peter M J; Dakos, Vasilis; Kéfi, Sonia; Scheffer, Marten; Guntenspergen, Glenn R; Bouma, Tjeerd J

    2017-06-09

    A declining rate of recovery following disturbance has been proposed as an important early warning for impending tipping points in complex systems. Despite extensive theoretical and laboratory studies, this 'critical slowing down' remains largely untested in the complex settings of real-world ecosystems. Here, we provide both observational and experimental support of critical slowing down along natural stress gradients in tidal marsh ecosystems. Time series of aerial images of European marsh development reveal a consistent lengthening of recovery time as inundation stress increases. We corroborate this finding with transplantation experiments in European and North American tidal marshes. In particular, our results emphasize the power of direct observational or experimental measures of recovery over indirect statistical signatures, such as spatial variance or autocorrelation. Our results indicate that the phenomenon of critical slowing down can provide a powerful tool to probe the resilience of natural ecosystems.

  20. Joint Geophysical and Hydrologic Constraints on Shallow Groundwater Flow Systems in Clastic Salt Marshes of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Ruppel, C.; Fulton, P.; Schultz, G. M.; Castillo, L.; Bartlett, J.; Sibley, S.

    2005-12-01

    Salt marsh systems play a critical role in buffering upland coastal areas from the influence of open saltwater bodies and in filtering contaminants that originate offshore or are flushed from uplands. For these reasons, it is important to understand the salt marsh hydrologic cycle, especially the interaction of groundwater and surface water across low-lying coastal fringes and the changes in physical, chemical, and ecological parameters across salinity gradients extending from upland to tidal creek to open water. For the past 5 years, we have conducted hydrogeophysical surveys (inductive EM and DC resistivity) and collected limited, coincident groundwater hydrologic data in clastic salt marshes throughout the South Atlantic Bight (SAB), stretching from South Carolina on the north to the Georgia-Florida border on the south. All of the marshes are dominated by Spartina and Juncus grasses and are cut by tidally-influenced creeks, but both the lithology and age of the marshes vary widely. For example, one highly homogeneous marsh study site has formed only within the past century, while most sites have existed for thousands of years and have laterally and vertically heterogeneous lithology. Geophysical images of the marsh subsurface and coincident monitoring of groundwater temperature, water level, and/or chemistry consistently show that marshes in the mixed energy environment of the middle part of the SAB (GCE LTER) tend to be dominated by submarsh discharge of freshwater to adjacent tidal creeks. In the South Carolina part of the SAB, we have greater evidence for seepage, particularly through biologically-created macropore networks and permeable sediment bodies that intersect tidal creeks. It is possible though that the South Carolina results are not so much 'universal' as reflective of local lithology. In a very young marsh near the Florida border, geophysical imaging implies a mixture of seepage and submarsh flow, and hydrologic data provide unequivocal proof that the near-surface marsh muds act as a low permeability barrier to downward penetration of tidal creek surface waters during periodic inundation of the marsh. Taken together, the results imply that subsurface freshwater bodies flowing beneath some salt marshes act as extensions of the classic freshwater lens that develops beneath uplands and help to resist saline intrusion toward uplands. Certain factors allow us to predict the occurrence of seepage, instead of submarsh flow, in SAB salt marshes with some degree of confidence. Where we have acquired time series, both the hydrogeophysical and hydrologic data suggest that groundwater transport processes are at approximate steady-state at the length scales (vertical and horizontal) and over the duration of our measurements.

  1. Tampa Bay coastal wetlands: nineteenth to twentieth century tidal marsh-to-mangrove conversion

    USGS Publications Warehouse

    Raabe, Ellen A.; Roy, Laura C.; McIvor, Carole C.

    2012-01-01

    Currently, mangroves dominate the tidal wetlands of Tampa Bay, Florida, but an examination of historic navigation charts revealed dominance of tidal marshes with a mangrove fringe in the 1870s. This study's objective was to conduct a new assessment of wetland change in Tampa Bay by digitizing nineteenth century topographic and public land surveys and comparing these to modern coastal features at four locations. We differentiate between wetland loss, wetland gain through marine transgression, and a wetland conversion from marsh to mangrove. Wetland loss was greatest at study sites to the east and north. Expansion of the intertidal zone through marine transgression, across adjacent low-lying land, was documented primarily near the mouth of the bay. Generally, the bay-wide marsh-to-mangrove ratio reversed from 86:14 to 25:75 in 125 years. Conversion of marsh to mangrove wetlands averaged 72 % at the four sites, ranging from 52 % at Old Tampa Bay to 95 % at Feather Sound. In addition to latitudinal influences, intact wetlands and areas with greater freshwater influence exhibited a lower rate of marsh-to-mangrove conversion. Two sources for nineteenth century coastal landscape were in close agreement, providing an unprecedented view of historic conditions in Tampa Bay.

  2. Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale

    NASA Astrophysics Data System (ADS)

    Xie, Weiming; He, Qing; Zhang, Keqi; Guo, Leicheng; Wang, Xianye; Shen, Jian; Cui, Zheng

    2017-09-01

    Quantification of tidal flat morphological changes at varying timescales is critical from a management point of view. High-resolution tidal flat morphology data, including those for mudflats and salt-marshes, are rare due to monitoring difficulty by traditional methods. Recent advances in Terrestrial Laser Scanner (TLS) technology allow rapid acquisition of high-resolution and large-scale morphological data, but it remains problematic for its application on salt-marshes due to the presence of dense vegetation. In this study, we applied a TLS system to retrieve high-accuracy digital elevation models in a tidal flat of the Yangtze Estuary by using a robust and accurate Progressive Morphological filter (PM) to separate ground and non-ground points. Validations against GPS-supported RTK measurements suggested remarkable performance. In this case the average estimation error was about 0.3 cm, while the Root Mean Square Error (RMSE) was 2.0 cm. We conducted three TLS surveys on the same field including salt-marshes and mudflats at the time points 5 days before, 3 days after, and 45 days after a typhoon event. The retrieved data showed that the mudflats suffered from profound erosion while the salt-marshes slightly accreted during the typhoon period. The average elevation change of the total area was about - 4 cm (- 0.28 cm per day). However, both the mudflats and salt-marshes deposited in the post-typhoon period and the accretion over salt-marshes occurred at a higher rate than that during the typhoon. The elevation of the total area increased by 15.9 cm (0.37 cm per day), suggesting fast recovery under calm conditions. Quantification of the erosion and deposition rates was aided by the high quality TLS data. This study shows the effectiveness of TLS in quantifying morphological changes of tidal flats at an event (and post-event) timescale. The data and analysis also provide sound evidence on vegetation impact in stimulating salt-marsh development and restoration, shedding lights on bio-morphological interactions.

  3. Effects of Extreme Events on Arsenic Cycling in Salt Marshes

    NASA Astrophysics Data System (ADS)

    Northrup, Kristy; Capooci, Margaret; Seyfferth, Angelia L.

    2018-03-01

    Extreme events such as storm surges, intense precipitation, and supermoons cause anomalous and large fluctuations in water level in tidal salt marshes, which impacts the sediment biogeochemistry that dictates arsenic (As) cycling. In addition to changes in water level, which impacts soil redox potential, these extreme events may also change salinity due to freshwater inputs from precipitation or saltwater inputs due to surge. It is currently unknown how As mobility in tidal salt marshes will be impacted by extreme events, as fluctuations in salinity and redox potential may act synergistically to mobilize As. To investigate impacts of extreme events on As cycling in tidal salt marshes, we conducted a combined laboratory and field investigation. We monitored pore water and soil samples before, during, and after two extreme events: a supermoon lunar eclipse followed by a storm surge and precipitation induced by Hurricane Joaquin in fall 2015 at the St. Jones Reserve in Dover, Delaware, a representative tidal salt marsh in the Mid-Atlantic United States. We also conducted soil incubations of marsh sediments in batch and in flow-through experiments in which redox potential and/or salinity were manipulated. Field investigations showed that pore water As was inversely proportional to redox potential. During the extreme events, a distinct pulse of As was observed in the pore water with maximum salinity. Combined field and laboratory investigations revealed that this As pulse is likely due to rapid changes in salinity. These results have implications for As mobility in the face of extreme weather variability.

  4. Climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.

    2018-01-01

    The interannual variability of tidal marsh plant phenology is largely unknown and may have important ecological consequences. Marsh plants are critical to the biogeomorphic feedback processes that build estuarine soils, maintain marsh elevation relative to sea level, and sequester carbon. We calculated Tasseled Cap Greenness, a metric of plant biomass, using remotely sensed data available in the Landsat archive to assess how recent climate variation has affected biomass production and plant phenology across three maritime tidal marshes in the Pacific Northwest of the United States. First, we used clipped vegetation plots at one of our sites to confirm that tasseled cap greenness provided a useful measure of aboveground biomass (r2 = 0.72). We then used multiple measures of biomass each growing season over 20–25 years per study site and developed models to test how peak biomass and the date of peak biomass varied with 94 climate and sea-level metrics using generalized linear models and Akaike Information Criterion (AIC) model selection. Peak biomass was positively related to total annual precipitation, while the best predictor for date of peak biomass was average growing season temperature, with the peak 7.2 days earlier per degree C. Our study provides insight into how plants in maritime tidal marshes respond to interannual climate variation and demonstrates the utility of time-series remote sensing data to assess ecological responses to climate stressors.

  5. The Influence of Water Circulation on Dissolved Organic Matter Dynamics in Bald Head Creek

    NASA Astrophysics Data System (ADS)

    Lebrasse, M. C.; Osburn, C. L.; Bohnenstiehl, D. R.; He, R.

    2016-12-01

    Dissolved organic matter (DOM) plays an important role in biogeochemical cycles in estuaries such as tidal creeks draining coastal wetlands such as salt marshes. However, significant knowledge gaps remain regarding the quantity and quality of the DOM that tidally exchanges between salt marshes and their adjacent estuaries. Tidal movements play a central role in lateral exchanges of materials and bidirectional flow results in the mixing of DOM from marsh plants and estuarine DOM. The aim of this study was to better understand the role of water circulation on the distribution and quality of DOM in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina. Dissolved organic carbon (DOC) concentration, stable carbon isotopes, and chromophoric DOM (CDOM) absorbance at 254 nm (a254) were used to distinguish between DOM quantity and quality at three locations along the creek: Site 3 (upstream), Site 2 (middle stream), and Site 1 (near the creek mouth). Samples were collected over four tidal cycles between March-August 2016 and compared to time series data collected approximately weekly from 2014-2016. DOM characteristics differed substantially over the tidal cycle. Higher CDOM and DOC concentration were observed at low tide than at high tide at all three sites, suggesting greater export of carbon from the marsh into the creek as the tides recede. Analysis of CDOM quality based on specific UV absorbance at 254 nm (SUVA254) and spectral slope ratio (SR) showed that the marsh end-member (Site 3) source of DOM had greater aromaticity and higher molecular weight. Site 1 showed greater variability over the tidal cycle most likely due to a greater tidal influence, being closer to the mouth. Additionally, an unmanned surface vehicle (USV) and a hydrodynamic model were used to map water circulation and DOC concentration along the creek to compute exchanges with the adjacent estuary. Results suggest that estuarine OM dynamics are strongly controlled by the circulation of water, especially for tidal creeks where tidal pumping can dominate lateral fluxes of DOM to adjacent waters.

  6. Gulf of Mexico Integrated Science - Tampa Bay Study - Characterization of Tidal Wetlands

    USGS Publications Warehouse

    McIvor, Carole

    2005-01-01

    Tidal wetlands in Tampa Bay, Florida, consist of mangrove forests and salt marshes. Wetlands buffer storm surges, provide fish and wildlife habitat, and enhance water quality through the removal of water-borne nutrients and contaminants. Substantial areas of both mangroves and salt marshes have been lost to agricultural, residential, and industrial development in this urban estuary. Wetlands researchers are characterizing the biological components of tidal wetlands and examining the physical factors such as salinity, tidal flushing, and sediment deposition that control the composition of tidal wetland habitats. Wetlands restoration is a priority of resource managers in Tampa Bay. Baseline studies such as these are needed for successful restoration planning and evaluation.

  7. Factors affecting marsh vegetation at the Liberty Island Conservation Bank in the Cache Slough region of the Sacramento–San Joaquin Delta, California

    USGS Publications Warehouse

    Orlando, James L.; Drexler, Judith Z.

    2017-07-07

    The Liberty Island Conservation Bank (LICB) is a tidal freshwater marsh restored for the purpose of mitigating adverse effects on sensitive fish populations elsewhere in the region. The LICB was completed in 2012 and is in the northern Cache Slough region of the Sacramento–San Joaquin Delta. The wetland vegetation at the LICB is stunted and yellow-green in color (chlorotic) compared to nearby wetlands. A study was done to investigate three potential causes of the stunted and chlorotic vegetation: (1) improper grading of the marsh plain, (2) pesticide contamination from agricultural and urban inputs upstream from the site, (3) nitrogen-deficient soil, or some combination of these. Water samples were collected from channels at five sites, and soil samples were collected from four wetlands, including the LICB, during the summer of 2015. Real-time kinematic global positioning system (RTK-GPS) elevation surveys were completed at the LICB and north Little Holland Tract, a closely situated natural marsh that has similar hydrodynamics as the LICB, but contains healthy marsh vegetation.The results showed no significant differences in carbon or nitrogen content in the surface soils or in pesticides in water among the sites. The elevation survey indicated that the mean elevation of the LICB was about 26 centimeters higher than that of the north Little Holland Tract marsh. Because marsh plain elevation largely determines the hydroperiod of a marsh, these results indicated that the LICB has a hydroperiod that differs from that of neighboring north Little Holland Tract marsh. This difference in hydroperiod contributed to the lower stature and decreased vigor of wetland vegetation at the LICB. Although the LICB cannot be regraded without great expense, it could be possible to reduce the sharp angle of the marsh edge to facilitate deeper and more frequent tidal flooding along the marsh periphery. Establishing optimal elevations for restored wetlands is necessary for obtaining the full suite of ecosystem services provided by tidal wetlands. A better system of tidal benchmarks throughout the delta is needed to help restoration practitioners correctly grade the elevation of newly restored wetlands.

  8. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay, France)

    NASA Astrophysics Data System (ADS)

    Laffaille, P.; Feunteun, E.; Lefeuvre, J.-C.

    2000-10-01

    At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt marshes) of Mont Saint-Michel Bay. These and other comparable shallow marine coastal waters, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has been paid to the value of tidal salt marshes for fishes. Between March 1996 and April 1999, 120 tides were sampled in a tidal creek. A total of 31 species were caught. This community was largely dominated by mullets ( Liza ramada represent 87% of the total biomass) and sand gobies ( Pomatoschistus minutus and P. lozanoi represent 82% of the total numbers). These species and also Gasterosteus aculeatus , Syngnathus rostellatus, Dicentrarchus labrax, Mugil spp., Liza aurata and Sprattus sprattus were the most frequent species (>50% of monthly frequency of occurrence). In Europe, salt marshes and their creeks are flooded only during high spring tides. So, fishes only invade this environment during short immersion periods, and no species can be considered as marsh resident. But, the salt marsh was colonized by fish every time the tide reached the creek, and during the short time of flood, dominant fishes fed actively and exploited the high productivity. Nevertheless, this study shows that there is little interannual variation in the fish community and there are three ' seasons ' in the fish fauna of the marsh. Marine straggler and marine estuarine dependent species colonize marshes between spring (recruitment period in the bay) and autumn before returning into deeper adjacent waters. Estuarine fishes are present all year round with maximum abundances in the end of summer. The presence of fishes confirms that this kind of wetland plays an important trophic and nursery role for these species. Differences in densities and stages distribution of these species into Mont Saint-Michel systems (tidal mudflats, estuaries and tidal salt marshes) can reduce the trophic competition.

  9. Remote sensing as an aid for marsh management

    NASA Technical Reports Server (NTRS)

    Ragan, J. G.; Green, J. H.

    1973-01-01

    NASA aerial photography, primarily color infrared and color positive transparencies, is used in a study of marsh management practices and in comparing managed and unmanaged marsh areas. Weir locations for tidal control are recommended.

  10. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River

    PubMed Central

    Tabak, Nava M.; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary. PMID:27043136

  11. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    PubMed

    Tabak, Nava M; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.

  12. Physical and Biological Regulation of Carbon Sequestration in Tidal Marshes

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Callaway, J.

    2017-12-01

    The rate of carbon sequestration in tidal marshes is regulated by complex feedbacks among biological and physical factors including the rate of sea-level rise (SLR), biomass production, tidal amplitude, and the concentration of suspended sediment. We used the Marsh Equilibrium Model (MEM) to explore the effects on C-sequestration across a wide range of permutations of these variables. C-sequestration increased with the rate of SLR to a maximum, then down to a vanishing point at higher SLR when marshes convert to mudflats. An acceleration in SLR will increase C-sequestration in marshes that can keep pace, but at high rates of SLR this is only possible with high biomass and suspended sediment concentrations. We found that there were no feasible solutions at SLR >13 mm/yr for permutations of variables that characterize the great majority of tidal marshes, i.e., the equilibrium elevation exists below the lower vertical limit for survival of marsh vegetation. The rate of SLR resulting in maximum C-sequestration varies with biomass production. C-sequestration rates at SLR=1 mm/yr averaged only 36 g C m-2 yr-1, but at the highest maximum biomass tested (5000 g/m2) the mean C-sequestration reached 399 g C m-2 yr-1 at SLR = 14 mm/yr. The empirical estimate of C-sequestration in a core dated 50-years overestimates the theoretical long-term rate by 34% for realistic values of decomposition rate and belowground production. The overestimate of the empirical method arises from the live and decaying biomass contained within the carbon inventory above the marker horizon, and overestimates were even greater for shorter surface cores.

  13. Restoration of Tidal Flow to Impounded Salt Marsh Exerts Mixed Effect on Leaf Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Henry, B. A.; Schade, J. D.; Foreman, K.

    2015-12-01

    Salt marsh impoundments (e.g. roads, levees) disconnect marshes from ocean tides, which impairs ecosystem services and often promotes invasive species. Numerous restoration projects now focus on removing impoundments. Leaf litter decomposition is a central process in salt marsh carbon and nutrient cycles, and this study investigated the extent to which marsh restoration alters litter decomposition rates. We considered three environmental factors that can potentially change during restoration: salinity, tidal regime, and dominant plant species. A one-month field experiment (Cape Cod, MA) measured decay of litter bags in impounded, restored, and natural marshes under ambient conditions. A two-week lab experiment measured litter decay in controlled incubations under experimental treatments for salinity (1ppt and 30 ppt), tidal regime (inundated and 12 hr wet-dry cycles), and plant species (native Spartina alterniflora and invasive Phragmites australis). S. alterniflora decomposed faster in situ than P. australis (14±1.0% mass loss versus 0.74±0.69%). Corroborating this difference in decomposition, S. alterniflora supported greater microbial respiration during lab incubation, measured as CO2 flux from leaf litter and biological oxygen demand of water containing leached organic matter (OM). However, nutrient analysis of plant tissue and leached OM show P. australis released more nitrogen than S. alterniflora. Low salinity treatments in both lab and field experiments decayed more rapidly than high salinity treatments, suggesting that salinity inhibited microbial activity. Manipulation of inundation regime did not affect decomposition. These findings suggest the reintroduction of tidal flow to an impounded salt marsh can have mixed effects; recolonization by the native cordgrass could supply labile OM to sediment and slow carbon sequestration, while an increase in salinity might inhibit decomposition and accelerate sequestration.

  14. Sediment accretion in tidal freshwater forests and oligohaline marshes of the Waccamaw and Savannah Rivers, USA

    USGS Publications Warehouse

    Ensign, Scott H.; Hupp, Cliff R.; Noe, Gregory B.; Krauss, Ken W.; Stagg, Camille L.

    2014-01-01

    Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year−1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year−1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.

  15. Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay

    PubMed Central

    Stralberg, Diana; Brennan, Matthew; Callaway, John C.; Wood, Julian K.; Schile, Lisa M.; Jongsomjit, Dennis; Kelly, Maggi; Parker, V. Thomas; Crooks, Stephen

    2011-01-01

    Background Tidal marshes will be threatened by increasing rates of sea-level rise (SLR) over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities. Methodology Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios. Principal Findings Model results indicated that under a high rate of SLR (1.65 m/century), short-term restoration of diked subtidal baylands to mid marsh elevations (−0.2 m MHHW) could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss). Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats. Conclusions/Significance Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise elevations, and concentrating restoration efforts in sediment-rich areas. To assist land managers, we developed a web-based decision support tool (www.prbo.org/sfbayslr). PMID:22110638

  16. Propagation of tidal marsh species native to the San Francisco Bay

    Treesearch

    Erin Heimbinder; Betty Young

    2002-01-01

    Of the original tidal salt marshes around the San Francisco Bay, only about 5% remain. There have been many mitigation projects undertaken in this bay over the last 10 years. Depending on funding, projects have simply regraded the mudflats to provide habitat and some projects have included seeding or planting of native halophytic plants. However, most of these projects...

  17. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    USGS Publications Warehouse

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  18. Changes in methane emission and microbial community structure in a Phragmites australis-expanding tidal marsh of a temperature region

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, J.; Kang, H.

    2017-12-01

    Phragmites australis is one of the representative vegetation of coastal wetlands which is distributed in North America, East Asia and European Countries. In North America, P. australis has invaded large areas of coastal wetlands, which causes various ecological problems such as increases in methane emission and reduction in biodiversity. In South Korea, P. australis is rapidly expanded in tidal marshes in Suncheon Bay. The expansion of P. australis enhanced methane emission by increasing dissolved organic carbon and soil moisture, and changing in relative abundances of methanogen, methanotroph, and sulfate reducing bacteria. Microbial community structure might be also shifted and affect methane cycle, but accurate observation on microbial community structure has not been fully illustrated yet. Therefore, we tried to monitor the changing microbial community structure due to P. australis expansion by using Next Generation Sequencing (NGS). NGS results showed that microbial community was substantially changed with the expansion. We also observed seasonal variations and chronosequence of microbial community structures along the expansion of P. australis, which showed distinctive changing patterns. P. australis expansion substantially affected microbial community structure in tidal marsh which may play an important role in methane cycle in tidal marshes.

  19. Carbon burial in salt marshes following tidal restriction: A case study from Cape Cod, Massachusetts

    NASA Astrophysics Data System (ADS)

    Sanks, K. M.; Gonneea, M. E.; Kroeger, K. D.; Spivak, A. C.; Roberts, D.

    2016-12-01

    Current and future sea-level rise poses an imminent threat to coastal ecosystems, in part due to accelerating global warming resulting from increasing greenhouse gasses, mainly CO2 and CH4, in the atmosphere. Coastal ecosystems, such as salt marshes, sequester CO2 at greater rates than terrestrial ecosystems and store carbon for millennia, potentially playing an important role in the climate system due to their influence on atmospheric greenhouse gas concentrations. However, these ecosystems have lost significant area globally and continue to be threatened by coastal development, rising sea level, and climate change. Restoration of coastal wetlands has been undertaken to preserve ecosystem services, such as bird and wild life habitat, storm protection, and recreation. The potential impact of wetland restoration on carbon burial is also an important ecosystem service. Indeed, it is now possible to receive carbon credits on voluntary carbon markets for coastal wetland restoration that demonstrate net carbon removal. However, science lags policy, as little is known about carbon burial post restoration. Nine marshes in Cape Cod, MA were studied to compare the natural marsh to restored areas where a tidal restriction previously impeded the supply of salt water, causing the loss of salt marsh vegetation. Over the past 5 to 20 years, these restrictions were widened to allow for increased tidal flow, which has allowed salt marsh vegetation to prosper again. Sediment cores were taken from both restored and natural areas in the marsh and age dated using the 210Pb continuous rate of supply model. Carbon density was evaluated in the top 80 cm of all cores. In the region of the cores representing post restoration conditions, the mean carbon densities of the natural sites are similar when compared to restored sites, thus showing that through restoration of salt marsh vegetation, carbon sequestration rates are similar to undisturbed salt marshes. Regions of the sediment cores representing pre-restoration conditions are much more variable, and do indicate low carbon densities at some sites, possibly resulting from loss of buried carbon through sediment respiration while the marsh was tidally restricted.

  20. Influence of plant communities on denitrification in a tidal freshwater marsh of the Potomac River, United States.

    PubMed

    Hopfensperger, Kristine N; Kaushal, Sujay S; Findlay, Stuart E G; Cornwell, Jeffrey C

    2009-01-01

    We investigated whether marsh surface elevation, plant community composition (annuals vs. perennials), and organic matter quantity/quality were associated with differences in denitrification rates in an urban tidal freshwater marsh of the Potomac River, United States. We measured denitrification rates using both denitrification enzyme activity (DEA) with acetylene inhibition (June: n = 38, 3234 +/- 303; October: n = 38, 1557 +/- 368 ng N g dry soil(-1) h(-1)) and direct N(2) flux measurements with membrane inlet mass spectrometry (MIMS) (November: n = 6, 147 +/- 24 mumol m(-2) h(-1)). Organic carbon content and nitrate concentrations in soil, and plant community composition were correlated with elevation, but DEA rates did not differ across marsh surface elevation. Soil organic carbon was highest in plots dominated by perennial graminoids, but DEA rates did not differ across plant community types. The DEA rates increased with increasing soil ammonium concentrations and total N content, and DEA rates differed between summer and fall sampling. The MIMS rates did not differ across plant community types, but were correlated with soil organic N content. Denitrification rates suggest that potential N removal at the site could be substantial. In addition, denitrification rates measured in Dyke Marsh were higher than rates for sediments measured in the adjacent Potomac River. Tidal freshwater marshes can represent an important site for denitrification, and factors fostering denitrification should be considered when restoring urban tidal freshwater wetlands as they are faced with pressures from increasing land use change and sea level rise.

  1. Avian comparisons between Kingman and Kenilworth Marshes: Final report 2001-2004

    USGS Publications Warehouse

    Paul, M.; Krafft, C.; Hammerschlag, D.

    2006-01-01

    In 2001 avi-fauna was added as a parameter to be monitored as an indicator of the status and relative success of the two reconstructed freshwater tidal wetlands residing in the Anacostia River estuary in Washington, D.C. at that time. They were Kenilworth Marsh which was reconstructed in 1993 and Kingman Marsh seven years later in 2000. Other studies were already underway looking at vegetation, seeds, soils and contaminants. Even though these new wetlands were relatively small, together about 70 acres, it was felt this might be sufficient area to sustain and attract birds to the habitat. Birds have been used elsewhere as wetland indicators and we hoped they could prove useful here especially in terms of numbers and species richness. The study was conducted for almost four years (2001-2004) and was designed to ascertain if the recently reconstructed Kingman Marsh evolved similarly with respect to the avi fauna as Kenilworth which had the seven year head start. Twelve observation points were established, six at each marsh, which were to be used weekly so as to alternate the high and low tidal regimes and the observation start times. Additional notations were recorded for species while walking between observation points. The course of the study became interrupted with the incursion of resident Canada geese particularly upon the Kingman Marsh site. Goose herbivory coupled with lowered sediment elevations reduced vegetation cover at Kingman Marsh to less than one-third its intended scope while Kenilworth was barely affected. The result was actually much less impact on the bird populations than on the vegetation. In fact the additional mudflat area at Kingman may have actually helped attract some birds. Together 177 species were identified at the marshes comprising 14 taxonomic orders and 16 families, 137 species at Kingman and 164 at Kenilworth. However, Kingman actually attracted more birds than Kenilworth, whether or not Canada Geese were included. At both wetlands winter usage was significantly greater than at other seasons; however, there were more species in the spring and summer. Three functional guilds were looked at in particular: wetland users, freshwater marsh users and mudflat/shore users. Mudflat users were greatest during the winter while marsh users were greater in the fall. Additional useful data was collected relative to the Canada Goose impacts. The interruption in marsh evolution at Kingman driven by the goose herbivory precluded the opportunity to use the avifauna as an indicator of marsh restoration success.

  2. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    NASA Astrophysics Data System (ADS)

    White, S. M.; Madsen, E.

    2013-12-01

    Inundation of marsh surfaces by tidal creek flooding has implications for the headward erosion of salt marsh creeks, effect of rising sea levels, biological zonation, and marsh ecosystem services. The hydroperiod; as the frequency, duration, depth and flux of water across the marsh surface; is a key factor in salt marsh ecology, but remains poorly understood due to lack of data at spatial scales relevant to tracking the spatial movement of water across the marsh. This study examines how hydroperiod, drainage networks, and tidal creek geomorphology on the vegetation at Crab Haul Creek. Crab Haul Creek is the farthest landward tidal basin in North Inlet, a bar-built estuary in South Carolina. This study measures the hydroperiod in the headwaters Crab Haul Creek with normal and near-IR photos from a helium balloon Helikite at 75-100 m altitude. Photos provide detail necessary to resolve the waterline and delineate the hydroperiod during half tidal cycles by capturing the waterline hourly from the headwaters to a piezometer transect 260 meters north. The Helikite is an ideal instrument for local investigations of surface hydrology due to its maneuverability, low cost, ability to remain aloft for extended time over a fixed point, and ability to capture high-resolution images. Photographs taken from aircraft do not provide the detail necessary to determine the waterline on the marsh surface. The near-IR images make the waterline more distinct by increasing the difference between wet and dry ground. In the headwaters of Crab Haul Creek, individual crab burrows are detected by automated image classification and the number of crab burrows and their spatial density is tracked from January-August. Crab burrows are associated with the unvegetated region at the creek head, and we relate their change over time to the propagation of the creek farther into the tidal basin. Plant zonation is influenced by the hydroperiod, but also may be affected by salinity, water table depth, and soil water content. These other factors are all directly affected by the hydroperiod, creating a complex system of feedbacks. Inundation frequencies show a pronounced relationship to zonation. Creek bank height and the hydroperiod have a curvilinear relationship at low bank heights such that small decreases in creek bank height can result in large increases in inundation frequency. Biological zonation is not simply a result of bank height and inundation frequency, other contributing factors include species competition, adaptability, and groundwater flow. Vegetation patterns delineated by a ground-based GPS survey and image classification from the aerial photos show that not all changes in eco-zonation are a direct function of elevation. Some asymmetry across the creek is observed in plant habitat, and eliminating topography (and thereby tidal inundation) as a factor, we attribute the remaining variability to groundwater flow.

  3. Remote sensing as an aid for marsh management: Lafouche parish, Louisiana. [aerial photography of Louisiana

    NASA Technical Reports Server (NTRS)

    Ragan, J. G.; Green, J. H.; Whitehurst, C. A.

    1974-01-01

    NASA aerial photography, primarily color infrared and color positive transparencies, was used in a study of marsh management practices and in comparing managed and unmanaged marsh areas. Weir locations for tidal control are recommended.

  4. Chasing boundaries and cascade effects in a coupled barrier-marsh-lagoon system

    NASA Astrophysics Data System (ADS)

    Lorenzo-Trueba, Jorge; Mariotti, Giulio

    2017-08-01

    The long-term dynamic evolution of an idealized barrier-marsh-lagoon system experiencing sea-level rise is studied by coupling two existing numerical models. The barrier model accounts for the interaction between shoreface dynamics and overwash flux, which allows the occurrence of barrier drowning. The marsh-lagoon model includes both a backbarrier marsh and an interior marsh, and accounts for the modification of the wave regime associated with changes in lagoon width and depth. Overwash, the key process that connects the barrier shoreface with the marsh-lagoon ecosystems, is formulated to account for the role of the backbarrier marsh. Model results show that a number of factors that are not typically associated with the dynamics of coastal barriers can enhance the rate of overwash-driven landward migration by increasing backbarrier accommodation space. For instance, lagoon deepening could be triggered by marsh edge retreat and consequent export of fine sediment via tidal dispersion, as well as by an expansion of inland marshes and consequent increase in accommodation space to be filled in with sediment. A deeper lagoon results in a larger fraction of sediment overwash being subaqueous, which coupled with a slow shoreface response sending sediment onshore can trigger barrier drowning. We therefore conclude that the supply of fine sediments to the back-barrier and the dynamics of both the interior and backbarrier marsh can be essential for maintaining the barrier system under elevated rates of sea-level rise. Our results highlight the importance of considering barriers and their associated backbarriers as part of an integrated system in which sediment is exchanged.

  5. Wetland Loss Patterns and Inundation-Productivity ...

    EPA Pesticide Factsheets

    Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r2 = 0.96; p = 0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt ma

  6. Biogeochemicl and surface elevation controls over tidally influenced freshwater forested wetlands as they transition to marsh

    Treesearch

    William Conner; Ken W. Krauss; Gregory B. Noe; Jamie A. Duberstein; Nicole Cormier; Camille L. Stagg

    2016-01-01

    Many coastal ecosystems along the south Atlantic are transitioning from forested wetlands to marsh due to increasing tidal inundation and saltwater intrusion primarily attributed to global climate change processes. In 2004, we established long-term research sites in Georgia, South Carolina, and Louisiana to understand how climate factors (temperature, precipitation, ...

  7. Vegetation community response to tidal marsh restoration of a large river estuary

    USGS Publications Warehouse

    Belleveau, Lisa J.; Takekawa, John Y.; Woo, Isa; Turner, Kelley L.; Barham, Jesse B.; Takekawa, Jean E.; Ellings, Christopher S.; Chin-Leo, Gerardo

    2015-01-01

    Estuaries are biologically productive and diverse ecosystems that provide ecosystem services including protection of inland areas from flooding, filtering freshwater outflows, and providing habitats for fish and wildlife. Alteration of historic habitats, including diking for agriculture, has decreased the function of many estuarine systems, and recent conservation efforts have been directed at restoring these degraded areas to reestablish their natural resource function. The Nisqually Delta in southern Puget Sound is an estuary that has been highly modified by restricting tidal flow, and recent restoration of the delta contributed to one of the largest tidal salt marsh restorations in the Pacific Northwest. We correlated the response of nine major tidal marsh species to salinities at different elevation zones. Our results indicated that wetland species richness was not related to soil pore-water salinity (R2 = 0.03), but were stratified into different elevation zones (R2 = 0.47). Thus, restoration that fosters a wide range of elevations will provide the most diverse plant habitat, and potentially, the greatest resilience to environmental change.

  8. Simulated Sea-Level Rise Effects on the Above and Below-Ground Growth of Two Tidal Marsh Plant Species

    NASA Astrophysics Data System (ADS)

    Schile, L. M.; Callaway, J. C.; Kelly, M.

    2011-12-01

    Sea-level is expected to rise between 55 and 140 cm in the next century and is likely to have significant effects on the distribution and maintenance of tidal wetlands; however, little is known about the effects of increased sea level on Pacific coast tidal marsh vegetation. We initiated a field experiment in March 2011 to examine how increased depth and duration of inundation affect above and below-ground growth of two tidal wetland plant species: Schoenoplectus acutus and S. americanus. PVC planters, referred to as marsh organs, were installed at fixed elevations in channels at two ancient marshes in the San Francisco Bay Estuary: Browns Island and Rush Ranch. Each marsh organ structure is comprised of five rows of three six-inch PVC pipes, with each row 15cm lower than the row above, and was filled with surrounding mudflat sediment. Elevations span 60 cm and were chosen to be lower than the average current elevations of both species at each marsh to reflect projected increases in sea level. Rhizomes were collected from Browns Island, the less-saline site, and were cut to uniform sizes before planting. In every row, each species was grown individually and together. On a monthly basis, plant heights were recorded and pore-water sulfide concentration, salinity, and soil oxidation-reduction potential were measured. Schoenoplectus americanus growth and density significantly decreased with increased inundation at both sites. Schoenoplectus acutus growth was impacted more significantly at lower elevations at Rush Ranch but had little variation in density and growth across elevations at Browns Island. Salinity and sulfide concentrations varied little across elevations within a site but differed between sites. Above and belowground biomass will be collected in September 2011 to measure total annual productivity. The experiment provides basic yet crucial information on the impacts of increased inundation on tidal wetland vegetation and insight into potential changes in plant assemblages with predicted climate change.

  9. Waves and tides responsible for the intermittent closure of the entrance of a small, sheltered tidal wetland at San Francisco, CA

    USGS Publications Warehouse

    Hanes, D.M.; Ward, K.; Erikson, L.H.

    2011-01-01

    Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel. ?? 2011.

  10. Greenhouse gas emissions from a created brackish marsh in eastern North Carolina

    USGS Publications Warehouse

    Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, François; Broome, Stephen W.

    2016-01-01

    Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.

  11. Statistical characterization of wind-wave induced sediment resuspension events in shallow tidal basins

    NASA Astrophysics Data System (ADS)

    D'Alpaos, A.; Carniello, L.; Rinaldo, A.

    2013-12-01

    Wind-wave induced erosion processes play a critical role on the morphodynamic evolution of shallow tidal landscapes. Both in the horizontal and in the vertical planes, patterns of wind-induced bottom shear stresses contribute to control the morphological and biological features of the tidal landscape, through the erosion of tidal-flat surfaces and of salt-marsh margins, the disruption of the polymeric microphytobenthic biofilm, and the increase in suspended sediment concentration which affects the stability of intertidal ecosystems. Towards the goal of developing a synthetic theoretical framework to represent wind wave-induced resuspension events and account for their erosional effects on the long-term biomorphodynamic evolution of tidal systems, we have employed a complete, coupled finite element model accounting for the role of wind waves and tidal currents on the hydrodynamic circulation in shallow basins. Our analysis of the characteristics of combined current and wave-induced exceedances in bottom shear stress over a given threshold for erosion, suggest that wind wave-induced resuspension events can be modeled as a marked Poisson process. Moreover, the analysis of wind-wave induced resuspension events for different historical configurations of the Venice Lagoon shows that the interarrival times of erosion events have decreased through the last two centuries, whereas the intensities of erosion events have increased. This allows us to characterize the threatening erosion and degradation processes that the Venice Lagoon has been experiencing since the beginning of the last century.

  12. Forcing functions governing salt transport processes in coastal navigation canals and connectivity to surrounding marshes in South Louisiana using Houma Navigation Canal as a surrogate

    USGS Publications Warehouse

    Snedden, Gregg

    2014-01-01

    Understanding how circulation and mixing processes in coastal navigation canals influence the exchange of salt between marshes and coastal ocean, and how those processes are modulated by external physical processes, is critical to anticipating effects of future actions and circumstance. Examples of such circumstances include deepening the channel, placement of locks in the channel, changes in freshwater discharge down the channel, changes in outer continental shelf (OCS) vessel traffic volume, and sea level rise. The study builds on previous BOEM-funded studies by investigating salt flux variability through the Houma Navigation Canal (HNC). It examines how external physical factors, such as buoyancy forcing and mixing from tidal stirring and OCS vessel wakes, influence dispersive and advective fluxes through the HNC and the impact of this salt flux on salinity in nearby marshes. This study quantifies salt transport processes and salinity variability in the HNC and surrounding Terrebonne marshes. Data collected for this study include time-series data of salinity and velocity in the HNC, monthly salinity-depth profiles along the length of the channel, hourly vertical profiles of velocity and salinity over multiple tidal cycles, and salinity time series data at three locations in the surrounding marshes along a transect of increasing distance from the HNC. Two modes of vertical current structure were identified. The first mode, making up 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the longitudinal salinity gradients along the channel’s length. Diffusive process were dominant drivers of upestuary salt transport, except during periods of minimal tidal stirring when gravitational circulation became more important. Salinity in the surrounding marshes was much more responsive to salinity variations in the HNC than it was to variations in the lower Terrebonne marshes, suggesting that the HNC is the primary conduit for saltwater intrusion to the middle Terrebonne marshes. Finally, salt transport to the middle Terrebonne marshes directly associated with vessel wakes was negligible.

  13. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Hughes, Z. J.; FitzGerald, D. M.

    2012-06-01

    Understanding saltmarsh response to sea-level rise is critical for management and mitigation of these valuable coastal areas. However, comprehensive field studies of sea-level driven changes to the marsh landscape that consider combined biological, geological, and hydrodynamic interactions are rare. This study analyzes ecophysical feedbacks from crab colonization and bioturbation on geotechnical and geochemical properties of the soil in a Mid-Atlantic Spartina alterniflora saltmarsh. The study area is within a marsh that is experiencing creek extension due to accelerated sea-level rise and increasing periods of marsh inundation. Measurements of redox potential, pH, belowground biomass, and soil strength reveal that intense crab bioturbation by Sesarma reticulatum significantly changes the biogeochemical properties of the soil. Oxidized conditions in the upper 10-15 cm of the marsh induced by burrowing causes enhanced degradation of S. alterniflora belowground biomass (roots and rhizomes, reduction from 1.9 ± 0.6 kg/m2 to 1.1 ± 0.4 kg/m2), which reduces the structural integrity of the soil. This process ultimately increases the erosion potential of the sediment in creek head areas (documented by a reduction in shear strength from 10 ± 7 kPa to 2 ± 1 kPa), facilitating creek extension in order to accommodate tidal flows. The pervasiveness of similar tidal creek morphology in southeast Atlantic saltmarshes suggests this process is occurring in other marshes with a moderate tidal range undergoing sea-level rise.

  14. Effect of distal Sacramento-San Joaquin Delta outflow on suspended-sediment flux in Lower South San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Livsey, D. N.; Downing-Kunz, M.; Schoellhamer, D. H.; Shellenbarger, G.; Wright, S. A.

    2016-12-01

    Tidal marshes are an important component of estuarine ecosystems. Within the San Francisco Bay Estuary (SFB) tidal marshes play an important role in food web dynamics, are home to an array of endemic mammals, birds, and fishes, filter pollutants, and dampen coastal flooding. With 80% of SFB tidal marshes lost to human development, numerous restoration efforts are underway. The largest tidal marsh restoration project in SFB, the South Bay Salt Pond Restoration Project, is underway in Lower South San Francisco Bay to restore 60,000 ha of this critical habitat; however, rising sea levels, could jeopardize these gains without concomitant vertical accretion rates of the marsh surface via organic matter accumulation and sediment deposition. Recent work in Lower South Bay using continuously collected data from water years (WY) 2009-11 indicates that the direction of net springtime residual sediment flux is related to the amount of springtime Sacramento-San Joaquin Delta (Delta) outflow. Large outflow freshens the Central Bay, causing a density gradient and inverse gravitational circulation that flushes Lower South Bay. In this study we extend the sediment budget for Lower South Bay from WY 2011 to present using 15-minute turbidity and velocity data paired with Acoustic Doppler Current Profiler cross-sectional measurements and in situ suspended-sediment concentration samples to: 1) further examine the mechanisms controlling net springtime residual sediment flux, and 2) further test the hypothesis that Delta outflow controls the direction of net sediment flux for Lower South Bay.

  15. Northeastern Salt Marshes: Elevation Capital and Resilience to Sea Level Rise

    EPA Science Inventory

    Stable tidal salt marshes exist at an elevation that is supra-optimal relative to peak biomass production, which for Spartina alterniflora, and other marsh macrophytes, follows a parabolic distribution as a function of elevation, as a surrogate for inundation frequency. In order...

  16. Bromine soil/sediment enrichment in tidal salt marshes as a potential indicator of climate changes driven by solar activity: New insights from W coast Portuguese estuaries.

    PubMed

    Moreno, J; Fatela, F; Leorri, E; Moreno, F; Freitas, M C; Valente, T; Araújo, M F; Gómez-Navarro, J J; Guise, L; Blake, W H

    2017-02-15

    This paper aims at providing insight about bromine (Br) cycle in four Portuguese estuaries: Minho, Lima (in the NW coast) and Sado, Mira (in the SW coast). The focus is on their tidal marsh environments, quite distinct with regard to key biophysicochemical attributes. Regardless of the primary bromide (Br - ) common natural source, i.e., seawater, the NW marshes present relatively higher surface soil/sediment Br concentrations than the ones from SW coast. This happens in close connection with organic matter (OM) content, and is controlled by their main climatic contexts. Yet, the anthropogenic impact on Br concentrations cannot be discarded. Regarding [Br] spatial patterns across the marshes, the results show a general increase from tidal flat toward high marsh. Maxima [Br] occur in the upper driftline zone, at transition from highest low marsh to high marsh, recognized as a privileged setting for OM accumulation. Based on the discovery of OM ubiquitous bromination in marine and transitional environments, it is assumed that this Br occurs mainly as organobromine. Analysis of two dated sediment cores indicates that, despite having the same age (AD ~1300), the Caminha salt marsh (Minho estuary) evidences higher Br enrichment than the Casa Branca salt marsh (Mira estuary). This is related to a greater Br storage ability, which is linked to OM build-up and rate dynamics under different climate scenarios. Both cores evidence a fairly similar temporal Br enrichment pattern, and may be interpreted in light of the sun-climate coupling. Thereby, most of the well-known Grand Solar Minima during the Little Ice Age appear to have left an imprint on these marshes, supported by higher [Br] in soils/sediments. Besides climate changes driven by solar activity and impacting marsh Br biogeodynamics, those Br enrichment peaks might also reflect inputs of enhanced volcanic activity covarying with Grand Solar Minima. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise

    USGS Publications Warehouse

    Thorne, Karen M.; MacDonald, Glen M.; Guntenspergen, Glenn R.; Ambrose, Richard F.; Buffington, Kevin J.; Dugger, Bruce D.; Freeman, Chase; Janousek, Christopher; Brown, Lauren N.; Rosencranz, Jordan A.; Homquist, James; Smol, John P.; Hargan, Kathryn; Takekawa, John Y.

    2018-01-01

    We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the century. The only wetland habitat remaining at the end of the century was low marsh under higher-range SLR rates. Tidal wetland loss was also likely under more conservative SLR scenarios, including loss of 95% of high marsh and 60% of middle marsh habitats by the end of the century. Horizontal migration of most wetlands was constrained by coastal development or steep topography, with just two wetland sites having sufficient upland space for migration and the possibility for nearly 1:1 replacement, making SLR threats particularly high in this region and generally undocumented. With low vertical accretion rates and little upland migration space, Pacific coast tidal wetlands are at imminent risk of submergence with projected rates of rapid SLR.

  18. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise

    PubMed Central

    Thorne, Karen; MacDonald, Glen; Guntenspergen, Glenn; Ambrose, Richard; Buffington, Kevin; Dugger, Bruce; Freeman, Chase; Janousek, Christopher; Brown, Lauren; Rosencranz, Jordan; Holmquist, James; Smol, John; Hargan, Kathryn; Takekawa, John

    2018-01-01

    We used a first-of-its-kind comprehensive scenario approach to evaluate both the vertical and horizontal response of tidal wetlands to projected changes in the rate of sea-level rise (SLR) across 14 estuaries along the Pacific coast of the continental United States. Throughout the U.S. Pacific region, we found that tidal wetlands are highly vulnerable to end-of-century submergence, with resulting extensive loss of habitat. Using higher-range SLR scenarios, all high and middle marsh habitats were lost, with 83% of current tidal wetlands transitioning to unvegetated habitats by 2110. The wetland area lost was greater in California and Oregon (100%) but still severe in Washington, with 68% submerged by the end of the century. The only wetland habitat remaining at the end of the century was low marsh under higher-range SLR rates. Tidal wetland loss was also likely under more conservative SLR scenarios, including loss of 95% of high marsh and 60% of middle marsh habitats by the end of the century. Horizontal migration of most wetlands was constrained by coastal development or steep topography, with just two wetland sites having sufficient upland space for migration and the possibility for nearly 1:1 replacement, making SLR threats particularly high in this region and generally undocumented. With low vertical accretion rates and little upland migration space, Pacific coast tidal wetlands are at imminent risk of submergence with projected rates of rapid SLR. PMID:29507876

  19. Soil organic matter decomposition follows plant productivity response to sea-level rise

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2015-04-01

    The accumulation of soil organic matter (SOM) is an important mechanism for many tidal wetlands to keep pace with sea-level rise. SOM accumulation is governed by the rates of production and decomposition of organic matter. While plant productivity responses to sea-level rise are well understood, far less is known about the response of SOM decomposition to accelerated sea-level rise. Here we quantified the effects of sea-level rise on SOM decomposition by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian Global Change Research Wetland, a micro tidal brackish marsh in Maryland, US. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated using a stable carbon isotope approach. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to varying flood duration over a 35 cm range in surface elevation in unplanted mesocoms. In the presence of plants, decomposition rates were strongly and positively related to aboveground biomass (p≤0.01, R2≥0.59). We conclude that rates of soil carbon loss through decomposition are driven by plant responses to sea level in this intensively studied tidal marsh. If our result applies more generally to tidal wetlands, it has important implications for modeling carbon sequestration and marsh accretion in response to accelerated sea-level rise.

  20. Marsh soil responses to tidal water nitrogen additions contribute to creek bank fracturing and slumping

    EPA Science Inventory

    Large-scale dissolved nutrient enrichment can cause a reduction in belowground biomass, increased water content of soils, and increased microbial decomposition, which has been linked with slumping of low marsh Spartina vegetation into creeks, and ultimately marsh loss. Our study ...

  1. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    USGS Publications Warehouse

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana, vegetation cover in prior year was the best single predictor of subsequent loss in most sites followed by changes in percent land and tidal amplitude. The model’s predicted land loss rates correlated well with land loss rates derived from satellite data, although agreement was spatially variable. These results indicate 1) monitoring the loss of small scale vegetation plots can inform patterns of land loss at larger scales 2) the drivers of land loss vary spatially across coastal Louisiana, and 3) relatively simple models have potential as highly informative tools for bioassessment, directing future research, and management planning.

  2. MAPPING AND MONITORING OF SALT MARSH VEGETATION AND TIDAL CHANNEL NETWORK FROM HIGH RESOLUTION IMAGERY (1975-2006). EXAMPLE OF THE MONT-SAINT-MICHEL BAY (FRANCE)

    NASA Astrophysics Data System (ADS)

    Puissant, A. P.; Kellerer, D.; Gluard, L.; Levoy, F.

    2009-12-01

    Coastal landscapes are severely affected by environmental and social pressures. Their long term development is controlled by both physical and anthropogenic factors, which spatial dynamics and interactions may be analysed by Earth Observation data. The Mont-Saint-Michel Bay (Normandy, France) is one of the European coastal systems with a very high tidal range (approximately 15m during spring tides) because of its geological, geomorphological and hydrodynamical contexts at the estuary of the Couesnon, Sée and Sélune rivers. It is also an important touristic place with the location of the Mont-Saint-Michel Abbey, and an invaluable ecosystem of wetlands forming a transition between the sea and the land. Since 2006, engineering works are performed with the objective of restoring the maritime character of the Bay. These works will lead to many changes in the spatial dynamics of the Bay which can be monitored with two indicators: the sediment budget and the wetland vegetation surfaces. In this context, the aim of this paper is to map and monitor the tidal channel network and the extension of the salt marsh vegetation formation in the tidal zone of the Mont-Saint-Michel Bay by using satellite images. The spatial correlation between the network location of the three main rivers and the development of salt marsh is analysed with multitemporal medium (60m) to high spatial resolution (from 10 to 30 m) satellite images over the period 1975-2006. The method uses a classical supervised algorithm based on a maximum likelihood classification of eleven satellites images. The salt-marsh surfaces and the tidal channel network are then integrated in a GIS. Results of extraction are assessed by qualitative (visual interpretation) and quantitative indicators (confusion matrix). The multi-temporal analysis between 1975 and 2006 highlights that in 1975 when the study area is 26000 ha, salt marshes cover 16% (3000ha), the sandflat (slikke) and the water represent respectively 59% and 25% of the area. In 2006, salt marshes represent more than 3900 ha. Then, in thirty years, salt marshes have increased in average of 29 ha.yr-1. Several periods with different speed can be identified. Moreover, if the global tendency is a progression of salt-marshes, three period of accretion are noticed. Some hypothesis can be formulated about the tidal channel migrations using various data sources as tide levels, wind wave and meteorological data and river discharges. This analysis showed that satellite images are an important information source to locate morphological coastal changes and allows to perform the understanding of a dynamic and complex system such as the Mont-Saint-Michel Bay. It is possible to extract and to monitor coastal objects over a long time series with heterogeneous data such as satellite images with different spatial and spectral resolutions. With the multiplication of very high spatial resolution images, the detection of salt marshes surfaces and tidal channel could ever be more accurate.

  3. Vulnerability of Rhode Island Salt Marshes to Sea Level Rise and Poor Water Quality

    EPA Science Inventory

    Across the northeastern Unites States, salt marshes are losing ground. Edges are eroding, tidal channel networks are expanding, and new ponds are forming and expanding within salt marshes. This leaves shorelines - and in some cases houses - more vulnerable to nor'easters and tr...

  4. Relationships Between Watershed Emergy Flow and Coastal New England Salt Marsh Structure, Function, and Condition

    EPA Science Inventory

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI. The field-collected data wer...

  5. Inorganic Carbon and Oxygen Dynamics in a Marsh-dominated Estuary

    NASA Astrophysics Data System (ADS)

    Wang, S. R.; Di Iorio, D.; Cai, W. J.; Hopkinson, C.

    2017-12-01

    A free-water mass balance-based study was conducted to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. Open water diurnal O2 and dissolved inorganic carbon (DIC) were measured seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. With the increase of global temperature and sea level rise, salt marshes are likely to export more inorganic carbon to the atmosphere and the coastal ocean due to the decrease of solubility, the increase of aquatic and benthic metabolic activities and the longer marsh inundation.

  6. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    PubMed Central

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    2016-01-01

    Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784

  7. Forecasting tidal marsh elevation and habitat change through fusion of Earth observations and a process model

    USGS Publications Warehouse

    Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.

    2016-01-01

    Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of remote sensing data with MEM should advance regional projections of marsh vegetation change by better parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning for ecosystem services, including habitat, carbon storage, and flood protection.

  8. Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem

    NASA Astrophysics Data System (ADS)

    Spivak, Amanda C.; Gosselin, Kelsey; Howard, Evan; Mariotti, Giulio; Forbrich, Inke; Stanley, Rachel; Sylva, Sean P.

    2017-06-01

    Integrating spatial heterogeneity into assessments of salt marsh biogeochemistry is becoming increasingly important because disturbances that reduce plant productivity and soil drainage may contribute to an expansion of shallow ponds. These permanently inundated and sometimes prominent landscape features can exist for decades, yet little is known about pond biogeochemistry or their role in marsh ecosystem functioning. We characterized three ponds in a temperate salt marsh (MA, USA) over alternating periods of tidal isolation and flushing, during summer and fall, by evaluating the composition of plant communities and organic matter pools and measuring surface water oxygen, temperature, and conductivity. The ponds were located in the high marsh and had similar depths, temperatures, and salinities. Despite this, they had different levels of suspended particulate, dissolved, and sediment organic matter and abundances of phytoplankton, macroalgae, and Ruppia maritima. Differences in plant communities were reflected in pond metabolism rates, which ranged from autotrophic to heterotrophic. Integrating ponds into landcover-based estimates of marsh metabolism resulted in slower rates of net production (-8.1 ± 0.3 to -15.7 ± 0.9%) and respiration (-2.9 ± 0.5 to -10.0 ± 0.4%), compared to rates based on emergent grasses alone. Seasonality had a greater effect on pond water chemistry, organic matter pools, and algal abundances than tidal connectivity. Alternating stretches of tidal isolation and flushing did not affect pond salinities or algal communities, suggesting that exchange between ponds and nearby creeks was limited. Overall, we found that ponds are heterogeneous habitats and future expansion could reduce landscape connectivity and the ability of marshes to capture and store carbon.

  9. A comparison of resident fish assemblages in managed and unmanaged coastal wetlands in North Carolina and South Carolina

    USGS Publications Warehouse

    Robinson, Kelly F.; Jennings, Cecil A.

    2014-01-01

    The dominant fish species within impounded coastal wetlands in the southeastern US may be different from the species that dominate natural marshes. We tested the hypothesis that resident fish assemblages inhabiting impounded coastal wetlands in South Carolina would differ from resident assemblages in natural marshes of the southeastern United States. We used rarefied species richness, Shannon's H' diversity,J' evenness, Morisita's index of similarity, and the percent similarity index to compare resident fish assemblages from two impoundments to 12 open-marsh resident fish assemblages from previously published studies in North and South Carolina. We used rotenone to sample fish assemblages in impoundments. The assemblages in natural marsh habitat had been sampled with rotenone and seines. We classified comparisons yielding a similarity index ≥0.50 as moderately similar and those with an index ≥0.75 as very similar. Fifty-three percent of the among-impoundment comparisons (Morisita's index) were at least moderately similar, whereas 7% of impoundment—natural marsh comparisons were moderately similar. A difference in tidal influence was the only parameter in the best-fitting model describing the observed Morisita's indices. The index of similarity decreased by 63% when tidal influence differed between compared assemblages. Species richness and diversity were greater in impoundments than natural marshes, but evenness was similar between habitat types. Our results support the hypothesis that resident fish assemblages in impounded wetlands and natural marshes are different, and suggest that a degree of tidal influence is the most important factor behind the difference.

  10. Topographic heterogeneity influences fish use of an experimentally restored tidal marsh.

    PubMed

    Larkin, Daniel J; Madon, Sharook P; West, Janelle M; Zedler, Joy B

    2008-03-01

    Ecological theory predicts that incorporating habitat heterogeneity into restoration sites should enhance diversity and key functions, yet research is limited on how topographic heterogeneity affects higher trophic levels. Our large (8-ha) southern California restoration experiment tested effects of tidal creek networks and pools on trophic structure of salt marsh habitat and high-tide use by two regionally dominant fish species, California killifish (Fundulus parvipinnis) and longjaw mudsucker (Gillichthys mirabilis). We expected tidal creeks to function as "conduits" that would enhance connectivity between subtidal and intertidal habitat and pools to serve as microhabitat "oases" for fishes. Pools did provide abundant invertebrate prey and were a preferred microhabitat for F. parvipinnis, even when the entire marsh was inundated (catch rates were 61% higher in pools). However, G. mirabilis showed no preference for pools. At a larger scale, effects of tidal creek networks were also mixed. Areas containing creeks had 12% higher catch rates of G. mirabilis, but lower catch rates and feeding rates of F. parvipinnis. Collectively, the results indicate that restoring multiple forms of heterogeneity is required to provide opportunities for multiple target consumers.

  11. Microfossil measures of rapid sea-level rise: Timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia

    USGS Publications Warehouse

    Horton, B.P.; Milker, Yvonne; Dura, T.; Wang, Kelin; Bridgeland, W.T.; Brophy, Laura S.; Ewald, M.; Khan, Nicole; Engelhart, S.E.; Nelson, Alan R.; Witter, Robert C.

    2017-01-01

    Comparisons of pre-earthquake and post-earthquake microfossils in tidal sequences are accurate means to measure coastal subsidence during past subduction earthquakes, but the amount of subsidence is uncertain, because the response times of fossil taxa to coseismic relative sea-level (RSL) rise are unknown. We measured the response of diatoms and foraminifera to restoration of a salt marsh in southern Oregon, USA. Tidal flooding following dike removal caused an RSL rise of ∼1 m, as might occur by coseismic subsidence during momentum magnitude (Mw) 8.1–8.8 earthquakes on this section of the Cascadia subduction zone. Less than two weeks after dike removal, diatoms colonized low marsh and tidal flats in large numbers, showing that they can record seismically induced subsidence soon after earthquakes. In contrast, low-marsh foraminifera took at least 11 months to appear in sizeable numbers. Where subsidence measured with diatoms and foraminifera differs, their different response times may provide an estimate of postseismic vertical deformation in the months following past megathrust earthquakes.

  12. Flocculation and sediment deposition in a hypertidal creek

    NASA Astrophysics Data System (ADS)

    O'Laughlin, C.; van Proosdij, D.; Milligan, T. G.

    2014-07-01

    In the hypertidal Bay of Fundy, environmental impacts in response to commercial-scale tidal power development remain to be fully understood. The extraction of tidal energy may impact sediment dynamics in far-field environments, such as the intertidal zone, through potential alterations to tidal amplitude in the Minas Basin. Tidal conditions (e.g. current velocity, turbulence, suspended sediment concentration) were monitored in a sheltered salt marsh creek over 18 tidal cycles in various stages of the spring-neap cycle. Samples of deposited and suspended sediments were collected and analyzed for grain size using a Beckman Coulter Multisizer III. Results suggest that the flocculated component of both deposited and suspended sediment is consistently high over a wide range of tidal conditions. A routinely high incoming concentration of highly-flocculated material results in large amounts of sediment deposition in tidal creeks in response to individual tidal cycles. Resuspension and removal of newly deposited material is shown to vary with over-marsh, bankfull and channel-restricted tides. Disruption of the tidal regime due to a reduction in Minas Basin tidal amplitude may lessen the cumulative export capacity of tidal channels over time, potentially leading to gradual infilling of tidal creeks. The long-term effects of tidal power development on intertidal areas are generally unknown.

  13. Evaluating a portable cylindrical bait trap to capture diamondback terrapins in salt marsh

    USGS Publications Warehouse

    Henry, Paula F.; Haramis, G. Michael; Day, Daniel D.

    2016-01-01

    Diamondback terrapins (Malaclemys terrapin) are currently in decline across much of their historical range, and demographic data on a regional scale are needed to identify where their populations are at greatest risk. Because terrapins residing in salt marshes are difficult to capture, we designed a cylindrical bait trap (CBT) that could be deployed in shallow tidal waters. From 2003 to 2006, trials were conducted with CBTs in the Chesapeake Bay, Maryland (USA) to determine terrapin sex, size, and age distribution within 3 salt marsh interior habitats—open bays, tidal guts, and broken marshes—using 15 traps/habitat. Analyses based on 791 total captures with CBTs indicate that smaller terrapins, (i.e., adult male and subadult) were more prevalent within the transecting tidal guts and broken marshes, whereas the adult females were more evenly distributed among habitats, including open bays. Subadult females made up the largest percent of catch in the CBTs deployed within the 3 marsh interior habitats. During a 12-day trial in which we compared capture performance of CBTs and modified fyke nets along open shorelines during the nesting season, fyke nets outperformed CBTs by accounting for 95.2% of the 604 terrapin captures. Although the long drift leads of the fyke nets proved more effective for intercepting along-shore travel of adult female terrapins during the nesting season, CBTs provided a more effective means of live-trapping terrapins within the shallow interior marshes.

  14. Patterns of Seasonal Abundance and Social Segregation in Inland and Coastal Plain Swamp Sparrows in a Delaware Tidal Marsh

    EPA Science Inventory

    The Coastal Plain Swamp Sparrow (Melospiza georgiana nigrescens, CPSS) breeds in the coastal brackish marshes of the North American Mid-Atlantic States. During the non-breeding season, coastal brackish marshes are occupied by both this subspecies and two far more widespread inte...

  15. Effects of Tide Stage on the Use of Salt Marshes by Wading Birds in Rhode Island

    EPA Science Inventory

    To determine how tide stage affects wading bird abundance, behavior, and foraging in three Narragansett Bay salt marshes (RI), we conducted surveys at 10-min intervals—across the full tidal range—during six days at each marsh in July/September of 2006. The wading bird community ...

  16. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England

    EPA Science Inventory

    Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, ...

  17. Wetland Loss Patterns and Inundation-Productivity Relationships Prognosticate Widespread Salt Marsh Loss for Southern New England

    EPA Science Inventory

    Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, ...

  18. Where in the Marsh is the Water (and When)?: Measuring and modeling salt marsh hydrology for ecological and biogeochemical applications

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a measurement and modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because o...

  19. Ecogeomorphological feedbacks in a tidal freshwater marsh

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.; Engelhardt, K.

    2013-12-01

    Tidal freshwater marshes are critical components of fluvial and estuarine ecosystems. However, ecogeomorphological feedbacks (i.e., feedbacks between sediment dynamics and the vegetation community) in freshwater marshes have not received as much attention as within their saltwater counterparts. This study evaluates the role of these feedbacks in stabilizing marsh-surface elevation, relative to sea-level rise, in Dyke Marsh Preserve (Potomac River, USA). Specifically, we relate the composition of the vegetation community to current and historical patterns of sedimentation that occur on bimonthly to decadal time scales. Along with a ~3-year time series of bimonthly and seasonal-scale observations, 210Pb (half-life 22.3 y) profiles are used to identify sites with relatively steady sediment accumulation (i.e., stable sediments) and those with numerous deposition/erosion events (i.e., unstable sediments). Differences in the vegetation community (e.g., composition, stem density) and sediment character (e.g., organic content, grain size) among sites in each of these stability categories are examined with statistical techniques and compared to observations of marsh-surface elevation change. The resulting insights are placed into a geomorphological context to assess the potential response of this marsh to rapid global environmental change.

  20. Plant distribution and stand characteristics in brackish marshes: Unravelling the roles of abiotic factors and interspecific competition

    NASA Astrophysics Data System (ADS)

    Carus, Jana; Heuner, Maike; Paul, Maike; Schröder, Boris

    2017-09-01

    Due to increasing pressure on estuarine marshes from sea level rise and river training, there is a growing need to understand how species-environment relationships influence the zonation and growth of tidal marsh vegetation. In the present study, we investigated the distribution and stand characteristics of the two key brackish marsh species Bolboschoenus maritimus and Phragmites australis in the Elbe estuary together with several abiotic habitat factors. We then tested the effect of these habitat factors on plant growth and zonation with generalised linear models (GLMs). Our study provides detailed information on the importance of single habitat factors and their interactions for controlling the distribution patterns and stand characteristics of two key marsh species. Our results suggest that flow velocity is the main factor influencing species distribution and stand characteristics and together with soil-water salinity even affects the inundation tolerance of the two specie investigated here. Additionally, inundation height and duration as well as interspecific competition helped explain the distribution patterns and stand characteristics. By identifying the drivers of marsh zonation and stand characteristics and quantifying their effects, this study provides useful information for evaluating a future contribution of tidal marsh vegetation to ecosystem-based shore protection.

  1. Methylmercury production and export from a restored tidal marsh: Crissy Field, Golden Gate National Recreation Area, San Francisco, CA

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Ward, K.; Marvin-Dipasquale, M. C.; Agee, J.; Kieu, L.; Kakouros, E.

    2009-12-01

    Well-mixed surface water in the restored salt marsh at Crissy Field, Golden Gate National Recreation Area, was found to have high aqueous methylmercury (MeHg) concentrations (>1 ng MeHg / L), despite its sandy substrate and low sediment total mercury (THg) concentrations. We sought to determine a) the extent to which the marsh was a source or a sink of MeHg to San Francisco Bay, b) where and when MeHg is produced within the marsh, and c) the extent to which MeHg concentrations in sediment and water varied with extended multi-week flooding events, impoundments caused by periodic sediment accumulation in the narrow inlet. Because Crissy Marsh is small in size, has a single inlet slough channel, and has a tidally-dominated water budget, we had a unique opportunity to construct a THg and MeHg flux budget for this single well-constrained wetland. A 24-hour sampling event was conducted over a full diurnal tidal cycle during August 2008. Particulate and filter-passing (0.45μm) THg and MeHg concentrations were assessed, in addition to concentrations of chlorophyll-a and total suspended solids. These measurements were coupled to water flux calculations from a USGS-derived hydrodynamic model based on tidal prism relationships at this site. The resulting Hg load calculations demonstrated that for this 24-hour period, the marsh was a net source of dissolved MeHg to the bay and a net sink of particulate THg from the bay. To determine where and when Hg was being methylated within the marsh environment, sediment percent (%) MeHg (a surrogate measure of MeHg production efficiency) was examined for 2 years along 8 transects, seasonally and across three marsh elevations (subtidal, low-intertidal, and high-intertidal). The low-intertidal zone (cordgrass-dominated) had higher sediment %MeHg than the other two elevations. Sediment %MeHg was also higher during summer than during winter, highest at the sediment surface (0-2cm), correlated with sediment organic content, and elevated during closure events at some intertidal sites, suggesting enhanced MeHg production during impoundment. However, aqueous MeHg concentrations (both filtered and unfiltered) fell during inlet closure events. Additional data suggest that increased algal production and decreased suspended solids (increased water clarity) may remove MeHg from the water column during closure events, either through settling of mineral and algal components or via photodemethylation. We conclude that MeHg production is most active in the low intertidal sediments of Crissy Marsh, and that this spatial trend is driven by both wetting/drying cycles and the comparatively elevated organic matter concentrations in this zone. We further conclude that the mercury present in Crissy Marsh, whether due to historic contamination, atmospheric deposition or tidal loads, is subject to methylation and export as MeHg. At only 18 acres, Hg fluxes between Crissy Marsh and the larger Bay may be small, but the flux dynamics demonstrated here may be representative of semi-enclosed salt marshes elsewhere in San Francisco Bay.

  2. Mosquitoes Associated with Ditch-Plugged and Control Tidal Salt Marshes on the Delmarva Peninsula

    PubMed Central

    Leisnham, Paul T.; Sandoval-Mohapatra, Sarah

    2011-01-01

    A study was conducted during the summer of 2009 (from July to September) to characterize mosquito communities among different habitats in five historically ditched tidal salt marshes and three adjacent wooded areas in the E.A. Vaughn Wetland Management Area on the Maryland Delmarva Peninsula, USA. Study marshes are characteristic of Atlantic coastal salt marshes that had undergone grid ditching from the 1930s to 1950s. In the autumn of 2008 (October and November) ditches were plugged near their outlets in two (‘experimental’) marshes with the aim to restore their natural tidal hydrology. The three other marshes were not plugged. Marshes were sampled from July to September in 2009 by using standard dip count method. A total of 2,457 mosquito larvae representing six species were collected on 15.4% (86/557) of all sample occasions and 399 adults representing four mosquito species were collected from landing counts. Aedes sollicitans, Anopheles bradleyi and Culex salinarius were the most common species collected in larval habitats, and Ae. sollicitans was the most common adult collected. Wooded habitats had more total mosquitoes, were also more frequently occupied by mosquitoes and had higher densities of mosquitoes than marsh habitats. Almost all larvae collected from marshes were from one experimental and one control site. The majority of larvae at the control site were Ae. sollicitans in marsh pannes while Cx. salinarius, An. bradleyi, Ae. cantator, and Ae. sollicitans were collected in high numbers from ditches at the experimental site. We found a difference in the proportion of marsh pannes occupied by Ae. sollicitans but not total mosquitoes sampled 4–5 days after spring tide events than on other occasions. Salinity measures of 42 larval habitats showed lower median salinity in mosquito-occupied habitats (11.5 ppt) than unoccupied habitats (20.1 ppt), and in habitats in wooded areas followed by ditches and pannes in marsh areas. The results of this study suggest that wooded areas adjacent to salt marshes may be a substantial source of biting adult mosquitoes usually associated with salt marsh habitats and that ditch plugging may alter the productivity of mosquitoes on some marshes. We recommend future studies consider mosquito productivity from habitats surrounding salt marshes, and if assessments of marsh alterations are a goal, compare multiple experimental and control areas before and after treatments to determine if alterations have a consistent impact on regional mosquito production. PMID:21909293

  3. Import and export fluxes of macrozooplankton are taxa- and season-dependent at Jiuduansha marsh, Yangtze River estuary

    NASA Astrophysics Data System (ADS)

    Qin, Haiming; Sheng, Qiang; Chu, Tianjiang; Wang, Sikai; Wu, Jihua

    2015-09-01

    Macrozooplankton may play important roles in influencing nutrient exchange between salt marsh and nearby estuarine ecosystems through predator-prey interactions and their transport by tidal flows. In this study, macrozooplankton transport through year-round monthly sampling was investigated in a salt marsh creek of the Yangtze River estuary. Twenty-one orders of macrozooplankton were captured. Calanoida and Decapoda were dominant and numerically comprised 59.59% and 37.59% respectively of the total captured macrozooplankton throughout the year. Decapoda mainly occurred in April, May and June. In other months, the Calanoida contributed over 90% of the total individuals. The annual Ferrari index (I) for total individual number of macrozooplankton was 0.27, which generally supports the viewpoint that salt marshes are sources of zooplankton. The salt marsh was mainly a source for decapods and mysids, possibly because of larval release in their breeding seasons. The marsh was also a source for amphipods, probably because some benthic forms became transient planktonic forms during tidal water flushing. Copepods and fish larvae exhibited net import into the salt marsh, which may result from predation from salt marsh settlers or retention in the salt marsh. Monthly Ferrari index (I) estimations revealed that the role of the salt marsh as a sink or source of macrozooplankton was time-dependent, which is related to the life history of animals. This study showed that whether the salt marsh zooplankton act as energy importers or exporters is group/taxa-dependent and time-dependent.

  4. Summary of oceanographic and water-quality measurements near the Blackwater National Wildlife Refuge, Maryland, 2011

    USGS Publications Warehouse

    Ganju, Neil K.; Dickhudt, Patrick J.; Montgomery, Ellyn T.; Brennand, Patrick; Derby, R. Kyle; Brooks, Thomas W.; Guntenspergen, Glenn R.; Martini, Marinna A.; Borden, Jonathan; Baldwin, Sandra M.

    2012-01-01

    Suspended-sediment transport is a critical element governing the geomorphology of tidal marshes. Marshes rely on both organic material and inorganic sediment deposition to maintain their elevation relative to sea level. In wetlands near the Blackwater National Wildlife Refuge, Maryland, portions of the salt marsh have been subsiding relative to sea level since the early 20th century. Other portions of the marsh have been successful at maintaining elevation. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration in the tidal channels in order to understand the magnitude of suspended-sediment concentrations, the sediment-transport mechanisms, and differences between two marsh areas, one that subsided and one that maintained elevation. We deployed optical turbidity sensors and acoustic velocity meters at multiple sites over two periods in 2011. This report presents the time-series of oceanographic data collected during those field studies, including velocity, depth, turbidity, salinity, water temperature, and pH.

  5. Interagency partnership to assess and restore a degraded urban riverine wetland: Dyke Marsh Wildlife Preserve, Virginia

    USGS Publications Warehouse

    Steury, Brent W.; Litwin, Ronald J.; Oberg, Erik T.; Smoot, Joseph P.; Pavich, Milan J.; Sanders, Geoffrey; Santucci, Vincent L.

    2014-01-01

    The narrow-leaved cattail wetland known as Dyke Marsh formally became a land holding of George Washington Memorial Parkway (GWMP, a unit of the national park system) in 1959, along with a congressional directive to honor a newly-let 30-year commercial sand and gravel dredge-mining lease at the site. Dredging continued until 1974 when Public Law 93-251 called for the National Park Service and the United States Army Corps of Engineers to “implement restoration of the historical and ecological values of Dyke Marsh.” By that time, about 83 acres of the marsh remained, and no congressional funding accompanied the passage of the law to effect any immediate conservation or restoration. Decades of dredge mining had severely altered the surface area of Dyke Marsh, the extent of its tidal creek system, and the shallow river bottom of the Potomac River abutting the marsh. Further, mining destabilized the marsh, causing persistent erosion, shoreline retreat, and tidal channel widening after mining ceased. Erosion has continued unchecked until the present; approximately 50 acres of the original marsh are now estimated to remain. The specific cause of persistent erosion had been unknown prior to this collaborative study but previously was assumed to be due to flooding by the Potomac River.

  6. The Hyperspectral Absorption Sensor - Advantages and challenges of continuous, in situ absorption coefficient measurements

    NASA Astrophysics Data System (ADS)

    Wollschläger, J.; Röttgers, R.; Petersen, W.; Zielinski, O.

    2016-12-01

    A free-water mass balance-based study was conducted to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. Open water diurnal O2 and dissolved inorganic carbon (DIC) were measured seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. With the increase of global temperature and sea level rise, salt marshes are likely to export more inorganic carbon to the atmosphere and the coastal ocean due to the decrease of solubility, the increase of aquatic and benthic metabolic activities and the longer marsh inundation.

  7. Long term effect of a modified hydrodynamic at a lagoon inlet on the salt marsh ability to keep pace with sea level rise.

    NASA Astrophysics Data System (ADS)

    Carniello, L.; Nordio, G.; D'Alpaos, A.; Silvestri, S.

    2016-12-01

    In a context of global increase of mean sea level, the fate of salt marshes relates to their ability of keeping pace with relative sea level rise (SLR) and depends on the external sediment supply and organic soil production. Detecting the vertical sinking of salt marshes is a difficult task being the process characterized by time scales of tens to hundreds of years. Thanks to the availability of historical maps of the Venice lagoon, we reconstructed the reduction of salt mash areas that occurred in the northern part of the lagoon in the last two centuries. In this period, anthropic interventions played a crucial role in promoting the disappearance of vast marsh surfaces in the inner lagoon, while the marshes closer to the inlet remained fairly stable. Using a 2D numerical model we investigated the hydrodynamic behavior of different ancient lagoon configurations analyzing the effect of i) the construction of the jetties at the Lido inlet in 1882-1892 and ii) the removal of reed barriers that protected a fish farm area in the same period. Our results show that the deepening of the inlet induced by the construction of the jetties had a positive feedback on the vertical accretion of the salt marshes close to the inlet by lowering the local mean sea level and increasing the tidal amplitude. This effect contrasted the eustatic SLR for more than 30 years, allowing these marshes to increase their height with respect to the local mean sea level. On the contrary, the salt marshes far from the inlet could not take the same rapid advantage of this effect due to tidal wave dissipation characterizing tide propagation in shallow basins. Elevation of inner marshes is low due to the small tidal excursion, making these marshes extremely vulnerable to changes in sediment supply and SLR. We show that the removal of reed barriers used by ancient Venetians to create fish farms in the inner lagoon may have reduced the sediments available to the marshes thus contributing to their drowning.

  8. The Dynamics of sediment oxygenation in Spartina anglica Rhizospheres - a Planar Optode Study

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, Ketil

    2013-04-01

    The salt marsh grass Spartina anglica have well-developed aerenthyma tissue facilitating a rapid transport of oxygen from the atmosphere to belowground roots and rhizomes, where oxygen can leak out of the root system and oxygenate the surrounding sediment. In this way, oxic microzones are distributed vertically in marsh sediments promoting aerobic microbial activity at depth. In this study, the dynamics of sediment oxygenation in Spartina anglica rhizospheres was investigated, visualizing the belowground oxygen content using planar optode technology. Oxic microzones around roots and rhizomes were monitored in the laboratory under different light conditions and during tidal inundations of the aboveground biomass. Oxic microzones were restricted to the root tips extending up to16mm along the root and 1.5mm into the anoxic bulk sediment from the root surface. The oxygen concentration was highest at the root-surface ranging from 58-85μM. The volume of the oxic microzones did not change significantly with decreasing light availability of the aboveground biomass showing that the atmosphere is the primary source for oxygen transported below ground. Consequently, tidal inundations cutting off the access to atmospheric oxygen resulted in a complete collapse of the oxic microzones after 3 hours of inundation in the light as well as in the dark. However, monitoring oxic microzones during a 24h tidal cycle with diurnal tidal inundations lasting 90min showed a 36% reduction of the oxic microzones in the light in contrast to a complete collapse of the oxic microzones in the dark. Hence, light availability and photosynthetic oxygen production of the aboveground biomass does influence the kinetics of oxic microzone develupment. Belowground sediment oxygenation is of significant importance for the biogeochemical cycles in salt marsh sediment, in particular coupled nitrification-denitrification occurring at depth associated with oxic microzones can account for a significant proportion of the gaseous export of nitrogen from Spartina spp.-dominated marshes. This study shows that tidal inundations have significant impact on belowground biogeochemical conditions and must be taken into account when monitoring tidal marsh processes on a daily basis.

  9. Modeling the temporal dynamics of intertidal benthic infauna biomass with environmental factors: Impact assessment of land reclamation.

    PubMed

    Yang, Ye; Chui, Ting Fong May; Shen, Ping Ping; Yang, Yang; Gu, Ji Dong

    2018-03-15

    Anthropogenic activities such as land reclamation are threatening tidal marshes worldwide. This study's hypothesis is that land reclamation in a semi-enclosed bay alters the seasonal dynamics of intertidal benthic infauna, which is a key component in the tidal marsh ecosystem. Mai Po Tidal Marsh, Deep Bay, Pearl River Estuary, China was used as a case study to evaluate the hypothesis. Ecological models that simulate benthic biomass dynamics with governing environmental factors were developed, and various scenario experiments were conducted to evaluate the impact of reclamations. Environmental variables, selected from the areas of hydrodynamics, meteorology, and water quality based on correlation analysis, were used to generate Bayesian regression models for biomass prediction. The best-performing model, which considered average water age (i.e., a hydrodynamic indicator of estuarine circulation) in the previous month, salinity variation (i.e., standard deviation of salinity), and the total sunny period in the current month, captured well both seasonal and yearly trends in the benthic infauna observations from 2002 to 2008. This model was then used to simulate biomass dynamics with varying inputs of water age and salinity variation from coastal numerical models of different reclamation scenarios. The simulation results suggest that the reclamation in 2007 decreased the spatial and annual average benthic infauna biomass in the tidal marsh by 20%, which agreed with the 28% biomass decrease recorded by field survey. The range of biomass seasonal variation also decreased significantly from 2.1 to 230.5g/m 2 (without any reclamation) to 1.2 to 131.1g/m 2 (after the 2007 reclamation), which further demonstrates the substantial ecological impact of reclamation. The ecological model developed in this study could simulate seasonal biomass dynamics and evaluate the ecological impact of reclamation projects. It can therefore be applied to evaluate the ecological impact of coastal engineering projects for tidal marsh management, conservation, and restoration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of Vegetation on Sediment Transport across Salt Marshes

    NASA Astrophysics Data System (ADS)

    Coleman, D. J.; Kirwan, M. L.; Guntenspergen, G. R.; Ganju, N. K.

    2016-12-01

    Salt marshes are a classic example of ecogeomorphology where interactions between plants and sediment transport govern the stability of a rapidly evolving ecosystem. In particular, plants slow water velocities which facilitates deposition of mineral sediment, and the resulting change in soil elevation influences the growth and species distribution of plants. The ability of a salt marsh to withstand sea level rise (SLR) is therefore dependent, among other factors, on the availability of mineral sediment. Here we measure suspended sediment concentrations (SSC) along a transect from tidal channel to marsh interior, exploring the role biomass plays in regulating the magnitude and spatial variability in vertical accretion. Our study was conducted in Spartina alterniflora dominated salt marshes along the Atlantic Coast from Massachusetts to Georgia. At each site, we deployed and calibrated optical back scatter turbidity probes to measure SSC in 15 minute intervals in a tidal channel, on the marsh edge, and in the marsh interior. We visited each site monthly to measure plant biomass via clip plots and vertical accretion via two types of sediment tiles. Preliminary results confirm classic observations that biomass is highest at the marsh edge, and that SSC and vertical accretion decrease across the marsh platform with distance from the channel. We expect that when biomass is higher, such as in southern sites like Georgia and months late in the growing season, SSC will decay more rapidly with distance into the marsh. Higher biomass will likely also correspond to increased vertical accretion, with the greatest effect at marsh edge locations. Our study will likely demonstrate how salt marsh plants interact with sediment transport dynamics to control marsh morphology and thus contribute to marsh resilience to SLR.

  11. Tidal Marshes as Pulsing Systems: New Estimates of Marsh-Carbon Export and Fate

    NASA Astrophysics Data System (ADS)

    Logozzo, L. A.; Neale, P.; Tzortziou, M.; Nelson, N.; Megonigal, P.

    2016-02-01

    We investigated wetland-estuarine exchanges of dissolved organic carbon (DOC), chromophoric dissolved organic matter (CDOM), dissolved inorganic carbon (DIC), and chlorophyll a (chl a) in the Chesapeake Bay Kirkpatrick wetlands, an ecosystem that is representative of brackish marshes with organic-rich soils in North America. 1 L water samples were collected every hour over multiple semidiurnal tidal cycles (24 h deployments) and the flow was continuously measured every minute over the course of the study. DIC samples were collected and filtered on site. Fluxes were estimated using the measured flow and concentrations of biogeochemical variables (DOC, DIC, and chl a as a measure of algal biomass). aCDOM(300) was used as a proxy for CDOM amount to observe variations over two semidiurnal tidal cycles. Relative to high tide water, low tide water was consistently enriched in DOC, DIC, and CDOM, whereas it was consistently depleted in chl a. Initial estimates of fluxes over the tidal cycle showed net export of DIC and DOC from the marsh, and net import of chl a into the marsh. These results are consistent with DOC flux estimates from previous studies, but our method utilizes high temporal resolution flow measurements, improving flux estimate accuracy. Transect sampling from the marsh into the sub-estuary during ebbing tide indicated a strong negative gradient in a­CDOM­(300) and non-conservative mixing with salinity. The observed gradients in CDOM absorption spectral shape (slope and slope ratios) and the relative changes in the major fluorescence components identified in 3D fluorescence excitation-emission-matrices, indicated strong photochemical degradation in the estuary and a shift from higher to lower molecular-weight organic compounds. The weaker gradients observed for DOC and DIC compared to aCDOM(300) indicate that while microbial degradation does occur, photobleaching is the dominant degradation mechanism for CDOM in the estuary.

  12. Modelling of groundwater-vegetation interactions in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Kong, Jun; Li, Ling; Barry, D. A.

    2013-07-01

    Wetting and drying due to tidal fluctuations affect soil conditions and hence plant growth in tidal marshes. Here, a coupled one-dimensional model was developed to simulate interacting groundwater flow and plant growth in these wetlands. The simulation results revealed three characteristic zones of soil conditions for plant growth along a cross-creek section subjected to the combined influences of spring-neap tides and evapotranspiration: (1) a near-creek zone affected by semi-diurnal tides over the whole spring-neap cycle, where the soil is well aerated although the plant growth could be slightly limited by the local water content dropping periodically below the wilting point on the ebb tide; (2) a less well-drained zone where drainage occurs only during neap tides (for which the daily inundation is absent) and plant growth is aeration-limited; and (3) an interior zone where evapotranspiration determines the soil-water saturation. Plant growth dynamics, which depend on these soil conditions, lead to spatial biomass distributions that are consistent with the characteristic zonation. The simulations shed light on the feedback mechanism for groundwater-vegetation interactions in the marsh system. It was demonstrated that the growth of pioneer plants can improve the soil aeration condition as a result of transpiration. The strength of this feedback varies spatially in accordance with the three characteristic zones of soil-water saturation. However, the development of another species in the marsh system is likely to be more complicated than suggested by the "positive feedback" mechanism proposed previously, due to the influence of inter-species competition. The feedback effects are generally more complex, involving both plant growth enhancement and inhibition depending on the combined influence of the intra- and inter-species competition, the ecosystem's carrying capacity and plant transpiration. These findings demonstrate the interplay of ecological and hydrological processes in tidal marshes, and provide guidance for future research, including field investigations that aim to establish the principle relationship between marsh morphology and plant zonation.

  13. Organic Carbon and Trace Element Cycling in a River-Dominated Tidal Coastal Wetland System (Tampa Bay, FL, USA)

    NASA Astrophysics Data System (ADS)

    Moyer, R. P.; Smoak, J. M.; Engelhart, S. E.; Powell, C. E.; Chappel, A. R.; Gerlach, M. J.; Kemp, A.; Breithaupt, J. L.

    2016-02-01

    Tampa Bay is the largest open water, river-fed estuary in Florida (USA), and is characterized by the presence of both mangrove and salt marsh ecosystems. Both coastal wetland systems, and small rivers such as the ones draining into Tampa Bay have historically been underestimated in terms of their role in the global carbon and elemental cycles. Climate change and sea-level rise (SLR) are major threats in Tampa Bay and stand to disrupt hydrologic cycles, compromising sediment accumulation and the rate of organic carbon (OC) burial. This study evaluates organic carbon content, sediment accumulation, and carbon burial rates in salt marsh and mangrove ecosystems, along with measurements of fluxes of dissolved OC (DOC) and trace elements in the water column of the Little Manatee River (LMR) in Tampa Bay. The characterization of OC and trace elements in tidal rivers and estuaries is critical for quantitatively constraining these systems in local-to-regional scale biogeochemical budgets, and provide insight into biogeochemical processes occurring with the estuary and adjacent tidal wetlands. Material fluxes of DOC and trace elements were tied to discharge irrespective of season, and the estuarine habitats removed 15-65% of DOC prior to export to Tampa Bay and the Gulf of Mexico. Thus, material is available for cycling and burial within marsh and mangrove peats, however, LMR mangrove peats have higher OC content and burial rates than adjacent salt marsh peats. Sedimentary accretion rates in LMR marshes are not currently keeping pace with SLR, thus furthering the rapid marsh-to-mangrove conversions that have been seen in Tampa Bay over the past half-century. Additionally, wetlands in Tampa Bay tend to have a lower rate of carbon burial than other Florida tidal wetlands, demonstrating their high sensitivity to climate change and SLR.

  14. Recovery strategies for the California clapper rail (Rallus longirostris obsoletus) in the heavily-urbanized San Francisco estuarine ecosystem

    USGS Publications Warehouse

    Foin, Theodore C.; Garcia, E. Jacqueline; Gill, Robert E.; Culberson, Steven D.; Collins, Joshua N.

    1997-01-01

    The California clapper rail (Rallus longirostris obsoletus), a Federal- and State-listed endangered marsh bird, has a geographic range restricted to one of the most heavily-urbanized estuaries in the world. The rail population has long been in a state of decline, although the exact contribution of each of the many contributing causes remains unclear. The rail is one of the key targets of emerging plans to conserve and restore tidal marshlands. Reduction of tidal marsh habitat, estimated at 85–95%, has been the major historical cause of rail decline. Increased predation intensity may be the more important present problem, because habitat fragmentation and alteration coupled with the invasion of the red fox have made the remaining populations more vulnerable to predators. Population viability analysis shows that adult survivorship is the key demographic variable; reversals in population fate occur over a narrow range of ecologically realistic values. Analysis of habitat requirements and population dynamics of the clapper rail in the San Francisco Estuary shows that decreased within-marsh habitat quality, particularly reduction of tidal flows and alteration of drainage, is an important barrier to population recovery. Management and restoration activities should emphasize the development of well-channelized high tidal marsh, because this is the key requirement of rail habitat. Developing effective restoration programs depends upon having information that field research will not provide. The effect of spatial pattern of reserves requires accurate estimation of the effects of prédation and inter-marsh movement, both of which are practically impossible to measure adequately. It will be necessary to develop and use simulation models that can be applied to geographic data to accomplish this task.

  15. The Impact of Late Holocene Land Use Change, Climate Variability, and Sea Level Rise on Carbon Storage in Tidal Freshwater Wetlands on the Southeastern United States Coastal Plain

    NASA Astrophysics Data System (ADS)

    Jones, Miriam C.; Bernhardt, Christopher E.; Krauss, Ken W.; Noe, Gregory B.

    2017-12-01

    This study examines Holocene impacts of changes in climate, land use, and sea level rise (SLR) on sediment accretion, carbon accumulation rates (CAR), and vegetation along a transect of tidal freshwater forested wetlands (TFFW) to oligohaline marsh along the Waccamaw River, South Carolina (four sites) and along the Savannah River, Georgia (four sites). We use pollen, plant macrofossils, accretion, and CAR from cores, spanning the last 1,500-6,000 years to test the hypothesis that TFFW have remained stable throughout the late Holocene and that marshes transitioned from TFFW during elevated SLR during the Medieval Climate Anomaly, with further transformation resulting from colonial land use change. Results show low and stable accretion and CAR through much of the Holocene, despite moderate changes associated with Holocene paleoclimate. In all records, the largest observed change occurred within the last 400 years, driven by colonial land clearance, shifting terrigenous sediment into riparian wetlands, resulting in order-of-magnitude increases in accretion and C accumulation. The oligohaline marshes transitioned from TFFW 300-500 years ago, coincident with colonial land clearance. Postcolonial decreases in CAR and accretion occur because of watershed reforestation over the last century. All sites show evidence of recent (decades to century) swamp forest decline due to increasing salinity and tidal inundation from SLR. This study suggests that allochthonous sediment input during colonialization helped maintain TFFW but that current SLR rates are too high for TFFW to persist, although higher accretion rates in oligohaline marshes increase the resilience of tidal wetlands as they transition from TFFW to marsh.

  16. 77 FR 28895 - Don Edwards San Francisco Bay National Wildlife Refuge, Alameda, Santa Clara, and San Mateo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... further tidal marsh improvements, more aggressive control of invasive weeds, revegetation of grassland areas, and more aggressive enhancement and restoration of the marsh-upland ecotone. All priority public...

  17. New England salt marsh pools: A quantitative analysis of geomorphic and geographic features

    USGS Publications Warehouse

    Adamowicz, S.C.; Roman, C.T.

    2005-01-01

    New England salt marsh pools provide important wildlife habitat and are the object of on-going salt marsh restoration projects; however, they have not been quantified in terms of their basic geomorphic and geographic traits. An examination of 32 ditched and unditched salt marshes from the Connecticut shore of Long Island Sound to southern Maine, USA, revealed that pools from ditched and unditched marshes had similar average sizes of about 200 m2, averaged 29 cm in depth, and were located about 11 m from the nearest tidal flow. Unditched marshes had 3 times the density (13 pools/ha), 2.5 times the pool coverage (83 m pool/km transect), and 4 times the total pool surface area per hectare (913 m2 pool/ha salt marsh) of ditched sites. Linear regression analysis demonstrated that an increasing density of ditches (m ditch/ha salt marsh) was negatively correlated with pool density and total pool surface area per hectare. Creek density was positively correlated with these variables. Thus, it was not the mere presence of drainage channels that were associated with low numbers of pools, but their type (ditch versus creek) and abundance. Tidal range was not correlated with pool density or total pool surface area, while marsh latitude had only a weak relationship to total pool surface area per hectare. Pools should be incorporated into salt marsh restoration planning, and the parameters quantified here may be used as initial design targets.

  18. Sea-level rise and refuge habitats for tidal marsh species: can artificial islands save the California Ridgway's rail?

    USGS Publications Warehouse

    Overton, Cory T.; Takekawa, John Y.; Casazza, Michael L.; Bui, Thuy-Vy D.; Holyoak, Marcel; Strong, Donald R.

    2014-01-01

    Terrestrial species living in intertidal habitats experience refuge limitation during periods of tidal inundation, which may be exacerbated by seasonal variation in vegetation structure, tidal cycles, and land-use change. Sea-level rise projections indicate the severity of refuge limitation may increase. Artificial habitats that provide escape cover during tidal inundation have been proposed as a temporary solution to alleviate these limitations. We tested for evidence of refuge habitat limitation in a population of endangered California Ridgway's rail (Rallus obsoletus obsoletus; hereafter California rail) through use of artificial floating island habitats provided during two winters. Previous studies demonstrated that California rail mortality was especially high during the winter and periods of increased tidal inundation, suggesting that tidal refuge habitat is critical to survival. In our study, California rail regularly used artificial islands during higher tides and daylight hours. When tide levels inundated the marsh plain, use of artificial islands was at least 300 times more frequent than would be expected if California rails used artificial habitats proportional to their availability (0.016%). Probability of use varied among islands, and low levels of use were observed at night. These patterns may result from anti-predator behaviors and heterogeneity in either rail density or availability of natural refuges. Endemic saltmarsh species are increasingly at risk from habitat change resulting from sea-level rise and development of adjacent uplands. Escape cover during tidal inundation may need to be supplemented if species are to survive. Artificial habitats may provide effective short-term mitigation for habitat change and sea-level rise in tidal marsh environments, particularly for conservation-reliant species such as California rails.

  19. A Dynamic Nutrient Budget of Subsystem Interactions in a Salt Marsh Estuary

    NASA Astrophysics Data System (ADS)

    Childers, Daniel L.; McKellar, Henry N.; Dame, Richard F.; Sklar, Fred H.; Blood, Elizabeth R.

    1993-02-01

    In tidal salt marsh estuaries, the different habitats of the ecosystem interact primarily through the tidal creek water column. These interactions include nutrient and materials exchanges with the salt marsh, oyster reefs, creek bottoms, and adjacent uplands. Nutrient budgets are often used to synthesize these kinds of subsystem exchange data, and are usually based on annual totals without accounting for nutrient variability at finer temporal resolutions. In this paper, we present a dynamic budget of carbon (C), nitrogen (N), and phosphorus (P) for the North Inlet estuary, South Carolina that synthesizes subsystem flux data in a new way. We have developed a dynamic budget that uses a tidal hydrology model to generate daily areas of inundated intertidal habitat (i.e. vegetated marsh and oyster reef) from tidal heights calculated hourly and combines them with flux data to determine a net daily input to, or removal from, the water column. Daily surpluses or deficits of each nutrient were compared with daily rates of change in observed tidally-averaged nutrient concentrations. Particular emphasis was placed on evaluating budget output from the intertidal subsystems. We compared our total annual budgets to values from syntheses of two North Inlet flux studies. Although areas of marsh inundated were 150-200 times greater than areas of oyster reef inundated, interactions per unit volume of estuarine water column were comparable in magnitude for soluble reactive P (SRP), particulate organic C (POC), and dissolved organic C (DOC). The marsh dominated the ammonium (NH +4) and nitrate + nitrite (NN) exchanges in the summer but the NH +4 and POC output were particularly sensitive to changes in oyster reef area. Winter and spring DOC release by the marsh coincided closely (in timing and magnitude) with the peak in DOC concentrations observed in the North Inlet estuary, suggesting that forest stream inputs of DOC are not nearly as important as has been hypothesized. Comparison of our budget predictions to a previous synthesis of the same subsytem flux data confirmed the power of using tidal hydrology to estimate subsystem interactions between sampling times. These comparisons also emphasized the importance of (1) water column processes to NH +4 dynamics (2) subtidal benthic fluxes to DOC dynamics, and (3) external inputs to NN dynamics. By incorporating our best current knowledge of estuary-wide subsystem areas, the dynamic budget also allowed us to link subsystem flux data to the results of a study quantifying exchanges between the estuary and the coastal ocean. That comparison indicated the shortcomings of any site-specific extrapolation to whole-system conclusions where a homogeneous ecosystem must be assumed. We used the differences between our total annual C, N, and P budgets and reported exports of those constituents from the system to generate hypotheses and suggest future research efforts both at North Inlet and southeastern salt marsh estuaries in general.

  20. Morphological adaptation with no mitochondrial DNA differentiation in the coastal plain swamp sparrow

    USGS Publications Warehouse

    Greenberg, R.; Cordero, P.J.; Droege, S.; Fleischer, R.C.

    1998-01-01

    We estimated genetic differentiation between morphologically distinct tidal marsh populations of Swamp Sparrows (Melospiza georgiana nigrescens) and the more widespread inland populations (M. g. georgiana and M. g. ericrypta). The tidal marsh populations are consistently grayer with more extensive black markings (particularly in the crown), and their bills are larger. These differences are variously shared with other species of salt marsh birds and small mammals. We analyzed mitochondrial DNA sequences (5′ end of control region, COII/t-lys/ATPase8, and ND2) of Swamp Sparrows and found low levels of genetic variation and no evidence of geographic structure. These results suggest a rapid and recent geographic expansion of Swamp Sparrows from restricted Pleistocene populations. Morphological differentiation has occurred without long-term genetic isolation, suggesting that selection on the divergent traits is intense. The grayer and more melanistic plumage is probably cryptic coloration for foraging on tidal mud, which tends to be grayish as a result of the formation of iron sulfides, rather than iron oxides, under anaerobic conditions.

  1. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds

    USGS Publications Warehouse

    Erwin, R. Michael; Cahoon, Donald R.; Prosser, Diann J.; Sanders, Geoffrey; Hensel, Philippe

    2006-01-01

    Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetated Spartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4-4.5 yr record with the long-term (> 50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, the Spartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrows Ammodramus maritimus, saltmarsh sharp-tailed sparrows A. caudacutus, black rails Laterallus jamaicensis, clapper rails Rallus longirostris, Forster's terns Sterna forsteri, common terns Sterna hirundo, and gull-billed terns Sterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.

  2. The Effect of Source Suspended Sediment Concentration on the Sediment Dynamics of a Macrotidal Creek and Salt Marsh

    NASA Astrophysics Data System (ADS)

    Poirier, E.; van Proosdij, D.; Milligan, T. G.

    2017-12-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g·m-2 at the creek thalweg to 15.3 g·m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g·m-2 to 97.7 g·m-2 and from 12.2 g·m-2 to 19.6 g·m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  3. The effect of source suspended sediment concentration on the sediment dynamics of a macrotidal creek and salt marsh

    NASA Astrophysics Data System (ADS)

    Poirier, Emma; van Proosdij, Danika; Milligan, Timothy G.

    2017-09-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g m-2 at the creek thalweg to 15.3 g m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g m-2 to 97.7 g m-2 and from 12.2 g m-2 to 19.6 g m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  4. Strong tidal modulation of net ecosystem exchange in a salt marsh in North Inlet, South Carolina

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Smith, E. M.; Bogoev, I.

    2017-12-01

    Along the southeastern US, intertidal salt marshes represent a critical habitat at the interface of the terrestrial and marine environments and perform a variety of ecological functions and services that make them of great economic importance for coastal communities They provide essential fish and shellfish habitat, with a majority of all commercially- and recreationally important fish species being dependent on intertidal marsh habitat during some portion of their life cycle. The penaeid shrimp industry, South Carolina's most economically important fishery, would cease to exist without the critical nursery function provided by intertidal salt marshes. Smooth cordgrass (Spartina alterniflora) is a keystone species in the high salinity marshes of the southeastern U.S., and its functioning is essential to the health and survival of salt marshes under rising sea levels. To better quantify and facilitate prediction of future salt marsh productivity, in May of 2017, we established a new integrated eddy covariance tower system to measure the net ecosystem exchange of carbon in a salt marsh in coastal South Carolina. The tower site is co-located with long-term, ongoing measurements as part of the North Inlet-Winyah Bay National Estuarine Research Reserve (NI-WB NERR). Current sampling conducted within the eddy flux footprint includes: annual measures of the vegetation community at the time of peak biomass; bi-monthly measures of sediment elevation at Sediment Elevation Tables (SETs) located at the upper and lower ends of the flux footprint; monthly sediment porewater salinity and nutrient (ammonium, orthophosphate) and sulfide concentrations; and biannual sediment elevation surveys by RTK-GPS. A suite of water quality measurements are made every 15 minutes in the main creek that floods the marsh platform in the flux footprint. Here we present our first six months of observations investigating the abiotic drivers of productivity on daily (intratidal) to monthly timescales as determined by the eddy covariance fluxes. Comparisons with other tidal marsh eddy flux observations across the eastern U.S. are presented for context. Initial results suggest our measured net ecosystem exchange may contain the strongest tidal signal reported to date, which could result from the relatively low elevation of our site.

  5. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of marsh surface elevation change is remarkably consistent across elevation. Because of the role of plant litter in marsh ecosystem processes, monitoring and assessment of these dynamic geomorphic marsh landscapes might be streamlined through the measurement of plant litter structure, either via LiDAR technologies or field observation.

  6. Characteristics of wind waves in shallow tidal basins and how they affect bed shear stress, bottom erosion, and the morphodynamic evolution of coupled marsh and mudflat landforms

    NASA Astrophysics Data System (ADS)

    Tommasini, Laura; Carniello, Luca; Goodwin, Guillaume; Mudd, Simon M.; Matticchio, Bruno; D'Alpaos, Andrea

    2017-04-01

    Wind-wave induced erosion is one of the main processes controlling the morphodynamic evolution of shallow tidal basins, because wind waves promote the erosion of subtidal platforms, tidal flats and salt marshes. Our study considered zero-, one-and two-dimensional wave models. First, we analyzed the relations between wave parameters, depth and bed shear stress with constant and variable wave period considering two zero-dimensional models based on the Young and Verhagen (1996), and Carniello et al. (2005, 2011) approaches. The first one is an empirical method that computes wave height and the variable wave period from wind velocity, fetch and water depth. The second one is based on the solution of wave action conservation equation, we use this second approach for computing the bottom shear stress and wave height, considering variable and constant (t=2s) wave period. Second, we compared the wave spectral model SWAN with a fully coupled Wind-Wave Tidal Model applied to a 1D rectangular domain. These models describe both the growth and propagation of wind waves. Finally, we applied the two-dimensional Wind Wave Tidal Model (WWTM) to six different configurations of the Venice lagoon considering the same boundary conditions and we evaluated the spatial variation of mean wave power density. The analysis with zero-dimensional models show that the effects of the different model assumptions on the wave period and on the wave height computation cannot be neglected. In particular, the relationships between bottom shear stress and water depth have different shapes. Two results emerge: first, the differences are higher for small depths, and then the maximum values reached with the Young and Verhagen (1996) approach are greater than the maximum values obtained with WWTM approach. The results obtained with two-dimensional models suggest that the wave height is different in particular for small fetch, this could be due to the different formulation of the wave period. Finally, the application of WWTM for the entire Lagoon basin underlines an increase of the mean power density in the last four centuries, in particular in the central-southern part of the lagoon between Chioggia and Malamocco inlets.

  7. On the relationship between sea level and Spartina alterniflora production

    USGS Publications Warehouse

    Kirwan, Matthew L.; Christian, Robert R.; Blum, Linda K.; Brinson, Mark M.

    2012-01-01

    A positive relationship between interannual sea level and plant growth is thought to stabilize many coastal landforms responding to accelerating rates of sea level rise. Numerical models of delta growth, tidal channel network evolution, and ecosystem resilience incorporate a hump-shaped relationship between inundation and plant primary production, where vegetation growth increases with sea level up to an optimum water depth or inundation frequency. In contrast, we use decade-long measurements of Spartina alterniflora biomass in seven coastal Virginia (USA) marshes to demonstrate that interannual sea level is rarely a primary determinant of vegetation growth. Although we find tepid support for a hump-shaped relationship between aboveground production and inundation when marshes of different elevation are considered, our results suggest that marshes high in the intertidal zone and low in relief are unresponsive to sea level fluctuations. We suggest existing models are unable to capture the behavior of wetlands in these portions of the landscape, and may underestimate their vulnerability to sea level rise because sea level rise will not be accompanied by enhanced plant growth and resultant sediment accumulation.

  8. Practical proxies for tidal marsh ecosystem services: application to injury and restoration.

    PubMed

    Peterson, Charles H; Able, Kenneth W; Dejong, Christin Frieswyk; Piehler, Michael F; Simenstad, Charles A; Zedler, Joy B

    2008-01-01

    Tidal marshes are valued, protected and restored in recognition of their ecosystem services: (1) high productivity and habitat provision supporting the food web leading to fish and wildlife, (2) buffer against storm wave damage, (3) shoreline stabilization, (4) flood water storage, (5) water quality maintenance, (6) biodiversity preservation, (7) carbon storage and (8) socio-economic benefits. Under US law, federal and state governments have joint responsibility for facilitating restoration to compensate quantitatively for ecosystem services lost because of oil spills and other contaminant releases on tidal marshes. This responsibility is now met by choosing and employing metrics (proxies) for the suite of ecosystem services to quantify injury and scale restoration accordingly. Most injury assessments in tidal marshes are triggered by oil spills and are limited to: (1) documenting areas covered by heavy, moderate and light oiling; (2) estimating immediate above-ground production loss (based on stem density and height) of the dominant vascular plants within each oiling intensity category and (3) sampling sediments for chemical analyses and depth of contamination, followed by sediment toxicity assays if sediment contamination is high and likely to persist. The percentage of immediate loss of ecosystem services is then estimated along with the recovery trajectory. Here, we review potential metrics that might refine or replace present metrics for marsh injury assessment. Stratifying plant sampling by the more productive marsh edge versus the less accessible interior would improve resolution of injury and provide greater confidence that restoration is truly compensatory. Using microphytobenthos abundance, cotton-strip decomposition bioassays and other biogeochemical indicators, or sum of production across consumer trophic levels fails as a stand-alone substitute metric. Below-ground plant biomass holds promise as a potential proxy for resiliency but requires further testing. Under some conditions, like chronic contamination by organic pollutants that affect animals but not vascular plants, benthic infaunal density, toxicity testing, and tissue contamination, growth, reproduction and mortality of marsh vertebrates deserve inclusion in the assessment protocol. Additional metrics are sometimes justified to assay microphytobenthos, use by nekton, food and habitat for reptiles, birds and mammals, or support of plant diversity. Empirical research on recovery trajectories in previously injured marshes could reduce the largest source of uncertainty in quantifying cumulative service losses.

  9. Assessing saltmarsh resilience to sea-level rise by examining sediment transport trends in the Great Marsh, MA.

    NASA Astrophysics Data System (ADS)

    Hughes, Z. J.; Georgiou, I. Y.; Gaweesh, A.; Hanegan, K.; FitzGerald, D.; Hein, C. J.

    2017-12-01

    Under accelerating sea-level rise (SLR), marshes are vulnerable to increased inundation, dependent on their ability to accrete vertically or expand into upland areas. Accretion is a function of organic and inorganic contributions from plant biomass and suspended sediment deposition, respectively. Along the east coast of the US, present rates of SLR are higher than they have been for over 1000 years and are expected to increase in the near future. To predict the resilience of saltmarshes, we urgently need improved understanding of spatial patterns of sediment transport and deposition within these systems. This study examines time-series of suspended sediment concentration and flow collected using ADCP-OBS units, deployed throughout the Great Marsh System. We compare the data to model results and observations of short and long term deposition throughout the system. Field observations show that tidal amplitude and phase vary throughout the Great Marsh. Tidal asymmetry increases inland from the estuary mouth, and the maximum phase lag is 2 hours. This effect is strongest during low slack tide; with a delay of only 30-45 minutes at high tide. Tidal velocities exhibit strong asymmetry, reflected in pulses of sediment movement. Sediment transport initiates at mid ebb, peaking 1.5-2.5 hours later, decreasing through low slack tide for 7-9 hours until high slack tide. The results have broad implications for the potential input of inorganic sediment to the marsh platform. Results from a validated Delft3D model reproduce field observations and expand spatial sediment transport trends. We experiment by releasing sediment in different parts of the estuary, mimicking marsh edge or tidal flat erosion, and tracking mud and sand transport trajectories. Sands remains proximal to the erosion site, whereas mud is more mobile and travels farther, reaching the inlet within days of erosion. Longer simulations suggest that despite higher mobility, muds remain mostly in the channels and have limited opportunity to overbank and deposit on the marsh platform. After 3 years of simulation, only 10-15% of eroded sediment is available for marsh deposition; of that, most is deposited proximal to creeks. The results relate to observed patterns of accretion in the system, which exhibits high organic fractions, except proximal to the creek banks.

  10. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    NASA Astrophysics Data System (ADS)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  11. Anthropocene Survival of Southern New England's Salt ...

    EPA Pesticide Factsheets

    In southern New England, salt marshes are exceptionally vulnerable to the impacts of accelerated sea level rise. Regional rates of sea level rise have been as much as 50 % greater than the global average over past decades, a more than fourfold increase over late Holocene background values. In addition, coastal development blocks many potential marsh migration routes, and compensatory mechanisms relying on positive feedbacks between inundation and sediment deposition are insufficient to counter inundation increases in extreme low-turbidity tidal waters. Accordingly, multiple lines of evidence suggest that marsh submergence is occurring in southern New England. A combination of monitoring data, field re-surveys, radiometric dating, and analysis of peat composition have established that, beginning in the early and mid-twentieth century, the dominant low-marsh plant, Spartina alterniflora, has encroached upward in tidal marshes, and typical high-marsh plants, including Juncus gerardii and Spartina patens, have declined, providing strong evidence that vegetation changes are being driven, at least in part, by higher water levels. Additionally, aerial and satellite imagery show shoreline retreat, widening and headward extension of channels, and new and expanded interior depressions. Papers in this special section highlight changes in marsh-building processes, patterns of vegetation loss, and shifts in species composition. The final papers turn to strategies for minimiz

  12. AmeriFlux US-Srr Suisun marsh - Rush Ranch

    DOE Data Explorer

    Bergamaschi, Brian [USGS; Windham-Myers, Lisamarie [USGS

    2018-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Srr Suisun marsh - Rush Ranch. Site Description - This site is a 4.57 km2 brackish tidal marsh located in the San Francisco Bay National Estuarine Research Reserve (SFBNERR, http://www.nerrs.noaa.gov/reserves/san-francisco-bay.html) in Suisun Bay, CA, USA. Suisun Bay is the most extensive contiguous brackish marsh complex in California. This site is classified as a high marsh, which according to the National Wetland Inventory, is representative of over 58% of estuarine wetlands.

  13. Unstable Pore-Water Flow in Intertidal Wetlands

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and creek water. The changes would influence not only the marsh soil condition for plant growth but also nutrient cycling in the marsh soil and discharge to the coastal sea.

  14. Tidal salt marsh sediment in California, USA. Part 1: occurrence and sources of organic contaminants.

    PubMed

    Hwang, Hyun-Min; Green, Peter G; Young, Thomas M

    2006-08-01

    Surface sediment samples (0-5 cm) from five tidal marshes along the coast of California, USA were analyzed for organic pollutants to investigate their relationship to land use, current distribution within marshes, and possible sources. Among the study areas, Stege Marsh, located in San Francisco Bay, was the most contaminated. Compared to San Francisco Bay, Stege Marsh had much higher levels of organic contaminants such as PCBs (polychlorinated biphenyls), DDTs, and chlordanes. At reference marshes (Tom's Point and Walker Creek in Tomales Bay), organic contaminants in sediments were very low. While PAHs (polycyclic aromatic hydrocarbons) were found at all of the study areas (22-13,600 ng g(-1)), measurable concentrations of PCBs were found only in the sediments from Stege Marsh (80-9,940 ng g(-1)). Combustion related (pyrogenic) high molecular weight PAHs were dominant in sediments from Stege and Carpinteria Marshes, while in sediments from Tom's Point and Walker Creek petroleum related (petrogenic) low molecular weight PAHs and alkyl-substituted PAHs were much more abundant than pyrogenic PAHs. PCB congener patterns in all of the Stege Marsh samples were the same and revealed that Aroclor 1248 was a predominant source. In all marshes, the sum of DDE and DDD accounted for more than 90% of total DDTs, indicating that DDT has degraded significantly. The ratios of p,p'-DDE to p,p'-DDD in sediments from Stege Marsh provide evidence of possible previous use of technical DDD. Chlordane ratios indicated that chlordanes have degraded slightly. Bis(2-ethylhexyl)phthalate (280-32,000 ng g(-1)) was the most abundant phthalate. The data indicates that Stege Marsh may be a source of contaminants that continue to be discharged into San Francisco Bay.

  15. Spatio-temporal development of vegetation die-off in a submerging coastal marsh

    USGS Publications Warehouse

    Schepers, Lennert; Kirwan, Matthew; Guntenspergen, Glenn R.; Temmerman, Stijn

    2017-01-01

    In several places around the world, coastal marsh vegetation is converting to open water through the formation of pools. This is concerning, as vegetation die-off is expected to reduce the marshes' capacity to adapt to sea level rise by vegetation-induced sediment accretion. Quantitative analyses of the spatial and temporal development of marsh vegetation die-off are scarce, although these are needed to understand the bio-geomorphic feedback effects of vegetation die-off on flow, erosion, and sedimentation. In this study, we quantified the spatial and temporal development of marsh vegetation die-off with aerial images from 1938 to 2010 in a submerging coastal marsh along the Blackwater River (Maryland, U.S.A). Our results indicate that die-off begins with conversion of marsh vegetation into bare open water pools that are relatively far (> 75 m) from tidal channels. As vegetation die-off continues, pools expand, and new pools emerge at shorter and shorter distances from channels. Consequently larger pools are found at larger distances from the channels. Our results suggest that the size of the pools and possibly the connection of pools with the tidal channel system have important bio-geomorphic implications and aggravate marsh deterioration. Moreover, we found that the temporal development of vegetation die-off in moderately degraded marshes is similar as the spatial die-off development along a present-day gradient, which indicates that the contemporary die-off gradient might be considered a chronosequence that offers a unique opportunity to study vegetation die-off processes.

  16. Rates and probable causes of freshwater tidal marsh failure, Potomac River Estuary, Northern Virginia, USA

    USGS Publications Warehouse

    Litwin, Ronald J.; Smoot, Joseph P.; Pavich, Milan J.; Markewich, Helaine Walsh; Oberg, Erik T.; Steury, Brent W.; Helwig, Ben; Santucci, Vincent L.; Sanders, Geoffrey

    2013-01-01

    Dyke Marsh, a distal tidal marsh along the Potomac River estuary, is diminishing rapidly in areal extent. This study documents Dyke Marsh erosion rates from the early-1860s to the present during pre-mining, mining, and post-mining phases. From the late-1930s to the mid-1970s, Dyke Marsh and the adjacent shallow riverbottom were mined for gravel, resulting in a ~55 % initial loss of area. Marsh loss continued during the post-mining phase (1976–2012). Causes of post-mining loss were unknown, but were thought to include Potomac River flooding. Post-mining areal-erosion rates increased from 0.138 ha yr−1 (~0.37 ac yr−1) to 0.516 ha yr−1(~1.67 ac yr−1), and shoreline-erosion rates increased from 0.76 m yr−1 (~2.5 ft yr−1) to 2.60 m yr−1 (~8.5 ft yr−1). Results suggest the accelerating post-mining erosion reflects a process-driven feedback loop, enabled by the marsh's severely-altered geomorphic and hydrologic baseline system; the primary post-mining degradation process is wave-induced erosion from northbound cyclonic storms. Dyke Marsh erosion rates are now comparable to, or exceed, rates for proximal coastal marshes in the same region. Persistent and accelerated erosion of marshland long after cessation of mining illustrates the long-term, and potentially devastating, effects that temporally-restricted, anthropogenic destabilization can have on estuarine marsh systems.

  17. A simple, dynamic, hydrological model of a mesotidal salt marsh

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...

  18. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  19. Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh

    NASA Astrophysics Data System (ADS)

    Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.

    2016-02-01

    Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.

  20. Modeling storm and sea level rise impacts on marsh transgression

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Guntenspergen, G. R.; Kirwan, M. L.

    2016-12-01

    Coastal salt marsh systems provide critical ecosystem services, including key habitat and coastal protection. Both lateral extent, and vertical stability of salt marshes to sea level rise have been shown to be functions of both biotic, and abiotic drivers and feedbacks. As a result, the ecogeomorphic evolution of the system can exhibit strong non-linearities, discontinuities and thresholds. We developed a two-dimensional transect model to explore controls on marsh lateral extent, vertical stability and the potential for marsh transgression inland and upland. Salt marsh and upland regions in the model are discretized in 1 m increments with inundation frequency determined by the elevation of the individual cells, organogenic soil formation and mineral deposition rates, and the history of stochastic water levels. The transect extends from an idealized back barrier bay across the salt marsh platform and into the upland forest and is forced with auto and cross correlated synthetic stochastic wind speed, wind direction and water levels. The model incorporates key feedbacks between fetch, wave growth and subsequent lateral erosion rates and sediment supply to the marsh platform. Deposition of mineral sediment from the bay and/or internal ponds onto the marsh platform cells is dependent both on the inundation frequency and distance from a marsh edge. For each element along the transect, a Markov chain successional model was implemented that considers six distinct states, grass/saltmarsh, seedling, sapling, tree, dead standing tree, and bare. A non-static transition probability matrix, dependent on both inundation of the element and the prior vegetation state, was used in order to allow for feedbacks, both positive and negative, among different vegetation states and environmental drivers. The model was used to examine the qualitative behavior of the coupled systems under varied rates of sea level rise, external sediment supply, wind and storm statistics, tidal range, upland slope, and initial bay width. Interestingly, water level statistics had strong controls on rates of lateral marsh erosion, ponding and upland marsh migration with the landward marsh edge controlled by upland slope and the timing and frequency of extreme water events.

  1. Collaborative decision-analytic framework to maximize resilience of tidal marshes to climate change

    USGS Publications Warehouse

    Thorne, Karen M.; Mattsson, Brady J.; Takekawa, John Y.; Cummings, Jonathan; Crouse, Debby; Block, Giselle; Bloom, Valary; Gerhart, Matt; Goldbeck, Steve; Huning, Beth; Sloop, Christina; Stewart, Mendel; Taylor, Karen; Valoppi, Laura

    2015-01-01

    Decision makers that are responsible for stewardship of natural resources face many challenges, which are complicated by uncertainty about impacts from climate change, expanding human development, and intensifying land uses. A systematic process for evaluating the social and ecological risks, trade-offs, and cobenefits associated with future changes is critical to maximize resilience and conserve ecosystem services. This is particularly true in coastal areas where human populations and landscape conversion are increasing, and where intensifying storms and sea-level rise pose unprecedented threats to coastal ecosystems. We applied collaborative decision analysis with a diverse team of stakeholders who preserve, manage, or restore tidal marshes across the San Francisco Bay estuary, California, USA, as a case study. Specifically, we followed a structured decision-making approach, and we using expert judgment developed alternative management strategies to increase the capacity and adaptability to manage tidal marsh resilience while considering uncertainties through 2050. Because sea-level rise projections are relatively confident to 2050, we focused on uncertainties regarding intensity and frequency of storms and funding. Elicitation methods allowed us to make predictions in the absence of fully compatible models and to assess short- and long-term trade-offs. Specifically we addressed two questions. (1) Can collaborative decision analysis lead to consensus among a diverse set of decision makers responsible for environmental stewardship and faced with uncertainties about climate change, funding, and stakeholder values? (2) What is an optimal strategy for the conservation of tidal marshes, and what strategy is robust to the aforementioned uncertainties? We found that when taking this approach, consensus was reached among the stakeholders about the best management strategies to maintain tidal marsh integrity. A Bayesian decision network revealed that a strategy considering sea-level rise and storms explicitly in wetland restoration planning and designs was optimal, and it was robust to uncertainties about management effectiveness and budgets. We found that strategies that avoided explicitly accounting for future climate change had the lowest expected performance based on input from the team. Our decision-analytic framework is sufficiently general to offer an adaptable template, which can be modified for use in other areas that include a diverse and engaged stakeholder group.

  2. Mercury Cycling in Blacklock Wetland: A Study of a Restored Tidal Marsh in Suisun Bay, Ca

    NASA Astrophysics Data System (ADS)

    Heim, W.; Stephenson, M.; Newman, A.; Siegel, S. W.; Gillenwater, D.; Coale, K. H.

    2012-12-01

    Historically Suisun Bay Marsh included ~68,000 acres of tidal wetlands. From mid-1800's to early 1900's over 90% of the wetlands were reclaimed for agriculture. Today, those diked lands are predominantly managed as seasonal wetlands for waterfowl hunting. Currently, planning efforts to restore 65,000 acres of Delta and Suisun tidal habitat are in final stages of development. The 70 -acre Blacklock tidal marsh restoration site, located in northeast Suisun Marsh, was restored by the California Department of Water Resources in 2006 after having been used for livestock grazing and duck hunting activities since 1946. This study is the first effort at estimating the impact on mercury cycling of converting a diked, managed wetland with limited and seasonal water exchange to tidal marsh with unrestricted daily tidal inundations. The goals of this study were to estimate changes in total mercury and methyl mercury concentrations in fish, sediment and water within the restoration site before and after restoration. Field sampling took place January, 2005 to September, 2009. Results of two-sample t-test indicate unfiltered aqueous methylmercury concentrations post breach (0.101 to 0.768 ng L-1) were significantly lower (t(2), 8 = 6.19; p < 0.05) than pre-breach concentrations (1.03 to 1.67 ng L-1). Unfiltered aqueous total mercury concentrations were similar pre and post-breach (5.18 to 13.5 ng L,sup>-1). Methylmercury sediment concentrations were higher and more variability between sample locations within the restoration site during year one post-breach (2.42 to 3.69 ng g-1 dry) relative to years 2 and 3 post-breach (1.48 to 1.85 ng g-1 d/w). Total mercury sediment concentrations ranged from 0.162 ± 0.013 to 0.228 ± 0.016 μg g-1 d/w. Mercury concentrations in Inland Silverside (Menidia beryllina) post-breach decreased significantly from 0.163 ± 0.039 ug g-1 w/w to 0.038 ± 0.023 ug g-1 w/w. Greater connectivity of tidal wetlands with surrounding open water areas resulted in decreased methylmercury concentrations in water, sediment, and fish. Two possible explanations may account for these results. First, wetland biogeochemistry in a daily inundated tidal regime does not support mercury methylation at levels observed for the site when it had seasonal wetland inundation regimes. Second, mercury-laden substrate has been buried with new sedimentation, thereby isolating the available mercury from methylation. It is hoped that the scientific knowledge gained as a result of this restoration about mercury cycling will aid future restoration efforts in the Bay-Delta.

  3. LINKS BETWEEN MARSH, NONVEGETATED, AND SEAGRASS HABITATS IN A PRISTINE VIRGINIA SYSTEM

    EPA Science Inventory

    Abstract: We describe habitat linkages in a narrow, contiguous marsh-nonvegetated seagrass system as is found bordering many undeveloped shorelines. Nekton were quantitatively sampled in eight spatial/tidal subhabitats on a Spartina-nonvegetated- Ruppia gradient using 1.75 m2 dro...

  4. Late Holocene Marsh Expansion in Southern San Francisco Bay, California

    EPA Science Inventory

    Currently, the largest tidal wetlands restoration project on the US Pacific Coast is being planned and implemented in southern San Francisco Bay; however, knowledge of baseline conditions of salt marsh extent in the region prior to European settlement is limited. Here, analysis o...

  5. Late-summer food of red-winged blackbirds in a fresh tidal-river marsh

    USGS Publications Warehouse

    Meanley, B.

    1961-01-01

    During late summer in the Delaware Valley and Chesapeake Bay region, hundreds of thousands of Red-winged Blackbirds feed in wild rice beds of fresh tidal-river marshes. The period during which wild rice seed is available coincides with the ripening period of a part of the corn crop, and there is evidence to indicate that the availability of the wild rice reduces bird feeding pressure on corn in the area. The importance of wild rice and other marsh plants to the redwing during the period when wild rice seed is available was studied further by field observations and by analysis of stomach contents of 130 birds collected in wild rice beds of the Patuxent River in southern Maryland. Seeds of marsh plants formed the bulk of the food of redwings collected. Dotted smartweed, wild rice, and Walter?s millet were the most important food plants. Corn was the fourth most important item. It occurred in 35, approximately one-fourth, of the stomachs

  6. Biogeochemical processes in an urban, restored wetland of San Francisco Bay, California, 2007-2009; methods and data for plant, sediment and water parameters

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos; Erikson, Li H.; Ward, Kristen

    2010-01-01

    The restoration of 18 acres of historic tidal marsh at Crissy Field has had great success in terms of public outreach and visibility, but less success in terms of revegetated marsh sustainability. Native cordgrass (Spartina foliosa) has experienced dieback and has failed to recolonize following extended flooding events during unintended periodic closures of its inlet channel, which inhibits daily tidal flushing. We examined the biogeochemical impacts of these impoundment events on plant physiology and on sulfur and mercury chemistry to help the National Park Service land managers determine the relative influence of these inlet closures on marsh function. In this comparative study, we examined key pools of sulfur, mercury, and carbon compounds both during and between closure events. Further, we estimated the net hydrodynamic flux of methylmercury and total mercury to and from the marsh during a 24-hour diurnal cycle. This report documents the methods used and the data generated during the study.

  7. Final report for sea-level rise response modeling for San Francisco Bay estuary tidal marshes

    USGS Publications Warehouse

    Takekawa, John Y.; Thorne, Karen M.; Buffington, Kevin J.; Spragens, Kyle A.; Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Overton, Cory T.; Casazza, Michael L.

    2013-01-01

    The International Panel on Climate Change has identified coastal ecosystems as areas that will be disproportionally affected by climate change. Current sea-level rise projections range widely with 0.57 to 1.9 meters increase in mea sea level by 2100. The expected accelerated rate of sea-level rise through the 21st century will put many coastal ecosystems at risk, especially those in topographically low-gradient areas. We assessed marsh accretion and plant community state changes through 2100 at 12 tidal salt marshes around San Francisco Bay estuary with a sea-level rise response model. Detailed ground elevation, vegetation, and water level data were collected at all sites between 2008 and 2011 and used as model inputs. Sediment cores (taken by Callaway and others, 2012) at four sites around San Francisco Bay estuary were used to estimate accretion rates. A modification of the Callaway and others (1996) model, the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER), was utilized to run sea-level rise response models for all sites. With a mean sea level rise of 1.24 m by 2100, WARMER projected that the vast majority, 95.8 percent (1,942 hectares), of marsh area in our study will lose marsh plant communities by 2100 and to transition to a relative elevation range consistent with mudflat habitat. Three marshes were projected to maintain marsh vegetation to 2100, but they only composed 4.2 percent (85 hectares) of the total marsh area surveyed.

  8. Diatom evidence for earthquake-induced subsidence and tsunami 300 yr ago in southern coastal Washington

    USGS Publications Warehouse

    Hemphill-Haley, E.

    1995-01-01

    Fossil diatoms from four stratigraphic sections along the tidal Niawiakum River, southwestern Washington, provide an independent paleoecological test of a relative sea-level rise that has been attributed to subsidence during an inferred earthquake in the Cascadia subduction zone about 300 yr ago. Diatom assemblages in a buried soil and overlying mud indicate a sudden and lasting shift from marshes and forests near or above highest tides to mud flats and incipient tidal marshes, with a progressive return to high-level tidal marshes by sediment aggradation and, perhaps, gradual tectonic uplift. The maount of coseismic submergence required to generate the paleoecological changes observed at these sites could have ranged from a minimum of 0.8-1.0m to a maximum of ~3.0m. The following tsunami extended farther landward than was previously inferred from the stratigraphy. These data rule out proposed alternatives to the coseismic subsidence model - that is, climatically induced sea-level rise, temporary submergence caused by storms - and support the hypothesis that a great earthquake struck southwestern Washington 300 yr ago. -from Author

  9. The Dynamics of Sediment Oxygenation in Marsh Rhizospheres

    NASA Astrophysics Data System (ADS)

    Koop-Jakobsen, K.

    2014-12-01

    Many marsh grasses are capable of internal oxygen transport from aboveground sources to belowground roots and rhizomes, where oxygen may leak across the rhizodermis and oxygenate the surrounding sediment. In the field, the extent of sediment oxygenation in marshes was assessed in the rhizosphere of the marsh grass; Spartina anglica, inserting 70 optical fiber oxygen sensors into the rhizosphere. Two locations with S. anglica growing in different sediment types were investigated. No oxygen was detected in the rhizospheres indicating that belowground sediment oxygenation in S. anglica has a limited effect on the bulk anoxic sediment and is restricted to sediment in the immediate vicinity of the roots. In the laboratory, the presence of 1.5mm wide and 16mm long oxic root zones was demonstrated around root tips of S. anglica growing in permeable sandy sediment using planar optodes recording 2D-images of the oxygen distribution. Oxic root zones in S. anglica growing in tidal flat deposits were significantly smaller. The size of oxic roots zones was highly dynamic and affected by tidal inundations as well as light availability. Atmospheric air was the primary oxygen source for belowground sediment oxygenation, whereas photosynthetic oxygen production only played a minor role for the size of the oxic root zones during air-exposure of the aboveground biomass. During tidal inundations (1.5 h) completely submerging the aboveground biomass cutting off access to atmospheric oxygen, the size of oxic root zones were reduced significantly in the light and oxic root zones were completely eliminated in darkness. Sediment oxygenation in the rhizospheres of marsh grasses is of significant importance for marshes ability to retain inorganic nitrogen before it reaches the coastal waters. The presence of oxic roots zones promotes coupled nitrification-denitrification at depth in the sediment, which can account for more than 80% of the total denitrification in marshes.

  10. Assessing wildlife benefits and carbon storage from restored and natural coastal marshes in the Nisqually River Delta: Determining marsh net ecosystem carbon balance

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Windham-Myers, Lisamarie; Woo, Isa; De La Cruz, Susan; Drexler, Judith; Byrd, Kristin; Thorne, Karen M.

    2016-06-24

    Working in partnership since 1996, the U.S. Fish and Wildlife Service and the Nisqually Indian Tribe have restored 902 acres of tidally influenced coastal marsh in the Nisqually River Delta (NRD), making it the largest estuary-restoration project in the Pacific Northwest to date. Marsh restoration increases the capacity of the estuary to support a diversity of wildlife species. Restoration also increases carbon (C) production of marsh plant communities that support food webs for wildlife and can help mitigate climate change through long-term C storage in marsh soils.In 2015, an interdisciplinary team of U.S. Geological Survey (USGS) researchers began to study the benefits of carbon for wetland wildlife and storage in the NRD. Our primary goals are (1) to identify the relative importance of the different carbon sources that support juvenile chinook (Oncorhynchus tshawytscha) food webs and contribute to current and historic peat formation, (2) to determine the net ecosystem carbon balance (NECB) in a reference marsh and a restoration marsh site, and (3) to model the sustainability of the reference and restoration marshes under projected sea-level rise conditions along with historical vegetation change. In this fact sheet, we focus on the main C sources and exchanges to determine NECB, including carbon dioxide (CO2) uptake through plant photosynthesis, the loss of CO2 through plant and soil respiration, emissions of methane (CH4), and the lateral movement or leaching loss of C in tidal waters.

  11. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Gorelick, Steven M.

    2016-03-01

    Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.

  12. 75 FR 73121 - Bandon Marsh, Nestucca Bay, and Siletz Bay National Wildlife Refuges, Coos, Tillamook, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ..., Oregon. The 582-acre Ni-les'tun Unit, established in 2000, includes 400 acres of historic salt marsh that is currently being restored to tidal action. The Ni-les'tun Unit is located on the east side of... * * *'' (95 Stat. 1709, dated Dec 29, 1981). The Ni- les'tun Unit was added to Bandon Marsh NWR in order to (1...

  13. Study of erosion processes in the Tinto salt-marshes with remote sensing images.

    DOT National Transportation Integrated Search

    2016-01-01

    Both climatic factors and the sea wave energy are two important factors to study the tidal wetlands. One of the most important wetlands in the Southwest of the Iberian Peninsula is the Tinto salt-marshes, the third largest wetland in Andalusia after ...

  14. Growth and photosynthesis responses of two co-occurring marsh grasses to inundation and varied nutrients

    EPA Science Inventory

    For southern New England tidal marshes, the late twentieth century decline of Spartina patens has been attributed to increased flooding associated with accelerated sea level rise and nitrogen over-enrichment from cultural eutrophication, either singly or in combination. The obje...

  15. The Influence of Coastal Wetland Zonation on Surface Sediment and Porewater Mercury Speciation

    NASA Astrophysics Data System (ADS)

    Marvin-DiPasquale, M. C.; Windham-Myers, L.; Wilson, A. M.; Buck, T.; Smith, E.

    2014-12-01

    An investigation of mercury (Hg) speciation in saltmarsh surface sediment (top 0-2 cm) and porewater (integrated 0-50 cm) was conducted along two monitoring well transects established within North Inlet Estuary (S. Carolina, USA) as part of the NOAA sponsored National Estuarine Research Reserve (NERR) network. Transects were perpendicular to the shoreline, from the forested uplands to the edge of the tidal channel, and traversed a range of vegetated zones from the high marsh (pickleweed, rush, and salt panne-dominated) to the low marsh (cordgrass dominated), as mediated by elevation and tidal inundation. Sediment grain size and organic content explained 95% of the variability in the distribution of total Hg (THg) in surface sediment. Tin-reducible 'reactive' mercury (HgR) concentration was 10X greater in the high marsh, compared to the low marsh, and increased sharply with decreasing sediment pH values below pH=6. The percentage of THg as HgR decreased as sediment redox conditions became more reducing. There were no significant differences in surface sediment methylmercury (MeHg) concentrations between high and low marsh zones. In contrast, porewater MeHg concentrations were 5X greater in the high marsh compared to the low marsh. As a percentage of THg, mean porewater %MeHg was 23% in the low marsh and 51% in the high marsh, reaching levels of 73-89% in a number of high marsh sites. Calculations of partitioning between porewater and the solid phase suggest stronger binding to particles in the low marsh and a shift towards the dissolved phase in the high marsh for both THg and MeHg. These results are consistent with a conceptual model for coastal wetlands where the less frequently inundated high marsh zone may be important in terms of MeHg production and enhanced subsurface mobilization, partially due to the subsurface mixing of saline estuarine water and freshwater draining in from the uplands area.

  16. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China.

    PubMed

    Hu, Minjie; Ren, Hongchang; Ren, Peng; Li, Jiabing; Wilson, Benjamin J; Tong, Chuan

    2017-02-01

    Although estuarine tidal marshes are important contributors to the emission of greenhouse gases into the atmosphere, the relationship between carbon dioxide (CO 2 ), methane (CH 4 ) emission, and environmental factors, with respect to estuarine marshes, has not been clarified thoroughly. This study investigated the crucial factors controlling the emission of CO 2 and CH 4 from a freshwater marsh and a brackish marsh located in a subtropical estuary in southeastern China, as well as their magnitude. The duration of the study period was November 2013 to October 2014. Relevant to both the field and incubation experiments, the CO 2 and CH 4 emissions from the two marshes showed pronounced seasonal variations. The CO 2 and CH 4 emissions from both marshes demonstrated significant positive correlations with the air/soil temperature (p<0.01), but negative correlations with the soil electrical conductivity and the pore water/tide water Cl - and SO 4 2- (p<0.01). The results indicate no significant difference in the CO 2 emissions between the freshwater and brackish marshes in the subtropical estuary, whereas there was a difference in the CH 4 emissions between the two sites (p<0.01). Although future sea-level rise and saltwater intrusion could reduce the CH 4 emissions from the estuarine freshwater marshes, these factors had little effect on the CO 2 emissions with respect to an increase in salinity of less than 5‰. The findings of this study could have important implications for estimating the global warming contributions of estuarine marshes along differing salinity gradients. Copyright © 2016. Published by Elsevier B.V.

  17. Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient

    PubMed Central

    Redelstein, Regine; Dinter, Thomas; Hertel, Dietrich; Leuschner, Christoph

    2018-01-01

    Saltmarsh plants are exposed to multiple stresses including tidal inundation, salinity, wave action and sediment anoxia, which require specific root system adaptations to secure sufficient resource capture and firm anchorage in a temporary toxic environment. It is well known that many saltmarsh species develop large below-ground biomass (roots and rhizomes) but relations between fine roots, in particular, and the abiotic conditions in salt marshes are widely unknown. We studied fine root mass (<2 mm in diameter), fine root depth distribution and fine root morphology in three typical communities (Spartina anglica-dominated pioneer zone, Atriplex portulacoides-dominated lower marsh, Elytrigia atherica-dominated upper marsh) across elevational gradients in two tidal salt marshes of the German North Sea coast [a mostly sandy marsh on a barrier island (Spiekeroog), and a silty-clayey marsh on the mainland coast (Westerhever)]. Fine root mass in the 0–40 cm profile ranged between 750 and 2,500 g m−2 in all plots with maxima at both sites in the lower marsh with intermediate inundation frequency and highest plant species richness indicating an effect of biodiversity on fine root mass. Fine root mass and, even more, total fine root surface area (maximum 340 m2 m−2) were high compared to terrestrial grasslands, and were greater in the nutrient-poorer Spiekeroog marsh. Fine root density showed only a slight or no decrease toward 40 cm depth. We conclude that the standing fine root mass and morphology of these salt marshes is mainly under control of species identity and nutrient availability, but species richness is especially influential. The plants of the pioneer zone and lower marsh possess well adapted fine roots and large standing root masses despite the often water-saturated sediment. PMID:29467778

  18. The link between water quality and tidal marshes in a highly impacted estuary.

    NASA Astrophysics Data System (ADS)

    Meire, Patrick; Maris, Tom; van Damme, Stefan; Jacobs, Sander; Cox, Tom; Struyf, Eric

    2010-05-01

    The Schelde estuary is one of the most heavily impacted estuaries in Europe. During several decades, untreated waste water from large cities (e.g. Brussels, Antwerp, Valenciennes, Lille) and industries was discharged in the river. As a result, the Schelde estuary has the reputation of being one of the most polluted estuaries in Europe. For a long time (approx. 1950 - 1995) all forms of higher life (macro-invertebrates and fish) were absent in the fresh and brackish parts of the estuary. Due to European legislation, a large part of the sewage water is now treated resulting in a significant recovery of water quality in the estuary. However, next to water quality, the estuary also suffered serious habitat losses during the last decades, mostly due to economic development and changing hydrological conditions causing more erosion. Over the last fifteen years, the management of the estuary has changed fundamentally. It is now more and more focused on the restoration of ecosystem services. In this presentation we will document the changes in water quality over the last 50 years and summarize recent work on the role of tidal marshes on water quality within the freshwater part of the Schelde estuary. Our results stress the important of taking into account ecosystem services and habitat restoration for long-term estuarine management. .After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observed a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs, indicating a regime shift. Our results indicate that the recovery of a hypereutrophied systems towards a classical eutrophied state, needs the reduction of waste loads below certain thresholds. Paradoxically, phytoplankton production was inhibited by high ammonia or low oxygen concentrations. The system state change is accompanied by large fluctuations in oxygen concentrations. The improved water quality resulted in a remarkable recovery of different groups of higher organisms, especially fish populations. It is clear that the improved water quality is to a large part due to improved waste water treatment. However detailed studies of the exchange between tidal marshes and the estuary clearly proved also the importance of these habitats for water quality. A whole ecosystem labeling experiment gave evidence on the sink function of these marshes for nitrogen. Detailed mass balance studies show also the importance of mashes in the silica cycle. Amorphous biogenic silica is imported into marshes were it accumulates in the soil, while dissolved silica is exported again to the pelagic. At times when the concentrations of dissolved silica in the estuary are limiting (during plankton blooms), the export of DSi from the marshes is highest. These results clearly indicate the crucial role tidal marshes play in the estuarine biogeochemical cycles and in their resilience against imbalanced nutrient inputs. Based on these insights new tidal marshes have been developed along the Schelde, their design being so that the delivery of ecosystems services (eg impact on water quality) is maximal.

  19. Mapping Coastal Wetland Change in Louisiana's Gulf Coast

    EPA Science Inventory

    Tidal wetlands and estuaries carry out several specific and unique ecosystem functions, which provide humans with goods and services that contribute to their wellbeing. In areas of natural adjacent land cover, tidal marshes can incrementally move inland as sea levels gradually r...

  20. MICROBIAL COLONIZATION, RESPIRATION AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple leaves at three sites along a stream-marsh continuum. Breakdown rates were 0.0284+/-0.0045 d-1 for leaves in a high-gradient, non-tidal stream; 0.0112 +/- 0.0...

  1. A national-scale remote sensing-based methodology for quantifying tidal marsh biomass to support "Blue Carbon" accounting

    NASA Astrophysics Data System (ADS)

    Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Thomas, N.; Windham-Myers, L.; Castaneda, E.; Kroeger, K. D.; Gonneea, M. E.; O'Keefe Suttles, J.; Megonigal, P.; Troxler, T.; Schile, L. M.; Davis, M.; Woo, I.

    2016-12-01

    According to 2013 IPCC Wetlands Supplement guidelines, tidal marsh Tier 2 or Tier 3 accounting must include aboveground biomass carbon stock changes. To support this need, we are using free satellite and aerial imagery to develop a national scale, consistent remote sensing-based methodology for quantifying tidal marsh aboveground biomass. We are determining the extent to which additional satellite data will increase the accuracy of this "blue carbon" accounting. Working in 6 U.S. estuaries (Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA), we built a tidal marsh biomass dataset (n=2404). Landsat reflectance data were matched spatially and temporally with field plots using Google Earth Engine. We quantified percent cover of green vegetation, non-vegetation, and open water in Landsat pixels using segmentation of 1m National Agriculture Imagery Program aerial imagery. Sentinel-1A C-band backscatter data were used in Chesapeake, Mississippi Delta and Puget Sound. We tested multiple Landsat vegetation indices and Sentinel backscatter metrics in 30m scale biomass linear regression models by region. Scaling biomass by fraction green vegetation significantly improved biomass estimation (e.g. Cape Cod: R2 = 0.06 vs. R2 = 0.60, n=28). The best vegetation indices differed by region, though indices based on the shortwave infrared-1 and red bands were most predictive in the Everglades and the Mississippi Delta, while the soil adjusted vegetation index was most predictive in Puget Sound and Chesapeake. Backscatter metrics significantly improved model predictions over vegetation indices alone; consistently across regions, the most significant metric was the range in backscatter values within the green vegetation segment of the Landsat pixel (e.g. Mississippi Delta: R2 = 0.47 vs. R2 = 0.59, n=15). Results support using remote sensing of biomass stock change to estimate greenhouse gas emission factors in tidal wetlands.

  2. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    USGS Publications Warehouse

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  3. Development and application of hydraulic geometry equations for tidal channel restoration in Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Graham, J.; van Proosdij, D.; Bowron, T.

    2017-12-01

    Tidal wetlands play a key role in our environment, particularly in the face of climate change and rising sea levels. Successful restoration of these coastal habitats requires a good understanding of the hydrology and morphology of the site. In Atlantic Canada, restoration design must consider significant variation in tidal range (1 to 16 m), sediment supply (50-70,000 mg/L) and winter conditions. In 2012 ground surveys, aerial photos and digital terrain data were used to conduct a morphometric analysis of representative tidal channels and to establish regional hydraulic geometry relationships to aid in restoration design. Channel morphology was strongly related to freshwater discharge and channel order while drainage density, channel length, and sinuosity were related to site history and maturity. Five years after the initial study, two restored salt marshes have been analyzed to assess the validity of the equations. At both marshes, tidal channels were excavated and erosion/accretion tracked for five years following restoration. Channels were found to experience rapid erosion in the first 2 years following restoration but to stabilize with dimensions on par with those predicted. Furthermore, both sites rapidly developed hybrid creek networks beyond the primary excavated channels when allowed to self design. The methodology has been used to design tidal channels for 2 additional sites. Although these sites have not been restored at present, hydrodynamic modeling supported channel dimension predictions, with acceptable in-channel velocities and flood extents simulated in the model. The authors conclude that the use of regional hydraulic geometry equations have been effective in salt marsh restoration design in Atlantic Canada, particularly when used in conjunction with other techniques such as hydrodynamic modeling and analysis of historic conditions.

  4. Reconstruction of Anacostia wetlands: success?

    USGS Publications Warehouse

    Hammerschlag, R.S.; Perry, M.C.

    2002-01-01

    Historically, the tidal Anacostia River in Washington, D.C. had been an extensive system of freshwater tidal marshes replete with a full array of wetland vegetation dominated by wild rice. The local Nacochtank Indians had found the abundant fish and wildlife sufficient to sustain their daily lives. White man's intrusion upon the landscape gradually brought about deterioration of the natural (and associated cultural) system. Total demise followed mid-20th century dredge and fill channelization, which was conducted from the confluence of the Anacostia with the Potomac near the heart of Washington, D.C. to the terminus of the tidal regime at Bladensburg, Maryland. The National Park Service (NPS) became the manager for much of the land along the Anacostia, particularly the eastern bank. As part of its planning effort, the NPS envisioned returning portions of the Anacostia under its control to a natural system as a vignette. The concept was based on bringing back as comprehensive a collection of vegetation and wildlife as possible through the reestablishment of tidal marshes at Kenilworth and Kingman. The resultant wetlands were to be made accessible to the public both logistically and through a well designed interpretative program. In fact, this vision has been realized due to an impressive cooperative effort among a number of Federal and local agencies and organizations. In 1993, 32 acres of freshwater tidal marsh were reconstructed at Kenilworth. Based upon the 5-year monitoring program that has been in place since reconstruction, several generalizations may be made concerning the degree of success of the marsh reconstruction. Water quality in the marsh system and nearby tidal waters has not been noticeably improved. The poor quality may be clue to the overwhelmingly high loads (e.g., sediment, nutrients, etc.) brought in on the twice daily tidal cycle from the Anacostia and to the relatively small volume of water which actually interacts with the emergent marsh. Revegetation, which is a product of direct plantings (16 species comprised of 350,000 plants) and by establishment of volunteer plants, must be considered successful. Remarkably, full vegetation cover was achieved by the end of the first year (1993). Species diversity is high with 100-130 wetland species occupying portions of the wetland. Good species differentiation (incipient plant communities) can be noted at areas of sediment elevation differences. There is a good range of predominant species (five to eight) with rice cutgrass (Leersia oryzoides) initially being dominant but in later years becoming codominant. Even the native wild rice (Zizania aquatica) is making a substantive comeback. Invasive plants such as purple loosestrife (Lythrum salicaria) and phragmites (Phragmites australis) are being watched and dealt with as appropriate. There has been important habitat creation, and a resulting increase in fauna can be expected, particularly as the acreage reconstructed at Kenilworth has more than doubled with similarly reconstructed wetlands at Kingman Lake (42 acres), which were completed during the summer of 2000, just a quarter of a mile down river. One of the challenges with the Kingman marsh reconstruction has been protecting against the grazing pressure of native Canada geese (Branm canadensis). In the long run, these revived Anacostia wetlands are bound to improve local conditions and will contribute to a rejuvenated Chesapeake Bay system.

  5. Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise

    USGS Publications Warehouse

    Noe, Gregory; Hupp, Cliff R.; Bernhardt, Christopher E.; Krauss, Ken W.

    2016-01-01

    Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.

  6. The role of the upper tidal estuary in wetland blue carbon storage and flux

    USGS Publications Warehouse

    Krauss, Ken W.; Noe, Gregory B.; Duberstein, Jamie A.; Conner, William H.; Stagg, Camille L.; Cormier, Nicole; Jones, Miriam C.; Bernhardt, Christopher E.; Lockaby, B. Graeme; From, Andrew S.; Doyle, Thomas W.; Day, Richard H.; Ensign, Scott H.; Pierfelice, Katherine N.; Hupp, Cliff R.; Chow, Alex T.; Whitbeck, Julie L.

    2018-01-01

    Carbon (C) standing stocks, C mass balance, and soil C burial in tidal freshwater forested wetlands (TFFW) and TFFW transitioning to low‐salinity marshes along the upper estuary are not typically included in “blue carbon” accounting, but may represent a significant C sink. Results from two salinity transects along the tidal Waccamaw and Savannah rivers of the US Atlantic Coast show total C standing stocks were 321‐1264 Mg C ha‐1 among all sites, generally shifting to greater soil storage as salinity increased. Carbon mass balance inputs (litterfall, woody growth, herbaceous growth, root growth, surface accumulation) minus C outputs (surface litter and root decomposition, gaseous C) over a period of up to 11 years were 340‐900 g C m‐2 yr‐1. Soil C burial was variable (7‐337 g C m‐2 yr‐1), and lateral C export was estimated as C mass balance minus soil C burial as 267‐849 g C m‐2yr‐1. This represents a large amount of C export to support aquatic biogeochemical transformations. Despite reduced C persistence within emergent vegetation, decomposition of organic matter, and higher lateral C export, total C storage increased as forests converted to marsh with salinization. These tidal river wetlands exhibited high N mineralization in salinity‐stressed forested sites and considerable P mineralization in low salinity marshes. Large C standing stocks and rates of C sequestration suggest that TFFW and oligohaline marshes are considerably important globally to coastal C dynamics and in facilitating energy transformations in areas of the world in which they occur.

  7. Controls for multi-scale temporal variation in methane flux of a subtropical tidal salt marsh

    NASA Astrophysics Data System (ADS)

    Li, H.

    2016-12-01

    Coastal wetlands provide critical carbon sequestration benefits, yet the production of methane (CH4) from these ecosystems can vary by an order of magnitude based on environmental and biological factors. Eddy covariance (EC) measurements for methane flux (FCH4) were performed in a subtropical tidal salt marsh of eastern China over 20 months. Spectral analysis techniques including the continuous wavelet transform, the wavelet coherence, the partial wavelet coherence and the multiple wavelet coherence were employed to analyze the periodicities and the main regulating factors of FCH4 in the tidal salt marsh. The annual budget of methane was 17.8 g C-CH4 m-2 yr-1, which was relatively high compared to those of most reported from inland wetland sites. In non-growing season, release of ebullition was the dominant driving mechanism for variability of FCH4 from hourly to monthly scales. There was no single dominant factor at short-term scale (half-day to 1-day) in growing season. It is worthwhile to note that tide was one of the most important factors regulating FCH4 at short time scale (half-day to 1-day). In comparison, the contribution of temperature to FCH4 at a short time scale (half-day to 1-day) was small due to its narrow range. In addition, plant-modulated transport and gross primary production also contributed to FCH4 at multiple temporal scales in this densely vegetated marsh, especially at weekly to monthly scales. Due to the complex interactive influences of tidal dynamics, temperature fluctuation, plant productivity, plant-mediated transport and release of ebullition on FCH4 exhibited no clear pattern of diurnal variation, but instead was highly variable.

  8. Spatial variability in denitrification rates in an Oregon tidal salt marsh

    EPA Science Inventory

    Modeling denitrification (DeN) is particularly challenging in tidal systems, which play a vital role in buffering adjacent coastal waters from nitrogen inputs. These systems are hydrologically and biogeochemically complex, varying on fine temporal and spatial scales. As part of a...

  9. A geohydrologic continuum theory for the spatial and temporal evolution of marsh-estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Dame, R.; Childers, D.; Koepfler, E.

    Using ecosystem development theory and the River Continuum Concept as starting points, we present a new holistic theory to explain the spatial and temporal behaviour of marsh-estuarine ecosystems Along the marine-estuarine-freshwater gradient in response to sea-level rise. In this theory, a geohydrologic continuum represented by tidal channel provides a predictable physical model of how the marsh-estuarine ecosystem adapts until there is a change of state. North Inlet, South Carolina is used as an example of this marsh-estuarine continuum. Mature creeks are at the ocean-estuary interface and are strongly influenced by marine factors. Further into the estuary, less and less mature creeks are encountered which are dominated by smaller scale spatial and temporal controls such as oyster reefs. Immature or ephemeral creeks import both particulate and dissolved materials, while mature creeks export both forms of nutrients. Mid-aged creeks appear to take up particulate materials and release dissolved constituents. Ultimately, the continuum reaches the fresh-saltwater interface where a very young estuarine ecosystem invades a more mature type, under the influence of disturbance. Our new explanation satisfies most criteria for a good theory by being internally consistent to the location specified, generating testable hypothesis, not blindly adapting existing theories, agreeing with known properties of the ecosystem described and by generating new invigorating discussion within the scientific community.

  10. Tidal Channel Dynamics and Muddy Substrates: a Comparison Between a Wave Dominated and a Tidal Dominated System

    DTIC Science & Technology

    2011-09-30

    McGlathery, J.T. Morris, T.J. Tolhurst, L.A. Deegan , D.S. Johnson, Ecogeomorphology of Salt Marshes (in press) Fagherazzi S., D.M. FitzGerald, R.W...Fulweiler, Z. Hughes, P.L. Wiberg, K.J. McGlathery, J.T. Morris, T.J. Tolhurst, L.A. Deegan , D.S. Johnson, Ecogeomorphology of Tidal Flats (in press

  11. A casualty of climate change? Loss of freshwater forest islands on Florida's Gulf Coast.

    PubMed

    Langston, Amy K; Kaplan, David A; Putz, Francis E

    2017-12-01

    Sea level rise elicits short- and long-term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014-2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%-117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long-term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re-shaping the unique coastal landscape of the Big Bend. © 2017 John Wiley & Sons Ltd.

  12. Grounds Conservation Management Plan (1982-1991), Fish and Wildlife Management Plan (1982-1991), Forest Resource Management Plan (1979-1988).

    DTIC Science & Technology

    1985-06-01

    necessary for complete control. The third weed group includes purslane , spotted spurge and knotweed. These weeds may be controlled with dicamba. [j 4...of marsh communities varies with salinity gradients fron brackish to fresh waters. Hideaway Pond has a completely fresh water marsh (no tidal...or pocket marshes convolute the shoreline of Tetotum Flats along Upper Machodoc Creek. Species composition varies with salinity and those pockets

  13. Adaptive management of perennial pepperweed for endangered specias and tidal marsh recovery

    USDA-ARS?s Scientific Manuscript database

    Perennial pepperweed has invaded a wide range of habitat types in the far west. In the San Francisco Estuary, dense infestations have impacted sensitive tidal wetlands and compromised endangered species recovery efforts. An adaptive management effort to reduce perennial pepperweed was initiated by...

  14. EFFECT OF SALINITY ON THE COMMON REED, FRAGMITES AUSTRALIS, IN A RESTORED MARSH

    EPA Science Inventory

    Tidal wetlands have undergone extensive degradation throughout the years because of interference with tidal flow from construction, dredging, and invasion of non-native plants such Phragmites australis. In 1956, a 4-lane highway was constructed in Galilee, Rhode Island, USA, cr...

  15. GROWTH OF THE MARSH ELDER IVA FRUTESCENS IN RELATION TO DURATION OF TIDAL FLOODING

    EPA Science Inventory

    Iva frutescens is a common shrub at the upland fringe of salt marshes throughout the East and Gulf coasts of North America. Its position and relative size are governed largely by the degree of flooding by seawater. Cross sections of older stems (living and standing dead) from sa...

  16. Late Holocene Marsh Expansion in Southern San Francisco Bay, California: Implications for the Use of Historic Baselines as Restoration Targets

    EPA Science Inventory

    Currently, the largest tidal wetlands restoration project on the US Pacific Coast is being planned and implemented in southern San Francisco Bay; however, knowledge of baseline conditions of salt marsh extent in the region prior to European settlement is limited. Here, analysis o...

  17. Impacts of climate change on submerged and emergent wetland plants

    Treesearch

    Frederick T. Short; Sarian Kosten; Pamela A. Morgan; Sparkle L Malone; Gregg E. Moore

    2016-01-01

    Submerged and emergent wetland plant communities are evaluated for their response to global climate change (GCC), focusing on seagrasses, submerged freshwater plants, tidal marsh plants, freshwater marsh plants and mangroves. Similarities and differences are assessed in plant community responses to temperature increase, CO2increase, greater UV-B exposure, sea...

  18. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model

    USGS Publications Warehouse

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-01-01

    Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.

  19. Does mercury contamination reduce body condition of endangered California clapper rails?

    USGS Publications Warehouse

    Ackerman, Joshua T.; Overton, Cory T.; Casazza, Michael L.; Takekawa, John Y.; Eagles-Smith, Collin A.; Keister, Robin A.; Herzog, Mark P.

    2012-01-01

    We examined mercury exposure in 133 endangered California clapper rails (Rallus longirostris obsoletus) within tidal marsh habitats of San Francisco Bay, California from 2006 to 2010. Mean total mercury concentrations were 0.56 μg/g ww in blood (range: 0.15–1.43), 9.87 μg/g fw in head feathers (3.37–22.0), 9.04 μg/g fw in breast feathers (3.68–20.2), and 0.57 μg/g fww in abandoned eggs (0.15–2.70). We recaptured 21 clapper rails and most had low within-individual variation in mercury. Differences in mercury concentrations were largely attributed to tidal marsh site, with some evidence for year and quadratic date effects. Mercury concentrations in feathers were correlated with blood, and slopes differed between sexes (R2 = 0.58–0.76). Body condition was negatively related to mercury concentrations. Model averaged estimates indicated a potential decrease in body mass of 20–22 g (5–7%) over the observed range of mercury concentrations. Our results indicate the potential for detrimental effects of mercury contamination on endangered California clapper rails in tidal marsh habitats.

  20. Waterbird use of bayland wetlands in the San Francisco Bay estuary: Movements of long-billed dowitchers during the winter

    USGS Publications Warehouse

    Takekawa, John Y.; Warnock, Nils; Martinelli, G.M.; Miles, A. Keith; Tsao, Danika C.

    2002-01-01

    The San Francisco Bay estuary is a migration and wintering area for more than 1.5 million waterbirds on the west coast of North America. Because the estuary is located in a metropolitan area, development and diking of baylands (the region between the edge of the bay and the historical high tide line) have greatly altered the wetland landscape. Recently, conservation interests have promoted restoration of diked baylands to tidal salt marshes for the benefit of endangered native species. However, effects of tidal marsh conversion on the existing community of waterbirds in the baylands are largely unknown, especially in muted tidal marshes with restricted inflows and in artificial salt evaporation ponds where high waterbird densities are found. The first radio-marking study of the Long-billed Dowitcher (Limnodromus scolopaceus) was conducted in November-December 2000 to examine their use of baylands. We captured 32 birds by rocket netting in a muted tidal marsh on the North Bay and radio-marked them with 1.2 g transmitters affixed with glue. Individuals were tracked for an average of 20.3 d (±8.5 SD) and obtained 217 high tide and 195 low tide locations. Movements between tides (x̄ = 1.29±1.48 SD km) and home range sizes (x̄ = 17.7±16.0 SD km2) were highly variable. Long-billed Dowitchers preferred open habitats such as muted tidal marshes during the high tide, but the majority (78.5%) also remained in these wetlands during low tide rather than feeding at nearby mud flats. Their avoidance of mud flats contrasted sharply with Western Sandpipers (Calidris mauri) but was similar to Black-necked Stilts (Himantopus mexicanus). Seven Long-billed Dowitchers flew 110 km inland to Central Valley wetlands in mid-December, a regional movement documented earlier for Dunlin (Calidris alpina) wintering on the coast. However, unlike Dunlin, their movements were not in response to rainfall but may have been in response to a low pressure front or possibly predictable flooding of fields in the Central Valley. Although the estuary is a major wintering area supporting large numbers of waterbirds, some birds such as Long-billed Dowitchers move inland to freshwater wetlands in the Central Valley.

  1. Nutrient budgets, marsh inundation under sea-level rise scenarios, and sediment chronologies for the Bass Harbor Marsh estuary at Acadia National Park

    USGS Publications Warehouse

    Huntington, Thomas G.; Culbertson, Charles W.; Fuller, Christopher C.; Glibert, Patricia; Sturtevant, Luke

    2014-01-01

    Eutrophication in the Bass Harbor Marsh estuary on Mount Desert Island, Maine, is an ongoing problem manifested by recurring annual blooms of green macroalgae species, principally Enteromorpha prolifera and Enteromorpha flexuosa, blooms that appear in the spring and summer. These blooms are unsightly and impair the otherwise natural beauty of this estuarine ecosystem. The macroalgae also threaten the integrity of the estuary and its inherent functions. The U.S. Geological Survey and Acadia National Park have collaborated for several years to better understand the factors related to this eutrophication problem with support from the U.S. Geological Survey and National Park Service Water Quality Assessment and Monitoring Program. The current study involved the collection of hydrologic and water-quality data necessary to investigate the relative contribution of nutrients from oceanic and terrestrial sources during summer 2011 and summer 2012. This report provides data on nutrient budgets for this estuary, sedimentation chronologies for the estuary and fringing marsh, and estuary bathymetry. The report also includes data, based on aerial photographs, on historical changes from 1944 to 2010 in estuary surface area and data, based on surface-elevation details, on changes in marsh area that may accompany sea-level rise. The LOADEST regression model was used to calculate nutrient loads into and out of the estuary during summer 2011 and summer 2012. During these summers, tidal inputs of ammonium to the estuary were more than seven times greater than the combined inputs in watershed runoff and precipitation. In 2011 tidal inputs of nitrate were about four times greater than watershed plus precipitation inputs, and in 2012 tidal inputs were only slightly larger than watershed plus precipitation inputs. In 2011, tidal inputs of total organic nitrogen were larger than watershed input by a factor of 1.6. By contrast, in 2012 inputs of total organic nitrogen in watershed runoff were much larger than tidal inputs, by a factor of 3.6. During the 2011 and 2012 summers, tidal inputs of total dissolved phosphorus to the estuary were more than seven times greater than inputs in watershed runoff. It is evident that during the summer tidal inputs of inorganic nitrogen and total dissolved phosphorus to the estuary exceed inputs from watershed runoff and precipitation. Projected sea-level rise associated with ongoing climate warming will affect the area of land within the Bass Harbor Marsh estuary watershed that is inundated during conditions of mean higher high water and during mean lower low water and hence will affect the vegetation and marsh area. Given 100-centimeter sea-level rise, the inundated area would increase from 25.7 hectares at the current condition to 77.5 hectares at mean higher high water and from 21.6 hectares to 26.7 hectares at mean lower low water. Given 50-centimeter sea-level rise, flooding of the entire marsh surface, which currently occurs only under the highest spring tides, would occur on average every other day. Radioisotope analysis of sediment cores from the estuary indicates that the sediment accumulation rate increased markedly from 1930 to 1980 and was relatively constant (0.4 to 0.5 centimeter per year) from 1980 to 2009. Similarly, from 1980 to 2009 there was a consistently high mass accumulation rate of 0.09 to 0.11 grams per square centimeter per year. The sediment accretion rates determined for the five cores collected from the marsh surface (east and west sides of the estuary) in 2011 show generally higher rates of 0.20 to 0.29 centimeter per year for the period between 1980 to 2011 than for the period before 1980, when sediment accretion rates were 0.06 to 0.25 centimeter per year. The data in this report provide resource managers at Acadia National Park with a baseline that can be used to evaluate future conditions within the estuary. Climate change, sea-level rise, and land-use change within the estuary’s watershed may influence nutrient dynamics, sedimentation, and eutrophication, and these potential effects can be studied in relation to the baseline data provided in this report. The Route 102 Bridge in Tremont, Maine is constructed over a sill that controls the amount of tidal flushing by restricting the duration of the flood tide, and structural changes to the bridge could alter tidal nutrient inputs and residence times for watershed and ocean-derived nutrients in the estuary. Ongoing sea-level rise is likely increasing ocean-derived nutrients and their residence time in the estuary on the one hand and decreasing the residence time of watershed-derived nutrients on the other.

  2. Effects of Emergent Vegetation on Sediment Dynamics within a Retreating Coastal Marshland

    NASA Astrophysics Data System (ADS)

    Stellern, C.; Grossman, E.; Fuller, R.; Wallin, D.; Linneman, S. R.

    2015-12-01

    Coastal emergent vegetation in estuaries physically interrupts flow within the water column, reduces wave energy and increases sediment deposition. Previous workers conclude that wave attenuation rates decrease exponentially with distance from the marsh edge and are dependent on site and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-specific biophysical plant parameters into change analyses. We paired vegetation and sediment dynamic studies to: (1) characterize vegetation structure, (2) estimate sediment available for deposition, (3) estimate rate, distribution and composition of sediment deposits, (4) determine sediment accumulation on vegetation, (5) compare sediment deposition within dense tidal wetland relative to non-vegetated tidal flat. These studies integrate a variety of monitoring methods, including the use of sediment traps, turbidity sensors, side-on photographs of vegetation and remote sensing image analysis. We compared sedimentation data with vegetation characteristics and spatial distribution data to examine the relative role of vegetation morphologic traits (species, stem density, biomass, distribution, tidal channels, etc.) on sediment dynamics. Our study is focused on Port Susan Bay of Washington State; a protected delta that has experienced up to 1 kilometer of marsh retreat (loss) over the past fifty years. Preliminary results show that the highest winter deposition occurred in the high marsh/mid-marsh boundary, up to 300m inland of the marsh edge, where bulrush species are most dense. These results will inform restoration efforts aimed at reestablishing sediment supply to the retreating marshland. This research is necessary to understand the vulnerability and adaptability of coastal marshlands to climate change related stressors such as, increased water levels (sea-level rise) and wave energy.

  3. Inorganic carbon and oxygen dynamics in a marsh‐dominated estuary

    PubMed Central

    Di Iorio, Daniela; Cai, Wei‐Jun; Hopkinson, Charles S.

    2017-01-01

    Abstract We conducted a free‐water mass balance‐based study to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. We measured open water diurnal O2 and dissolved inorganic carbon (DIC) dynamics seasonally in a salt marsh‐estuary in Georgia, U.S.A. with a focus on the marsh‐estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m−2 yr−1) greatly exceeding gross primary production (28 mol m−2 yr−1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air–water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2 to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. PMID:29456267

  4. Recent Advances in Studies of Coastal Marsh Sedimentation

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Leonard, L. A.

    2001-05-01

    Limited understanding of sedimentation processes in coastal marshes is a key constraint on the management of environmental impacts associated with sea level rise, degrading quality and quantity of aquatic habitats, and downstream impacts of watershed land use. The problem is exacerbated by complex interactions among physical, ecological, and chemical variables that impact sedimentation over a large range of spatio-temporal scales. These challenges are being met by increasingly sophisticated approaches which cross-fertilize from other disciplines or go even further to integrate multidisciplinary perspectives. One example of the former has been improved precision of fine scale measurements of fluid mechanics and sediment transport over marsh plains and application of those measurements in geomorphologic and coastal engineering models. This advancement has improved our understanding of marsh dynamics at a mechanistic level, which is key for improving the predictive capabilities of wetland models. An example of a multidisciplinary approach that has become very common is the combined usage of multiple monitoring, isotopic, and palynological methods for estimating sedimentation and erosion at a site over a range of time scales. By applying such combinations, it has been possible to piece apart the relative roles of natural processes such as sea level rise and storms from human impacts such as flow constrictions, channel dredging, and sediment supply changes. Beyond improving approaches used to study marshes, past work has led to new questions about marsh morphodynamics and how coastal marshes interact with upland watersheds. With the aid of chaos theory, some recent studies have asserted that coastal marsh channels are fractal and thus must follow universal laws in common with watershed drainages and other dendritic systems. Also, where marshes exist among a mosaic of habitats on a delta, research has revealed the relative roles of watershed versus coastal processes in controlling marsh morphology and ecology. Amazingly, some tidal freshwater deltas are only 50-100 years old due to rapid sedimentation caused by upland land use, but show the widest diversity of plants among all coastal marsh types. These systems often serve as seed banks that protect estuaries from loss of their important SAV beds. Given the central role of marsh sedimentation in the underlying dynamics of marsh evolution, research in this area will continue to play a vital role in management of an increasingly stressed coastal zone.

  5. Final Report: Five years of monitoring reconstructed freshwater tidal wetlands in the urban Anacostia River (2000-2004)

    USGS Publications Warehouse

    Hammerschlag, R.S.; Baldwin, A.H.; Krafft, C.C.; Neff, K.P.; Paul, M.M.; Brittingham, K.D.; Rusello, K.; Hatfield, J.S.

    2006-01-01

    The Anacostia River in Washington, D.C. USA consisted of over 809 hectares (2000 acres) of freshwater tidal wetlands before mandatory dredging removed most of them in the first half of the 20th century. Much of this13 kilometer (8 mile) reach was transferred to the National Park Service (NPS). Planning processes in the 1980?s envisioned a restoration (rejuvenation) of some wetlands for habitat, aesthetics, water quality and interpretative purposes. Subsequently, the U.S. Army Corps of Engineers in a cost share agreement with the District of Columbia reconstructed wetlands on NPS lands at Kenilworth - 12.5 hectares (1993), Kingman - 27 hectares (2000), a Fringe Marsh - 6.5 hectares (2003) and is currently constructing Heritage Marsh - 2.5 hectares (2005/2006). The USGS Patuxent Wildlife Research Center in conjunction with the University of Maryland Biological Engineering Department was contracted to conduct post-reconstruction monitoring (2000-2004) to document the relative success and progress of the Kingman Marsh reconstruction primarily based on vegetative response but also in conjunction with seed bank and soil characteristics. Results from Kingman were compared to Kenilworth Marsh (reconstructed 7 years prior), Dueling Creek Marsh (last best remaining freshwater tidal wetland bench in the urbanized Anacostia watershed) and Patuxent River Marsh (in a more natural adjacent watershed). Vegetation establishment was initially strong at Kingman, but declined rapidly as measured by cover, richness, diversity , etc. under grazing pressure from resident Canada geese and associated reduction in sediment levels. This decline did not occur at the other wetlands. The decline occurred despite a substantial seed bank that was sustained primarily be water born propagules. Soil development, as true for most juvenile wetlands, was slow with almost no organic matter accumulation. By 2004 only two of 7 planted species remained (mostly Peltandra virginica) at Kingman which did provide almost 50% of the approximately 1/3 total vegetation cover remaining.

  6. Five years (2000-2004) of post-reconstruction monitoring of freshwater tidal wetlands in the urban Anacostia River, Washington, D.C. USA

    USGS Publications Warehouse

    Hammerschlag, D.; Krafft, C.

    2006-01-01

    The Anacostia River in Washington, D.C. USA consisted of over 809 hectares (2000 acres) of freshwater tidal wetlands before mandatory dredging removed most of them in the first half of the 20th century. Much of this13 kilometer (8 mile) reach was transferred to the National Park Service (NPS). Planning processes in the 1980's envisioned a restoration (rejuvenation) of some wetlands for habitat, aesthetics, water quality and interpretative purposes. Subsequently, the U.S. Army Corps of Engineers in a cost share agreement with the District of Columbia reconstructed wetlands on NPS lands at Kenilworth - 12.5 hectares (1993), Kingman 27 hectares (2000), a Fringe Marsh - 6.5 hectares (2003) and is currently constructing Heritage Marsh - 2.5 hectares (2005/2006). The USGS Patuxent Wildlife Research Center in conjunction with the University of Maryland Biological Engineering Department was contracted to conduct post-reconstruction monitoring (2000-2004) to document the relative success and progress of the Kingman Marsh reconstruction primarily based on vegetative response but also in conjunction with seed bank and soil characteristics. Results from Kingman were compared to Kenilworth Marsh (reconstructed 7 years prior), Dueling Creek Marsh (last best remaining freshwater tidal wetland bench in the urbanized Anacostia watershed) and Patuxent River Marsh (in a more natural adjacent watershed). Vegetation establishment was initially strong at Kingman, but declined rapidly as measured by cover, richness, diversity, etc. under grazing pressure from resident Canada geese and associated reduction in sediment levels. This decline did not occur at the other wetlands. The decline occurred despite a substantial seed bank that was sustained primarily be water born propagules. Soil development, as true for most juvenile wetlands, was slow with almost no organic matter accumulation. By 2004 only two of 7 planted species remained (mostly Peltandra virginica) at Kingman which did provide almost 50% of the approximately 1/3 total vegetation cover remaining.

  7. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    USGS Publications Warehouse

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.

  8. An Organochronology and Deep History of a North Carolina Tidal Marsh

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Kemp, A.; Horton, B.

    2016-12-01

    Tidal marshes have survived for millennia in a dynamic equilibrium with sea level. A record of their history can be found in the sediments underlying modern marshes. Since the industrial revolution the rate of relative sea-level rise has been increasing and the equilibrium is changing. To reconstruct the history of these marshes we analyzed a 1000 year record of soil organic matter content (SOM) from Tump Point, Cedar Island, North Carolina. SOM concentration is a function of the standing biomass at the time of its creation, its subsequent preservation, and annual input of inorganic matter. SOM and inorganic concentration determine the soil bulk density and volume. The standing biomass, sediment organic matter input, and consequent carbon sequestration are functions of hydroperiod or, by proxy, the paleo-marsh elevation (PME) below mean high water. The annual input of inorganic matter is determined by the depth, duration, and frequency of flooding, concentration of total suspended solids (TSS), and settling velocity. Using an inverse modeling technique we were able to solve the Marsh Equilibrium Model (MEM) for PME and relative sea level that would have resulted in the observed SOM chronologies. The TSS was inferred from the accretion rates derived from dated core sections. Consistent with foraminifera-derived relative sea-level reconstructions, the MEM-derived rate of SLR doubled after 1700 CE compared with the previous 900 years, and the PME has declined and is approaching the lower limit of the vegetation. We estimate that C-sequestration prior to 1260 varied between 15 and 40 (average 30) g C m-2 y-1, but has since declined to a range of 5 to 33 (average 16) g C m-2 y-1. The decline in carbon sequestration can be attributed to the acceleration in rate of sea-level rise and is a trend that probably will characterize most tidal wetlands in the future.

  9. Mechanisms of sediment flux between shallows and marshes

    USGS Publications Warehouse

    Lacy, Jessica R.; Schile, L.M.; Callaway, J.C.; Ferner, M.C.

    2015-01-01

    We conducted a field study to investigate temporal variation and forcing mechanisms of sediment flux between a salt marsh and adjacent shallows in northern San Francisco Bay. Suspended-sediment concentration (SSC), tidal currents, and wave properties were measured over the marsh, in marsh creeks, and in bay shallows. Cumulative sediment flux in the marsh creeks was bayward during the study, and was dominated by large bayward flux during the largest tides of the year. This result was unexpected because extreme high tides with long inundation periods are commonly assumed to supply sediment to marshes, and long-term accretion estimates show that the marsh in the study site is depositional. A water mass-balance shows that some landward transport bypassed the creeks, most likely across the marsh-bay interface. An estimate of transport by this pathway based on observed SSC and inferred volume indicates that it was likely much less than the observed export.

  10. Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh

    NASA Astrophysics Data System (ADS)

    Kelleway, Jeffrey J.; Saintilan, Neil; Macreadie, Peter I.; Baldock, Jeffrey A.; Ralph, Peter J.

    2017-08-01

    Coastal salt marshes are dynamic, intertidal ecosystems that are increasingly being recognised for their contributions to ecosystem services, including carbon (C) accumulation and storage. The survival of salt marshes and their capacity to store C under rising sea levels, however, is partially reliant upon sedimentation rates and influenced by a combination of physical and biological factors. In this study, we use several complementary methods to assess short-term (days) deposition and medium-term (months) accretion dynamics within a single marsh that contains three salt marsh vegetation types common throughout southeastern (SE) Australia.We found that surface accretion varies among vegetation assemblages, with medium-term (19 months) bulk accretion rates in the upper marsh rush (Juncus) assemblage (1.74 ± 0.13 mm yr-1) consistently in excess of estimated local sea-level rise (1.15 mm yr-1). Accretion rates were lower and less consistent in both the succulent (Sarcocornia, 0.78 ± 0.18 mm yr-1) and grass (Sporobolus, 0.88 ± 0.22 mm yr-1) assemblages located lower in the tidal frame. Short-term (6 days) experiments showed deposition within Juncus plots to be dominated by autochthonous organic inputs with C deposition rates ranging from 1.14 ± 0.41 mg C cm-2 d-1 (neap tidal period) to 2.37 ± 0.44 mg C cm-2 d-1 (spring tidal period), while minerogenic inputs and lower C deposition dominated Sarcocornia (0.10 ± 0.02 to 0.62 ± 0.08 mg C cm-2 d-1) and Sporobolus (0.17 ± 0.04 to 0.40 ± 0.07 mg C cm-2 d-1) assemblages.Elemental (C : N), isotopic (δ13C), mid-infrared (MIR) and 13C nuclear magnetic resonance (NMR) analyses revealed little difference in either the source or character of materials being deposited among neap versus spring tidal periods. Instead, these analyses point to substantial redistribution of materials within the Sarcocornia and Sporobolus assemblages, compared to high retention and preservation of organic inputs in the Juncus assemblage. By combining medium-term accretion quantification with short-term deposition measurements and chemical analyses, we have gained novel insights into above-ground biophysical processes that may explain previously observed regional differences in surface dynamics among key salt marsh vegetation assemblages. Our results suggest that Sarcocornia and Sporobolus assemblages may be particularly susceptible to changes in sea level, though quantification of below-ground processes (e.g. root production, compaction) is needed to confirm this.

  11. Distribution of vascular plants and macroalgae along salinity and elevation gradients in Oregon tidal marshes

    EPA Science Inventory

    Sea level rise due to global climate change may affect the spatial distribution of plants and macroalgae within tidal estuaries. We present preliminary results from on-going research in Oregon to determine how these potential abiotic drives correlate with the presence or absence...

  12. 15 CFR 923.31 - Inland boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... subject to regular inundation of tidal salt (or Great Lakes) waters which contain marsh flora typical of the region; (5) Beaches—The area affected by wave action directly from the sea. Examples are sandy... appropriate to define the coastal zone as including these watersheds. (2) Areas of tidal influence that extend...

  13. 15 CFR 923.31 - Inland boundary.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... subject to regular inundation of tidal salt (or Great Lakes) waters which contain marsh flora typical of the region; (5) Beaches—The area affected by wave action directly from the sea. Examples are sandy... appropriate to define the coastal zone as including these watersheds. (2) Areas of tidal influence that extend...

  14. 15 CFR 923.31 - Inland boundary.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... subject to regular inundation of tidal salt (or Great Lakes) waters which contain marsh flora typical of the region; (5) Beaches—The area affected by wave action directly from the sea. Examples are sandy... appropriate to define the coastal zone as including these watersheds. (2) Areas of tidal influence that extend...

  15. 15 CFR 923.31 - Inland boundary.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... subject to regular inundation of tidal salt (or Great Lakes) waters which contain marsh flora typical of the region; (5) Beaches—The area affected by wave action directly from the sea. Examples are sandy... appropriate to define the coastal zone as including these watersheds. (2) Areas of tidal influence that extend...

  16. 15 CFR 923.31 - Inland boundary.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... subject to regular inundation of tidal salt (or Great Lakes) waters which contain marsh flora typical of the region; (5) Beaches—The area affected by wave action directly from the sea. Examples are sandy... appropriate to define the coastal zone as including these watersheds. (2) Areas of tidal influence that extend...

  17. Effect of Salinity on Common Reed (Phragmites australis) in a Restored Salt Marsh in Rhode Island

    EPA Science Inventory

    Tidal wetlands have undergone extensive degradation throughout the years because of interference with tidal flow from construction, dredging, and invasion of non-native plants such Phragmites australis. In 1956, a 4-lane highway was constructed in Galilee, Rhode Island, USA, cro...

  18. METHODS OF EXPLORING METABOLIC STRUCTURE AND TAXONOMIC DIVERSITY RELATIONSHIPS BETWEEN BACTERIOPLANKTON AND PHYTOPLANKTON IN SALT MARSH TIDAL CREEKS

    EPA Science Inventory

    Bacterial metabolic diversity and phytoplankton community diversity were examined in eight shallow tidal creeks over a two-year period (1997-1998) within North Inlet estuary, South Carolina. The BIOLOG 96-well microplate method was used to assess metabolic diversity of bacteria, ...

  19. Occupancy modeling of autonomously recorded vocalizations to predict distribution of rallids in tidal wetlands

    USGS Publications Warehouse

    Stiffler, Lydia L.; Anderson, James T.; Katzner, Todd

    2018-01-01

    Conservation and management for a species requires reliable information on its status, distribution, and habitat use. We identified occupancy and distributions of king (Rallus elegans) and clapper (R. crepitans) rail populations in marsh complexes along the Pamunkey and Mattaponi Rivers in Virginia, USA by modeling data on vocalizations recorded from autonomous recording units (ARUs). Occupancy probability for both species combined was 0.64 (95% CI: 0.53, 0.75) in marshes along the Pamunkey and 0.59 (0.45, 0.72) in marshes along the Mattaponi. Occupancy probability along the Pamunkey was strongly influenced by salinity, increasing logistically by a factor of 1.62 (0.6, 2.65) per parts per thousand of salinity. In contrast, there was not a strong salinity gradient on the Mattaponi and therefore vegetative community structure determined occupancy probability on that river. Estimated detection probability across both marshes was 0.63 (0.62, 0.65), but detection rates decreased as the season progressed. Monitoring wildlife within wetlands presents unique challenges for conservation managers. Our findings provide insight not only into how rails responded to environmental variation but also into the general utility of ARUs for occupancy modeling of the distribution and habitat associations of rails within tidal marsh systems.

  20. Macrophyte disturbance alters aquatic surface microlayer structure, metabolism, and fate.

    PubMed

    Seliskar, Denise M; Gallagher, John L

    2014-03-01

    Macrophytes drive the functioning of many salt marsh ecosystem components. We questioned how temporary clearing of the macrophyte community, during restoration, would impact processes at the scale of the aquatic surface microlayer. Development, deposition, and breakup of the tidal creek surface microlayer were followed over tidal cycles seasonally in a cleared "former" Phragmites marsh and an adjacent restored Spartina marsh. Metabolic and physical processes of the mobile surface microlayers and underlying water were compared, along with distribution of organic and inorganic components onto simulated plant stems. In July and October, chlorophyll-a quantities were less on simulated stems in the cleared site than in the restored site. The aquatic microlayer in the cleared site creek exhibited lower photosynthesis and respiration rates, fewer diatoms and green algae, and less chlorophyll-a. There was a lower concentration (250 times) and reduced diversity of fatty acids in the surface microlayer of the cleared site, reflecting a smaller and less diverse microbial community and reduced food resources. Fiddler crab activity was an order of magnitude higher where macrophytes had been cleared. Their consumption of edaphic algae on the mud surface may account for the reduced algae and other organics in the creek surface microlayer, thus representing a redirection of this food resource from creek consumers. Overall, there were less total particulates in the creek surface microlayer at the cleared site, and they dropped out of the surface microlayer sooner in the tidal cycle, resulting in a lower sediment load available for deposit onto marsh surfaces.

  1. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    NASA Astrophysics Data System (ADS)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Skalak, Katherine J.

    2015-12-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  2. Head-of-tide bottleneck of particulate material transport from watersheds to estuaries

    USGS Publications Warehouse

    Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine

    2015-01-01

    We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of tide on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of tide, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of tide stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.

  3. Improving salt marsh digital elevation model accuracy with full-waveform lidar and nonparametric predictive modeling

    NASA Astrophysics Data System (ADS)

    Rogers, Jeffrey N.; Parrish, Christopher E.; Ward, Larry G.; Burdick, David M.

    2018-03-01

    Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging (lidar) derived elevation data, often causing the data to become ineffective for analysis of topographic features governing tidal inundation or vegetation zonation. Previous attempts at improving lidar data collected in salt marsh environments range from simply computing and subtracting the global elevation bias to more complex methods such as computing vegetation-specific, constant correction factors. The vegetation specific corrections can be used along with an existing habitat map to apply separate corrections to different areas within a study site. It is hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-point corrections, which are computed from lidar waveform-derived features, tidal-datum based elevation, distance from shoreline and other lidar digital elevation model based variables, using nonparametric regression will produce better results. The methods were developed and tested using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, U.S.A. Five different model algorithms for nonparametric regression were evaluated, with TreeNet's stochastic gradient boosting algorithm consistently producing better regression and classification results. Additionally, models were constructed to predict the vegetative zone (high marsh and low marsh). The predictive modeling methods used in this study estimated ground elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean square error). These methods appear very promising for correction of salt marsh lidar data and, importantly, do not require an existing habitat map, biomass measurements, or image based remote sensing data such as multi/hyperspectral imagery.

  4. Estimates of Carbon Sequestration in Tidal Coastal Wetlands Along the US east Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  5. Estimates of Carbon Sequestration and Storage in Tidal Coastal Wetlands Along the US East Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  6. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    USGS Publications Warehouse

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  7. Ecosystem engineers drive creek formation in salt marshes.

    PubMed

    Vu, Huy D; Wie Ski, Kazimierz; Pennings, Steven C

    2017-01-01

    Ecosystem engineers affect different organisms and processes in multiple ways at different spatial scales. Moreover, similar species may differ in their engineering effects for reasons that are not always clear. We examined the role of four species of burrowing crabs (Sesarma reticulatum, Eurytium limosum, Panopeus herbstii, Uca pugnax) in engineering tidal creek networks in salt marshes experiencing sea level rise. In the field, crab burrows were associated with heads of eroding creeks and the loss of plant (Spartina alterniflora) stems. S. reticulatum was closely associated with creek heads, but densities of the other crab species did not vary across marsh zones. In mesocosm experiments, S. reticulatum excavated the most soil and strongly reduced S. alterniflora biomass. The other three species excavated less and did not affect S. alterniflora. Creek heads with vegetation removed to simulate crab herbivory grew significantly faster than controls. Percolation rates of water into marsh sediments were 10 times faster at creek heads than on the marsh platform. Biomass decomposed two times faster at creek heads than on the marsh platform. Our results indicate that S. reticulatum increases creek growth by excavating sediments and by consuming plants, thereby increasing water flow and erosion at creek heads. Moreover, it is possible that S. reticulatum burrows also increase creek growth by increasing surface and subsurface erosion, and by increasing decomposition of organic matter at creek heads. Our results show that the interaction between crab and plant ecosystem engineers can have both positive and negative effects. At a small scale, in contrast to other marsh crabs, S. reticulatum harms rather than benefits plants, and increases erosion rather than marsh growth. At a large scale, however, S. reticulatum facilitates the drainage efficiency of the marsh through the expansion of tidal creek networks, and promotes marsh health. © 2016 by the Ecological Society of America.

  8. Short-term effects of tidal flooding on soil nitrogen mineralization in a Chinese tidal salt marsh

    NASA Astrophysics Data System (ADS)

    Gao, Haifeng; Bai, Junhong; Deng, Xiaoya; Lu, Qiongqiong; Ye, Xiaofei

    2018-02-01

    Tidal flooding is an important control of nitrogen biogeochemistry in wetland ecosystems of Yellow River Delta, China. Variations in hydrology could change soil redox dynamics and conditions for microorganisms living. A tidal simulation experiment was designed to extract tidal flooding effect on nitrogen mineralization of salt marsh soil. Inorganic nitrogen and relevant enzyme were measured during the 20-day incubation period. Considering the variation of both inorganic N and enzymes, nitrogen mineralization process in tidal salt marsh could be divided into 2 phases of short term response and longtime adaption by around 12th incubation day as the inflection point. Soil ammonium nitrogen (NH4+-N) and volatilized ammonia (NH3) occupied the mineralization process since nitrate nitrogen (NO3--N) was not detected over whole incubation period. NH4+-N varied fluctuant and increased significantly after 12 day's incubation. Released NH3 reached to peak value of 14.24 mg m-2 d-1 at the inflection point and declined thereafter. Inorganic nitrogen released according to net nitrogen mineralization rate (RM) under the tidal flooding condition without plant uptake except first 2 days. However, during the transitional period of 6-12 days, RM decreased notably to almost 0 and increased again after inflection point with the value of 0.182 mg kg-1 d-1. It might be due to the change of microbial composition and function when soil shifted from oxic to anoxic, which were reflected by arylamidase, urease and fluorescein diacetate. Fluorescein diacetate hydrolysis and arylamidase had the similar variation of U style with decreasing activities before 12 days' incubation. All the enzymes measured in this experiment increased after inflection point. Whereas, urease activity kept constant from 2 to 12 days. Alternant oxidation reduction condition would increase N loss through denitrification and ammonia volatilization during the transitional period, while more inorganic nitrogen would be available in reductive environment of long-term tidal flooding. Therefore, hydrological process regulation has great influence on nitrogen cycling and further influence on wetland productivity.

  9. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects

    USGS Publications Warehouse

    Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Krauss, Ken W.; Johnson, Darren J.; Raynie, Richard C.; Killebrew, Charles J.

    2016-01-01

    Sulfate from seawater inhibits methane production in tidal wetlands, and by extension, salinity has been used as a general predictor of methane emissions. With the need to reduce methane flux uncertainties from tidal wetlands, eddy covariance (EC) techniques provide an integrated methane budget. The goals of this study were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based on EC; and 2) determine if EC estimates conform to a methane-salinity relationship derived from temperate tidal wetlands with chamber sampling. Annual estimates of methane emissions from this study were 62.3 g CH4/m2/yr and 13.8 g CH4/m2/yr for the freshwater and brackish (8–10 psu) sites, respectively. If it is assumed that long-term, annual soil carbon sequestration rates of natural marshes are ~200 g C/m2/yr (7.3 tCO2e/ha/yr), healthy brackish marshes could be expected to act as a net radiative sink, equivalent to less than one-half the soil carbon accumulation rate after subtracting methane emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates would need case-by-case assessment, but the EC methane emissions estimates in this study conformed well to an existing salinity-methane model that should serve as a basis for establishing emission factors for wetland carbon offset projects.

  10. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer.

    PubMed

    Carus, Jana; Paul, Maike; Schröder, Boris

    2016-03-01

    By reducing current velocity, tidal marsh vegetation can diminish storm surges and storm waves. Conversely, currents often exert high mechanical stresses onto the plants and hence affect vegetation structure and plant characteristics. In our study, we aim at analysing this interaction from both angles. On the one hand, we quantify the reduction of current velocity by Bolboschoenus maritimus, and on the other hand, we identify functional traits of B. maritimus' ramets along environmental gradients. Our results show that tidal marsh vegetation is able to buffer a large proportion of the flow velocity at currents under normal conditions. Cross-shore current velocity decreased with distance from the marsh edge and was reduced by more than 50% after 15 m of vegetation. We were furthermore able to show that plants growing at the marsh edge had a significantly larger diameter than plants from inside the vegetation. We found a positive correlation between plant thickness and cross-shore current which could provide an adaptive value in habitats with high mechanical stress. With the adapted morphology of plants growing at the highly exposed marsh edge, the entire vegetation belt is able to better resist the mechanical stress of high current velocities. This self-adaptive effect thus increases the ability of B. maritimus to grow and persist in the pioneer zone and may hence better contribute to ecosystem-based coastal protection by reducing current velocity.

  11. Preliminary Results from a Mesocosm Marsh Experiment with Treatments Simulating Three Tidal Flooding and Precipitation Conditions

    EPA Science Inventory

    Our goal was to observe and quantify the effects of low, medium and high tidal flooding regimes and various precipitation conditions on both Spartina alterniflora and Typha angustifolia in greenhouse mesocosms. The experiment was maintained for 4 months. Each of 3 tanks (600L) ha...

  12. Estuarine Vegetation at Rush Ranch Open Space Preserve, San Francisco Bay National Estuarine Research Reserve, California

    USDA-ARS?s Scientific Manuscript database

    The Rush Ranch Open Space Preserve (Rush Ranch) includes the largest remaining undiked tidal wetland within the Suisun Marsh region of the San Francisco Estuary. The brackish tidal wetlands grade into transitional vegetation and undeveloped grasslands of the Potrero Hills. We present analysis of ...

  13. Salinity influences on aboveground and belowground net primary productivity in tidal wetlands

    USGS Publications Warehouse

    Pierfelice, Kathryn N.; Graeme Lockaby, B.; Krauss, Ken W.; Conner, William H.; Noe, Gregory; Ricker, Matthew C.

    2017-01-01

    Tidal freshwater wetlands are one of the most vulnerable ecosystems to climate change and rising sea levels. However salinification within these systems is poorly understood, therefore, productivity (litterfall, woody biomass, and fine roots) were investigated on three forested tidal wetlands [(1) freshwater, (2) moderately saline, and (3) heavily salt-impacted] and a marsh along the Waccamaw and Turkey Creek in South Carolina. Mean aboveground (litterfall and woody biomass) production on the freshwater, moderately saline, heavily salt-impacted, and marsh, respectively, was 1,061, 492, 79, and 0  g m−2 year−1 versus belowground (fine roots) 860, 490, 620, and 2,128  g m−2 year−1. Litterfall and woody biomass displayed an inverse relationship with salinity. Shifts in productivity across saline sites is of concern because sea level is predicted to continue rising. Results from the research reported in this paper provide baseline data upon which coupled hydrologic/wetland models can be created to quantify future changes in tidal forest functions.

  14. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Treesearch

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  15. Mangrove expansion into salt marshes alters associated faunal communities

    NASA Astrophysics Data System (ADS)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  16. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes

    USGS Publications Warehouse

    Buffington, Kevin J.; Dugger, Bruce D.; Thorne, Karen M.; Takekawa, John Y.

    2016-01-01

    Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts of elevation data across large areas; however, the limited ability to penetrate dense vegetation with lidar hinders its usefulness for measuring tidal marsh platforms. Methods to correct lidar elevation data are available, but a reliable method that requires limited field work and maintains spatial resolution is lacking. We present a novel method, the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation models (DEMs) with vegetation indices from readily available multispectral airborne imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40–75% improvement in accuracy from the lidar bare earth DEM. Results from our method compared favorably with results from three other methods (minimum-bin gridding, mean error correction, and vegetation correction factors), and a power analysis applying our extensive RTK-GPS dataset showed that on average 118 points were necessary to calibrate a site-specific correction model for tidal marshes along the Pacific coast. By using available imagery and with minimal field surveys, we showed that lidar-derived DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution.

  17. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure

    NASA Astrophysics Data System (ADS)

    Xie, Tian; Cui, Baoshan; Bai, Junhong; Li, Shanze; Zhang, Shuyan

    2018-02-01

    Determining how human disturbance affects plant community persistence and species conservation is one of the most pressing ecological challenges. The large-scale disturbance form defense structures usually have a long-term and potential effect on phytocommunity in coastal saltmarshes. Coastal defense structures usually remove the effect of tidal wave on tidal salt marshes. As a consequence, edaphic factors such as the salinity and moisture contents are disturbed by tidal action blocking. However, few previous studies have explicitly addressed the response of halophyte species persistence and dynamics to the changing edaphic conditions. The understanding of the response of species composition in seed banks and aboveground vegetation to the stress is important to identify ecological effect of coastal defense structures and provide usefully insight into restoration. Here, we conducted a field study to distinguish the density, species composition and relationships of seed bank with aboveground vegetation between tidal flat wetlands with and without coastal defense structures. We also addressed the role of edaphic condition in vegetation degradation caused by coastal defense structures in combination with field monitor and greenhouse experiments. Our results showed the density of the seed bank and aboveground vegetation in the tidal flat without coastal defense structures was significantly lower than the surrounded flat with coastal defense structures. A total of 14 species were founded in the surrounded flat seed bank and 11 species in the tidal flat, but three species were only recorded in aboveground vegetation of the tidal flat which was much lower than 24 aboveground species in the surrounded flat. The absent of species in aboveground vegetation contributed to low germination rate which depend on the edaphic condition. The germination of seeds in the seed bank were inhabited by high soil salinity in the tidal flat and low soil moisture in the surrounded flat. Our study supported the hypothesis that the change of edaphic condition caused by coastal defense structures was the main reason for the difference of the species composition similarity between aboveground vegetation and the soil seed bank between the tidal and surrounded flats. Therefore, mitigating the hydrological disturbance and maintaining the original state of edaphic factors would be useful implications for reducing the ecological effect of defense structure to vegetation communities in coastal salt marshes.

  18. Response of a tidal freshwater marsh to changes in sea level and suspended-sediment concentrations

    NASA Astrophysics Data System (ADS)

    Palinkas, C. M.

    2016-02-01

    Tidal marshes are among the world's most valuable ecosystems from a variety of perspectives, but they are also perhaps the most threatened by environmental changes, such as increased rates of sea-level rise and decreased concentrations of fluvial suspended sediments. In this study, time-series measurements of sedimentation over 5 years (2010-2014) at Dyke Marsh Preserve (Potomac River, VA, USA) are used to evaluate the influence of environmental drivers on sediment accretion within the marsh. To do so, bimonthly (deposition on ceramic tiles) and seasonal-scale (from 7Be (half-life 53.3 d) measurements) sedimentation rates are placed in the context of factors that can influence inorganic sediment availability and delivery to the marsh platform, specifically winds, river discharge, suspended-sediment concentrations (SSC; calculated from rating curves), and local sea level. Because of marsh geography and dominant storm patterns in this area, the influence of events is complex - wind speed and direction are negatively correlated with local sea level but positively correlated with SSC. This is, stronger winds from a more westerly direction drive water seaward of the marsh platform; increased precipitation results in higher river discharge and SSC from runoff and/or sediment resuspension. At the bimonthly scale, changes in sea level are correlated with both the rate and character (organic content) of sediments collected on tiles, but there was no relationship between sedimentation rates and SSC. Instead, bimonthly sedimentation rates are correlated with the fluvial sediment load (product of river discharge and SSC), which is not often included in models of marsh accretion. These trends are similar for seasonal-scale observations, though statistical tests are not as robust. These results suggest that, while events drive sedimentation within the marsh, their influence can be obscured over longer time scales that incorporate quiescent times of non-deposition.

  19. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  20. Hydrology of Fritchie Marsh, coastal Louisiana

    USGS Publications Warehouse

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  1. Soras in tidal marsh: Banding and telemetry studies on the Patuxent River, Maryland

    USGS Publications Warehouse

    Haramis, G.M.; Kearns, G.D.; Erwin, R. Michael; Watts, Bryan D.; Haramis, G.Michael; Perry, Matthew C.; Hobson, Keith A.

    2007-01-01

    From 1993 to 1999, we conducted banding and telemetry studies of fall migrant Soras (Porzana carolina) in the historic rail hunting and exceptional stopover habitat of the Wild Rice (Zizania aquatica) marshes of the tidal Patuxent River. Drift traps equipped with audio lures produced 3,897 Sora and 417 Virginia Rail (Rallus limicola) captures during the seven-year study. Sora captures were characterized by a high proportion (70% to 90%) of young-of-the year and a paucity of between-year recaptures (N = 12). Radio-telemetry studies depicted Soras as long distance migrants with high stopover survivaI and a critical dependence on tidal freshwater marshes for migratory fattening. Here, the high productivity of Wild Rice, Smartweeds (Polygonum spp.) and other seed-bearing annual plants seem intrinsically linked to Sora migratory fitness. A stopover period of >40 days and mean mass gain of +0.6g/d suggests Soras are accumulating large fat reserves for long-distance flight. Radio tracking confirmed Soras as strong flyers with a demonstrated overnight (ten h) flight range of 700-900+ km. Given the potential size of fat reserves and the ability to use tail winds, it is conceivable for Soras to make nonstop flights from the Patuxent River to Florida, the Bahamas, or even the Caribbean. Once a widely hunted species, a single sport-hunting recovery from our 3,900 bandings attests to the decline in popularity of the Sora as a game bird in the Atlantic Flyway. We suggest the few between-year recaptures observed in our bandings results from three possible factors: 1) the strong influence of wind drift on migration, 2) different migration chronology or flight path of AHY versus HY birds, and/or 3) high mortality of especially HY birds during Atlantic coastal and Gulf crossings. The critical dependence of Soras and other seed-dependent, fall-migrant waterbirds on highly productive yet limited tidal freshwater marsh habitats make conservation of such areas a priority mission within the Chesapeake Bay.

  2. Long-term Stability and Erosion in Marshes of Three Large Estuarine Basins in Louisiana

    NASA Astrophysics Data System (ADS)

    Kearney, M.; Riter, A.; Mo, Y.; Turner, R. E.

    2016-02-01

    Landsat TM data using a spectral mixture model indicate that marshes in large areas of Terrebonne Bay, Barataria Bay, and Breton Sound have been relatively stable for several decades. Marsh loss has been greatest in the most seaward, saline marshes - at rates of 0.3-1% yr-1 - and these losses are highly correlated with sea level rise. Some interior marshes, especially in the mesohaline parts of the basins, also show some sea level-driven losses, especially where seasonal differences in storm-generated waves greatly enhance the sea level signal. By comparison, oligohaline and tidal freshwater marshes farther inland present a picture of relative stability. The impacts of major hurricanes (e.g., Hurricanes Katrina and Gustav) that tracked over the study area were dramatic, but transient; most marshes rebounded to previous conditions within a few years. Significant marsh losses, other than those from shoreline retreat in more seaward zones, however, were confined to sites of freshwater river diversions.

  3. Chance findings about early holocene tidal marshes of Grays Harbor, Washington, in relation to rapidly rising seas and great subduction earthquakes

    USGS Publications Warehouse

    Phipps, James B.; Hemphill-Haley, Eileen; Atwater, Brian F.

    2015-06-18

    The puzzles posed by these findings include: (1) How did the marshes manage to endure centuries of relative sea-level rise that likely approached 1 cm/yr on average? (2) Did the marshes also endure subsidence that accompanied great thrust earthquakes on the Cascadia Subduction Zone? (3) Was their eventual drowning triggered by a Cascadia earthquake of unusually large size, or can the drowning be explained by sea-level rise that included a jump from drainage of glacial Lake Agassiz?

  4. A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the lower Waccamaw River, South Carolina

    USGS Publications Warehouse

    Drexler, Judith Z.; Krauss, Ken W.; Sasser, M. Craig; Fuller, Christopher C.; Swarzenski, Christopher M.; Powell, Amber; Swanson, Kathleen M.; Orlando, James L.

    2013-01-01

    Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density, and 210Pb and 137Cs for dating purposes. Carbon sequestration rates ranged from 25 to 200 g C m−2 yr−1 (moist soil), 80–435 g C m−2 yr−1 (naturally tidal), and 100–250 g C m−2 yr−1 (deeply flooded). The moist soil and naturally tidal treatments were compared over a period of 40 years. The naturally tidal treatment had significantly higher carbon storage (mean = 219 g C m−2 yr−1 vs. mean = 91 g C m−2 yr−1) and four times the vertical accretion rate (mean = 0.84 cm yr−1 vs. mean = 0.21 cm yr−1) of the moist soil treatment. The results strongly suggest that the long drainage period in moist soil management limits carbon storage over time. Managers across the National Wildlife Refuge system have an opportunity to increase carbon storage by minimizing drainage in impoundments as much as practicable.

  5. Stratigraphic response of salt marshes to slow rates of sea-level change

    NASA Astrophysics Data System (ADS)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (<0.5 mm/yr). Sandy barrier-spits and tombolos are common coastal features, but salt marshes are rare. The generalized stratigraphy of dutch cores collected in back-barrier settings in this region is a surface layer of sphagnum peat with abundant woody roots, underlain by sedge-dominated peat that transitions gradually to a thin layer of Juncus sp. peat with agglutinated foraminifera, dominantly Jadammina macrescens and Balticammina pseudomacrescens. These basal peats are interpreted as salt-marsh peats, characterized by the presence of foraminifera that are absent in overlying peat units. This sequence indicates that salt marshes developed in back-barrier environments during the initial stages of barrier progradation, then gradually transitioned to environments increasingly dominated by freshwater flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  6. Consequences of climate change, eutrophication, and other anthropogenic impacts to coastal salt marshes: multiple stressors reduce resiliency and sustainability

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Wigand, C.; Nelson, J.; Davey, E.; Van Dyke, E.; Wasson, K.

    2011-12-01

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the impacts of future sea level rise combined with other anthropogenic stressors to salt marsh sustainability through the implementation of field and laboratory mesocosms, manipulative experiments, correlative studies, and predictive modeling conducted in central California and southern New England salt marshes. We report on measurements of soil respiration, decomposition, sediment accumulation, and marsh elevation, which considered jointly suggest an association between nitrate input and marsh elevation loss resulting from mineralization of soil organic matter. Furthermore, use of imaging techniques (CT scans) has shown differences in belowground root and rhizome structure associated with fertilization, resulting in a loss of sediment cohesion promoted by fine root structure. Additionally, field and greenhouse mesocosm experiments have provided insight into the specific biogeochemical processes responsible for plant mortality at high immersion or salinity levels. In conclusion, we have found that poor water quality (i.e. eutrophication) leads to enhanced respiration and decomposition of soil organic matter, which ultimately contributes to a loss of salt marsh sustainability. However, marsh deterioration studied at field sites (Jamaica Bay, NY and Elkhorn Slough, CA) is associated not only with enhanced nutrient loads, but also increased immersion due to tidal range increases resulting from dredging. To ensure the continuation of the ecosystem services provided by tidal wetlands and to develop sustainable management strategies that provide favorable outcomes under a variety of future sea level rise and land use scenarios, we need to develop a better understanding of the relative impacts of the various stressors leading to salt marsh loss. Without this understanding, costly remediation may unintentionally lead to continued marsh deterioration. More research is needed to carefully document the positive and negative aspects of nutrient loading to coastal marsh sustainability in order to ensure that coastal watersheds are managed in a way that minimizes detrimental impacts to adjacent coastal habitats, while not interfering unnecessarily with important and needed public interest activities such as agriculture and wastewater discharge.

  7. Modeling tidal freshwater marsh sustainability in the Sacramento-San Joaquin Delta under a broad suite of potential future scenarios

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Fuller, Christopher C.; Schoellhamer, David H.

    2015-01-01

    In this paper, we report on the adaptation and application of a one-dimensional marsh surface elevation model, the Wetland Accretion Rate Model of Ecosystem Resilience (WARMER), to explore the conditions that lead to sustainable tidal freshwater marshes in the Sacramento–San Joaquin Delta. We defined marsh accretion parameters to encapsulate the range of observed values over historic and modern time-scales based on measurements from four marshes in high and low energy fluvial environments as well as possible future trends in sediment supply and mean sea level. A sensitivity analysis of 450 simulations was conducted encompassing a range of eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. porosity values, initial elevations, organic and inorganic matter accumulation rates, and sea-level rise rates. For the range of inputs considered, the magnitude of SLR over the next century was the primary driver of marsh surface elevation change. Sediment supply was the secondary control. More than 84% of the scenarios resulted in sustainable marshes with 88 cm of SLR by 2100, but only 32% and 11% of the scenarios resulted in surviving marshes when SLR was increased to 133 cm and 179 cm, respectively. Marshes situated in high-energy zones were marginally more resilient than those in low-energy zones because of their higher inorganic sediment supply. Overall, the results from this modeling exercise suggest that marshes at the upstream reaches of the Delta—where SLR may be attenuated—and high energy marshes along major channels with high inorganic sediment accumulation rates will be more resilient to global SLR in excess of 88 cm over the next century than their downstream and low-energy counterparts. However, considerable uncertainties exist in the projected rates of sea-level rise and sediment avail-ability. In addition, more research is needed to constrain future rates of aboveground and belowground plant productivity under increased CO2 concentrations and flooding.

  8. Flood defence in the Blackwater Estuary, Essex, UK: the impact of sedimentological and geochemical changes on salt marsh development in the Tollesbury Managed Realignment site.

    PubMed

    Chang, Y H; Scrimshaw, M D; Macleod, C L; Lester, J N

    2001-06-01

    Recent changes in the UK's coastal defence strategy have resulted in the introduction of Managed Realignment (MR), a technique which attempts to establish salt marshes on low-lying coastal farmland. This work investigates the impact of MR, in particular on the interactions between sediment movement, changes in heavy metal concentrations and salt marsh development. Pre- and post-inundation samples were collected and analysed between 1995 and 1997. Sediment transport patterns (1996) demonstrated that sediment particles were distributed by tides around the site, resulting in a change in the spatial distribution of the metals which was related to the sediment particle size distribution. Despite the presence of some metal contaminants found within the MR site, vegetated salt marsh has developed since 1997. However, heavy metals such as Cu, Mn, Ni, Pb and Zn exhibited relative depletion in the sediment developing with salt marsh in 1997, which is in agreement with data indicating that concentrations of metals within sediments is related to frequency of tidal inundation. During initial development of the site, sediment transport was the main factor controlling metal distribution, however, subsequently the frequency of tidal inundation became the most significant factor. Further work may allow for prediction of how future MR sites will develop with respect to redistribution of sediments and subsequent transport of contaminants in the dissolved phase.

  9. One-dimensional Analytical Modelling of Floating Seed Dispersal in Tidal Channels

    NASA Astrophysics Data System (ADS)

    Shi, W.; Purnama, A.; Shao, D.; Cui, B.; Gao, W.

    2017-12-01

    Seed dispersal is a primary factor influencing plant community development, and thus plays a critical role in maintaining wetland ecosystem functioning. However, compared with fluvial seed dispersal of riparian plants, dispersal of saltmarsh plant seeds in tidal channels is much less studied due to its complex behavior, and relevant mathematical modelling is particularly lacking. In this study, we developed a one-dimensional advection-dispersion model to explore the patterns of tidal seed dispersal. Oscillatory tidal current and water depth were assumed to represent the tidal effects. An exponential decay coefficient λ was introduced to account for seed deposition and retention. Analytical solution in integral form was derived using Green's function and further evaluated using numerical integration. The developed model was applied to simulate Spartina densiflora seed dispersal in a tidal channel located at the Mad River Slough in North Humboldt Bay, California, USA, to demonstrate its practical applicability. Model predictions agree satisfactorily with field observation and simulation results from Delft3D numerical model. Sensitivity analyses were also conducted to evaluate the effects of varying calibrated parameters on model predictions. The range of the seed dispersion as well as the distribution of the seed concentration were further analyzed through statistical parameters such as centroid displacement and variance of the seed cloud together with seed concentration contours. Implications of the modelling results on tidal marsh restoration and protection, e.g., revegetation through seed addition, were also discussed through scenario analysis. The developed analytical model provides a useful tool for ecological management of tidal marshes.

  10. High Frequency Monitoring of the Quantity and Quality of Dissolved Organic Matter Flux Between Salt Marshes and Plum Island Sound, MA

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Raymond, P.

    2012-12-01

    Salt marshes are highly productive continental margin ecosystems, due to abundant solar radiation, water, and nutrients provided by tidal water. The unique bi-directional water movement introduced by tidal effect has a major impact on the formation and productivity of salt marsh and the material exchange between salt marsh and adjacent estuary. As a major term in carbon, energy, and nutrient budget for aquatic ecosystem, dissolved organic matter (DOM) has broad impact on food webs, carbon cycle, and nutrient retention/release. The frequency and period of DOM measurement is greatly increased by the use of reagent-free, low-cost, and reliable measurement with fluorescent and UV sensors measuring the chromophoric fraction of total DOM. Although fluorescent sensors can only measure concentration, UV absorbance in a wide spectral range (200nm-380nm) could potentially provide information on DOM composition. With the help of accurate direct real time water flux measurement and lab analysis of lability, DON, and 3D excitation emission matrix spectroscopy (EEMs), a database of DOM quantity and quality exchanged between several comparative salt marshes and Plum Island Sound, MA could be established to study the dynamics of DOM behavior in the salt marsh-estuary system. Understanding DOM source and fate is very important for evaluating the role of salt marsh in the carbon cycle and food web in coastal and global scale because coastal carbon cycling represents up to 21% of the ocean's primary production (Jahnke 2008). In addition, the approaches outlined in this proposal have broad applicability to study DOM quantity and quality in the material exchange theme between systems.

  11. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary

    NASA Astrophysics Data System (ADS)

    Osburn, Christopher L.; Mikan, Molly P.; Etheridge, J. Randall; Burchell, Michael R.; Birgand, François

    2015-07-01

    Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components (C) modeled, C3 represented recalcitrant DOM and C4 represented fresher soil-derived source DOM. Component 1 represented detrital POM, and C6 represented planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1; no planktonic DOC was exported. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Assuming the exported organic matter was oxidized to CO2 and scaled up to global salt marsh area, respiration of salt marsh DOC and POC transported to estuaries could amount to a global CO2 flux of 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  12. Global carbon sequestration in tidal, saline wetland soils

    USGS Publications Warehouse

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  13. Building a Habitat Conversion Model for San Francisco Bay Wetlands: A Multi-species Approach for Integrating GIS and Field Data

    Treesearch

    Diana Stralberg; Nils Warnock; Nadav Nur; Hildie Spautz; Gary W. Page

    2005-01-01

    More than 80 percent of San Francisco Bay's original tidal wetlands have been altered or displaced, reducing available habitat for a range of tidal marsh-dependent species, including the Federally listed California Clapper Rail (Rallus longirostris obsoletus) and three endemic Song Sparrow (Melospiza melodia) subspecies. In...

  14. Spatial patterns of composition in tidal wetland plant and algal assemblages in Oregon: Implications for wetland vulnerability to sea-level rise

    EPA Science Inventory

    Plants and algae mediate important ecosystem processes in coastal marshes and swamps. These assemblages are structured in part by estuarine environmental gradients such as tidal elevation and salinity. Such gradients are likely to change with sea-level rise (SLR) due to global cl...

  15. Evolution of Subaerial Coastal Fluvial Delta Island Topography into Multiple Stable States Under Influence of Vegetation and Stochastic Hydrology

    NASA Astrophysics Data System (ADS)

    Moffett, K. B.; Smith, B. C.; O'Connor, M.; Mohrig, D. C.

    2014-12-01

    Coastal fluvial delta morphodynamics are prominently controlled by external fluvial sediment and water supplies; however, internal sediment-water-vegetation feedbacks are now being proposed as potentially equally significant in organizing and maintaining the progradation and aggradation of such systems. The time scales of fluvial and climate influences on these feedbacks, and of their responses, are also open questions. Historical remote sensing study of the Wax Lake Delta model system (Louisiana, USA) revealed trends in the evolution of the subaerial island surfaces from a non-systematic arrangement of elevations to a discrete set of levees and intra-island platforms with distinct vegetation types, designated as high marsh, low marsh, and mudflat habitat. We propose that this elevation zonation is consistent with multiple stable state theory, e.g. as applied to tidal salt marsh systems but not previously to deltas. According to zonally-distributed sediment core analyses, differentiation of island elevations was not due to organic matter accumulation as in salt marshes, but rather by differential mineral sediment accumulation with some organic contributions. Mineral sediment accumulation rates suggested that elevation growth was accelerating or holding steady over time, at least to date in this young delta, in contrast to theory suggesting rates should slow as elevation increases above mean water level. Hydrological analysis of island flooding suggested a prominent role of stochastic local storm events in raising island water levels and supplying mineral sediment to the subaerial island surfaces at short time scales; over longer time scales, the relative influences of local storms and inland/regional floods on the coupled sediment-water-vegetation system of the subaerial delta island surfaces remain the subject of ongoing study. These results help provide an empirical foundation for the next generation of coupled sediment-water-vegetation modeling and theory.

  16. Tidal marsh susceptibility to sea-level rise: importance of local-scale models

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.

    2015-01-01

    Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human levee and infrastructure preventing these types of processes. Other modeling efforts done for this area have projected marsh persistence to 2100, but our modeling effort with site-specific datasets allowed us to model at a finer resolution with much higher local confidence, resulting in different results for management. Our results suggest that projected sea-level rise will have significant impacts on marsh plant communities and obligate wildlife, including those already under federal and state protection. Comprehensive modeling as done here improves the potential to implement adaptive management strategies and prevent marsh habitat and wildlife loss in the future.

  17. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels

    PubMed Central

    Cadol, Daniel; Elmore, Andrew J.; Guinn, Steven M.; Engelhardt, Katharina A. M.; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested. PMID:27788209

  18. Modeled Tradeoffs between Developed Land Protection and Tidal Habitat Maintenance during Rising Sea Levels.

    PubMed

    Cadol, Daniel; Elmore, Andrew J; Guinn, Steven M; Engelhardt, Katharina A M; Sanders, Geoffrey

    2016-01-01

    Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested.

  19. Relative value of managed wetlands and tidal marshlands for wintering northern pintails

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.

    2012-01-01

    Northern pintail Anas acuta (hereafter, pintail) populations have declined substantially throughout the western US since the 1970s, largely as a result of converting wetlands to cropland. Managed wetlands have been developed throughout the San Francisco Bay estuaries to provide wildlife habitat, particularly for waterfowl. Many of these areas were historically tidal baylands and plans are underway to remove dikes and restore tidal action. The relationship between tidal baylands and waterfowl populations is poorly understood. Our objective was to provide information on selection and avoidance of managed and tidal marshland by pintails. During 1991–1993 and 1998–2000, we radio-marked and relocated 330 female pintails (relocations, n =11,574) at Suisun Marsh, the largest brackish water estuary within San Francisco Bay, to estimate resource selection functions during the nonbreeding months (winter). Using a distance-based modeling approach, we calculated selection functions for different ecological communities (e.g., tidal baylands) and investigated variation explained by time of day (day or night hours) to account for differences in pintail behavior (i.e., foraging vs. roosting). We found strong evidence for selection of managed wetlands. Pintails also avoided tidal marshes and bays and channels. We did not detect differences in selection function between day and night hours for managed wetlands but the degree of avoidance of other habitats varied by time of day. We also found that areas subjected to tidal action did not influence the selection of immediately adjacent managed wetlands. If current management goals include providing habitat for wintering waterfowl populations, particularly pintail, then we recommend wildlife managers focus tidal restoration on areas that are not currently managed wetland and/or improve conditions in areas of managed wetlands to increase local carrying capacities

  20. Lead residues in sora rails from Maryland

    USGS Publications Warehouse

    Stendell, Rey C.; Artmann, Joseph W.; Martin, Elwood

    1980-01-01

    During September and October, mi- grating sora rails (Porzana carolina) use tidal marshes of the Patuxent River in Maryland, where they have been hunted for many years. Spent shot accumulates in the marsh during the rail hunting sea- son, and some shot is ingested by the birds. Twelve percent of gizzards from rails collected at the marsh during 1965- 73 contained lead shot (Artmann and Martin 1975). Effects of ingested lead on waterfowl are well documented (Bellrose 1959), although effects on other species of wild birds are not well known. In this note we report lead residues in liver and bone tissues of sora rails collected at the Patuxent River marshes in 1976.

  1. Identifying important spatial and temporal scales and patterns of soil properties in a tidal saltmarsh situated in a mixed red alder and Douglas fir watershed

    EPA Science Inventory

    Sea level rise is expected to drive a loss in salt marsh area and a change in marsh habitat composition, potentially leading to changes in the nitrogen source/sink dynamics of these systems. Estuaries in the Pacific Northwest might be particularly vulnerable to the effect of sal...

  2. Holocene sea-level changes in the Falkland Islands

    NASA Astrophysics Data System (ADS)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike

    2014-05-01

    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above present sea level. RSL then fell slowly during the middle and late Holocene, eroding the elevated tidal flat deposits in places, and allowing development of thin salt marsh deposits and encroachment of freshwater marsh. Our new sea-level index points are roughly in agreement with GIA model predictions but place tight constraints on the timing of early Holocene RSL rise and the height and timing of the maximum Holocene RSL position.

  3. Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary.

    PubMed

    Guo, Hongyu; Pennings, Steven C

    2012-01-01

    Understanding of how plant communities are organized and will respond to global changes requires an understanding of how plant species respond to multiple environmental gradients. We examined the mechanisms mediating the distribution patterns of tidal marsh plants along an estuarine gradient in Georgia (USA) using a combination of field transplant experiments and monitoring. Our results could not be fully explained by the "competition-to-stress hypothesis" (the current paradigm explaining plant distributions across estuarine landscapes). This hypothesis states that the upstream limits of plant distributions are determined by competition, and the downstream limits by abiotic stress. We found that competition was generally strong in freshwater and brackish marshes, and that conditions in brackish and salt marshes were stressful to freshwater marsh plants, results consistent with the competition-to-stress hypothesis. Four other aspects of our results, however, were not explained by the competition-to-stress hypothesis. First, several halophytes found the freshwater habitat stressful and performed best (in the absence of competition) in brackish or salt marshes. Second, the upstream distribution of one species was determined by the combination of both abiotic and biotic (competition) factors. Third, marsh productivity (estimated by standing biomass) was a better predictor of relative biotic interaction intensity (RII) than was salinity or flooding, suggesting that productivity is a better indicator of plant stress than salinity or flooding gradients. Fourth, facilitation played a role in mediating the distribution patterns of some plants. Our results illustrate that even apparently simple abiotic gradients can encompass surprisingly complex processes mediating plant distributions.

  4. Vegetation recovery in an oil-impacted and burned Phragmites australis tidal freshwater marsh.

    PubMed

    Zengel, Scott; Weaver, Jennifer; Wilder, Susan L; Dauzat, Jeff; Sanfilippo, Chris; Miles, Martin S; Jellison, Kyle; Doelling, Paige; Davis, Adam; Fortier, Barret K; Harris, James; Panaccione, James; Wall, Steven; Nixon, Zachary

    2018-01-15

    In-situ burning of oiled marshes is a cleanup method that can be more effective and less damaging than intrusive manual and mechanical methods. In-situ burning of oil spills has been examined for several coastal marsh types; however, few published data are available for Phragmites australis marshes. Following an estimated 4200gallon crude oil spill and in-situ burn in a Phragmites tidal freshwater marsh at Delta National Wildlife Refuge (Mississippi River Delta, Louisiana), we examined vegetation impacts and recovery across 3years. Oil concentrations in marsh soils were initially elevated in the oiled-and-burned sites, but were below background levels within three months. Oiling and burning drastically affected the marsh vegetation; the formerly dominant Phragmites, a non-native variety in our study sites, had not fully recovered by the end of our study. However, overall vegetation recovery was rapid and local habitat quality in terms of native plants, particularly Sagittaria species, and wildlife value was enhanced by burning. In-situ burning appears to be a viable response option to consider for future spills in marshes with similar plant species composition, hydrogeomorphic settings, and oiling conditions. In addition, likely Phragmites stress from high water levels and/or non-native scale insect damage was also observed during our study and has recently been reported as causing widespread declines or loss of Phragmites stands in the Delta region. It remains an open question if these stressors could lead to a shift to more native vegetation, similar to what we observed following the oil spill and burn. Increased dominance by native plants may be desirable as local patches, but widespread loss of Phragmites, even if replaced by native species, could further acerbate coastal erosion and wetland loss, a major concern in the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Salt Marsh development studies at Waquoit Bay, Massachusetts: Influence of geomorphology on long-term plant community structure

    NASA Astrophysics Data System (ADS)

    Orson, Richard A.; Howes, Brian L.

    1992-11-01

    Stochastic events relating to beach formation and inlet dynamics have been the major factors influencing the development of the Waquoit Bay tidal marshes. This results from the physical structure of the Waquoit Bay system where tidal exchange is limited to one or two small inlets and is in contrast to marsh development in nearby Barnstable Marsh where direct unrestricted exchange with Cape Cod Bay has smoothed the effects of stochastic events on vegetation development. We contend that vegetation development in salt marshes where connections to adjacent waters are restricted will be dominated by abiotic factors (e.g. storms, sedimentation rates, etc.) while those marshes directly linked to open bodies of water and where alterations to hydrodynamic factors are gradual, autecological processes (e.g. interspecific competition) will dominate long-term plant community development. The results from the five marsh systems within the Waquoit Bay complex suggest that once a vegetation change occurs the new community tended to persist for long periods of time (100's-1000's years). Stability of the 'new' community appeared to depend upon the stability of the physical structure of the system and/or time between perturbations necessary to allow the slower autecological processes to have a discernable effect. In order for the plant community to persist as long as observed, the vegetation must also be exerting an influence on the processes of development. Increased production of roots and rhizomes and growth characteristics (density of culms) are some of the factors which help to maintain long-term species dominance. It is clear from this investigation that the structure of the plant community at any one point in time is dependent upon numerous factors including historical developmental influences. To properly assess changes to the present plant community or determine recent rates of accretion, historic developmental trends must be considered. The factors that have influenced the development of marsh in the past will be important in understanding and formulating predictive models in the future.

  6. Analysis of the deconstruction of Dyke Marsh, George Washington Memorial Parkway, Virginia-Progression, geologic and manmade causes, and effective restoration scenarios

    USGS Publications Warehouse

    Litwin, Ronald J.; Smoot, Joseph P.; Pavich, Milan J.; Markewich, Helaine W.; Oberg, Erik; Helwig, Ben; Steury, Brent; Santucci, Vincent L.; Durika, Nancy J.; Rybicki, Nancy B.; Engelhardt, Katharina M.; Sanders, Geoffrey; Verardo, Stacey; Elmore, Andrew J.; Gilmer, Joseph

    2011-01-01

    Photoanalysis of time-sequence aerial photographs of Dyke Marsh enabled us to calculate shoreline erosion estimates for this marsh over 19 years (1987-2006), as well as to quantify overall marsh acreage for 6 calendar years spanning an ~70 year interval (1937-2006). Photo overlay of a historic map enabled us to extend our whole-marsh acreage calculations back to 1883. Both sets of analyses were part of a geologic framework study in support of current efforts by the National Park Service (NPS) to restore this urban wetland. Two time intervals were selected for our shoreline erosion analyses, based on image quality and availability: 1987 to 2002, and 2002 to 2006. The more recent time interval shows a marked increase in erosion in the southern part of Dyke Marsh, following a wave-induced breach of a small peninsula that had protected its southern shoreline. Field observations and analyses of annual aerial imagery between 1987 and 2006 revealed a progressive increase in wave-induced erosion that presently is deconstructing Hog Island Gut, the last significant tidal creek network within the Dyke Marsh. These photo analyses documented an overall average westward shoreline loss of 6.0 to 7.8 linear feet per year along the Potomac River during this 19-year time interval. Additionally, photographic evidence documented that lateral erosion now is capturing existing higher order tributaries in the Hog Island Gut. Wave-driven stream piracy is fragmenting the remaining marsh habitat, and therefore its connectivity, relatively rapidly, causing the effective mouth of the Hog Island Gut tidal network to retreat headward visibly over the past several decades. Based on our estimates of total marsh area in the Dyke Marsh derived from 1987 aerial imagery, as much as 12 percent of the central part of the marsh has eroded in the 19 year period we studied (or ~7.5 percent of the original ~78.8 acres of 1987 marshland). Shoreline loss estimates for marsh parcels north and south of our study area have not yet been analyzed, although annual aerial photos from 1987 to 2002 confirm visible progressive shoreline loss in those areas over this same time interval.

  7. Ecology of tidal freshwater forests in coastal deltaic Louisiana and northeastern South Carolina: Chapter 9

    USGS Publications Warehouse

    Conner, William H.; Krauss, Ken W.; Doyle, Thomas W.

    2007-01-01

    Tidal freshwater swamps in the southeastern United States are subjected to tidal hydroperiods ranging in amplitude from microtidal (<0.1 m) to mesotidal (2-4 m), both having different susceptibilities to anthropogenic change. Small alterations in flood patterns, for example, can switch historically microtidal swamps to permanently flooded forests, scrub-shrub stands, marsh, or open water but are less likely to convert mesotidal swamps. Changes to hydrological patterns tend to be more noticeable in Louisiana than do those in South Carolina.The majority of Louisiana’s coastal wetland forests are found in the Mississippi River deltaic plain region. Coastal wetland forests in the deltaic plain have been shaped by the sediments, water, and energy of the Mississippi River and its major distributaries. Baldcypress (Taxodium distichum [L.] L.C. Rich.) and water tupelo (Nyssa aquatica L.) are the primary tree species in the coastal swamp forests of Louisiana. Sites where these species grow usually hold water for most of the year; however, some of the more seaward sites were historically microtidal, especially where baldcypress currently dominates. In many other locations, baldcypress and water tupelo typically grow in more or less pure stands or as mixtures of the two with common associates such as black willow (Salix nigra Marsh.), red maple (Acer rubrum L.), water locust (Gleditsia aquatic Marsh.), overcup oak (Quercus lyrata Walt.), water hickory (Carya aquatica [Michx. f.] Nutt.), green ash (Fraxinus pennsylvanica Marsh.), pumpkin ash (F. profunda Bush.), and redbay (Persea borbonia [L.] Sprengel) (Brown and Montz 1986).The South Carolina coastal plain occupies about two-thirds of the state and rises gently to 150 m from the Atlantic Ocean up to the Piedmont plateau. Many rivers can be found in the Coastal Plain with swamps near the coast that extend inland along the rivers. Strongly tidal freshwater forests occur along the lower reaches of redwater rivers (Santee, Great Pee Dee, and Savannah) that arise in the mountains and along the numerous blackwater rivers (Ashepoo, Combahee, Cooper, and Waccamaw) that arise in the coastal regions. Most of the tidal freshwater forests were converted to tidal rice fields in the 1700s (Porcher 1995). Canopy members of the present day forests include baldcypress, water tupelo, swamp tupelo (N. biflora Walt.), red maple, and Carolina ash (Fraxinus caroliniana Miller). Subcanopy and shrub species include Virginia sweetspire (Itea virginica L.), dwarf palmetto (Sabal minor (Jacquin) Pers.), coastal plain willow (Salix caroliniana Michx.), redbay, and water-elm (Planera aquatica Gmel.).

  8. Structure and vulnerability of Pacific Northwest tidal wetlands – A summary of wetland climate change research by the Western Ecology Division, U.S. EPA

    USGS Publications Warehouse

    Folger, Christina L; Lee, Henry; Janousek, Christopher N.; Reusser, Deborah A.

    2014-01-01

    Climate change poses a serious threat to the tidal wetlands of the Pacific Northwest (PNW) region of the U.S. In response to this threat, scientists at the Western Ecology Division of the U.S. EPA at and the Western Fisheries Research Center of the U.S. Geological Survey, along with other partners, initiated a series of studies on the structure and vulnerability of tidal wetlands to climate change. One research thrust was to evaluate community structure of PNW marshes, experimentally assess the vulnerability of marsh plants to inundation and salinity stress (as would happen with sea level rise), and evaluate the utility of the National Wetland Inventory (NWI) classification system. Another research thrust was to develop tools that provide insights into possible impacts of climate change. This effort included enhancing the Sea Level Affecting Marshes Model (SLAMM) to predict the effects of sea level rise on submerged aquatic vegetation (Zostera marina) distributions, evaluating changes in river flow into coastal estuaries in response to precipitation changes, and synthesizing Pacific Coast estuary, watershed, and climate data in a downloadable tool. Because the research resulting from these efforts was published in multiple venues, we summarized them in this document. We anticipate that future research efforts by the U.S. EPA will continue with a focus on climate change impacts on a regional scale.

  9. Expansion of Phragmites australis alters methane dynamics and methanogen, methanotroph, and sulfate reducing bacteria communities in tidal marsh in Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, J.; Kim, H.; Gauhar, M.; Kang, H.

    2016-12-01

    Plant invasion is known to change substantially methane dynamics in tidal marshes. However, the exact mechanisms related to methane dynamics change due to plant invasion have not been fully understood. In Suncheon Bay, South Korea, Phragmites australis has invaded the habitat of native species, Suaeda japonica, and becomes dominant vegetation in this area. We measured methane fluxes, soil biogeochemistry, and microbial communities from both vegetation sites throughout a growing season and conducted a chronosequence analysis in order to illustrate the effect of plant invasion on methane dynamics and microbial communities. For analyzing microbial communities, we collected 1m intact soil cores and conducted functional gene-targeted real-time qPCR, T-RFLP, and PLFA. P. australis invasion significantly increased methane emission in a summer season, accompanied by greater dissolved organic carbon and soil water content. Methanogen, methanotroph, and sulfate reducing bacterial communities were gradually changed along with the invasion periods. In particular, abundances ratio of mcrA/pmoA and mcrA/dsrA had a positive correlation with methane emission, which indicates that P. australis invasion reduces methane oxidation by methanotroph, and competitive inhibition between methanogen and sulfate reducing bacteria. In conclusion, P. australis invasion on S. japonica significantly increased methane emission in tidal marsh by altering the microbial communities in a way that C decomposition would be dominated by methanogenesis.

  10. California Black Rail (Laterallus jamaicensis coturniculus) Distribution and Abundance in Relation to Habitat and Landscape Features in the San Francisco Bay Estuary

    Treesearch

    Hildie Spautz; Nadav Nur; Diana Stralberg

    2005-01-01

    The majority of California Black Rails (Laterallus jamaicensis coturniculus; >90 percent) are found in the tidal salt marshes of the northern San Francisco Bay region, primarily in San Pablo and Suisun Bays (Manolis 1978, Evens et al. 1991). Smaller populations occur in San Francisco Bay, the Outer Coast of Marin County, freshwater marshes in the foothills of...

  11. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary

    NASA Astrophysics Data System (ADS)

    Stark, J.; Smolders, S.; Meire, P.; Temmerman, S.

    2017-11-01

    Marsh restoration projects are nowadays being implemented as ecosystem-based strategies to reduce flood risks and to restore intertidal habitat along estuaries. Changes in estuarine tidal hydrodynamics are expected along with such intertidal area changes. A validated hydrodynamic model of the Scheldt Estuary is used to gain fundamental insights in the role of intertidal area characteristics on tidal hydrodynamics and tidal asymmetry in particular through several geomorphological scenarios in which intertidal area elevation and location along the estuary is varied. Model results indicate that the location of intertidal areas and their storage volume relative to the local tidal prism determine the intensity and reach along the estuary over which tidal hydrodynamics are affected. Our model results also suggest that intertidal storage areas that are located within the main estuarine channel system, and hence are part of the flow-carrying part of the estuary, may affect tidal hydrodynamics differently than intertidal areas that are side-basins of the main estuarine channel, and hence only contribute little to the flow-carrying cross-section of the estuary. If tidal flats contribute to the channel cross-section and exert frictional effects on the tidal propagation, the elevation of intertidal flats influences the magnitude and direction of tidal asymmetry along estuarine channels. Ebb-dominance is most strongly enhanced if tidal flats are around mean sea level or slightly above. Conversely, flood-dominance is enhanced if the tidal flats are situated low in the tidal frame. For intertidal storage areas at specific locations besides the main channel, flood-dominance in the estuary channel peaks in the vicinity of those areas and generally reduces upstream and downstream compared to a reference scenario. Finally, the model results indicate an along-estuary varying impact on the tidal prism as a result of adding intertidal storage at a specific location. In addition to known effects of tidal prism decrease upstream and tidal prism increase downstream of additional storage areas, our model results indicate a reduction in tidal prism far downstream of intertidal storage areas as a result of a decreasing tidal range. This study may assist estuarine managers in assessing the impact of marsh restoration and managed shoreline realignment projects, as well as with the morphological management of estuaries through dredging and disposal of sediment on intertidal areas.

  12. High marsh foraminiferal assemblages' response to intra-decadal and multi-decadal precipitation variability, between 1934 and 2010 (Minho, NW Portugal)

    NASA Astrophysics Data System (ADS)

    Fatela, Francisco; Moreno, João; Leorri, Eduardo; Corbett, Reide

    2014-10-01

    Foraminiferal assemblages of Caminha tidal marshes have been studied since 2002 revealing a peculiar dominance of brackish species, such as Haplophragmoides manilaensis, Haplophragmoides wilberti, Haplophragmoides sp., Pseudothurammina limnetis and Trochamminita salsa/irregularis in the high marshes of the Minho and the Coura lower estuaries. The assemblage composition reflects low salinity conditions, despite the short distance to the estuarine mouth (~ 4 km). However, in May 2010, the presence of salt marsh species Trochammina inflata and Jadammina macrescens became very significant, likely a result of 5 consecutive dry years and a corresponding salinity rise in sediment pore water. Correspondence analysis (CA) groups the surface samples according to their marsh zone, showing a positive correlation with the submersion time of each sampling point. The brackish and normal salinity foraminiferal species appear separated in the CA. This observation was applied to the top 10 cm of a high marsh sediment core that corresponds to the period of instrumental record of precipitation and river flow in the Minho region. We found that river flow strongly correlates with precipitation in the Lima and Minho basins. The longer precipitation record was, therefore, used to interpret the foraminiferal assemblages' variability. Three main phases were distinguished along ca. 80 years of precipitation data: 1) negative anomalies from 1934 to 1957; 2) positive anomalies from 1958 to 1983; and 3) negative anomalies from 1984 to 2010. This last dryer period exhibits the precipitation maximum and the greatest amplitude of rainfall values. High marsh foraminifera reveals a fast response to these short-term shifts; low salinity species relative abundance increases when precipitation increases over several decades, as well as in the same decade, in the years of heavy rainfall of dryer periods. High marsh foraminifera records the increase of freshwater flooding and seepage by 1) decreasing abundance and 2) increasing the dominance of low salinity species. On the other hand, low precipitation over ca. 5 years increases the assemblage productivity and the relative abundance of normal salinity species. The positive correlation found between winter precipitation and the NAO winter index indicates that the Minho region is a part of the North Atlantic climate dynamics and demonstrates that the foraminiferal record from Caminha high marsh may be applied in high-resolution studies of SW Europe climate evolution.

  13. Groundwater response to the tide in wetlands: Observations from the Gillman Marshes, South Australia

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; Narayan, Kumar A.

    2009-09-01

    We present results from a series of piezometers installed in the foreshore flat and mangrove environments of the Gillman Marshes, South Australia in an interdisciplinary study of the propagation of the ocean tide into the coastal aquifers. A unique feature of the analysis is that all water level records were harmonically analysed so that the behaviour of the four major tidal constituents could be independently examined. The main findings were that: (1) the decay of the groundwater tide in the coastal aquifers was greater than that predicted by the Ferris solution. A theoretical model has been developed and applied to the study site. The model suggests that this behaviour is due to the occurrence of a time delay in the Darcian response in the shelly and muddy sand substrate; (2) when the tide is incident over a gently sloping bank, the time delay in response gives rise to a spiked signal in which high water is confined to a small fraction of the tidal cycle; and (3) at the coastal interface tidal propagation across a sloping bank causes a rise in the water table relative to mean sea level which is proportional to the variance of tidal elevation and inversely proportional to the decay constant of the groundwater tide. The model developed in this study is also applicable to other coastal groundwater systems with tidal influence.

  14. Effect of environmental conditions on variation in the sediment-water interface created by complex macrofaunal burrows on a tidal flat

    NASA Astrophysics Data System (ADS)

    Koo, Bon Joo; Kwon, Kae Kyoung; Hyun, Jung-Ho

    2007-11-01

    We quantified the increase in the sediment-water interface created by the burrowing activities of the resident macrofaunal community and its variation with respect to the physical conditions of the habitat on a tidal fat. We investigated environmental factors and dimensions of macrofaunal burrows with respect to tidal height and vegetation during spring and summer at three sites. A resin-casting method was used to quantify the dimensions of all burrows at each site. The dimensions of macrofaunal burrows varied both temporally and spatially and the increase in the sediment-water interface reached a maximum of 311%, ranging from 20 to 255% under different habitat conditions. The sediment-water interface depended on the duration of exposure resulting from tidal height, increased temperatures resulting from seasonality, and marsh plant density. Burrows were deeper and more expansive at both higher tidal levels and higher temperatures in summer. Burrow dimensions were sharply reduced with the disappearance of adult macrofauna in areas where the roots of the marsh plant Suaeda japonica were dense. The significance of this study lies in quantifying the burrow dimensions of the entire macrofaunal community, rather than just a single population, and confirming their spatial and temporal variation with respect to physical conditions of the habitat. Environmental factors responsible for variation in burrow dimensions are discussed.

  15. Plant-plant interactions in a subtropical mangrove-to-marsh transition zone: effects of environmental drivers

    USGS Publications Warehouse

    Howard, Rebecca J.; Krauss, Ken W.; Cormier, Nicole; Day, Richard H.; Biagas, Janelda M.; Allain, Larry K.

    2015-01-01

    Questions Does the presence of herbaceous vegetation affect the establishment success of mangrove tree species in the transition zone between subtropical coastal mangrove forests and marshes? How do plant–plant interactions in this transition zone respond to variation in two primary coastal environmental drivers? Location Subtropical coastal region of the southern United States. Methods We conducted a greenhouse study to better understand how abiotic factors affect plant species interactions in the mangrove-to-marsh transition zone, or ecotone. We manipulated salinity (fresh, brackish or salt water) and hydrologic conditions (continuously saturated or 20-cm tidal range) to simulate ecotonal environments. Propagules of the mangroves Avicennia germinans and Laguncularia racemosa were introduced to mesocosms containing an established marsh community. Both mangrove species were also introduced to containers lacking other vegetation. We monitored mangrove establishment success and survival over 22 mo. Mangrove growth was measured as stem height and above-ground biomass. Stem height, stem density and above-ground biomass of the dominant marsh species were documented. Results Establishment success of A. germinans was reduced under saturated saltwater conditions, but establishment of L. racemosa was not affected by experimental treatments. There was complete mortality of A. germinans in mesocosms under freshwater conditions, and very low survival of L. racemosa. In contrast, survival of both species in monoculture under freshwater conditions exceeded 62%. The marsh species Distichlis spicata and Eleocharis cellulosa suppressed growth of both mangroves throughout the experiment, whereas the mangroves did not affect herbaceous species growth. The magnitude of growth suppression by marsh species varied with environmental conditions; suppression was often higher in saturated compared to tidal conditions, and higher in fresh and salt water compared to brackish water. Conclusions Our results indicate that herbaceous marsh species can suppress mangrove early seedling growth. Depending on species composition and density, marsh plants can slow mangrove landward migration under predicted climate change scenarios as salinity in freshwater and oligohaline wetlands increases with rising sea levels. Change in the relative coverage of mangrove forests and marshes will depend on both the ability of marsh species to migrate further inland as mangroves advance, and the ability of shoreline mangroves to adjust to rising sea level through accretionary processes.

  16. Annual and seasonal distribution of intertidal foraminifera and stable carbon isotope geochemistry, Bandon Marsh, Oregon, USA

    USGS Publications Warehouse

    Milker, Yvonne; Horton, Benjamin; Vane, Christopher; Engelhart, Simon; Nelson, Alan R.; Witter, Robert C.; Khan, Nicole S.; Bridgeland, William

    2014-01-01

    We investigated the influence of inter-annual and seasonal differences on the distribution of live and dead foraminifera, and the inter-annual variability of stable carbon isotopes (d13C), total organic carbon (TOC) values and carbon to nitrogen (C/N) ratios in bulk sediments from intertidal environments of Bandon Marsh (Oregon, USA). Living and dead foraminiferal species from 10 stations were analyzed over two successive years in the summer (dry) and fall (wet) seasons. There were insignificant inter-annual and seasonal variations in the distribution of live and dead species. But there was a noticeable decrease in calcareous assemblages (Haynesina sp.) between live populations and dead assemblages, indicating that most of the calcareous tests were dissolved after burial; the agglutinated assemblages were comparable between constituents. The live populations and dead assemblages were dominated by Miliammina fusca in the tidal flat and low marsh, Jadammina macrescens, Trochammina inflata and M. fusca in the high marsh, and Trochamminita irregularis and Balticammina pseudomacrescens in the highest marsh to upland. Geochemical analyses (d13C, TOC and C/N of bulk sedimentary organic matter) show no significant influence of inter-annual variations but a significant correlation of d13C values (R = 20.820, p , 0.001), TOC values (R = 0.849, p , 0.001) and C/N ratios (R = 0.885, p , 0.001) to elevation with respect to the tidal frame. Our results suggest that foraminiferal assemblages and d13C and TOC values, as well as C/N ratios, in Bandon Marsh are useful in reconstructing paleosea-levels on the North American Pacific coast.

  17. A precise vertical network: Establishing new orthometric heights with static surveys in Florida tidal marshes

    USGS Publications Warehouse

    Raabe, E.A.; Stumpf, R.P.; Marth, N.J.; Shrestha, R.L.

    1996-01-01

    Elevation differences on the order of 10 cm within Florida's marsh system influence major variations in tidal flooding and in the associated plant communities. This low elevation gradient combined with sea level fluctuation of 5-to-10 cm over decadel and longer periods can generate significant alteration and erosion of marsh habitats along the Gulf Coast. Knowledge of precise and accurate elevations in the marsh is critical to the efficient monitoring and management of these habitats. Global positioning system (GPS) technology was employed to establish six new orthometric heights along the Gulf Coast from which kinematic surveys into the marsh interior are conducted. The vertical accuracy achieved using GPS technology was evaluated using two networks with 16 vertical and nine horizontal NGS published high accuracy positions. New positions were occupied near St. Marks National Wildlife Refuge and along the coastline of Levy County and Citrus County. Static surveys were conducted using four Ashtech dual frequency P-code receivers for 45-minute sessions and a data logging rate of 10 seconds. Network vector lengths ranged from 4 to 64 km and, including redundant baselines, totaled over 100 vectors. Analysis includes use of the GEOID93 model with a least squares network adjustment and reference to the National Geodetic Reference System (NGRS). The static surveys show high internal consistency and the desired centimeter-level accuracy is achieved for the local network. Uncertainties for the newly established vertical positions range from 0.8 cm to 1.8 cm at the 95% confidence level. These new positions provide sufficient vertical accuracy to achieve the project objectives of tying marsh surface elevations to long-term water level gauges recording sea level fluctuations along the coast.

  18. White willow sexual regeneration capacity under estuarine conditions in times of climate change

    NASA Astrophysics Data System (ADS)

    Markus-Michalczyk, Heike; Hanelt, Dieter; Denstorf, Julian; Jensen, Kai

    2016-10-01

    Tidal wetlands provide both habitats for coastal populations and wildlife, and ecosystem services for human welfare. Building with nature regarding cost-effective coastal protection is of increasing interest. Much research has been carried out on plant reproduction capacities in mangroves and salt marshes, but less is known on this issue in tidal freshwater wetlands. Willows are being successfully used for bank stabilization in riverine habitats, however, today white willow softwood forests in tidal wetlands are highly fragmented, and restoration is required e.g. by the European Habitats Directive. Recently, tolerance to increasing salinity and tidal flooding was found for vegetative propagules of floodplain willows. However, the establishment of autochthonous sexual recruits is necessary to conserve the genetic diversity of local populations, and thus may be preferable in restoration. The germination and early seedling establishment of Salix alba (white willow) was experimentally studied under simulated estuarine conditions. The species tolerance to increasing salinity (0, 0.5, 1, 1.5, and 2) was tested in a climate chamber, and its tolerance to flooding at different tidal treatments (control, spring tide, daily tide 15 min and 2 h flooding) in the greenhouse. Germination was neither affected by increasing salinity nor by tidal flooding. Salix seedlings established up to salinity 1.5, but cotyledon performance and radicle growth was largely reduced at salinity 2. Under tidal flooding, seedling growth was similar in all treatments. However, in the treatments with daily tides seedling anchorage in the substrate took more than two weeks, and fewer seedlings reached a suitable length to approach the high water line. We assess S. alba sexual regeneration under estuarine conditions as generally possible. Further studies are needed on the effects of sedimentation-erosion processes on willow establishment in the field, especially on feedbacks between Salix survival and tidal wetland evolution.

  19. Atlantic Intracoastal Waterway (AIWW) Maintenance Program Evaluation Study.

    DTIC Science & Technology

    1983-01-01

    offset by rising sea levels. Few plant species can withstand the stress imposed by high salinity and daily inundation by tidal waters, and marsh...related to gradients in salinity and elevation. 7 K-e--.2 The wetlands through which the Atlantic intracoastal Water-day passes are fEeding and nursery...with wetland plant species dominated by salt marsh cotdgra-,s (Spartina alterniflora) in saline areas and giant cordgrass (Spar ti:: cynosurrides) in

  20. Factors controlling denitrification rates of tidal mudflats and fringing salt marshes in south-west England

    NASA Astrophysics Data System (ADS)

    Koch, M. S.; Maltby, E.; Oliver, G. A.; Bakker, S. A.

    1992-05-01

    Denitrification rates were determined utilizing the acetylene blockage technique at three sites: upper mudflat, lower mudflat, and Halimione portulacoides marsh on the fringing wetlands of the Torridge River Estuary in South-west England. Denitrification rates were calculated from nitrous oxide (N 2O) production each month for 1 year with intact sediment cores extracted at low tide (0-5 cm). In the lower and upper mudflat sites denitrification rates were low ranging from 0·52 to 5·78 μmol and 1·28 to 4·36 μmol N 2 m -2 h -1, respectively. Denitrification rates in marsh sediments were consistently higher than those of the mudflat ranging from 2·51 to 59·00 μmol N 2 m -2 h -1. Amending river water to sediment cores stimulated lower and upper mudflat denitrification rates approximately 10-fold up to 106·39 and 96·73 μmol N 2 m -2 h -1, respectively. In marsh sediments, a two-fold increase in denitrification was found with river water amended resulting in a maximum rate of 114·80 μmol N 2 m -2 h -1. During the winter months, when riverine NO 3-N levels were at a maximum (2·47 to 2·93 mg l -1), denitrification rates were highest (75·24 to 114·99 μmol N 2 m -2 h -1) and conversely, during the summer both NO 3-N concentrations (1·0 to 1·70 mg l -1) and denitrification (0·95 to 37·38 μmol N 2 m -2 h -1) rates were at a minimum. Mudflat sediment redox potentials (Eh), within the theoretical range of NO 3-1 instability, were limited to the upper 5 mm, thus maximum denitrification rates may be restricted to the sediment surface. When calculating annual denitrification rates in tidal estuaries several factors should be considered including: seasonal NO 3-1 concentrations in tidal water, tidal flooding duration and amplitude, and the depth of the aerobic/anaerobic zone of the sediment.

  1. Periodicity in stem growth and litterfall in tidal freshwater forested wetlands: influence of salinity and drought on nitrogen recycling

    USGS Publications Warehouse

    Cormier, Nicole; Krauss, Ken W.; Conner, William H.

    2013-01-01

    Many tidally influenced freshwater forested wetlands (tidal swamps) along the south Atlantic coast of the USA are currently undergoing dieback and decline. Salinity often drives conversion of tidal swamps to marsh, especially under conditions of regional drought. During this change, alterations in nitrogen (N) uptake from dominant vegetation or timing of N recycling from the canopy during annual litter senescence may help to facilitate marsh encroachment by providing for greater bioavailable N with small increases in salinity. To monitor these changes along with shifts in stand productivity, we established sites along two tidal swamp landscape transects on the lower reaches of the Waccamaw River (South Carolina) and Savannah River (Georgia) representing freshwater (≤0.1 psu), low oligohaline (1.1–1.6 psu), and high oligohaline (2.6–4.1 psu) stands; the latter stands have active marsh encroachment. Aboveground tree productivity was monitored on all sites through monthly litterfall collection and dendrometer band measurements from 2005 to 2009. Litterfall samples were pooled by season and analyzed for total N and carbon (C). On average between the two rivers, freshwater, low oligohaline, and high oligohaline tidal swamps returned 8,126, 3,831, and 1,471 mg N m−2 year−1, respectively, to the forest floor through litterfall, with differences related to total litterfall volume rather than foliar N concentrations. High oligohaline sites were most inconsistent in patterns of foliar N concentrations and N loading from the canopy. Leaf N content generally decreased and foliar C/N generally increased with salinization (excepting one site), with all sites being fairly inefficient in resorbing N from leaves prior to senescence. Stands with higher salinity also had greater flood frequency and duration, lower basal area increments, lower tree densities, higher numbers of dead or dying trees, and much reduced leaf litter fall (103 vs. 624 g m−2 year−1) over the five study years. Our data suggest that alternative processes, such as the rate of decomposition and potential for N mineralization, on tidal swamp sites undergoing salinity-induced state change may be more important for controlling N biogeochemical cycling in soils than differences among sites in N loading via litterfall.

  2. A simple, inexpensive, and field-relevant microcosm tidal simulator for use in marsh macrophyte studies1

    PubMed Central

    MacTavish, Rachel M.; Cohen, Risa A.

    2014-01-01

    • Premise of the study: A microcosm unit with tidal simulation was developed to address the challenge of maintaining ecologically relevant tidal regimes while performing controlled greenhouse experiments on smooth cordgrass, Spartina alterniflora. • Methods and Results: We designed a simple, inexpensive, easily replicated microcosm unit with tidal simulation and tested whether S. alterniflora growth in microcosms with tidal simulation was similar to that of tidally influenced plants in the field on Sapelo Island, Georgia. After three months of exposure to either natural or simulated tidal treatment, plants in microcosms receiving tidal simulation had similar stem density, height, and above- and belowground biomass to plants in field plots. • Conclusions: The tidal simulator developed may provide an inexpensive, effective method for conducting studies on S. alterniflora and other tidally influenced plants in controlled settings to be used not only to complement field studies, but also in locations without coastal access. PMID:25383265

  3. Wetlands Commonwealth

    ERIC Educational Resources Information Center

    Davis, Millard C.

    1970-01-01

    Describes the varied animal and plant life of the rocky shore splash pools, salt marshes and tidal mud flats on the eastern coast of North America. Article includes photographs and drawings of biological specimens and plants. (LC)

  4. Prospective HyspIRI global observations of tidal wetlands

    USGS Publications Warehouse

    Kevin Turpie,; Victor Klemas,; Byrd, Kristin B.; Maggi Kelly,; Young-Heon Jo,

    2015-01-01

    Tidal wetlands are highly productive and act as critical habitat for a wide variety of plants, fish, shellfish, and other wildlife. These ecotones between aquatic and terrestrial environments also provide protection from storm damage, run-off filtering, and recharge of aquifers. Many wetlands along coasts have been exposed to stress-inducing alterations globally, including dredge and fill operations, hydrologic modifications, pollutants, impoundments, fragmentation by roads/ditches, and sea level rise. For wetland protection and sensible coastal development, there is a need to monitor these ecosystems at global and regional scales. Recent advances in satellite sensor design and data analysis are providing practical methods for monitoring natural and man-made changes in wetlands. However, available satellite remote sensors have been limited to mapping primarily wetland location and extent. This paper describes how the HyspIRI hyperspectral and thermal infrared sensors can be used to study and map key ecological properties, such as species composition, biomass, hydrology, and evapotranspiration of tidal salt and brackish marshes and mangroves, and perhaps other major wetland types, including freshwater marshes and wooded/shrub wetlands.

  5. High-Resolution Characterization of Intertidal Geomorphology by TLS

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Vettore, A.; Marani, M.

    2007-12-01

    Observational fluvial geomorphology has greatly benefited in the last decades from the wide availability of digital terrain data obtained by orthophotos and by means of accurate airborne laser scanner data (LiDAR). On the contrary, the spatially-distributed study of the geomorphology of intertidal areas, such as tidal flats and marshes, remains problematic owing to the small relief characterizing such environments, often of the order of a few tens of centimetres, i.e. comparable to the accuracy of state-of-the-art LiDAR data. Here we present the results of Terrestrial Laser Scanner (TLS) acquisitions performed within a tidal marsh in the Venice lagoon. The survey was performed using a Leica HDS 3000 TLS, characterized by a large Field of View (360 deg H x 270 deg V), a low beam divergence (< 6 mm at 50 m) and a nominal accuracy of 6 mm at 50 m. The acquisition was performed at low tide to avoid interferences due to water on the marsh surface and, to minimize shadowing effects due to the tilting of the laser beam (especially in the channel network), the scanner was mounted on a custom-built tripod 3 m above the marsh surface. The area of the marsh, about 100m x 150m, was fully surveyed by just 2 scans. A total amount of about 3 million points was acquired, with an average measurement density of 200 points/m2. In order to reconstruct the geometry of the marsh, the two scans were co-registered using 8 reflective targets as matching points. Such targets were placed within the area of interest and surveyed with high accuracy (2 mm), while their position in the Italian national grid was determined with a double-frequency GPS receiver, in order to georeference the point clouds within an absolute framework. Post-processing of the very high resolution data obtained shows that the laser returns coming from the low vegetation present (about 0.5-1.0 m high) can be satisfactorily separated from those coming from the marsh surface, allowing the construction of a DSM and a DTM. This is important e.g. in eco-geomorphic studies of intertidal environments, where conventional LiDAR technologies cannot easily separate first and last laser returns (because of the low vegetation height) and thus provide models of the surface as well as of the terrain. Furthermore, the DTM is shown to provide unprecedented characterizations of marsh morphology, e.g. regarding the cross-sectional properties of small-scale tidal creeks (widths of the order of 10 cm), previously observable only through conventional topographic surveys, thus not allowing a fully spatially-distributed description of their morphology.

  6. Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh.

    PubMed

    Johnston, Karina K; Dorsey, John H; Saez, Jose A

    2015-03-01

    Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.

  7. Carbon Dioxide and Methane Emissions from Diverse Zones of a California Salt Marsh

    NASA Astrophysics Data System (ADS)

    Wang, F.; King, J. Y.

    2016-12-01

    With high primary productivity and low organic matter decomposition rates, salt marshes sequester carbon from the atmosphere and contribute to mitigation of climate change. However, the role of wetlands in carbon sequestration is offset by CO2 and CH4 emissions whose magnitudes remain coarsely constrained. To better understand the spatiotemporal dynamics of gaseous carbon fluxes from marsh soils in a Mediterranean climate, we collected air and soil samples over the course of 10 months at Carpinteria Salt Marsh Reserve (CSMR) located in the County of Santa Barbara, California. The CSMR consists of four distinct zones characterized by differences in elevation, tidal regime, and vegetation. Twelve static chambers were deployed among two lower marsh zones, a salt flat, and a marsh-upland transition zone for fortnightly flux measurements from September, 2015 to May, 2016. In August, 2015 and June, 2016, soil cores up to 50 cm deep were extracted near the chambers, segmented by depth, and analyzed for soil moisture, bulk density, EC, pH, organic/inorganic carbon, and total nitrogen content. The gaseous carbon fluxes showed significant spatiotemporal variability, and soil properties differed noticeably by zone and by depth. Integrated over the study period, the marsh-upland transition zone had the highest CO2 fluxes at 292 g C/m2, followed closely by the lower marsh zones (271 g C/m2 and 189 g C/m2), which were one order of magnitude higher than the CO2 fluxes from the salt flat (23 g C/m2). Seasonally, CO2 fluxes were 2.5 to 3.5 times higher during the warmer months (Sept - Oct, Mar - May) than the colder months (Nov - Feb) across all zones. The CH4 fluxes were more temporally heterogeneous, but overall the CH4 emissions from the lower marsh zones (1.37 g C/m2 and 0.41 g C/m2) surpassed those from the salt flat (0.054 g C/m2) by an order of magnitude, and the marsh-upland transition zone was a net methane sink (-0.029 g C/m2). Our results show that soil gaseous carbon fluxes from a coastal salt marsh are highly dependent on the season and on the salt marsh zonation, the latter a likely result of elevation, tidal regime, and biotic influence. The complex nature of these gaseous carbon fluxes suggests the importance of considering wetland zonation in estimation of carbon gas exchange from wetlands at larger spatial scales.

  8. ERTS-1 investigation of wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (Principal Investigator); Carter, V.; Mcginness, J.

    1975-01-01

    The author has identified the following significant results. Data from aircraft can be used for large scale mapping where detailed information is necessary, whereas Landsat-1 data are useful for rapid mapping of gross wetland boundaries and vegetative composition and assessment of seasonal change plant community composition such as high and low growth forms of Spartina alterniflora, Juncus roemarianus, and Spartina cynosuroides. Spoil disposal and wetland ditching activities may also be defined. Wetland interpretation is affected by tidal stage; drainage patterns are more easily detected at periods of low water. Species discrimination is easier at periods of high water during the growing season; upper wetland boundaries in fresh water tidal marshes are more easily delineated during the winter months when marsh vegetation is largely dead or dormant. Fresh water discharges from coastal streams may be inferred from the species composition of contiguous wetlands.

  9. Soils and Vegetation of the Khaipudyr Bay Coast of the Barents Sea

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Deneva, S. V.; Panyukov, A. N.; Kubik, O. S.

    2018-04-01

    Soils and vegetation of the coastal zone of the Khaipudyr Bay of the Barents Sea have been examined and compared with analogous objects in the Karelian coastal zone of the White Sea. The environmental conditions of these two areas are somewhat different: the climate of the Khaipudyr Bay coast is more severe, and the seawater salinity is higher (32-33‰ in the Khaipudyr Bay and 25-26‰ in the White Sea). The soil cover patterns of both regions are highly variable. Salt-affected marsh soils (Tidalic Fluvisols) are widespread. The complicated mesotopography includes high geomorphic positions that are not affected by tidal water. Under these conditions, zonal factors of pedogenesis predominate and lead to the development of Cryic Folic Histosols and Histic Reductaquic Cryosols. On low marshes, the concentrations of soluble Ca2+, K+ + Na+, Cl-, and SO2- 4 ions in the soils of the Khaipudyr Bay coast are two to four times higher than those in the analogous soils of Karelian coast. Cluster analysis of a number of soil characteristics allows separation of three soils groups: soils of low marshes, soils of middle-high marshes, and soils of higher positions developing under the impact of zonal factors together with the aerial transfer and deposition of seawater drops. The corresponding plant communities are represented by coastal sedge cenoses, forb-grassy halophytic cenoses, and zonal cenoses of hypoarctic tundra. It is argued that the grouping of marsh soils in the new substantivegenetic classification system of Russian soils requires further elaboration.

  10. Transport and distribution of bacteria and diatoms in the aqueous surface micro-layer of a salt marsh

    USGS Publications Warehouse

    Harvey, Ronald W.; Lion, Leonard W.; Young, Lily Y.

    1983-01-01

    The effects of tide and wind upon the distribution and transport of bacteria and diatoms in the aqueous surface microlayers of a Massachusetts and San Francisco Bay salt marsh were examined. The compression of the surface films by both tide and wind resulted in significant enrichments of bacterioneuston. At the San Francisco Bay site, significant numbers of diatoms were transported within the microlayer over a tidal cycle.

  11. Growth of common brackish marsh macrophytes under altered hydrology and salinity regimes

    USGS Publications Warehouse

    Howard, Rebecca J.; Biagas, Janelda M.; Allain, Larry K.

    2016-01-01

    Coastal marsh plants are increasingly subject to physicochemical stressors under rising sea levels, and the maintenance of marsh ecological functions can depend on the ability of individual species and communities to tolerate or adapt to altered conditions. We conducted a greenhouse experiment to identify hydrology and salinity effects on growth of three common brackish marsh macrophytes of coastal Florida, USA: Distichlis spicata, Juncus roemerianus, and Spartina bakeri. The species were potted as monocultures and exposed to three salinities (0, 15, or 28 psu) and two hydrologic conditions (saturated, tidal) over 22 months. Final stem density of J. roemerianus and S. bakeri did not differ among treatments. In D. spicata, however, stem density was lowest at 28 psu and lower in tidal compared to saturated conditions. Mean stem height of all species was lowest at 28 psu. Aboveground biomass of J. roemerianus was not affected by the treatments, but in D. spicata andS. bakeri it was lowest at 28 psu. Results indicated that J. roemerianus was the most adaptable species and may, therefore, be more resilient to climate-change driven stressors. However, plant-plant interactions such as interspecific competition and facilitation can alter the response of individual species to environmental factors.

  12. A dynamic nitrogen budget model of a Pacific Northwest salt ...

    EPA Pesticide Factsheets

    The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspiration, and groundwater inputs, all of which can vary significantly on timescales ranging from sub-daily to seasonal. Additionally, many of these hydrologic drivers may vary with a changing climate. Due to this temporal variation in hydrology, it is difficult to represent salt marsh nitrogen budgets as steady-state models. A dynamic nitrogen budget model that varies based on hydrologic conditions may more accurately describe the role of salt marshes in nitrogen cycling. In this study we aim to develop a hydrologic model that is coupled with a process-based nitrogen model to simulate nitrogen dynamics at multiple temporal scales. To construct and validate our model we will use hydrologic and nitrogen species data collected from 2010 to present, from a 1.8 hectare salt marsh in the Yaquina Estuary, OR, USA. Hydrologic data include water table levels at two transects, upland tributary flow, tidal channel stage and flow, and vertical hydraulic head gradients. Nitrogen pool data include concentrations of nitrate and ammonium in porewater, tidal channel water, and extracted from soil cores. Nitrogen flux data include denitrification rates, nitrogen concentrations in upland runoff, and tida

  13. Marsh soils as potential sinks for Bacteroides fecal indicator bacteria, Waccamaw National Wildlife Refuge, Georgetown, SC, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Johnson, Heather E.; Duris, Joseph W.; Krauss, Ken W.

    2014-01-01

    A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a broad group of the fecal population. Three core sections from 0-3 cm, 9-12 cm and 30-33 were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0-3 cm: 2009; 9-12 cm: 1999, and 30-33 cm: 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  14. Ecological structure and function in a restored versus natural salt marsh

    PubMed Central

    Rezek, Ryan J.; Lebreton, Benoit; Sterba-Boatwright, Blair

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions. PMID:29261795

  15. Ecological structure and function in a restored versus natural salt marsh.

    PubMed

    Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.

  16. Importance of biogeomorphic and spatial properties in assessing a tidal salt marsh vulnerability to sea-level rise

    USGS Publications Warehouse

    Thorne, Karen M.; Elliott-Fisk, Deborah L.; Wylie, Glenn D.; Perry, William M.; Takekawa, John Y.

    2014-01-01

    We evaluated the biogeomorphic processes of a large (309 ha) tidal salt marsh and examined factors that influence its ability to keep pace with relative sea-level rise (SLR). Detailed elevation data from 1995 and 2008 were compared with digital elevation models (DEMs) to assess marsh surface elevation change during this time. Overall, 37 % (113 ha) of the marsh increased in elevation at a rate that exceeded SLR, whereas 63 % (196 ha) of the area did not keep pace with SLR. Of the total area, 55 % (169 ha) subsided during the study period, but subsidence varied spatially across the marsh surface. To determine which biogeomorphic and spatial factors contributed to measured elevation change, we collected soil cores and determined percent and origin of organic matter (OM), particle size, bulk density (BD), and distance to nearest bay edge, levee, and channel. We then used Akaike Information Criterion (AICc) model selection to assess those variables most important to determine measured elevation change. Soil stable isotope compositions were evaluated to assess the source of the OM. The samples had limited percent OM by weight (-3, indicating that the soils had high mineral content with a relatively low proportion of pore space. The most parsimonious model with the highest AICc weight (0.53) included distance from bay's edge (i.e., lower intertidal) and distance from levee (i.e., upper intertidal). Close proximity to sediment source was the greatest factor in determining whether an area increased in elevation, whereas areas near landward levees experienced subsidence. Our study indicated that the ability of a marsh to keep pace with SLR varied across the surface, and assessing changes in elevation over time provides an alternative method to long-term accretion monitoring. SLR models that do not consider spatial variability of biogeomorphic and accretion processes may not correctly forecast marsh drowning rates, which may be especially true in modified and urbanized estuaries. In light of SLR, improving our understanding of elevation change in these dynamic marsh systems will play a crucial role in forecasting potential impacts to their sustainability and the survival of these ecosystems.

  17. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  18. Sediment quality assessment in tidal salt marshes in northern California, USA: An evaluation of multiple lines of evidence approach

    USGS Publications Warehouse

    Hwang, Hyun-Min; Carr, Robert S.; Cherr, Gary N.; Green, Peter G.; Grosholz, Edwin G.; Judah, Linda; Morgan, Steven G.; Ogle, Scott; Rashbrook, Vanessa K.; Rose, Wendy L.; Teh, Swee J.; Vines, Carol A.; Anderson, Susan L.

    2013-01-01

    The objective of this study was to evaluate the efficacy of integrating a traditional sediment quality triad approach with selected sublethal chronic indicators in resident species in assessing sediment quality in four salt marshes in northern California, USA. These included the highly contaminated (Stege Marsh) and relatively clean (China Camp) marshes in San Francisco Bay and two reference marshes in Tomales Bay. Toxicity potential of contaminants and benthic macroinvertebrate survey showed significant differences between contaminated and reference marshes. Sublethal responses (e.g., apoptotic DNA fragmentation, lipid accumulation, and glycogen depletion) in livers of longjaw mudsucker (Gillichthys mirabilis) and embryo abnormality in lined shore crab (Pachygrapsus crassipes) also clearly distinguished contaminated and reference marshes, while other responses (e.g., cytochrome P450, metallothionein) did not. This study demonstrates that additional chronic sublethal responses in resident species under field exposure conditions can be readily combined with sediment quality triads for an expanded multiple lines of evidence approach. This confirmatory step may be warranted in environments like salt marshes in which natural variables may affect interpretation of toxicity test data. Qualitative and quantitative integration of the portfolio of responses in resident species and traditional approach can support a more comprehensive and informative sediment quality assessment in salt marshes and possibly other habitat types as well.

  19. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    PubMed

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds to tidal marsh has raised concerns about possible increased net production of methylmercury and its subsequent accumulation in the food web. This concern applies not only to the restored marshes, but also to the South Bay as a whole, which could be affected on a regional scale. The ponds that are converted to tidal marsh will sequester millions of cubic meters of sediment. Sequestration of sediment in marshes could remove contaminated sediment from the active zone of the Bay but could also create marshes with contaminated food webs. Some of the ponds will not be restored to marsh but will be managed for use by water birds. Therefore, the effect of dense avian populations on eutrophication and the introduction of pathogens should be considered. Water quality in the Project also could be affected by external changes, such as human population growth and climate change. To address these many concerns related to water quality, the SBSPRP managers, and others faced with management of wetland restoration at a regional scale, should practice adaptive management and ongoing monitoring for water quality, particularly monitoring bioaccumulation of contaminants in the food web.

  20. Sediment geochemistry of Corte Madera Marsh, San Francisco Bay, California: have local inputs changed, 1830-2010?

    USGS Publications Warehouse

    Takesue, Renee K.; Jaffe, Bruce E.

    2013-01-01

    Large perturbations since the mid-1800s to the supply and source of sediment entering San Francisco Bay have disturbed natural processes for more than 150 years. Only recently have sediment inputs through the Sacramento-San Joaquin Delta (the Delta) decreased to what might be considered pre-disturbance levels. Declining sediment inputs to San Francisco Bay raise concern about continued tidal marsh accretion, particularly if sea level rise accelerates in the future. The aim of this study is to explore whether the relative amount of local-watershed sediment accumulating in a tidal marsh has changed as sediment supply from the Sacramento-San Joaquin Rivers has decreased. To address this question, sediment geochemical indicators, or signatures, in the fine fraction (silt and clay) of Sacramento River, San Joaquin River, San Francisco Bay, and Corte Madera Creek sediment were identified and applied in sediment recovered from Corte Madera Marsh, one of the few remaining natural marshes in San Francisco Bay. Total major, minor, trace, and rare earth element (REE) contents of fine sediment were determined by inductively coupled plasma mass and atomic emission spectroscopy. Fine sediment from potential source areas had the following geochemical signatures: Sacramento River sediment downstream of the confluence of the American River was characterized by enrichments in chromium, zirconium, and heavy REE; San Joaquin River sediment at Vernalis and Lathrop was characterized by enrichments in thorium and total REE content; Corte Madera Creek sediment had elevated nickel contents; and the composition of San Francisco Bay mud proximal to Corte Madera Marsh was intermediate between these sources. Most sediment geochemical signatures were relatively invariant for more than 150 years, suggesting that the composition of fine sediment in Corte Madera Marsh is not very sensitive to changes in the magnitude, timing, or source of sediment entering San Francisco Bay through the Delta. Nor does there appear to be a ubiquitous increase in the proportion of fine sediment from Corte Madera watershed accumulating in the marsh during the last 20 years when sediment inflows through the Delta have decreased to pre-disturbance levels. We conclude that a large, well-mixed reservoir, such as the transportable fine sediment pool in San Francisco Bay, is the primary source of sediment to Corte Madera Marsh, and this source buffers the marsh against changes in sediment supply from the Delta and local watersheds. This study also found that Corte Madera Marsh sediment between about 10-30 centimeters depth is highly contaminated with lead, likely a legacy of lead smelter operations near Carquinez Strait and leaded gasoline use.

  1. Tidal management sffects sub-adult fish assemblages in impounded South Carolina Marshes

    USGS Publications Warehouse

    Carswell, Ben L.; Peterson, James T.; Jennings, Cecil A.

    2015-01-01

    In coastal South Carolina, most impounded marshes are managed for waterfowl; fewer are managed for fishes. Tidal control is central to each strategy but raises concerns that nursery function could be impaired. This research examined the assemblage composition of fishes during early-life stages. We sampled two impoundments of each management type monthly in 2008 and 2009. We used light traps to collect 61,527 sub-adult fish representing 21 species and 16 families and push nets to collect 12,670 sub-adult fish representing 13 species and 11 families. The effective number of species detected at larval stage in “fish” impoundments (summer mean = 2.52 ± 0.20, winter mean = 2.02 ± 0.66) was greater than in “waterfowl” impoundments (summer mean = 1.27 ± 0.14, winter mean = 1.06 ± 0.09); CI = 90 %. Species richness did not differ between management types, but hierarchical linear models predicted differences in assemblage composition. These findings underscore the importance of frequent water exchange for maintaining diverse assemblages of early-life-stage fishes in marsh impoundments.

  2. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    USGS Publications Warehouse

    Langley, J.A.; McKee, K.L.; Cahoon, D.R.; Cherry, J.A.; Megonigala, J.P.

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  3. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    PubMed

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  4. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    PubMed Central

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  5. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy

    NASA Astrophysics Data System (ADS)

    Roner, M.; D'Alpaos, A.; Ghinassi, M.; Marani, M.; Silvestri, S.; Franceschinis, E.; Realdon, N.

    2016-07-01

    Salt marshes are ubiquitous features of the tidal landscape governed by mutual feedbacks among processes of physical and biological nature. Improving our understanding of these feedbacks and of their effects on tidal geomorphological and ecological dynamics is a critical step to address issues related to salt-marsh conservation and response to changes in the environmental forcing. In particular, the spatial variation of organic and inorganic soil production processes at the marsh scale, a key piece of information to understand marsh responses to a changing climate, remains virtually unexplored. In order to characterize the relative importance of organic vs. inorganic deposition as a function of space, we collected 33 shallow soil sediment samples along three transects in the San Felice and Rigà salt marshes located in the Venice lagoon, Italy. The amount of organic matter in each sample was evaluated using Loss On Ignition (LOI), a hydrogen peroxide (H2O2) treatment, and a sodium hypochlorite (NaClO) treatment following the H2O2 treatment. The grain size distribution of the inorganic fraction was determined using laser diffraction techniques. Our study marshes exhibit a weakly concave-up profile, with maximum elevations and coarser inorganic grains along their edges. The amount of organic and inorganic matter content in the samples varies with the distance from the marsh edge and is very sensitive to the specific analysis method adopted. The use of a H2O2+NaClO treatment yields an organic matter density value which is more than double the value obtained from LOI. Overall, inorganic contributions to soil formation are greatest near the marsh edges, whereas organic soil production is the main contributor to soil accretion in the inner marsh. We interpret this pattern by considering that while plant biomass productivity is generally lower in the inner part of the marsh, organic soil decomposition rates are highest in the better aerated edge soils. Hence the higher inorganic soil content near the edge is due to the preferential deposition of inorganic sediment from the adjacent creek, and to the rapid decomposition of the relatively large biomass production. The higher organic matter content in the inner part of the marsh results from the small amounts of suspended sediment that makes it to the inner marsh, and to the low decomposition rate which more than compensates for the lower biomass productivity in the low-lying inner zones. Finally, the average soil organic carbon density from the LOI measurements is estimated to be 0.044 g C cm-3. The corresponding average carbon accumulation rate for the San Felice and Rigà salt marshes, 132 g C m-2 yr-1, highlights the considerable carbon stock and sequestration rate associated with coastal salt marshes.

  6. 75 FR 59287 - Supawna Meadows National Wildlife Refuge, Salem County, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ..., 2010. We will also hold public meetings in Pennsville, New Jersey. We will announce and post details of... refuge's native tidal marsh habitat to benefit Pea Patch Island colonial- breeding wading birds, as well...

  7. Literature review of organic matter transport from marshes

    NASA Technical Reports Server (NTRS)

    Dow, D. D.

    1982-01-01

    A conceptual model for estimating a transport coefficient for the movement of nonliving organic matter from wetlands to the adjacent embayments was developed in a manner that makes it compatible with the Earth Resources Laboratory's Productive Capacity Model. The model, which envisages detritus movement from wetland pixels to the nearest land-water boundary followed by movement within the water column from tidal creeks to the adjacent embayment, can be transposed to deal with only the interaction between tidal water and the marsh or to estimate the transport from embayments to the adjacent coastal waters. The outwelling hypothesis postulated wetlands as supporting coastal fisheries either by exporting nutrients, such as inorganic nitrogen, which stimulated the plankton-based grazing food chain in the water column, or through the export of dissolved and particulate organic carbon which provided a benthic, detritus-based food web which provides the food source for the grazing food chain in a more indirect fashion.

  8. Herbivory by resident geese: The loss and recovery of wild rice along the tidal Patuxent River

    USGS Publications Warehouse

    Haramis, G.M.; Kearns, G.D.

    2007-01-01

    Well known for a fall spectacle of maturing wild rice (Zizania aquatica) and migrant waterbirds, the tidal freshwater marshes of the Patuxent River, Maryland, USA, experienced a major decline in wild rice during the 1990s. We conducted experiments in 1999 and 2000 with fenced exclosures and discovered herbivory by resident Canada geese (Branta canadensis). Grazing by geese eliminated rice outside exclosures, whereas protected plants achieved greater size, density, and produced more panicles than rice occurring in natural stands. The observed loss of rice on the Patuxent River reflects both the sensitivity of this annual plant to herbivory and the destructive nature of an overabundance of resident geese on natural marsh vegetation. Recovery of rice followed 2 management actions: hunting removal of approximately 1,700 geese during a 4-year period and reestablishment of rice through a large-scale fencing and planting program.

  9. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1988-01-01

    The continuing disintegration of the coastal marshes of Louisiana is one of the major environmental problems of the nation. The problem of marsh loss in Louisiana is relevant to fishery management because Louisiana leads the nation in landings of fishery products, and most of the landed species are dependent upon estuaries and their associated tidal marshes. In evaluating the potential effect of marshland loss on fisheries, the first two critical factors to consider are: whether land-water interface in actual disintegrating marshes is currently increasing or decreasing, and the magnitude of the change. In the present study, LANDSAT Thematic Mapper (TM) data covering specific marshes in coastal Louisiana were used to test conclusions from the Browder et al (1984) model with regard to the stage in disintegration at which maximum interface occurs; to further explore the relationship between maximum interface and the pattern of distribution of land and water suggested by the model; and to determine the direction and degree of change in land-water interface in relation to land loss in actual marshes.

  10. Tidal and seasonal variations in the quantity and composition of seston in a North American, mid-Atlantic saltmarsh

    NASA Astrophysics Data System (ADS)

    Huang, S.-C.; Kreeger, D. A.; Newell, R. I. E.

    2003-03-01

    We determined the concentration of seston, particulate organic matter, and biological components (chlorophyll a, bacteria, and heterotrophic nanoflagellates) for <25 μm size fraction seston over five seasons in Canary Creek saltmarsh, Delaware Bay, USA. This material is the potential food resource for suspension-feeding ribbed mussels, Geukensia demissa, that inhabit the marsh intertidal zone. For eight tidal cycles each season we collected water six times at hourly intervals from mid-flood tide to mid-ebb tide. Although the concentration of seston did not vary seasonally, there were significant seasonal variations (analysis of variance, P<0.05) in seston components, with chlorophyll a concentration being highest in May and bacteria and heterotrophic nanoflagellates most abundant in August. Seston composition also varied within each tidal cycle with a magnitude as great as the seasonal variation. We conclude that ribbed mussels are subject to an unpredictable food supply that varies in composition and concentration on the order of hours and days. In contrast to the pronounced temporal changes, seston characteristics did not differ significantly among sampling locations within the marsh, or between samples collected close to the sediment surface and from the upper water column. Resuspension of sediment particles caused by tidal flow was not evident in tidal creeks and there were no dominant patterns in total seston concentration corresponding to tidal stages (flood tide, high slack water, and ebb tide) over the five sampling months. The abundance of biological components in the seston, including chlorophyll a, bacteria, and heterotrophic nanoflagellates, were significantly greater during high flood tide and high slack water than during ebb tide. The decline of biological components, particularly chlorophyll a in the ebb tide, indicates that this temperate saltmarsh imported organic material produced in the Delaware estuary.

  11. Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Megonigal, P.; Mueller, P.; Jensen, K.

    2014-12-01

    Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member δ13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2≥0.59, p≤0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.

  12. Salt marsh hydrology data web site facilitates research

    NASA Astrophysics Data System (ADS)

    Gardner, L. R.; Reeves, H. W.

    The interface between maritime forests and inter-tidal salt marshes along the southeastern coast of the United States is a major ecological boundary characterized by a sequence of botanical zones that typically consist of pine/ oak forest>Iva>Juncus>Salicornia>Spartina. In addition to questions regarding the physical and chemical factors that govern this ecotone, this interface is of interest because of the potential for groundwater flow to transfer nutrients and pollutants from developed uplands to the adjacent marshes. The interface is also of interest because it is presumably migrating upslope as a result of ongoing sea level rise and concomitant aquifer salinization.A new Web site, http://links.baruch.sc.edu/data/GRNDWATER/data/data.htm, contains long-term and spatially dense measurements of groundwater heads and salinity from a network of nested piezometers that has been installed along three forest-marsh transects across the Crab Haul Creek finger marsh basin at the North Inlet-Winyah Bay National Estuarine Research Reserve in Georgetown County South Carolina (Figure 1).

  13. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.

    Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less

  14. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

    DOE PAGES

    Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.; ...

    2016-07-28

    Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less

  15. General Design Memorandum Appendix D, Environmental Documents. Pascagoula Harbor Channel Improvement, Pascagoula, Mississippi

    DTIC Science & Technology

    1992-02-01

    herbaceous uplands ( Cogon grass ), and 29 acres of tidal marsh. The entire area includes about 183 acres. 3. Alternative 3 is similar to Alternative 2...acres of tidal wetlands outside of the old Tenneco dike 61 acres of scrub/shrub uplands 21 acres of herbaceous uplands ( Cogon grass ) While wetlands...shrub wetlands exist within the old levees at the Tenneco site. Wetland grasses include such species as threesquare (Sciryus spp.), black needlerush

  16. Marsh loss from 1984 - 2011 in the Breton Sound, Barataria and Terrebonne Basins, Louisiana, U.S.A.: Impacts of hurricanes and excess nutrients

    NASA Astrophysics Data System (ADS)

    Riter, J. C.; Kearney, M. S.; Turner, R.

    2012-12-01

    Twenty-four Landsat data sets (1984-2011), collected as close to peak vegetation growth as possible, were used to evaluate marsh vegetation health and marsh loss in Terrebonne, Barataria, and Breton Sound Basins. Marsh loss varies spatially and temporally in the basins: freshwater and most intermediate marshes located west of the Mississippi River and more than 40 km from the coast were determined to be more stable than marshes closer to the coast. In most areas of the three basins, vegetation health and marsh area from 1984-1992 were relatively stable with minor inter-annual fluctuations throughout each basin and only a few areas of localized marsh loss. By 1994, shoreline erosion, tidal creek erosion, and erosion of soil banks adjacent to canals had increased in marshes located <40 km from the Gulf of Mexico, although some sites suffered substantially greater erosion than most coastal areas. Wave erosion also increased around the shores of Lakes Salvador, Cataouatche, Levy and other large lakes by 1994. Marsh loss also occurred in marshes immediately west of the Mississippi River, especially in areas close to diversion inlets. Hurricane Ivan in 2004 produced little sustained widespread damage in the basin marshes. However, Hurricanes Katrina and Rita in 2005 and Gustav and Ike in 2008 caused extensive erosion of vegetation and the marsh substrate, especially near the inlet to Caernarvon diversion, but also near the Naomi and West Point a La Hache diversions inlets. We attribute the significant marsh damage from hurricanes to greater flooding, and greater wave and storm surge impacts due to diminished marsh soil strength from the effects of excess nutrients causing lower rhizome and root biomass and increased substrate decomposition rates.

  17. Potential effects of mercury on threatened California black rails

    USGS Publications Warehouse

    Tsao, Danika C.; Miles, A. Keith; Takekawa, John Y.; Woo, Isa

    2009-01-01

    San Francisco Bay (SFB) estuary sediments contain high levels of mercury (Hg), and tidal marsh resident species may be vulnerable to Hg contamination. We examined Hg concentrations in California black rails, a threatened waterbird species that inhabits SFB tidal salt marshes. We captured 127 black rails during the prebreeding and postbreeding seasons and examined the influence of site, sex, and year on Hg, methylmercury (MeHg), and also selenium (Se) concentrations in feathers and blood. Feather Hg concentrations averaged 6.94 ??g/g dry weight (dw) and MeHg and Se concentrations in blood averaged 0.38 and 0.42 ??g/g wet weight (ww). We used Akaike's information criterion model selection process to evaluate the importance of year, site, sex, and age on patterns of MeHg concentrations; sex and year were the most important of these factors. Feather Hg concentrations (dw) were higher in males (8.22 ??g/g) than females (6.63 ??g/g) and higher in adult birds (7.36 ??g/g) than in hatch-year birds (4.61 ??g/g). A substantial portion of SFB black rail populations may be at risk of reproductive effects due to MeHg contamination, as 32-78% of feathers and <10% of blood samples exceeded no observed adverse effect levels. Sea level rise and other anthropogenic threats to endemic tidal marsh species such as black rails may be exacerbated by the presence of MeHg. Further study of population demographics and toxicological effects would further elucidate the effects of MeHg contamination on black rail populations in SFB. ?? 2008 Springer Science+Business Media, LLC.

  18. Fragmentary evidence of great-earthquake subsidence during holocene emergence, Valdivia estuary, South Central Chile

    USGS Publications Warehouse

    Nelson, A.R.; Kashima, K.; Bradley, L.A.

    2009-01-01

    A reconnaissance of Holocene stratigraphy beneath fringing marshes of the Valdivia estuary, where an M 9.5 earthquake caused 1-2 m of regional coseismic subsidence in 1960, shows only fragmentary evidence of prehistoric coseismic subsidence. In most of the 150 hand-driven cores that were examined, a distinct unconformity separates 0.5-1.5 m of late Holocene tidal and floodplain mud, peat, and sand from underlying middle Holocene subtidal mud and sand. At the Las Coloradas site, where stratigraphy is best preserved, two A horizons of marsh and meadow soils abruptly overlain by sand and mud probably record coseismic subsidence shortly followed by tsunamis. The amount of subsidence during the earthquakes proved difficult to reconstruct with a diatom transfer function because of differences between modern and fossil diatom assemblages. Maximum 14C ages on macrofossils from the two A horizons at the Las Coloradas site of 1.7-1.3 ka and 2.7-1.7 ka allow correlation of the younger horizon with either of two of six 14C-dated A horizons buried by tsunami sand or post-tsunami tidal sand 200 km to the south at Maull??n, and with a lake-wide mass wasting event in Lago Puyehue, 100 km to the southeast. Tidal records of prehistoric coseismic subsidence at Valdivia are scarce because of a sea-level fall of 3-8 m over the past 6000 years, erosion of marsh and meadow soils during subsidence-induced flooding of the estuary, and largely complete land-level recovery during cycles of coseismic subsidence and postseismic uplift.

  19. Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh

    USGS Publications Warehouse

    Neff, K.P.; Baldwin, A.H.

    2005-01-01

    Although seed dispersal is assumed to be a major factor determining plant community development in restored wetlands, little research exists on density and species richness of seed available through dispersal in these systems. We measured composition and seed dispersal rates at a restored tidal freshwater marsh in Washington, DC, USA by collecting seed dispersing through water and wind. Seed dispersal by water was measured using two methods of seed collection: (1) stationary traps composed of coconut fiber mat along an elevation gradient bracketing the tidal range and (2) a floating surface trawl net attached to a boat. To estimate wind dispersal rates, we collected seed from stationary traps composed of coconut fiber mat positioned above marsh vegetation. We also collected a small number of samples of debris deposited along high tide lines (drift lines) and feces of Canada Goose to explore their seed content. We used the seedling emergence method to determine seed density in all samples, which involved placing the fiber mats or sample material on top of potting soil in a greenhouse misting room and enumerating emerging seedlings. Seedlings from a total of 125 plant species emerged during this study (including 82 in river trawls, 89 in stationary water traps, 21 in drift lines, 39 in wind traps, and 10 in goose feces). The most abundant taxa included Bidens frondosa, Boehmeria cylindrica, Cyperus spp., Eclipta prostrata, and Ludwigia palustris. Total seedling density was significantly greater for the stationary water traps (212 + 30.6 seeds/m2/month) than the equal-sized stationary wind traps (18 + 6.0 seeds/m(2)/month). Lower-bound estimates of total species richness based on the non-parametric Chao 2 asymptotic estimators were greater for seeds in water (106 + 1.4 for stationary water traps and 104 + 5.5 for trawl samples) than for wind (54 + 6.4). Our results indicate that water is the primary source of seeds dispersing to the site and that a species-rich pool of dispersing propagules is present, an interesting result given the urbanized nature of the surrounding landscape. However, species composition of dispersing seeds differed from vegetation of restored and natural tidal freshwater marshes, indicating that planting is necessary for certain species. At other restoration sites, information on densities of dispersing seeds can support decisions on which species to plant.

  20. Tidal truncation and barotropic convergence in a channel network tidally driven from opposing entrances

    USGS Publications Warehouse

    Warner, J.C.; Schoellhamer, D.; Schladow, G.

    2003-01-01

    Residual circulation patterns in a channel network that is tidally driven from entrances on opposite sides are controlled by the temporal phasing and spatial asymmetry of the two forcing tides. The Napa/Sonoma Marsh Complex in San Francisco Bay, CA, is such a system. A sill on the west entrance to the system prevents a complete tidal range at spring tides that results in tidal truncation of water levels. Tidal truncation does not occur on the east side but asymmetries develop due to friction and off-channel wetland storage. The east and west asymmetric tides meet in the middle to produce a barotropic convergence zone that controls the transport of water and sediment. During spring tides, tidally averaged water-surface elevations are higher on the truncated west side. This creates tidally averaged fluxes of water and sediment to the east. During neap tides, the water levels are not truncated and the propagation speed of the tides controls residual circulation, creating a tidally averaged flux in the opposite direction. ?? 2003 Elsevier Science B.V. All rights reserved.

  1. Methane fluxes along a salinity gradient on a restored salt marsh, Harpswell, ME

    NASA Astrophysics Data System (ADS)

    Gunn, Cailene; Johnson, Beverly, ,, Dr.; Dostie, Phil; Bohlen, Curtis; Craig, Matthew

    2016-04-01

    This study functions as a pilot project to understand the relationship between salinity and methane emissions on a recently restored salt marsh in Casco Bay, Maine. Salt marshes are dynamic and highly productive ecosystems that provide a multitude of ecosystem services including nutrient filtration, storm-water buffering and carbon sequestration. These ecosystems are highly susceptible to anthropogenic alteration. The emplacement of causeways and narrow culverts, restricts tidal flow and leads to loss of healthy salinity gradients. Consequently, numerous salt marshes have experienced increases in freshwater vegetation growth as a result of coastal population expansion. Recent restoration efforts on Long Marsh, Harpswell, ME replaced a severely undersized culvert with a larger one in February, 2014. The salinity gradient has since been restored along much of the marsh, and freshwater vegetation that encroached on the marsh platform has died back. Vegetation and salinity are key indicators and drivers of CH4 emissions on salt marshes. Using static gas chambers, we quantified CH4 fluxes along two transects at five diverse sites ranging from healthy marsh (salinity of 27 to 31 psu) with Spartina vegetation, to regions invaded by Typha and other freshwater vegetation (salinity of 0 to 4 psu). Sampling was executed in the months of July, August and October. CH4 concentrations were determined using a gas chromatograph with a flame-ionization detector. Preliminary findings suggest reintroduction of healthy tidal flows into the marsh inhibits CH4 production, where the lowest fluxes with least variability were observed at the most saline sites with Spartina vegetation. The largest range of CH4 fluxes exhibited emissions from 0.75 μmol CH4/m2/hr to 518.4 μmol CH4/m2/hr at the Typha dominated sites from July to October. Fluxes at the saltwater and brackish regions were far less variable with ranges from 0.94 μmol CH4/m2/hr to 8.2 μmol CH4/m2/hr and 2.6 to 9.5 μmol CH4/m2/hr, respectively. The transitional sites exhibited ranges from 1.2 μmol CH4/m2/hr to 16.8 μmol CH4/m2/hr. For all sites, lowest fluxes were observed during the month of October, suggesting seasonal influence on CH4 emissions. These data will be complimented by sediment analyses at each site providing δC and % organic carbon using isotope-ratio mass spectrometry, as well as bulk density and rates of decomposition using a tea bag index.

  2. Direct and Indirect Effects of Tides on Ecosystem-Scale CO2 Exchange in a Brackish Tidal Marsh in Northern California

    NASA Astrophysics Data System (ADS)

    Knox, S. H.; Windham-Myers, L.; Anderson, F.; Sturtevant, C.; Bergamaschi, B.

    2018-03-01

    We investigated the direct and indirect influence of tides on net ecosystem exchange (NEE) of carbon dioxide (CO2) in a temperate brackish tidal marsh. NEE displayed a tidally driven pattern with obvious characteristics at the multiday scale, with greater net CO2 uptake during spring tides than neap tides. Based on the relative mutual information between NEE and biophysical variables, this was driven by a combination of higher water table depth (WTD), cooler air temperature, and lower vapor pressure deficit (VPD) during spring tides relative to neap tides, as the fortnightly tidal cycle not only influenced water levels but also strongly modulated water and air temperature and VPD. Tides also influenced NEE at shorter timescales, with a reduction in nighttime fluxes during growing season spring tides when the higher of the two semidiurnal tides caused inundation at the site. WTD significantly influenced ecosystem respiration (Reco), with lower Reco during spring tides than neap tides. While WTD did not appear to affect ecosystem photosynthesis (gross ecosystem production, GPP) directly, the impact of tides on temperature and VPD influenced GPP, with higher daily light-use efficiency and photosynthetic activity during spring tides than neap tides when temperature and VPD were lower. The strong direct and indirect influence of tides on NEE across the diel and multiday timescales has important implications for modeling NEE in tidal wetlands and can help inform the timing and frequency of chamber measurements as annual or seasonal net CO2 uptake may be underestimated if measurements are only taken during nonflooded periods.

  3. The effects of two different water management regimes on flooding and mosquito production in a salt marsh impoundment.

    PubMed

    Carlson, D B; Vigliano, R R

    1985-06-01

    Over two years, the management regimes of: 1) opening a southeast Florida salt marsh impoundment to the adjacent estuary with culverts through the dike, then, 2) passively retaining water with flapgate risers was studied to determine the effects on marsh flooding and resultant mosquito production. Larval dipping demonstrated that all broods occurred at elevations of 0.25-0.90 ft (= 0.08-0.27 m) NGVD. Mosquito production differed significantly between some sampling quadrats and 65 (out of 75) broods were produced in the spring and summer from rainfall. Without artificial pumping, trapping of rainfall with flapgate risers aided in eliminating oviposition sites but still allowed mosquito production in some marsh locations. Even though tidal flooding permitted larvivorous fish access to mosquito larvae, they were not able to provide adequate control to eliminate larviciding.

  4. Does vegetation prevent wave erosion of salt marsh edges?

    PubMed

    Feagin, R A; Lozada-Bernard, S M; Ravens, T M; Möller, I; Yeager, K M; Baird, A H

    2009-06-23

    This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves.

  5. Hypoxic coma as a strategy to survive inundation in a salt-marsh inhabiting spider

    PubMed Central

    Pétillon, Julien; Montaigne, William; Renault, David

    2009-01-01

    Spiders constitute a major arthropod group in regularly inundated habitats. Some species survive a flooding period under water. We compared survival during both submersion and a recovery period after submersion, in three stenotopic lycosids: two salt-marsh species Arctosa fulvolineata and Pardosa purbeckensis, and a forest spider Pardosa lugubris. Both activity and survival rates were determined under controlled laboratory conditions by individually surveying 120 females kept submerged in sea water. We found significant differences between the three species, with the two salt-marsh spiders exhibiting higher survival abilities. To our knowledge, this study reports for the first time the existence of a hypoxic coma caused by submersion, which is most pronounced in A. fulvolineata, the salt-marsh spider known to overcome tidal inundation under water. Its ability to fall into that coma can therefore be considered a physiological adaptation to its regularly inundated habitat. PMID:19411268

  6. Does vegetation prevent wave erosion of salt marsh edges?

    PubMed Central

    Feagin, R. A.; Lozada-Bernard, S. M.; Ravens, T. M.; Möller, I.; Yeager, K. M.; Baird, A. H.

    2009-01-01

    This study challenges the paradigm that salt marsh plants prevent lateral wave-induced erosion along wetland edges by binding soil with live roots and clarifies the role of vegetation in protecting the coast. In both laboratory flume studies and controlled field experiments, we show that common salt marsh plants do not significantly mitigate the total amount of erosion along a wetland edge. We found that the soil type is the primary variable that influences the lateral erosion rate and although plants do not directly reduce wetland edge erosion, they may do so indirectly via modification of soil parameters. We conclude that coastal vegetation is best-suited to modify and control sedimentary dynamics in response to gradual phenomena like sea-level rise or tidal forces, but is less well-suited to resist punctuated disturbances at the seaward margin of salt marshes, specifically breaking waves. PMID:19509340

  7. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  8. Investigating the Evolution of Southern California Salt Marshes: A Facies Model to Understand the Influence of Seismic Events on Environmental Resiliency and Sustainability

    NASA Astrophysics Data System (ADS)

    Aranda, A. N.; Carlin, J. A.; Rhodes, B. P.; Kirby, M.

    2016-02-01

    Only 10-20% of the US Pacific coast is estimated to be suitable for marsh development. In southern California specifically, marshes are disappearing ecosystems due to high population and urbanization. The future environmental impacts from climate change on these ecosystems are complicated not only by anthropogenic influences, but also by seismic activity in the region. In general, marsh evolution and response to seismic activity has yet to be fully explored in southern California. This study aims to develop a sediment facies model for salt marsh evolution in southern California by utilizing the salt marshes of the Seal Beach Wetlands (SBW). The SBW is an ideal location to develop the facies model because it straddles the active Newport-Inglewood Fault Zone. We collected sediment cores from the SBW that underwent a variety of sedimentological and geochemical analyses including grain size, X-Ray Fluorescence core scanning, magnetic susceptibility, and loss-on-ignition.. The results show a facies model consisting of sequences of marsh accretion punctuated by seismic events. These seismic events caused the marsh to subside, effectively re-setting marsh development from peat generation at a vegetated marsh state, to subtidal to intertidal mud deposition. The model also allowed us to qualify and quantify marsh recovery as inferred from event intensity, where what we perceived as more intense events resulted in more significant ecosystem disturbances and longer recovery times. Understanding this interplay between seismic activity and marsh development highlights the fragile nature of these ecosystems to climate change and sea level rise, as these stresses will only become amplified by seismic events.

  9. Shoreline as a controlling factor in commercial shrimp production

    NASA Technical Reports Server (NTRS)

    Faller, K. H. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. An ecological model was developed that relates marsh detritus export and shrimp production. It was based on the hypothesis that the shoreline is a controlling factor in the production of shrimp through regulation of detritus export from the marsh. LANDSAT data were used to develop measurement of shoreline length and areas of marsh having more than 5.0 kilometers of shoreline per square kilometer of area for the Louisiana coast, demonstrating the capability of remote sensing to provide important geographic information. These factors were combined with published tidal ranges and salinities to develop a mathematical model that predicted shrimp production for nine geographic units of the Louisiana coast, as indicated by the long term average commercial shrimp yield.

  10. The dirt on sediments

    USGS Publications Warehouse

    Smith, Loren M.; Euliss, Ned H. "Chip"

    2010-01-01

    In the wetland science field, sediment deposition is often thought of as being beneficial especially when one thinks of coastal estuarine systems. For example, sediments deposited from streams and rivers are necessary to naturally build and maintain tidal marshes. These sediments come from eroded upland soils in the interior of the continent. When these sediments are diverted from natural coastal deposition areas, such as occurs from river channelization, we lose marshes through subsidence as is happening throughout coastal Louisiana. However, the value of eroded soils is all a matter of hydrogeomorphic perspective.

  11. Annual net ecosystem exchanges of carbon dioxide and methane from a temperate brackish marsh: should the focus of marsh restoration be on brackish environments?

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.; Ferner, M. C.; Schile, L. M.; Spinelli, G.

    2015-12-01

    The exchange and transport of carbon in tidally driven, saline marsh ecosystems provide habitat and trophic support for coastal wildlife and fisheries, while potentially accumulating and storing carbon at some of the highest rates compared to other ecosystems. However, due to the predicted rise in sea level over the next century, the preservation and restoration of estuarine habitats is necessary to compensate for their expected decline. In addition, restoration of these marsh systems can also reduce the impacts of global climate change as they assimilate as much carbon as their freshwater counterparts, while emitting less methane due to the higher concentrations of sulfate in seawater. Unfortunately, in brackish marshes, with salinity concentrations less than 18 parts per thousand (ppt), simple relationships between methane production, salinity and sulfate concentrations are not well known. Here we present the net ecosystem exchange (NEE) of carbon dioxide and methane, as calculated by the eddy covariance method, from a brackish marsh ecosystem in the San Francisco Estuary where salinity ranges from oligohaline (0.5-5 ppt) to mesohaline (5-18 ppt) conditions. Daily rates of carbon dioxide and methane NEE ranged from approximately 10 gC-CO2 m-2 d-1 and 0 mgC-CH4 m-2 d-1, during the winter to -15 gC-CO2 m-2 d-1 and 30 mgC-CH4 m-2 d-1, in the summer growing season. A comparison between similar measurements made from freshwater wetlands in the Sacramento-San Joaquin Delta found that the daily rates of carbon dioxide NEE were similar, but daily rates of methane NEE were just a small fraction (0-15%). Our research also shows that the daily fluxes of carbon dioxide and methane at the brackish marsh were highly variable and may be influenced by the tidal exchanges of seawater. Furthermore, the observed decline in methane production from summer to fall may have resulted from a rise in salinity and/or a seasonal decline in water and air temperatures. Our research goals are to provide insight into rates of plant productivity and uncertainty of methane production for brackish marsh systems that can help to inform policymakers of potential data gaps preventing inclusion of coastal wetland carbon sequestration in national inventories and greenhouse gas - offset markets.

  12. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    USGS Publications Warehouse

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  13. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments.

    PubMed

    Da Lio, Cristina; D'Alpaos, Andrea; Marani, Marco

    2013-12-13

    The presence and continued existence of tidal morphologies, and in particular of salt marshes, is intimately connected with biological activity, especially with the presence of halophytic vegetation. Here, we review recent contributions to tidal biogeomorphology and identify the presence of multiple competing stable states arising from a two-way feedback between biomass productivity and topographic elevation. Hence, through the analysis of previous and new results on spatially extended biogeomorphological systems, we show that multiple stable states constitute a unifying framework explaining emerging patterns in tidal environments from the local to the system scale. Furthermore, in contrast with traditional views we propose that biota in tidal environments is not just passively adapting to morphological features prescribed by sediment transport, but rather it is 'The Secret Gardener', fundamentally constructing the tidal landscape. The proposed framework allows to identify the observable signature of the biogeomorphic feedbacks underlying tidal landscapes and to explore the response and resilience of tidal biogeomorphic patterns to variations in the forcings, such as the rate of relative sea-level rise.

  14. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    USGS Publications Warehouse

    Kirwanm, M.L.; Langley, J.A.; Guntenspergen, Gleen R.; Megonigal, J.P.

    2013-01-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  15. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.

    2013-03-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  16. The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.

    2012-10-01

    The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.

  17. Hazardous Waste Cleanup: Arsynco Incorporated in Carlstadt, New Jersey

    EPA Pesticide Factsheets

    The Arsynco facility is located in a heavy industrial and commercial area at the western boundary of the Hackensack Meadowlands tidal marsh area, Foot of 13th Street in Carlstadt, Bergen County, New Jersey. The facility consisted of several manufacturing/s

  18. EFFECTS OF SALT MARSH TOPOGRAPHY ON TIDAL ASYMMETRY (R828677C003)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions

    NASA Astrophysics Data System (ADS)

    Yang, P.; Bastviken, D.; Lai, D. Y. F.; Jin, B. S.; Mou, X. J.; Tong, C.; Yao, Y. C.

    2017-12-01

    In this study, we compared the CH4 and N2O fluxes from a tidal brackish Cyperus malaccensis marsh ecosystem and nearby shrimp ponds, converted from C. malaccensis marsh in the last 3-4 years, in the Min River estuary of southeast China over the aquaculture period of the year. Significant differences in CH4 and N2O fluxes were observed in space (between brackish marsh and shrimp ponds) and in time (between sampling occasions that were distributed over the aquaculture period). CH4 fluxes from the shrimp ponds were on an average 10-fold higher than from the brackish marsh. N2O emissions, on the other hand, were lower from the shrimp pond (25% of the emissions from the brackish marsh). Accessory data indicates that these patterns were primarily linked to water level variability and temperature (all fluxes), sediment porewater sulfate concentrations (CH4 flux) and total nitrogen concentrations (N2O flux). Our research demonstrates that the coastal marsh ecosystem converted to aquaculture ponds considerably alter emissions of CH4 and N2O and provides input to the global discussion on how to account for emissions from various types of flooded land in greenhouse gas inventories.

  20. Estimating patterns in Spartina alterniflora belowground biomass within salt marshes

    NASA Astrophysics Data System (ADS)

    O'Connell, J. L.; Mishra, D. R.; Alber, M.; Byrd, K. B.

    2017-12-01

    Belowground biomass of marsh plants, such as Spartina alterniflora, help prevent marsh loss because they promote soil accretion, stabilize soils and add organic matter. However, site-wide estimates of belowground biomass are difficult to obtain because root:shoot ratios vary considerably both within species and across sites. We are working to develop a data fusion tool that can predict key characteristics of S. alterniflora, including belowground biomass and plant canopy N, based on satellite imagery. We used field observations from four salt marsh locations along the Georgia Coast, including one that is studied as part of the Georgia Coastal Ecosystems LTER project. From field and remote-sensing data, we developed a hybrid modeling approach to estimate % foliar N (a surrogate for plant assimilated nutrients). Partial Least squares (PLS) regression analysis of Landsat-8 spectral bands could predict variation in foliar N and belowground biomass, suggesting this public data source might be utilized for site-wide assessment of plant biophysical variables in salt marshes. Spectrally estimated foliar N and aboveground biomass were associated with belowground biomass and root:shoot ratio in S. alterniflora. This mirrors results from a previous study from the Sacramento-San Joaquin Delta, CA, on Scheonoplectus acutus, a marsh plant found in some tidal freshwater marshes. Therefore remote sensing may be a useful tool for measuring whole plant productivity among multiple coastal marsh species.

  1. Coastal marsh response to historical and future sea-level acceleration

    USGS Publications Warehouse

    Kirwan, M.; Temmerman, S.

    2009-01-01

    We consider the response of marshland to accelerations in the rate of sea-level rise by utilizing two previously described numerical models of marsh elevation. In a model designed for the Scheldt Estuary (Belgium-SW Netherlands), a feedback between inundation depth and suspended sediment concentrations allows marshes to quickly adjust their elevation to a change in sea-level rise rate. In a model designed for the North Inlet Estuary (South Carolina), a feedback between inundation and vegetation growth allows similar adjustment. Although the models differ in their approach, we find that they predict surprisingly similar responses to sea-level change. Marsh elevations adjust to a step change in the rate of sea-level rise in about 100 years. In the case of a continuous acceleration in the rate of sea-level rise, modeled accretion rates lag behind sea-level rise rates by about 20 years, and never obtain equilibrium. Regardless of the style of acceleration, the models predict approximately 6-14 cm of marsh submergence in response to historical sea-level acceleration, and 3-4 cm of marsh submergence in response to a projected scenario of sea-level rise over the next century. While marshes already low in the tidal frame would be susceptible to these depth changes, our modeling results suggest that factors other than historical sea-level acceleration are more important for observations of degradation in most marshes today.

  2. Habitat Suitability Index Models: American black duck (wintering)

    USGS Publications Warehouse

    Lewis, James C.; Garrison, Russell L.

    1984-01-01

    INTRODUCTION The American black duck, commonly known as the black duck, is migratory and has a wide geographic range. American black ducks breed from Cape Hatteras, North Carolina, west to the Mississippi River and north through the eastern Canadian boreal forest (Bellrose 1976). The winter range extends from the Rio Grande River on the Texas coast, northeast to Lake Michigan, east to Nova Scotia, south to Florida, and west to Texas (Wright 1954). American black ducks arrive on their wintering habitats between September and early December and remain there until February to April (Bellrose 1976). Their preferred habitat varies considerably through the wintering range. Habitat use appears related to food availability, freedom from disturbance, weather, and often upon the presence of large bodies of open water. These interrelated elements are essential for meeting the energy demands and other nutritional requirements of black ducks in response to the rigors of cold weather and migration. In the Atlantic Flyway, winter populations of American black ducks concentrate in marine and estuarine wetlands (U.S. Fish and Wildlife Service 1979). They use salt marshes and small tidal bays for feeding and loafing areas. In wintering areas north of Chesapeake Bay, American black ducks frequently feed on tidal flats and rest in emergent wetlands or on ice-free bays, rivers, and coastal reservoirs. In the Chesapeake bay area, migrant and wintering American black ducks occupy a wide variety of habitats (Stewart 1962). They strongly favor brackish bays with extensive adjacent agricultural lands. Estuarine bays, coastal salt marshes, tidal fresh marshes, and adjacent impoundments receive high usage. American black ducks also concentrate in forested wetlands in and adjacent to estuaries in the South Atlantic Flyway, especially in Virginia and North Carolina.

  3. Anacostia River fringe wetlands restoration project: final report for the five-year monitoring program (2003 through 2007)

    USGS Publications Warehouse

    Krafft, Cairn C.; Hammerschlag, Richard S.; Guntenspergen, Glenn R.

    2009-01-01

    The 6-hectare (ha) freshwater tidal Anacostia River Fringe Wetlands (Fringe Wetlands) were reconstructed along the mainstem of the Anacostia River in Washington, DC (Photograph 1, Figure 1) during the summer of 2003. The Fringe Wetlands consist of two separate planting cells. Fringe A, located adjacent to Lower Kingman Island, on the west bank of the Anacostia River, occupies 1.6 ha; Fringe B, located on the east bank of the Anacostia River, occupies 4.4 ha. This project is the third in a series of freshwater tidal wetland reconstructions on the Anacostia River designed and implemented by the US Army Corps of Engineers (USACE) Baltimore District and District Department of the Environment (DDOE) on lands managed by the National Park Service (NPS). The first was Kenilworth Marsh, reconstructed in 1993 (Syphax and Hammerschlag 2005); the second was Kingman Marsh, reconstructed in 2000 (Hammerschlag et al. 2006). Kenilworth and Kingman were both constructed in low-energy backwaters of the Anacostia. However, the Fringe Wetlands, which were constructed on two pre-existing benches along the high-energy mainstem, required sheet piling to provide protection from erosive impacts of increased flow and volume of water associated with storm events during the establishment phase (Photograph 2). All three projects required the placement of dredged sediment materials to increase elevations enough to support emergent vegetation (Photograph 3). The purpose of all three wetland reconstruction projects was to restore pieces of the once extensive tidal freshwater marsh habitat that bordered the Anacostia River historically, prior to the dredge and fill operations and sea wall installation that took place there in the early to mid-1900's (Photograph 4).

  4. Trajectory of early tidal marsh restoration: elevation, sedimentation and colonization of breached salt ponds in the northern San Francisco Bay

    USGS Publications Warehouse

    Brand, L. Arriana; Smith, Lacy M.; Takekawa, John Y.; Athearn, Nicole D.; Taylor, Karen; Shellenbarger, Gregory; Schoellhamer, David H.; Spenst, Renee

    2012-01-01

    Tidal marsh restoration projects that cover large areas are critical for maintaining target species, yet few large sites have been studied and their restoration trajectories remain uncertain. A tidal marsh restoration project in the northern San Francisco Bay consisting of three breached salt ponds (≥300 ha each; 1175 ha total) is one of the largest on the west coast of North America. These diked sites were subsided and required extensive sedimentation for vegetation colonization, yet it was unclear whether they would accrete sediment and vegetate within a reasonable timeframe. We conducted bathymetric surveys to map substrate elevations using digital elevation models and surveyed colonizing Pacific cordgrass (Spartina foliosa). The average elevation of Pond 3 was 0.96 ± 0.19 m (mean ± SD; meters NAVD88) in 2005. In 2008–2009, average pond elevations were 1.05 ± 0.25 m in Pond 3, 0.81 ± 0.26 m in Pond 4, and 0.84 ± 0.24 m in Pond 5 (means ± SD; meters NAVD88). The largest site (Pond 3; 508 ha) accreted 9.5 ± 0.2 cm (mean ± SD) over 4 years, but accretion varied spatially and ranged from sediment loss in borrow ditches and adjacent to an unplanned, early breach to sediment gains up to 33 cm in more sheltered regions. The mean elevation of colonizing S. foliosa varied by pond (F = 71.20, df = 84, P S. foliosa. Our results suggest that sedimentation to elevations that enable vegetation colonization is feasible in large sites with sufficient sediment loads although may occur more slowly compared with smaller sites.

  5. Modeling Tidal Wetland Resiliency in the Face of Predicted Accelerated Sea-Level Rise

    NASA Astrophysics Data System (ADS)

    Schile, L. M.; Callaway, J.; Morris, J. T.; Kelly, M.

    2014-12-01

    Tidal wetland ecosystems are dynamic coastal habitats that, in California, often occur at the complex nexus of aquatic environments, diked and leveed baylands, and modified upland habitat. Because of their prime location and rich peat soil, many wetlands have been reduced, degraded, and/or destroyed, and yet their important role in carbon sequestration, nutrient and sediment filtering, and as habitat requires us to further examine their sustainability in light of predicted climate change. Predictions of climate change effects for the San Francisco Bay Estuary present a future with reduced summer freshwater input and increased sea levels. We examined the applicability and accuracy of the Marsh Equilibrium Model (MEM), a zero-dimensional model that models organic and inorganic accretion rates under a given rate of sea-level rise. MEM was calibrated using data collected from salt and brackish marshes in the San Francisco Bay Estuary to examine wetland resiliency under a range of sea-level rise and suspended sediment concentration scenarios. At sea-level rise rates 100 cm/century and lower, wetlands remained vegetated. Once sea levels rise above 100 cm, marshes begin to lose ability to maintain elevation, and the presence of adjacent upland habitat becomes increasingly important for marsh migration. The negative effects of sea-level rise on elevations were compounded as suspended sediment concentrations decreased. Results from this study emphasize that the wetland landscape in the bay is threatened with rising sea levels, and there are a limited number of wetlands that will be able to migrate to higher ground as sea levels rise.

  6. Ecology of irregularly flooded salt marshes of the northeastern Gulf of Mexico: a community profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, J.P.

    1984-12-01

    The salt marshes of the northeastern Gulf of Mexico are distinguished by irregular flooding, low energy wave and tidal action, and long periods of exposure. The plant community is most often dominated by black needlerush (Juncus roemerianus), the species of focus in this synthesis. Distinct marsh zones include those dominated by Juncus and Spartina alterniflora at low elevations, sparsely vegetated salt flats, and higher elevation salt meadows of Juncus and Spartina patens. A diverse microbial and algal assemblage is also present. A diverse fauna has adapted to the physical rigors of these marshes. Zooplankton are dominated by the larvae ofmore » fiddler crabs and other decapods. The meiofauna consist primarily of nematodes and harpacticoid copepods. Macroinvertebrates are represented by crustaceans (especially mollusks and crabs), annelids, and insects. Grass shrimp, blue crabs, and other crustaceans are seasonally abundant in marsh creeks, as are a number of resident and migratory fish species. Birds comprise one of the larger herbivore groups and are also significant at higher tropic levels as top carnivores. Muskrat and nutria are important mammals. 43 figs., 38 tabs.« less

  7. Marsh vertical accretion in a Southern California Estuary, U.S.A

    USGS Publications Warehouse

    Cahoon, D.R.; Lynch, J.C.; Powell, A.N.

    1996-01-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosa low marsh (2-8.5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12 month period of no river flow. Accretion in the Salicornia subterminalis high marsh was low (~1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0.5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tons of sediment, of which the low salt marsh trapped an estimated 31,941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  8. Short term changes in hydroperiod after thin layer sediment placement on a New Jersey salt marsh and implications for design

    NASA Astrophysics Data System (ADS)

    Piercy, C.; Carrillo, C. C.; VanZomeren, C. M.; Berkowitz, J.; Chasten, M. A.; Golden, D.; Jahn, J.; Welp, T. L.; Yepsen, M.

    2017-12-01

    Over the winter of 2015-2016, the U.S. Army Corps of Engineers Philadelphia District partnered with New Jersey Department of Environmental Protection, The Nature Conservancy, Green Trust Alliance, Green Vest, and Princeton Hydro to implement a wetland thin layer placement on a salt marsh to the west of Avalon, New Jersey using dredged sediments removed from the Federal navigation channel in response to impacts from Hurricane Sandy. Prior to sediment placement, the marsh exhibited signs of degradation, including fragmentation of the marsh plain. The marsh is characterized by large, open water areas ( 1 m deep) fringed with overhanging banks and punctuated by small remnant ( 1-5 m) islands of intact marsh. The objective of the placement effort was to increase the elevation of degraded marsh areas to a level commensurate with the growth of low marsh vegetation dominated by Spartina alterniflora Loisel and to provide a small ( 5-15 cm) elevation boost to vegetated marsh areas surrounding the open water pools. We examine changes in inundation and tidal exchange resulting from the thin layer placement immediately after placement and a year later. Changes in sediment grain size and other factors are also considered. Coupling hydrologic measurements with observed vegetation recovery, we identify target elevations and sediment depths relative to mean sea level and mean high water consistent with rapid recovery in initially vegetated and open water areas.

  9. Marsh Vertical Accretion in a Southern California Estuary, U.S.A.

    NASA Astrophysics Data System (ADS)

    Cahoon, Donald R.; Lynch, James C.; Powell, Abby N.

    1996-07-01

    Vertical accretion was measured between October 1992 and March 1994 in low and high saltmarsh zones in the north arm of Tijuana estuary from feldspar market horizons and soil corings. Accretion in the Spartina foliosalow marsh (2-8·5 cm) was related almost entirely to episodic storm-induced river flows between January and March 1993, with daily tidal flooding contributing little or no sediment during the subsequent 12-month period of no river flow. Accretion in the Salicornia subterminalishigh marsh was low (≈1-2 mm) throughout the 17-month measuring period. High water levels in the salt marsh associated with the storm flows were enhanced in early January 1993 by the monthly extreme high sea level, when the low and high marshes were flooded about 0·5 m above normal high tide levels. Storm flows in January-March 1993 mobilized about 5 million tonnes of sediment, of which the low salt marsh trapped an estimated 31 941 tonnes, including 971 tonnes of carbon and 77 tonnes of nitrogen. Sediment trapping by the salt marsh during episodic winter floods plays an important role in the long-term maintenance of productivity of Tijuana estuary through nutrient retention and maintenance of marsh surface elevation. The potential exists, however, for predicted accelerated rates of sea-level rise to out-pace marsh surface elevation gain during extended periods of drought (i.e. low sediment inputs) which are not uncommon for this arid region.

  10. Seagrass impact on sediment exchange between tidal flats and salt Marsh, and the sediment budget of shallow bays

    USGS Publications Warehouse

    Donatelli, Carmine; Ganju, Neil Kamal; Fagherazzi, Sergio; Leonardi, Nicoletta

    2018-01-01

    surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long-term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.

  11. Declining metal levels at Foundry Cove (Hudson River, New York): response to localized dredging of contaminated sediments.

    PubMed

    Mackie, Joshua A; Natali, Susan M; Levinton, Jeffrey S; Sañudo-Wilhelmy, Sergio A

    2007-09-01

    This study examines the effectiveness of remediating a well-recognized case of heavy metal pollution at Foundry Cove (FC), Hudson River, New York. This tidal freshwater marsh was polluted with battery-factory wastes (1953-1979) and dredged in 1994-1995. Eight years after remediation, dissolved and particulate metals (Cd, Co, Cu, Pb, Ni, and Ag) were found to be lower than levels in the lower Hudson near New York City. Levels of metals (Co, Ni, Cd) on suspended particles were comparatively high. Concentrations of surface sediment Cd throughout the marsh system remain high, but have decreased both in the dredged and undredged areas: Cd was 2.4-230mg/kg dw of sediment in 2005 vs. 109-1500mg/kg in the same area in 1983. The rate of tidal export of Cd from FC has decreased by >300-fold, suggesting that dredging successfully stemmed a major source of Cd to the Hudson River.

  12. Discordant 14C ages from buried tidal-marsh soils in the Cascadia subduction zone, southern Oregon coast

    USGS Publications Warehouse

    Nelson, A.R.

    1992-01-01

    Peaty, tidal-marsh soils interbedded with estuarine mud in late Holocene stratigraphic sequences near Coos Bay, Oregon, may have been submerged and buried during great (M > 8) subduction earthquakes, smaller localized earthquakes, or by nontectonic processes. Radiocarbon dating might help distinguish among these alternatives by showing that soils at different sites were submerged at different times along this part of the Cascadia subduction zone. But comparison of conventional 14C ages for different materials from the same buried soils shows that they contain materials that differ in age by many hundreds of years. Errors in calibrated soil ages represent about the same length of time as recurrence times for submergence events (150-500 yr)-this similarity precludes using conventional 14C ages to distinguish buried soils along the southern Oregon coast. Accelerator mass spectrometer 14C ages of carefully selected macrofossils from the tops of peaty soils should provide more precise estimates of the times of submergence events. ?? 1992.

  13. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh.

    PubMed

    Negrin, Vanesa L; Spetter, Carla V; Asteasuain, Raúl O; Perillo, Gerardo M E; Marcovecchio, Jorge E

    2011-01-01

    Four sites were selected in a salt marsh in the Bahia Blanca Estuary (Argentina): (1) low marsh (flooded by the tide twice daily) vegetated by S. alterniflora; (2) non-vegetated low marsh; (3) high marsh (flooded only in spring tides) vegetated by S. alterniflora; (4) non-vegetated high marsh. The pH and Eh were measured in sediments, while dissolved nutrients (ammonium, nitrate, nitrite and phosphate) and particulate organic matter (POM) were determined in pore water. pH (6.2-8.7) was only affected by vegetation in low areas. Eh (from -300 to 250 mV) was lower at low sites than at high ones; in the latter, the values were higher in the non-vegetated sediments. The POM concentration was greater in the high marsh than in the low marsh, with no effect of vegetation. Ammonium was the most abundant nitrogen nutrient species in pore water, except in the non-vegetated high marsh where nitrate concentration was higher. All nitrogen nutrients were affected by both flooding and vegetation. Phosphate was always present in pore water at all sites throughout the year and its concentration varied within narrow limits, with no effect of flooding and greater values always at non-vegetated sites. Our results showed that the variability of the pore water composition within the marsh is greater than the temporal variation, meaning that both tidal flooding and vegetation are important in the dynamics of nutrients and organic matter in the sediment pore water.

  14. Extraction of tidal channel networks from airborne scanning laser altimetry

    NASA Astrophysics Data System (ADS)

    Mason, David C.; Scott, Tania R.; Wang, Hai-Jing

    Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.

  15. PubMed

    Abraham, Rudolf

    1970-03-01

    In the area of investigation 50 species of Pteromalidae (2 Spalangiinae, 19 Miscogasterinae 4 Tridyminae and 25 Pteromalinae) were caught. The species which are most numerous and ecologically most important are Cyrtogaster vulgaris Asaphes vulgaris and Meraporus graminicola. Endemic species are missing. Urolepis maritima is the only species which lives at salt pools.Only a few species live in the pastured salt marshes: in the lower area of Puccinellia maritima there is only I indigenous species, in the area of Festuca rubra littoralis there are 6. Polders and terpen on the marsh islands are populated by the same species of Pteromalidae. The marsh islands resemble the salt marshes on the mainland in their combination of species. The development from salt marsh to polder causes some changes in the density of species and specimens. A rapid course of successions results from the building of dikes and reserves. The number of Pteromalid species rises from 6 in pastured salt marshes to 30 in polders or salt marsh reserves. At the same time the number of specimens increases.Most species have several generations. Most of them parasitise Diptera undermining plant tissue. The existence of monophagous Pteromalids could not be proven with certainty. The females fly up but then are drifted away by winds. After having drifted for 30 to 40 km over the sea they are still able to distinguish yellow and blue traps on light ships. When settling in a new area they have a high coincidence with their hosts.The adult Pteromalids are active only in the day-time and above a certain threshold of temperature which varies according to the particular season. This threshold can easily be raised or lowered experimentally. By adjusting the threshold the daily activity is limited to the warmest hours of the day. Even in periods of continuously warm weather the animals are active for about 6 hours a day only. Activity patterns with 2 peaks (bigeminus) were not found in the field.Pteromalid adults flooded for a short time were damaged to such an extent that they could hardly move after the water had run off. Higher temperatures of water accelerate the development of irreversible damage. Flooded specimens are lighter than water and dry to reach the surface. After a few hours they die. In the open they are drifted away by high tides. The areas depopulated after such a high tide are quickly populated again by new specimens.Adaptation of adult Pteromalids to specific factors of the tidal region could not be found. Pteromalids living in this area are able to survive because 1. they do not hibernate as adults; 2. they parasitise hosts living safely in plants; 3. they hatch from their hosts in a metachronous fashion. 4. they fill up population gaps quickly. This shows that despite their high abundance in the tidal regions Pteromalids have not adapted themselves to tidal factors.

  16. The coupling of bay hydrodynamics with sediment supply and micro-tidal wetland stability under high rates of relative sea level rise

    NASA Astrophysics Data System (ADS)

    Wang, J.; Xu, K.; Restreppo, G. A.; Bentley, S. J.; Meng, X.; Zhang, X.

    2017-12-01

    Due to global sea level rise, local subsidence and sediment deficit, the Mississippi River (MR) deltaic plain has lost a total of 25% of coastal Louisiana's wetlands during the last century, leading to huge losses of ecological services, economic and social crises. Ecosystem-based restoration strategies which rely on coastal system processes and feedbacks are urgently needed. Understanding linkages between estuarine and coastal systems and the adjacent marshlands will help the designing strategies. To investigate bay hydrodynamics and its impacts on the adjacent micro-tidal wetland stability, hourly measurements of wave, tidal current, and benthic sediment concentration in summer, winter, and spring of 2015-2016 were conducted in Fourleague Bay, Louisiana, USA. The bay-marsh system has been stable for almost 80 years under high relative sea level rising rate, which is 11 km southeast of the Atchafalaya River mouth, with a water depth of 1-3 m. High-temporal resolution data indicate that benthic sediment resuspension is mainly caused by wind-driven waves with a dominant periodicity of 4.8 d. The sediment flux reaches 28 g·m-1·s-1 per unit depth in cm during the events. Net sediment transport is northwestward in summer, and southeastward in winter and spring. Sediment flux available for surrounding marsh varies from 0-500 g·m-1·s-1. An optimal inundation depth of 50 cm is estimated by the equilibrium wetland elevation change model under high relative sea level rising rate of 1.57 cm·yr-1. Seasonal variations of river discharge and wind direction (particularly speeds >3 m·s-1) greatly impact potential sediment contribution from bay to the surrounding wetlands. Three sediment transport regimes are concluded based on the seasonal variations of river discharge and wind direction: the `bypassing' season, the resuspension-accumulation season, and the combined `bypassing' and resuspension-accumulation season. The bay hydrodynamic processes and their impacts on the stability of surrounding wetlands fill in our knowledge gaps on how the micro tidal estuarine-marsh system responds to the fast relative sea level rise, and provide valuable information for future ecological restoration plans in the micro tidal deltas like the MR delta.

  17. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and salinity; (2) deter waterbird species that cannot cope with increased water levels; and (3) reduce waterbird species diversity by decreasing spatial variability in water depth among and within marsh ponds.

  18. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    USGS Publications Warehouse

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  19. Comparison of Nitrogen Fixation Activity in Tall and Short Spartina alterniflora Salt Marsh Soils 1

    PubMed Central

    Hanson, Roger B.

    1977-01-01

    A comparison of the N2 fixers in the tall Spartina alterniflora and short S. alterniflora marsh soils was investigated. Zero-order kinetics and first-order kinetics of acetylene reduction were used to describe the activity of the N2 fixers in marsh soil slurries. It was found that the Vmax values were approximately 10 times greater for the N2 fixers in the tall Spartina than in the short Spartina marsh when raffinose was used as the energy source. In addition, the (Ks + Sn) values were approximately 4 to 15 times lower for the N2 fixers in the tall Spartina than in short Spartina marsh. First-order kinetics of nitrogen fixation for several substrates indicate that the N2 fixers in the tall Spartina marsh were two to seven times more active than those in the short Spartina marsh. Ammonium chloride (25 μg/ml) did not inhibit nitrogen fixation in the tall Spartina marsh, but there was a 50% inhibition in nitrogen fixation in the short Spartina marsh. On the other hand, sodium nitrate inhibited nitrogen fixation almost 100% at 25 μg/ml in both soil environments. Amino nitrogen (25 to 100 μg/ml) had little or no effect on nitrogen fixation. The results indicate that the N2 fixers in the tall Spartina marsh were physiologically more responsive to nutrient addition than those in the short Spartina marsh. This difference in the two populations may be related to the difference in daily tidal influence in the respective areas and thus provide another explanation for the enhanced S. alterniflora production in the creek bank soil system. PMID:16345213

  20. KSC-08pd4127

    NASA Image and Video Library

    2008-12-23

    CAPE CANAVERAL, Fla. – A great egret preens its feathers while standing in the shallow water of a pond in the Merritt island National Wildlife Refuge, which borders NASA's Kennedy Space Center in Florida. The breed feeds alone, stalking fish, frogs, snakes and crayfish in shallow water. They inhabit freshwater and salt marshes, marshy ponds and tidal flats. The center shares a boundary with the refuge that includes salt-water estuaries, brackish marshes, hardwood hammocks and pine flatwoods. The diverse landscape provides habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. Photo credit: NASA/Jim Grossmann

  1. CHRONIC LABORATORY EXPOSURE OF MUMMICHOG, FUNDULUS HETEROCLITUS, TO PAH-CONTAMINATED SEDIMENT AND DIET CAUSES LIVER NEOPLASMS

    EPA Science Inventory

    The mummichog, Fundulus heteroclitus, is a common estuarine teleost inhabiting tidal marshes of the eastern United States. We previoiusly reported on high prevalences of hepatic and extra-hepatic neoplasms in populations of this species from chemically contaminated environments ...

  2. Measuring nutrient flux in Pacific Coast salt marshes using fluctuating water-level chambers

    EPA Science Inventory

    Nutrient removal from the water column is an important ecosystem function that contributes to the production of clean water, a final valued ecosystem service of wetlands. However, little data is currently available for nutrient exchange in Pacific Northwest tidal ecosystems. We h...

  3. Characterisation of the hydrology of an estuarine wetland

    NASA Astrophysics Data System (ADS)

    Hughes, Catherine E.; Binning, Philip; Willgoose, Garry R.

    1998-11-01

    The intertidal zone of estuarine wetlands is characterised by a transition from a saline marine environment to a freshwater environment with increasing distance from tidal streams. An experimental site has been established in an area of mangrove and salt marsh wetland in the Hunter River estuary, Australia, to characterise and provide data for a model of intertidal zone hydrology. The experimental site is designed to monitor water fluxes at a small scale (36 m). A weather station and groundwater monitoring wells have been installed and hydraulic head and tidal levels are monitored over a 10-week period along a short one-dimensional transect covering the transition between the tidal and freshwater systems. Soil properties have been determined in the laboratory and the field. A two-dimensional finite element model of the site was developed using SEEP/W to analyse saturated and unsaturated pore water movement. Modification of the water retention function to model crab hole macropores was found necessary to reproduce the observed aquifer response. Groundwater response to tidal fluctuations was observed to be almost uniform beyond the intertidal zone, due to the presence of highly permeable subsurface sediments below the less permeable surface sediments. Over the 36 m transect, tidal forcing was found to generate incoming fluxes in the order of 0.22 m 3/day per metre width of creek bank during dry periods, partially balanced by evaporative fluxes of about 0.13 m 3/day per metre width. During heavy rainfall periods, rainfall fluxes were about 0.61 m 3/day per metre width, dominating the water balance. Evapotranspiration rates were greater for the salt marsh dominated intertidal zone than the non-tidal zone. Hypersalinity and salt encrustation observed show that evapotranspiration fluxes are very important during non-rainfall periods and are believed to significantly influence salt concentration both in the surface soil matrix and the underlying aquifer.

  4. Carbon Dioxide Emissions Associated with the Restoration of a Tidal Salt Marsh in Boston, MA

    NASA Astrophysics Data System (ADS)

    Bulpett, K.; Chen, R. F.

    2016-02-01

    Decades of land alterations had led to the encroachment of the invasive Phragmites australis in the Neponset River salt marshes in Boston, Massachusetts. An 11 acre area on the west bank of the Neponset River had been underlain by dredge spoil and was several feet higher in elevation than surrounding marsh; contributing to the domination of Phragmites which occurred at high enough densities to virtually exclude native vegetation species and posed as an ecological threat to the remaining marshlands. In 2005, restoration of this section involved excavating approximately 46,700 cubic yards of dredged materials; effectively lowering the marsh platform by 1.5 feet to reestablish tidal flushing. The removed materials were relocated to an area deemed unlikely for future restoration efforts on the northern portion of the site, containing relatively high elevations from previous dredge spoil deposits and dense strands of Phragmites. The mitigation has been considered successful as seawater inundation has promoted the replacement of the Phragmites with native Spartina alterniflora. The excavation and relocation of dredge materials exposed previously buried marsh sediments to the atmosphere. Our research study focuses on determining how much carbon dioxide (CO2) may have been released due to the disturbance of this sequestered carbon. Ten years after the restoration, in 2015, direct measurements of CO2 fluxes from the soils in the remediated site, an unrestored area, and the dredge spoils reveal differing CO2 emission rates between the three sites, measuring at 1.54 ± 0.70 μmol/m2/s, 5.48 ± 2.68 μmol/m2/s, 9.57 ± 2.09 μmol/m2/s respectively. Our measurements suggest that the restoration has resulted in a significant release of previously sequestered carbon to the atmosphere. Estimations of potential emissions and avoided emissions resulting from coastal restoration projects are necessary in evaluating mitigation policies and practices and managing conservation efforts of these essential ecosystems.

  5. Effects Of Spatial Variability In Marshes On Coastal Erosion Under Storm Conditions

    NASA Astrophysics Data System (ADS)

    Lunghino, B.; Suckale, J.; Fringer, O. B.; Maldonado, S.; Ferreira, C.; Marras, S.; Mandel, T.

    2016-12-01

    To quantify the contribution of marshes in protecting coastlines, engineers and planners need to evaluate how variability in marsh characteristics and storm conditions affect erosion in the inundation zone. Previous studies show that spatial patterns in marshes significantly affect flow and sediment transport under normal tidal conditions [1, 2]. This study investigates the effect of spatial variability on floodplain sediment transport under a range of extreme hydrodynamic conditions that occur during storm events. We model the hydrodynamics of storm surge conditions on an idealized coastal floodplain by solving the 2D shallow water equations. We approximate the effect of vegetation on hydrodynamics as a constant drag coefficient. The model calculates suspended sediment transport with the advection-diffusion equation and updates morphology with erosional and depositional fluxes. We conduct numerical experiments in which we vary both the scale of the storm event and the spatial patterns of vegetation and evaluate the impact on erosion and deposition on the floodplain. We find that the alongshore extent of the vegetation is the primary control on the net volume of sediment eroded. Scour occurs in narrow channels between vegetated areas, but this does not significantly alter the net volume of sediment transported. Deposition occurs in vegetated areas under the full range of flow velocities we test. These results suggest that resolving all variability in vegetation is not necessary to quantify net sediment transport volumes at the floodplain scale. Increasing the scale of the storm event does not alter the role of spatial variability. References [1] Meire, D. W., Kondziolka, J. M., and Nepf, H. M. Interaction between neighboring vegetation patches: Impact on flow and deposition. Water Resources Research 50, 5 (2014), 3809-3825. [2] Temmerman, S., Bouma, T., Govers, G., Wang, Z., De Vries, M., and Her- man, P. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface 110, F4 (2005).

  6. Plant responses to increased inundation and salt exposure: interactive effects on tidal marsh productivity

    EPA Science Inventory

    Flooding and high salinity generally induce physiological stress in wetland vascular plants which may increase in intensity with sea-level rise (SLR). We tested the effects of these factors on seedling growth in a transplant experiment in a macrotidal estuary in the Pacific North...

  7. MONITORING FOOD WEB CHANGES IN TIDE-RESTORED SALT MARSHES: A CARBON STABLE ISOTOPE APPROACH

    EPA Science Inventory

    Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, and Fundulus heteroclitus isotope values (d13C , d15N, d34S) were examined to assess their use as an indicator for changes in food web support functions in tidally-restored sal...

  8. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients

    EPA Science Inventory

    Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, ...

  9. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion

    PubMed Central

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Xiang, Jian; Lin, Yongxin

    2016-01-01

    Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora marsh, invasion increased methanogen abundance by 3.48-fold, compared with native S. salsa and P. australis marshes due to increase of facultative Methanosarcinaceae rather than acetotrophic and hydrogenotrophic methanogens. Ordination analyses suggested that trimethylamine was the primary factor regulating shift in methanogen community structure. Addition of trimethylamine increased CH4 production rates by 1255-fold but only by 5.61- and 11.4-fold for acetate and H2/CO2, respectively. S. alterniflora invasion elevated concentration of non-competitive trimethylamine, and shifted methanogen community from acetotrophic to facultative methanogens, which together facilitated increased CH4 production potential. PMID:26728134

  10. The greenhouse gas flux and potential global warming feedbacks of a northern macrotidal and microtidal salt marsh

    USGS Publications Warehouse

    Chmura, Gail L.; Kellman, Lisa; Guntenspergen, Glenn R.

    2011-01-01

    Conversion of wetlands by drainage for agriculture or other anthropogenic activities could have a negative or positive feedback to global warming (GWF). We suggest that a major predictor of the GWF is salinity of the wetland soil (a proxy for available sulfate), a factor often ignored in other studies. We assess the radiative balance of two northern salt marshes with average soil salinities > 20 ppt, but with high (macro-) and low (micro-) tidal amplitudes. The flux of greenhouse gases from soils at the end of the growing season averaged 485 ± 253 mg m-2 h-1, 13 ± 30 μg m-2 h-1, and 19 ± 58 μg m-2 h-1 in the microtidal marsh and 398 ± 201 mg m-2 h-1, 2 ± 26 μg m-2 h-1, and 35 ± 77 μg m-2 h-1 in the macrotidal marsh for CO2, N2O, and CH4, respectively. High rates of C sequestration mean that loss of these marshes would have a radiative balance of - 981 CO2_eq. m-2 yr-1 in the microtidal and - 567 CO2_eq. m-2 yr-1 in the macrotidal marsh.

  11. Natural and Anthropogenic Causes of Accelerated Sediment Accumulation Rates in Nehalem Bay Salt Marshes, Oregon

    NASA Astrophysics Data System (ADS)

    Molino, G. D.; Wheatcroft, R. A.; Peck, E. K.; Brophy, L.

    2016-12-01

    Vertical sediment accretion in estuarine salt marshes occurs as sediments settle out of the water column and onto marsh soils during periods of tidal inundation - thus accretion is influenced by both relative sea level rise (RSLR) and sediment flux to the estuary. Oregon estuaries are understudied compared to their East and Gulf Coast counterparts, but provide a unique opportunity to disentangle these effects. A broader study in three Oregon estuaries (Peck et al., this session) indicates RSLR as the dominant factor controlling sedimentation rates. Working in Nehalem Bay (northern Oregon coast), replicate sediment cores were taken along several transects across an elevation gradient for analysis of sediment and carbon accumulation using CT scans, gamma detection of Pb-210, X-Ray Fluorescence (XRF) and Loss-on-Ignition (LOI). Preliminary results indicate sediment accumulation rates over the past century are higher than rates seen in other comparable Oregon salt marshes; this is consistent with past studies and preliminary analysis of remote sensing data that show significant horizontal expansion of Nehalem marshes. A number of possible causes for the high sediment accumulation rates - hydroclimate of Nehalem River, extensive timber harvesting, forest fires such as the so-called Tillamook Burns, and diking of adjacent marshes - are being explored.

  12. Prediction of Greenhouse Gas (GHG) Fluxes from Coastal Salt Marshes using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2017-12-01

    Coastal salt marshes are among the most productive ecosystems on earth. Given the complex interactions between ambient environment and ecosystem biological exchanges, it is difficult to predict the salt marsh greenhouse gas (GHG) fluxes (CO2 and CH4) from their environmental drivers. In this study, we developed an artificial neural network (ANN) model to robustly predict the salt marsh GHG fluxes using a limited number of input variables (photosynthetically active radiation, soil temperature and porewater salinity). The ANN parameterization involved an optimized 3-layer feed forward Levenberg-Marquardt training algorithm. Four tidal salt marshes of Waquoit Bay, MA — incorporating a gradient in land-use, salinity and hydrology — were considered as the case study sites. The wetlands were dominated by native Spartina Alterniflora, and characterized by high salinity and frequent flooding. The developed ANN model showed a good performance (training R2 = 0.87 - 0.96; testing R2 = 0.84 - 0.88) in predicting the fluxes across the case study sites. The model can be used to estimate wetland GHG fluxes and potential carbon balance under different IPCC climate change and sea level rise scenarios. The model can also aid the development of GHG offset protocols to set monitoring guidelines for restoration of coastal salt marshes.

  13. Seasonal cycling of sulfur and iron in porewaters of a Delaware salt marsh

    NASA Technical Reports Server (NTRS)

    Luther, George W., III; Church, Thomas M.

    1987-01-01

    An extensive pore water data set has been gathered in the Great Marsh, Delaware over various seasons, salinities, and tides. The data all point to a complimentary redox cycle for sulfur and iron which operates seasonally and tidally. Surface oxidizing conditions prevail in summer, with more reducing conditions at depth during the winter. During the spring tides which flood the marsh, pyrite oxidation occurs releasing excess dissolved iron (II) and sulfate to the porewaters, and precipitating authigenic solid iron phases. The redox conditions in the porewaters of the upper zone during the summer is poised between mildly oxidizing and mildly reducing conditions as shown by pE calculations. This redox environment and intermediate iron-sulfur redox species may be important for the stimulation of plant growth (photosynthesis) and sustenance of a viable microbial community (heterotrophy and chemoautropy).

  14. The Contribution of Mangrove Expansion to Salt Marsh Loss on the Texas Gulf Coast

    PubMed Central

    Brody, Samuel D.; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km2, a 74% increase. Concurrently, salt marsh area decreased by 77.8 km2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss. PMID:25946132

  15. Marsh canopy structure changes and the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  16. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    PubMed

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  17. Tidal and seasonal effects on survival rates of the endangered California clapper rail: Does invasive Spartina facilitate greater survival in a dynamic environment?

    USGS Publications Warehouse

    Overton, Cory T.; Casazza, Michael L.; Takekawa, John Y.; Strong, Donald R.; Holyoak, Marcel

    2014-01-01

    Invasive species frequently degrade habitats, disturb ecosystem processes, and can increase the likelihood of extinction of imperiled populations. However, novel or enhanced functions provided by invading species may reduce the impact of processes that limit populations. It is important to recognize how invasive species benefit endangered species to determine overall effects on sensitive ecosystems. For example, since the 1990s, hybrid Spartina (Spartina foliosa × alterniflora) has expanded throughout South San Francisco Bay, USA, supplanting native vegetation and invading mudflats. The endangered California clapper rail (Rallus longirostris obsoletus) uses the tall, dense hybrid Spartina for cover and nesting, but the effects of hybrid Spartina on clapper rail survival was unknown. We estimated survival rates of 108 radio-marked California clapper rails in South San Francisco Bay from January 2007 to March 2010, a period of extensive hybrid Spartina eradication, with Kaplan–Meier product limit estimators. Clapper rail survival patterns were consistent with hybrid Spartina providing increased refuge cover from predators during tidal extremes which flood native vegetation, particularly during the winter when the vegetation senesces. Model averaged annual survival rates within hybrid Spartina dominated marshes before eradication (Ŝ = 0.466) were greater than the same marshes posttreatment (Ŝ = 0.275) and a marsh dominated by native vegetation (Ŝ = 0.272). However, models with and without marsh treatment as explanatory factor for survival rates had nearly equivalent support in the observed data, lending ambiguity as to whether hybrid Spartina facilitated greater survival rates than native marshland. Conservation actions to aid in recovery of this endangered species should recognize the importance of available of high tide refugia, particularly in light of invasive species eradication programs and projections of future sea-level rise.

  18. Space use and habitat selection of migrant and resident American Avocets in San Francisco Bay

    USGS Publications Warehouse

    Demers, Scott A.; Takekawa, John Y.; Ackerman, Joshua T.; Warnock, N.; Athearn, N.D.

    2010-01-01

    San Francisco Bay is a wintering area for shorebirds, including American Avocets (Recurvirostra americana). Recently, a new resident population of avocets has emerged, presumably because of the development of tidal marshes into salt-evaporation ponds. In habitat restoration now underway, as many as 90% of salt ponds will be restored to tidal marsh. However, it is unknown if wintering and resident avocets coexist and if their requirements for space and habitat differ, necessitating different management for their populations to be maintained during restoration. We captured and radio-marked wintering avocets at a salt pond and a tidal flat to determine their population status (migrant or resident) and examine their space use and habitat selection. Of the radio-marked avocets, 79% were migrants and 21% were residents. At the salt pond, residents' fidelity to their location of capture was higher, and residents moved less than did migrants from the same site. Conversely, on the tidal flat, fidelity of residents to their site of capture was lower, and residents' home ranges were larger than those of migrants from the same site. Habitat selection of migrants and residents differed little; however, capture site influenced habitat selection far more than the birds' status as migrants or residents. Our study suggests that individual avocets have high site fidelity while wintering in San Francisco Bay, although the avocet as a species is plastic in its space use and habitat selection. This plasticity may allow wintering migrant and resident avocets to adapt to habitat change in San Francisco Bay. ?? The Cooper Ornithological Society 2010.

  19. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T-channel' was extended westward and connected to Bradbury Slough to create a second outlet to the main river. New intertidal channels were constructed from the existing 'T-channel' and tidal mudflats became inundated at high tide to increase rearing habitat for juvenile salmonids. The restoration action resulted in a 95-percent increase in available juvenile salmon rearing habitat. We collected juvenile salmon and other fishes at Crims Island and a nearby reference site using beach seines and fyke nets annually from March through August during all years. Benthic invertebrates were collected with sediment corers and drift invertebrates were collected with neuston nets. Juvenile salmon stomach contents were sampled using lavage. Vegetation and sediments characteristics were surveyed and we conducted a topographic/bathymetric survey using a RTK (real time kinematic) GPS (global positioning system). The fish assemblage at Crims Island, composed primarily of threespine stickleback (Gasterosteus aculeatus), non-native banded killifish (Fundulus diaphanus), peamouth chub (Mylocheilus caurinus), subyearling Chinook salmon (Oncorhynchus tshawytscha) (hereinafter referred to as subyearlings), and small numbers of juvenile chum salmon (Oncorhynchus keta), did not differ appreciably pre- and post-restoration. Subyearlings were the primary salmonid collected and were seasonally abundant from April through May during all years. The abundance of juvenile salmon declined seasonally as water temperature exceeded 20 degrees C in the Reference site by mid-June; however, subyearlings persisted at the Mainstem site and in subtidal channels of the Restoration site through the summer in water temperatures exceeding 22 degrees C. Residence times of subyearlings in Crims Island backwaters generally were short consisting of one or two tidal cycles. Median residence time was longer in the Restoration site than in the Reference site pre- and post-restoration. Small (mean = 55.7 millimeters) subyea

  20. The Hyperspectral Infrared Imager (HyspIRI) and Global Observations of Tidal Wetlands

    NASA Astrophysics Data System (ADS)

    Turpie, K. R.; Klemas, V. V.; Byrd, K. B.; Kelly, M.; Jo, Y. H.

    2016-02-01

    HyspIRI mission will employ a high-spectral resolution VSWIR spectrometer, with a 30 m spatial resolution and swath width equal to Landsat legacy instruments. The spectrometer is expected to have a signal-to-noise (SNR) ratio comparable to or better than the Hyperspectral Imager of the Coastal Ocean (HICO). The mission will also provide an imaging radiometer with eight thermal bands at 60m resolution 600 km swath width. HyspIRI will offer new and unique opportunities to globally study ecosystems where land meets sea. In particular, the mission will be a boon to observations of tidal wetlands, which are highly productive and act as critical habitat for a wide variety of plants, fish, shellfish, and other wildlife. These ecotones between aquatic and terrestrial environments also provide protection from storm damage, run-off filtering, and recharge of aquifers. Many wetlands along coasts have been exposed to stress-inducing alterations globally, including dredge and fill operations, hydrologic modifications, pollutants, impoundments, fragmentation by roads/ditches, and sea level rise. For wetland protection and sensible coastal development, there is a need to monitor these ecosystems at global and regional scales. We will describe how the HyspIRI hyperspectral and thermal infrared sensors can be used to study and map key ecological properties of tidal salt and brackish marshes and mangroves, and perhaps other major wetland types, including freshwater marshes and wooded/shrub wetlands.

  1. Holocene sedimentation and coastal wetlands response to rising sea level at the Aucilla river mouth, a low energy coast in the Big Bend area of Florida

    USGS Publications Warehouse

    Garrett, Connie; Hertler, Heidi; Hoenstine, Ronald; Highley, Brad

    1993-01-01

    The shallow dip of the Florida carbonate platform results in low wave energy on Florida ???Big Bend??? coasts. Therefore sedimentation is dominated by river-and tidal-hydrodynamics near the Aucilla River mouth. Where present, Holocene sediments are thin and unconformably overlie Oligocene-aged Suwannee Limestone. The oldest unlithified sediments include reworked carbonate rubble with clay and wood fragments (seven thousand years old or less, based on wood radio-carbon dating). Although this basal sequence is observed in most areas, the sediments that overlie it vary. Sediment sequences from the outer littoral to submarine environments include organic-rich sands, oyster biotherm remains, and cleaner sands with organic-filled burrows. Inner littoral (salt-marsh) sequences generally consist of sandy, fining-upwards sequences in which dry weights of fine-grained clastics and organic components increase up-sequence at similar rates. Offshore sediments preserve greatly attenuated fluvial and salt-marsh facies, if these facies are preserved at all. With sea-level rise, erosion can result from insufficient sediment supply and down-cutting by tidal currents (Dolotov, 1992; and Dalrymple et al., 1992). Dolotov (1992) attributes displacement of original coastal stratigraphy to insufficient sediments for beach profile maintenance, while Dalrymple et al. (1992) attribute erosional truncation (ravinement) or complete removal of portions of typical estuarine sequences to headward migration of tidal channels.

  2. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review

    USGS Publications Warehouse

    Passeri, Davina L.; Hagen, Scott C.; Medeiros, Stephen C.; Bilskie, Matthew V.; Alizad, Karim; Wang, Dingbao

    2015-01-01

    Coastal responses to sea level rise (SLR) include inundation of wetlands, increased shoreline erosion, and increased flooding during storm events. Hydrodynamic parameters such as tidal ranges, tidal prisms, tidal asymmetries, increased flooding depths and inundation extents during storm events respond nonadditively to SLR. Coastal morphology continually adapts toward equilibrium as sea levels rise, inducing changes in the landscape. Marshes may struggle to keep pace with SLR and rely on sediment accumulation and the availability of suitable uplands for migration. Whether hydrodynamic, morphologic, or ecologic, the impacts of SLR are interrelated. To plan for changes under future sea levels, coastal managers need information and data regarding the potential effects of SLR to make informed decisions for managing human and natural communities. This review examines previous studies that have accounted for the dynamic, nonlinear responses of hydrodynamics, coastal morphology, and marsh ecology to SLR by implementing more complex approaches rather than the simplistic “bathtub” approach. These studies provide an improved understanding of the dynamic effects of SLR on coastal environments and contribute to an overall paradigm shift in how coastal scientists and engineers approach modeling the effects of SLR, transitioning away from implementing the “bathtub” approach. However, it is recommended that future studies implement a synergetic approach that integrates the dynamic interactions between physical and ecological environments to better predict the impacts of SLR on coastal systems.

  3. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools

    USGS Publications Warehouse

    Yando, Erik S.; Osland, Michael J.; Willis, Jonathan M; Day, Richard H.; Krauss, Ken W.; Hester, Mark W.

    2016-01-01

    Synthesis: Our results indicate that the ecological implications of woody plant encroachment in tidal saline wetlands are dependent upon precipitation controls of plant–soil interactions. Although the above-ground effects of mangrove expansion are consistently large, below-ground influences of mangrove expansion appear to be greatest along low-rainfall coasts where salinities are high and marshes being replaced are carbon poor and dominated by succulent plants. Collectively, these findings complement those from terrestrial ecosystems and reinforce the importance of considering rainfall and plant–soil interactions within predictions of the ecological effects of woody plant encroachment.

  4. Seasat radar geomorphic applications in coastal and wetland environments, southeastern U.S

    NASA Technical Reports Server (NTRS)

    Macdonald, H. C.

    1981-01-01

    The application of Seasat Synthetic Aperture Radar (SAR) to the assessment of terrain conditions in coastal environments is considered. Drainage patterns and plant community spatial relationships can be adequately mapped as is shown by Seasat L-band imagery of the southeastern Gulf Coast and Atlantic Coastal Plain. Anomalously bright radar signatures are identified as characteristic of mangrove and cypress swamps. Marshes have a low radar return, less than that from non-marsh areas and open water in tidal channels. Drainage patterns for coastal plain transition zones can also be determined. Spaceborne imaging radar provides information which complements geomorphic analyses presently obtained with optical sensors.

  5. Tidal pumping as a driver of groundwater discharge to a back barrier salt marsh ecosystem

    NASA Astrophysics Data System (ADS)

    Carter, M. L.; Viso, R. F.; Peterson, R. N.; Hill, J. C.

    2013-12-01

    Submarine groundwater discharge (SGD) typically consists of both terrestrial groundwater and recirculated seawater and has been shown to be a significant pathway of dissolved substances to the coastal zone. The fresh and saline water mixture in the subsurface creates a salinity gradient that can impact biogeochemical processes. Located along the South Atlantic Bight, Georgia's coastline is an approximately 100-mile stretch of complex primary and secondary barrier islands resulting from geologic interactions driven by long-term sea level rise and retreat, accretion, seasonal tidal events, storm overwash, and wave driven erosion. Our study site is located in the Duplin River near Sapelo Island, GA and is part of the Georgia Coastal Ecosystems Long Term Ecosystem Research (GCE-LTER) program. This area is considered mesotidal (2-4m) and tidal pumping may be a dominating process in controlling SGD rates. The Duplin River is connected to the Atlantic Ocean through Doboy Sound to the south. To the north, the river terminates in extensive salt marsh and therefore has no overland freshwater input. Previous studies show a salinity gradient within the Duplin River indicating that SGD must be present as a source of brackish water. To place constraints on SGD processes, we employ a combination of geochemical and geophysical techniques to determine the magnitude of SGD in the Duplin River. Together these techniques permit a more complete understanding of the groundwater system. Three time series stations at the upper, mid and lower reaches of the Duplin River were deployed in June of 2013 to measure groundwater influences during daily and fortnightly tidal cycles. At each station, continuous radon-222 measurements were conducted at 30 minute intervals along with measurements of water level, temperature and conductivity using standard hydrological data loggers. During this period, eight time series resistivity profiles using a 56 electrode (110m long) cable were recorded to provide detailed imagery of fluid interactions at the ground/surface water interface during a tidal cycle. The resistivity profiles are presented as color contoured tomograms representing the shallow aquifer system to depths exceeding 20 meters. Measurements took place during a series of large precipitation events, including immediately before and after a tropical storm, as well as during relatively dry conditions. Taking into account the metrological variability, our initial results indicate that the SGD process is most strongly influenced by tidal pumping. Radon analysis and resistivity measurements reveal strong inverse relationships with water level. Percent difference resistivity models indicate substantial tidally controlled pore fluid flushing and mixing within the shallow aquifer system. These measurements will be further used to construct a water budget within the Duplin River and to delineate the extent of variability in salinity of shallow marsh sediments. In addition, these measurements will provide accurate rates and flow geometries useful as constraints on ongoing reactive transport modeling efforts.

  6. Modern diatom assemblages as tools for paleoenvironmental reconstruction: a case study from estuarine intertidal zones in southern Iberia

    NASA Astrophysics Data System (ADS)

    Gomes, Ana; Boski, Tomasz; Moura, Delminda; Szkornik, Katie; Witkowski, Andrzej; Connor, Simon; Laut, Lazaro; Sobrinho, Frederico; Oliveira, Sónia

    2017-04-01

    Diatoms are unicellular algae that live in saline, brackish and freshwater environments, either floating in the water column or associated with various substrates (e.g., muddy and sandy sediments). Diatoms are sensitive to changes in environmental variables such as salinity, sediment texture, nutrient availability, light and temperature. This characteristic, along with their short lifespan, allows diatoms to quickly respond to environmental changes. Since the beginning of the 20th century, diatoms have been widely used to study the Holocene evolution of estuaries worldwide, particularly to reconstruct ecological responses to sea-level and climate changes. However, diatoms have been poorly studied in estuarine intertidal zones, due to the complexity of these environments, which have both fluvial and marine influences. The aim of this study was to understand diatom diversity and spatial distribution in intertidal zones from two geomorphologically and hydrologically distinct estuaries. Sediment samples were collected from within the intertidal zones along the Arade and Guadiana River estuaries in southern Iberia. The sampling points embraced almost all the tidal and salinity gradients of both estuaries, capturing the highest possible environmental variability and hence of diatom assemblages. At each sampling point, the salinity and pH of the sediment interstitial water were measured. The sediment samples were subdivided for diatom identification, textural analysis and organic matter determination. All sampling points were georeferenced by DGPS and the duration of tidal inundation was calculated for each site. Following diatom identification, the data were analysed statistically (i.e. cluster analysis, PCA, DCA and RDA). The present study revealed that there is a great diatom diversity in both estuaries (418 species), with several species new to science. The most important diatom species (with abundances higher or equal to 5%) occur in five ecological groups, which are associated to five distinct environments: lower estuary sandflats, lower estuary mudflats, middle to upper estuary mudflats, lower estuary salt marshes and middle estuary salt marshes. This study allowed us to establish modern analogues that are essential for developing transfer functions (quantitative palaeoenvironmental estimates). These methods will enable more accurate Holocene paleoenvironmental reconstructions on the southern Iberian coast and will improve knowledge about the evolution of estuarine environments globally . The work was supported by the SFRH/BD/62405/2009 fellowship, funded by the Portuguese Foundation for Science and Technology.

  7. NITROGEN CONCENTRATIONS IN LOADING SOURCES FOR THREE COASTAL LAGOONS FROM ATMOSPHERIC AND WATERSHED SOURCES, ADJACENT COASTAL MARSHES, TIDAL EXCHANGES

    EPA Science Inventory

    Abstract and Oral Presentation Gulf Estuarine Research Society.

    Standing stocks and inputs of total dissolved nitrogen (TDN) to three coastal lagoons, hereafter referred to as Kee's Bayou, Gongora, and State Park, with varying adjacent land-use, geomorphology, and water re...

  8. Stage-discharge relationship in tidal channels

    NASA Astrophysics Data System (ADS)

    Kearney, W. S.; Mariotti, G.; Deegan, L.; Fagherazzi, S.

    2016-12-01

    Long-term records of the flow of water through tidal channels are essential to constrain the budgets of sediments and biogeochemical compounds in salt marshes. Statistical models which relate discharge to water level allow the estimation of such records from more easily obtained records of water stage in the channel. While there is clearly structure in the stage-discharge relationship, nonlinearity and nonstationarity of the relationship complicates the construction of statistical stage-discharge models with adequate performance for discharge estimation and uncertainty quantification. Here we compare four different types of stage-discharge models, each of which is designed to capture different characteristics of the stage-discharge relationship. We estimate and validate each of these models on a two-month long time series of stage and discharge obtained with an Acoustic Doppler Current Profiler in a salt marsh channel. We find that the best performance is obtained by models which account for the nonlinear and time-varying nature of the stage-discharge relationship. Good performance can also be obtained from a simplified version of these models which approximates the fully nonlinear and time-varying models with a piecewise linear formulation.

  9. Seagrass Impact on Sediment Exchange Between Tidal Flats and Salt Marsh, and The Sediment Budget of Shallow Bays

    NASA Astrophysics Data System (ADS)

    Donatelli, Carmine; Ganju, Neil Kamal; Fagherazzi, Sergio; Leonardi, Nicoletta

    2018-05-01

    Seagrasses are marine flowering plants that strongly impact their physical and biological surroundings and are therefore frequently referred to as ecological engineers. The effect of seagrasses on coastal bay resilience and sediment transport dynamics is understudied. Here we use six historical maps of seagrass distribution in Barnegat Bay, USA, to investigate the role of these vegetated surfaces on the sediment storage capacity of shallow bays. Analyses are carried out by means of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) numerical modeling framework. Results show that a decline in the extent of seagrass meadows reduces the sediment mass potentially stored within bay systems. The presence of seagrass reduces shear stress values across the entire bay, including unvegetated areas, and promotes sediment deposition on tidal flats. On the other hand, the presence of seagrasses decreases suspended sediment concentrations, which in turn reduces the delivery of sediment to marsh platforms. Results highlight the relevance of seagrasses for the long-term survival of coastal ecosystems, and the complex dynamics regulating the interaction between subtidal and intertidal landscapes.

  10. Remote sensing of wetland parameters related to carbon cycling

    NASA Technical Reports Server (NTRS)

    Bartlett, David S.; Johnson, Robert W.

    1985-01-01

    Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.

  11. Complete tidal evolution of Pluto-Charon

    NASA Astrophysics Data System (ADS)

    Cheng, W. H.; Lee, Man Hoi; Peale, S. J.

    2014-05-01

    Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a≈4RP (where RP is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function Q∝1/frequency and Q = constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum-including temporary capture into spin-orbit resonances as Charon’s spin decreases and damped librations about the same.

  12. Seasonal Variability of Salt Marsh Foraminifera at the Narrow River, Rhode Island, USA

    NASA Astrophysics Data System (ADS)

    Amelse, C. M.; Engelhart, S. E.; Halavik, B.; Kemp, A.

    2016-12-01

    Salt-marsh foraminifera are commonly used as proxies for producing high-resolution relative sea-level reconstructions over the Holocene. These reconstructions are based on the analogy between modern and fossil assemblages of foraminifera, in which modern assemblages were characterized using surface sediment samples collected on a single day. This approach implicitly assumes that instantaneous sampling of modern salt-marsh foraminifera is adequate to characterize the relationship between foraminiferal assemblages and tidal elevation. However, foraminiferal populations may vary during a year in response to seasonal changes, which may affect the reliability of relative sea-level reconstructions. The effect of seasonality on salt marsh foraminiferal populations has been studied in the United Kingdom as well as on the Pacific coast of the USA, but is absent on the Atlantic coast of the USA. To address this, we investigated the role of seasonality on foraminiferal distributions from a salt marsh environment at the Narrow River (Rhode Island, USA). We analyzed living and dead foraminiferal species from 48 samples through a full year during all four seasons. Common species included Trochammina inflata, Jadammina macrescens, Tiphotrocha comprimata, Miliammina fusca, Reophax spp., and Haplophragmoides spp. Other species included Siphotrochammina lobata, Arenoparella mexicana, Textularia spp., Ammobaculites spp., and Eggerella advena. Low marsh samples were dominated by Miliammina fusca and Reophax spp., while high marsh samples are identified by high abundances of Haplophragmoides spp. Statistical analyses of these samples enables us to identify the influence of seasonality on modern foraminiferal distributions.

  13. Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

    USGS Publications Warehouse

    Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.

    2015-11-02

    In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we combined these diverse tidal saline wetland ecosystems into a single grouping, “tidal saline wetland.” Collectively, our approach and findings can provide useful information for scientists and environmental planners working to develop future-focused adaptation strategies for conserving coastal landscapes and the ecosystem goods and services provided by tidal saline wetlands. The primary product of this work is a public dataset that identifies locations where landward migration of tidal saline wetlands is expected to occur under alternative future sea-level rise and urbanization scenarios. In addition to identifying areas where landward migration of tidal saline wetlands is possible because of the absence of barriers, these data also identify locations where landward migration of these wetlands could be prevented by barriers associated with current urbanization, future urbanization, and levees.

  14. Carbon Sequestration in Created and Natural Tidal Marshes of the Florida Panhandle

    NASA Astrophysics Data System (ADS)

    Rainville, K. M.; Davis, J.; Currin, C.

    2016-12-01

    Salt marshes are widely understood to be efficient at storing carbon in sediments (aka blue carbon) through the production of roots and rhizomes. These marshes are also able to trap sediments from incoming tides, slowly increasing their elevation over time. These qualities have led to a great deal of interest in creation and preservation of salt marshes for offsetting changes associated with anthropogenic CO2 emissions. Determinations of the value of marshes in terms of CO2 offsets requires detailed knowledge of sediment carbon storage rates, but to date, measured rates of carbon storage in created salt marsh sediments are sparse. We measured carbon storage in natural and created marshes along the Northern Gulf Coast of Florida. The created marshes were in `living shoreline' projects and ranged in age from 8 to 28 years. Dominant plant cover of the marshes included Spartina alterniflora and Juncus spp. At all sites, sediment cores (22-75 cm in depth) were collected, extruded in 5 cm increments, and carbon content was determined by elemental analysis. Measured C storage rates in the created marshes ranged from 60 to 130 g C m-2 yr-1 and decreased with marsh age. A decrease in storage rates over time is evidence of continued decomposition of stored carbon as sediments age, an important factor to consider when estimating the value of a given marsh for CO2 offsets. The rates measured in Florida are well below previously published average values ( 200 g m-2 yr-1) and also below the default value allowed for carbon crediting through the verified carbon standard (146 g m-2 yr), but similar to those measured in created marshes in North Carolina. In addition, factors such as dominant plant type, water inundation, temperature, latitude, biological belowground activity and biomass values can impact carbon storage rates of marshes among geographically distinct regions. This makes it especially important to determine carbon storage rates on a local scale, and not following a verified carbon standard. These data add to the geographic coverage over which documented C storage rates are currently available and suggest that locally determined rates are necessary for accurate carbon accounting.

  15. The role of nature-based infrastructure (NBI) in coastal resiliency planning: A literature review.

    PubMed

    Saleh, Firas; Weinstein, Michael P

    2016-12-01

    The use of nature-based infrastructure (NBI) has attracted increasing attention in the context of protection against coastal flooding. This review is focused on NBI approaches to improve coastal resilience in the face of extreme storm events, including hurricanes. We not only consider the role of NBI as a measure to protect people and property but also in the context of other ecological goods and services provided by tidal wetlands including production of fish and shellfish. Although the results of many studies suggest that populated areas protected by coastal marshes were less likely to experience damage when exposed to the full force of storm surge, it was absolutely critical to place the role of coastal wetlands into perspective by noting that while tidal marshes can reduce wave energy from low-to-moderate-energy storms, their capacity to substantially reduce storm surge remains poorly quantified. Moreover, although tidal marshes can reduce storm surge from fast moving storms, very large expanses of habitat are needed to be most effective, and for most urban settings, there is insufficient space to rely on nature-based risk reduction strategies alone. The success of a given NBI method is also context dependent on local conditions, with potentially confounding influences from substrate characteristics, topography, near shore bathymetry, distance from the shore and other physical factors and human drivers such as development patterns. Furthermore, it is important to better understand the strengths and weaknesses of newly developed NBI projects through rigorous evaluations and characterize the local specificities of the particular built and natural environments surrounding these coastal areas. In order for the relevant science to better inform policy, and assist in land-use challenges, scientists must clearly state the likelihood of success in a particular circumstance and set of conditions. We conclude that "caution is advised" before selecting a particular NBI method as there is no "one size fits all" solution to address site-specific conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short-term disturbance-type responses.

  17. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short-term disturbance-type responses.

  18. Tidal evolution of close binary asteroid systems

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.; Margot, Jean-Luc

    2010-12-01

    We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than 5 times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent. This work has possible implications for the determination of the Roche limit and for spin-state alteration during close flybys.

  19. A mangrove creek restoration plan utilizing hydraulic modeling.

    PubMed

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  20. Reduction of fecal indicator bacteria (FIB) in the Ballona Wetlands saltwater marsh (Los Angeles County, California, USA) with implications for restoration actions.

    PubMed

    Dorsey, John H; Carter, Patrick M; Bergquist, Sean; Sagarin, Rafe

    2010-08-01

    A benefit of wetland preservation and restoration is the ecosystem service of improving water quality, typically assessed based on bacterial loading. The Ballona Wetlands, a degraded salt marsh of approximately 100 ac located on the southern border of Marina Del Rey (Los Angeles County, California, USA) are currently the focus of publicly funded restoration planning. The wetlands receive tidal water, usually contaminated with fecal indicator bacteria (FIB: total and fecal coliforms, Escherichia coli, enterococci) from the adjacent Ballona Creek and Estuary. During the summer of 2007, two 24-h studies were conducted to determine FIB tidal dynamics within the wetland. Measurements of water flow and mean FIB concentrations (n = 3) were measured every 1.5 h to determine total FIB load estimates. FIB loading rates (MPN/s) were greatest during flood tides as water entered the wetlands, and then again during spring tide conditions when sediments were resuspended during swifter spring ebb flows. During daylight hours, the wetland acted as a sink for these bacteria as loads diminished, presumably by sunlight and other processes. Conversely, during late afternoon and night, the wetlands shifted to being a source as excess FIB departed on ebb flows. Therefore, the wetlands act as both a source and sink for FIB depending on tidal conditions and exposure to sunlight. Future restoration actions would result in a tradeoff - increased tidal channels offer a greater surface area for FIB inactivation, but also would result in a greater volume of FIB-contaminated resuspended sediments carried out of the wetlands on stronger ebb flows. As levels of FIB in Ballona Creek and Estuary diminish through recently established regulatory actions, the wetlands could shift into a greater sink for FIB. (c) 2010 Elsevier Ltd. All rights reserved.

  1. Waterbird egg mercury concentrations in response to wetland restoration in south San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Watts, Trevor C.; Barr, Jarred R.

    2014-01-01

    The conversion of 50–90 percent of 15,100 acres of former salt evaporation ponds to tidal marsh habitat in the south San Francisco Bay, California, is planned as part of the South Bay Salt Pond Restoration Project. This large-scale habitat restoration may change the bioavailability of methylmercury. The South Bay already is known to have high methylmercury concentrations, with methylmercury concentrations in several waterbirds species more than known toxicity thresholds where avian reproduction is impaired. In this 2013 study, we continued monitoring bird egg mercury concentrations in response to the restoration of the Pond A8/A7/A5 Complex to a potential tidal marsh in the future. The restoration of the Pond A8/A7/A5 Complex began in autumn 2010, and the Pond A8 Notch was opened 5 feet (one of eight gates) to muted tidal action on June 1, 2011, and then closed in the winter. In autumn 2010, internal levees between Ponds A8, A7, and A5 were breached and water depths were substantially increased by flooding the Pond A8/A7/A5 Complex in February 2011. In June 2012, 15 feet (three of eight gates) of the Pond A8 Notch was opened, and then closed in December 2012. In June 2013, 15 feet of the Pond A8 Notch again was opened, and the Pond A8/A7/A5 Complex was a relatively deep and large pond with muted tidal action in the summer. This report synthesizes waterbird data from the 2013 breeding season, and combines it with our prior study’s data from 2010 and 2011.

  2. Coevolution of hydrodynamics, vegetation and channel evolution in wetlands of a semi-arid floodplain

    NASA Astrophysics Data System (ADS)

    Seoane, Manuel; Rodriguez, Jose Fernando; Rojas, Steven Sandi; Saco, Patricia Mabel; Riccardi, Gerardo; Saintilan, Neil; Wen, Li

    2015-04-01

    The Macquarie Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The Marshes are comprised of a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Some of the wetlands have undergone degradation over the last four decades, which has been attributed to changes in flow management upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment, with the subsequent invasion of terrestrial vegetation. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model.

  3. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Bolmont, E.; Mathis, S.; Charbonnel, C.; Amard, L.

    2017-08-01

    Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and should be correctly treated. Aims: We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. Methods: We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this coupling to rotating stars with masses between 0.3 and 1.4 M⊙. As a first step, this formalism assumes a simplified bi-layer stellar structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. Results: On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural changes. Conclusions: The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets are mainly sensitive to the star's early history.

  4. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  5. Saltmarsh plant responses to eutrophication.

    PubMed

    Johnson, David Samuel; Warren, R Scott; Deegan, Linda A; Mozdzer, Thomas J

    2016-12-01

    In saltmarsh plant communities, bottom-up pressure from nutrient enrichment is predicted to increase productivity, alter community structure, decrease biodiversity, and alter ecosystem functioning. Previous work supporting these predictions has been based largely on short-term, plot-level (e.g., 1-300 m 2 ) studies, which may miss landscape-level phenomena that drive ecosystem-level responses. We implemented an ecosystem-scale, nine-year nutrient experiment to examine how saltmarsh plants respond to simulated conditions of coastal eutrophication. Our study differed from previous saltmarsh enrichment studies in that we applied realistic concentrations of nitrate (70-100 μM NO 3 - ), the most common form of coastal nutrient enrichment, via tidal water at the ecosystem scale (~60,000 m 2 creeksheds). Our enrichments added a total of 1,700 kg N·creek -1 ·yr -1 , which increased N loading 10-fold vs. reference creeks (low-marsh, 171 g N·m -2 ·yr -1 ; high-marsh, 19 g N·m -2 ·yr -1 ). Nutrients increased the shoot mass and height of low marsh, tall Spartina alterniflora; however, declines in stem density resulted in no consistent increase in aboveground biomass. High-marsh plants S. patens and stunted S. alterniflora did not respond consistently to enrichment. Nutrient enrichment did not shift community structure, contrary to the prediction of nutrient-driven dominance of S. alterniflora and Distichlis spicata over S. patens. Our mild responses may differ from the results of previous studies for a number of reasons. First, the limited response of the high marsh may be explained by loading rates orders of magnitude lower than previous work. Low loading rates in the high marsh reflect infrequent inundation, arguing that inundation patterns must be considered when predicting responses to estuarine eutrophication. Additionally, we applied nitrate instead of the typically used ammonium, which is energetically favored over nitrate for plant uptake. Thus, the form of nitrogen enrichment used, not just N-load, may be important in predicting plant responses. Overall, our results suggest that when coastal eutrophication is dominated by nitrate and delivered via flooding tidal water, aboveground saltmarsh plant responses may be limited despite moderate-to-high water-column N concentrations. Furthermore, we argue that the methodological limitations of nutrient studies must be considered when using results to inform management decisions about wetlands. © 2016 by the Ecological Society of America.

  6. Land Use in Korean Tidal Wetlands: Impacts and Management Strategies

    NASA Astrophysics Data System (ADS)

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R.; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  7. Land use in Korean tidal wetlands: impacts and management strategies.

    PubMed

    Hong, Sun-Kee; Koh, Chul-Hwan; Harris, Richard R; Kim, Jae-Eun; Lee, Jeom-Sook; Ihm, Byung-Sun

    2010-05-01

    The coastal landscapes in southwestern Korea include a diverse array of tidal wetlands and salt marshes. These coastal zones link the ecological functions of marine tidal wetlands and freshwater ecosystems with terrestrial ecosystems. They are rich in biological diversity and play important roles in sustaining ecological health and processing environmental pollutants. Korean tidal wetlands are particularly important as nurseries for economically important fishes and habitats for migratory birds. Diking, draining, tourism, and conversion to agricultural and urban uses have adversely affected Korean tidal wetlands. Recent large development projects have contributed to further losses. Environmental impact assessments conducted for projects affecting tidal wetlands and their surrounding landscapes should be customized for application to these special settings. Adequate environmental impact assessments will include classification of hydrogeomorphic units and consideration of their responses to biological and environmental stressors. As is true worldwide, Korean laws and regulations are changing to be more favorable to the conservation and protection of tidal wetlands. More public education needs to be done at the local level to build support for tidal wetland conservation. Some key public education points include the role of tidal wetlands in maintaining healthy fish populations and reducing impacts of nonpoint source pollution. There is also a need to develop procedures for integrating economic and environmental objectives within the overall context of sustainable management and land uses.

  8. Full-waveform and discrete-return lidar in salt marsh environments: An assessment of biophysical parameters, vertical uncertatinty, and nonparametric dem correction

    NASA Astrophysics Data System (ADS)

    Rogers, Jeffrey N.

    High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are necessary to support restoration and other management initiatives, such as adaptation to sea level rise. Lidar (light detection and ranging) data may serve this need by enabling efficient acquisition of detailed elevation data from an airborne platform. However, previous research has revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other environments. The increase in vertical uncertainty in lidar data of salt marshes can be attributed primarily to low, dense-growing salt marsh vegetation. Unfortunately, this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) ineffective for analysis of topographic features controlling tidal inundation frequency and ecology. This study aims to address these challenges by providing a detailed assessment of the factors influencing lidar-derived elevation uncertainty in marshes. The information gained from this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM accuracy. Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic Global Navigation Satellite System) reference data, were acquired for four salt marsh systems characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and Salicornia spp.) on Cape Cod, Massachusetts. These data were used to: 1) develop an innovative combination of full-waveform lidar and field methods to assess the vertical distribution of aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects of seasonality (temporal differences between peak growth and senescent conditions) using lidar data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces (RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test five nonparametric regression model algorithms (MARS -- Multivariate Adaptive Regression, CART -- Classification and Regression Trees, TreeNet, Random Forests, and GPSM -- Generalized Path Seeker) with 13 predictor variables derived from both discrete and full waveform lidar sources in order to develop a method of improving lidar DEM quality. Results of this study indicate strong correlations for Spartina alterniflora (r > 0.9) between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace. It was determined that simple, feature-based lidar waveform metrics, such as waveform width, can provide new information to estimate salt marsh vegetation biophysical parameters such as vegetation height. The results also clearly illustrate the importance of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Relative uncertainty surfaces generated from lidar waveform features were determined useful in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation height and presence of Spartina alterniflora. Finally, DEMs generated using full-waveform predictor models produced corrections (compared to ground based RTK GNSS elevations) with R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation. The findings from this research have strong potential to advance tidal marsh mapping, research and management initiatives.

  9. INVESTIGATING DRAINAGE DENSITY AND FRACTAL DIMENSION AS GEOMORPHOMETRIC INDICATORS OF TIDAL MARSH CONDITION USING REMOTELY SENSED DATA AND GEOGRAPHICAL INFORMATION SYSTEMS. (R828677C003)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. KSC-02pd0435

    NASA Image and Video Library

    2002-03-29

    KENNEDY SPACE CENTER, FLA. -- A mixed group of water birds searches for food in a lake near Kennedy Space Center. Identified are a Great Egret (background, with yellow beak), White Ibis (far right and center, orange beak), and Roseate Spoonbills. All prefer marshes, mud flats, ponds, lagoons and tidal flats as habitat. They are frequently found in the warm, coastal areas of Florida

  11. Where’s the Ground Surface? – Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes

    EPA Science Inventory

    Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...

  12. Early Stages of Sea-Level Rise Lead To Decreased Salt Marsh Plant Diversity through Stronger Competition in Mediterranean-Climate Marshes.

    PubMed

    Noto, Akana E; Shurin, Jonathan B

    2017-01-01

    Climate change shuffles species ranges and creates novel interactions that may either buffer communities against climate change or exacerbate its effect. For instance, facilitation can become more prevalent in salt marshes under stressful conditions while competition is stronger in benign environments. Sea-level rise (SLR) is a consequence of climate change that affects the distribution of stress from inundation and salinity. To determine how interactions early in SLR are affected by changes in these two stressors in Mediterranean-climate marshes, we transplanted marsh turfs to lower elevations to simulate SLR and manipulated cover of the dominant plant species, Salicornia pacifica (formerly Salicornia virginica). We found that both S. pacifica and the subordinate species were affected by inundation treatments, and that subordinate species cover and diversity were lower at low elevations in the presence of S. pacifica than when it was removed. These results suggest that the competitive effect of S. pacifica on other plants is stronger at lower tidal elevations where we also found that salinity is reduced. As sea levels rise, stronger competition by the dominant plant will likely reduce diversity and cover of subordinate species, suggesting that stronger species interactions will exacerbate the effects of climate change on the plant community.

  13. Combining satellite photographs and raster lidar data for channel connectivity in tidal marshes.

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Hodges, Ben

    2017-04-01

    High resolution airborne lidar is capable of providing topographic detail down to the 1 x 1 m scale or finer over large tidal marshes of a river delta. Such data sets can be challenging to develop and ground-truth due to the inherent complexities of the environment, the relatively small changes in elevation throughout a marsh, and practical difficulties in accessing the variety of flooded, dry, and muddy regions. Standard lidar point-cloud processing techniques (as typically applied in large lidar data collection program) have a tendency to mis-identify narrow channels and water connectivity in a marsh, which makes it difficult to directly use such data for modeling marsh flows. Unfortunately, it is not always practical, or even possible, to access the point cloud and re-analyze the raw lidar data when discrepancies have been found in a raster work product. Faced with this problem in preparing a model of the Trinity River delta (Texas, USA), we developed an approach to integrating analysis of a lidar-based raster with satellite images. Our primary goal was to identify the clear land/water boundaries needed to identify channelization in the available rasterized lidar data. The channel extraction method uses pixelized satellite photographs that are stretched/distorted with image-processing techniques to match identifiable control features in both lidar and photographic data sets. A kmeans clustering algorithm was applied cluster pixels based on their colors, which is effective in separating land and water in a satellite photograph. The clustered image was matched to the lidar data such that the combination shows the channel network. In effect, we are able to use the fact that the satellite photograph is higher resolution than the lidar data, and thus provides connectivity in the clustering at a finer scale. The principal limitation of the method is the where the satellite image and lidar suffer from similar problems For example, vegetation overhanging a narrow channel might show up as higher-elevation land in the lidar data an also as a non-water cluster color in the satellite photo.

  14. Flood regime as a driver of the distribution of mangrove and salt marsh species in a subtropical estuary

    NASA Astrophysics Data System (ADS)

    Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.

    2016-09-01

    Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.

  15. Relationships between watershed emergy flow and coastal New England salt marsh structure, function, and condition.

    PubMed

    Brandt-Williams, Sherry; Wigand, Cathleen; Campbell, Daniel E

    2013-02-01

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.

  16. The ebb and flood of Silica: Quantifying dissolved and biogenic silica fluxes from a temperate salt marsh

    NASA Astrophysics Data System (ADS)

    Vieillard, Amanda M.; Fulweiler, Robinson W.; Hughes, Zoe J.; Carey, Joanna C.

    2011-12-01

    Salt marshes are widely studied due to the broad range of ecosystem services they provide including serving as crucial wildlife habitat and as hotspots for biogeochemical cycling. Nutrients such as nitrogen (N), phosphorus (P), and carbon (C) are well studied in these systems. However, salt marshes may also be important environments for the cycling of another key nutrient, silica (Si). Found at the land-sea interface, these systems are silica replete with large stocks in plant biomass, sediments, and porewater, and therefore, have the potential to play a substantial role in the transformation and export of silica to coastal waters. In an effort to better understand this role, we measured the fluxes of dissolved (DSi) and biogenic (BSi) silica into and out of two tidal creeks in a temperate, North American (Rowley, Massachusetts, USA) salt marsh. One of the creeks has been fertilized from May to September for six years allowing us to examine the impacts of nutrient addition on silica dynamics within the marsh. High-resolution sampling in July 2010 showed no significant differences in Si concentrations between the fertilized and reference creeks with dissolved silica ranging from 0.5 to 108 μM and biogenic from 2.0 to 56 μM. Net fluxes indicated that the marsh is a point source of dissolved silica to the estuary in the summer with a net flux of approximately 169 mol h -1, demonstrating that this system exports DSi on the same magnitude as some nearby, mid-sized rivers. If these findings hold true for all salt marshes, then these already valuable regions are contributing yet another ecosystem service that has been previously overlooked; by exporting DSi to coastal receiving waters, salt marshes are actively providing this important nutrient for coastal primary productivity.

  17. A life-cycle model for wave-dominated tidal inlets along passive margin coasts of North America

    NASA Astrophysics Data System (ADS)

    Seminack, Christopher T.; McBride, Randolph A.

    2018-03-01

    A regional overview of 107 wave-dominated tidal inlets along the U.S. Atlantic coast, U.S. Gulf of Mexico coast, and Canadian Gulf of St. Lawrence coast yielded a generalized wave-dominated tidal inlet life-cycle model that recognized the rotational nature of tidal inlets. Tidal inlets are influenced by concurrently acting processes transpiring over two timescales: short-term, event-driven processes and long-term, evolutionary processes. Wave-dominated tidal inlets are classified into three rotational categories based on net longshore sediment transport direction and rotation direction along the landward (back-barrier) portion of the inlet channel: downdrift channel rotation, updrift channel rotation, or little-to-no channel rotation. Lateral shifting of the flood-tidal delta depocenter in response to available estuarine accommodation space appears to control inlet channel rotation. Flood-tidal delta deposits fill accommodation space locally within the estuary (i.e., creating bathymetric highs), causing the tidal-inlet channel to rotate. External influences, such as fluvial discharge, pre-existing back-barrier channels, and impeding salt marsh will also influence inlet-channel rotation. Storm events may rejuvenate the tidal inlet by scouring sediment within the flood-tidal delta, increasing local accommodation space. Wave-dominated tidal inlets are generally unstable and tend to open, concurrently migrate laterally and rotate, infill, and close. Channel rotation is a primary reason for wave-dominated tidal inlet closure. During rotation, the inlet channel lengthens and hydraulic efficiency decreases, thus causing tidal prism to decrease. Tidal prism, estuarine accommodation space, and sediment supply to the flood-tidal delta are the primary variables responsible for tidal inlet rotation. Stability of wave-dominated tidal inlets is further explained by: stability (S) = tidal prism (Ω) + estuarine accommodation space (V) - volume of annual sediment supply (Mt). Rotating wave-dominated tidal inlets follow a six-stage evolutionary model; whereas wave-dominated tidal inlets that exhibit little-to-no rotation follow a five-stage evolutionary model.

  18. Dynamic interactions between coastal storms and salt marshes: A review

    NASA Astrophysics Data System (ADS)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.

  19. Dynamic interactions between coastal storms and salt marshes: A review

    USGS Publications Warehouse

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.

  20. Evolution of coastal and marine environments during the Holocene transgression. Ría de Vigo (Galicia, Spain).

    NASA Astrophysics Data System (ADS)

    Clemente, F.; Pérez-Arlucea, M.; Méndez, G.; Francés, G.; Alejo, I.; González, D.; Nombela, M.

    2003-04-01

    Coastal deposits are not prominent in the Ria de Vigo, high cliffs dominate the coast line, but several well-preserved sedimentary areas are observed. Beach and aeolian sand dunes are preserved in protected bays along margins between low cliffs, as Playa America, Patos and Samil. Several rivers form prominent estuaries such as the Verdugo-Oitaven, the Minor and the Lagares. Tidal flats are well preserved in the San Simon embayment and small areas of tidal flats and marshes can be found elsewhere associated with estuaries and protected by sandy spits as the Ramallosa tidal Complex, Moaña and San Simón. Four sedimentary areas were selected to study vertical sediment distribution. 6 cores were obtained. Sediment thicknesses range between 4.0m and 26.0 m. Vertical sediment distributions show 6 different lithologic units from basal fluvial (A), estuarine (B), tidal flat and peat fens (C), muddy subtidal bay (D), estuarine (E) and beach barrier (F). 10 14C age determinations were obtained from the longest core (Ladeira N) located at the Ramallosa beach barrier-lagoon complex. The oldest sample located at 22 m yields an age of 8177 y. BP in unit (B) allowing to constrain most of sediment evolution in the holocene transgressive context. The lower unit (A) composed mainly of fluvial gravels, and deposited in a palaeovalley, is attributed to the Younger Dryas although the LST could be also represented in these deposits. Units B, C and D configure the TST showing an initial rapid increase in water depth at 8177 y. BP and subsequent shallowing conditions due to progressive aggradation until 4809 y BP. Units E and F mark the HST eustatic stage being characterised by progradational shallow marine conditions and beach barrier progressive enclosing of the complex. Sedimentation rates were calculated at 7 intervals. An upward decrease is observed from 8177 y BP to 2001 y. BP, followed by a strong sudden increase, mostly in the last 500 years. Hydrology and geomorphology of river catchments were studied to evaluate sediment yields in modern conditions. 19 currents were selected on the basis of having permanent flow during the whole year and a minimum measurable discharge. Results show accelerated erosion and sediment yield which are attributed to anthropogenic causes, chiefly deforestation and soil degradation.

Top