Blufensin1 Negatively Impacts Basal Defense in Response to Barley Powdery Mildew
USDA-ARS?s Scientific Manuscript database
Plants have evolved complex regulatory mechanisms to control the defense response against microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSIN1 (BLN1), a small peptide ...
USDA-ARS?s Scientific Manuscript database
Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like...
Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.
Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R
2016-06-01
The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.
Temporal variations in early developmental decisions: an engine of forebrain evolution.
Bielen, H; Pal, S; Tole, S; Houart, C
2017-02-01
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.
Wall, Mark J; Collins, Dawn R; Chery, Samantha L; Allen, Zachary D; Pastuzyn, Elissa D; George, Arlene J; Nikolova, Viktoriya D; Moy, Sheryl S; Philpot, Benjamin D; Shepherd, Jason D; Müller, Jürgen; Ehlers, Michael D; Mabb, Angela M; Corrêa, Sonia A L
2018-06-27
Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Dynamic CRM occupancy reflects a temporal map of developmental progression.
Wilczyński, Bartek; Furlong, Eileen E M
2010-06-22
Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.
Environmental Regulation of Yersinia Pathophysiology
Chen, Shiyun; Thompson, Karl M.; Francis, Matthew S.
2016-01-01
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia. PMID:26973818
NASA Astrophysics Data System (ADS)
Gehne, Stephan; Benson, Philip M.
2017-08-01
Permeability in tight crustal rocks is primarily controlled by the connected porosity, shape and orientation of microcracks, the preferred orientation of cross-bedding, and sedimentary features such as layering. This leads to a significant permeability anisotropy. Less well studied, however, are the effects of time and stress recovery on the evolution of the permeability hysteresis which is becoming increasingly important in areas ranging from fluid migration in ore-forming processes to enhanced resource extraction. Here, we report new data simulating spatio-temporal permeability changes induced using effective pressure, simulating burial depth, on a tight sandstone (Crab Orchard). We find an initially (measured at 5 MPa) anisotropy of 2.5% in P-wave velocity and 180% in permeability anisotropy is significantly affected by the direction of the effective pressure change and cyclicity; anisotropy values decrease to 1% and 10% respectively after 3 cycles to 90 MPa and back. Furthermore, we measure a steadily increasing recovery time (10-20 min) for flow parallel to cross-bedding, and a far slower recovery time (20-50 min) for flow normal to cross-bedding. These data are interpreted via strain anisotropy and accommodation models, similar to the "seasoning" process often used in dynamic reservoir extraction.
Kanai, Stanley M; Edwards, Alethia J; Rurik, Joel G; Osei-Owusu, Patrick; Blumer, Kendall J
2017-11-24
Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the G q/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of G q/11 -evoked Ca 2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of G q/11 -coupled receptor signaling in the cardiovascular, immune, and nervous systems. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Tight control of mild-moderate pre-existing or non-proteinuric gestational hypertension.
Nabhan, Ashraf F; Elsedawy, Maged M
2011-07-06
The question of the target blood pressure in pregnant women with mild-moderate hypertension continues to be an area of debate. To compare tight versus very tight control of mild-moderate pre-existing or non-proteinuric gestational hypertension for improving outcomes We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 March 2011), CENTRAL (The Cochrane Library 2011, Issue 3), MEDLINE (January 1966 to March 2011), and the metaRegister of Controlled Trials (31 March 2011). We handsearched citation lists of relevant publications, review articles, and included studies. Randomized controlled trials of tight versus very tight control in pregnant women with mild or moderate pre-existing or non-proteinuric gestational hypertension. Two authors independently assessed trial quality and extracted data. We expressed results as risk ratio (RR) or mean differences, together with their 95% confidence intervals (CI). We included two studies (256 participants) with mild-moderate pre-existing or non-proteinuric gestational hypertension. There was no evidence of a difference between tight and very tight control groups regarding severe pre-eclampsia (risk ratio (RR) 1.28, 95% CI 0.97 to 1.70; two trials, 256 participants). More women in the tight group were hospitalized during their pregnancy (RR 2.53, 95% CI 1.14 to 5.63; one trial, 125 participants). There was no evidence of a difference in other outcome measures including fetal distress, IUGR, neonatal admission to a NICU, perinatal deaths, induction of labor and cesarean delivery between the tight and the very tight control groups. Gestational age at delivery had a non-significant mean difference (MD) of -0.15 weeks between the tight and very tight control groups (MD -0.15, 95% CI -1.52 to 1.21, random-effects, T² = 0.75, I² = 77%; two trials, 256 participants). The MD in birthweight between the tight and the very tight control group was not significant (MD -100.00 grams, 95% CI -363.69 to 163.69; one trial, 125 participants). For pregnant women with non-severe pre-existing or non-proteinuric gestational hypertension, there is insufficient evidence to determine how tight control of hypertension should be achieved to improve maternal and fetal-neonatal outcomes.
Gildor, Tsvia; Ben-Tabou de-Leon, Smadar
2015-01-01
Accurate temporal control of gene expression is essential for normal development and must be robust to natural genetic and environmental variation. Studying gene expression variation within and between related species can delineate the level of expression variability that development can tolerate. Here we exploit the comprehensive model of sea urchin gene regulatory networks and generate high-density expression profiles of key regulatory genes of the Mediterranean sea urchin, Paracentrotus lividus (Pl). The high resolution of our studies reveals highly reproducible gene initiation times that have lower variation than those of maximal mRNA levels between different individuals of the same species. This observation supports a threshold behavior of gene activation that is less sensitive to input concentrations. We then compare Mediterranean sea urchin gene expression profiles to those of its Pacific Ocean relative, Strongylocentrotus purpuratus (Sp). These species shared a common ancestor about 40 million years ago and show highly similar embryonic morphologies. Our comparative analyses of five regulatory circuits operating in different embryonic territories reveal a high conservation of the temporal order of gene activation but also some cases of divergence. A linear ratio of 1.3-fold between gene initiation times in Pl and Sp is partially explained by scaling of the developmental rates with temperature. Scaling the developmental rates according to the estimated Sp-Pl ratio and normalizing the expression levels reveals a striking conservation of relative dynamics of gene expression between the species. Overall, our findings demonstrate the ability of biological developmental systems to tightly control the timing of gene activation and relative dynamics and overcome expression noise induced by genetic variation and growth conditions. PMID:26230518
Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression.
Fuller, Kevin K; Dunlap, Jay C; Loros, Jennifer J
2018-05-01
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers.
Mikl, Martin; Vendra, Georgia; Kiebler, Michael A
2011-09-30
Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain--unexpectedly--very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity.
Pels, Anouk; Mol, Ben Willem J; Singer, Joel; Lee, Terry; von Dadelszen, Peter; Ganzevoort, Wessel; Asztalos, Elizabeth; Magee, Laura A
2018-06-01
For hypertensive women in CHIPS (Control of Hypertension in Pregnancy Study), we assessed whether the maternal benefits of tight control could be achieved, while minimizing any potentially negative effect on fetal growth, by delaying initiation of antihypertensive therapy until later in pregnancy. For the 981 women with nonsevere, chronic or gestational hypertension randomized to less-tight (target diastolic blood pressure, 100 mm Hg), or tight (target, 85 mm Hg) control, we used mixed-effects logistic regression to examine whether the effect of less-tight (versus tight) control on major outcomes was dependent on gestational age at randomization, adjusting for baseline factors as in the primary analysis and including an interaction term between gestational age at randomization and treatment allocation. Gestational age was considered categorically (quartiles) and continuously (linear or quadratic form), and the optimal functional form selected to provide the best fit to the data based on the Akaike information criterion. Randomization before (but not after) 24 weeks to less-tight (versus tight) control was associated with fewer babies with birth weight <10th centile ( P interaction =0.005), but more preterm birth ( P interaction =0.043), and no effect on perinatal death or high-level neonatal care >48 hours ( P interaction =0.354). For the mother, less-tight (versus tight) control was associated with more severe hypertension at all gestational ages but particularly so before 28 weeks ( P interaction =0.076). In women with nonsevere, chronic, or gestational hypertension, there seems to be no gestational age at which less-tight (versus tight) control is the preferred management strategy to optimize maternal or perinatal outcomes. URL: https://www.isrctn.com. Unique identifier: ISRCTN71416914. © 2018 The Authors.
Less-tight versus tight control of hypertension in pregnancy.
Magee, Laura A; von Dadelszen, Peter; Rey, Evelyne; Ross, Susan; Asztalos, Elizabeth; Murphy, Kellie E; Menzies, Jennifer; Sanchez, Johanna; Singer, Joel; Gafni, Amiram; Gruslin, Andrée; Helewa, Michael; Hutton, Eileen; Lee, Shoo K; Lee, Terry; Logan, Alexander G; Ganzevoort, Wessel; Welch, Ross; Thornton, Jim G; Moutquin, Jean-Marie
2015-01-29
The effects of less-tight versus tight control of hypertension on pregnancy complications are unclear. We performed an open, international, multicenter trial involving women at 14 weeks 0 days to 33 weeks 6 days of gestation who had nonproteinuric preexisting or gestational hypertension, office diastolic blood pressure of 90 to 105 mm Hg (or 85 to 105 mm Hg if the woman was taking antihypertensive medications), and a live fetus. Women were randomly assigned to less-tight control (target diastolic blood pressure, 100 mm Hg) or tight control (target diastolic blood pressure, 85 mm Hg). The composite primary outcome was pregnancy loss or high-level neonatal care for more than 48 hours during the first 28 postnatal days. The secondary outcome was serious maternal complications occurring up to 6 weeks post partum or until hospital discharge, whichever was later. Included in the analysis were 987 women; 74.6% had preexisting hypertension. The primary-outcome rates were similar among 493 women assigned to less-tight control and 488 women assigned to tight control (31.4% and 30.7%, respectively; adjusted odds ratio, 1.02; 95% confidence interval [CI], 0.77 to 1.35), as were the rates of serious maternal complications (3.7% and 2.0%, respectively; adjusted odds ratio, 1.74; 95% CI, 0.79 to 3.84), despite a mean diastolic blood pressure that was higher in the less-tight-control group by 4.6 mm Hg (95% CI, 3.7 to 5.4). Severe hypertension (≥160/110 mm Hg) developed in 40.6% of the women in the less-tight-control group and 27.5% of the women in the tight-control group (P<0.001). We found no significant between-group differences in the risk of pregnancy loss, high-level neonatal care, or overall maternal complications, although less-tight control was associated with a significantly higher frequency of severe maternal hypertension. (Funded by the Canadian Institutes of Health Research; CHIPS Current Controlled Trials number, ISRCTN71416914; ClinicalTrials.gov number, NCT01192412.).
Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers
Mikl, Martin; Vendra, Georgia; Kiebler, Michael A
2011-01-01
Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain—unexpectedly—very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity. PMID:21869818
Schořálková, Tereza; Kratochvíl, Lukáš; Kubička, Lukáš
2017-03-01
In vertebrates, male-typical sexual behavior (MSB) is largely controlled by gonadal androgens, however, the mechanism of this control is believed to vary among species. During immediate activation MSB is tightly correlated with circulating levels of androgens, while the organization of MSB by a hormonal event at a specific developmental period, early in ontogeny or during puberty, has been postulated in other lineages. Here, we put forward an alternative concept of "temporal organization". Under temporal organization longer exposure to circulating androgens is needed for the onset of MSB, which can continue for a long time after the levels of these hormones drop. We tested this concept through long-term monitoring of MSB in females and castrated males of the leopard gecko (Eublepharis macularius) in response to experimental changes in testosterone levels. Several weeks of elevated testosterone levels were needed for the full expression of MSB in both treatment groups and MSB diminished only slowly and gradually after the supplementation of exogenous testosterone ended. Moreover, despite receiving the same application of the hormone both the progressive onset and the cessation of MSB were significantly slower in experimental females than in castrated males. We suggest that the concept of temporal organization of MSB can parsimoniously explain several earlier discrepancies and debatable conclusions on the apparent variability in the hormonal control of MSB in vertebrates, which were based on behavioral testing at a few subjectively selected time points. We conclude that long-term and continuous behavioral testing after hormonal manipulations is needed to understand the regulation of MSB in vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
... Cardiac Arrhythmias: An Answer to Why Tight Glycemic Control May Increase Mortality in People with Diabetes and ... funded clinical trial that examined whether tight glycemic control could reduce cardiovascular events in people with type ...
Nan, Yun; Friederici, Angela D
2013-09-01
Superior temporal and inferior frontal cortices are involved in the processing of pitch information in the domain of language and music. Here, we used fMRI to test the particular roles of these brain regions in the neural implementation of pitch in music and in tone language (Mandarin) with a group of Mandarin speaking musicians whose pertaining experiences in pitch are similar across domains. Our findings demonstrate that the neural network for pitch processing includes the pars triangularis of Broca's area and the right superior temporal gyrus (STG) across domains. Within this network, pitch sensitive activation in Broca's area is tightly linked to the behavioral performance of pitch congruity judgment, thereby reflecting controlled processes. Activation in the right STG is independent of performance and more sensitive to pitch congruity in music than in tone language, suggesting a domain-specific modulation of the perceptual processes. These observations provide a first glimpse at the cortical pitch processing network shared across domains. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Basal forebrain neuronal inhibition enables rapid behavioral stopping
Mayse, Jeffrey D.; Nelson, Geoffrey M.; Avila, Irene; Gallagher, Michela; Lin, Shih-Chieh
2015-01-01
Cognitive inhibitory control, the ability to rapidly suppress responses inappropriate for the context, is essential for flexible and adaptive behavior. While most studies on inhibitory control have focused on the fronto-basal-ganglia circuit, here we explore a novel hypothesis and show that rapid behavioral stopping is enabled by neuronal inhibition in the basal forebrain (BF). In rats performing the stop signal task, putative noncholinergic BF neurons with phasic bursting responses to the go signal were inhibited nearly completely by the stop signal. The onset of BF neuronal inhibition was tightly coupled with and temporally preceded the latency to stop, the stop signal reaction time. Artificial inhibition of BF activity in the absence of the stop signal was sufficient to reproduce rapid behavioral stopping. These results reveal a novel subcortical mechanism of rapid inhibitory control by the BF, which provides bidirectional control over the speed of response generation and inhibition. PMID:26368943
Communication Dynamics in Finite Capacity Social Networks
NASA Astrophysics Data System (ADS)
Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim
2012-10-01
In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.
The Cost Implications of Less Tight Versus Tight Control of Hypertension in Pregnancy (CHIPS Trial).
Ahmed, Rashid J; Gafni, Amiram; Hutton, Eileen K; Hu, Zheng Jing; Pullenayegum, Eleanor; von Dadelszen, Peter; Rey, Evelyne; Ross, Susan; Asztalos, Elizabeth; Murphy, Kellie E; Menzies, Jennifer; Sanchez, J Johanna; Ganzevoort, Wessel; Helewa, Michael; Lee, Shoo K; Lee, Terry; Logan, Alexander G; Moutquin, Jean-Marie; Singer, Joel; Thornton, Jim G; Welch, Ross; Magee, Laura A
2016-10-01
The CHIPS randomized controlled trial (Control of Hypertension in Pregnancy Study) found no difference in the primary perinatal or secondary maternal outcomes between planned "less tight" (target diastolic 100 mm Hg) and "tight" (target diastolic 85 mm Hg) blood pressure management strategies among women with chronic or gestational hypertension. This study examined which of these management strategies is more or less costly from a third-party payer perspective. A total of 981 women with singleton pregnancies and nonsevere, nonproteinuric chronic or gestational hypertension were randomized at 14 to 33 weeks to less tight or tight control. Resources used were collected from 94 centers in 15 countries and costed as if the trial took place in each of 3 Canadian provinces as a cost-sensitivity analysis. Eleven hospital ward and 24 health service costs were obtained from a similar trial and provincial government health insurance schedules of medical benefits. The mean total cost per woman-infant dyad was higher in less tight versus tight control, but the difference in mean total cost (DM) was not statistically significant in any province: Ontario ($30 191.62 versus $24 469.06; DM $5723, 95% confidence interval, -$296 to $12 272; P=0.0725); British Columbia ($30 593.69 versus $24 776.51; DM $5817; 95% confidence interval, -$385 to $12 349; P=0.0725); or Alberta ($31 510.72 versus $25 510.49; DM $6000.23; 95% confidence interval, -$154 to $12 781; P=0.0637). Tight control may benefit women without increasing risk to neonates (as shown in the main CHIPS trial), without additional (and possibly lower) cost to the healthcare system. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01192412. © 2016 The Authors.
Neural network evaluation of reflectometry density profiles for control purposes
NASA Astrophysics Data System (ADS)
Santos, J.; Nunes, F.; Manso, M.; Nunes, I.
1999-01-01
Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.
Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix
2014-01-07
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.
Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix
2014-01-01
Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light–dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors. PMID:24344304
Regulation of Cre recombinase by ligand-induced complementation of inactive fragments.
Jullien, Nicolas; Sampieri, François; Enjalbert, Alain; Herman, Jean-Paul
2003-11-01
Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. To overcome this, we have developed DiCre, a regulatable fragment complementation system for Cre. The enzyme was split into two moieties that were fused to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin-associated protein), respectively. These can be efficiently heterodimerized by rapamycin. Several variants, based on splitting Cre at different sites and using different linker peptides, were tested in an indicator cell line. The fusion proteins, taken separately, had no recombinase activity. Stable transformants, co-expressing complementing fragments based on splitting Cre between Asn59 and Asn60, displayed low background activity affecting 0.05-0.4% of the cells. Rapamycin induced a rapid recombination, reaching 100% by 48-72 h, with an EC50 of 0.02 nM. Thus, ligand-induced dimerization can efficiently regulate Cre, and should be useful to achieve a tight temporal control of its activity, such as in the case of the creation of conditional knock-out animals.
Vidler, Marianne; Magee, Laura A; von Dadelszen, Peter; Rey, Evelyne; Ross, Susan; Asztalos, Elizabeth; Murphy, Kellie E; Menzies, Jennifer; Sanchez, Johanna; Singer, Joel; Gafni, Amiram; Gruslin, Andrée; Helewa, Michael; Hutton, Eileen; Lee, Shoo K; Lee, Terry; Logan, Alexander G; Ganzevoort, Wessel; Welch, Ross; Thornton, Jim G; Moutquin, Jean-Marie
2016-11-01
To compare women's views about blood pressure (BP) control in CHIPS (Control of Hypertension In Pregnancy Study) (NCT01192412). Quantitative and qualitative analysis of questionnaire responses. International randomised trial (94 sites, 15 countries). 911 (92.9%) women randomised to 'tight' (target diastolic blood pressure, 85mmHg) or 'less tight' (target diastolic blood pressure, 100mmHg) who completed questionnaires. A questionnaire was administered at ∼6-12 weeks postpartum regarding post-discharge morbidity and views about trial participation. Questionnaires were administered by the site co-ordinator, and contact was made by phone, home or clinic visit; rarely, data was collected from medical records. Quantitative analyses were Chi-square or Fisher's exact test for categorical variables, mixed effects multinomial logistic regression to adjust for confounders, and p<0.001 for statistical significance. NVivo software was used for thematic analysis of women's views. Satisfaction, measured as willingness to have the same treatment in another pregnancy or recommend that treatment to a friend. Among the 533 women in 'tight' (N=265) vs. 'less tight' (N=268) control who provided comments for qualitative analysis, women in 'tight' (vs. 'less tight') control made fewer positive comments about the amount of medication taken (5 vs. 28 women, respectively) and intensity of BP monitoring (7 vs. 17, respectively). However, this did not translate into less willingness to either have the same treatment in another pregnancy (434, 95.8% vs. 423, 92.4%, respectively; p=0.14) or recommend that treatment to a friend (435, 96.0% and 428, 93.4%, respectively; p=0.17). Importantly, although satisfaction remained high among women with an adverse outcome, those in 'tight' control who suffered an adverse outcome (vs. those who did not) were not consistently less satisfied, whereas this was not the case among women in 'less tight' control among whom satisfaction was consistently lower for the CHIPS primary outcome (p<0.001), severe hypertension (p≤0.01), and pre-eclampsia (p<0.001). Women in 'tight' (vs. 'less tight') control were equally satisfied with their care, and more so in the face of adverse perinatal or maternal outcomes. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...
Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1
Rose, Jocelyn K.C.; Hadfield, Kristen A.; Labavitch, John M.; Bennett, Alan B.
1998-01-01
The Charentais variety of melon (Cucumis melo cv Reticulatus F1 Alpha) was observed to undergo very rapid ripening, with the transition from the preripe to overripe stage occurring within 24 to 48 h. During this time, the flesh first softened and then exhibited substantial disintegration, suggesting that Charentais may represent a useful model system to examine the temporal sequence of changes in cell wall composition that typically take place in softening fruit. The total amount of pectin in the cell wall showed little reduction during ripening but its solubility changed substantially. Initial changes in pectin solubility coincided with a loss of galactose from tightly bound pectins, but preceded the expression of polygalacturonase (PG) mRNAs, suggesting early, PG-independent modification of pectin structure. Depolymerization of polyuronides occurred predominantly in the later ripening stages, and after the appearance of PG mRNAs, suggesting the existence of PG-dependent pectin degradation in later stages. Depolymerization of hemicelluloses was observed throughout ripening, and degradation of a tightly bound xyloglucan fraction was detected at the early onset of softening. Thus, metabolism of xyloglucan that may be closely associated with cellulose microfibrils may contribute to the initial stages of fruit softening. A model is presented of the temporal sequence of cell wall changes during cell wall disassembly in ripening Charentais melon. PMID:9625688
Diabetes management at the end of life: transitioning from tight glycemic control to comfort.
Tice, Martha A
2006-05-01
Tight glycemic control has become the standard of care for prevention of the long-term side effects of diabetes mellitus. When individuals with diabetes approach the end of life from advanced cancer or another chronic illness, they often become anorexic. The result is an increased risk for hypoglycemic episodes. It is appropriate to shift the goal of therapy from tight control of blood sugar to maintaining comfort and enhancing quality of life.
USDA-ARS?s Scientific Manuscript database
Arthropods transmit a variety of important infectious diseases of humans and animals. Importantly, replication and development of pathogen infectivity is tightly linked to vector feeding on the mammalian host; thus analysis of the transcriptomes of both vector and pathogen during feeding is fundamen...
Intensive Insulin Therapy: Tight Blood Sugar Control
Intensive insulin therapy: Tight blood sugar control Intensive insulin therapy can help prevent long-term diabetes complications. Consider the benefits — and understand the commitment. By Mayo Clinic Staff If ...
... results? Here's what they found in the tight-control group as compared with the standard-treatment group: Diabetic ... where you stand. sticky en -- Chef Ronaldo's Sabores de Cuba - 2016-08-book-sabores-de-cuba.html ...
Comparative Anatomy of Phagocytic and Immunological Synapses
Niedergang, Florence; Di Bartolo, Vincenzo; Alcover, Andrés
2016-01-01
The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated. PMID:26858721
Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors.
Sart, Sébastien; Agathos, Spiros N; Li, Yan; Ma, Teng
2016-01-01
Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Systematic Analysis of the Transcriptional Switch Inducing Migration of Border Cells
Borghese, Lodovica; Fletcher, Georgina; Mathieu, Juliette; Atzberger, Ann; Eades, William C.; Cagan, Ross L.; Rørth, Pernille
2010-01-01
Summary Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of “muscle-specific” genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells. PMID:16580994
Yu, Wen-kui; Li, Wei-qin; Wang, Xiao-dong; Yan, Xiao-wen; Qi, Xiao-ping; Li, Ning; Li, Jie-shou
2005-01-01
To investigate the effect of a tight control of blood glucose by intensive insulin therapy on human sepsis, and to explore the potential mechanism of the intensive insulin therapy. Eligible patients were randomized by a blinded pharmacist to receive tight control of blood glucose by intensive insulin therapy (maintenance of blood glucose at a level between 4.4 and 6.1 mmol/L) or to receive conventional treatment (maintenance of glucose at a level between 10.0 and 11.1 mmol/L). The expression of HLA-DR on peripheral monocytes was measured in 54 patients by flow cytometry on 24 h, 3 d, 5 d, 7 d, 10 d and 14 d of intensive care in parallel with serum c-reactive protein (CRP), severity of the disease (APACHE II score, SOFA score) and clinical data collection. Patients receiving intensive insulin therapy were less likely to require prolonged mechanical ventilation. Tight control of blood glucose significantly reduced the number of days during which leukopenia or leukocytosis and the days with hypo- or hyperthermia (P < 0.05). Hypoglycemia occurred in 3 patients (10.7%) in the tight control of blood glucose group. There were no instance of hemodynamic deterioration or convulsions. Compared with the conventional treatment, tight control of blood glucose also increased the HLA-DR expression of peripheral monocytes, and there were significantly difference on 3 d, 5 d and 7 d (P < 0.05). Whereas it suppressed the elevated serum CRP concentrations, there was significantly difference on 7 d (P < 0.05). Tight control of blood glucose by intensive insulin therapy expedited healing of human sepsis, and increased the HLA-DR expression of peripheral and suppressed the elevated serum CRP. So, it is necessary to use insulin to strict control the glucose levels in human sepsis.
Effects of Prosody and Position on the Timing of Deictic Gestures
ERIC Educational Resources Information Center
Rusiewicz, Heather Leavy; Shaiman, Susan; Iverson, Jana M.; Szuminsky, Neil
2013-01-01
Purpose: In this study, the authors investigated the hypothesis that the perceived tight temporal synchrony of speech and gesture is evidence of an integrated spoken language and manual gesture communication system. It was hypothesized that experimental manipulations of the spoken response would affect the timing of deictic gestures. Method: The…
Ultrasound-induced hyperthermia for the spatio-temporal control of gene expression in bone repair
NASA Astrophysics Data System (ADS)
Wilson, Christopher; Padilla, Frédéric; Zhang, Man; Vilaboa, Nuria; Kripfgans, Oliver; Fowlkes, Brian; Franceschi, Renny
2012-10-01
Spatial and temporal control over the expression of growth/differentiation factors is of great interest for regeneration of bone, but technologies capable of providing tight and active control over gene expression remain elusive. We propose the use of focused ultrasound for the targeted activation of heat shock-sensitive expression systems in engineered bone. We report in vitro results with cells that express firefly luciferase (fLuc) under the control of a heat shock protein promoter. Cells were embedded in fibrin scaffolds and exposed to focused ultrasound, using a custom 3.3MHz transducer (focal length 4", f-number 1.33", focal dimension 1.2mm lateral FWHM) in CW mode for 2-20 minutes at intensities ISPTA=120-440 W/cm2. The kinetics of ultrasound-mediated activation of the cells was compared with that of strictly thermal activation. Bioluminescence imaging revealed fLuc expression in an area ≥2.5mm in diameter at the position of the ultrasound focus, and the diameter and intensity of the signal increased with the amplitude of the acoustic energy. We also found that ultrasound activated fLuc expression with substantially shorter exposures than thermal activation. Our results demonstrate the potential for focused ultrasound to selectively activate the expression of a gene of interest in an engineered tissue and suggest that focused ultrasound activates the heat shock pathway by a combination of thermal and non-thermal mechanisms.
Schmitter, Sibylle; Fieseler, Lars; Klumpp, Jochen; Bertram, Ralph; Loessner, Martin J
2017-08-01
To enable specific and tightly controlled gene expression both in vitro and during the intracellular lifecycle of the pathogen Listeria monocytogenes, a TetR-dependent genetic induction system was developed. Highest concentration of cytoplasmic TetR and best repression of tetO-controlled genes was obtained by tetR expression from the synthetic promoter Pt 17 . Anhydrotetracycline (ATc) as inducer permitted concentration-dependent, fine-tuned expression of genes under control of the tetO operator and a suitable promoter. The actin-polymerizing ActA protein represents a major virulence factor of L. monocytogenes, required for actin-based motility and cell-to-cell spread in infected host cells. To be able to observe its spatial and temporal distribution on intracellular L. monocytogenes cells, conditional mutants featuring actA placed under TetR control were used to infect PtK2 epithelial cells. Following induction at different time intervals, the subsequent recruitment of actin by L. monocytogenes could be monitored. We found that cells displayed functional ActA after approximately 15 min, while formation of polarized actin tail was complete after 90-120 min. At this point, intracellular motility of the induced mutants was indistinguishable from wild-type bacteria. Interestingly, de novo ActA synthesis in intracellular Listeria also demonstrated the temporal, asymmetric redistribution of the membrane-anchored proteins from the lateral walls toward the cell poles. © 2017 John Wiley & Sons Ltd.
VGKC antibodies in pediatric encephalitis presenting with status epilepticus.
Suleiman, J; Brenner, T; Gill, D; Brilot, F; Antony, J; Vincent, A; Lang, B; Dale, R C
2011-04-05
Voltage-gated potassium channel antibodies (VGKC Ab) are associated with limbic encephalitis and neuromyotonia in adults. There have been no systematic investigations in children to date. We looked for antibodies that are associated with CNS syndromes in adults including antibodies to VGKCs, NMDARs, glutamic acid decarboxylase (GAD), and glycine receptor (GlyR) in the stored acute serum from 10 children with unexplained encephalitis presenting with encephalopathy and status epilepticus. We also looked for antibodies to leucine-rich glioma-inactivated 1 (Lgi1) and contactin-associated protein-like 2 (Caspr2), which are now known to be tightly complexed with VGKCs in vivo. Sixty-nine pediatric controls were used for comparison. An elevated VGKC Ab (>100 pM) was detected in 4/10 patients with encephalitis compared to only 1/69 controls (p < 0.001). The outcome in the 4 VGKC Ab-positive patients with encephalitis was variable including good recovery (n = 1), cognitive impairment (n = 3), temporal lobe epilepsy (n = 2), and mesial temporal sclerosis (n = 1). No other antibodies were detected, including those to Lgi1 and Caspr2. Encephalitis associated with VGKC Ab occurs in children and presents with status epilepticus and focal epilepsy. These antibodies are not directed against Lgi1 or Caspr2.
Phase Resetting Reveals Network Dynamics Underlying a Bacterial Cell Cycle
Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.
2012-01-01
Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS). PMID:23209388
Phase resetting reveals network dynamics underlying a bacterial cell cycle.
Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F
2012-01-01
Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).
NASA Astrophysics Data System (ADS)
Jia, B.; Xie, Z.
2017-12-01
Climate change and anthropogenic activities have been exerting profound influences on ecosystem function and processes, including tightly coupled terrestrial carbon and water cycles. However, their relative contributions of the key controlling factors, e.g., climate, CO2 fertilization, land use and land cover change (LULCC), on spatial-temporal patterns of terrestrial carbon and water fluxes in China are still not well understood due to the lack of ecosystem-level flux observations and uncertainties in single terrestrial biosphere model (TBM). In the present study, we quantified the effect of climate, CO2, and LULCC on terrestrial carbon and water fluxes in China using multi-model simulations for their inter-annual variability (IAV), seasonal cycle amplitude (SCA) and long-term trend during the past five decades (1961-2010). In addition, their relative contributions to the temporal variations of gross primary productivity (GPP), net ecosystem productivity (NEP) and evapotranspiration (ET) were investigated through factorial experiments. Finally, the discussions about the inter-model differences and model uncertainties were presented.
NASA Astrophysics Data System (ADS)
Pang, Zhenglian; Tao, Shizhen; Zhang, Bin; Wu, Songtao; Yang, Jiajing; Chen, Ruiyin
2017-04-01
As the rising of its production, tight oil is becoming more and more important. Much research has been done about it. Some articles mention that buoyancy is ineffective for tight oil secondary migration, and abnormal pressure is the alternative. Others believe that overpressure caused hydrocarbon generation is the very force. Though opinions have been given, there are two inadequacies. Firstly, the points are lack of sufficient evidences. Mostly, they are only one or two sentences in the papers. Secondly, geologic effect of the change of driving force hasn't been discussed. In this context, analog experiments, physical property testing, mercury injection, and oil/source comparison were utilized to study 3 issues: origin and value of tight oil secondary migration resistance, values and effectiveness of different potential driving forces, and geologic effect of tight oil secondary migration driving force. Firstly, resistance values of tight reservoir were detected by analog experiments. The value of tight limestone is 15.8MPa, while tight sandstone is 10.7MPa. Tiny size of pores and throats in tight reservoir is the main reason causing huge resistances. Over 90% of pores and throats in tight reservoir are smaller than 1μm. They form huge capillary force when oil migrating through them. Secondly, maximum of buoyancy in study area was confirmed, 0.09MPa, too small to overcome the resistances. Meanwhile, production data suggests that tight oil distribution pattern is not controlled by buoyancy. Conversely, analog experiment proves that overpressure caused by hydrocarbon generation can reach 38MPa, large enough to be the driving force. This idea is also supported by positive correlation between output and source rock formation pressure. Thirdly, is the geologic effect of tight oil secondary migration resistance and driving force. Tight oil can migrate only as non-darcy flow due to huge resistances according to percolation experiments. It needs to overcome the starting pressure gradient. As a result, it migrated a much shorter distance compared with conventional petroleum, coincident with the result of oil/source comparison. The effect of driving force is that boundary of tight oil profitable area is controlled by source rock. This boundary in the study area is the line of hydrocarbon generating strength of 40×104t/km2. By confirming controlling factors of tight oil formation and their evaluation index, it is of great significance during tight oil exploration.
The Cost Implications of Less Tight Versus Tight Control of Hypertension in Pregnancy (CHIPS Trial)
Ahmed, Rashid J.; Gafni, Amiram; Hu, Zheng Jing; Pullenayegum, Eleanor; von Dadelszen, Peter; Rey, Evelyne; Ross, Susan; Asztalos, Elizabeth; Murphy, Kellie E.; Menzies, Jennifer; Sanchez, J. Johanna; Ganzevoort, Wessel; Helewa, Michael; Lee, Shoo K.; Lee, Terry; Logan, Alexander G.; Moutquin, Jean-Marie; Singer, Joel; Thornton, Jim G.; Welch, Ross; Magee, Laura A.
2016-01-01
The CHIPS randomized controlled trial (Control of Hypertension in Pregnancy Study) found no difference in the primary perinatal or secondary maternal outcomes between planned “less tight” (target diastolic 100 mm Hg) and “tight” (target diastolic 85 mm Hg) blood pressure management strategies among women with chronic or gestational hypertension. This study examined which of these management strategies is more or less costly from a third-party payer perspective. A total of 981 women with singleton pregnancies and nonsevere, nonproteinuric chronic or gestational hypertension were randomized at 14 to 33 weeks to less tight or tight control. Resources used were collected from 94 centers in 15 countries and costed as if the trial took place in each of 3 Canadian provinces as a cost-sensitivity analysis. Eleven hospital ward and 24 health service costs were obtained from a similar trial and provincial government health insurance schedules of medical benefits. The mean total cost per woman–infant dyad was higher in less tight versus tight control, but the difference in mean total cost (DM) was not statistically significant in any province: Ontario ($30 191.62 versus $24 469.06; DM $5723, 95% confidence interval, −$296 to $12 272; P=0.0725); British Columbia ($30 593.69 versus $24 776.51; DM $5817; 95% confidence interval, −$385 to $12 349; P=0.0725); or Alberta ($31 510.72 versus $25 510.49; DM $6000.23; 95% confidence interval, −$154 to $12 781; P=0.0637). Tight control may benefit women without increasing risk to neonates (as shown in the main CHIPS trial), without additional (and possibly lower) cost to the healthcare system. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT01192412. PMID:27550914
Fee, Michale S.
2011-01-01
Learned motor behaviors require descending forebrain control to be coordinated with midbrain and brainstem motor systems. In songbirds, such as the zebra finch, regular breathing is controlled by brainstem centers, but when the adult songbird begins to sing, its breathing becomes tightly coordinated with forebrain-controlled vocalizations. The periods of silence (gaps) between song syllables are typically filled with brief breaths, allowing the bird to sing uninterrupted for many seconds. While substantial progress has been made in identifying the brain areas and pathways involved in vocal and respiratory control, it is not understood how respiratory and vocal control is coordinated by forebrain motor circuits. Here we combine a recently developed technique for localized brain cooling, together with recordings of thoracic air sac pressure, to examine the role of cortical premotor nucleus HVC (proper name) in respiratory-vocal coordination. We found that HVC cooling, in addition to slowing all song timescales as previously reported, also increased the duration of expiratory pulses (EPs) and inspiratory pulses (IPs). Expiratory pulses, like song syllables, were stretched uniformly by HVC cooling, but most inspiratory pulses exhibited non-uniform stretch of pressure waveform such that the majority of stretch occurred late in the IP. Indeed, some IPs appeared to change duration by the earlier or later truncation of an underlying inspiratory event. These findings are consistent with the idea that during singing the temporal structure of EPs is under the direct control of forebrain circuits, whereas that of IPs can be strongly influenced by circuits downstream of HVC, likely in the brainstem. An analysis of the temporal jitter of respiratory and vocal structure suggests that IPs may be initiated by HVC at the end of each syllable and terminated by HVC immediately before the onset of the next syllable. PMID:21980466
Dendritic protein synthesis in the normal and diseased brain
Swanger, Sharon A.; Bassell, Gary J.
2015-01-01
Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237
Kim, Yong Wook; Chang, Won Hyuk; Kim, Na Young; Kwon, Jun Beom
2017-01-01
Purpose To assess the effect of extracorporeal shock wave therapy (ESWT) for healthy participants with hamstring tightness. Materials and Methods This study was performed at a university rehabilitation hospital. Twenty nine healthy adults with hamstring tightness were enrolled and randomly allocated into four groups (ESWT, stretching exercise, ESWT with stretching exercise, and control). The effects of individual treatments were compared by the finger-to-floor test and popliteal angle. Results The ESWT group, stretching exercise group and ESWT with stretching exercise group had decreased finger-to-floor distances and right popliteal angles immediately after intervention, compared with the control group (p<0.05). At 4 weeks after completion of the interventions, finger-to-floor distances and the right popliteal angle in only the ESWT with stretching exercise group showed a significant improvement, compared with the control group (p=0.008 and 0.023). Conclusion While ESWT and stretching both reduced hamstring tightness immediately after interventions, only ESWT with stretching exercise maintained the significantly improved relief of hamstring tightness significantly after 4 weeks. PMID:28332373
The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression
Balda, Maria S.; Matter, Karl
2000-01-01
Epithelial tight junctions regulate paracellular diffusion and restrict the intermixing of apical and basolateral plasma membrane components. We now identify a Y-box transcription factor, ZONAB (ZO-1-associated nucleic acid-binding protein), that binds to the SH3 domain of ZO-1, a submembrane protein of tight junctions. ZONAB localizes to the nucleus and at tight junctions, and binds to sequences of specific promoters containing an inverted CCAAT box. In reporter assays, ZONAB and ZO-1 functionally interact in the regulation of the ErbB-2 promoter in a cell density-dependent manner. In stably transfected overexpressing cells, ZO-1 and ZONAB control expression of endogenous ErbB-2 and function in the regulation of paracellular permeability. These data indicate that tight junctions directly participate in the control of gene expression and suggest that they function in the regulation of epithelial cell differentiation. PMID:10790369
Envelopes of Sets of Measures, Tightness, and Markov Control Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Hernandez, J.; Hernandez-Lerma, O.
1999-11-15
We introduce upper and lower envelopes for sets of measures on an arbitrary topological space, which are then used to give a tightness criterion. These concepts are applied to show the existence of optimal policies for a class of Markov control processes.
Anderson, J. M.; Glade, J. L.; Stevenson, B. R.; Boyer, J. L.; Mooseker, M. S.
1989-01-01
Structural alterations in hepatocyte tight junctions accompanying cholestasis were investigated using immunolocalization of ZO-1, the first known protein component of the tight junction. Disruption in the paracellular barrier function of the tight junction has been proposed to allow reflux of bile into the blood. Cholestasis was induced in 210 to 235 g male Sprague-Dawley rats either by five consecutive daily subcutaneous injections of 17-alpha-ethinyl estradiol (0.5 mg/kg/d in propylene glycol) or ligation of the common bile duct for 72 hours. The structural organization of the tight junction was assessed in each model by indirect immunofluorescent and immunoperoxidase staining for ZO-1 on frozen sections of liver and compared with controls. In control, sham-operated, and estradiol-injected animals, ZO-1 localizes in a uniform continuous manner along the margins of the canaliculi. In contrast, bile duct ligation results in the appearance of numerous discontinuities in ZO-1 staining accompanied by dilation or collapse of the lumenal space. Tissue content of the ZO-1 protein, as determined by quantitative immunoblotting, was unaffected in either cholestatic model compared with controls. These findings indicate that the molecular organization of the tight junction can be assessed from immunostaining patterns of ZO-1 in frozen sections of cholestatic livers. Under these experimental conditions, the organization of the tight junction at the level of the ZO-1 protein is altered by bile duct obstruction but not by ethinyl estradiol. Images Figure 1 Figure 2 PMID:2719075
Tightness Entropic Uncertainty Relation in Quantum Markovian-Davies Environment
NASA Astrophysics Data System (ADS)
Zhang, Jun; Liu, Liang; Han, Yan
2018-05-01
In this paper, we investigate the tightness of entropic uncertainty relation in the absence (presence) of the quantum memory which the memory particle being weakly coupled to a decohering Davies-type Markovian environment. The results show that the tightness of the quantum uncertainty relation can be controlled by the energy relaxation time F, the dephasing time G and the rescaled temperature p, the perfect tightness can be arrived by dephasing and energy relaxation satisfying F = 2G and p = 1/2. In addition, the tightness of the memory-assisted entropic uncertainty relation and the entropic uncertainty relation can be influenced mainly by the purity. While in memory-assisted model, the purity and quantum correlation can also influence the tightness actively while the quantum entanglement can influence the tightness slightly.
Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.
Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S
2017-07-01
Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic core-shell heparin-PEG microparticles presented here overcome this limitation by sequestering proteins through a PEG-based shell onto a protein-protective heparin core, temporarily isolating bound proteins from the cellular microenvironment, and re-delivering proteins only after degradation of the PEG-based shell. Thus, these core-shell microparticles have potential to be a novel tool to harness and isolate proteins produced in the cellular environment and then control when proteins are re-introduced for the most effective tissue regeneration and repair. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina
Oh, Kyung-Jin; Ahn, Kyuyoun
2016-01-01
Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230–240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication. PMID:27127786
Estrogen Modulates Expression of Tight Junction Proteins in Rat Vagina.
Oh, Kyung-Jin; Lee, Hyun-Suk; Ahn, Kyuyoun; Park, Kwangsung
2016-01-01
Background. The objectives of this study were to investigate the localization of tight junctions and the modulation of zonula occludens- (ZO-) 1, occludin and claudin-1 expression by estrogen in castrated female rat vagina. Female Sprague-Dawley rats (230-240 g, n = 45) were divided into three groups and subjected to a sham operation (control group, n = 15), bilateral ovariectomy (Ovx group, n = 15), or bilateral ovariectomy followed by daily subcutaneous injection of 17β-estradiol (50 μg/kg/day, Ovx + Est group, n = 15). The cellular localization and expression of ZO-1, occludin, and claudin-1 were determined in each group by immunohistochemistry and western blot. Results. Expression of ZO-1 was diffuse in all groups, with the highest intensity in the superficial epithelium in the control group. Occludin was localized in the intermediate and basal epithelium. Claudin-1 was most intense in the superficial layer of the vaginal epithelium in the control group. Expression of ZO-1, occludin, and claudin-1 was significantly decreased after ovariectomy and was restored to the level of the control after estrogen replacement. Conclusions. Tight junctions are distinctly localized in rat vagina, and estrogen modulates the expression of tight junctions. Further researches are needed to clarify the functional role of tight junctions in vaginal lubrication.
Saager, Leif; Duncan, Andra E; Yared, Jean-Pierre; Hesler, Brian D; You, Jing; Deogaonkar, Anupa; Sessler, Daniel I; Kurz, Andrea
2015-06-01
Postoperative delirium is common in patients recovering from cardiac surgery. Tight glucose control has been shown to reduce mortality and morbidity. Therefore, the authors sought to determine the effect of tight intraoperative glucose control using a hyperinsulinemic-normoglycemic clamp approach on postoperative delirium in patients undergoing cardiac surgery. The authors enrolled 198 adult patients having cardiac surgery in this randomized, double-blind, single-center trial. Patients were randomly assigned to either tight intraoperative glucose control with a hyperinsulinemic-normoglycemic clamp (target blood glucose, 80 to 110 mg/dl) or standard therapy (conventional insulin administration with blood glucose target, <150 mg/dl). Delirium was assessed using a comprehensive delirium battery. The authors considered patients to have experienced postoperative delirium when Confusion Assessment Method testing was positive at any assessment. A positive Confusion Assessment Method was defined by the presence of features 1 (acute onset and fluctuating course) and 2 (inattention) and either 3 (disorganized thinking) or 4 (altered consciousness). Patients randomized to tight glucose control were more likely to be diagnosed as being delirious than those assigned to routine glucose control (26 of 93 vs. 15 of 105; relative risk, 1.89; 95% CI, 1.06 to 3.37; P = 0.03), after adjusting for preoperative usage of calcium channel blocker and American Society of Anesthesiologist physical status. Delirium severity, among patients with delirium, was comparable with each glucose management strategy. Intraoperative hyperinsulinemic-normoglycemia augments the risk of delirium after cardiac surgery, but not its severity.
General aviation fuel quality control
NASA Technical Reports Server (NTRS)
Poitz, H.
1983-01-01
Quality control measures for aviation gasoline, and some of the differences between quality control on avgas and mogas are discussed. One thing to keep in mind is that with motor gasoline you can always pull off to the side of the road. It's not so easy to do in an airplane. Consequently, there are reasons for having the tight specifications and the tight quality control measures on avgas as compared to motor gasoline.
NASA Technical Reports Server (NTRS)
MonteedeGarcia, Kristina; Patel, Jignasha; Perry, Radford, III
2010-01-01
Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources
NASA Astrophysics Data System (ADS)
Montt de Garcia, Kristina; Patel, Jignasha; Perry, Radford, III
2010-08-01
Extremely tight thermal control property degradation allowances on the vapor-deposited, gold-coated IEC baffle surface, made necessary by the cryogenic JWST Observatory operations, dictate tight contamination requirements on adjacent surfaces. Theoretical degradation in emittance with contaminant thickness was calculated. Maximum allowable source outgassing rates were calculated using worst case view factors from source to baffle surface. Tight requirements pushed the team to change the design of the adjacent surfaces to minimize the outgassing sources.
NASA Astrophysics Data System (ADS)
Huber, Ludwig
2014-09-01
This comment addresses the first component of Fitch's framework: the computational power of single neurons [3]. Although I agree that traditional models of neural computation have vastly underestimated the computational power of single neurons, I am hesitant to follow him completely. The exclusive focus on neurons is likely to underestimate the importance of other cells in the brain. In the last years, two such cell types have received appropriate attention by neuroscientists: interneurons and glia. Interneurons are small, tightly packed cells involved in the control of information processing in learning and memory. Rather than transmitting externally (like motor or sensory neurons), these neurons process information within internal circuits of the brain (therefore also called 'relay neurons'). Some specialized interneuron subtypes temporally regulate the flow of information in a given cortical circuit during relevant behavioral events [4]. In the human brain approx. 100 billion interneurons control information processing and are implicated in disorders such as epilepsy and Parkinson's.
Stephan, Raiko; Gohl, Christina; Fleige, Astrid; Klämbt, Christian; Bogdan, Sven
2011-01-01
A tight spatial-temporal coordination of F-actin dynamics is crucial for a large variety of cellular processes that shape cells. The Abelson interactor (Abi) has a conserved role in Arp2/3-dependent actin polymerization, regulating Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE). In this paper, we report that Abi exerts nonautonomous control of photoreceptor axon targeting in the Drosophila visual system through WAVE. In abi mutants, WAVE is unstable but restored by reexpression of Abi, confirming that Abi controls the integrity of the WAVE complex in vivo. Remarkably, expression of a membrane-tethered WAVE protein rescues the axonal projection defects of abi mutants in the absence of the other subunits of the WAVE complex, whereas cytoplasmic WAVE only slightly affects the abi mutant phenotype. Thus complex formation not only stabilizes WAVE, but also provides further membrane-recruiting signals, resulting in an activation of WAVE. PMID:21900504
A Model of the Spatio-temporal Dynamics of Drosophila Eye Disc Development.
Fried, Patrick; Sánchez-Aragón, Máximo; Aguilar-Hidalgo, Daniel; Lehtinen, Birgitta; Casares, Fernando; Iber, Dagmar
2016-09-01
Patterning and growth are linked during early development and have to be tightly controlled to result in a functional tissue or organ. During the development of the Drosophila eye, this linkage is particularly clear: the growth of the eye primordium mainly results from proliferating cells ahead of the morphogenetic furrow (MF), a moving signaling wave that sweeps across the tissue from the posterior to the anterior side, that induces proliferating cells anterior to it to differentiate and become cell cycle quiescent in its wake. Therefore, final eye disc size depends on the proliferation rate of undifferentiated cells and on the speed with which the MF sweeps across the eye disc. We developed a spatio-temporal model of the growing eye disc based on the regulatory interactions controlled by the signals Decapentaplegic (Dpp), Hedgehog (Hh) and the transcription factor Homothorax (Hth) and explored how the signaling patterns affect the movement of the MF and impact on eye disc growth. We used published and new quantitative data to parameterize the model. In particular, two crucial parameter values, the degradation rate of Hth and the diffusion coefficient of Hh, were measured. The model is able to reproduce the linear movement of the MF and the termination of growth of the primordium. We further show that the model can explain several mutant phenotypes, but fails to reproduce the previously observed scaling of the Dpp gradient in the anterior compartment.
Phytoplankton Biogeography and Community Stability in the Ocean
Cermeño, Pedro; de Vargas, Colomban; Abrantes, Fátima; Falkowski, Paul G.
2010-01-01
Background Despite enormous environmental variability linked to glacial/interglacial climates of the Pleistocene, we have recently shown that marine diatom communities evolved slowly through gradual changes over the past 1.5 million years. Identifying the causes of this ecological stability is key for understanding the mechanisms that control the tempo and mode of community evolution. Methodology/Principal Findings If community assembly were controlled by local environmental selection rather than dispersal, environmental perturbations would change community composition, yet, this could revert once environmental conditions returned to previous-like states. We analyzed phytoplankton community composition across >104 km latitudinal transects in the Atlantic Ocean and show that local environmental selection of broadly dispersed species primarily controls community structure. Consistent with these results, three independent fossil records of marine diatoms over the past 250,000 years show cycles of community departure and recovery tightly synchronized with the temporal variations in Earth's climate. Conclusions/Significance Changes in habitat conditions dramatically alter community structure, yet, we conclude that the high dispersal of marine planktonic microbes erases the legacy of past environmental conditions, thereby decreasing the tempo of community evolution. PMID:20368810
Optical studies of oxidative stress in pulmonary artery endothelial cells
NASA Astrophysics Data System (ADS)
Ghanian, Zahra; Sepehr, Reyhaneh; Eis, Annie; Kondouri, Ganesh; Ranji, Mahsa
2015-03-01
Reactive oxygen species (ROS) play an essential role in facilitating signal transduction processes within the cell and modulating the injuries. However, the generation of ROS is tightly controlled both spatially and temporally within the cell, making the study of ROS dynamics particularly difficult. This study present a novel protocol to quantify the dynamic of the mitochondrial superoxide as a precursor of reactive oxygen species. To regulate the mitochondrial superoxide level, metabolic perturbation was induced by administration of potassium cyanide (KCN). The presented method was able to monitor and measure the superoxide production rate over time. Our results demonstrated that the metabolic inhibitor, potassium cyanide (KCN) induced a significant increase in the rate of superoxide production in mitochondria of fetal pulmonary artery endothelial cells (FPAEC). Presented method sets the stage to study different ROS mediated injuries in vitro.
Rapid localized crystallization of lysozyme by laser trapping.
Yuyama, Ken-Ichi; Chang, Kai-Di; Tu, Jing-Ru; Masuhara, Hiroshi; Sugiyama, Teruki
2018-02-28
Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL). The crystallization is not observed during laser trapping, but initiated by stopping the laser irradiation. The generated crystals are localized densely in a circular area with a diameter of a few millimetres around the focal spot and show specific directions of the optical axes of the HEWL crystals. To interpret this unique crystallization, we propose a mechanism that nucleation and the subsequent growth take place in a highly concentrated domain consisting of HEWL liquid-like clusters after turning off laser trapping.
Landy, Jonathan; Ronde, Emma; English, Nick; Clark, Sue K; Hart, Ailsa L; Knight, Stella C; Ciclitira, Paul J; Al-Hassi, Hafid Omar
2016-01-01
Inflammatory bowel diseases are characterised by inflammation that compromises the integrity of the epithelial barrier. The intestinal epithelium is not only a static barrier but has evolved complex mechanisms to control and regulate bacterial interactions with the mucosal surface. Apical tight junction proteins are critical in the maintenance of epithelial barrier function and control of paracellular permeability. The characterisation of alterations in tight junction proteins as key players in epithelial barrier function in inflammatory bowel diseases is rapidly enhancing our understanding of critical mechanisms in disease pathogenesis as well as novel therapeutic opportunities. Here we give an overview of recent literature focusing on the role of tight junction proteins, in particular claudins, in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. PMID:27003989
Disrupted carbon cycling in restored and unrestored urban streams: Critical timescales and controls
Larsen, L. G.; Harvey, Judson
2017-01-01
Carbon fixation and respiration in flowing waterways play significant roles in global and regional carbon budgets, yet how land use and watershed management interact with temporal disturbances (storms) to influence metabolism remains poorly understood. Here, we combine long-term with synoptic sampling of metabolism and its variable controls in neighboring watersheds of the Chesapeake Bay to resolve limiting factors and critical timescales associated with recovery from disturbance. We found that, relative to predictions of the river continuum concept, focal streams have “disrupted” carbon cycles, with carbon balances closer to zero, and, in some cases, tighter coupling between gross primary production (GPP) and ecosystem respiration (ER), attributable to carbon limitation. Carbon became limiting to ER where flashy storm hydrographs and simplified channel geomorphology inhibited accumulation of fine sediment. Shannon entropy analysis of timescales revealed that fine sediment served as a time-release capsule for nutrients and carbon over 4–6 months, fueling biogeochemical transformations. Loss of fines through hydraulic disturbance had up to 30-d impacts on GPP and 50-d impacts on ER in the stream with carbon limitation. In contrast, where GPP and ER were not tightly coupled, recovery occurred within 1 d. Results suggest that a complex interplay between nutrient and carbon limitation and mechanical and chemical disturbance governs patterns and consequences of disrupted carbon cycling in urban streams. Carbon limitation and tight GPP/ER coupling enhance the vulnerability of stream ecosystem functions, but best management practices that target stormflow reduction and channel geomorphic diversity can break that coupling and minimize carbon cycle disruptions.
Intestinal epithelial barrier function and tight junction proteins with heat and exercise
Zuhl, Micah N.; Moseley, Pope L.
2015-01-01
A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485
Intestinal epithelial barrier function and tight junction proteins with heat and exercise.
Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L
2016-03-15
A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. Copyright © 2016 the American Physiological Society.
Reboldi, Gianpaolo; Angeli, Fabio; de Simone, Giovanni; Staessen, Jan A; Verdecchia, Paolo
2014-03-01
An excessive blood pressure (BP) reduction might be dangerous in high-risk patients with cardiovascular disease. In the Studio Italiano Sugli Effetti CARDIOvascolari del Controllo della Pressione Arteriosa SIStolica (Cardio-Sis), 1111 nondiabetic patients with systolic BP ≥150 mm Hg were randomly assigned to a systolic BP target <140 mm Hg (standard control) or <130 mm Hg (tight control). We stratified patients by absence (n=895) or presence (n=216) of established cardiovascular disease at entry. Antihypertensive treatment was open-label and tailored to each patient's needs. After 2-year follow-up, the primary end point of the study, electrocardiographic left ventricular hypertrophy, occurred less frequently in the tight than in the standard control group in the patients without (10.8% versus 15.2%) and with (14.1% versus 23.5%) established cardiovascular disease (P for interaction=0.82). The main secondary end point, a composite of cardiovascular events and all-cause death, occurred less frequently in the tight than in the standard control group both in patients without (1.47 versus 3.68 patient-years; P=0.016) and with (7.87 versus 11.22 patient-years; P=0.049) previous cardiovascular disease. In a multivariable Cox model, allocation to tight BP control reduced the risk of cardiovascular events to a similar extent in patients with or without overt cardiovascular disease at randomization (P for interaction=0.43). In conclusion, an intensive treatment aimed to lower systolic BP<130 mm Hg reduced left ventricular hypertrophy and improved clinical outcomes to a similar extent in patients with hypertension and without established cardiovascular disease.
Hofmann, Alex; Wesolowski, Brian C; Goebl, Werner
2017-01-01
This study investigates the production and perception of timing, synchronisation and dynamics in jazz trio performances. In a production experiment, six trio combinations of one saxophonist, two bassists, and three drummers were recorded while they performed three popular jazz songs. Onset timing and dynamics of each performer were extracted and analysed. Results showed that the tempo was significantly influenced by the timing of the drummers and all performers showed higher temporal precision on the backbeats. The drummers demonstrated individual swing-ratios, accentuations of beats and intrapersonal asynchronies between simultaneous hi-hat and ride cymbal onsets, which resulted in a hi-hat played 2-26 ms ahead of the pulse of the music. In a subsequent perception test, participants ([Formula: see text]) rated 12 excerpts of the jazz recordings. They selected their preferred version from a pool of stimuli containing the original version, but also manipulations with artificially increased or reduced asynchronies. Stimuli with reduced asynchronies smaller than 19 ms were preferred by the listeners over the original or the fully quantised timing. This suggests that listeners endorse a 'tight-interlocked' jazz rhythm section, with asynchronies smaller than the perceptual threshold (temporal masking), but with natural timing variabilities that makes it distinguishable from a computer-generated playback.
Hofmann, Alex; Wesolowski, Brian C.; Goebl, Werner
2017-01-01
Abstract This study investigates the production and perception of timing, synchronisation and dynamics in jazz trio performances. In a production experiment, six trio combinations of one saxophonist, two bassists, and three drummers were recorded while they performed three popular jazz songs. Onset timing and dynamics of each performer were extracted and analysed. Results showed that the tempo was significantly influenced by the timing of the drummers and all performers showed higher temporal precision on the backbeats. The drummers demonstrated individual swing-ratios, accentuations of beats and intrapersonal asynchronies between simultaneous hi-hat and ride cymbal onsets, which resulted in a hi-hat played 2–26 ms ahead of the pulse of the music. In a subsequent perception test, participants () rated 12 excerpts of the jazz recordings. They selected their preferred version from a pool of stimuli containing the original version, but also manipulations with artificially increased or reduced asynchronies. Stimuli with reduced asynchronies smaller than 19 ms were preferred by the listeners over the original or the fully quantised timing. This suggests that listeners endorse a ‘tight-interlocked’ jazz rhythm section, with asynchronies smaller than the perceptual threshold (temporal masking), but with natural timing variabilities that makes it distinguishable from a computer-generated playback. PMID:29238387
NASA Astrophysics Data System (ADS)
Hernandez, R. R.; Allen, M. F.
2010-12-01
Soils are the largest terrestrial carbon (C) repository in the global C cycle, storing 4.5 times more C than aboveground vegetation. Mycorrhizal fungi are critical edaphic organisms that influence soil C dynamics at both microscopic and ecosystem scales. Understanding the production and turnover of these organisms is critical for accurate ecosystem C budgets and predictive models incorporating changes in climate. This study seeks to quantify high-resolution mycorrhizal hyphae dynamics at various temporal scales in a mixed conifer forest (UC James Reserve, CA) using novel technologies including automated minirhizotrons, embedded soil sensor networks, and environmental software (i.e., Rootfly). We found that hyphae elongation and dieback rates in May 2009 varied significantly across 6-h diel time intervals and were greatest between 12:00 pm and 6:00 pm, when soil temperature and modeled CO2 flux is maximum. Seasonal dynamics revealed peak hyphae biomass in mid-April and rapid hyphae length decline from mid-April through June. Seasonal hyphae dynamism is tightly coupled with biophysical controls, namely, soil water content, which is positively related to hyphae production, and soil temperature. Interestingly, 14 °C may be a threshold for hyphae growth in this system as soil temperatures exceeding this value are coupled with rapid hyphae mortality. This study suggests that human-mediated changes to biophysical controls may modulate seasonal hyphae growth regimes, possibly reducing growth season duration or initiating early mortality. In this scenario, mycorrhizal hyphae mortality may act as a positive feedback to increasing CO2 levels, by releasing large amounts of CO2 into the atmosphere.
Independent rate and temporal coding in hippocampal pyramidal cells.
Huxter, John; Burgess, Neil; O'Keefe, John
2003-10-23
In the brain, hippocampal pyramidal cells use temporal as well as rate coding to signal spatial aspects of the animal's environment or behaviour. The temporal code takes the form of a phase relationship to the concurrent cycle of the hippocampal electroencephalogram theta rhythm. These two codes could each represent a different variable. However, this requires the rate and phase to vary independently, in contrast to recent suggestions that they are tightly coupled, both reflecting the amplitude of the cell's input. Here we show that the time of firing and firing rate are dissociable, and can represent two independent variables: respectively the animal's location within the place field, and its speed of movement through the field. Independent encoding of location together with actions and stimuli occurring there may help to explain the dual roles of the hippocampus in spatial and episodic memory, or may indicate a more general role of the hippocampus in relational/declarative memory.
The Center for Multiscale Plasma Dynamics, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gombosi, Tamas I.
The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on twomore » main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.« less
Oxidative Stress and Huntington's Disease: The Good, The Bad, and The Ugly.
Kumar, Amit; Ratan, Rajiv R
2016-10-01
Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.
Bianchi, Elisa; Novitch, Bennett G.; Huber, Andrea B.
2011-01-01
The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1) in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG), we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs. PMID:21364975
Halbleib, Jennifer M.; Sääf, Annika M.
2007-01-01
Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590
Electrophysiological correlates of competitor activation predict retrieval-induced forgetting.
Hellerstedt, Robin; Johansson, Mikael
2014-06-01
The very act of retrieval modifies the accessibility of memory for knowledge and past events and can also cause forgetting. A prominent theory of such retrieval-induced forgetting (RIF) holds that retrieval recruits inhibition to overcome interference from competing memories, rendering these memories inaccessible. The present study tested a fundamental tenet of the inhibitory-control account: The competition-dependence assumption. Event-related potentials (ERPs) were recorded while participants engaged in a competitive retrieval task. Competition levels were manipulated within the retrieval task by varying the cue-item associative strength of competing items. In order to temporally separate ERP correlates of competitor activation and target retrieval, memory was probed with the sequential presentation of 2 cues: A category cue, to reactivate competitors, and a target cue. As predicted by the inhibitory-control account, competitors with strong compared with weak cue-competitor association were more susceptible to forgetting. Furthermore, competition-sensitive ERP modulations, elicited by the category cue, were observed over anterior regions and reflected individual differences in ensuing forgetting. The present study demonstrates ERP correlates of the reactivation of tightly bound associated memories (the competitors) and provides support for the inhibitory-control account of RIF.
Kuller, Lewis H.; Margolis, Karen L.; Gaussoin, Sarah A.; Bryan, Nick R.; Kerwin, Diana; Limacher, Marian; Wassertheil-Smoller, Sylvia; Williamson, Jeff; Robinson, Jennifer G.
2010-01-01
This paper evaluates the relationship of blood pressure (BP) levels at Women’s Health Initiative (WHI) baseline, treatment of hypertension, and white matter abnormalities among women in conjugated equine estrogen (CEE) and medroxyprogesterone acetate and CEE-alone arms. The WHI Memory Study—Magnetic Resonance Imaging (WHIMS-MRI) trial scanned 1424 participants. BP levels at baseline were significantly positively related to abnormal white matter lesion (WML) volumes. Participants treated for hypertension but who had BP ≥140/90 mm Hg had the greatest amount of WML volumes. Women with untreated BP ≥140/90 mm Hg had intermediate WML volumes. Abnormal WML volumes were related to hypertension in most areas of the brain and were greater in the frontal lobe than in the occipital, parietal, or temporal lobes. Level of BP at baseline was strongly related to amount of WML volumes. The results of the study reinforce the relationship of hypertension and BP control and white matter abnormalities in the brain. The evidence to date supports tight control of BP levels, especially beginning at younger and middle age as a possible and perhaps only way to prevent dementia. PMID:20433539
Kuller, Lewis H; Margolis, Karen L; Gaussoin, Sarah A; Bryan, Nick R; Kerwin, Diana; Limacher, Marian; Wassertheil-Smoller, Sylvia; Williamson, Jeff; Robinson, Jennifer G
2010-03-01
This paper evaluates the relationship of blood pressure (BP) levels at Women's Health Initiative (WHI) baseline, treatment of hypertension, and white matter abnormalities among women in conjugated equine estrogen (CEE) and medroxyprogesterone acetate and CEE-alone arms. The WHI Memory Study-Magnetic Resonance Imaging (WHIMS-MRI) trial scanned 1424 participants. BP levels at baseline were significantly positively related to abnormal white matter lesion (WML) volumes. Participants treated for hypertension but who had BP > or = 140/90 mm Hg had the greatest amount of WML volumes. Women with untreated BP > or = 140/90 mm Hg had intermediate WML volumes. Abnormal WML volumes were related to hypertension in most areas of the brain and were greater in the frontal lobe than in the occipital, parietal, or temporal lobes. Level of BP at baseline was strongly related to amount of WML volumes. The results of the study reinforce the relationship of hypertension and BP control and white matter abnormalities in the brain. The evidence to date supports tight control of BP levels, especially beginning at younger and middle age as a possible and perhaps only way to prevent dementia.
Magnetospheric MultiScale (MMS) System Manager
NASA Technical Reports Server (NTRS)
Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David
2014-01-01
The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.
Convergent microRNA actions coordinate neocortical development.
Barca-Mayo, Olga; De Pietri Tonelli, Davide
2014-08-01
Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA-target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.
Fang, Qiang; Huang, Shuangquan
2016-05-01
Plant-pollinator interactions can be highly variable across years in natural communities. Although variation in the species composition and its basic structure has been investigated to understand the dynamic nature of pollination networks, little is known about the temporal dynamic of interaction strength between the same plant and pollinator species in any natural community. Pollinator-mediated selection on the evolution of floral traits could be diminished if plant-pollinator interactions vary temporally. To quantify the temporal variation in plant-pollinator interactions and the interaction strength (observed visits), we compared weighted networks between plants and pollinators in a biodiverse alpine meadow in Shangri-La, southwest China for 3 consecutive years. Although plant-pollinator interactions were highly dynamic such that identical interactions only accounted for 10.7% of the total between pair years, the diversity of interactions was stable. These identical interactions contributed 41.2% of total visits and were similar in strength and weighted nestedness. For plant species, 72.6% of species were visited by identical pollinator species between pair years, accounting for over half of the total visits and three-quarters at the functional group level. More generalized pollinators contributed more connectiveness and were more central in networks across years. However, there was no similar or even opposite trend for plant species, which suggested that specialized plant species may also be central in pollinator networks. The variation in pollinator composition decreased as pollinator species numbers increased, suggesting that generalized plants experienced stable pollinator partition. The stable, tight interactions between generalized pollinators and specialized plants represent cornerstones of the studied community. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Hans, Stefan; Freudenreich, Dorian; Geffarth, Michaela; Kaslin, Jan; Machate, Anja; Brand, Michael
2011-01-01
Cre-mediated site-specific recombination has emerged as an indispensable tool for the precise manipulation of the mammalian genome. Recently, we showed that Cre is also highly efficient in zebrafish and temporal control of recombination can be achieved by using the ligand-inducible CreER(T2). Previous attempts have been made to control recombination by using the temperature inducible hsp70l promoter to conditionally drive the expression of Cre or EGFP-Cre, respectively. However, in this study we demonstrate that the hsp70l promoter possesses a basal leakiness resulting in Cre-mediated recombination even at permissive temperatures. In order to prevent non-conditional recombination, we combined the hsp70l promoter with a mCherry-tagged ligand-inducible CreER(T2). At permissive temperatures and in the absence of the ligand tamoxifen (TAM), no non-conditional recombination is observed indicating tight regulation of CreER(T2). Instead, comprehensive site-specific recombination is mediated following heat induction and administration of TAM. © 2010 Wiley-Liss, Inc.
Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-22
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
NASA Astrophysics Data System (ADS)
Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-01
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
Temporal Variability in the Deglutition Literature
Molfenter, Sonja M.; Steele, Catriona M.
2013-01-01
A literature review was conducted on temporal measures of swallowing in healthy individuals with the purpose of determining the degree of variability present in such measures within the literature. A total of 46 studies that met inclusion criteria were reviewed. The definitions and descriptive statistics for all reported temporal parameters were compiled for meta-analysis. In total, 119 different temporal parameters were found in the literature. The three most-frequently occurring durational measures were: UES opening, laryngeal closure and hyoid movement. The three most-frequently occurring interval measures were: stage transition duration, pharyngeal transit time and duration from laryngeal closure to UES opening. Subtle variations in operational definitions across studies were noted, making the comparison of data challenging. Analysis of forest plots compiling descriptive statistical data (means and 95% confidence intervals) across studies revealed differing degrees of variability across durations and intervals. Two parameters (UES opening duration and the laryngeal-closure-to-UES-opening interval) demonstrated the least variability, reflected by small ranges for mean values and tight confidence intervals. Trends emerged for factors of bolus size and participant age for some variables. Other potential sources of variability are discussed. PMID:22366761
Sadhwani, Anjali; Asaro, Lisa A; Goldberg, Caren; Ware, Janice; Butcher, Jennifer; Gaies, Michael; Smith, Cynthia; Alexander, Jamin L; Wypij, David; Agus, Michael S D
2016-07-01
To assess the association of postoperative tight glycemic control and hypoglycemia in children undergoing cardiac surgery with neurodevelopmental outcomes at 1 year of age. A 2-center, prospective, randomized trial of postoperative tight glycemic control vs standard care was conducted in 980 children undergoing cardiac surgery. Neurodevelopmental outcomes were assessed at nine to 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), the Adaptive Behavior Assessment System, Second Edition, the Ages and Stages Questionnaire, Third Edition, and the Brief Infant Toddler Social-Emotional Assessment. Neurodevelopmental follow-up was performed on 237 patients with a mean age of 13 months. No significant treatment group differences were found in the Bayley-III and Adaptive Behavior Assessment System, Second Edition composite scores or percentage at risk based on the Ages and Stages Questionnaire, Third Edition and the Brief Infant Toddler Social-Emotional Assessment. Patients who experienced moderate to severe hypoglycemia (n = 8) had lower Bayley-III composite scores compared with patients with no to mild hypoglycemia, even after controlling for factors known to be associated with poorer neurodevelopmental outcomes. For infants undergoing cardiac surgery, tight glycemic control did not impact neurodevelopmental outcomes compared with standard care. These data suggest a possible association between moderate to severe hypoglycemia and poorer neurodevelopmental outcomes at 1 year of age. ClinicalTrials.gov: NCT00443599. Copyright © 2016 Elsevier Inc. All rights reserved.
Sadhwani, Anjali; Asaro, Lisa A.; Goldberg, Caren; Ware, Janice; Butcher, Jennifer; Gaies, Michael; Smith, Cynthia; Alexander, Jamin L.; Wypij, David; Agus, Michael S. D.
2016-01-01
Objective To assess the association of postoperative tight glycemic control and hypoglycemia in children undergoing cardiac surgery with neurodevelopmental outcomes at 1 year of age. Study design A 2-center, prospective, randomized trial of postoperative tight glycemic control vs standard care was conducted in 980 children undergoing cardiac surgery. Neurodevelopmental outcomes were assessed at nine to 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), the Adaptive Behavior Assessment System, Second Edition, the Ages and Stages Questionnaire, Third Edition, and the Brief Infant Toddler Social-Emotional Assessment. Results Neurodevelopmental follow-up was performed on 237 patients with a mean age of 13 months. No significant treatment group differences were found in the Bayley-III and Adaptive Behavior Assessment System, Second Edition composite scores or percentage at risk based on the Ages and Stages Questionnaire, Third Edition and the Brief Infant Toddler Social-Emotional Assessment. Patients who experienced moderate to severe hypoglycemia (n = 8) had lower Bayley-III composite scores compared with patients with no to mild hypoglycemia, even after controlling for factors known to be associated with poorer neurodevelopmental outcomes. Conclusion For infants undergoing cardiac surgery, tight glycemic control did not impact neurodevelopmental outcomes compared with standard care. These data suggest a possible association between moderate to severe hypoglycemia and poorer neurodevelopmental outcomes at 1 year of age. PMID:27112038
Code of Federal Regulations, 2010 CFR
2010-10-01
..., or other organization that designs, manufactures, assembles, or controls the assembly of a respirator... source of production and at each step of the manufacturing process, so that departures from... respirator component designed to provide a gas-tight or dust-tight fit with the face and may include...
Tight glycemic control in the ICU - is the earth flat?
Steil, Garry M; Agus, Michael S D
2014-06-27
Tight glycemic control in the ICU has been shown to reduce mortality in some but not all prospective randomized control trials. Confounding the interpretation of these studies are differences in how the control was achieved and underlying incidence of hypoglycemia, which can be expected to be affected by the introduction of continuous glucose monitoring (CGM). In this issue of Critical Care, a consensus panel provides a list of the research priorities they believe are needed for CGM to become routine practice in the ICU. We reflect on these recommendations and consider the implications for using CGM today.
Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine
Pietak, Alexis; Levin, Michael
2016-01-01
Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist the development of specific interventions to achieve greater control of pattern during morphogenesis and remodeling. PMID:27458581
Upstream open reading frames regulate the expression of the nuclear Wnt13 isoforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Tao; Rector, Kyle; Barnett, Corey D.
2008-02-22
Wnt proteins control cell survival and cell fate during development. Although Wnt expression is tightly regulated in a spatio-temporal manner, the mechanisms involved both at the transcriptional and translational levels are poorly defined. We have identified a downstream translation initiation codon, AUG(+74), in Wnt13B and Wnt13C mRNAs responsible for the expression of Wnt13 nuclear forms. In this report, we demonstrate that the expression of the nuclear Wnt13C form is translationally regulated in response to stress and apoptosis. Though the 5'-leaders of both Wnt13C and Wnt13B mRNAs have an inhibitory effect on translation, they did not display an internal ribosome entrymore » site activity as demonstrated by dicistronic reporter assays. However, mutations or deletions of the upstream AUG(-99) and AUG(+1) initiation codons abrogate these translation inhibitory effects, demonstrating that Wnt13C expression is controlled by upstream open reading frames. Since long 5'-untranslated region with short upstream open reading frames characterize other Wnt transcripts, our present data on the translational control of Wnt13 expression open the way to further studies on the translation control of Wnt expression as a modulator of their subcellular localization and activity.« less
NASA Astrophysics Data System (ADS)
Gourdol, L.; Hissler, C.; Pfister, L.
2012-04-01
The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.
Altering wettability to recover more oil from tight formations
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey; ...
2016-06-03
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Altering wettability to recover more oil from tight formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey
We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less
Gastrocnemius tightness on joint angle and work of lower extremity during gait.
You, Jia-Yuan; Lee, Hsin-Min; Luo, Hong-Ji; Leu, Chwan-Chin; Cheng, Pen-Gang; Wu, Shyi-Kuen
2009-11-01
Muscular tightness is a common clinical musculoskeletal disorder and is regarded as a predisposing factor for muscle injuries. In this study, a two-way mixed design ANOVA was applied to investigate the effects of the gastrocnemius tightness on the joint angle and joint work during walking. Twenty-two patients with muscular tightness of gastrocnemius muscle (<12 degrees of ankle dorsiflexion with knee extended) and 22 age- and gender-matched subjects with normal gastrocnemius flexibility (>15 degrees of ankle dorsiflexion with knee extended) participated in this study. The joint angle and work at hip, knee, and ankle joints during the stance phase were analyzed at two preset cadences of 100 steps/min and 140 steps/min. Significantly greater flexion angles at hip (P=0.025) and knee (P=0.001) were found in the tightness group at the time of maximal ankle dorsiflexion. Significantly less work generation at knee (P=0.034) and greater work absorption at ankle (P=0.024) were detected in the tightness group. The subjects with gastrocnemius tightness revealed a compensatory gait pattern, which included the changes in the joint angles and associated work productions. The potential disturbance of the knee control and strain injuries of plantar flexors might be crucial in the clinical considerations for subjects with gastrocnemius tightness.
Terrestrial tight oil reservoir characteristics and Graded Resource Assessment in China
NASA Astrophysics Data System (ADS)
Wang, Shejiao; Wu, Xiaozhi; Guo, Giulin
2016-04-01
The success of shale/tight plays and the advanced exploitation technology applied in North America have triggered interest in exploring and exploiting tight oil in China. Due to the increased support of exploration and exploitation,great progress has been made in Erdos basin, Songliao basin, Junggar basin, Santanghu basin, Bohai Bay basin, Qaidam Basin, and Sichuan basin currently. China's first tight oil field has been found in Erdos basin in 2015, called xinanbian oil field, with over one hundred million tons oil reserves and one million tons of production scale. Several hundred million tons of tight oil reserve has been found in other basins, showing a great potential in China. Tight oil in China mainly developed in terrestrial sedimentary environment. According to the relations of source rock and reservoir, the source-reservoir combination of tight oil can be divided into three types, which are bottom generating and top storing tight oil,self- generating and self-storing tight oil,top generating and bottom storing tight oil. The self- generating and self-storing tight oil is the main type discovered at present. This type of tight oil has following characteristics:(1) The formation and distribution of tight oil are controlled by high quality source rocks. Terrestrial tight oil source rocks in China are mainly formed in the deep to half deep lacustrine facies. The lithology includes dark mudstone, shale, argillaceous limestone and dolomite. These source rocks with thickness between 20m-150m, kerogen type mostly I-II, and peak oil generation thermal maturity(Ro 0.6-1.4%), have great hydrocarbon generating potential. Most discovered tight oil is distributed in the area of TOC greater than 2 %.( 2) the reservoir with strong heterogeneity is very tight. In these low porosity and permeability reservoir,the resources distribution is controlled by the physical property. Tight sandstone, carbonate and hybrid sedimentary rocks are three main tight reservoir types in China. The porosity is 2-14%(average 5-10%)and the permeability is less than 1mD. The laboratory test and exploration practice confirmed that the oil content was positively related to physical property. The higher the porosity, the better the oil content will have. (3) Source rock and reservoir are superimposed. From the contact relationship of source rock and reservoir, the reservoir developed in the source rock has the advantage of capturing oil and gas, so the oil saturation can be as high as 70-80%. (4) The increased pressure caused by hydrocarbon generation and the connected fracture are the key factors for tight oil accumulation. The Fuyu tight oil formed underling source rock in Songliao Basin is a good example. The fracture system is the key factor for tight oil accumulation. Considering the strong heterogeneity of terrestrial tight oil reservoir in china, we create hierarchical resource abundance analogy, EUR analogy, cell element volumetric methods to evaluate tight oil resource potential. In order to find exploration "sweet spots", establishing tight oil resource classification evaluation standards are key steps to objectively evaluate tight oil resource distribution. The resource classification evaluation standards are established by the relationship analysis between reservoir properties and oil properties, and the correlation analysis between production, resource abundance, and reservoir thickness. The first-grade tight oil resource, which is recently available and can easily be developed, has following main parameters: the porosity is greater than 8%, thickness is over 10m, resource abundance is above 150,000 tons / km2, and pressure coefficient is greater than 1.3; The second-grade tight oil resource is currently unavailable, but with advanced technology can expected to be developed. The main parameters are as following: the porosity is 5% -8%, thickness is less than 5-10m, resource abundance is 50000-150000 tons / km2, the pressure coefficient is 1.0 to 1.3; The third-grade resource has poor quality, need long-term to be effective explored, has following main parameters: porosity is less than 5%, the thickness is less than 5m, resource abundance is less than 50,000 tons / km2, the pressure coefficient is less than 1.0. Using created resource evaluation methods, the tight oil resources has been calculated in china. The first-grade recoverable resource of tight oil is about 610 million tons. The second-grade recoverable resource is 450 million tons. And the third-grade recoverable resource is 400 million tons. The first-grade and second-grade recoverable resources are mainly distributed in the Ordos basin, Bohai Bay basin, Songliao basin, Junggar basin, and Qaidam Basin. The third-grade resources are mainly distributed in Sichuan and Santanghu basin.
Leong, Misha; Roderick, George K
2015-01-01
Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators.
Integration agent-based models and GIS as a virtual urban dynamic laboratory
NASA Astrophysics Data System (ADS)
Chen, Peng; Liu, Miaolong
2007-06-01
Based on the Agent-based Model and spatial data model, a tight-coupling integrating method of GIS and Agent-based Model (ABM) is to be discussed in this paper. The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena such as urban dynamic. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, the agent-based model and spatial data model are discussed, and then the relationships affecting spatial data model and agent-based process models interaction. After that, a realistic crowd flow simulation experiment is presented. Using some tools provided by general GIS systems and a few specific programming languages, a new software system integrating GIS and MAS as a virtual laboratory applicable for simulating pedestrian flows in a crowd activity centre has been developed successfully. Under the environment supported by the software system, as an applicable case, a dynamic evolution process of the pedestrian's flows (dispersed process for the spectators) in a crowds' activity center - The Shanghai Stadium has been simulated successfully. At the end of the paper, some new research problems have been pointed out for the future.
A common network of functional areas for attention and eye movements
NASA Technical Reports Server (NTRS)
Corbetta, M.; Akbudak, E.; Conturo, T. E.; Snyder, A. Z.; Ollinger, J. M.; Drury, H. A.; Linenweber, M. R.; Petersen, S. E.; Raichle, M. E.; Van Essen, D. C.;
1998-01-01
Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.
The Predator becomes the Prey: Regulating the Ubiquitin System by Ubiquitylation and Degradation
Weissman, Allan M.; Shabek, Nitzan; Ciechanover, Aaron
2012-01-01
Ubiquitylation (also known as ubiquitination) regulates essentially all intracellular processes in eukaryotes through highly specific, and often tightly spatially and temporally regulated, modification of numerous cellular proteins. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology. PMID:21860393
An automated gas exchange tank for determining gas transfer velocities in natural seawater samples
NASA Astrophysics Data System (ADS)
Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.
2014-07-01
In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.
An automated gas exchange tank for determining gas transfer velocities in natural seawater samples
NASA Astrophysics Data System (ADS)
Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.
2014-02-01
In order to advance understanding of the role of seawater surfactants in the air-sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed air-water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air-sea gas exchange process.
O'Dwyer, John L; Meads, David M; Hulme, Claire T; Mcparland, Lucy; Brown, Sarah; Coates, Laura C; Moverley, Anna R; Emery, Paul; Conaghan, Philip G; Helliwell, Philip S
2018-03-01
Treat-to-target approaches have proved to be effective in rheumatoid arthritis, but have not been studied in psoriatic arthritis (PsA). This study was undertaken to examine the cost-effectiveness of tight control (TC) of inflammation in early PsA compared to standard care. Cost-effectiveness analyses were undertaken alongside a UK-based, open-label, multicenter, randomized controlled trial. Taking the perspective of the health care sector, effectiveness was measured using the 3-level EuroQol 5-domain, which allows for the calculation of quality-adjusted life-years (QALYs). Incremental cost-effectiveness ratios (ICERs) are presented, which represent the additional cost per QALY gained over a 48-week time horizon. Sensitivity analyses are presented assessing the impact of variations in the analytical approach and assumptions on the cost-effectiveness estimates. The mean cost and QALYs were higher in the TC group: £4,198 versus £2,000 and 0.602 versus 0.561. These values yielded an ICER of £53,948 per QALY. Bootstrapped uncertainty analysis suggests that the TC has a 0.07 probability of being cost-effective at a £20,000 threshold. Stratified analysis suggests that with certain costs being controlled, an ICER of £24,639 can be calculated for patients with a higher degree of disease severity. A tight control strategy to treat PsA is an effective intervention in the treatment pathway; however, this study does not find tight control to be cost-effective in most analyses. Lower drug prices, targeting polyarthritis patients, or reducing the frequency of rheumatology visits may improve value for money metrics in future studies. © 2017, American College of Rheumatology.
JAM-C regulates tight junctions and integrin-mediated cell adhesion and migration.
Mandicourt, Guillaume; Iden, Sandra; Ebnet, Klaus; Aurrand-Lions, Michel; Imhof, Beat A
2007-01-19
Junctional Adhesion Molecules (JAMs) have been described as major components of tight junctions in endothelial and epithelial cells. Tight junctions are crucial for the establishment and maintenance of cell polarity. During tumor development, they are remodeled, enabling neoplastic cells to escape from constraints imposed by intercellular junctions and to adopt a migratory behavior. Using a carcinoma cell line we tested whether JAM-C could affect tight junctions and migratory properties of tumor cells. We show that transfection of JAM-C improves the tight junctional barrier in tumor cells devoid of JAM-C expression. This is dependent on serine 281 in the cytoplasmic tail of JAM-C because serine mutation into alanine abolishes the specific localization of JAM-C in tight junctions and establishment of cell polarity. More importantly, the same mutation stimulates integrin-mediated cell migration and adhesion via the modulation of beta1 and beta3 integrin activation. These results highlight an unexpected function for JAM-C in controlling epithelial cell conversion from a static, polarized state to a pro-migratory phenotype.
Areeudomwong, Pattanasin; Oatyimprai, Ketsarakon; Pathumb, Saranchana
2016-01-01
Background Neurodynamics intervention is known to increase apparent muscle extensibility, but information regarding hamstring responses after a neurodynamic sliders (NS) technique is scarce. The aim of this study was to evaluate the effects of NS on apparent hamstring extensibility and activity in footballers with hamstring tightness. Methods Forty eligible healthy male footballers with hamstring tightness were each randomly allocated to either a 4-week NS technique or a control group (CG) receiving placebo shortwave intervention. Knee extension angles were measured with the passive knee extension test, and maximal voluntary isometric contraction (MVIC) of hamstrings was measured by a surface electromyography at baseline and after intervention sessions. Results The results showed that NS produced a statistically and clinically significant increase in knee extension angle compared to CG (P < 0.001); however, there was no difference between the groups receiving MVIC of hamstrings. Within group comparison, NS also provided a significant increase in knee extension angle (P < 0.001), whereas the control group did not. There was no change in hamstring MVIC in either group after intervention. Conclusions The findings of this study reveal that four weeks of NS technique improved apparent hamstring extensibility but did not change the hamstring activity in footballers with hamstring tightness. PMID:28090180
Lerner, Aaron; Matthias, Torsten
2015-06-01
The incidence of autoimmune diseases is increasing along with the expansion of industrial food processing and food additive consumption. The intestinal epithelial barrier, with its intercellular tight junction, controls the equilibrium between tolerance and immunity to non-self-antigens. As a result, particular attention is being placed on the role of tight junction dysfunction in the pathogenesis of AD. Tight junction leakage is enhanced by many luminal components, commonly used industrial food additives being some of them. Glucose, salt, emulsifiers, organic solvents, gluten, microbial transglutaminase, and nanoparticles are extensively and increasingly used by the food industry, claim the manufacturers, to improve the qualities of food. However, all of the aforementioned additives increase intestinal permeability by breaching the integrity of tight junction paracellular transfer. In fact, tight junction dysfunction is common in multiple autoimmune diseases and the central part played by the tight junction in autoimmune diseases pathogenesis is extensively described. It is hypothesized that commonly used industrial food additives abrogate human epithelial barrier function, thus, increasing intestinal permeability through the opened tight junction, resulting in entry of foreign immunogenic antigens and activation of the autoimmune cascade. Future research on food additives exposure-intestinal permeability-autoimmunity interplay will enhance our knowledge of the common mechanisms associated with autoimmune progression. Copyright © 2015. Published by Elsevier B.V.
STS 31 PAYLOAD HUBBLE SPACE TELESCOPE ENCLOSED IN AN AIR-TIGHT PLASTIC BAG FOR PROTECTION IN VERTICA
NASA Technical Reports Server (NTRS)
1989-01-01
Preparations are made to enclose the Hubble Space Telescope [HST] inside an air-tight plastic bag in the VPF. Processing of the 94- inch primary mirror telescope for launch on the Discovery in March 1990, involves working within strict controls to prevent contamination.
Second law of thermodynamics and quantum feedback control: Maxwell's demon with weak measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Kurt
2009-07-15
Recently Sagawa and Ueda [Phys. Rev. Lett. 100, 080403 (2008)] derived a bound on the work that can be extracted from a quantum system with the use of feedback control. For many quantum measurements their bound was not tight. We show that a tight version of this bound follows straightforwardly from recent work on Maxwell's demon by Alicki et al. [Open Syst. Inf. Dyn. 11, 205 (2004)], for both discrete and continuous feedback control. Our analysis also shows that bare, efficient measurements always do non-negative work on a system in equilibrium, but do not add heat.
Colombel, Jean-Frederic; Panaccione, Remo; Bossuyt, Peter; Lukas, Milan; Baert, Filip; Vaňásek, Tomas; Danalioglu, Ahmet; Novacek, Gottfried; Armuzzi, Alessandro; Hébuterne, Xavier; Travis, Simon; Danese, Silvio; Reinisch, Walter; Sandborn, William J; Rutgeerts, Paul; Hommes, Daniel; Schreiber, Stefan; Neimark, Ezequiel; Huang, Bidan; Zhou, Qian; Mendez, Paloma; Petersson, Joel; Wallace, Kori; Robinson, Anne M; Thakkar, Roopal B; D'Haens, Geert
2018-12-23
Biomarkers of intestinal inflammation, such as faecal calprotectin and C-reactive protein, have been recommended for monitoring patients with Crohn's disease, but whether their use in treatment decisions improves outcomes is unknown. We aimed to compare endoscopic and clinical outcomes in patients with moderate to severe Crohn's disease who were managed with a tight control algorithm, using clinical symptoms and biomarkers, versus patients managed with a clinical management algorithm. CALM was an open-label, randomised, controlled phase 3 study, done in 22 countries at 74 hospitals and outpatient centres, which evaluated adult patients (aged 18-75 years) with active endoscopic Crohn's disease (Crohn's Disease Endoscopic Index of Severity [CDEIS] >6; sum of CDEIS subscores of >6 in one or more segments with ulcers), a Crohn's Disease Activity Index (CDAI) of 150-450 depending on dose of prednisone at baseline, and no previous use of immunomodulators or biologics. Patients were randomly assigned at a 1:1 ratio to tight control or clinical management groups, stratified by smoking status (yes or no), weight (<70 kg or ≥70 kg), and disease duration (≤2 years or >2 years) after 8 weeks of prednisone induction therapy, or earlier if they had active disease. In both groups, treatment was escalated in a stepwise manner, from no treatment, to adalimumab induction followed by adalimumab every other week, adalimumab every week, and lastly to both weekly adalimumab and daily azathioprine. This escalation was based on meeting treatment failure criteria, which differed between groups (tight control group before and after random assignment: faecal calprotectin ≥250 μg/g, C-reactive protein ≥5mg/L, CDAI ≥150, or prednisone use in the previous week; clinical management group before random assignment: CDAI decrease of <70 points compared with baseline or CDAI >200; clinical management group after random assignment: CDAI decrease of <100 points compared with baseline or CDAI ≥200, or prednisone use in the previous week). De-escalation was possible for patients receiving weekly adalimumab and azathioprine or weekly adalimumab alone if failure criteria were not met. The primary endpoint was mucosal healing (CDEIS <4) with absence of deep ulcers 48 weeks after randomisation. Primary and safety analyses were done in the intention-to-treat population. This trial has been completed, and is registered with ClinicalTrials.gov, number NCT01235689. Between Feb 11, 2011, and Nov 3, 2016, 244 patients (mean disease duration: clinical management group, 0·9 years [SD 1·7]; tight control group, 1·0 year [2·3]) were randomly assigned to monitoring groups (n=122 per group). 29 (24%) patients in the clinical management group and 32 (26%) patients in the tight control group discontinued the study, mostly because of adverse events. A significantly higher proportion of patients in the tight control group achieved the primary endpoint at week 48 (56 [46%] of 122 patients) than in the clinical management group (37 [30%] of 122 patients), with a Cochran-Mantel-Haenszel test-adjusted risk difference of 16·1% (95% CI 3·9-28·3; p=0·010). 105 (86%) of 122 patients in the tight control group and 100 (82%) of 122 patients in the clinical management group reported treatment-emergent adverse events; no treatment-related deaths occurred. The most common adverse events were nausea (21 [17%] of 122 patients), nasopharyngitis (18 [15%]), and headache (18 [15%]) in the tight control group, and worsening Crohn's disease (35 [29%] of 122 patients), arthralgia (19 [16%]), and nasopharyngitis (18 [15%]) in the clinical management group. CALM is the first study to show that timely escalation with an anti-tumour necrosis factor therapy on the basis of clinical symptoms combined with biomarkers in patients with early Crohn's disease results in better clinical and endoscopic outcomes than symptom-driven decisions alone. Future studies should assess the effects of such a strategy on long-term outcomes such as bowel damage, surgeries, hospital admissions, and disability. AbbVie. Copyright © 2017 Elsevier Ltd. All rights reserved.
Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants
Liang, Yan; Richardson, Sarah; Yan, Jingwei; ...
2017-01-17
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less
Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yan; Richardson, Sarah; Yan, Jingwei
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less
NEUROTROPHIC FACTORS IN COMBINATORIAL APPROACHES FOR SPINAL CORD REGENERATION
McCall, Julianne; Weidner, Norbert; Blesch, Armin
2012-01-01
Axonal regeneration is inhibited by a plethora of different mechanisms in the adult central nervous system (CNS). While neurotrophic factors have been shown to stimulate axonal growth in numerous animal models of nervous system injury, a lack of suitable growth substrates, an insufficient activation of neuron-intrinsic regenerative programs and extracellular inhibitors of regeneration limit the efficacy of neurotrophic factor delivery for anatomical and functional recovery after spinal cord injury. Thus, growth-stimulating factors will likely have to be combined with other treatment approaches to tap into the full potential of growth factor therapy for axonal regeneration. In addition, the temporal and spatial distribution of growth factors have to be tightly controlled to achieve biologically active concentrations, to allow for the chemotropic guidance of axons and to prevent adverse effects related to the widespread distribution of neurotrophic factors. Here, we will review the rationale for combinatorial treatments in axonal regeneration and summarize some recent progress in promoting axonal regeneration in the injured CNS using such approaches. PMID:22526621
Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo
Vandenberg, Laura N.; Pennarola, Brian W.; Levin, Michael
2011-01-01
The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs. PMID:21826245
Jasmonic acid protects etiolated seedlings of Arabidopsis thaliana against herbivorous arthropods
Boex-Fontvieille, Edouard; Rustgi, Sachin; Von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane
2016-01-01
ABSTRACT Seed predators can cause mass ingestion of larger seed populations. As well, herbivorous arthropods attempt to attack etiolated seedlings and chose the apical hook for ingestion, aimed at dropping the cotyledons for later consumption. Etiolated seedlings, as we show here, have established an efficient mechanism of protecting their Achilles' heel against these predators, however. Evidence is provided for a role of jasmonic acid (JA) in this largely uncharacterized plant-herbivore interaction during skotomorphogenesis and that this comprises the temporally and spatially tightly controlled synthesis of a cysteine protease inhibitors of the Kunitz family. Interestingly, the same Kunitz protease inhibitor was found to be expressed in flowers of Arabidopsis where endogenous JA levels are high for fertility. Because both the apical hook and inflorescences were preferred isopod targets in JA-deficient plants that could be rescued by exogenously administered JA, our data identify a JA-dependent mechanism of plant arthropod deterrence that is recalled in different organs and at quite different times of plant development. PMID:27485473
3D surface perception from motion involves a temporal–parietal network
Beer, Anton L.; Watanabe, Takeo; Ni, Rui; Sasaki, Yuka; Andersen, George J.
2010-01-01
Previous research has suggested that three-dimensional (3D) structure-from-motion (SFM) perception in humans involves several motion-sensitive occipital and parietal brain areas. By contrast, SFM perception in nonhuman primates seems to involve the temporal lobe including areas MT, MST and FST. The present functional magnetic resonance imaging study compared several motion-sensitive regions of interest including the superior temporal sulcus (STS) while human observers viewed horizontally moving dots that defined either a 3D corrugated surface or a 3D random volume. Low-level stimulus features such as dot density and velocity vectors as well as attention were tightly controlled. Consistent with previous research we found that 3D corrugated surfaces elicited stronger responses than random motion in occipital and parietal brain areas including area V3A, the ventral and dorsal intraparietal sulcus, the lateral occipital sulcus and the fusiform gyrus. Additionally, 3D corrugated surfaces elicited stronger activity in area MT and the STS but not in area MST. Brain activity in the STS but not in area MT correlated with interindividual differences in 3D surface perception. Our findings suggest that area MT is involved in the analysis of optic flow patterns such as speed gradients and that the STS in humans plays a greater role in the analysis of 3D SFM than previously thought. PMID:19674088
A tightly-coupled domain-decomposition approach for highly nonlinear stochastic multiphysics systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taverniers, Søren; Tartakovsky, Daniel M., E-mail: dmt@ucsd.edu
2017-02-01
Multiphysics simulations often involve nonlinear components that are driven by internally generated or externally imposed random fluctuations. When used with a domain-decomposition (DD) algorithm, such components have to be coupled in a way that both accurately propagates the noise between the subdomains and lends itself to a stable and cost-effective temporal integration. We develop a conservative DD approach in which tight coupling is obtained by using a Jacobian-free Newton–Krylov (JfNK) method with a generalized minimum residual iterative linear solver. This strategy is tested on a coupled nonlinear diffusion system forced by a truncated Gaussian noise at the boundary. Enforcement ofmore » path-wise continuity of the state variable and its flux, as opposed to continuity in the mean, at interfaces between subdomains enables the DD algorithm to correctly propagate boundary fluctuations throughout the computational domain. Reliance on a single Newton iteration (explicit coupling), rather than on the fully converged JfNK (implicit) coupling, may increase the solution error by an order of magnitude. Increase in communication frequency between the DD components reduces the explicit coupling's error, but makes it less efficient than the implicit coupling at comparable error levels for all noise strengths considered. Finally, the DD algorithm with the implicit JfNK coupling resolves temporally-correlated fluctuations of the boundary noise when the correlation time of the latter exceeds some multiple of an appropriately defined characteristic diffusion time.« less
Rodríguez-Gutiérrez, René; Montori, Victor M
2016-09-01
We sought to determine the concordance between the accumulating evidence about the impact of tight versus less tight glycemic control in patients with type 2 diabetes mellitus since the publication of UKPDS (UK Prospective Diabetes Study) in 1998 until 2015 with the views about that evidence published in journal articles and practice guidelines. We searched in top general medicine and specialty journals for articles referring to glycemic control appearing between 2006 and 2015 and identified the latest practice guidelines. To summarize the evidence, we included all published systematic reviews and meta-analyses of contemporary randomized trials of glycemic control measuring patient-important microvascular and macrovascular outcomes, and completed a meta-analysis of their follow-up extensions. We identified 16 guidelines and 328 statements. The body of evidence produced estimates warranting moderate confidence. This evidence reported no significant impact of tight glycemic control on the risk of dialysis/transplantation/renal death, blindness, or neuropathy. In the past decade, however, most published statements (77%-100%) and guidelines (95%) unequivocally endorsed benefit. There is also no significant effect on all-cause mortality, cardiovascular mortality, or stroke; however, there is a consistent 15% relative-risk reduction of nonfatal myocardial infarction. Between 2006 and 2008, most statements (47%-83%) endorsed the benefit; after 2008 (ACCORD), only a minority (21%-36%) did. Discordance exists between the research evidence and academic and clinical policy statements about the value of tight glycemic control to reduce micro- and macrovascular complications. This discordance may distort priorities in the research and practice agendas designed to improve the lives of patients with type 2 diabetes mellitus. © 2016 American Heart Association, Inc.
ATG14 controls SNARE-mediated autophagosome fusion with a lysosome.
Liu, Rong; Zhi, Xiaoyong; Zhong, Qing
2015-01-01
Autophagosome fusion with a lysosome constitutes the last barrier for autophagic degradation. It is speculated that this fusion process is precisely and tightly regulated. Recent genetic evidence suggests that a set of SNARE proteins, including STX17, SNAP29, and VAMP8, are essential for the fusion between autophagosomes and lysosomes. However, it remains unclear whether these SNAREs are fusion competent and how their fusogenic activity is specifically regulated during autophagy. Using a combination of biochemical, cell biology, and genetic approaches, we demonstrated that fusogenic activity of the autophagic SNARE complex is temporally and spatially controlled by ATG14/Barkor/Atg14L, an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex (PtdIns3K). ATG14 directly binds to the STX17-SNAP29 binary complex on autophagosomes and promotes STX17-SNAP29-VAMP8-mediated autophagosome fusion with lysosomes. ATG14 homo-oligomerization is required for SNARE binding and fusion promotion, but is dispensable for PtdIns3K stimulation and autophagosome biogenesis. Consequently, ATG14 homo-oligomerization is required for autophagosome fusion with a lysosome, but is dispensable for autophagosome biogenesis. These data support a key role of ATG14 in controlling autophagosome fusion with a lysosome.
Song, Juhyun; Yoon, So Ra
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor-α), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases. PMID:28680530
Song, Juhyun; Yoon, So Ra; Kim, Oh Yoen
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor- α ), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases.
NASA Astrophysics Data System (ADS)
Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang
2016-11-01
Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones.
Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang
2016-01-01
Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones. PMID:27830731
Saccade Preparation Is Required for Exogenous Attention but Not Endogenous Attention or IOR
ERIC Educational Resources Information Center
Smith, Daniel T.; Schenk, Thomas; Rorden, Chris
2012-01-01
Covert attention is tightly coupled with the control of eye movements, but there is controversy about how tight this coupling is. The premotor theory of attention proposes that activation of the eye movement system is necessary to produce shifts of attention. In this study, we experimentally prevented healthy participants from planning or…
Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth
Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud
2013-01-01
The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369
Doherty, Orla; Conway, Thomas; Conway, Richard; Murray, Gerard; Casey, Vincent
2017-01-01
Noseband tightness is difficult to assess in horses participating in equestrian sports such as dressage, show jumping and three-day-eventing. There is growing concern that nosebands are commonly tightened to such an extent as to restrict normal equine behaviour and possibly cause injury. In the absence of a clear agreed definition of noseband tightness, a simple model of the equine nose-noseband interface environment was developed in order to guide further studies in this area. The normal force component of the noseband tensile force was identified as the key contributor to sub-noseband tissue compression. The model was used to inform the design of a digital tightness gauge which could reliably measure the normal force component of the noseband tensile force. A digital tightness gauge was developed to measure this parameter under nosebands fitted to bridled horses. Results are presented for field tests using two prototype designs. Prototype version three was used in field trial 1 (n = 15, frontal nasal plane sub-noseband site). Results of this trial were used to develop an ergonomically designed prototype, version 4, which was tested in a second field trial (n = 12, frontal nasal plane and lateral sub-noseband site). Nosebands were set to three tightness settings in each trial as judged by a single rater using an International Society for Equitation Science (ISES) taper gauge. Normal forces in the range 7-95 N were recorded at the frontal nasal plane while a lower range 1-28 N was found at the lateral site for the taper gauge range used in the trials. The digital tightness gauge was found to be simple to use, reliable, and safe and its use did not agitate the animals in any discernable way. A simple six point tightness scale is suggested to aid regulation implementation and the control of noseband tightness using normal force measurement as the objective tightness discriminant.
McDonald, Carrie R; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M; Trongnetrpunya, Amy; Sherfey, Jason S; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K; Cash, Sydney S; Leonard, Matthew K; Hagler, Donald J; Dale, Anders M; Halgren, Eric
2010-11-01
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. Copyright 2010 Elsevier Inc. All rights reserved.
McDonald, Carrie R.; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M.; Trongnetrpunya, Amy; Sherfey, Jason S.; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K.; Cash, Sydney S.; Leonard, Matt K.; Hagler, Donald J.; Dale, Anders M.; Halgren, Eric
2010-01-01
Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, ‘N’) and words that repeated (old, ‘O’). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350–450ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. PMID:20620212
Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno
2015-03-15
Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
House Dust Mite Der p 1 Effects on Sinonasal Epithelial Tight Junctions
Henriquez, Oswaldo A.; Beste, Kyle Den; Hoddeson, Elizabeth K.; Parkos, Charles A.; Nusrat, Asma; Wise, Sarah K.
2013-01-01
Background Epithelial permeability is highly dependent upon the integrity of tight junctions, cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Methods Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen versus control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of tight junction proteins was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Results Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1 exposed cultured sinonasal cells versus controls. Conclusion Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. PMID:23592402
Santa Cruz, Vicente; Liu, Hanlin; Kaphalia, Lata; Kanz, Mary F.
2007-01-01
Methylenedianiline (DAPM) is considered a cholangiodestructive toxicant in vivo. Increases in biliary inorganic phosphate (Pi) and glucose occur prior to biliary epithelial cell (BEC) injury, which could be due to increased paracellular permeability and/or impairment of Pi and glucose uptake by BEC. To evaluate these possibilities, we induced mild injury [loss of BEC from major bile ducts (6 h), ultrastructural alterations in BEC mitochondria and Golgi cisternae (3 h), and striking increases in biliary Pi and glucose (3–6 h)] with 25 mg DAPM/kg and then assessed temporal alterations in tight junction (TJ) permeability by measuring bile to plasma (B:P) ratios of [3H]-inulin. Parameters maintained by hepatocytes in bile were unchanged (bile flow, bile acids, bilirubin) or only transiently perturbed (protein, glutathione). Minimal elevations in B:P ratios of inulin occurred temporally later (4 h) in DAPM-treated rats than increases in biliary Pi and glucose. To confirm a direct effect of DAPM on BEC TJs, we measured transepithelial resistance (TER) and bi-ionic potentials of BEC monolayers prior to and after exposure to pooled (4 to 6) bile samples collected from untreated rats (Basal Bile) or rats treated with 50 mg DAPM/ kg (DAPM-Bile). BEC TJs were found to be cation selective. Exposure to DAPM-Bile for 1 h decreased TERs by ~35% and decreased charge selectivity of BEC TJs while exposure to Basal Bile had no effects. These observations indicate that DAPM-Bile impairs paracellular permeability of BEC in vitro. Further, our in vivo model suggests that increases in paracellular permeability induced by DAPM are localized to BEC because bile flow and constituents excreted by hepatocytes were unchanged; BEC damage was temporally correlated with increases in biliary Pi and glucose; and elevations in B:P ratios of inulin were delayed and minimal. PMID:17178199
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing
Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.
Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.
Ma, Yi; Gui, Yan; Wang, Youhu; Xi, Kehu; Chen, Xiaowan; Zhang, Fuhong; Ma, Chunxia; Hong, Hao; Liu, Xiangyi; Jiang, Ying; Dong, Ming; Yang, Guijun; Zhang, Xiaobing
2014-10-01
To observe 18β-glycyrrhetinic acid (GA) impact on ultrastructure of tight junctions (TJs) of nasal mucosa epithelial cells in rats models of allergic rhinitis (AR). Ninety-six Wistar rats were randomly divided into control group, model group, loratadine group, and 18β-glycyrrhetinic acid group, and each group had 24 rats. Ovalbumin was used to establish a rat AR model. The behavioral changes and the tight junctions of nasal epithelial were observed and compared in different groups after 2,4,6 and 10 weeks intervention. The length of TJs in allergic rhinitis model became shorter, electron-high-density plasma membrane became thicker, number of the integration loci reduced and gap of TJs widened or even ruptured. With the consistent effect of allergens,the changes of TJs in the model group aggravated gradually,and the changes of ultrastructure of TJs in 18β-glycyrrhetinic acid group was relieved apparently compared to model group and even were close to the control model with time. 18β-glycyrrhetinic acid can recover the ultrastructure of the tight junctions of AR rat nasal epithelial cells.
Chen, Lei; Yokel, Robert A; Hennig, Bernhard; Toborek, Michal
2008-12-01
Manufactured nanoparticles of aluminum oxide (nano-alumina) have been widely used in the environment; however, their potential toxicity provides a growing concern for human health. The present study focuses on the hypothesis that nano-alumina can affect the blood-brain barrier and induce endothelial toxicity. In the first series of experiments, human brain microvascular endothelial cells (HBMEC) were exposed to alumina and control nanoparticles in dose- and time-responsive manners. Treatment with nano-alumina markedly reduced HBMEC viability, altered mitochondrial potential, increased cellular oxidation, and decreased tight junction protein expression as compared to control nanoparticles. Alterations of tight junction protein levels were prevented by cellular enrichment with glutathione. In the second series of experiments, rats were infused with nano-alumina at the dose of 29 mg/kg and the brains were stained for expression of tight junction proteins. Treatment with nano-alumina resulted in a marked fragmentation and disruption of integrity of claudin-5 and occludin. These results indicate that cerebral vasculature can be affected by nano-alumina. In addition, our data indicate that alterations of mitochondrial functions may be the underlying mechanism of nano-alumina toxicity.
Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W
Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea
2014-01-01
Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242
Bin Abd Razak, Hamid Rahmatullah; Yeo, Eng-Meng Nicholas; Yeo, William; Lie, Tijauw-Tjoen Denny
2018-07-01
The aim of this study was to compare the short-term outcomes of arthroscopic TightRope ® fixation with that of hook plate fixation in patients with acute unstable acromioclavicular joint dislocations. We conducted a prospective case-control study of twenty-six patients with an acute ACJ dislocation who underwent surgical repair with either an arthroscopic TightRope ® fixation or a hook plate from 2013 to 2016. Clinical and radiological data were collected prospectively. Clinical outcomes were evaluated using the Constant Score, the University of California at Los Angeles (UCLA) Shoulder Score, Oxford Shoulder Score as well as the visual analogue scale. Radiological outcomes were assessed with the coracoclavicular distance (CCD). Sixteen patients underwent arthroscopic TightRope ® fixation, while 10 patients underwent hook plate fixation. There were no significant differences in the preoperative variables except for the mean UCLA 4b infraspinatus score (TightRope ® 2.8 vs. hook plate 3.8; p = 0.030). Duration of surgery was significantly longer in the TightRope ® group. At 1 year post-operatively, the TightRope ® group had a significantly better Constant Score and CCD with no complications. All patients with hook plate fixation had to undergo a second procedure for removal of implant, and 3 patients had complications. Arthroscopic TightRope ® fixation is a good option for the treatment of acute unstable ACJ dislocations. It has better short-term clinical and radiological outcomes as well as lesser complications when compared to hook plate fixation. Therapeutic, Level III.
Recent clinical advances in diabetic polyneuropathy.
Horowitz, Steven H
2006-10-01
Recent dramatic increases in the incidence and prevalence of diabetes make an understanding of chronic symmetric sensorimotor diabetic polyneuropathy, the most common and problematic of chronic diabetic complications, essential for a wide range of medical practitioners. The demonstration of neuropathic dysfunction in patients with prediabetes or impaired glucose tolerance emphasizes the susceptibility of peripheral nerve fibers, especially small A delta fibers and C fibers, to relatively mild, short-duration hyperglycemia. New testing can reveal peripheral nerve dysfunction prior to clinical neuropathic symptoms and signs. In the absence of effective medications to halt or reverse nerve damage or promote nerve regeneration, early diagnosis of diabetic polyneuropathy, followed by tight glycemic control with diet and exercise, offers the best opportunity to prevent progressive symptoms of sensory loss, pain, autonomic dysfunction, ulcerations, and amputations. Some patients with impaired glucose tolerance have a reversal of neuropathic features with tight glycemic control. Nonpharmacologic therapies for neuropathic pain in diabetic polyneuropathy appear promising. Tight glycemic control, especially early in diabetes, is the best approach to minimizing the prevalence and severity of diabetic polyneuropathy and makes research into the deleterious effects of even mild hyperglycemia imperative.
The dynamics of access to groups in working memory.
Farrell, Simon; Lelièvre, Anna
2012-11-01
The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the temporal pattern at input merely suggesting a basis for the pattern of output buffering. Three experiments are presented here that disentangle input structure from output buffering in serial recall. In Experiment 1, participants were asked to recall a subset of visually presented digits from a temporally grouped list in their original order, where either within-group position or group position was kept constant. In Experiment 2, participants performed more standard serial recall of spoken digits, and input and output position were dissociated by asking participants to initiate recall from a post-cued position in the list. In Experiment 3, participants were asked to serially recall temporally grouped lists of visually presented digits where the grouping structure was unpredictable, under either articulatory suppression or silent conditions. The 3 experiments point to a tight linkage between implied memorial structures (i.e., the pattern of grouping at encoding) and the output structure implied by retrieval times and call into question a purely motoric account of the dynamics of recall.
A voice region in the monkey brain.
Petkov, Christopher I; Kayser, Christoph; Steudel, Thomas; Whittingstall, Kevin; Augath, Mark; Logothetis, Nikos K
2008-03-01
For vocal animals, recognizing species-specific vocalizations is important for survival and social interactions. In humans, a voice region has been identified that is sensitive to human voices and vocalizations. As this region also strongly responds to speech, it is unclear whether it is tightly associated with linguistic processing and is thus unique to humans. Using functional magnetic resonance imaging of macaque monkeys (Old World primates, Macaca mulatta) we discovered a high-level auditory region that prefers species-specific vocalizations over other vocalizations and sounds. This region not only showed sensitivity to the 'voice' of the species, but also to the vocal identify of conspecific individuals. The monkey voice region is located on the superior-temporal plane and belongs to an anterior auditory 'what' pathway. These results establish functional relationships with the human voice region and support the notion that, for different primate species, the anterior temporal regions of the brain are adapted for recognizing communication signals from conspecifics.
Modeling structural change in spatial system dynamics: A Daisyworld example.
Neuwirth, C; Peck, A; Simonović, S P
2015-03-01
System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.
Kim, Heejung; Hahm, Jarang; Lee, Hyekyoung; Kang, Eunjoo; Kang, Hyejin; Lee, Dong Soo
2015-05-01
The human brain naturally integrates audiovisual information to improve speech perception. However, in noisy environments, understanding speech is difficult and may require much effort. Although the brain network is supposed to be engaged in speech perception, it is unclear how speech-related brain regions are connected during natural bimodal audiovisual or unimodal speech perception with counterpart irrelevant noise. To investigate the topological changes of speech-related brain networks at all possible thresholds, we used a persistent homological framework through hierarchical clustering, such as single linkage distance, to analyze the connected component of the functional network during speech perception using functional magnetic resonance imaging. For speech perception, bimodal (audio-visual speech cue) or unimodal speech cues with counterpart irrelevant noise (auditory white-noise or visual gum-chewing) were delivered to 15 subjects. In terms of positive relationship, similar connected components were observed in bimodal and unimodal speech conditions during filtration. However, during speech perception by congruent audiovisual stimuli, the tighter couplings of left anterior temporal gyrus-anterior insula component and right premotor-visual components were observed than auditory or visual speech cue conditions, respectively. Interestingly, visual speech is perceived under white noise by tight negative coupling in the left inferior frontal region-right anterior cingulate, left anterior insula, and bilateral visual regions, including right middle temporal gyrus, right fusiform components. In conclusion, the speech brain network is tightly positively or negatively connected, and can reflect efficient or effortful processes during natural audiovisual integration or lip-reading, respectively, in speech perception.
MagPy: A Python toolbox for controlling Magstim transcranial magnetic stimulators.
McNair, Nicolas A
2017-01-30
To date, transcranial magnetic stimulation (TMS) studies manipulating stimulation parameters have largely used blocked paradigms. However, altering these parameters on a trial-by-trial basis in Magstim stimulators is complicated by the need to send regular (1Hz) commands to the stimulator. Additionally, effecting such control interferes with the ability to send TMS pulses or simultaneously present stimuli with high-temporal precision. This manuscript presents the MagPy toolbox, a Python software package that provides full control over Magstim stimulators via the serial port. It is able to maintain this control with no impact on concurrent processing, such as stimulus delivery. In addition, a specially-designed "QuickFire" serial cable is specified that allows MagPy to trigger TMS pulses with very low-latency. In a series of experimental simulations, MagPy was able to maintain uninterrupted remote control over the connected Magstim stimulator across all testing sessions. In addition, having MagPy enabled had no effect on stimulus timing - all stimuli were presented for precisely the duration specified. Finally, using the QuickFire cable, MagPy was able to elicit TMS pulses with sub-millisecond latencies. The MagPy toolbox allows for experiments that require manipulating stimulation parameters from trial to trial. Furthermore, it can achieve this in contexts that require tight control over timing, such as those seeking to combine TMS with fMRI or EEG. Together, the MagPy toolbox and QuickFire serial cable provide an effective means for controlling Magstim stimulators during experiments while ensuring high-precision timing. Copyright © 2016 Elsevier B.V. All rights reserved.
Expression of Glycosaminoglycan Epitopes During Zebrafish Skeletogenesis
Hayes, Anthony J; Mitchell, Ruth E; Bashford, Andrew; Reynolds, Scott; Caterson, Bruce; Hammond, Chrissy L
2013-01-01
Background: The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. Results: We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. Conclusions: The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton. Developmental Dynamics 242:778–789, 2013. © 2013 Wiley Periodicals, Inc. Key Findings The developing zebrafish skeleton expresses many different glycosaminoglycan modifications. Multiple different glycosaminoglycan epitopes are dynamically expressed in the craniofacial skeleton. Expression of chondroitin sulfate moieties are dynamically expressed in the vertebral column and precede mineralisation. PMID:23576310
fMRI-activation during drawing a naturalistic or sketchy portrait.
Schaer, K; Jahn, G; Lotze, M
2012-07-15
Neural processes for naturalistic drawing might be discerned into object recognition and analysis, attention processes guiding eye hand interaction, encoding of visual features in an allocentric reference frame, a transfer into the motor command and precise motor guidance with tight sensorimotor feedback. Cerebral representations in a real life paradigm during naturalistic drawing have sparsely been investigated. Using a functional Magnetic Resonance Imaging (fMRI) paradigm we measured 20 naive subjects during drawing a portrait from a frontal face presented as a photograph. Participants were asked to draw the portrait in either a naturalistic or a sketchy characteristic way. Tracing the contours of the face with a pencil or passive viewing of the face served as control conditions. Compared to passive viewing, naturalistic and sketchy drawing recruited predominantly the dorsal visual pathway, somatosensory and motor areas and bilateral BA 44. The right occipital lobe, middle temporal (MT) and the fusiform face area were increasingly active during drawing compared to passive viewing as well. Compared to tracing with a pencil, both drawing tasks increasingly involved the bilateral precuneus together with the cuneus and right inferior temporal lobe. Overall, our study identified cerebral areas characteristic for previously proposed aspects of drawing: face perception and analysis (fusiform gyrus and higher visual areas), encoding and retrieval of locations in an allocentric reference frame (precuneus), and continuous feedback processes during motor output (parietal sulcus, cerebellar hemisphere). Copyright © 2012 Elsevier B.V. All rights reserved.
Control of G1 arrest after DNA damage.
Kastan, M B; Kuerbitz, S J
1993-01-01
The temporal relationship between DNA damage and DNA replication may be critical in determining whether the genetic changes necessary for cellular transformation occur after DNA damage. Recent characterization of the mechanisms responsible for alterations in cell-cycle progression after DNA damage in our laboratory have implicated the p53 (tumor suppressor) protein in the G1 arrest that occurs after certain types of DNA damage. In particular, we found that levels of p53 protein increased rapidly and transiently after nonlethal doses of gamma irradiation (XRT) in hematopoietic cells with wild-type, but not mutant, p53 genes. These changes in p53 protein levels were temporally linked to a transient G1 arrest in these cells. Hematopoietic cells with mutant or absent p53 genes did not exhibit this G1 arrest, through they continued to demonstrate a G2 arrest. We recently extended these observations of a tight correlation between the status of the endogenous p53 genes and this G1 arrest after XRT and this cell-cycle alteration after XRT was then established by transfecting cells lacking endogenous p53 genes with a wild-type gene and observing acquisition of the G1 arrest and by transfecting cells processing endogenous wild-type p53 genes with a mutant p53 gene and observing loss of the G1 arrest after XRT. These observations and their significance for our understanding of the mechanisms of DNA damage-induced cellular transformation are discussed. PMID:8013425
Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong
2011-01-01
This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1-0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0-0.2%) in diets. The high dose SBA (0.1-0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects.
Dobosz, E.; Wilamowski, M.; Lech, M.; Bugara, B.; Jura, J.; Potempa, J.; Koziel, J.
2016-01-01
Pattern recognition receptors are critical for the detection of invading microorganisms. They activate multiple pathways that lead to the induction of pro-inflammatory responses and pathogen clearance. The intensity and duration of this immune reaction must be tightly controlled spatially and temporally in every tissue by different negative regulators. We hypothesized that monocyte chemoattractant protein-1–induced protein-1 (MCPIP-1) might play a role in maintaining immune homeostasis in the epithelium both under physiological conditions and upon bacterial infection. To this end, we examined the distribution of MCPIP-1 transcript and protein in various tissues. The MCPIP-1 protein level was higher in epithelial cells than in myeloid cells. MCPIP-1 exerted RNase activity towards the IL-8 transcript and the life-span of IL-8 was determined by the presence of the stem-loops/hairpin (SL) structures at the 3′ UTR region of IL-8 mRNA. Moreover, using fully active, purified recombinant MCPIP-1 protein, we elucidated the mechanism by which MCPIP-1 controls the IL-8 mRNA level. In conclusion, we uncovered a novel IL-8–dependent mechanism via which MCPIP-1 maintains epithelial homeostasis. This study reveals for the first time that MCPIP-1 plays a crucial anti-inflammatory role not only in myeloid cells but also in epithelial cells. PMID:27513529
Reilman, Ewoud; Mars, Ruben A. T.; van Dijl, Jan Maarten; Denham, Emma L.
2014-01-01
Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter. PMID:25217586
Dobosz, Ewelina; Wilamowski, Mateusz; Lech, Maciej; Bugara, Beata; Jura, Jolanta; Potempa, Jan; Koziel, Joanna
2016-01-01
Pattern recognition receptors are critical for the detection of invading microorganisms. They activate multiple pathways that lead to the induction of proinflammatory responses and pathogen clearance. The intensity and duration of this immune reaction must be tightly controlled spatially and temporally in every tissue by different negative regulators. We hypothesized that monocyte chemoattractant protein-1-induced protein-1 (MCPIP-1) might play a role in maintaining immune homeostasis in the epithelium both under physiological conditions and upon bacterial infection. To this end, we examined the distribution of the MCPIP-1 transcript and protein in various tissues. The MCPIP-1 protein level was higher in epithelial cells than in myeloid cells. MCPIP-1 exerted RNase activity towards the interleukin (IL)-8 transcript and the lifespan of IL-8 was determined by the presence of the stem-loops/hairpin structures at the 3'UTR region of IL-8 mRNA. Moreover, using fully active, purified recombinant MCPIP-1 protein, we elucidated the mechanism by which MCPIP-1 controls the IL-8 mRNA level. In conclusion, we uncovered a novel IL-8-dependent mechanism via which MCPIP-1 maintains epithelial homeostasis. This study reveals for the first time that MCPIP-1 plays a crucial anti-inflammatory role not only in myeloid cells but also in epithelial cells. © 2016 S. Karger AG, Basel.
Temporal fossa hemangiopericytoma: a case series.
Heiser, Marc A; Waldron, James S; Tihan, Tarik; Parsa, Andrew T; Cheung, Steven W
2009-10-01
Review clinical experience with temporal fossa hemangiopericytomas (HPCs). Retrospective case series review. Tertiary referral center. Intracranial HPCs within the temporal fossa. Craniotomy for either subtotal or gross total tumor excision. Determination of clinical outcome (alive with no evidence of disease, alive with disease, and died of disease). Five cases of HPC involving the temporal fossa were treated at our tertiary referral center for the period from 1995 to 2008. All but 1 patient were men. The age of presentation ranged from 31 to 62 years, and duration of follow-up ranged from 8 to 153 months. Clinical presentation was protean; headache was the most common symptom. Gross total tumor excision was achieved in 2 patients, whereas subtotal tumor excision was achieved in 3 patients. Reasons for subtotal resection included excessive intraoperative blood loss and inextricable tumor. Histologically, all tumors were composed of tightly packed, randomly oriented (jumbled-up) tumor cells with little intervening collagen. CD34 staining mostly highlighted the vascular background. One patient died of disease, 2 patients were alive with disease, and 2 patients had no evidence of disease. Management of temporal fossa HPC is challenging because clinical presentation is often late, and extent of tumor excision is constrained by vital structures in the cranial base and intracranial contents. A multidisciplinary approach with neurosurgery and neurotology undertaken to achieve the most complete tumor resection possible, whereas minimizing morbidity are likely to confer a longer period of symptom-free survival and improves curability of these difficult lesions.
Crossmodal binding rivalry: A "race" for integration between unequal sensory inputs.
Kostaki, Maria; Vatakis, Argiro
2016-10-01
Exposure to multiple but unequal (in number) sensory inputs often leads to illusory percepts, which may be the product of a conflict between those inputs. To test this conflict, we utilized the classic sound induced visual fission and fusion illusions under various temporal configurations and timing presentations. This conflict between unequal numbers of sensory inputs (i.e., crossmodal binding rivalry) depends on the binding of the first audiovisual pair and its temporal proximity to the upcoming unisensory stimulus. We, therefore, expected that tight coupling of the first audiovisual pair would lead to higher rivalry with the upcoming unisensory stimulus and, thus, weaker illusory percepts. Loose coupling, on the other hand, would lead to lower rivalry and higher illusory percepts. Our data showed the emergence of two different participant groups, those with low discrimination performance and strong illusion reports (particularly for fusion) and those with the exact opposite pattern, thus extending previous findings on the effect of visual acuity in the strength of the illusion. Most importantly, our data revealed differential illusory strength across different temporal configurations for the fission illusion, while for the fusion illusion these effects were only noted for the largest stimulus onset asynchronies tested. These findings support that the optimal integration theory for the double flash illusion should be expanded so as to also take into account the multisensory temporal interactions of the stimuli presented (i.e., temporal sequence and configuration). Copyright © 2016 Elsevier Ltd. All rights reserved.
Nomura, Kazuaki; Obata, Kazufumi; Keira, Takashi; Miyata, Ryo; Hirakawa, Satoshi; Takano, Ken-ichi; Kohno, Takayuki; Sawada, Norimasa; Himi, Tetsuo; Kojima, Takashi
2014-02-18
Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and β-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight junctions by PE might occur repeatedly during chronic rhinosinusitis.
2014-01-01
Background Pseudomonas aeruginosa causes chronic respiratory disease, and the elastase enzyme that it produces increases the permeability of airway epithelial cells owing to the disruption of tight junctions. P. aeruginosa is also implicated in prolonged chronic rhinosinusitis. However, the effects of P. aeruginosa elastase (PE) against the barrier formed by human nasal epithelial cells (HNECs) remain unknown. Methods To investigate the mechanisms involved in the disruption of tight junctions by PE in HNECs, primary cultures of HNECs transfected with human telomerase reverse transcriptase (hTERT-HNECs) were used. The hTERT-HNECs were pretreated with inhibitors of various signal transduction pathways, PKC, MAPK, p38MAPK, PI3K, JNK, NF-κB, EGF receptor, proteasome, COX1 and COX2 before treatment with PE. Some cells were pretreated with siRNA and agonist of protease activated receptor-2 (PAR-2) before treatment with PE. Expression and structures of tight junctions were determined by Western blotting, real-time PCR, immunostaining and freeze-fracture. Transepithelial electrical resistance (TER) was examined as the epithelial barrier function. Results PE treatment transiently disrupted the epithelial barrier and downregulated the transmembrane proteins claudin-1 and -4, occludin, and tricellulin, but not the scaffold PDZ-expression proteins ZO-1 and -2 and adherens junction proteins E-cadherin and β-catenin. The transient downregulation of tight junction proteins was controlled via distinct signal transduction pathways such as the PKC, MAPK, PI3K, p38 MAPK, JNK, COX-1 and -2, and NF-κB pathways. Furthermore, treatment with PE transiently decreased PAR-2 expression, which also regulated the expression of the tight junction proteins. Treatment with a PAR-2 agonist prevented the downregulation of the tight junction proteins after PE treatment in HNECs. Conclusions PE transiently disrupts tight junctions in HNECs and downregulates PAR-2. The transient disruption of tight junctions by PE might occur repeatedly during chronic rhinosinusitis. PMID:24548792
Ultrasound in management of rheumatoid arthritis: ARCTIC randomised controlled strategy trial
Aga, Anna-Birgitte; Olsen, Inge Christoffer; Lillegraven, Siri; Hammer, Hilde B; Uhlig, Till; Fremstad, Hallvard; Madland, Tor Magne; Lexberg, Åse Stavland; Haukeland, Hilde; Rødevand, Erik; Høili, Christian; Stray, Hilde; Noraas, Anne; Hansen, Inger Johanne Widding; Bakland, Gunnstein; Nordberg, Lena Bugge; van der Heijde, Désirée; Kvien, Tore K
2016-01-01
Objective To determine whether a treatment strategy based on structured ultrasound assessment would lead to improved outcomes in rheumatoid arthritis, compared with a conventional strategy. Design Multicentre, open label, two arm, parallel group, randomised controlled strategy trial. Setting Ten rheumatology departments and one specialist centre in Norway, from September 2010 to September 2015. Participants 238 patients were recruited between September 2010 and April 2013, of which 230 (141 (61%) female) received the allocated intervention and were analysed for the primary outcome. The main inclusion criteria were age 18-75 years, fulfilment of the 2010 American College of Rheumatology/European League Against Rheumatism classification criteria for rheumatoid arthritis, disease modifying anti-rheumatic drug naivety with indication for disease modifying drug therapy, and time from first patient reported swollen joint less than two years. Patients with abnormal kidney or liver function or major comorbidities were excluded. Interventions 122 patients were randomised to an ultrasound tight control strategy targeting clinical and imaging remission, and 116 patients were randomised to a conventional tight control strategy targeting clinical remission. Patients in both arms were treated according to the same disease modifying anti-rheumatic drug escalation strategy, with 13 visits over two years. Main outcome measures The primary endpoint was the proportion of patients with a combination between 16 and 24 months of clinical remission, no swollen joints, and non-progression of radiographic joint damage. Secondary outcomes included measures of disease activity, radiographic progression, functioning, quality of life, and adverse events. All participants who attended at least one follow-up visit were included in the full analysis set. Results 26 (22%) of the 118 analysed patients in the ultrasound tight control arm and 21 (19%) of the 112 analysed patients in the clinical tight control arm reached the primary endpoint (mean difference 3.3%, 95% confidence interval −7.1% to 13.7%). Secondary endpoints (disease activity, physical function, and joint damage) were similar between the two groups. Six (5%) patients in the ultrasound tight control arm and seven (6%) patients in the conventional arm had serious adverse events. Conclusions The systematic use of ultrasound in the follow-up of patients with early rheumatoid arthritis treated according to current recommendations is not justified on the basis of the ARCTIC results. The findings highlight the need for randomised trials assessing the clinical application of medical technology. Trial registration Clinical trials NCT01205854. PMID:27530741
Nett, Michael; Avelar, Rui; Sheehan, Michael; Cushner, Fred
2011-03-01
Standard medial parapatellar arthrotomies of 10 cadaveric knees were closed with either conventional interrupted absorbable sutures (control group, mean of 19.4 sutures) or a single running knotless bidirectional barbed absorbable suture (experimental group). Water-tightness of the arthrotomy closure was compared by simulating a tense hemarthrosis and measuring arthrotomy leakage over 3 minutes. Mean total leakage was 356 mL and 89 mL in the control and experimental groups, respectively (p = 0.027). Using 8 of the 10 knees (4 closed with control sutures, 4 closed with an experimental suture), a tense hemarthrosis was again created, and iatrogenic suture rupture was performed: a proximal suture was cut at 1 minute; a distal suture was cut at 2 minutes. The impact of suture rupture was compared by measuring total arthrotomy leakage over 3 minutes. Mean total leakage was 601 mL and 174 mL in the control and experimental groups, respectively (p = 0.3). In summary, using a cadaveric model, arthrotomies closed with a single bidirectional barbed running suture were statistically significantly more water-tight than those closed using a standard interrupted technique. The sample size was insufficient to determine whether the two closure techniques differed in leakage volume after suture rupture.
Temporal Methods to Detect Content-Based Anomalies in Social Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skryzalin, Jacek; Field, Jr., Richard; Fisher, Andrew N.
Here, we develop a method for time-dependent topic tracking and meme trending in social media. Our objective is to identify time periods whose content differs signifcantly from normal, and we utilize two techniques to do so. The first is an information-theoretic analysis of the distributions of terms emitted during different periods of time. In the second, we cluster documents from each time period and analyze the tightness of each clustering. We also discuss a method of combining the scores created by each technique, and we provide ample empirical analysis of our methodology on various Twitter datasets.
Structural Controllability of Temporal Networks with a Single Switching Controller
Yao, Peng; Hou, Bao-Yu; Pan, Yu-Jian; Li, Xiang
2017-01-01
Temporal network, whose topology evolves with time, is an important class of complex networks. Temporal trees of a temporal network describe the necessary edges sustaining the network as well as their active time points. By a switching controller which properly selects its location with time, temporal trees are used to improve the controllability of the network. Therefore, more nodes are controlled within the limited time. Several switching strategies to efficiently select the location of the controller are designed, which are verified with synthetic and empirical temporal networks to achieve better control performance. PMID:28107538
Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception
Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf
2016-01-01
Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus. PMID:26821826
On the Minimization of Fluctuations in the Response Times of Autoregulatory Gene Networks
Murugan, Rajamanickam; Kreiman, Gabriel
2011-01-01
The temporal dynamics of the concentrations of several proteins are tightly regulated, particularly for critical nodes in biological networks such as transcription factors. An important mechanism to control transcription factor levels is through autoregulatory feedback loops where the protein can bind its own promoter. Here we use theoretical tools and computational simulations to further our understanding of transcription-factor autoregulatory loops. We show that the stochastic dynamics of feedback and mRNA synthesis can significantly influence the speed of response of autoregulatory genetic networks toward external stimuli. The fluctuations in the response-times associated with the accumulation of the transcription factor in the presence of negative or positive autoregulation can be minimized by confining the ratio of mRNA/protein lifetimes within 1:10. This predicted range of mRNA/protein lifetime agrees with ranges observed empirically in prokaryotes and eukaryotes. The theory can quantitatively and systematically account for the influence of regulatory element binding and unbinding dynamics on the transcription-factor concentration rise-times. The simulation results are robust against changes in several system parameters of the gene expression machinery. PMID:21943410
Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception
NASA Astrophysics Data System (ADS)
Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf
2016-01-01
Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.
Environmental Stability of Plasmonic Biosensors Based on Natural versus Artificial Antibody.
Luan, Jingyi; Xu, Ting; Cashin, John; Morrissey, Jeremiah J; Kharasch, Evan D; Singamaneni, Srikanth
2018-06-13
Plasmonic biosensors based on the refractive index sensitivity of localized surface plasmon resonance (LSPR) are considered to be highly promising for on-chip and point-of-care biodiagnostics. However, most of the current plasmonic biosensors employ natural antibodies as biorecognition elements, which can easily lose their biorecognition ability upon exposure to environmental stressors (e.g., temperature and humidity). Plasmonic biosensors relying on molecular imprints as recognition elements (artificial antibodies) are hypothesized to be an attractive alternative for applications in resource-limited settings due to their excellent thermal, chemical, and environmental stability. In this work, we provide a comprehensive comparison of the stability of plasmonic biosensors based on natural and artificial antibodies. Although the natural antibody-based plasmonic biosensors exhibit superior sensitivity, their stability (temporal, thermal, and chemical) was found to be vastly inferior to those based on artificial antibodies. Our results convincingly demonstrate that these novel classes of artificial antibody-based plasmonic biosensors are highly attractive for point-of-care and resource-limited conditions where tight control over transport, storage, and handling conditions is not possible.
Biogeochemical Processes in Microbial Ecosystems
NASA Technical Reports Server (NTRS)
DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial population, and their metabolic properties. Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time, their Biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self-sustaining, complete ecosystems in which light energy absorbed over a diel (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen. sulfur, and a host of other elements.
Common Occupational Disorders: Asthma, COPD, Dermatitis, and Musculoskeletal Disorders.
Bepko, Jennifer; Mansalis, Katherine
2016-06-15
An occupational illness is an event or exposure that occurs in the workplace that causes or contributes to a condition or worsens a preexisting condition. If an occupational disorder is suspected, a directed history should be taken with particular attention to establishing a temporal relationship of symptoms and exposure at work. Occupational asthma is the most prevalent occupational lung disorder in industrialized countries and presents with classic asthma symptoms (cough, difficulty breathing, chest tightness, wheezing). Occupational chronic obstructive pulmonary disease has been linked with exposure to nonspecific vapors, gases, dusts, fumes, and cigarette smoke. Occupational contact dermatitis is the most common dermal exposure. It can be caused by exposure to a variety of agents, including primary irritants or sensitizers, physical agents, mechanical trauma, and biologic agents. Occupational musculoskeletal disorders include many common repetitive injuries such as carpal tunnel syndrome and medial or lateral epicondylitis. Treatment of occupational disorders is generally the same as for nonoccupational disorders. Ideally, the exposure should be controlled to protect the worker. The impact of an occupational injury reaches beyond lost wages and can have a negative impact on quality of life.
Spatiotemporal dynamics of auditory attention synchronize with speech
Wöstmann, Malte; Herrmann, Björn; Maess, Burkhard
2016-01-01
Attention plays a fundamental role in selectively processing stimuli in our environment despite distraction. Spatial attention induces increasing and decreasing power of neural alpha oscillations (8–12 Hz) in brain regions ipsilateral and contralateral to the locus of attention, respectively. This study tested whether the hemispheric lateralization of alpha power codes not just the spatial location but also the temporal structure of the stimulus. Participants attended to spoken digits presented to one ear and ignored tightly synchronized distracting digits presented to the other ear. In the magnetoencephalogram, spatial attention induced lateralization of alpha power in parietal, but notably also in auditory cortical regions. This alpha power lateralization was not maintained steadily but fluctuated in synchrony with the speech rate and lagged the time course of low-frequency (1–5 Hz) sensory synchronization. Higher amplitude of alpha power modulation at the speech rate was predictive of a listener’s enhanced performance of stream-specific speech comprehension. Our findings demonstrate that alpha power lateralization is modulated in tune with the sensory input and acts as a spatiotemporal filter controlling the read-out of sensory content. PMID:27001861
Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; ...
2015-08-08
Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P.more » edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna
Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P.more » edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.« less
New Evidence in the Management of Chronic Hypertension in Pregnancy.
Podymow, Tiina; August, Phyllis
2017-07-01
Chronic hypertension complicates 1% to 5% of all pregnancies, but debate continues regarding the benefits of lowering blood pressure in pregnancy as well as the optimal blood pressure targets. Women with chronic hypertension are at significant risk for maternal and fetal morbidity and mortality, yet it remains unclear whether antihypertensive treatment during pregnancy lowers these risks. Severe hypertension (systolic ≥ 160 mm Hg) should be treated, but there is considerable variability in the approach to mild-to-moderate hypertension (140-159/90-109 mm Hg). The recently published CHIPS (Control of Hypertension in Pregnancy Study) trial is an important effort to attempt to determine treatment goals in mild to moderate pregnancy hypertension. The risks and benefits of tight versus less tight control of blood pressure in nonproteinuric hypertensive women, most of whom had pre-existing hypertension, were evaluated. A main finding was an increased risk of severe hypertension (adjusted odds ratio, 1.8) when blood pressure was not tightly controlled. In this review, general management of chronic hypertension in pregnancy is discussed, including changes in treatment that may be appropriate in light of new clinical trial data. Copyright © 2017 Elsevier Inc. All rights reserved.
The role of microtubules in contractile ring function.
Conrad, A H; Paulsen, A Q; Conrad, G W
1992-05-01
During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.
The role of microtubules in contractile ring function
NASA Technical Reports Server (NTRS)
Conrad, A. H.; Paulsen, A. Q.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1992-01-01
During cytokinesis, a cortical contractile ring forms around a cell, constricts to a stable tight neck and terminates in separation of the daughter cells. At first cleavage, Ilyanassa obsoleta embryos form two contractile rings simultaneously. The cleavage furrow (CF), in the animal hemisphere between the spindle poles, constricts to a stable tight neck and separates the daughter cells. The third polar lobe constriction (PLC-3), in the vegetal hemisphere below the spindle, constricts to a transient tight neck, but then relaxes, allowing the polar lobe cytoplasm to merge with one daughter cell. Eggs exposed to taxol, a drug that stabilizes microtubules, before the CF or the PLC-3 develop, fail to form CFs, but form stabilized tight PLCs. Eggs exposed to taxol at the time of PLC-3 formation develop varied numbers of constriction rings in their animal hemispheres and one PLC in their vegetal hemisphere, none of which relax. Eggs exposed to taxol after PLC-3 initiation form stabilized tight CFs and PLCs. At maximum constriction, control embryos display immunolocalization of nonextractable alpha-tubulin in their CFs, but not in their PLCs, and reveal, via electron microscopy, many microtubules extending through their CFs, but not through their PLCs. Embryos which form stabilized tightly constricted CFs and PLCs in the presence of taxol display immunolocalization of nonextractable alpha-tubulin in both constrictions and show many polymerized microtubules extending through both CFs and PLCs. These results suggest that the extension of microtubules through a tight contractile ring may be important for stabilizing that constriction and facilitating subsequent cytokinesis.
Patterned optogenetic modulation of neurovascular and metabolic signals
Richner, Thomas J; Baumgartner, Ryan; Brodnick, Sarah K; Azimipour, Mehdi; Krugner-Higby, Lisa A; Eliceiri, Kevin W; Williams, Justin C; Pashaie, Ramin
2015-01-01
The hemodynamic and metabolic response of the cortex depends spatially and temporally on the activity of multiple cell types. Optogenetics enables specific cell types to be modulated with high temporal precision and is therefore an emerging method for studying neurovascular and neurometabolic coupling. Going beyond temporal investigations, we developed a microprojection system to apply spatial photostimulus patterns in vivo. We monitored vascular and metabolic fluorescence signals after photostimulation in Thy1-channelrhodopsin-2 mice. Cerebral arteries increased in diameter rapidly after photostimulation, while nearby veins showed a slower smaller response. The amplitude of the arterial response was depended on the area of cortex stimulated. The fluorescence signal emitted at 450/100 nm and excited with ultraviolet is indicative of reduced nicotinamide adenine dinucleotide, an endogenous fluorescent enzyme involved in glycolysis and the citric acid cycle. This fluorescence signal decreased quickly and transiently after optogenetic stimulation, suggesting that glucose metabolism is tightly locked to optogenetic stimulation. To verify optogenetic stimulation of the cortex, we used a transparent substrate microelectrode array to map cortical potentials resulting from optogenetic stimulation. Spatial optogenetic stimulation is a new tool for studying neurovascular and neurometabolic coupling. PMID:25388678
Structural Controllability and Controlling Centrality of Temporal Networks
Pan, Yujian; Li, Xiang
2014-01-01
Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks. PMID:24747676
The role of JAM-A in inflammatory bowel disease: unrevealing the ties that bind.
Vetrano, Stefania; Danese, Silvio
2009-05-01
Tight junctions (TJ) are junctional proteins whose function is to maintain an intact intestinal epithelial barrier and regulate the paracellular movement of water and solutes. Altered TJ structure and epithelial permeability are observed in inflammatory bowel disease and seem to have an important role in the pathogenesis of these diseases. Junctional adhesion molecule-A (JAM-A) is a protein expressed at tight junctions of epithelial and endothelial cells, as well as on circulating leukocytes. Its function at tight junctions appears to be crucial as an extracellular adhesive molecule in the direct regulation of intestinal barrier function. This review focuses on the role of JAM-A in controlling mucosal homeostasis by regulating the integrity and permeability of epithelial barrier function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, A.D.; Kuuskraa, V.A.; Klawitter, A.L.
Recurrent basement faulting is the primary controlling mechanism for aligning and compartmentalizing upper Cretaceous aged tight gas reservoirs of the San Juan and Piceance Basins. Northwest trending structural lineaments that formed in conjunction with the Uncompahgre Highlands have profoundly influenced sedimentation trends and created boundaries for gas migration; sealing and compartmentalizing sedimentary packages in both basins. Fractures which formed over the structural lineaments provide permeability pathways which allowing gas recovery from otherwise tight gas reservoirs. Structural alignments and associated reservoir compartments have been accurately targeted by integrating advanced remote sensing imagery, high resolution aeromagnetics, seismic interpretation, stratigraphic mapping and dynamicmore » structural modelling. This unifying methodology is a powerful tool for exploration geologists and is also a systematic approach to tight gas resource assessment in frontier basins.« less
Air and wet bulb temperature lapse rates and their impact on snowmaking in a Pyrenean ski resort
NASA Astrophysics Data System (ADS)
López-Moreno, Juan Ignacio; Navarro-Serrano, F.; Azorín-Molina, C.; Sánchez-Navarrete, P.; Alonso-González, E.; Rico, I.; Morán-Tejeda, E.; Buisan, S.; Revuelto, J.; Pons, M.; Vicente-Serrano, S. M.
2018-03-01
A set of 17 air temperature and relative humidity sensors were used to analyze the temporal variability of surface air temperature (Tair), wet bulb temperature (Twb), and daily snowmaking hours (SM, number of hours per day with Twb < - 2 °C), lapse rates, and the occurrence of thermal inversions at the Formigal ski resort (Spanish Pyrenees) from December to March during three consecutive ski seasons (2012-2013, 2013-2014, and 2014-2015). The Tair and Twb lapse rates showed strong hourly and daily variability, with both exhibiting almost identical temporal fluctuations. The Twb exhibited average lapse rates that were slightly steeper (- 5.2 °C/km) than those observed for Tair (- 4.9 °C/km). The less steep lapse rates and most thermal inversions were observed in December. Days having less (more) steep Tair and Twb lapse rates were observed under low (high) wind speeds and high (low) relative humidity and air pressure. The temporal dynamics of the SM lapse rates was more complex, as this involved consideration of the average Tair in the ski resort, in addition to the driving factors of the spatio-temporal variability of Twb. Thus, on a number of cold (warm) days, snowmaking was feasible at all elevations at the ski resort, independently of the slopes of the lapse rates. The SM exhibited an average daily lapse rate of 8.2 h/km, with a progressive trend of increase from December to March. Weather types over the Iberian Peninsula tightly control the driving factors of the Tair, Twb, and SM lapse rates (wind speed, relative humidity, and Tair), so the slopes of the lapse rates and the frequency of inversions in relation to elevation for the three variables are very dependent on the occurrence of specific weather types. The less steep lapse rates occurred associated with advections from the southeast, although low lapse rates also occurred during advections from the east and south, and under anticyclonic conditions. The steepest Tair and Twb lapse rates were observed during north and northwest advections, while the steepest rates for SM were observed during days of cyclonic circulation and advections from the northeast.
Quality Control Barriers in Adapting "Metro-Centric" Education to Regional Needs
ERIC Educational Resources Information Center
Nagy, Judy; Robinson, Susan R.
2013-01-01
The massification and globalization of higher education, combined with the widespread adoption of processes underpinning accreditation and quality control of university programs, have tended to result in learning contexts that are increasingly narrowly conceived and tightly controlled. Underlying many quality control measures is a "one size…
Zhao, Yuan; Qin, Guixin; Sun, Zewei; Che, Dongsheng; Bao, Nan; Zhang, Xiaodong
2011-01-01
This study was developed to provide further information on the intestinal barrier permeability and the tight junction protein expression in weaned piglets fed with different levels of soybean agglutinin (SBA). Twenty-five weaned crossbred barrows (Duroc × Landrace × Yorkshire) were selected and randomly allotted to five groups, each group with five replicates. The piglets in the control group were not fed with leguminous products. 0.05, 0.1, 0.15 and 0.2% SBA was added to the control diet to form four experimental diets, respectively. After the experimental period of 7 days (for each group), all the piglets were anesthetized with excess procaine and slaughtered. The d-lactic acid in plasma and the Ileal mucosa diamine oxidase (DAO) was analyzed to observe the change in the intestinal permeability. The tight junction proteins occludin and ZO-1 in the jejunum tissue distribution and relative expression were detected by immunohistochemistry and Western Blot. The results illustrated that a high dose of SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no significant affects. The contents of DAO, d-lactic acid, occludin or ZO-1, had a linear relationship with the SBA levels (0–0.2%) in diets. The high dose SBA (0.1–0.2%) could increase the intestinal permeability and reduce piglet intestinal epithelial tight junction protein occludin or ZO-1 expression, while low dose of SBA (0.05% of total diet) had no affects. PMID:22272087
Wang, Jiang; Li, Chang; Jiang, Yingjian; Zheng, Hongmei; Li, Dehui; Liang, Yibo; Deng, Wensheng; Zhang, Dianliang
2017-02-01
The aim of the study was to investigate the effects of ceramide-1-phosphate transfer protein (CPTP) on the intestinal epithelial tight junction proteins in patients with severe acute pancreatitis (SAP). Fifty patients with SAP were classified into two groups according to the presence of bacterial translocation (BT) in the blood. Thirty healthy individuals were included in the control group. The presence of BT was analyzed by polymerase chain reaction. The expression of tight junction proteins and CPTP was determined using immunohistochemistry and western blotting. Bacterial DNA was detected in the peripheral blood of 62.0% of the patients with SAP. The expression of CPTP and tight junction proteins in SAP patients was lower than that in healthy controls. Among the patients with SAP, those positive for BT(+) showed a lower level of CPTP and occluding (OC) and zonula occludens-1 (ZO-1) expression and a higher level of IVA cPLA2 expression than BT(-) patients. Moreover, the expression of CPTP was significantly associated with ZO-1 and showed a negative correlation with expression of IVA cPLA2 in SAP-BT(+) patients. CPTP affects the expression of tight junction proteins and may protects the intestinal epithelial barrier by downregulating the expression of IVA cPLA2. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Chen, Xiaodi; Threlkeld, Steven W.; Cummings, Erin E.; Juan, Ilona; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Sadowska, Grazyna B.; Stonestreet, Barbara S.
2012-01-01
The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (Ki) and tight junction proteins by Western immunoblot in fetal sheep at 127 days-of-gestation without ischemia, and 4-, 24-, or 48-h after ischemia. The largest increase in Ki (P<0.05) was 4-h after ischemia. Occludin and claudin-5 expressions decreased at 4-h, but returned toward control levels 24- and 48-h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between Ki and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (Ki) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4-h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24- and 48- than 4-h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. PMID:22986172
Contrasting effects of strong ties on SIR and SIS processes in temporal networks
NASA Astrophysics Data System (ADS)
Sun, Kaiyuan; Baronchelli, Andrea; Perra, Nicola
2015-12-01
Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We find that memory inhibits the spreading process in SIR models by shifting the epidemic threshold to larger values and reducing the final fraction of recovered nodes. On the contrary, in SIS processes memory reduces the epidemic threshold and, for a wide range of disease parameters, increases the fraction of nodes affected by the disease in the endemic state. The heterogeneity in tie strengths, and the frequent repetition of strong ties it entails, allows in fact less virulent SIS-like diseases to survive in tightly connected local clusters that serve as reservoir for the virus. We validate this picture by studying both processes on two real temporal networks.
Spatial and Temporal Patterns In Ecohydrological Separation
NASA Astrophysics Data System (ADS)
Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.
2017-12-01
The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.
NASA Astrophysics Data System (ADS)
Potemkin, Fedor; Mareev, Evgeniy; Bezsudnova, Yulia; Platonenko, Victor; Bravy, Boris; Gordienko, Vyacheslav
2017-04-01
We report a bulk void-like micromodification of fused silica using two-color μJ-energy level tightly focused (NA = 0.5) co-propagating seeding (visible, 0.62 μm) and heating (near-IR, 1.24 μm) femtosecond laser pulses with online third harmonic diagnostics of created microplasmas as well as subsequent laser-induced void-like defects. It has been shown experimentally and theoretically that production of seeding electrons through multiphoton ionization by visible laser pulses paves the way for controllability of the energy deposition and laser-induced micromodification via carrier heating by delayed infrared laser pulses inside the material. Experimental results demonstrate wide possibilities to increase the density of energy deposited up to 6 kJ cm-3 inside the dielectric by tight focusing of two color fs-laser pulses and elliptical polarization for infrared heating fs-laser pulses. The developed theoretical approach predicts the enhancement of deposited energy density up to 9 kJ cm-3 using longer (mid-IR) wavelengths for heating laser pulses.
Tight junctions in cancer metastasis.
Martin, Tracey A; Mason, Malcolm D; Jiang, Wen G
2011-01-01
Tight Junctions (TJ) are well known to function as a control for the paracellular diffusion of ions and certain molecules, it has however, become evident that the TJ has a vital role in maintaining cell to cell integrity. Loss of cohesion of the TJ structure can lead to invasion and ultimately to the metastasis of cancer cells. This review will discuss how modulation of expression of TJ molecules results in key changes in TJ barrier function leading to the progression of cancer and progression of metastasis.
Lerman, Gilad M; Levy, Uriel
2007-08-01
We study the tight-focusing properties of spatially variant vector optical fields with elliptical symmetry of linear polarization. We found the eccentricity of the incident polarized light to be an important parameter providing an additional degree of freedom assisting in controlling the field properties at the focus and allowing matching of the field distribution at the focus to the specific application. Applications of these space-variant polarized beams vary from lithography and optical storage to particle beam trapping and material processing.
Vozeh, S; Steimer, J L
1985-01-01
The concept of feedback control methods for drug dosage optimisation is described from the viewpoint of control theory. The control system consists of 5 parts: (a) patient (the controlled process); (b) response (the measured feedback); (c) model (the mathematical description of the process); (d) adaptor (to update the parameters); and (e) controller (to determine optimum dosing strategy). In addition to the conventional distinction between open-loop and closed-loop control systems, a classification is proposed for dosage optimisation techniques which distinguishes between tight-loop and loose-loop methods depending on whether physician's interaction is absent or included as part of the control step. Unlike engineering problems where the process can usually be controlled by fully automated devices, therapeutic situations often require that the physician be included in the decision-making process to determine the 'optimal' dosing strategy. Tight-loop and loose-loop methods can be further divided into adaptive and non-adaptive, depending on the presence of the adaptor. The main application areas of tight-loop feedback control methods are general anaesthesia, control of blood pressure, and insulin delivery devices. Loose-loop feedback methods have been used for oral anticoagulation and in therapeutic drug monitoring. The methodology, advantages and limitations of the different approaches are reviewed. A general feature common to all application areas could be observed: to perform well under routine clinical conditions, which are characterised by large interpatient variability and sometimes also intrapatient changes, control systems should be adaptive. Apart from application in routine drug treatment, feedback control methods represent an important research tool. They can be applied for the investigation of pathophysiological and pharmacodynamic processes. A most promising application is the evaluation of the relationship between an intermediate response (e.g. drug level), which is often used as feedback for dosage adjustment, and the final therapeutic goal.
Density control in ITER: an iterative learning control and robust control approach
NASA Astrophysics Data System (ADS)
Ravensbergen, T.; de Vries, P. C.; Felici, F.; Blanken, T. C.; Nouailletas, R.; Zabeo, L.
2018-01-01
Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.
Eganhouse, Robert P.; DiFilippo, Erica L
2015-01-01
A method is described for determination of ten DDT-related compounds in marine pore water based on equilibrium solid-phase microextraction (SPME) using commercial polydimethylsiloxane-coated optical fiber with analysis by automated thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Thermally cleaned fiber was directly exposed to sediments and allowed to reach equilibrium under static conditions at the in situ field temperature. Following removal, fibers were rinsed, dried and cut into appropriate lengths for storage in leak-tight containers at -20°C. Analysis by TD-GC/MS under full scan (FS) and selected ion monitoring (SIM) modes was then performed. Pore-water method detection limits in FS and SIM modes were estimated at 0.05-2.4ng/L and 0.7-16pg/L, respectively. Precision of the method, including contributions from fiber handling, was less than 10%. Analysis of independently prepared solutions containing eight DDT compounds yielded concentrations that were within 6.9±5.5% and 0.1±14% of the actual concentrations in FS and SIM modes, respectively. The use of optical fiber with automated analysis allows for studies at high temporal and/or spatial resolution as well as for monitoring programs over large spatial and/or long temporal scales with adequate sample replication. This greatly enhances the flexibility of the technique and improves the ability to meet quality control objectives at significantly lower cost.
Lu, Yiming; Liu, Changgeng; Yao, Xincheng
2018-05-01
Rod-dominated transient retinal phototropism (TRP) has been observed in freshly isolated retinas, promising a noninvasive biomarker for objective assessment of retinal physiology. However, in vivo mapping of TRP is challenging due to its subcellular signal magnitude and fast time course. We report here a virtually structured detection-based super-resolution ophthalmoscope to achieve subcellular spatial resolution and millisecond temporal resolution for in vivo imaging of TRP. Spatiotemporal properties of in vivo TRP were characterized corresponding to variable light intensity stimuli, confirming that TRP is tightly correlated with early stages of phototransduction. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation.
Bélanger, Mireille; Allaman, Igor; Magistretti, Pierre J
2011-12-07
The energy requirements of the brain are very high, and tight regulatory mechanisms operate to ensure adequate spatial and temporal delivery of energy substrates in register with neuronal activity. Astrocytes-a type of glial cell-have emerged as active players in brain energy delivery, production, utilization, and storage. Our understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving an intense cooperativity between astrocytes and neurons. This review focuses on the cellular aspects of brain energy metabolism, with a particular emphasis on the metabolic interactions between neurons and astrocytes. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietri, G.
1977-02-01
The ability to tightly pack millions of microscopic secondary emitting channels into a two-dimensional, very thin, array known as a microchannel plate (MCP) provides excellent electrical charge or current amplification associated with an extremely short response time as well as very good spatial resolution. The ultimate performances in spatial and temporal resolutions achieved by MCP-based vacuum devices are discussed and illustrated by the description of a large range of experimental prototypes (photomultipliers, oscilloscope tubes, streak camera tubes, etc.) designed and produced at LEP, then tested in cooperation with Nuclear Research and Plasma Physics Centers in Europe and USA.
Anomalous broadening and shift of emission lines in filaments
NASA Astrophysics Data System (ADS)
Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.
2017-11-01
The temporal evolution of width and shift of N I 746.8 and O I 777.4 nm lines is investigated in filament plasma produced by tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). Nitrogen line shift is determined by joint action of electron impact shift and far-off resonance AC Stark effect. Intensive (I 1010 W/cm2 ) electric field of ASE and postpulses result in possible LS coupling break for O I 3p 5P level and generation of Rabi sidebands. The blue-shifted main femtosecond pulse and Rabi sideband cause the stimulated emission of N21+ system.
NASA Astrophysics Data System (ADS)
Driben, R.; Meier, T.
2014-04-01
Dispersion management of periodically alternating fiber sections with opposite signs of two leading dispersion terms is applied for the regeneration of self-accelerating truncated Airy pulses. It is demonstrated that for such a dispersion management scheme, the direction of the acceleration of the pulse is reversed twice within each period. In this scheme the system features light hot spots in the center of each fiber section, where the energy of the light pulse is tightly focused in a short temporal slot. Comprehensive numerical studies demonstrate a long-lasting propagation also under the influence of a strong fiber Kerr nonlinearity.
The interplay between climate change, forests, and disturbances.
Dale, V H; Joyce, L A; McNulty, S; Neilson, R P
2000-11-15
Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently. Some disturbances have tight interactions with the species and forest communities which can be disrupted by climate change. Impacts of disturbances and thus of climate change are seen over a board spectrum of spatial and temporal scales. Future observations, research, and tool development are needed to further understand the interactions between climate change and forest disturbances.
How a "Top-Performing" Asian School System Formulates and Implements Policy: The Case of Singapore
ERIC Educational Resources Information Center
Tan, Cheng Yong; Dimmock, Clive
2014-01-01
This article analyses the paradox inherent in the "top-performing" yet tightly controlled Singapore education system. As government controls have increased in complexity, existing policymaking conceptual heuristics in accounting for centre-periphery relationships appear inadequate. It argues that more direct government control is being…
Reilman, Ewoud; Mars, Ruben A T; van Dijl, Jan Maarten; Denham, Emma L
2014-10-01
Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology, we demonstrate a temporally controlled transcriptional activation of the bmrCD genes in response to antibiotics that target protein synthesis. Intriguingly, bmrCD expression only occurs during the late-exponential and stationary growth stages, irrespective of the timing of the antibiotic challenge. We show that this is due to tight transcriptional control by the transition state regulator AbrB. Moreover, our results show that the bmrCD genes are co-transcribed with bmrB (yheJ), a small open reading frame immediately upstream of bmrC that harbors three alternative stem-loop structures. These stem-loops are apparently crucial for antibiotic-induced bmrCD transcription. Importantly, the antibiotic-induced bmrCD expression requires translation of bmrB, which implies that BmrB serves as a regulatory leader peptide. Altogether, we demonstrate for the first time that a ribosome-mediated transcriptional attenuation mechanism can control the expression of a multidrug ABC transporter. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing
NASA Astrophysics Data System (ADS)
Paziewski, Jacek; Sieradzki, Rafał; Wielgosz, Paweł
2015-09-01
Two overlapping frequencies—L1/E1 and L5/E5a—in GPS and Galileo systems support the creation of mixed double-differences in a tightly combined relative positioning model. On the other hand, a tightly combined model makes it necessary to take into account receiver intersystem bias, which is the difference in receiver hardware delays. This bias is present in both carrier-phase and pseudorange observations. Earlier research showed that using a priori knowledge of earlier-calibrated ISB to correct GNSS observations has significant impact on ambiguity resolution and, therefore, precise positioning results. In previous research concerning ISB estimation conducted by the authors, small oscillations in phase ISB time series were detected. This paper investigates this effect present in the GPS-Galileo-IOV ISB time series. In particular, ISB short-term temporal stability and its dependence on the number of Galileo satellites used in the ISB estimation was examined. In this contribution we investigate the amplitude and frequency of the detected ISB time series oscillations as well as their potential source. The presented results are based on real observational data collected on a zero baseline with the use of different sets of GNSS receivers.
López, Florente; Menez, Marina
2012-07-01
In two experiments we examined the influence of response and time factors on the speed of acquisition of temporal control on FI schedules. In Experiment 1, prior exposure to FT accelerated the development of temporal control on FI schedules of the same temporal value. It was also found that the slower acquisition on FI with prior RT was similar to that of rats with prior standard training. In Experiment 2, prior exposure to FT accelerated the development of temporal control on a FI schedule with a threefold increase in temporal value. Additionally, it was found that with prior FI 30s training, acquisition of temporal control on FI 90s was even faster than with prior FT 30s. Measures of head-entries into the feeder along the experiments indicated that temporal control was already developed during the periodic but not during the non-periodic histories and that this control transferred to lever press during FI testing phase. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kauppinen, Timo; Siikanen, Sami
2011-05-01
The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.
Cheung, Charlton; McAlonan, Grainne M; Fung, Yee Y; Fung, Germaine; Yu, Kevin K; Tai, Kin-Shing; Sham, Pak C; Chua, Siew E
2011-01-01
MPAs (minor physical anomalies) frequently occur in neurodevelopmental disorders because both face and brain are derived from neuroectoderm in the first trimester. Conventionally, MPAs are measured by evaluation of external appearance. Using MRI can help overcome inherent observer bias, facilitate multi-centre data acquisition, and explore how MPAs relate to brain dysmorphology in the same individual. Optical MPAs exhibit a tightly synchronized trajectory through fetal, postnatal and adult life. As head size enlarges with age, inter-orbital distance increases, and is mostly completed before age 3 years. We hypothesized that optical MPAs might afford a retrospective 'window' to early neurodevelopment; specifically, inter-orbital distance increase may represent a biomarker for early brain dysmaturation in autism. We recruited 91 children aged 7-16; 36 with an autism spectrum disorder and 55 age- and gender-matched typically developing controls. All children had normal IQ. Inter-orbital distance was measured on T1-weighted MRI scans. This value was entered into a voxel-by-voxel linear regression analysis with grey matter segmented from a bimodal MRI data-set. Age and total brain tissue volume were entered as covariates. Intra-class coefficient for measurement of the inter-orbital distance was 0.95. Inter-orbital distance was significantly increased in the autism group (p = 0.03, 2-tailed). The autism group showed a significant relationship between inter-orbital distance grey matter volume of bilateral amygdalae extending to the unci and inferior temporal poles. Greater inter-orbital distance in the autism group compared with healthy controls is consistent with infant head size expansion in autism. Inter-orbital distance positively correlated with volume of medial temporal lobe structures, suggesting a link to "social brain" dysmorphology in the autism group. We suggest these data support the role of optical MPAs as a "fossil record" of early aberrant neurodevelopment, and potential biomarker for brain dysmaturation in autism.
Lin, Chi-Hung; Jarvis, Donald L
2013-05-10
Genetically transformed lepidopteran insect cell lines have biotechnological applications as constitutive recombinant protein production platforms and improved hosts for baculovirus-mediated recombinant protein production. Insect cell transformation is often accomplished with a DNA construct(s) encoding a foreign protein(s) under the transcriptional control of a baculovirus immediate early promoter, such as the ie1 promoter. However, the potential utility of increasingly stronger promoters from later baculovirus gene classes, such as delayed early (39K), late (p6.9), and very late (polh), has not been systematically assessed. Hence, we produced DNA constructs encoding secreted alkaline phosphatase (SEAP) under the transcriptional control of each of the four temporally distinct classes of baculovirus promoters, used them to transform insect cells, and compared the levels of SEAP RNA and protein production obtained before and after baculovirus infection. The ie1 construct was the only one that supported SEAP protein production by transformed insect cells prior to baculovirus infection, confirming that only immediate early promoters can be used to isolate transformed insect cells for constitutive recombinant protein production. However, baculovirus infection activated transgene expression by all four classes of baculovirus promoters. After infection, cells transformed with the very late (polh) and late (p6.9) promoter constructs produced the highest levels of SEAP RNA, but only low levels of SEAP protein. Conversely, cells transformed with the immediate early (ie1) and delayed early (39K) promoter constructs produced lower levels of RNA, but equal or higher levels of SEAP protein. Unexpectedly, the 39K promoter construct provided tightly regulated, baculovirus-inducible protein production at higher levels than the later promoter constructs. Thus, this study demonstrated the utility of the 39K promoter for insect cell engineering, particularly when one requires higher levels of effector protein production than obtained with ie1 and/or when constitutive transgene expression adversely impacts host cell fitness and/or genetic stability. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Léonide, Philippe; Fournier, François; Reijmer, John J. G.; Vonhof, Hubert; Borgomano, Jean; Dijk, Jurrien; Rosenthal, Maelle; van Goethem, Manon; Cochard, Jean; Meulenaars, Karlien
2014-06-01
The Urgonian limestones of Late Barremian/Early Aptian from Provence (SE, France) are characterized by the occurrence of microporous limestones at regional scale alternating with tight carbonates. This study, based on petrographical (sediment texture, facies) and diagenetical analyses (cement stratigraphy, porosity and isotope geochemistry) of more than 800 limestone samples provides insight into the parameters controlling the genesis, preservation or occlusion of microporosity along an inner platform to outer shelf transect. The tight and microporous Urgonian limestones from Provence can be grouped into 5 rock-types based on textures, associated depositional environments, porosity and pore-type, being: (1) tight inner-platform: TIP; (2) porous inner platform: PIP; (3) tight outer platform: TOP; (4) porous outer platform: POP and (5) tight outer shelf: TOS. In tight (TIP, TOP and TOS types) limestones intergranular and intragranular pore spaces were entirely occluded by early marine and/or early meteoric cementation, whereas in microporous (PIP, POP) limestones a significant fraction of the intergranular macroporosity was preserved during early and shallow burial diagenesis. Micrite neomorphism (hybrid Ostwald ripening process) occurred during meteoric shallow burial diagenesis in PIP and POP limestones during the regional Durancian Uplift event (Albian-Lower Cenomanian). This process resulted in microporosity enhancement and preservation. Circulation of meteoric fluids during exhumation produces intercrystalline microporosity enhancement and moldic porosity development. The present study documents the important role that both early diagenetic and depositional cycles and long-term tectonic processes have on pore space evolution and distribution in Mesozoic platform carbonates.
Zhong, Yu; Smart, Eric J.; Weksler, Babette; Couraud, Pierre-Olivier; Hennig, Bernhard; Toborek, Michal
2009-01-01
The blood-brain barrier (BBB) is the critical structure for preventing HIV trafficking into the brain. Specific HIV proteins, such as Tat protein, can contribute to the dysfunction of tight junctions at the BBB and HIV entry into the brain. Tat is released by HIV-1 infected cells and can interact with a variety of cell surface receptors activating several signal transduction pathways, including those localized in caveolae. The present study focused on the mechanisms of Tat-induced caveolae-associated Ras signaling at the level of the BBB. Treatment with Tat activated the Ras pathway in human brain microvascular endothelial cells (HBMEC). However, caveolin-1 silencing markedly attenuated these effects. Because the integrity of the brain endothelium is regulated by intercellular tight junctions, these structural elements of the BBB were also evaluated in the present study. Exposure to Tat diminished the expression of several tight junction proteins, namely, occludin, zonula occludens (ZO)-1, and ZO-2 in the caveolar fraction of HBMEC. These effects were effectively protected by pharmacological inhibition of the Ras signaling and by silencing of caveolin-1. The present data indicate the importance of caveolae-associated signaling in the disruption of tight junctions upon Tat exposure. They also demonstrate that caveolin-1 may constitute an early and critical modulator that controls signaling pathways leading to the disruption of tight junction proteins. Thus, caveolin-1 may provide an effective target to protect against Tat-induced HBMEC dysfunction and the disruption of the BBB in HIV-1-infected patients. PMID:18667611
Design and Fabrication of a PDMS Microchip Based Immunoassay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guocheng; Wang, Wanjun; Wang, Jun
2010-07-01
In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less
Park, Kyue-Nam; Kwon, Oh-Yun; Weon, Jong-Hyuck; Choung, Sung-Dae; Kim, Si-Hyun
2014-01-01
The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key PointsLocal cryotherapy (LC) decreased the uncomfortable stretch sensation, and increased the pressure pain threshold (PPT) of infraspinatus and posterior deltoid muscles in subjects with posterior shoulder tightness.Decreased stretch sensation by LC without passive stretching could improve the passive and active ROM of internal rotation and horizontal adduction in subjects with posterior shoulder tightness, similar to cross-body stretch.LC can be an alternative method to increase extensibility when individuals with posterior shoulder tightness have high stretch sensitivity and low PPT in the infraspinatus and posterior deltoid muscles.
Park, Kyue-nam; Kwon, Oh-yun; Weon, Jong-hyuck; Choung, Sung-dae; Kim, Si-hyun
2014-01-01
The objective was to compare the immediate effects of local cryotherapy (LC) and passive cross-body stretch on the extensibility of the posterior shoulder muscle in individuals with posterior shoulder tightness. Eighty-seven healthy subjects with a between-shoulder difference in internal rotation (IR) range of motion (ROM) greater than 10° were randomly divided into three groups: LC group, stretching group, and control group (n = 29 in each group). Subjects in the LC group received LC on infraspinatus and posterior deltoid muscles and subjects in the stretching group performed passive cross-body stretch. Stretch sensation was measured at the end range of passive IR and horizontal adduction (HA) using numerical rating scale, and the pressure pain threshold (PPT) at the infraspinatus and posterior deltoid muscles was measured using pressure algometry. Passive and active ROM of IR and HA of the glenohumeral joint were measured using an inclinometer. All measurements were performed at pre-intervention, post- intervention, and 10-min follow-up. Stretch sensation was significantly decreased and PPT was significantly increased in the LC and stretching groups at post-intervention, and these effects were maintained at 10-min follow-up, compared to the control group. Both the LC group and stretching group had a significantly greater increase in passive and active ROM of IR and HA, compared to the control group at post-intervention and 10-min follow-up. However, there were no significant differences in stretch sensation, PPT, or ROM of IR and HA between the LC group and stretching group. LC can be used to decrease the stretch sensation and increase PPT and ROM of IR and HA as much as a stretching exercise. LC could be an alternative method for increasing the restricted ROM of glenohumeral IR and HA for individuals with posterior shoulder tightness, especially for patients and sports players who have severe stretching discomfort. Key Points Local cryotherapy (LC) decreased the uncomfortable stretch sensation, and increased the pressure pain threshold (PPT) of infraspinatus and posterior deltoid muscles in subjects with posterior shoulder tightness. Decreased stretch sensation by LC without passive stretching could improve the passive and active ROM of internal rotation and horizontal adduction in subjects with posterior shoulder tightness, similar to cross-body stretch. LC can be an alternative method to increase extensibility when individuals with posterior shoulder tightness have high stretch sensitivity and low PPT in the infraspinatus and posterior deltoid muscles. PMID:24570610
Gildor, Tsvia; Hinman, Veronica; Ben-Tabou-De-Leon, Smadar
2017-01-01
It has long been argued that heterochrony, a change in relative timing of a developmental process, is a major source of evolutionary innovation. Heterochronic changes of regulatory gene activation could be the underlying molecular mechanism driving heterochronic changes through evolution. Here, we compare the temporal expression profiles of key regulatory circuits between sea urchin and sea star, representative of two classes of Echinoderms that shared a common ancestor about 500 million years ago. The morphologies of the sea urchin and sea star embryos are largely comparable, yet, differences in certain mesodermal cell types and ectodermal patterning result in distinct larval body plans. We generated high resolution temporal profiles of 17 mesodermally-, endodermally- and ectodermally-expressed regulatory genes in the sea star, Patiria miniata, and compared these to their orthologs in the Mediterranean sea urchin, Paracentrotus lividus. We found that the maternal to zygotic transition is delayed in the sea star compared to the sea urchin, in agreement with the longer cleavage stage in the sea star. Interestingly, the order of gene activation shows the highest variation in the relatively diverged mesodermal circuit, while the correlations of expression dynamics are the highest in the strongly conserved endodermal circuit. We detected loose scaling of the developmental rates of these species and observed interspecies heterochronies within all studied regulatory circuits. Thus, after 500 million years of parallel evolution, mild heterochronies between the species are frequently observed and the tight temporal scaling observed for closely related species no longer holds.
Wide-field motion tuning in nocturnal hawkmoths
Theobald, Jamie C.; Warrant, Eric J.; O'Carroll, David C.
2010-01-01
Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, maintenance of high spatial acuity compromises absolute sensitivity. To investigate these trade-offs, we compared responses of wide-field motion-sensitive neurons in three species of hawkmoth: Manduca sexta (a crepuscular hoverer), Deilephila elpenor (a fully nocturnal hoverer) and Acherontia atropos (a fully nocturnal hawkmoth that does not hover as it feeds uniquely from honey in bees' nests). We show that despite smaller eyes, the motion pathway of D. elpenor is tuned to higher spatial frequencies and lower temporal frequencies than A. atropos, consistent with D. elpenor's need to detect low velocities for hovering. Acherontia atropos, however, presumably evolved low-light sensitivity without sacrificing temporal acuity. Manduca sexta, active at higher light levels, is tuned to the highest spatial frequencies of the three and temporal frequencies comparable with A. atropos. This yields similar tuning to low velocities as in D. elpenor, but with the advantage of shorter neural delays in processing motion. PMID:19906663
NASA Astrophysics Data System (ADS)
McManamay, R.; Allen, M. R.; Piburn, J.; Sanyal, J.; Stewart, R.; Bhaduri, B. L.
2017-12-01
Characterizing interdependencies among land-energy-water sectors, their vulnerabilities, and tipping points, is challenging, especially if all sectors are simultaneously considered. Because such holistic system behavior is uncertain, largely unmodeled, and in need of testable hypotheses of system drivers, these dynamics are conducive to exploratory analytics of spatiotemporal patterns, powered by tools, such as Dynamic Time Warping (DTW). Here, we conduct a retrospective analysis (1950 - 2010) of temporal trends in land use, energy use, and water use within US counties to identify commonalities in resource consumption and adaptation strategies to resource limitations. We combine existing and derived data from statistical downscaling to synthesize a temporally comprehensive land-energy-water dataset at the US county level and apply DTW and subsequent hierarchical clustering to examine similar temporal trends in resource typologies for land, energy, and water sectors. As expected, we observed tradeoffs among water uses (e.g., public supply vs irrigation) and land uses (e.g., urban vs ag). Strong associations between clusters amongst sectors reveal tight system interdependencies, whereas weak associations suggest unique behaviors and potential for human adaptations towards disruptive technologies and less resource-dependent population growth. Our framework is useful for exploring complex human-environmental system dynamics and generating hypotheses to guide subsequent energy-water-nexus research.
Stoppelman, Nadav; Harpaz, Tamar; Ben-Shachar, Michal
2013-05-01
Speech processing engages multiple cortical regions in the temporal, parietal, and frontal lobes. Isolating speech-sensitive cortex in individual participants is of major clinical and scientific importance. This task is complicated by the fact that responses to sensory and linguistic aspects of speech are tightly packed within the posterior superior temporal cortex. In functional magnetic resonance imaging (fMRI), various baseline conditions are typically used in order to isolate speech-specific from basic auditory responses. Using a short, continuous sampling paradigm, we show that reversed ("backward") speech, a commonly used auditory baseline for speech processing, removes much of the speech responses in frontal and temporal language regions of adult individuals. On the other hand, signal correlated noise (SCN) serves as an effective baseline for removing primary auditory responses while maintaining strong signals in the same language regions. We show that the response to reversed speech in left inferior frontal gyrus decays significantly faster than the response to speech, thus suggesting that this response reflects bottom-up activation of speech analysis followed up by top-down attenuation once the signal is classified as nonspeech. The results overall favor SCN as an auditory baseline for speech processing.
SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows
NASA Technical Reports Server (NTRS)
Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.;
2007-01-01
We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.
D'Amato, Andrea; Mancusi, Costantino; Losi, Maria Angela; Izzo, Raffaele; Arnone, Maria Immacolata; Canciello, Grazia; Senese, Salvatore; De Luca, Nicola; de Simone, Giovanni; Trimarco, Bruno
2018-05-07
Lowering systolic blood pressure (SBP) below the conventional threshold (140 mm Hg) reduces left ventricular (LV) hypertrophy and incident cardiovascular (CV) events. We assessed whether different thresholds of SBP as the average value during follow-up (FU) have different impact on changes in target organ damage (TOD). From the Campania Salute Network registry, we selected 4,148 hypertensive patients with average SBP-FU <140 mm Hg, and without history of prevalent CV or chronic kidney disease (i.e.,
Meeting critical gate linewidth control needs at the 65 nm node
NASA Astrophysics Data System (ADS)
Mahorowala, Arpan; Halle, Scott; Gabor, Allen; Chu, William; Barberet, Alexandra; Samuels, Donald; Abdo, Amr; Tsou, Len; Yan, Wendy; Iseda, Seiji; Patel, Kaushal; Dirahoui, Bachir; Nomura, Asuka; Ahsan, Ishtiaq; Azam, Faisal; Berg, Gary; Brendler, Andrew; Zimmerman, Jeffrey; Faure, Tom
2006-03-01
With the nominal gate length at the 65 nm node being only 35 nm, controlling the critical dimension (CD) in polysilicon to within a few nanometers is essential to achieve a competitive power-to-performance ratio. Gate linewidths must be controlled, not only at the chip level so that the chip performs as the circuit designers and device engineers had intended, but also at the wafer level so that more chips with the optimum power-to-performance ratio are manufactured. Achieving tight across-chip linewidth variation (ACLV) and chip mean variation (CMV) is possible only if the mask-making, lithography, and etching processes are all controlled to very tight specifications. This paper identifies the various ACLV and CMV components, describes their root causes, and discusses a methodology to quantify them. For example, the site-to-site ACLV component is divided into systematic and random sub-components. The systematic component of the variation is attributed in part to pattern density variation across the field, and variation in exposure dose across the slit. The paper demonstrates our team's success in achieving the tight gate CD tolerances required for 65 nm technology. Certain key challenges faced, and methods employed to overcome them are described. For instance, the use of dose-compensation strategies to correct the small but systematic CD variations measured across the wafer, is described. Finally, the impact of immersion lithography on both ACLV and CMV is briefly discussed.
Zaitchik, Deborah; Walker, Caren; Miller, Saul; LaViolette, Pete; Feczko, Eric; Dickerson, Bradford C
2010-07-01
By age 2, children attribute referential mental states such as perceptions and emotions to themselves and others, yet it is not until age 4 that they attribute representational mental states such as beliefs. This raises an interesting question: is attribution of beliefs different from attribution of perceptions and emotions in terms of its neural substrate? To address this question with a high degree of anatomic specificity, we partitioned the TPJ, a broad area often found to be recruited in theory of mind tasks, into 2 neuroanatomically specific regions of interest: Superior Temporal Sulcus (STS) and Inferior Parietal Lobule (IPL). To maximize behavioral specificity, we designed a tightly controlled verbal task comprised of sets of single sentences--sentences identical except for the type of mental state specified in the verb (belief, emotion, perception, syntax control). Results indicated that attribution of beliefs more strongly recruited both regions of interest than did emotions or perceptions. This is especially surprising with respect to STS, since it is widely reported in the literature to mediate the detection of referential states--among them emotions and perceptions--rather than the inference of beliefs. An explanation is offered that focuses on the differences between verbal stimuli and visual stimuli, and between a process of sentence comprehension and a process of visual detection. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W
2011-10-01
Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Liu, Z.; Ballantyne, A.; Poulter, B.; Anderegg, W.; Jacobson, A. R.; Miller, J. B.
2017-12-01
Interannual variability (IAV) of atmospheric CO2 is primarily driven by fluctuations in net carbon exchange (NEE) by terrestrial ecosystems. Recent analyses suggested that global terrestrial carbon uptake is dominated by the sensitivity of productivity to precipitation in semi-arid ecosystems, or sensitivity of respiration to temperature in tropical ecosystems. There is a need to better understand factors that control the carbon balance of land ecosystems across spatial and temporal scales. Here we used multiple observational dataset to assess: (1) What are the dominant processes controlling the IAV of NEE in terrestrial ecosystem? What are the climatic controls on the variability gross primary productivity (GPP) and total ecosystem respiration (TER) in the contiguous United States (CONUS). Our analysis revealed that there is a strong positive correlation between IAV of GPP and IAV of NEE in drier (mean annual precipitation: MAP < 750mm) western ecosystem, while there is no correlation between IAV of GPP and IAV of NEE in moist (MAP > 750mm) eastern ecosystem using observational dataset. Both βspatial and βtemporal of GPP and TER to precipitation exhibit an emergent threshold where GPP is more sensitive than TER to precipitation in semi-arid western ecosystems and TER is more sensitive than GPP to precipitation in more humid eastern ecosystems. This emergent ecosystem threshold was evident in several independent observations. However, analyses from 10 TRENDY models indicate current Dynamic Global Vegetation Models (DGVMs) tend to overestimate the sensitivity of NEE to GPP and underestimate the sensitivity of NEE to TER to precipitation across CONUS ecosystems. TER experiments showed that commonly used TER models failed to capture the IAV of TER in the moist region in CONUS. This is because heterotrophic respiration (Rh) was relatively independent of GPP in moist regions of CONUS, but was too tightly coupled to GPP in the DGVMs. The emergent thresholds at the ecosystem and continental scale may help reconcile model simulations and observations of terrestrial carbon processes.
Järveoja, Järvi; Nilsson, Mats B; Gažovič, Michal; Crill, Patrick M; Peichl, Matthias
2018-04-30
The net ecosystem CO 2 exchange (NEE) drives the carbon (C) sink-source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, however, detailed information of the temporal dynamics as well as the separate biotic and abiotic controls of the NEE component fluxes is lacking in peatland ecosystems. In this study, we address this knowledge gap by using an automated chamber system established across natural and trenching-/vegetation removal plots to partition NEE into its production (i.e. gross and net primary production; GPP and NPP) and respiration (i.e. ecosystem, heterotrophic and autotrophic respiration; ER, Rh and Ra) fluxes in a boreal peatland in northern Sweden. Our results showed that daily NEE patterns were driven by GPP while variations in ER were governed by Ra rather than Rh. Moreover, we observed pronounced seasonal shifts in the Ra/Rh and above-/belowground NPP ratios throughout the main phenological phases. Generalized linear model analysis revealed that the greenness index derived from digital images (as a proxy for plant phenology) was the strongest control of NEE, GPP and NPP while explaining considerable fractions also in the variations of ER and Ra. In addition, our data exposed greater temperature sensitivity of NPP compared to Rh resulting in enhanced C sequestration with increasing temperature. Overall, our study suggests that the temporal patterns in NEE and its component fluxes are tightly coupled to vegetation dynamics in boreal peatlands and thus challenges previous studies that commonly identify abiotic factors as key drivers. These findings further emphasize the need for integrating detailed information on plant phenology into process-based models to improve predictions of global change impacts on the peatland C cycle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
OLIFE: Tight Binding Code for Transmission Coefficient Calculation
NASA Astrophysics Data System (ADS)
Mijbil, Zainelabideen Yousif
2018-05-01
A new and human friendly transport calculation code has been developed. It requires a simple tight binding Hamiltonian as the only input file and uses a convenient graphical user interface to control calculations. The effect of magnetic field on junction has also been included. Furthermore the transmission coefficient can be calculated between any two points on the scatterer which ensures high flexibility to check the system. Therefore Olife can highly be recommended as an essential tool for pretesting studying and teaching electron transport in molecular devices that saves a lot of time and effort.
Dual leakoff beehavior in hydraulic fracturing of tight, lenticular gas sands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
Stimulation experiments conducted in anisotropic, naturally fractured, tight, lenticular, gas sandstones have shown the existence of a dual leakoff phenomenon. Below a threshold, leakoff increases by a factor of 50, slurries dehydrate rapidly, and screenouts occur in minutes. The leakoff has been shown to be controllable to some extent with 100-mesh sand. Results of three stimulation experiments are presented; three include a treatment that screened out, a minifrac experiment that showed the effectiveness of 100-mesh sand, and a final successful stimulation. 30 refs., 14 figs., 6 tabs.
Protein delivery with infusion pumps.
Bremer, U; Horres, C R; Francoeur, M L
1997-01-01
When a therapeutic effect is optimized by precise control of specific temporal patterns of plasma levels, infusion offers distinct advantages over oral administration, bolus injection, or depot delivery of polypeptides. The limitations of oral delivery are well known, and although research is under way into development of carrier systems that prevent degradation of labile agents, it is unlikely that the variances in absorption will meet the need for precise control. Depot delivery from subcutaneous or intramuscular implants presents a difficult situation when local tissue reactions to the agent sometimes occur. Removal of a depot system in the event of adverse reactions presents additional difficulties. Bolus injections are unable to sustain constant plasma levels unless the drug half-life is long or the injections are frequently administered. Insulin injections, for example, would be required every 30-60 minutes to approximate the plasma levels provided by a continuous infusion; such frequent injections would not be practical on a 24-hour basis. For the developer of new polypeptides, parenteral administration offers the most direct route to the marketplace. The step from periodic injections to tightly controlled infusion is a logical progression as compared with modification of the molecules or vehicles to obtain equivalent profiles. In Table II several different types of devices that can be used for infusion of proteins are compared. Microelectronics have played a major role in the miniaturization of infusion devices and undoubtedly will continue to do so. Micromachining, a spin-off technology of integrated circuit manufacture, will also find application in small infusion devices. In the future, we will have cost-effective disposable devices (Saaman et al., 1994) built on this technology that are programmable and thus can be adapted to meet each individual therapeutic need (Horres, 1994). We can also expect to see more closed-loop drug delivery systems where biosensors and infusion devices are combined to optimize a particular therapy. Recent positive results obtained in diabetics by a decade on tight glucose control may forecast a resurgence of popularity of insulin pumps. At the other end of the spectrum, low-cost, small, and simple-to-use osmotically powered systems are close to being marketed; these systems will make infusion almost as convenient as transdermal patches. We will also see major advances in how drugs and devices are interfaced. Prefilled and ready-to-use drug cartridges have proven to be efficient in surgical and emergency medicine and can greatly improve most infusion applications. It is anticipated that coded, prefilled cartridges or pouches will be automatically, recognized by preprogrammed pumps to reduce operator labor and entry error.
New Perspectives on Southern Ocean Frontal Variability
NASA Astrophysics Data System (ADS)
Chapman, Christopher
2017-04-01
The frontal structure of the Southern Ocean is investigated using a the Wavelet/Higher Order Statistics Enhancement (WHOSE) frontal detection method, introduced in Chapman (2014). This methodology is applied to 21 years of daily gridded sea-surface height (SSH) data to obtain daily maps of the locations of the fronts. By forming frontal occurrence frequency maps and then approximating these occurrence-maps by a superposition of simple functions, the time-mean locations of the fronts, as well as a measure of their capacity to meander, are obtained and related to the frontal locations found by previous studies. The spatial and temporal variability of the frontal structure is then considered. The number of fronts is found to be highly variable throughout the Southern Ocean, increasing (`splitting') downstream of large bathymetric features and decreasing (`merging') in regions where the fronts are tightly controlled by the underlying topography. In contrast, frontal meandering remains relatively constant. Contrary to many previous studies, little no southward migration of the fronts over the 1993-2014 time period is found, and there is only weak sensitivity to atmospheric forcing related to SAM or ENSO. Finally, the implications of splitting and merging for the flux of tracers will be discussed.
A Dual-Stream Neuroanatomy of Singing
Loui, Psyche
2015-01-01
Singing requires effortless and efficient use of auditory and motor systems that center around the perception and production of the human voice. Although perception and production are usually tightly coupled functions, occasional mismatches between the two systems inform us of dissociable pathways in the brain systems that enable singing. Here I review the literature on perception and production in the auditory modality, and propose a dual-stream neuroanatomical model that subserves singing. I will discuss studies surrounding the neural functions of feedforward, feedback, and efference systems that control vocal monitoring, as well as the white matter pathways that connect frontal and temporal regions that are involved in perception and production. I will also consider disruptions of the perception-production network that are evident in tone-deaf individuals and poor pitch singers. Finally, by comparing expert singers against other musicians and nonmusicians, I will evaluate the possibility that singing training might offer rehabilitation from these disruptions through neuroplasticity of the perception-production network. Taken together, the best available evidence supports a model of dorsal and ventral pathways in auditory-motor integration that enables singing and is shared with language, music, speech, and human interactions in the auditory environment. PMID:26120242
Experience of agency and sense of responsibility.
Moretto, Giovanna; Walsh, Eamonn; Haggard, Patrick
2011-12-01
The experience of agency refers to the feeling that we control our own actions, and through them the outside world. In many contexts, sense of agency has strong implications for moral responsibility. For example, a sense of agency may allow people to choose between right and wrong actions, either immediately, or on subsequent occasions through learning about the moral consequences of their actions. In this study we investigate the relation between the experience of operant action, and responsibility for action outcomes using the intentional binding effect (Haggard, Clark, & Kalogeras, 2002) as an implicit, quantitative measure related to sense of agency. We studied the time at which people perceived simple manual actions and their effects, when these actions were embedded in scenarios where their actions had unpredictable consequences that could be either moral or merely economic. We found an enhanced binding of effects back towards the actions that caused them, implying an enhanced sense of agency, in moral compared to non-moral contexts. We also found stronger binding for effects with severely negative, compared to moderately negative, values. A tight temporal association between action and effect may be a low-level phenomenal marker of the sense of responsibility. Copyright © 2011 Elsevier Inc. All rights reserved.
Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants
Cort, Aysegul; Ozben, Tomris; Saso, Luciano; De Luca, Chiara
2016-01-01
Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed. PMID:26881027
Hydro-climatic forcing of dissolved organic carbon in two boreal lakes of Canada.
Diodato, Nazzareno; Higgins, Scott; Bellocchi, Gianni; Fiorillo, Francesco; Romano, Nunzio; Guadagno, Francesco M
2016-11-15
The boreal forest of the northern hemisphere represents one of the world's largest ecozones and contains nearly one third of the world's intact forests and terrestrially stored carbon. Long-term variations in temperature and precipitation have been implied in altering carbon cycling in forest soils, including increased fluxes to receiving waters. In this study, we use a simple hydrologic model and a 40-year dataset (1971-2010) of dissolved organic carbon (DOC) from two pristine boreal lakes (ELA, Canada) to examine the interactions between precipitation and landscape-scale controls of DOC production and export from forest catchments to surface waters. Our results indicate that a simplified hydrologically-based conceptual model can enable the long-term temporal patterns of DOC fluxes to be captured within boreal landscapes. Reconstructed DOC exports from forested catchments in the period 1901-2012 follow largely a sinusoidal pattern, with a period of about 37years and are tightly linked to multi-decadal patterns of precipitation. By combining our model with long-term precipitation estimates, we found no evidence of increasing DOC transport or in-lake concentrations through the 20th century. Copyright © 2016 Elsevier B.V. All rights reserved.
Carbon and nitrogen accumulation and fluxes on Landscape Evolution Observatory (LEO) slopes
NASA Astrophysics Data System (ADS)
Dontsova, K.; Volk, M.; Webb, C.; Hunt, E.; Tfaily, M. M.; Van Haren, J. L. M.; Sengupta, A.; Chorover, J.; Troch, P.; Ruiz, J.
2017-12-01
Carbon accumulation on the landscapes in organic and inorganic forms is an important sink of CO2 from the atmosphere. Formation and preservation of organic compounds is accompanied by N fixation from the atmosphere and cycling in the soil. Model slopes of Landscape Evolution Observatory present unique opportunity to examine carbon and nitrogen buildup on the landscapes during soil formation processes, such as weathering of primary minerals and microbial activity, due to low original levels of C and N, tight control over environmental conditions, and high spatial and temporal density of measurements. This presents results of inorganic and organic C and N measurements in the cores collected in LEO slopes after several years of exposure to the rainfall, as well as soil solution measurements collected through 496 samplers on each of three model slopes and in seepage. We observed significant spatially distributed accumulation of both C (organic and inorganic) and N in soil profiles. We also observed differences in the composition of organic compounds in the solid and solution phases depending on location on the slope indicating formation of heterogeneity as soils develop. This works indicates potential of physical models to help understand accumulation and fluxes of C and N on natural landscapes.
A Dual-Stream Neuroanatomy of Singing.
Loui, Psyche
2015-02-01
Singing requires effortless and efficient use of auditory and motor systems that center around the perception and production of the human voice. Although perception and production are usually tightly coupled functions, occasional mismatches between the two systems inform us of dissociable pathways in the brain systems that enable singing. Here I review the literature on perception and production in the auditory modality, and propose a dual-stream neuroanatomical model that subserves singing. I will discuss studies surrounding the neural functions of feedforward, feedback, and efference systems that control vocal monitoring, as well as the white matter pathways that connect frontal and temporal regions that are involved in perception and production. I will also consider disruptions of the perception-production network that are evident in tone-deaf individuals and poor pitch singers. Finally, by comparing expert singers against other musicians and nonmusicians, I will evaluate the possibility that singing training might offer rehabilitation from these disruptions through neuroplasticity of the perception-production network. Taken together, the best available evidence supports a model of dorsal and ventral pathways in auditory-motor integration that enables singing and is shared with language, music, speech, and human interactions in the auditory environment.
An all-in-one, Tet-On 3G inducible PiggyBac system for human pluripotent stem cells and derivatives.
Randolph, Lauren N; Bao, Xiaoping; Zhou, Chikai; Lian, Xiaojun
2017-05-08
Human pluripotent stem cells (hPSCs) offer tremendous promise in tissue engineering and cell-based therapies due to their unique combination of two properties: pluripotency and unlimited proliferative capacity. However, directed differentiation of hPSCs to clinically relevant cell lineages is needed to achieve the goal of hPSC-based therapies. This requires a deep understanding of how cell signaling pathways converge on the nucleus to control differentiation and the ability to dissect gene function in a temporal manner. Here, we report the use of the PiggyBac transposon and a Tet-On 3G drug-inducible gene expression system to achieve versatile inducible gene expression in hPSC lines. Our new system, XLone, offers improvement over previous Tet-On systems with significantly reduced background expression and increased sensitivity to doxycycline. Transgene expression in hPSCs is tightly regulated in response to doxycycline treatment. In addition, the PiggyBac elements in our XLone construct provide a rapid and efficient strategy for generating stable transgenic hPSCs. Our inducible gene expression PiggyBac transposon system should facilitate the study of gene function and directed differentiation in human stem cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorensen, James; Smith, Steven; Kurz, Bethany
Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO 2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand themore » nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO 2 and oil mobility within tight oil formation samples, 2) the determination of CO 2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO 2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO 2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field emission (FE) SEM, and focused ion beam (FIB) SEM. Selected samples were also analyzed for geomechanical properties. X-ray CT imaging yielded information on the occurrence of fractures, bedding planes, fossils, and bioturbation in core, as well as data on bulk density and photoelectric factor logs, which were used to interpret porosity, organic content, and mineralogy. FESEM was used for characterization of nano- and microscale features, including nanoscale pore visualization and micropore and pore throat mineralogy. FIBSEM yielded micro- to nanoscale visualization of fracture networks, porosity and pore-size distribution, connected versus isolated porosity, and distribution of organics. Results from the characterization activities provide insight on nanoscale fracture properties, pore throat mineralogy and connectivity, rock matrix characteristics, mineralogy, and organic content. Laboratory experiments demonstrated that CO 2 can permeate the tight matrix of Bakken shale and nonshale reservoir samples and mobilize oil from those samples. Geologic models were created at scales ranging from the core plug to the reservoir, and dynamic simulations were conducted. The data from the characterization and laboratory-based activities were integrated into modeling research activities to determine the fundamental mechanisms controlling fluid transport in the Bakken, which support EOR scheme design and estimation of CO 2 storage potential in tight oil formations. Simulation results suggest a CO 2 storage resource estimate range of 169 million to 1.5 billion tonnes for the Bakken in North Dakota, possibly resulting in 1.8 billion to 16 billion barrels of incremental oil.« less
Gweon, Tae-Geun; Park, Jong-Hyung; Kim, Byung-Wook; Choi, Yang Kyu; Kim, Joon Sung; Park, Sung Min; Kim, Chang Whan; Kim, Hyung-Gil; Chung, Jun-Won
2018-01-15
The aim of this study was to investigate the effects of rebamipide on tight junction proteins in the esophageal mucosa in a rat model of gastroesophageal reflux disease (GERD). GERD was created in rats by tying the proximal stomach. The rats were divided into a control group, a proton pump inhibitor (PPI) group, and a PPI plus rebamipide (PPI+R) group. Pantoprazole (5 mg/kg) was administered intraperitoneally to the PPI and PPI+R groups. An additional dose of rebamipide (100 mg/kg) was administered orally to the PPI+R group. Mucosal erosions, epithelial thickness, and leukocyte infiltration into the esophageal mucosa were measured in isolated esophagi 14 days after the procedure. A Western blot analysis was conducted to measure the expression of claudin-1, -3, and -4. The mean surface area of mucosal erosions, epithelial thickness, and leukocyte infiltration were lower in the PPI group and the PPI+R group than in the control group. Western blot analysis revealed that the expression of claudin-3 and -4 was significantly higher in the PPI+R group than in the control group. Rebamipide may exert an additive effect in combination with PPI to modify the tight junction proteins of the esophageal mucosa in a rat model of GERD. This treatment might be associated with the relief of GERD symptoms.
House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions.
Henriquez, Oswaldo A; Den Beste, Kyle; Hoddeson, Elizabeth K; Parkos, Charles A; Nusrat, Asma; Wise, Sarah K
2013-08-01
Epithelial permeability is highly dependent upon the integrity of tight junctions, which are cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen vs control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of TJPs was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1-exposed cultured sinonasal cells vs controls. Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. © 2013 ARS-AAOA, LLC.
DISTRIBUTED CONTROL AND DA FOR ATLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. SCUDDER; ET AL
1999-05-01
The control system for the Atlas pulsed power generator being built at Los Alamos National Laboratory will utilize a significant level of distributed control. Other principal design characteristics include noise immunity, modularity and use of commercial products wherever possible. The data acquisition system is tightly coordinated with the control system. Both share a common database server and a fiber-optic ethernet communications backbone.
Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S
2012-12-13
The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Visualisation of Multiple Tight Junctional Complexes in Human Airway Epithelial Cells.
Buckley, Alysia G; Looi, Kevin; Iosifidis, Thomas; Ling, Kak-Ming; Sutanto, Erika N; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Garratt, Luke W; Shaw, Nicole C; Lannigan, Francis J; Larcombe, Alexander N; Zosky, Graeme; Knight, Darryl A; Rigby, Paul J; Kicic, Anthony; Stick, Stephen M
2018-01-01
Apically located tight junctions in airway epithelium perform a fundamental role in controlling macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in barrier integrity, which subsequently facilitates entry of potential bacterial and other pathogens into the host. Furthermore, there is emerging evidence that the barrier integrity of the airway in certain airway inflammatory diseases may be altered. However, there is little consensus on the way this is assessed and measured and the type of cells used to achieve this. Here, we assessed four fixation methods including; (i) 4% ( v /v) paraformaldehyde; (ii) 100% methanol; (iii) acetone or; (iv) 1:1 methanol: acetone. Pre-extraction with Triton X-100 was also performed and assessed on cells prior to fixation with either methanol or paraformaldehyde. Cells were also permeabilized with 0.1% (v/v) Saponin in 1× TBS following fixation and subsequently stained for tight junction proteins. Confocal microscopy was then used to visualise, compare and evaluate staining intensity of the tight junctional complexes in order to determine a standardised workflow of reproducible staining. Positive staining was observed following methanol fixation for claudin-1 and ZO-1 tight junction proteins but no staining was detected for occludin in 16HBE14o- cells. Combinatorial fixation with methanol and acetone also produced consistent positive staining for both occludin and ZO-1 tight junction proteins in these cells. When assessed using primary cells cultured at air-liquid interface, similar positive staining for claudin-1 and ZO-1 was observed following methanol fixation, while similar positive staining for occludin and ZO-1 was observed following the same combinatorial fixation with methanol and acetone. The present study demonstrates the importance of a personalised approach to optimise staining for the visualisation of different tight junction proteins. Of significance, the workflow, once optimised, can readily be translated into primary airway epithelial cell air-liquid interface cultures where it can be used to assess barrier integrity in chronic lung diseases.
Effective and efficient analysis of spatio-temporal data
NASA Astrophysics Data System (ADS)
Zhang, Zhongnan
Spatio-temporal data mining, i.e., mining knowledge from large amount of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data have been collected in various applications, ranging from remote sensing, to geographical information systems (GIS), computer cartography, environmental assessment and planning, etc. The collection data far exceeded human's ability to analyze which make it crucial to develop analysis tools. Recent studies on data mining have extended to the scope of data mining from relational and transactional datasets to spatial and temporal datasets. Among the various forms of spatio-temporal data, remote sensing images play an important role, due to the growing wide-spreading of outer space satellites. In this dissertation, we proposed two approaches to analyze the remote sensing data. The first one is about applying association rules mining onto images processing. Each image was divided into a number of image blocks. We built a spatial relationship for these blocks during the dividing process. This made a large number of images into a spatio-temporal dataset since each image was shot in time-series. The second one implemented co-occurrence patterns discovery from these images. The generated patterns represent subsets of spatial features that are located together in space and time. A weather analysis is composed of individual analysis of several meteorological variables. These variables include temperature, pressure, dew point, wind, clouds, visibility and so on. Local-scale models provide detailed analysis and forecasts of meteorological phenomena ranging from a few kilometers to about 100 kilometers in size. When some of above meteorological variables have some special change tendency, some kind of severe weather will happen in most cases. Using the discovery of association rules, we found that some special meteorological variables' changing has tight relation with some severe weather situation that will happen very soon. This dissertation is composed of three parts: an introduction, some basic knowledges and relative works, and my own three contributions to the development of approaches for spatio-temporal data mining: DYSTAL algorithm, STARSI algorithm, and COSTCOP+ algorithm.
Secondary migration and leakage of methane from a major tight-gas system
NASA Astrophysics Data System (ADS)
Wood, James M.; Sanei, Hamed
2016-11-01
Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere.
Secondary migration and leakage of methane from a major tight-gas system
Wood, James M.; Sanei, Hamed
2016-01-01
Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere. PMID:27874012
Coordination Dynamics of the Horse~Rider System
Lagarde, J.; Peham, C.; Licka, T.; Kelso, J. A. S.
2007-01-01
The authors studied the interaction between rider and horse by measuring their ensemble motions in a trot sequence, comparing 1 expert and 1 novice rider. Whereas the novice’s movements displayed transient departures from phase synchrony, the expert’s motions were continuously phase-matched with those of the horse. The tight ensemble synchrony between the expert and the horse was accompanied by an increase in the temporal regularity of the oscillations of the trunk of the horse. Observed differences between expert and novice riders indicated that phase synchronization is by no means perfect but requires extended practice. Points of contact between horse and rider may haptically convey effective communication between them. PMID:16280312
Crossover from BCS to Bose superconductivity: A functional integral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeria, M.; Sa de Melo, C.A.R.; Engelbrecht, J.R.
1993-04-01
We use a functional integral formulation to study the crossover from cooperative Cooper pairing to the formation and condensation of tightly bound pairs in a 3D continuum model of fermions with attractive interactions. The inadequacy of a saddle point approximation with increasing coupling is pointed out, and the importance of temporal (quantum) fluctuations for normal state properties at intermediate and strong coupling is emphasized. In addition to recovering the Nozieres-Schmitt-Pink interpolation scheme for T{sub c}, and the Leggett variational results for T = 0, we also present results for evolution of the time-dependent Ginzburg-Landau equation and collective mode spectrum asmore » a function of the coupling.« less
Noiseless optical amplification in quasi-phase-matched bulk lithium niobate
NASA Astrophysics Data System (ADS)
Lovering, D. J.; Levenson, J. A.; Vidakovic, P.; Webjörn, J.; Russell, P. St. J.
1996-09-01
An optical parametric amplifier (OPA) has been demonstrated in bulk, periodically poled lithium niobate and is shown to operate with a noise figure well below the classical limit. In contrast to conventional OPA's, this device uses quasi-phase matching to provide the coupling between the pump and the signal. Comparison of the measured performance with that of a theoretical model reveals that the main intrinsic contribution to the output noise is due to spatial and temporal mode mixing, which arises as a consequence of tight focusing of the incident beams. Factors that affect the performance of this amplifier are identified theoretically and their relative importance investigated for both amplification and squeezing.
Let it grow-the open market solution to marijuana control.
Gettman, Jon; Kennedy, Michael
2014-11-18
This commentary evaluates regulatory frameworks for the legalized production, sale, and use of marijuana. Specifically, we argue that the primary goal of legalization should be the elimination of the illicit trade in marijuana and that maximizing market participation through open markets and personal cultivation is the best approach to achieving this goal. This argument is based on the assertion that regulatory models based on a tightly controlled government market will fail because they replicate the fatal flaws of the prohibition model. This commentary argues that an examination of the reasons for prohibition's failure-to wit, the inability of government to control the production of marijuana-completely undercuts the basic premise of a tightly controlled market, which depends on the ability of the government to control production. The public interest would be better served by an effective regulatory framework which recognizes and takes advantage of competitive market forces. This analysis argues that reducing teenage access to marijuana requires the elimination of an overcapitalized illicit market. Further, it asserts that this goal and maximization of tax revenue from a legal marijuana market are mutually exclusive objectives.
Controlling the Transport of an Ion: Classical and Quantum Mechanical Solutions
2014-07-09
quantum systems: tools, achievements, and limitations Christiane P Koch Shortcuts to adiabaticity for an ion in a rotating radially- tight trap M Palmero...Keywords: coherent control, ion traps, quantum information, optimal control theory 1. Introduction Control methods are key enabling techniques in many...figure 6. 3.4. Feasibility analysis of quantum optimal control Numerical optimization of the wavepacket motion is expected to become necessary once
Desaules, André
2012-11-01
It is crucial for environmental monitoring to fully control temporal bias, which is the distortion of real data evolution by varying bias through time. Temporal bias cannot be fully controlled by statistics alone but requires appropriate and sufficient metadata, which should be under rigorous and continuous quality assurance and control (QA/QC) to reliably document the degree of consistency of the monitoring system. All presented strategies to detect and control temporal data bias (QA/QC, harmonisation/homogenisation/standardisation, mass balance approach, use of tracers and analogues and control of changing boundary conditions) rely on metadata. The Will Rogers phenomenon, due to subsequent reclassification, is a particular source of temporal data bias introduced to environmental monitoring here. Sources and effects of temporal data bias are illustrated by examples from the Swiss soil monitoring network. The attempt to make a comprehensive compilation and assessment of required metadata for soil contamination monitoring reveals that most metadata are still far from being reliable. This leads to the conclusion that progress in environmental monitoring means further development of the concept of environmental metadata for the sake of temporal data bias control as a prerequisite for reliable interpretations and decisions.
Meese, Tim S; Holmes, David J
2010-10-01
Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.
Blood-brain Barrier Disruption Leads to Postoperative Cognitive Dysfunction.
Wang, Bin; Li, Siyuan; Cao, Xipeng; Dou, Xinghui; Li, Jingzhu; Wang, Ling; Wang, Mingshan; Bi, Yanlin
2017-01-01
Postoperative Cognitive Dysfunction (POCD) has received considerable attention as one of the main postoperative complications. The underlying mechanism of POCD in elderly subjects has not been fully elucidated to date. The Central Nervous System (CNS) is isolated from the bloodstream by the Blood Brain Barrier (BBB) that consists of endothelial cells, capillary blood vessels and tight junctions. The tight junctions carry out significant biological functions that are associated with the CNS and blood circulation. In this review, I present a hypothesis that blood-brain barrier disruption leads to postoperative cognitive dysfunction. A total of 81 healthy male Wistar rats were used for the present study. All the experimental animals were randomly divided into 3 groups: normal control group, isoflurane group and splenectomy group. The control group was not subjected to any form of treatment. The rats in isoflurane group were given 1.5-2% isoflurane under intubation and mechanical ventilation. The rats in splenectomy group underwent splenectomy under the same anesthesia as the isoflurane group. The Morris water maze was used to examine the learning and memory ability of the animals. The expression of the Tight Junctions Proteins (TJPs) in the hippocampus was analyzed using Western blotting. The concentration of Evans Blue (EB) in the supernatant was analyzed using UV spectroscopy. Ultrastructure changes in the basal laminas, the Tight Junctions (TJs), mitochondria and the endoplasmic reticulum surrounding the capillaries were assessed by Transmission Electron Microscopy (TEM). Following splenectomy, the rats displayed concomitant significant cognitive deficits in the Morris water maze test. Taken together, the results indicate that the expression levels of occludin (65KD) following splenectomy were reduced on days one and three in aged rats. No significant difference was noted in the expression levels of claudin-5, except for a reduction after surgery on day one. The leakage of EB was higher following splenectomy than control group and isoflurane group. The ultrastructure of the neurovascular unit was monitored on the day prior to surgery and on the 1st, 3rd and 7th day following surgery using a transmission electronmicroscope. The alterations in the levels of tight junction proteins following splenectomy may contribute to the BBB permeability increase, which in turn will induce postoperative cognitive dysfunction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
An Access Control and Trust Management Framework for Loosely-Coupled Multidomain Environments
ERIC Educational Resources Information Center
Zhang, Yue
2010-01-01
Multidomain environments where multiple organizations interoperate with each other are becoming a reality as can be seen in emerging Internet-based enterprise applications. Access control to ensure secure interoperation in such an environment is a crucial challenge. A multidomain environment can be categorized as "tightly-coupled" and…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Administrator and any other person. Controlled loading rack, for the purposes of § 63.420, means a loading rack... heat air pollutants to combustion temperatures. Uncontrolled loading rack means a loading rack used to load gasoline cargo tanks that is not a controlled loading rack. Vapor-tight gasoline cargo tank means...
Seizing Workplace Learning Affordances in High-Pressure Work Environments
ERIC Educational Resources Information Center
Gnaur, Dorina
2010-01-01
Work in call centres is often presented as a form of unskilled labour characterized by routinization, technological surveillance and tight management control aimed at reaching intensive performance targets. Beyond delivering business objectives, this control and efficiency strategy is often held to produce counterproductive effects with regard to…
Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7
USDA-ARS?s Scientific Manuscript database
Events within and transitions between the phases of the eukaryotic cell cycle are tightly controlled by transcriptional and post-translational processes. Prominent among them is a profound role for the ubiquitin proteasome proteolytic pathway. The timely degradation of proteins balances the increase...
Chiu, Chun-Ching; Shi, Ya-Fang; Yang, Jiann-Jou; Hsiao, Yuan-Chao; Tzang, Bor-Show; Hsu, Tsai-Ching
2014-01-01
As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity. PMID:25268969
Macedo, Adriana Ribeiro
2015-01-01
Study Design Cross-sectional study. Purpose To verify the association of hamstring tightness and range of motion in anterior pelvic tilt (PT), lumbar motion (LM), and trunk flexion (TF) during forward bending. Overview of Literature Increased hamstring stiffness could be a possible contributing factor to low back injuries. Clinical observations have suggested that hamstring tightness influences lumbar pelvic rhythm. Movement restrictions or postural asymmetry likely lead to compensatory movement patterns of the lumbar spine, and subsequently to increased stress on the spinal soft tissues and an increased risk of low back pain (LBP). Methods Hamstring muscle tightness was measured using the self-monitored active knee extension (AKE) test. A bubble inclinometer was used to determine the range of motion of PT, LM, and TF during forward bending. Statistical analysis included descriptive statistics, comparisons between groups and a correlation between hamstring tightness (AKE) and anterior PT, TF, and regional LM with p≤0.05. Results The LBP group was composed of 36 participants, and the asymptomatic group consisted of 32 participants. The mean for PT in the control group was 66.7°, 64.5° for LM and 104.6° for TF. Respective values in the symptomatic group were 57.0°, 79.8°, and 82.2°. Conclusions Participants with LBP showed restriction in the pelvis and TF range of motion, but had higher amplitudes in the lumbar spine during forward bending. PMID:26240711
Jandre Reis, Felipe Jose; Macedo, Adriana Ribeiro
2015-08-01
Cross-sectional study. To verify the association of hamstring tightness and range of motion in anterior pelvic tilt (PT), lumbar motion (LM), and trunk flexion (TF) during forward bending. Increased hamstring stiffness could be a possible contributing factor to low back injuries. Clinical observations have suggested that hamstring tightness influences lumbar pelvic rhythm. Movement restrictions or postural asymmetry likely lead to compensatory movement patterns of the lumbar spine, and subsequently to increased stress on the spinal soft tissues and an increased risk of low back pain (LBP). Hamstring muscle tightness was measured using the self-monitored active knee extension (AKE) test. A bubble inclinometer was used to determine the range of motion of PT, LM, and TF during forward bending. Statistical analysis included descriptive statistics, comparisons between groups and a correlation between hamstring tightness (AKE) and anterior PT, TF, and regional LM with p≤0.05. The LBP group was composed of 36 participants, and the asymptomatic group consisted of 32 participants. The mean for PT in the control group was 66.7°, 64.5° for LM and 104.6° for TF. Respective values in the symptomatic group were 57.0°, 79.8°, and 82.2°. Participants with LBP showed restriction in the pelvis and TF range of motion, but had higher amplitudes in the lumbar spine during forward bending.
NASA Astrophysics Data System (ADS)
Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui
2018-06-01
Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.
Soil, the orphan hydrological compartment: evidence from O and H stable isotopes?
NASA Astrophysics Data System (ADS)
Hissler, Christophe; Legout, Arnaud; Barnich, François; Pfister, Laurent
2015-04-01
O and H stable isotopes have been successfully used for decades for studying the exchange of waters between the hydrosphere, the pedosphere and the biosphere. They greatly contribute to improve our understanding of soil-water-plant interactions. In particular, the recent hydrological concept of "two water worlds" (separation of meteoric water that infiltrates the soil as (i) mobile water, which can reach the groundwater and can enter the stream, and as (ii) tightly bound water, which is trapped in the soil microporosity and used by plants) calls for a substantial revision of our perceptual models of runoff generation. Nevertheless, there is a need for testing the applicability of this concept over a large range of ecosystemic contexts (i.e.soil and vegetation types). To date, many investigations have focused on the relationship between the various processes triggering isotope fractionation within soils. So far, the dominating perception is that the isotope profile of water observed in soils is solely due to evaporative fractionation and its shape is dependent on climate and soil parameters. However, as of today the influence of biogeochemical processes on the spatio-temporal variability of δ18O and δD of the soil solutions has been rarely quantified. O and H exchanges between soil water and other soil compartments (living organisms, minerals, exchange capacity, organic matter) remain poorly known and require deeper investigations. Eventually, we need to better understand the distribution of O and H isotopes throughout the soil matrix. In order to address these issues, we have designed and carried out two complementary isotope experiments that use one liter soil columns of a 2mm-sieved and air-dried soil. Our objectives were (1) to observe the temporal evolution of the water O and H isotopic composition starting from the field capacity to the complete drying of the soil and (2) to determine the impact of soil biogeochemical properties on the isotopic composition of different water types in soil (weakly-, moderately- and tightly-bound). Our results show that mobile and tightly bound water may have different hydrogen isotopic signatures and that their respective isotopic signatures may vary between horizons and soil types. However, it is not yet possible to quantify the contribution of different bio-physico-chemical processes to the oxygen and hydrogen isotopic composition of the soil water because the techniques at hand for water separation are not yet reliable enough. Prior to this type of quantifications, we need to focus in a next step at the improvement of water extraction methods.
Temporal Preparation and Inhibitory Deficit in Fibromyalgia Syndrome
ERIC Educational Resources Information Center
Correa, Angel; Miro, Elena; Martinez, M. Pilar; Sanchez, Ana I.; Lupianez, Juan
2011-01-01
Cognitive deficits in fibromyalgia may be specifically related to controlled processes, such as those measured by working memory or executive function tasks. This hypothesis was tested here by measuring controlled temporal preparation (temporal orienting) during a response inhibition (go no-go) task. Temporal orienting effects (faster reaction…
Jones, Marc R; West, Daniel J; Crewther, Blair T; Cook, Christian J; Kilduff, Liam P
2015-01-01
This study assessed the positional and temporal movement patterns of professional rugby union players during competition using global positioning system (GPS) units. GPS data were collected from 33 professional rugby players from 13 matches throughout the 2012-2013 season sampling at 10 Hz. Players wore GPS units from which information on distances, velocities, accelerations, exertion index, player load, contacts, sprinting and repeated high-intensity efforts (RHIE) were derived. Data files from players who played over 60 min (n = 112) were separated into five positional groups (tight and loose forwards; half, inside and outside backs) for match analysis. A further comparison of temporal changes in movement patterns was also performed using data files from those who played full games (n = 71). Significant positional differences were found for movement characteristics during performance (P < 0.05). Results demonstrate that inside and outside backs have greatest high-speed running demands; however, RHIE and contact demands are greatest in loose forwards during match play. Temporal analysis of all players displayed significant differences in player load, cruising and striding between halves, with measures of low- and high-intensity movement and acceleration/deceleration significantly declining throughout each half. Our data demonstrate significant positional differences for a number of key movement variables which provide a greater understanding of positional requirements of performance. This in turn may be used to develop progressive position-specific drills that elicit specific adaptations and provide objective measures of preparedness. Knowledge of performance changes may be used when developing drills and should be considered when monitoring and evaluating performance.
Clinical benefits of tight glycaemic control: focus on the intensive care unit.
Mesotten, Dieter; Van den Berghe, Greet
2009-12-01
While stress hyperglycaemia has traditionally been regarded as an adaptive, beneficial response, it is clear that hyperglycaemia and hypoglycaemia are associated with increased risk of death in critically ill intensive care unit (ICU) patients. Recent studies on blood-glucose control failed to fully clarify whether this association is causal. Early proof-of-concept single-centre randomised controlled studies found that maintaining normoglycaemia by intensive insulin therapy, as compared with tolerating hyperglycaemia as an adaptive response, improved patient outcome. However, recent large multicentre studies VISEP, GLUCONTROL and NICE-SUGAR) could not confirm this survival benefit. Methodological disparity in the execution of the complex intervention of tight glycaemic control may have contributed significantly to the contradicting results. First, different target ranges for blood glucose were used in the control group of the GLUCONTROL and 'Normoglycemia in intensive care evaluation and survival using glucose algorithm' regulation' (NICE-SUGAR) studies. Second, problems to steer blood-glucose levels within target range in the intervention group resulted in a significant overlap of the treatment groups. Third, allowing inaccurate blood-glucose measurement devices, in combination with different blood sampling sites and types of infusion pumps, may have led to unnoticed swings in blood-glucose levels. Fourth, the level of expertise of the intensive care nurses with the therapy may have been variable due to low number of study patients per centre. Finally, the studies on tight blood-glucose control were done with vastly different nutritional and end-of-life strategies. The currently available studies do not allow to confidently recommend one optimal target for glucose in heterogeneous ICU patient groups and settings. Provided that adequate devices for blood-glucose measurement and insulin administration are available, together with an extensive experience of the nursing staff, blood-glucose levels should be controlled as close to normal as possible, without evoking unacceptable fluctuations and hypoglycaemia.
A Structural Characterization of Temporal Dynamic Controllability
NASA Technical Reports Server (NTRS)
Morris, Paul
2006-01-01
An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. Previous work has presented an O(N5) algorithm for testing this property. Here, we introduce a new analysis of temporal cycles that leads to an O(N4) algorithm.
Hakeem, Abdul; Duan, Ruixue; Zahid, Fouzia; Dong, Chao; Wang, Boya; Hong, Fan; Ou, Xiaowen; Jia, Yongmei; Lou, Xiaoding; Xia, Fan
2014-11-11
Herein, we report natural chitosan end-capped MCM-41 type MSNPs as novel, dual stimuli, responsive nano-vehicles for controlled anticancer drug delivery. The chitosan nanovalves tightly close the pores of the MSNPs to control premature cargo release under physiological conditions but respond to lysozyme and acidic media to release the trapped cargo.
Aycan, Zehra; Ocal, Gonul; Berberoglu, Merih; Cetinkaya, Ergun; Adiyaman, Pelin; Evliyaoglu, Olcay
2006-03-01
Long-term replacement treatment with high doses of steroids in congenital adrenal hyperplasia (CAH) is known to have a negative influence on growth. We evaluated the effects of long-term steroid treatment in patients with classical CAH on height development in relation to genetic height potential. Twenty-three patients with CAH (16 females, 7 males, mean age: 9.8 +/- 3.5 years) were included in this longitudinal study. The effect of steroid treatment on growth was determined by monitoring patients for 8.61 +/- 3.46 years (2-17 years) while they were treated with hydrocortisone at a mean dosage of 17.64 +/- 3.60 mg/m2/day. The height standard deviation scores (Ht-SDS), target Ht-SDS, and corrected Ht-SDS for target height was calculated for all patients. Predicted adult height according to bone age was calculated and it was determined whether height was developing according to the genetic height potential. In addition, patients were grouped as 'tight control' or 'poor control' according to their mean serum 17OH-progesterone or ACTH levels while on treatment. We evaluated whether height development was different for the tight and poor control groups. The mean chronological age of our patients at the time of the study was 9.89 +/- 3.53 years, Ht-SDS -0.77 +/- 1.57, target height (TH) 161.03 +/- 6.54 cm, TH-SDS -0.60 +/- 0.90, predicted height (PH) 157.2 +/- 11.16 cm, PH-SDS -1.1 +/- 1.69, and corrected Ht-SDS -0.75 +/- 1.14. There was no significant difference between the actual Ht-SDS and TH-SDS of our patients (p >0.05) but the corrected Ht-SDS was less than zero. Only 28.5% of our patients had normal height according to their genetic potential while 71.5% were shorter than their genetic height potential. While the Ht-SDS and corrected Ht-SDS were similar in the tight and poor metabolic control groups, the predicted height was significantly greater in the tight control group. We demonstrated that a hydrocortisone dose of 17.64 +/- 3.60 mg/m2/day in classical CAH had a negative influence on height development for genetic height potential in 8.5 years of follow-up and that it is necessary to use the lowest possible steroid dosage by individualizing the dose.
Fisher, Jeremy G.; Sparks, Eric A.; Khan, Faraz A.; Alexander, Jamin L.; Asaro, Lisa A.; Wypij, David; Gaies, Michael; Modi, Biren P.; Duggan, Christopher; Agus, Michael S.D.; Yu, Yong-Ming; Jaksic, Tom
2015-01-01
Objective Critical illness is associated with significant catabolism and persistent protein loss correlates with increased morbidity and mortality. Insulin is a potent anti-catabolic hormone; high-dose insulin decreases skeletal muscle protein breakdown in critically ill pediatric surgical patients. However, insulin's effect on protein catabolism when given at clinically utilized doses has not been studied. The objective was to evaluate the effect of post-operative tight glycemic control and clinically-dosed insulin on skeletal muscle degradation in children after cardiac surgery with cardiopulmonary bypass. Design Secondary analysis of a two-center, prospective randomized trial comparing tight glycemic control with standard care. Randomization was stratified by study center. Patients Children 0-36 months who were admitted to the ICU after cardiac surgery requiring cardiopulmonary bypass. Interventions In the tight glycemic control (TGC) arm, insulin was titrated to maintain blood glucose between 80-110 mg/dL. Patients in the control arm received standard care. Skeletal muscle breakdown was quantified by a ratio of urinary 3-methylhistidine to urinary creatinine (3MH:Cr). Main Results A total of 561 patients were included: 281 in the TGC arm and 280 receiving standard care. There was no difference in 3MH:Cr between groups (TGC 249 ± 127 vs. standard care 253 ± 112, mean ± standard deviation in μmol/g, P=0.72). In analyses restricted to the TGC patients, higher 3MH:Cr correlated with younger age as well as lower weight, weight-for-age z-score, length, and body surface area (P<0.005 for each), and lower post-operative day 3 serum creatinine (r=-0.17, P=0.02). Sex, prealbumin, and albumin were not associated with 3MH:Cr. During urine collection, 245 patients (87%) received insulin. However, any insulin exposure did not impact 3MH:Cr (t-test, P=0.45), and there was no dose-dependent effect of insulin on 3MH:Cr (r=-0.03, P=0.60). Conclusion Though high-dose insulin has an anabolic effect in experimental conditions, at doses necessary to achieve normoglycemia, insulin appears to have no discernible impact on skeletal muscle degradation in critically ill pediatric cardiac surgical patients. PMID:25850865
Metabolism A higher power for insulin
NASA Astrophysics Data System (ADS)
Gribble, Fiona M.
2005-04-01
Glucose output from the liver is tightly regulated by insulin. But insulin holds sway over more than the liver - an unappreciated circuit in glucose control involves the opening of ion channels in the brain.
33 CFR 401.94 - Keeping copies of regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... duplicated set of the Ship's Fire Control Plans shall be permanently stored in a prominently marked weather-tight enclosure outside the deckhouse for the assistance of shore-side fire-fighting personnel. [70 FR...
33 CFR 401.94 - Keeping copies of regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... duplicated set of the Ship's Fire Control Plans shall be permanently stored in a prominently marked weather-tight enclosure outside the deckhouse for the assistance of shore-side fire-fighting personnel. [70 FR...
Gweon, Tae-Geun; Park, Jong-Hyung; Kim, Byung-Wook; Choi, Yang Kyu; Kim, Joon Sung; Park, Sung Min; Kim, Chang Whan; Kim, Hyung-Gil; Chung, Jun-Won; Incheon
2018-01-01
Background/Aims The aim of this study was to investigate the effects of rebamipide on tight junction proteins in the esophageal mucosa in a rat model of gastroesophageal reflux disease (GERD). Methods GERD was created in rats by tying the proximal stomach. The rats were divided into a control group, a proton pump inhibitor (PPI) group, and a PPI plus rebamipide (PPI+R) group. Pantoprazole (5 mg/kg) was administered intraperitoneally to the PPI and PPI+R groups. An additional dose of rebamipide (100 mg/kg) was administered orally to the PPI+R group. Mucosal erosions, epithelial thickness, and leukocyte infiltration into the esophageal mucosa were measured in isolated esophagi 14 days after the procedure. A Western blot analysis was conducted to measure the expression of claudin-1, -3, and -4. Results The mean surface area of mucosal erosions, epithelial thickness, and leukocyte infiltration were lower in the PPI group and the PPI+R group than in the control group. Western blot analysis revealed that the expression of claudin-3 and -4 was significantly higher in the PPI+R group than in the control group. Conclusions Rebamipide may exert an additive effect in combination with PPI to modify the tight junction proteins of the esophageal mucosa in a rat model of GERD. This treatment might be associated with the relief of GERD symptoms. PMID:29069891
Gonzálvez, Gloria G; Trimmel, Karin; Haag, Anja; van Graan, Louis A; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S
2016-12-01
Verbal fluency functional MRI (fMRI) is used for predicting language deficits after anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), but primarily engages frontal lobe areas. In this observational study we investigated fMRI paradigms using visual and auditory stimuli, which predominately involve language areas resected during ATLR. Twenty-three controls and 33 patients (20 left (LTLE), 13 right (RTLE)) were assessed using three fMRI paradigms: verbal fluency, auditory naming with a contrast of auditory reversed speech; picture naming with a contrast of scrambled pictures and blurred faces. Group analysis showed bilateral temporal activations for auditory naming and picture naming. Correcting for auditory and visual input (by subtracting activations resulting from auditory reversed speech and blurred pictures/scrambled faces respectively) resulted in left-lateralised activations for patients and controls, which was more pronounced for LTLE compared to RTLE patients. Individual subject activations at a threshold of T>2.5, extent >10 voxels, showed that verbal fluency activated predominantly the left inferior frontal gyrus (IFG) in 90% of LTLE, 92% of RTLE, and 65% of controls, compared to right IFG activations in only 15% of LTLE and RTLE and 26% of controls. Middle temporal (MTG) or superior temporal gyrus (STG) activations were seen on the left in 30% of LTLE, 23% of RTLE, and 52% of controls, and on the right in 15% of LTLE, 15% of RTLE, and 35% of controls. Auditory naming activated temporal areas more frequently than did verbal fluency (LTLE: 93%/73%; RTLE: 92%/58%; controls: 82%/70% (left/right)). Controlling for auditory input resulted in predominantly left-sided temporal activations. Picture naming resulted in temporal lobe activations less frequently than did auditory naming (LTLE 65%/55%; RTLE 53%/46%; controls 52%/35% (left/right)). Controlling for visual input had left-lateralising effects. Auditory and picture naming activated temporal lobe structures, which are resected during ATLR, more frequently than did verbal fluency. Controlling for auditory and visual input resulted in more left-lateralised activations. We hypothesise that these paradigms may be more predictive of postoperative language decline than verbal fluency fMRI. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Jane-Dar; Lee, Ming-Huei
2014-01-01
Unique barrier properties of the urothelial surface membrane permit urine storage without contents leak into the bloodstream. Previous reports suggested that the bladder urothelial barrier might be compromised in interstitial cystitis/painful bladder syndrome (IC/PBS). We examined the changes of tight junction proteins (zonula occludens-1 (ZO-1) and occludin) in IC/PBS patients. Bladder samples were derived from of 32 patients with IC/PBS and eight controls. We detected the tight junction proteins of ZO-1 and occludin expression by immunoblotting, immunohistochemical (IHC) staining and double immunofluorescent (IF) staining with confocal microscopy. Data were analyzed using the Mann-Whitney U-test. Expression of ZO-1 and occludin in the IC/PBS group was reduced compared to the control group by immunoblotting and IHC staining. Also, the thinning and denudation of urothelium were demonstrated in the IC/PBS group by histological study. IF staining showed the interruption of bladder urothelium in IC/PBS patients under confocal microscopy. Our data showed that decreased expression of tight junction proteins (ZO-1 and occludin) and interruption of bladder urothelium in IC/PBS patients. Treatment to repair the discontinuous urothelium may be useful to relieve some clinical symptoms of patients with IC/PBS. Copyright © 2012. Published by Elsevier B.V.
Auditory temporal processing in patients with temporal lobe epilepsy.
Lavasani, Azam Navaei; Mohammadkhani, Ghassem; Motamedi, Mahmoud; Karimi, Leyla Jalilvand; Jalaei, Shohreh; Shojaei, Fereshteh Sadat; Danesh, Ali; Azimi, Hadi
2016-07-01
Auditory temporal processing is the main feature of speech processing ability. Patients with temporal lobe epilepsy, despite their normal hearing sensitivity, may present speech recognition disorders. The present study was carried out to evaluate the auditory temporal processing in patients with unilateral TLE. The present study was carried out on 25 patients with epilepsy: 11 patients with right temporal lobe epilepsy and 14 with left temporal lobe epilepsy with a mean age of 31.1years and 18 control participants with a mean age of 29.4years. The two experimental and control groups were evaluated via gap-in-noise and duration pattern sequence tests. One-way ANOVA was run to analyze the data. The mean of the threshold of the GIN test in the control group was observed to be better than that in participants with LTLE and RTLE. Also, it was observed that the percentage of correct responses on the DPS test in the control group and in participants with RTLE was better than that in participants with LTLE. Patients with TLE have difficulties in temporal processing. Difficulties are more significant in patients with LTLE, likely because the left temporal lobe is specialized for the processing of temporal information. Copyright © 2016 Elsevier Inc. All rights reserved.
Insulin Pumps: What Every School Nurse Needs to Know
ERIC Educational Resources Information Center
Bierschbach, Judy Laver; Cooper, Leslie; Liedl, Jennifer A.
2004-01-01
The results of the Diabetes Control and Complications Trial revolutionized the care of people with Type 1 diabetes mellitus (DM). The era of "tight control" of blood sugars to decrease microvascular complications dawned. The subsequent technological development of insulin pumps has made it possible for individuals with Type 1 DM, as well as those…
A nonlinear OPC technique for laser beam control in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Markov, V.; Khizhnyak, A.; Sprangle, P.; Ting, A.; DeSandre, L.; Hafizi, B.
2013-05-01
A viable beam control technique is critical for effective laser beam transmission through turbulent atmosphere. Most of the established approaches require information on the impact of perturbations on wavefront propagated waves. Such information can be acquired by measuring the characteristics of the target-scattered light arriving from a small, preferably diffraction-limited, beacon. This paper discusses an innovative beam control approach that can support formation of a tight laser beacon in deep turbulence conditions. The technique employs Brillouin enhanced fourwave mixing (BEFWM) to generate a localized beacon spot on a remote image-resolved target. Formation of the tight beacon doesn't require a wavefront sensor, AO system, or predictive feedback algorithm. Unlike conventional adaptive optics methods which allow wavefront conjugation, the proposed total field conjugation technique is critical for beam control in the presence of strong turbulence and can be achieved by using this non-linear BEFWM technique. The phase information retrieved from the established beacon beam can then be used in conjunction with an AO system to propagate laser beams in deep turbulence.
Dynamic Control of Plans with Temporal Uncertainty
NASA Technical Reports Server (NTRS)
Morris, Paul; Muscettola, Nicola; Vidal, Thierry
2001-01-01
Certain planning systems that deal with quantitative time constraints have used an underlying Simple Temporal Problem solver to ensure temporal consistency of plans. However, many applications involve processes of uncertain duration whose timing cannot be controlled by the execution agent. These cases require more complex notions of temporal feasibility. In previous work, various "controllability" properties such as Weak, Strong, and Dynamic Controllability have been defined. The most interesting and useful Controllability property, the Dynamic one, has ironically proved to be the most difficult to analyze. In this paper, we resolve the complexity issue for Dynamic Controllability. Unexpectedly, the problem turns out to be tractable. We also show how to efficiently execute networks whose status has been verified.
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
Niknafs, Noushin; Beleva-Guthrie, Violeta; Naiman, Daniel Q.; Karchin, Rachel
2015-01-01
Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiology of both primary and metastatic lesions and rationalizations for tumor recurrence and therapeutic failures. Additional insights may be provided by temporal ordering of evolving subclones—cellular subpopulations with unique mutational profiles. Current methods for subclone hierarchy inference tightly couple the problem of temporal ordering with that of estimating the fraction of cancer cells harboring each mutation. We present a new framework that includes a rigorous statistical hypothesis test and a collection of tools that make it possible to decouple these problems, which we believe will enable substantial progress in the field of subclone hierarchy inference. The methods presented here can be flexibly combined with methods developed by others addressing either of these problems. We provide tools to interpret hypothesis test results, which inform phylogenetic tree construction, and we introduce the first genetic algorithm designed for this purpose. The utility of our framework is systematically demonstrated in simulations. For most tested combinations of tumor purity, sequencing coverage, and tree complexity, good power (≥ 0.8) can be achieved and Type 1 error is well controlled when at least three tumor samples are available from a patient. Using data from three published multi-region tumor sequencing studies of (murine) small cell lung cancer, acute myeloid leukemia, and chronic lymphocytic leukemia, in which the authors reconstructed subclonal phylogenetic trees by manual expert curation, we show how different configurations of our tools can identify either a single tree in agreement with the authors, or a small set of trees, which include the authors’ preferred tree. Our results have implications for improved modeling of tumor evolution and the importance of multi-region tumor sequencing. PMID:26436540
Ultrafast optical pulse delivery with fibers for nonlinear microscopy
Kim, Daekeun; Choi, Heejin; Yazdanfar, Siavash; So, Peter T. C.
2008-01-01
Nonlinear microscopies including multiphoton excitation fluorescence microscopy and multiple-harmonic generation microscopy have recently gained popularity for cellular and tissue imaging. The optimization of these imaging methods for minimally invasive use will require optical fibers to conduct light into tight space where free space delivery is difficult. The delivery of high peak power laser pulses with optical fibers is limited by dispersion resulting from nonlinear refractive index responses. In this paper, we characterize a variety of commonly used optical fibers in terms of how they affect pulse profile and imaging performance of nonlinear microscopy; the following parameters are quantified: spectral bandwidth and temporal pulse width, two-photon excitation efficiency, and optical resolution. A theoretical explanation for the measured performance of these is also provided. PMID:18816597
NASA Astrophysics Data System (ADS)
Baac, Hyoung Won; Lee, Taehwa; Ok, Jong G.; Hall, Timothy; Jay Guo, L.
2013-12-01
Pulsed ultrasonic cavitation is a promising modality for non-contact targeted therapy, enabling mechanical ablation of the tissue. We demonstrate a spatio-temporal superposition approach of two ultrasound pulses (high and low frequencies) producing a tight cavitation zone of 100 μm in water, which is an-order-of-magnitudes smaller than those obtained by the existing high-amplitude transducers. Particularly, laser-generated focused ultrasound (LGFU) was employed for the high-frequency operation (15 MHz). As demonstrated, LGFU plays a primary role to define the cavitation zone. The generation rate of cavitation bubbles could be dramatically increased up to 4.1% (cf. 0.06% without the superposition) with moderated threshold requirement.
Magee, Laura A; von Dadelszen, Peter; Singer, Joel; Lee, Terry; Rey, Evelyne; Ross, Susan; Asztalos, Elizabeth; Murphy, Kellie E; Menzies, Jennifer; Sanchez, Johanna; Gafni, Amiram; Helewa, Michael; Hutton, Eileen; Koren, Gideon; Lee, Shoo K; Logan, Alexander G; Ganzevoort, Wessel; Welch, Ross; Thornton, Jim G; Moutquin, Jean-Marie
2016-11-01
To determine whether clinical outcomes differed by occurrence of severe hypertension in the international CHIPS trial (Control of Hypertension in Pregnancy Study), adjusting for the interventions of "less tight" (target diastolic blood pressure [dBP] 100 mm Hg) versus "tight" control (target dBP 85 mm Hg). In this post-hoc analysis of CHIPS data from 987 women with nonsevere nonproteinuric preexisting or gestational hypertension, mixed effects logistic regression was used to compare the following outcomes according to occurrence of severe hypertension, adjusting for allocated group and the influence of baseline factors: CHIPS primary (perinatal loss or high-level neonatal care for >48 hours) and secondary outcomes (serious maternal complications), birth weight <10th percentile, preeclampsia, delivery at <34 or <37 weeks, platelets <100×10 9 /L, elevated liver enzymes with symptoms, maternal length of stay ≥10 days, and maternal readmission before 6 weeks postpartum. Three hundred and thirty-four (34.1%) women in CHIPS developed severe hypertension that was associated with all outcomes examined except for maternal readmission (P=0.20): CHIPS primary outcome, birth weight <10th percentile, preeclampsia, preterm delivery, elevated liver enzymes (all P<0.001), platelets <100×10 9 /L (P=0.006), and prolonged hospital stay (P=0.03). The association between severe hypertension and serious maternal complications was seen only in less tight control (P=0.02). Adjustment for preeclampsia (464, 47.3%) did not negate the relationship between severe hypertension and the CHIPS primary outcome (P<0.001), birth weight <10th percentile (P=0.005), delivery at <37 (P<0.001) or <34 weeks (P<0.001), or elevated liver enzymes with symptoms (P=0.02). Severe hypertension is a risk marker for adverse maternal and perinatal outcomes, independent of BP control or preeclampsia co-occurrence. URL: http://pre-empt.cfri.ca/. Unique identifier: ISRCTN 71416914. URL: https://www.clinicaltrials.gov/. Unique identifier: NCT01192412. © 2016 The Authors.
Phillips, Brett E.; Cancel, Limary; Tarbell, John M.; Antonetti, David A.
2008-01-01
Purpose The aim of this study was to determine the function of the tight junction protein occludin in the control of permeability, under diffusive and hydrostatic pressures, and its contribution to the control of cell division in retinal pigment epithelium. Methods Occludin expression was inhibited in the human retinal pigment epithelial cell line ARPE-19 by siRNA. Depletion of occludin was confirmed by Western blot, confocal microscopy, and RT-PCR. Paracellular permeability of cell monolayers to fluorescently labeled 70 kDa dextran, 10 kDa dextran, and 467 Da tetramethylrhodamine (TAMRA) was examined under diffusive conditions or after the application of 10 cm H2O transmural pressure. Cell division rates were determined by tritiated thymidine incorporation and Ki67 immunoreactivity. Cell cycle inhibitors were used to determine whether changes in cell division affected permeability. Results Occludin depletion increased diffusive paracellular permeability to 467 Da TAMRA by 15%, and permeability under hydrostatic pressure was increased 50% compared with control. Conversely, depletion of occludin protein with siRNA did not alter diffusive permeability to 70 kDa and 10 kDa RITC-dextran, and permeability to 70 kDa dextran was twofold lower in occludin-depleted cells under hydrostatic pressure conditions. Occludin depletion also increased thymidine incorporation by 90% and Ki67-positive cells by 50%. Finally, cell cycle inhibitors did not alter the effect of occludin siRNA on paracellular permeability. Conclusions The data suggest that occludin regulates tight junction permeability in response to changes in hydrostatic pressure. Furthermore, these data suggest that occludin also contributes to the control of cell division, demonstrating a novel function for this tight junction protein. PMID:18263810
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-01-01
Background Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. Results We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Conclusion Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation. PMID:18028534
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2.
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-11-20
Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation.
Backert, Steffen; Schmidt, Thomas P; Harrer, Aileen; Wessler, Silja
2017-01-01
Highly organized intercellular tight and adherens junctions are crucial structural components for establishing and maintenance of epithelial barrier functions, which control the microbiota and protect against intruding pathogens in humans. Alterations in these complexes represent key events in the development and progression of multiple infectious diseases as well as various cancers. The gastric pathogen Helicobacter pylori exerts an amazing set of strategies to manipulate these epithelial cell-to-cell junctions, which are implicated in changing cell polarity, migration and invasive growth as well as pro-inflammatory and proliferative responses. This chapter focuses on the H. pylori pathogenicity factors VacA, CagA, HtrA and urease, and how they can induce host cell signaling involved in altering cell-to-cell permeability. We propose a stepwise model for how H. pylori targets components of tight and adherens junctions in order to disrupt the gastric epithelial cell layer, giving fresh insights into the pathogenesis of this important bacterium.
Dynamic Controllability and Dispatchability Relationships
NASA Technical Reports Server (NTRS)
Morris, Paul Henry
2014-01-01
An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. We present a fast algorithm for Dynamic Controllability. We also note a correspondence between the reduction steps in the algorithm and the operations involved in converting the projections to dispatchable form. This has implications for the complexity for sparse networks.
Loss of tight junction barrier function and its role in cancer metastasis.
Martin, Tracey A; Jiang, Wen G
2009-04-01
As the most apical structure between epithelial and endothelial cells, tight junctions (TJ) are well known as functioning as a control for the paracellular diffusion of ions and certain molecules. It has however, become increasingly apparent that the TJ has a vital role in maintaining cell to cell integrity and that the loss of cohesion of the structure can lead to invasion and thus metastasis of cancer cells. This article will present data showing how modulation of expression of TJ molecules results in key changes in TJ barrier function leading to the successful metastasis of a number of different cancer types.
Li, Jing-Jing; Xing, Shi-Hui; Zhang, Jian; Hong, Hua; Li, Yi-Liang; Dang, Chao; Zhang, Yu-Sheng; Li, Chuo; Fan, Yu-Hua; Yu, Jian; Pei, Zhong; Zeng, Jin-Sheng
2011-11-01
1. Whether damage to the blood-brain barrier (BBB) occurs in remote areas after a focal cortical lesion remains unknown. The present study investigated tight junction-related proteins and tight junction microstructure in the ipsilateral thalamus during the acute stage after middle cerebral artery occlusion (MCAO) and cortical aspiration lesion (CAL) in rats. 2. Thirty-six hypertensive and normotensive rats were subjected to MCAO or CAL; another 18 rats in each group were submitted to sham operation. Zonula Occluden (ZO)-1, occludin and albumin were detected by western blotting 12 and 24 h after surgery. Tight junction microstructure was evaluated using electron microscopy, whereas albumin location in the ipsilateral thalamus was determined using double immunostaining for albumin and occludin or albumin and neuronal nuclei (NeuN) 24 h after surgery. 3. Twenty-four hours after MCAO or CAL, occludin expression was reduced to 78.4% and 81.3%, respectively, compared with control. A reduction in ZO-1 expression in the ipsilateral thalamus (to 79%) was seen only after CAL (P < 0.05). Membrane contact at the tight junction was discontinuous in the ipsilateral thalamus in both MCAO and CAL rats. Albumin levels were 23.2% and 82.5% higher in the ipsilateral thalamus after MCAO and CAL, respectively (P < 0.05). The percentage of the albumin-positive area that coincided with the occludin-positive area in the MCAO and CAL groups was 76.8% and 64.6%, respectively, indicating that albumin was mainly localized around the microvessels. 4. The results of the present study suggest that tight junction integrity decreases during the acute stage in the ipsilateral thalamus after MCAO and CAL in rats. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.
Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter
2015-01-01
In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.
Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.
Nozzi, Nicole E; Atsumi, Shota
2015-11-20
Cyanobacteria have gained popularity among the metabolic engineering community as a tractable photosynthetic host for renewable chemical production. However, though a number of successfully engineered production systems have been reported, long-term genetic stability remains an issue for cyanobacterial systems. The genetic engineering toolbox for cyanobacteria is largely lacking inducible systems for expression control. The characterization of tight regulation systems for use in cyanobacteria may help to alleviate this problem. In this work we explore the function of the IPTG inducible promoter P(L)lacO1 in the model cyanobacterium Synechococcus elongatus PCC 7942 as well as the effect of gene order within an operon on pathway expression. According to our experiments, P(L)lacO1 functions well as an inducible promoter in S. elongatus. Additionally, we found that gene order within an operon can strongly influence control of expression of each gene.
Optical vortex knots in tightly-focused light beams
NASA Astrophysics Data System (ADS)
Dennis, Mark; Sugic, Danica
Optical vortices, that is, zero lines of complex amplitude in a propagating light field, can be knotted or linked in a controlled way. This was demonstrated previously in experiments where a computer-controlled hologram determined the amplitude of paraxial laser light, meaning the longitudinal extent of the knot was several orders of magnitude larger than its width. We describe what happens to these optical knots when the transverse width of the beam, and hence the knot, is reduced. Outside the paraxial regime, the field's polarization becomes highly inhomogeneous, and knotted structures occur in a variety of polarization singularities. We propose experiments realising these knotted polarization structures in tightly-focused beams, which should yield optical knots of unit aspect ratio, of several optical wavelengths in size, which could be suitable for embedding knotted defect structures in liquid crystals, Bose-Einstein condensates and photopolymers. This work was supported by the Leverhulme Trust Programme Grant ''Scientific Properties of Complex Knots''.
Axelsen, Lene N.; Calloe, Kirstine; Holstein-Rathlou, Niels-Henrik; Nielsen, Morten S.
2013-01-01
Gap junctions are comprised of connexins that form cell-to-cell channels which couple neighboring cells to accommodate the exchange of information. The need for communication does, however, change over time and therefore must be tightly controlled. Although the regulation of connexin protein expression by transcription and translation is of great importance, the trafficking, channel activity and degradation are also under tight control. The function of connexins can be regulated by several post translational modifications, which affect numerous parameters; including number of channels, open probability, single channel conductance or selectivity. The most extensively investigated post translational modifications are phosphorylations, which have been documented in all mammalian connexins. Besides phosphorylations, some connexins are known to be ubiquitinated, SUMOylated, nitrosylated, hydroxylated, acetylated, methylated, and γ-carboxyglutamated. The aim of the present review is to summarize our current knowledge of post translational regulation of the connexin family of proteins. PMID:24155720
USDA-ARS?s Scientific Manuscript database
Biofilm formation in Escherichia coli is a tightly controlled process requiring the expression of adhesive curli fibers and certain polysaccharides such as cellulose. The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export pro...
Tomecki, Rafal; Sikorski, Pawel J; Zakrzewska-Placzek, Monika
2017-07-01
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans. © 2017 Federation of European Biochemical Societies.
Contributions of the Central Extended Amygdala to Fear and Anxiety.
Shackman, Alexander J; Fox, Andrew S
2016-08-03
It is widely thought that phasic and sustained responses to threat reflect dissociable circuits centered on the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST), the two major subdivisions of the central extended amygdala. Early versions of this hypothesis remain highly influential and have been incorporated into the National Institute of Mental Health Research Research Domain Criteria framework. However, new observations encourage a different perspective. Anatomical studies show that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated and used to assemble states of fear and anxiety. Imaging studies in humans and monkeys show that the Ce and BST exhibit similar functional profiles. Both regions are sensitive to a range of aversive challenges, including uncertain or temporally remote threat; both covary with concurrent signs and symptoms of fear and anxiety; both show phasic responses to short-lived threat; and both show heightened activity during sustained exposure to diffusely threatening contexts. Mechanistic studies demonstrate that both regions can control the expression of fear and anxiety during sustained exposure to diffuse threat. These observations compel a reconsideration of the central extended amygdala's contributions to fear and anxiety and its role in neuropsychiatric disease. Copyright © 2016 the authors 0270-6474/16/368050-14$15.00/0.
Neural signatures of co-occurring reading and mathematical difficulties.
Skeide, Michael A; Evans, Tanya M; Mei, Edward Z; Abrams, Daniel A; Menon, Vinod
2018-06-19
Impaired abilities in multiple domains is common in children with learning difficulties. Co-occurrence of low reading and mathematical abilities (LRLM) appears in almost every second child with learning difficulties. However, little is known regarding the neural bases of this combination. Leveraging a unique and tightly controlled sample including children with LRLM, isolated low reading ability (LR), and isolated low mathematical ability (LM), we uncover a distinct neural signature in children with co-occurring low reading and mathematical abilities differentiable from LR and LM. Specifically, we show that LRLM is neuroanatomically distinct from both LR and LM based on reduced cortical folding of the right parahippocampal gyrus, a medial temporal lobe region implicated in visual associative learning. LRLM children were further distinguished from LR and LM by patterns of intrinsic functional connectivity between parahippocampal gyrus and brain circuitry underlying reading and numerical quantity processing. Our results critically inform cognitive and neural models of LRLM by implicating aberrations in both domain-specific and domain-general brain regions involved in reading and mathematics. More generally, our results provide the first evidence for distinct multimodal neural signatures associated with LRLM, and suggest that this population displays an independent phenotype of learning difficulty that cannot be explained simply as a combination of isolated low reading and mathematical abilities. © 2018 John Wiley & Sons Ltd.
Contributions of the Central Extended Amygdala to Fear and Anxiety
2016-01-01
It is widely thought that phasic and sustained responses to threat reflect dissociable circuits centered on the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST), the two major subdivisions of the central extended amygdala. Early versions of this hypothesis remain highly influential and have been incorporated into the National Institute of Mental Health Research Research Domain Criteria framework. However, new observations encourage a different perspective. Anatomical studies show that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated and used to assemble states of fear and anxiety. Imaging studies in humans and monkeys show that the Ce and BST exhibit similar functional profiles. Both regions are sensitive to a range of aversive challenges, including uncertain or temporally remote threat; both covary with concurrent signs and symptoms of fear and anxiety; both show phasic responses to short-lived threat; and both show heightened activity during sustained exposure to diffusely threatening contexts. Mechanistic studies demonstrate that both regions can control the expression of fear and anxiety during sustained exposure to diffuse threat. These observations compel a reconsideration of the central extended amygdala's contributions to fear and anxiety and its role in neuropsychiatric disease. PMID:27488625
Soriano, Ignacio; Morafraile, Esther C; Vázquez, Enrique; Antequera, Francisco; Segurado, Mónica
2014-09-13
Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood. By performing high-resolution analysis of genome-wide nucleosome positioning we have identified different chromatin architectures at early and late replication origins. These different patterns are already established in G1 and are tightly correlated with the organization of adjacent transcription units. Moreover, specific early and late nucleosomal patterns are fixed robustly, even in rpd3 mutants in which histone acetylation and origin timing have been significantly altered. Nevertheless, higher histone acetylation levels correlate with the local modulation of chromatin structure, leading to increased origin accessibility. In addition, we conducted parallel analyses of replication and nucleosome dynamics that revealed that chromatin structure at origins is modulated during origin activation. Our results show that early and late replication origins present distinctive nucleosomal configurations, which are preferentially associated to different genomic regions. Our data also reveal that origin structure is dynamic and can be locally modulated by histone deacetylation, as well as by origin activation. These data offer novel insight into the contribution of chromatin structure to origin selection and firing in budding yeast.
Attention Bias of Avoidant Individuals to Attachment Emotion Pictures.
Liu, Ying; Ding, Yi; Lu, Luluzi; Chen, Xu
2017-01-27
How attachment style affects emotion processing is tightly connected with individuals' attention bias. This experiment explored avoidant individuals' attentional engagement and attentional disengagement using a cue-target paradigm in fMRI. The experimental group consisted of 17 avoidant participants, while the control group consisted of 16 secure participants; these were identified by the Experiences in Close Relationships inventory and the Relationship Questionnaire. Each reacted to pictures of positive parent-child attachment, negative parent-child attachment, positive romantic attachment, negative romantic attachment, and neutral non-attachment. Behaviorally, avoidant individuals were slower than secure individuals in responding to emotions and their attentional disengagement effect for negative parent-child emotions was stronger than positive ones. fMRI results showed that avoidant compared to secure individuals activated more strongly in the right superior temporal gyrus, middle occipital gyrus, and the left medial frontal gyrus, middle occipital gyrus, supplementary motor area, and cingulate gyrus. They also showed stronger activation in disengaging from positive than negative emotions in the bilateral fusiform and middle occipital gyri. In conclusion, avoidant individuals could detect emotions as effective as secure individuals in attentioal engaging stages. They can disengage from positive emotions with effective cognitive resources and were harder to get rid of negative emotions with insufficient resource.
Variation in benthic long-term data of transitional waters: Is interpretation more than speculation?
Zettler, Michael Lothar; Friedland, René; Gogina, Mayya; Darr, Alexander
2017-01-01
Biological long-term data series in marine habitats are often used to identify anthropogenic impacts on the environment or climate induced regime shifts. However, particularly in transitional waters, environmental properties like water mass dynamics, salinity variability and the occurrence of oxygen minima not necessarily caused by either human activities or climate change can attenuate or mask apparent signals. At first glance it very often seems impossible to interpret the strong fluctuations of e.g. abundances or species richness, since abiotic variables like salinity and oxygen content vary simultaneously as well as in apparently erratic ways. The long-term development of major macrozoobenthic parameters (abundance, biomass, species numbers) and derivative macrozoobenthic indices (Shannon diversity, Margalef, Pilou’s evenness and Hurlbert) has been successfully interpreted and related to the long-term fluctuations of salinity and oxygen, incorporation of the North Atlantic Oscillation index (NAO index), relying on the statistical analysis of modelled and measured data during 35 years of observation at three stations in the south-western Baltic Sea. Our results suggest that even at a restricted spatial scale the benthic system does not appear to be tightly controlled by any single environmental driver and highlight the complexity of spatially varying temporal response. PMID:28422974
Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis
NASA Technical Reports Server (NTRS)
Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.
2012-01-01
Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.
Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C
2015-12-01
A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.
Biosleeve Human-Machine Interface
NASA Technical Reports Server (NTRS)
Assad, Christopher (Inventor)
2016-01-01
Systems and methods for sensing human muscle action and gestures in order to control machines or robotic devices are disclosed. One exemplary system employs a tight fitting sleeve worn on a user arm and including a plurality of electromyography (EMG) sensors and at least one inertial measurement unit (IMU). Power, signal processing, and communications electronics may be built into the sleeve and control data may be transmitted wirelessly to the controlled machine or robotic device.
Haid, Thomas H.; Doix, Aude-Clémence M.; Nigg, Benno M.; Federolf, Peter A.
2018-01-01
Optimal feedback control theory suggests that control of movement is focused on movement dimensions that are important for the task's success. The current study tested the hypotheses that age effects would emerge in the control of only specific movement components and that these components would be linked to the task relevance. Fifty healthy volunteers, 25 young and 25 older adults, performed a 80s-tandem stance while their postural movements were recorded using a standard motion capture system. The postural movements were decomposed by a principal component analysis into one-dimensional movement components, PMk, whose control was assessed through two variables, Nk and σk, which characterized the tightness and the regularity of the neuro-muscular control, respectively. The older volunteers showed less tight and more irregular control in PM2 (N2: −9.2%, p = 0.007; σ2: +14.3.0%, p = 0.017) but tighter control in PM8 and PM9 (N8: +4.7%, p = 0.020; N9: +2.5%, p = 0.043; σ9: −8.8%, p = 0.025). These results suggest that aging effects alter the postural control system not as a whole, but emerge in specific, task relevant components. The findings of the current study thus support the hypothesis that the minimal intervention principle, as described in the context of optimal feedback control (OFC), may be relevant when assessing aging effects on postural control. PMID:29459826
NASA Astrophysics Data System (ADS)
Lasky, Jesse R.; Uriarte, María; Muscarella, Robert
2016-11-01
Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that distinct strategies for coping with seasonality underlie phenological diversity. Observed drought responses highlight the importance of non-linear community responses to climate. Community phenology exhibits scale-specific patterns highlighting the need for multi-scale approaches to community dynamics.
Abnormal behavior in children with temporal lobe epilepsy and ganglioglioma.
Guimarães, Catarina A; Franzon, Renata C; Souza, Elisabete A P; Schmutzler, Kátia M R S; Montenegro, Maria Augusta; Queiroz, Luciano de S; Cendes, Fernando; Guerreiro, Marilisa M
2004-10-01
Temporal lobe epilepsy in childhood is characterized by great clinical, electroencephalographic, and etiological diversity. The prognosis after temporal lobe epilepsy surgery in childhood is usually good, with most patients achieving complete seizure control. However, in some children behavior deteriorates postoperatively. We report two girls (2 and 6 years of age) with refractory seizures due to temporal lobe ganglioglioma. They exhibited aggression and hyperactivity since the beginning of their epilepsy. In both patients, behavioral disturbances worsened postoperatively, despite complete seizure control. Patients and parents should be advised about possible behavioral disturbances after epilepsy surgery, especially in the presence of a temporal lobe developmental tumor, even when seizure control is achieved postoperatively.
Zhang, Yiwei; Zeng, Shelya X; Hao, Qian; Lu, Hua
2017-03-01
Although p53 is not essential for normal embryonic development, it plays a pivotal role in many biological and pathological processes, including cell fate determination-dependent and independent events and diseases. The expression and activity of p53 largely depend on its two biological inhibitors, MDM2 and MDMX, which have been shown to form a complex in order to tightly control p53 to an undetectable level during early stages of embryonic development. However, more delicate studies using conditional gene-modification mouse models show that MDM2 and MDMX may function separately or synergistically on p53 regulation during later stages of embryonic development and adulthood in a cell and tissue-specific manner. Here, we report the role of the MDM2/MDMX-p53 pathway in pancreatic islet morphogenesis and functional maintenance, using mouse lines with specific deletion of MDM2 or MDMX in pancreatic endocrine progenitor cells. Interestingly, deletion of MDM2 results in defects of embryonic endocrine pancreas development, followed by neonatal hyperglycemia and lethality, by inducing pancreatic progenitor cell apoptosis and inhibiting cell proliferation. However, unlike MDM2-knockout animals, mice lacking MDMX in endocrine progenitor cells develop normally. But, surprisingly, the survival rate of adult MDMX-knockout mice drastically declines compared to control mice, as blockage of neonatal development of endocrine pancreas by inhibition of cell proliferation and subsequent islet dysfunction and hyperglycemia eventually lead to type 1 diabetes-like disease with advanced diabetic nephropathy. As expected, both MDM2 and MDMX deletion-caused pancreatic defects are completely rescued by loss of p53, verifying the crucial role of the MDM2 and/or MDMX in regulating p53 in a spatio-temporal manner during the development, functional maintenance, and related disease progress of endocrine pancreas. Also, our study suggests a possible mouse model of advanced diabetic nephropathy, which is complementary to other established diabetic models and perhaps useful for the development of anti-diabetes therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
Ngo, Kathy T.; Andrade, Ingrid; Hartenstein, Volker
2018-01-01
Visual information processing in animals with large image forming eyes is carried out in highly structured retinotopically ordered neuropils. Visual neuropils in Drosophila form the optic lobe, which consists of four serially arranged major subdivisions; the lamina, medulla, lobula and lobula plate; the latter three of these are further subdivided into multiple layers. The visual neuropils are formed by more than 100 different cell types, distributed and interconnected in an invariant highly regular pattern. This pattern relies on a protracted sequence of developmental steps, whereby different cell types are born at specific time points and nerve connections are formed in a tightly controlled sequence that has to be coordinated among the different visual neuropils. The developing fly visual system has become a highly regarded and widely studied paradigm to investigate the genetic mechanisms that control the formation of neural circuits. However, these studies are often made difficult by the complex and shifting patterns in which different types of neurons and their connections are distributed throughout development. In the present paper we have reconstructed the three-dimensional architecture of the Drosophila optic lobe from the early larva to the adult. Based on specific markers, we were able to distinguish the populations of progenitors of the four optic neuropils and map the neurons and their connections. Our paper presents sets of annotated confocal z-projections and animated 3D digital models of these structures for representative stages. The data reveal the temporally coordinated growth of the optic neuropils, and clarify how the position and orientation of the neuropils and interconnecting tracts (inner and outer optic chiasm) changes over time. Finally, we have analyzed the emergence of the discrete layers of the medulla and lobula complex using the same markers (DN-cadherin, Brp) employed to systematically explore the structure and development of the central brain neuropil. Our work will facilitate experimental studies of the molecular mechanisms regulating neuronal fate and connectivity in the fly visual system, which bears many fundamental similarities with the retina of vertebrates. PMID:28533086
Rotating mandrel speeds assembly of plastic inflatables
NASA Technical Reports Server (NTRS)
Mac Fadden, J. A.; Stenlund, S. J.; Wendt, A. J.
1966-01-01
Rotating mandrel permits the accurate cutting, forming, and sealing of plastic gores for assembly of an inflatable surface of revolution. The gores remain on the mandrel until the final seam is reached. Tolerances are tightly controlled by the mandrel configuration.
Wang, Pin; Huang, Rong; Lu, Sen; Xia, Wenqing; Sun, Haixia; Sun, Jie; Cai, Rongrong; Wang, Shaohua
2015-09-22
Whether lowering glycosylated haemoglobin (HbA1c) level below 7.0% improves macro-vascular outcomes in diabetes remains unclear. Here, we aimed to assess the effect of relatively tight glucose control resulting in a follow-up HbA1c level of less or more than 7.0% on cardiovascular outcomes in diabetic patients. We systematically searched Medline, Web of science and Cochrane Library for prospective randomized controlled trials published between Jan 1, 1996 and July 1, 2015 that recorded cardiovascular outcome trials of glucose-lowering drugs or strategies in patients with type 2 diabetes mellitus. Data from 15 studies involving 88,266 diabetic patients with 4142 events of non-fatal myocardial infarction, 6997 of major cardiovascular events, 3517 of heart failure, 6849 of all-cause mortality, 2084 of non-fatal stroke, 3816 of cardiovascular death were included. A 7% reduction of major cardiovascular events was observed only when relatively tight glucose control resulted in a follow-up HbA1c level above 7.0% (OR 0.93, 95% CI 0.88-0.98; I(2) = 33%), however, the patients can benefit from reduction incidence of non-fatal myocardial infarction only when the follow-up HbA1c value below 7.0% (OR 0.85, 95% CI 0.74-0.96). Apart from the HbA1c value above 7.0% (OR 1.22, 95% CI 1.06-1.40), the application of thiazolidinediones (OR 1.39, 95% CI 1.14-1.69) also increased the risk of heart failure, while the gliptins shows neutral effects to heart failure (OR 1.14, 95% CI 0.97-1.34). Relatively tight glucose control has some cardiovascular benefits. HbA1c below 7.0% as the goal to maximize the cardiovascular benefits remains suspended.
Pitting temporal against spatial integration in schizophrenic patients.
Herzog, Michael H; Brand, Andreas
2009-06-30
Schizophrenic patients show strong impairments in visual backward masking possibly caused by deficits on the early stages of visual processing. The underlying aberrant mechanisms are not clearly understood. Spatial as well as temporal processing deficits have been proposed. Here, by combining a spatial with a temporal integration paradigm, we show further evidence that temporal but not spatial processing is impaired in schizophrenic patients. Eleven schizophrenic patients and ten healthy controls were presented with sequences composed of Vernier stimuli. Patients needed significantly longer presentation times for sequentially presented Vernier stimuli to reach a performance level comparable to that of healthy controls (temporal integration deficit). When we added spatial contextual elements to some of the Vernier stimuli, performance changed in a complex but comparable manner in patients and controls (intact spatial integration). Hence, temporal but not spatial processing seems to be deficient in schizophrenia.
Stretton, Jason; Sidhu, Meneka K.; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.; Thompson, Pamela J.
2014-01-01
Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex. PMID:24691395
Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.
Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G
2008-05-12
In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.
NASA Astrophysics Data System (ADS)
Kaige, Y.; Ryu, Y.; Kimm, H.; Huang, Y.; Jiang, C.; Hwang, Y.; Kim, J.; Kang, M.
2016-12-01
Recent advancements in remote sensing of SiF opened new opportunities to directly estimate canopy photosynthesis at regional scales. Observing SiF at canopy scale in the field, however, is at very initial stage. In this study, we report SiF and hyperspectral reflectance (400-900 nm) data concurrently measured every 10 sec across the whole growing season in a paddy rice, South Korea. The study site experienced water management via irrigation and drainage and showed a peak LAI of 7. We test whether SiF and a range of different vegetation spectral indices (VIs) well capture half-hourly variations in canopy photosynthesis quantified from an eddy flux tower. During the growing season, we found that SiF showed tight linear relationship to APAR (r2=0.7), and moderate linear relationship to GPP (r2=0.5). Both NDVI, EVI and PRI showed logarithmic relationships to GPP (r2<0.5) and were all saturated at LAI>4. SiF showed linear relationship to GPP even at higher LAI. We conclude that SiF is a better index in predicting temporal variations in canopy photosynthesis than the other VIs in the paddy rice site.
Why Movement Is Captured by Music, but Less by Speech: Role of Temporal Regularity
Dalla Bella, Simone; Białuńska, Anita; Sowiński, Jakub
2013-01-01
Music has a pervasive tendency to rhythmically engage our body. In contrast, synchronization with speech is rare. Music’s superiority over speech in driving movement probably results from isochrony of musical beats, as opposed to irregular speech stresses. Moreover, the presence of regular patterns of embedded periodicities (i.e., meter) may be critical in making music particularly conducive to movement. We investigated these possibilities by asking participants to synchronize with isochronous auditory stimuli (target), while music and speech distractors were presented at one of various phase relationships with respect to the target. In Exp. 1, familiar musical excerpts and fragments of children poetry were used as distractors. The stimuli were manipulated in terms of beat/stress isochrony and average pitch to achieve maximum comparability. In Exp. 2, the distractors were well-known songs performed with lyrics, on a reiterated syllable, and spoken lyrics, all having the same meter. Music perturbed synchronization with the target stimuli more than speech fragments. However, music superiority over speech disappeared when distractors shared isochrony and the same meter. Music’s peculiar and regular temporal structure is likely to be the main factor fostering tight coupling between sound and movement. PMID:23936534
Effects of prosody and position on the timing of deictic gestures.
Rusiewicz, Heather Leavy; Shaiman, Susan; Iverson, Jana M; Szuminsky, Neil
2013-04-01
In this study, the authors investigated the hypothesis that the perceived tight temporal synchrony of speech and gesture is evidence of an integrated spoken language and manual gesture communication system. It was hypothesized that experimental manipulations of the spoken response would affect the timing of deictic gestures. The authors manipulated syllable position and contrastive stress in compound words in multiword utterances by using a repeated-measures design to investigate the degree of synchronization of speech and pointing gestures produced by 15 American English speakers. Acoustic measures were compared with the gesture movement recorded via capacitance. Although most participants began a gesture before the target word, the temporal parameters of the gesture changed as a function of syllable position and prosody. Syllables with contrastive stress in the 2nd position of compound words were the longest in duration and also most consistently affected the timing of gestures, as measured by several dependent measures. Increasing the stress of a syllable significantly affected the timing of a corresponding gesture, notably for syllables in the 2nd position of words that would not typically be stressed. The findings highlight the need to consider the interaction of gestures and spoken language production from a motor-based perspective of coordination.
Rogalsky, Corianne; Love, Tracy; Driscoll, David; Anderson, Steven W.; Hickok, Gregory
2013-01-01
The discovery of mirror neurons in macaque has led to a resurrection of motor theories of speech perception. Although the majority of lesion and functional imaging studies have associated perception with the temporal lobes, it has also been proposed that the ‘human mirror system’, which prominently includes Broca’s area, is the neurophysiological substrate of speech perception. Although numerous studies have demonstrated a tight link between sensory and motor speech processes, few have directly assessed the critical prediction of mirror neuron theories of speech perception, namely that damage to the human mirror system should cause severe deficits in speech perception. The present study measured speech perception abilities of patients with lesions involving motor regions in the left posterior frontal lobe and/or inferior parietal lobule (i.e., the proposed human ‘mirror system’). Performance was at or near ceiling in patients with fronto-parietal lesions. It is only when the lesion encroaches on auditory regions in the temporal lobe that perceptual deficits are evident. This suggests that ‘mirror system’ damage does not disrupt speech perception, but rather that auditory systems are the primary substrate for speech perception. PMID:21207313
In-situ coupling between kinase activities and protein dynamics within single focal adhesions
NASA Astrophysics Data System (ADS)
Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying
2016-07-01
The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells.
Modulation frequency as a cue for auditory speed perception.
Senna, Irene; Parise, Cesare V; Ernst, Marc O
2017-07-12
Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities. © 2017 The Author(s).
Dilmore, Robert M; Sams, James I; Glosser, Deborah; Carter, Kristin M; Bain, Daniel J
2015-10-20
Recent large-scale development of oil and gas from low-permeability unconventional formations (e.g., shales, tight sands, and coal seams) has raised concern about potential environmental impacts. If left improperly sealed, legacy oil and gas wells colocated with that new development represent a potential pathway for unwanted migration of fluids (brine, drilling and stimulation fluids, oil, and gas). Uncertainty in the number, location, and abandonment state of legacy wells hinders environmental assessment of exploration and production activity. The objective of this study is to apply publicly available information on Pennsylvania oil and gas wells to better understand their potential to serve as pathways for unwanted fluid migration. This study presents a synthesis of historical reports and digital well records to provide insights into spatial and temporal trends in oil and gas development. Areas with a higher density of wells abandoned prior to the mid-20th century, when more modern well-sealing requirements took effect in Pennsylvania, and areas where conventional oil and gas production penetrated to or through intervals that may be affected by new Marcellus shale development are identified. This information may help to address questions of environmental risk related to new extraction activities.
NASA Astrophysics Data System (ADS)
Poulet, Thomas; Paesold, Martin; Veveakis, Manolis
2017-03-01
Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.
Fibroblast growth factor receptors: multifactorial-contributors to tumor initiation and progression.
Feng, Shachuan; Zhou, Li; Nice, Edouard Collins; Huang, Canhua
2015-01-01
Fibroblast growth factor receptors (FGFRs), encoded by four genes (FGFR1, FGFR2, FGFR3, and FGFR4) are tightly associated with many biological processes such as organ development, cell proliferation and migration. Studies over the past decades have validated the pivotal roles FGFRs play in tumorigenesis due to the regulation of diverse tumorigenesis-related processes, including cell survival, proliferation, inflammation, metastasis and angiogenesis. Interestingly, FGFR mutations in somatic cells leading to tumorigenesis and those in germ cells leading to developmental disorders are identical, suggesting that FGFR mutations result in different diseases due to their spatio-temporal expression. Thus, discoveries in developmental biology may also be applicable to cancer. FGFRs regulate the expression and/or the activity of a myriad of molecules (e.g. matrix metalloproteinases (MMPs) and Snail) that are tightly linked to tumorigenesis by four main signaling pathways (RAS-MAPK, PI3K-AKT, PLCγ-PIP2, and STAT), as well as other minor branches. Epigenetic and genetic alteration of FGFR genes, including DNA methylation, histone remodeling, microRNA regulation, single nucleotide polymorphisms (SNPs), gene missense mutations, amplification, and fusion of FGFRs with other genes, which result in gain or loss of FGFR function, have been identified in many types of cancer. In this review, we focus in particular on recent advances in the relationship between FGFR disorders and tumorigenesis.
Saunders, Norman R; Dziegielewska, Katarzyna M; Unsicker, Klaus; Ek, C Joakim
2016-11-01
The brain functions within a specialized environment tightly controlled by brain barrier mechanisms. Understanding the regulation of barrier formation is important for understanding brain development and may also lead to finding new ways to deliver pharmacotherapies to the brain; access of many potentially promising drugs is severely hindered by these barrier mechanisms. The cellular composition of the neurovascular unit of the blood-brain barrier proper and their effects on regulation of its function are beginning to be understood. One hallmark of the neurovascular unit in the adult is the astroglial foot processes that tightly surround cerebral blood vessels. However their role in barrier formation is still unclear. In this study we examined barrier function in newborn, juvenile and adult mice lacking fibroblast growth factor-2 (FGF-2), which has been shown to result in altered astroglial differentiation during development. We show that during development of FGF-2 deficient mice the astroglial contacts with cerebral blood vessels are delayed compared with wild-type animals. However, this delay did not result in changes to the permeability properties of the blood brain barrier as assessed by exclusion of either small or larger sized molecules at this interface. In addition cerebral vessels were positive for tight-junction proteins and we observed no difference in the ultrastructure of the tight-junctions. The results indicate that the direct contact of astroglia processes to cerebral blood vessels is not necessary for either the formation of the tight-junctions or for basic permeability properties and function of the blood-brain barrier. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1201-1212, 2016. © 2016 Wiley Periodicals, Inc.
Guntas, Gurkan; Hallett, Ryan A.; Zimmerman, Seth P.; ...
2014-12-22
The discovery of light-inducible protein–protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. In this study, to create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2more » (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. Finally, we demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.« less
Developmental differences in intra-individual variability in children with ADHD and ASD.
van Belle, Janna; van Hulst, Branko M; Durston, Sarah
2015-12-01
Intra-individual variability reflects temporal variation within an individual's performance on a cognitive task. Children with developmental disorders, such as ADHD and ASD show increased levels of intra-individual variability. In typical development, intra-individual variability decreases sharply between the ages 6 and 20. The tight link between intra-individual variability and age has led to the suggestion that it may be marker of neural development. As there is accumulating evidence that ADHD and ASD are characterised by atypical neurodevelopmental trajectories, we set out to explore developmental changes in intra-individual variability in subjects with ADHD and ASD. We used propensity score matching to match a cross-sectional sample of children with ADHD, ASD and control subjects (N = 405, aged 6-19 years old) for age, IQ and gender. We used ex-Gaussian distribution parameters to characterise intra-individual variability on fast responses (sigma) and slow responses (tau). Results showed that there was a similar decrease in mean response times with age across groups, and an interaction between age and group for measures of variability, where there was a much lower rate of change in the variability parameters (sigma and tau) for subjects with ASD compared with the other two groups. Subjects with ADHD had higher intra-individual variability, reflected by both sigma and tau, but the rate of decrease in variability with age was similar to that of the controls. These results suggest that subjects with ADHD, ASD and controls differ in the rate at which intra-individual variability decreases during development, and support the idea that intra-individual variability may be a marker of neural development, mimicking the neurodevelopmental changes in these disorders. © 2015 Association for Child and Adolescent Mental Health.
Occurrences of yawn and swallow are temporally related.
Abe, Kimiko; Weisz, Sarah E M; Dunn, Rachelle L; DiGioacchino, Martina C; Nyentap, Jennifer A; Stanbouly, Seta; Theurer, Julie A; Bureau, Yves; Affoo, Rebecca H; Martin, Ruth E
2015-02-01
Yawning is a stereotyped motor behavior characterized by deep inhalation and associated dilation of the respiratory tract, pronounced jaw opening, and facial grimacing. The frequency of spontaneous yawning varies over the diurnal cycle, peaking after waking and before sleep. Yawning can also be elicited by seeing or hearing another yawn, or by thinking about yawning, a phenomenon known as "contagious yawning". Yawning is mediated by a distributed network of brainstem and supratentorial brain regions, the components of which are shared with other airway behaviors including respiration, swallowing, and mastication. Nevertheless, the possibility of behavioral coordination between yawning and other brainstem-mediated functions has not been examined. Here we show, with a double-blind methodology, a greater-than-fivefold increase in rest (saliva) swallowing rate during the 10-s period immediately following contagious yawning elicited in 14 adult humans through the viewing of videotaped yawn stimuli. Sixty-five percent of yawns were followed by a swallow within 10 s and swallows accounted for 26 % of all behaviors produced during this post-yawn period. This novel finding of a tight temporal coupling between yawning and swallowing provides preliminary evidence that yawning and swallowing are physiologically related, thus extending current models of upper airway physiology and neurophysiology. Moreover, our finding suggests the possibility that yawning plays a role in eliciting rest swallowing, a view not considered in previous theories of yawning. As such, the present demonstration of a temporal association between yawning and swallowing motivates a re-examination of the longstanding question, "Why do we yawn?".
A randomized controlled comparison of stretching procedures for posterior shoulder tightness.
McClure, Philip; Balaicuis, Jenna; Heiland, David; Broersma, Mary Ellen; Thorndike, Cheryl K; Wood, April
2007-03-01
Randomized controlled trial, To compare changes in shoulder internal rotation range of motion (ROM), for 2 stretching exercises, the "cross-body stretch" and the "sleeper stretch," in individuals with posterior shoulder tightness. Recently, some authors have expressed the belief that the sleeper stretch is better than the cross-body stretch to address glenohumeral posterior tightness because the scapula is stabilized. Fifty-four asymptomatic subjects (20 males, 34 females) participated in the study. The control group (n=24) consisted of subjects with a between-shoulder difference in internal rotation ROM of less than 10 degrees, whereas those subjects with more than a 10 degrees difference were randomly assigned to 1 of 2 intervention groups, the sleeper stretch group (n=15) or the cross-body stretch group (n=15). Shoulder internal rotation ROM, with the arm abducted to 90 degrees and scapula motion prevented, was measured before and after a 4-week intervention period. Subjects in the control group were asked not to engage in any new stretching activities, while subjects in the 2 stretching groups were asked to perform stretching exercises on the more limited side only, once daily for 5 repetitions, holding each stretch for 30 seconds. The improvements in internal rotation ROM for the subjects in the cross-body stretch group (mean +/- SD, 20.0 degrees +/- 12.9 degrees) were significantly greater than for the subjects in the control group (5.9 degrees +/- 9.4 degrees, P = .009). The gains in the sleeper stretch group (12.4 degrees +/- 10.4 degrees) were not significant compared to those of the control group (P = .586) and those of the cross-body stretch group (P = .148). The cross-body stretch in individuals with limited shoulder internal rotation ROM appears to be more effective than no stretching in controls without internal rotation asymmetry to improve shoulder internal rotation ROM. While the improvement in internal rotation from the cross-body stretch was greater than for the sleeper stretch and of a magnitude that could be clinically significant, the small sample size likely precluded statistical significance between groups.
‘Forced normalisation’ in the neurosurgical era
Shahani, Lokesh
2012-01-01
The correlation between epilepsy and behavioural disorders is well known. Forced normalisation is a phenomenon where there is worsening of the patient's behavioural disorder when a better seizure control has been obtained. A complication of anti-epileptic treatment worsening the behavioural disorder is sometimes the proposed mechanism. The author presents the report of a young man with temporal lobe epilepsy and poor seizure control in the past 12 years. The patient had comorbid impulse control disorder previously well controlled with medications. MRI demonstrated left mesial temporal sclerosis and intracranial EEG recording located seizure foci in the left medial temporal lobe. The patient underwent left temporal lobectomy for seizure control with partial success. However, after operation, the patient's impulse control disorder worsened and he was involved in physical altercations leading to incarceration. This illustrates a case where partial seizure control was obtained with a surgical procedure, but resulted in worsening of the patient's behavioural disorder. PMID:22684833
‘Patient-Centered Care’ for Complex Patients with Type 2 Diabetes Mellitus—Analysis of Two Cases
Hackel, Jennifer M.
2013-01-01
Purpose This paper serves to apply and compare aspects of person centered care and recent consensus guidelines to two cases of older adults with poorly controlled diabetes in the context of relatively similar multimorbidity. Methods After review of the literature regarding the shift from guidelines promoting tight control in diabetes management to individualized person centered care, as well as newer treatment approaches emerging in diabetes care, the newer guidelines and potential treatment approaches are applied to the cases. Results By delving into the clinical, behavioral, social, cultural and economic aspects of the two cases in applying the new guidelines, divergent care goals are reached for the cases. Conclusions Primary care practitioners must be vigilant in providing individualized diabetes treatment where multiple chronic illnesses increase the complexity of care. While two older adults with multimorbidity may appear at first to have similar care goals, their unique preferences and support systems, as well as their risks and benefits from tight control, must be carefully weighed in formulating the best approach. Newer pharmaceutical agents hold promise for improving the possibilities for better glycemic control with less self-care burden and risk of hypoglycemia. PMID:24250240
Measurement of Temporal Awareness in Air Traffic Control
NASA Technical Reports Server (NTRS)
Rantanen, E.M.
2009-01-01
Temporal awareness, or level 3 situation awareness, is critical to successful control of air traffic, yet the construct remains ill-defined and difficult to measure. This research sought evidence for air traffic controllers awareness of temporal characteristics of their tasks in data from a high-fidelity system evaluation simulation. Five teams of controllers worked on four scenarios with different traffic load. Several temporal parameters were defined for each task controllers performed during a simulation run and their actions on the tasks were timed relative to them. Controllers showed a strong tendency to prioritize tasks according to a first come, first served principle. This trend persisted as task load increased. Also evident was awareness of the urgency of tasks, as tasks with impending closing of a window of opportunity were performed before tasks that had longer time available before closing of the window.
NASA Astrophysics Data System (ADS)
Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.
2018-06-01
We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.
Induced maturation of human immunodeficiency virus.
Mattei, Simone; Anders, Maria; Konvalinka, Jan; Kräusslich, Hans-Georg; Briggs, John A G; Müller, Barbara
2014-12-01
HIV-1 assembles at the plasma membrane of virus-producing cells as an immature, noninfectious particle. Processing of the Gag and Gag-Pol polyproteins by the viral protease (PR) activates the viral enzymes and results in dramatic structural rearrangements within the virion--termed maturation--that are a prerequisite for infectivity. Despite its fundamental importance for viral replication, little is currently known about the regulation of proteolysis and about the dynamics and structural intermediates of maturation. This is due mainly to the fact that HIV-1 release and maturation occur asynchronously both at the level of individual cells and at the level of particle release from a single cell. Here, we report a method to synchronize HIV-1 proteolysis in vitro based on protease inhibitor (PI) washout from purified immature virions, thereby temporally uncoupling virus assembly and maturation. Drug washout resulted in the induction of proteolysis with cleavage efficiencies correlating with the off-rate of the respective PR-PI complex. Proteolysis of Gag was nearly complete and yielded the correct products with an optimal half-life (t(1/2)) of ~5 h, but viral infectivity was not recovered. Failure to gain infectivity following PI washout may be explained by the observed formation of aberrant viral capsids and/or by pronounced defects in processing of the reverse transcriptase (RT) heterodimer associated with a lack of RT activity. Based on our results, we hypothesize that both the polyprotein processing dynamics and the tight temporal coupling of immature particle assembly and PR activation are essential for correct polyprotein processing and morphological maturation and thus for HIV-1 infectivity. Cleavage of the Gag and Gag-Pol HIV-1 polyproteins into their functional subunits by the viral protease activates the viral enzymes and causes major structural rearrangements essential for HIV-1 infectivity. This proteolytic maturation occurs concomitant with virus release, and investigation of its dynamics is hampered by the fact that virus populations in tissue culture contain particles at all stages of assembly and maturation. Here, we developed an inhibitor washout strategy to synchronize activation of protease in wild-type virus. We demonstrated that nearly complete Gag processing and resolution of the immature virus architecture are accomplished under optimized conditions. Nevertheless, most of the resulting particles displayed irregular morphologies, Gag-Pol processing was not faithfully reconstituted, and infectivity was not recovered. These data show that HIV-1 maturation is sensitive to the dynamics of processing and also that a tight temporal link between virus assembly and PR activation is required for correct polyprotein processing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz`ko, V.S.
Using weighing and corrosion diagrams, the etching parameters are determined for a sintered M-21 molybdenum coating applied to VK 94-1 vacuum-tight ceramics. Dissolution of M-21 in an alkaline solution of potassium hexacyanoferrate(III) can be treated as a corrosion process proceeding with kinetic control.
ERIC Educational Resources Information Center
Whitney, Tim
2000-01-01
Examines how tight urban sites can yield sports spaces that favorably compare to their more rural campus counterparts. Potential areas of concern when recreation centers are reconfigured into high-rise structures are highlighted, including building codes, building access, noise control, building costs, and lighting. (GR)
GABAB receptor cell surface export is controlled by an endoplasmic reticulum gatekeeper
Doly, Stéphane; Shirvani, Hamasseh; Gäta, Gabriel; Meye, Frank; Emerit, Michel-Boris; Enslen, Hervé; Achour, Lamia; Pardo-Lopez, Liliana; Kwon, Yang Seung; Armand, Vincent; Gardette, Robert; Giros, Bruno; Gassmann, Martin; Bettler, Bernhard; Mameli, Manuel; Darmon, Michèle; Marullo, Stefano
2016-01-01
Summary Endoplasmic reticulum (ER) release and cell surface export of many G protein-coupled receptors (GPCRs), are tightly regulated. For GABAB receptors of GABA, the major mammalian inhibitory neurotransmitter, the ligand-binding GB1 subunit is maintained in the ER by unknown mechanisms in the absence of hetero-dimerization with the GB2 subunit. We report that GB1 retention is regulated by a specific gatekeeper, PRAF2. This ER resident transmembrane protein binds to GB1, preventing its progression in the biosynthetic pathway. GB1 release occurs upon competitive displacement from PRAF2 by GB2. PRAF2 concentration, relative to that of GB1 and GB2, tightly controls cell surface receptor density and controls GABAB function in neurons. Experimental perturbation of PRAF2 levels in vivo caused marked hyperactivity disorders in mice. These data reveal an unanticipated major impact of specific ER gate-keepers on GPCR function and identify PRAF2 as a new molecular target with therapeutic potential for psychiatric and neurological diseases involving GABAB function. PMID:26033241
Oswald, I P; Lantier, F; Moutier, R; Bertrand, M F; Skamene, E
1992-01-01
The aim of the present study was to determine whether the Ity gene, which controls the resistance to S. typhimurium infection in mice, also governs the resistance to S. abortusovis, a serotype specific for goat and sheep. During either i.v. or i.p. infection, BALB/c mice (Itys) were not able to control the growth of S. abortusovis and eventually died from infection. In contrast CBA (Ityr) or (C.CB)F1 (Ityr/s) mice were able to control the growth of these bacteria. Using congenic C.D2 Ityr mice, we found that the gene controlling resistance to S. abortusovis was tightly linked to the Ity gene on chromosome 1. Furthermore, in the spleen and the liver of backcross BALB/c x (CBA x BALB/c) mice, the S. abortusovis resistance phenotype cosegregated with the two alleles of the Len-1 gene, a gene tightly linked to the Ity gene. By contrast, in these backcross mice, the level of infection of the peritoneal cavity, the site of inoculation, did not correlated with the Len-1 phenotype of the animal. These results provide evidence that after i.p. inoculation the control of S. abortusovis growth in the spleen and the liver is controlled by the Ity gene, but also suggest that additional gene(s) regulate the number of bacteria at the site of inoculation. PMID:1544222
Ferrite core coupled slapper detonator apparatus and method
Boberg, Ralph E.; Lee, Ronald S.; Weingart, Richard C.
1989-01-01
Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.
Ferrite core coupled slapper detonator apparatus and method
Boberg, R.E.; Lee, R.S.; Weingart, R.C.
1989-08-01
Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.
Cellular growth in plants requires regulation of cell wall biochemistry.
Chebli, Youssef; Geitmann, Anja
2017-02-01
Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Noseband Use in Equestrian Sports – An International Study
Doherty, Orla
2017-01-01
Nosebands are used by riders to prevent the horse from opening its mouth, to increase control and, in some cases, to comply with the competition rules. While equestrian texts traditionally recommend that two adult human fingers should be able to fit under a fastened noseband, noseband tightness levels are not, in general, regulated in competition. Possible detrimental consequences for the horse, of excessively tight nosebands, include discomfort, pain or tissue damage. The current study investigated noseband usage in equestrian competition. Data regarding noseband type, position, width and tightness were collected from 750 horses in eventing (n = 354), dressage (n = 334) and performance hunter (n = 62) competitions in Ireland, England and Belgium. Data were collected immediately before or after the performance. Using the ISES taper gauge as a guide, results were classified according to the number of ‘fingers’ that could fit under the noseband at the nasal planum, and assigned to six groups: greater than 2 fingers; 2 fingers; 1.5 fingers; 1 finger; 0.5 fingers; zero fingers. A calliper was used to measure noseband width and position relative to the facial crest. The data were not normally distributed so Kruskall-Wallis and Mann-Whitney tests were used. In all, 44% of horses fell into the zero fingers classification while only 7% were in the two fingers classification. Significant differences emerged between disciplines (p<0.001), with the highest levels of noseband tightness measured among eventers followed by dressage horses with lowest levels among performance hunters. Noseband tightness did not differ significantly with horse age (p>0.05), which ranged from 4 to 19 years. The flash noseband was the most commonly used noseband (n = 326) and was significantly tighter than the cavesson (p < 0.001), drop noseband (p < 0.001) and the Micklem (p < 0.005). Noseband width ranged from 10 to 50 mm. Noseband position varied widely with the distance between the facial crest and upper noseband margin ranging from 0 to 70 mm. The high proportion of very tight nosebands found in this study raises concerns regarding the short and long term behavioural and physiological consequences of such tight nosebands are for the horse. Although these data are currently lacking, the findings are of concern. PMID:28045961
Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura
2017-01-01
Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.
Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna
2016-12-13
Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca 2+ -free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or Ca V 1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.
Computing Bounds on Resource Levels for Flexible Plans
NASA Technical Reports Server (NTRS)
Muscvettola, Nicola; Rijsman, David
2009-01-01
A new algorithm efficiently computes the tightest exact bound on the levels of resources induced by a flexible activity plan (see figure). Tightness of bounds is extremely important for computations involved in planning because tight bounds can save potentially exponential amounts of search (through early backtracking and detection of solutions), relative to looser bounds. The bound computed by the new algorithm, denoted the resource-level envelope, constitutes the measure of maximum and minimum consumption of resources at any time for all fixed-time schedules in the flexible plan. At each time, the envelope guarantees that there are two fixed-time instantiations one that produces the minimum level and one that produces the maximum level. Therefore, the resource-level envelope is the tightest possible resource-level bound for a flexible plan because any tighter bound would exclude the contribution of at least one fixed-time schedule. If the resource- level envelope can be computed efficiently, one could substitute looser bounds that are currently used in the inner cores of constraint-posting scheduling algorithms, with the potential for great improvements in performance. What is needed to reduce the cost of computation is an algorithm, the measure of complexity of which is no greater than a low-degree polynomial in N (where N is the number of activities). The new algorithm satisfies this need. In this algorithm, the computation of resource-level envelopes is based on a novel combination of (1) the theory of shortest paths in the temporal-constraint network for the flexible plan and (2) the theory of maximum flows for a flow network derived from the temporal and resource constraints. The measure of asymptotic complexity of the algorithm is O(N O(maxflow(N)), where O(x) denotes an amount of computing time or a number of arithmetic operations proportional to a number of the order of x and O(maxflow(N)) is the measure of complexity (and thus of cost) of a maximumflow algorithm applied to an auxiliary flow network of 2N nodes. The algorithm is believed to be efficient in practice; experimental analysis shows the practical cost of maxflow to be as low as O(N1.5). The algorithm could be enhanced following at least two approaches. In the first approach, incremental subalgorithms for the computation of the envelope could be developed. By use of temporal scanning of the events in the temporal network, it may be possible to significantly reduce the size of the networks on which it is necessary to run the maximum-flow subalgorithm, thereby significantly reducing the time required for envelope calculation. In the second approach, the practical effectiveness of resource envelopes in the inner loops of search algorithms could be tested for multi-capacity resource scheduling. This testing would include inner-loop backtracking and termination tests and variable and value-ordering heuristics that exploit the properties of resource envelopes more directly.
OS082. CHIPS-Child: Testing the developmental origins hypothesis.
Magee, L A; Synnes, A
2012-07-01
CHIPS-Child is a natural test of the Developmental Origins of Health and Disease hypothesis (DOHaD) [1,2]. Reduced fetal growth rate is associated with adult cardiovascular risk markers (e.g., obesity) and disease [3,4]. Evidence worldwide indicates that this relationship is independent of birth weight. The leading theory describes 'developmental programming'in utero leading to permanent alteration of the fetal genome. While those changes are adaptive in utero, they may be maladaptive postnatally. To directly test, for the first time in humans, whether differential blood pressure (BP) control in pregnancy has developmental programming effects, independent of birth weight. We predict that, like famine or protein malnutrition, 'tight' (vs. 'less tight') control of maternal BP will be associated with fetal under-nutrition and effects will be consistent with developmental programming. CHIPS-Child is a parallel, ancillary study to the CHIPS randomized controlled trial (RCT). CHIPS is designed to determine whether 'less tight' control [target diastolic BP (dBP) 100mmHg] or 'tight' control [target dBP 85mmHg] of non-proteinuric hypertension in pregnancy is better for the baby without increasing maternal risk. CHIPS-Child will examine offspring of CHIPS participants non-invasively at 12m corrected post-gestational age (±2m) for anthropometry, hair cortisol, buccal swabs for epigenetic testing and a maternal questionnaire about infant feeding practices and background. Annual contact will be maintained in years 2-5 and will include annual parental measurement of the child's height, weight and waist circumference. CHIPS will recruit 1028 women. We estimate that 80% of CHIPS centres will participate in CHIPS-Child, approximately 97% of babies will survive, and 90% of children will be followed to 12m resulting in a sample size of 626. Power will be >80% to detect a between-group difference of ⩾0.25 in 'change in z-score for weight' between birth and 12m (2-sided alpha=0.05, SD 1). Recruitment has begun. The primary outcome will be the between-group difference in early postnatal weight gain ('change in z score for weight') between birth and 12m (p<0.05). Secondary:outcomes are (i) hypothalamic pituitary adrenal axis function (hair cortisol for overall cortisol production); and (ii) between-groups differences in DNA methylation, using targeted (genes associated with growth, obesity, cardiovascular disease, and/or a developmental programming effect) and global (genome-wide microarray) methods. CHIPS-Child offers a unique opportunity to both clarify whether differential dBP control in pregnancy has developmental programming effects and contribute to our understanding of human biology and diversity in a way that a cross-sectional or other observational studies cannot. Copyright © 2012. Published by Elsevier B.V.
Smooth affine shear tight frames: digitization and applications
NASA Astrophysics Data System (ADS)
Zhuang, Xiaosheng
2015-08-01
In this paper, we mainly discuss one of the recent developed directional multiscale representation systems: smooth affine shear tight frames. A directional wavelet tight frame is generated by isotropic dilations and translations of directional wavelet generators, while an affine shear tight frame is generated by anisotropic dilations, shears, and translations of shearlet generators. These two tight frames are actually connected in the sense that the affine shear tight frame can be obtained from a directional wavelet tight frame through subsampling. Consequently, an affine shear tight frame indeed has an underlying filter bank from the MRA structure of its associated directional wavelet tight frame. We call such filter banks affine shear filter banks, which can be designed completely in the frequency domain. We discuss the digitization of affine shear filter banks and their implementations: the forward and backward digital affine shear transforms. Redundancy rate and computational complexity of digital affine shear transforms are also investigated in this paper. Numerical experiments and comparisons in image/video processing show the advantages of digital affine shear transforms over many other state-of-art directional multiscale representation systems.
Temporal guidance of musicians' performance movement is an acquired skill.
Rodger, M W M; O'Modhrain, S; Craig, C M
2013-04-01
The ancillary (non-sounding) body movements made by expert musicians during performance have been shown to indicate expressive, emotional, and structural features of the music to observers, even if the sound of the performance is absent. If such ancillary body movements are a component of skilled musical performance, then it should follow that acquiring the temporal control of such movements is a feature of musical skill acquisition. This proposition is tested using measures derived from a theory of temporal guidance of movement, "General Tau Theory" (Lee in Ecol Psychol 10:221-250, 1998; Lee et al. in Exp Brain Res 139:151-159, 2001), to compare movements made during performances of intermediate-level clarinetists before and after learning a new piece of music. Results indicate that the temporal control of ancillary body movements made by participants was stronger in performances after the music had been learned and was closer to the measures of temporal control found for an expert musician's movements. These findings provide evidence that the temporal control of musicians' ancillary body movements develops with musical learning. These results have implications for other skillful behaviors and nonverbal communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric
We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphousmore » boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.« less
Displaced aggression predicts switching deficits in people with temporal lobe epilepsy.
Gul, Amara; Ahmad, Hira
2014-12-01
This study examined the relationship between task-switching abilities and displaced aggression in people with temporal lobe epilepsy (PWE). Participants (35 PWE and 35 healthy controls) performed emotion and gender classification switching tasks. People with temporal lobe epilepsy showed larger switch costs than controls. This result reflected task-switching deficits in PWE. People with temporal lobe epilepsy reported higher anger rumination, revenge planning, and behavioral displaced aggression compared with controls. Displaced aggression was a significant predictor of the task switch costs. It is suggested that displaced aggression is a significant marker of task-switching deficits. Copyright © 2014 Elsevier Inc. All rights reserved.
Temporal Dynamic Controllability Revisited
NASA Technical Reports Server (NTRS)
Morris, Paul H.; Muscettola, Nicola
2005-01-01
An important issue for temporal planners is the ability to handle temporal uncertainty. We revisit the question of how to determine whether a given set of temporal requirements are feasible in the light of uncertain durations of some processes. In particular, we consider how best to determine whether a network is Dynamically Controllable, i.e., whether a dynamic strategy exists for executing the network that is guaranteed to satisfy the requirements. Previous work has shown the existence of a pseudo-polynomial algorithm for testing Dynamic Controllability. Here, we greatly simplify the previous framework, and present a true polynomial algorithm with a cutoff based only on the number of nodes.
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1
Jayewickreme, Chenura D.; Shivdasani, Ramesh A.
2015-01-01
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1−/− embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1+ intestinal mesenchyme and reduced in Barx1−/− stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. PMID:26057579
Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.
Jayewickreme, Chenura D; Shivdasani, Ramesh A
2015-09-01
Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.
Deckers, Roel; Debeissat, Christelle; Fortin, Pierre-Yves; Moonen, Chrit T W; Couillaud, Franck
2012-01-01
Tight regulation of gene expression in the region where therapy is necessary and for the duration required to achieve a therapeutic effect and to minimise systemic toxicity is very important for clinical applications of gene therapy. Hyperthermia in combination with a temperature sensitive heat shock protein (Hsp70) promoter presents a unique approach allowing non-invasive spatio-temporal control of transgene expression. In this study we investigated the in vivo and ex vivo relationship between temperature and duration of thermal stress with respect to the resulting gene expression using an Arrhenius analysis. A transgenic mouse expressing the luciferase reporter gene under the transcriptional control of a thermosensitive promoter was used to assure identical genotype for in vivo (mouse leg) and ex vivo (bone marrow mononuclear and embryonic fibroblast cells) studies. The mouse leg and cells were heated at different temperatures and different exposure times. Bioluminescence imaging and in vitro enzymatic assay were used to measure the resulting transgene expression. We showed that temperature-induced Hsp70 promoter activation was modulated by both temperature as well as duration of hyperthermia. The relationship between temperature and duration of hyperthermia and the resulting reporter gene expression can be modelled by an Arrhenius analysis for both in vivo as well as ex vivo. However, the increase in reporter gene expression after elevating the temperature of the thermal stress with 1°C is not comparable for in vivo and ex vivo situations. This information may be valuable for optimising clinical gene therapy protocols.
Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
B McCray; E Skordalakes; J Taylor
2011-12-31
Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Throughmore » extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.« less
Boucherie, Sylviane; Decaens, Catherine; Verbavatz, Jean-Marc; Grosse, Brigitte; Erard, Marie; Merola, Fabienne; Cassio, Doris; Combettes, Laurent
2013-12-01
Hepatocytes, which perform the main functions of the liver, are particularly vulnerable to toxic agents such as cadmium, an environmental pollutant. To identify the molecular targets for cadmium in hepatocytes, we have studied the effects of CdCl2 on the hybrid cell line WIF-B9 that exhibits stable structural and functional hepatocytic polarity. We showed that the toxicity of CdCl2 (1 µM, 24 h) resulted in a reduction in direct intercellular communication (via gap junctions) and in an increase in paracellular permeability (decrease in the sealing of tight junctions). These effects were not related to changes in the expression of the key proteins involved, Cx32 and claudin 2, the first being constitutive of gap junctions and the second of tight junctions in this cell line. Using immunofluorescence experiments, we observed a change in the location of Cx32 and claudin 2: these two proteins were less often found in the tight junction network that closes the bile canaliculi (BC). In control cells, 'Proximity Ligation Assay' (PLA Duolink®) has confirmed in situ that molecules of claudin 2 and Cx32 are very close to each other at the BC (probably less than 16 nm). This was no longer the case after treatment with CdCl2 . Localisation of occludin and Cx32 relative to each other was not modified by CdCl2 , but CdCl2 increased the PLA signal between molecules of JAM-A and Cx32. Finally, examination of freeze-fracture replicas obtained from cultures treated with CdCl2 showed the disruption of the network of tight junctions and the depletion or the disintegration of the junctional plaques associated with tight junctions. This study demonstrates in situ the changes induced by cadmium on the organisation of cell-cell junctions and points out the importance of the association Cx32/claudin 2 for the maintenance of normal hepatocyte functions. © 2013 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Manipulating membrane lipid profiles to restore T-cell function in autoimmunity.
Waddington, Kirsty E; Jury, Elizabeth C
2015-08-01
Plasma membrane lipid rafts are heterogeneous cholesterol and glycosphingolipid (GSL)-enriched microdomains, within which the tight packing of cholesterol with the saturated-acyl chains of GSLs creates a region of liquid-order relative to the surrounding disordered membrane. Thus lipid rafts govern the lateral mobility and interaction of membrane proteins and regulate a plethora of signal transduction events, including T-cell antigen receptor (TCR) signalling. The pathways regulating homoeostasis of membrane cholesterol and GSLs are tightly controlled and alteration of these metabolic processes coincides with immune cell dysfunction as is evident in atherosclerosis, cancer and autoimmunity. Indeed, membrane lipid composition is emerging as an important factor influencing the ability of cells to respond appropriately to microenvironmental stimuli. Consequently, there is increasing interest in targeting membrane lipids or their metabolic control as a novel therapeutic approach to modulate immune cell behaviour and our recent work demonstrates that this is a promising strategy in T-cells from patients with the autoimmune disease systemic lupus erythematosus (SLE). © 2015 Authors; published by Portland Press Limited.
Forest, Elodie; Logeay, Rémi; Géminard, Charles; Kantar, Diala; Frayssinoux, Florence; Heron-Milhavet, Lisa; Djiane, Alexandre
2018-03-05
During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg -mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth. © 2018 Forest et al.
Simhon, David; Halpern, Marisa; Brosh, Tamar; Vasilyev, Tamar; Ravid, Avi; Tennenbaum, Tamar; Nevo, Zvi; Katzir, Abraham
2007-02-01
A feedback temperature-controlled laser soldering system (TCLS) was used for bonding skin incisions on the backs of pigs. The study was aimed: 1) to characterize the optimal soldering parameters, and 2) to compare the immediate and long-term wound healing outcomes with other wound closure modalities. A TCLS was used to bond the approximated wound margins of skin incisions on porcine backs. The reparative outcomes were evaluated macroscopically, microscopically, and immunohistochemically. The optimal soldering temperature was found to be 65 degrees C and the operating time was significantly shorter than with suturing. The immediate tight sealing of the wound by the TCLS contributed to rapid, high quality wound healing in comparison to Dermabond or Histoacryl cyanoacrylate glues or standard suturing. TCLS of incisions in porcine skin has numerous advantages, including rapid procedure and high quality reparative outcomes, over the common standard wound closure procedures. Further studies with a variety of skin lesions are needed before advocating this technique for clinical use.
Carroni, Marta; Franke, Kamila B; Maurer, Michael; Jäger, Jasmin; Hantke, Ingo; Gloge, Felix; Linder, Daniela; Gremer, Sebastian; Turgay, Kürşad; Bukau, Bernd; Mogk, Axel
2017-11-22
Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.
Alignment of the Stanford Linear Collider Arcs: Concepts and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitthan, R.; Bell, B.; Friedsam, H.
1987-02-01
The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with themore » unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components.« less
Premkumar, Preethi; Fannon, Dominic; Kuipers, Elizabeth; Simmons, Andrew; Frangou, Sophia; Kumari, Veena
2008-01-01
Cognitive decision-making is known to be deficient, but relatively less is known about emotional decision-making in schizophrenia. The Iowa gambling task (IGT) is considered a reliable probe of emotional decision-making and believed to reflect orbitofrontal cortex (OFC) function. The expectancy-valence model of IGT performance implicates three dissociable components, namely, attention to reward, memory for past, relative to recent, outcomes and impulsivity in emotional decision-making. We examined IGT performance, its three components, and their grey matter volume (GMV) correlates in 75 stable patients with schizophrenia, relative to 25 healthy individuals. Patients, relative to controls, showed impaired IGT performance and poor memory for past, relative to recent, outcomes. IGT performance correlated with GMV in the OFC in controls, but not patients. There were associations between (a) attention to reward and GMV in the frontal, temporal, parietal and striatal regions in controls, and in the temporal and thalamic regions in patients, (b) memory for past outcomes and GMV in the temporal region in controls, and the frontal and temporal regions in patients, and (c) low impulsivity and greater GMV in the frontal, temporal, posterior cingulate and occipital regions in controls, and in the frontal, temporal and posterior cingulate regions in patients. Most IGT-GMV associations were stronger in controls. It is concluded that (i) poor memory, rather than less attention to reward or impulsivity, contributes to IGT performance deficit, and (ii) the relationship of IGT performance and its components with GMVs especially in the frontal and temporal lobes is lost or attenuated in schizophrenia.
GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.
Spencer, Charles W.
1985-01-01
The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.
Universal Sign Control of Coupling in Tight-Binding Lattices
NASA Astrophysics Data System (ADS)
Keil, Robert; Poli, Charles; Heinrich, Matthias; Arkinstall, Jake; Weihs, Gregor; Schomerus, Henning; Szameit, Alexander
2016-05-01
We present a method of locally inverting the sign of the coupling term in tight-binding systems, by means of inserting a judiciously designed ancillary site and eigenmode matching of the resulting vertex triplet. Our technique can be universally applied to all lattice configurations, as long as the individual sites can be detuned. We experimentally verify this method in laser-written photonic lattices and confirm both the magnitude and the sign of the coupling by interferometric measurements. Based on these findings, we demonstrate how such universal sign-flipped coupling links can be embedded into extended lattice structures to impose a Z2-gauge transformation. This opens a new avenue for investigations on topological effects arising from magnetic fields with aperiodic flux patterns or in disordered systems.
Demonstration of a memory for tightly guided light in an optical nanofiber.
Gouraud, B; Maxein, D; Nicolas, A; Morin, O; Laurat, J
2015-05-08
We report the experimental observation of slow-light and coherent storage in a setting where light is tightly confined in the transverse directions. By interfacing a tapered optical nanofiber with a cold atomic ensemble, electromagnetically induced transparency is observed and light pulses at the single-photon level are stored in and retrieved from the atomic medium. The decay of efficiency with storage time is also measured and related to concurrent decoherence mechanisms. Collapses and revivals can be additionally controlled by an applied magnetic field. Our results based on subdiffraction-limited optical mode interacting with atoms via the strong evanescent field demonstrate an alternative to free-space focusing and a novel capability for information storage in an all-fibered quantum network.
Tight Placement of Erich Arch Bar While Avoiding Wire Fatigue Failure.
Kirk, Daniel; Whitney, Joseph; Shafer, David; Song, Liansheng
2016-03-01
To determine the number of wire twists needed to acquire ideal Erich arch bar tightness before wire fatigue failure (fracture) in relation to different distances and angles at which different gauge wires are grasped to provide information to improve the efficiency of arch bar application. This study mimicked surgical placement of arch bars with 24- and 26-gauge wires. The number of twists to tightness and failure was evaluated when the wire distance between the arch bar and wire holder tip changed (5 vs 10 mm) and when the degree at which the wire was held relative to the tooth axis was changed (45° vs 90°). A wire shearing test also was used to investigate the fatigability of wires tightened under these same conditions. Wires twisted to tightness, past tightness, and after shearing test movements were visualized with electron microscopy. For 24-gauge wire held at 5 mm, 2.6 to 2.8 twists were needed for wire tightness, with failure after 1.7 to 1.9 twists past tightness; for 24-gauge wire held at 10 mm, 4.4 to 4.9 twists produced tightness, with failure after 2.3 to 2.9 twists past tightness. For 26-gauge wire held at 5 mm, 3.3 to 3.5 twists provided tightness, with 1.6 to 1.8 twists past tightness causing failure; for 26-gauge wire held at 10 mm, 5.1 to 5.5 twists produced tightness, with 3.1 to 3.7 twists past tightness causing failure. At a 45° angle, the wire tightened with fewer twists and showed more resistance to failure with twists past tightness compared with 90° using 24- and 26-gauge wires. In contrast, 24-gauge wire held at a 5-mm distance showed the opposite result, with decreased resistance to failure at the 45° angle. However, the differences were not statistically meaningful. Scanning election microscopy showed no wire fatigue for either angle for 26-gauge wire held at a 5-mm distance and twisted to tightness. After overtightening and oscillation, the 90° angle trials showed fatigue, whereas the 45° angle trials did not. Holding a 24-gauge wire at 45° to the tooth axis is recommended owing to fewer twists to tightness and more resistance to failure. A 5-mm grasping distance is recommended for experienced surgeons owing to fewer twists to tightness, whereas a 10-mm grasping distance is recommended for novice surgeons owing to a greater tolerance for over-twisting before failure. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Masaki, Tomoyuki; Kojima, Takashi; Okabayashi, Tamaki; Ogasawara, Noriko; Ohkuni, Tsuyoshi; Obata, Kazufumi; Takasawa, Akira; Murata, Masaki; Tanaka, Satoshi; Hirakawa, Satoshi; Fuchimoto, Jun; Ninomiya, Takafumi; Fujii, Nobuhiro; Tsutsumi, Hiroyuki; Himi, Tetsuo; Sawada, Norimasa
2011-01-01
Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma, and severe lower respiratory tract disease in infants and young children. The airway epithelium, which has a well-developed barrier regulated by tight junctions, is the first line of defense during respiratory virus infection. In upper airway human nasal epithelial cells (HNECs), however, the primary site of RSV infection, the mechanisms of replication and budding of RSV, and the epithelial cell responses, including the tight junctional barrier, remain unknown. To investigate the detailed mechanisms of replication and budding of RSV in HNECs and the epithelial cell responses, we established an RSV-infected model using human telomerase reverse transcriptase–-transfected HNECs. We first found that the expression and barrier function of tight junction molecules claudin-4 and occludin were markedly induced together with production of proinflammatory cytokines interleukin 8 and tumor necrosis factor-α in HNECs after RSV infection, and the induction of tight junction molecules possibly contributed to budding of RSV. Furthermore, the replication and budding of RSV and the epithelial cell responses in HNECs were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κB pathway. The control of this pathway in HNECs may be useful not only for prevention of replication and budding of RSV, but also in therapy for RSV-induced respiratory pathogenesis. PMID:21562222
Rajah, M Natasha; Ames, Blaine; D'Esposito, Mark
2008-03-07
Neuroimaging studies have reported increased prefrontal cortex (PFC) activity during temporal context retrieval versus recognition memory. However, it remains unclear if these activations reflect PFC contributions to domain-general executive control processes or domain-specific retrieval processes. To gain a better understanding of the functional roles of these various PFC regions during temporal context retrieval we propose it is necessary to examine PFC activity across tasks from different domains, in which parallel manipulations are included targeting specific cognitive processes. In the current fMRI study, we examined domain-general and domain-specific PFC contributions to temporal context retrieval by increasing stimulus (but maintaining response number) and increasing response number (but maintaining stimulus number) across temporal context memory and ordering control tasks, for faces. The control task required subjects to order faces from youngest to oldest. Our behavioral results indicate that the combination of increased stimulus and response numbers significantly increased task difficulty for temporal context retrieval and ordering tasks. Across domains, increasing stimulus number, while maintaining response numbers, caused greater right lateral premotor cortex (BA 6/8) activity; whereas increasing response number, while maintaining stimulus number, caused greater domain-general left DLPFC (BA 9) and VLPFC (BA 44/45) activity. In addition, we found domain-specific right DLPFC (BA 9) activity only during retrieval events. These results highlight the functional heterogeneity of frontal cortex, and suggest its involvement in temporal context retrieval is related to its role in various cognitive control processes.
Solute Transport Dynamics in a Large Hyporheic Corridor System
NASA Astrophysics Data System (ADS)
Zachara, J. M.; Chen, X.; Murray, C. J.; Shuai, P.; Rizzo, C.; Song, X.; Dai, H.
2016-12-01
A hyporheic corridor is an extended zone of groundwater surface water-interaction that occurs within permeable aquifer sediments in hydrologic continuity with a river. These systems are dynamic and tightly coupled to river stage variations that may occur over variable time scales. Here we describe the behavior of a persistent uranium (U) contaminant plume that exists within the hyporheic corridor of a large, managed river system - the Columbia River. Temporally dense monitoring data were collected for a two year period from wells located within the plume at varying distances up to 400 m from the river shore. Groundwater U originates from desorption of residual U in the lower vadose zone during periods of high river stage and associated elevated water table. U is weakly adsorbed to aquifer sediments because of coarse texture, and along with specific conductance, serves as a tracer of vadose zone source terms, solute transport pathways, and groundwater-surface water mixing. Complex U concentration and specific conductance trends were observed for all wells that varied with distance from the river shoreline and the river hydrograph, although trends for each well were generally repeatable for each year during the monitoring period. Statistical clustering analysis was used to identify four groups of wells that exhibited common trends in dissolved U and specific conductance. A flow and reactive transport code, PFLOTRAN, was implemented within a hydrogeologic model of the groundwater-surface water interaction zone to provide insights on hydrologic processes controlling monitoring trends and cluster behavior. The hydrogeologic model was informed by extensive subsurface characterization, with the spatially variable topography of a basal aquitard being one of several key parameters. Numerical tracer experiments using PFLOTRAN revealed the presence of temporally complex flow trajectories, spatially variable domains of groundwater - river water mixing, and locations of enhanced groundwater - river exchange that helped to explain monitoring trends. Observations and modeling results are integrated into a conceptual model of this highly complex and dynamic system with applicability to hyporheic corridor systems elsewhere.
Machado, Maiaro Cabral Rosa; Octacilio-Silva, Shirlei; Costa, Mara Silvia A.; Ramos, Ricardo Guelerman P.
2011-01-01
Background Drosophila retinal architecture is laid down between 24–48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level. PMID:21857931
Enlarged right superior temporal gyrus in children and adolescents with autism.
Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Vitale, Matthew P; Hardan, Antonio Y
2010-11-11
The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age=13.5±3.4years; full-scale IQ=103.6±13.4) and 19 healthy controls (mean age=13.7±3.0years; full-scale IQ=103.9±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes was significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. Copyright © 2010 Elsevier B.V. All rights reserved.
Enlarged Right Superior Temporal Gyrus in Children and Adolescents with Autism
Jou, Roger J.; Minshew, Nancy J.; Keshavan, Matcheri S.; Vitale, Matthew P.; Hardan, Antonio Y.
2010-01-01
The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age = 13.5 ±3.4 years; full-scale IQ = 103.6 ±13.4) and 19 healthy controls (mean age = 13.7 ±3.0 years; full-scale IQ = 103.9 ±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes were significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. PMID:20833154
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Information on glove-bag installation, equipment and supplies, and work practices is contained in the... (or owner or operator under common control). Leak-tight means that solids or liquids cannot escape or... such as cliffs, lakes or other large bodies of water, deep and wide ravines, and mountains. Remoteness...
30 CFR 57.4431 - Surface storage restrictions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: (1) Flammable liquids in safety cans or in other containers placed in tightly closed cabinets. The... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4431 Surface storage restrictions. (a) On the surface, no unburied flammable or combustible liquids or flammable gases shall be stored...
30 CFR 57.4431 - Surface storage restrictions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) Flammable liquids in safety cans or in other containers placed in tightly closed cabinets. The... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4431 Surface storage restrictions. (a) On the surface, no unburied flammable or combustible liquids or flammable gases shall be stored...
A quantitative adverse outcome pathway model for thyroid axis disruption in Xenopus laevis tadpoles
The development of Xenopus laevis tadpoles is tightly controlled by the thyroid hormones tetraiodothyronine (T4) and triiodothyronine (T3). Toxicity testing efforts have shown that several compounds interfere with development in X. laevis tadpoles by disrupting the thyroid axis a...
189. Photographic copy of original construction drawing dated December 10, ...
189. Photographic copy of original construction drawing dated December 10, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). TUNNEL NO.1 CONTROLLING WORKS; WATER TIGHT DOOR; CHANNEL VENT INLETS-PIER NOSE ANGLES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Temporal information processing in short- and long-term memory of patients with schizophrenia.
Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank
2011-01-01
Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.
Glucocorticoids, epigenetic control and stress resilience
Reul, Johannes M.H.M.; Collins, Andrew; Saliba, Richard S.; Mifsud, Karen R.; Carter, Sylvia D.; Gutierrez-Mecinas, Maria; Qian, Xiaoxiao; Linthorst, Astrid C.E.
2014-01-01
Glucocorticoid hormones play a pivotal role in the response to stressful challenges. The surge in glucocorticoid hormone secretion after stress needs to be tightly controlled with characteristics like peak height, curvature and duration depending on the nature and severity of the challenge. This is important as chronic hyper- or hypo-responses are detrimental to health due to increasing the risk for developing a stress-related mental disorder. Proper glucocorticoid responses to stress are critical for adaptation. Therefore, the tight control of baseline and stress-evoked glucocorticoid secretion are important constituents of an organism's resilience. Here, we address a number of mechanisms that illustrate the multitude and complexity of measures safeguarding the control of glucocorticoid function. These mechanisms include the control of mineralocorticoid (MR) and glucocorticoid receptor (GR) occupancy and concentration, the dynamic control of free glucocorticoid hormone availability by corticosteroid-binding globulin (CBG), and the control exerted by glucocorticoids at the signaling, epigenetic and genomic level on gene transcriptional responses to stress. We review the beneficial effects of regular exercise on HPA axis and sleep physiology, and cognitive and anxiety-related behavior. Furthermore, we describe that, possibly through changes in the GABAergic system, exercise reduces the impact of stress on a signaling pathway specifically in the dentate gyrus that is strongly implicated in the behavioral response to that stressor. These observations underline the impact of life style on stress resilience. Finally, we address how single nucleotide polymorphisms (SNPs) affecting glucocorticoid action can compromise stress resilience, which becomes most apparent under conditions of childhood abuse. PMID:27589660
1983-06-01
LOSARDO Project Engineer APPROVED: .MARMCINIhI, Colonel. USAF Chief, Coaud and Control Division FOR THE CCOaIDKR: Acting Chief, Plea Off ice * **711...WORK UNIT NUMBERS General Dynamics Corporation 62702F Data Systems Division P 0 Box 748, Fort Worth TX 76101 55811829 I1. CONTROLLING OFFICE NAME AND...Processing System for 29 the Operation/Direction Center(s) 4-3 Distribution of Processing Control 30 for the Operation/Direction Center(s) 4-4 Generalized
Evidence-based Controls for Epidemics Using Spatio-temporal Stochastic Model as a Bayesian Framwork
USDA-ARS?s Scientific Manuscript database
The control of highly infectious diseases of agricultural and plantation crops and livestock represents a key challenge in epidemiological and ecological modelling, with implemented control strategies often being controversial. Mathematical models, including the spatio-temporal stochastic models con...
Control of DNA replication: a new facet of Hox proteins?
Miotto, Benoit; Graba, Yacine
2010-09-01
Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
Rhythms can overcome temporal orienting deficit after right frontal damage.
Triviño, Mónica; Arnedo, Marisa; Lupiáñez, Juan; Chirivella, Javier; Correa, Angel
2011-12-01
The main aim of this study was to test whether the use of rhythmic information to induce temporal expectations can overcome the deficit in controlled temporal preparation shown by patients with frontal damage (i.e. temporal orienting and foreperiod effects). Two tasks were administered to a group of 15 patients with a frontal brain lesion and a group of 15 matched control subjects: a Symbolic Cued Task where the predictive information regarding the time of target appearance was provided by a symbolic cue (short line-early vs. long line-late interval) and a Rhythm Cued Task where the predictive temporal information was provided by a rhythm (fast rhythm-early vs. slow rhythm-late interval). The results of the Symbolic Cued Task replicated both the temporal orienting deficit in right frontal patients and the absence of foreperiod effects in both right and left frontal patients, reported in our previous study (Triviño, Correa, Arnedo, & Lupiañez, 2010). However, in the Rhythm Cued Task, the right frontal group showed normal temporal orienting and foreperiod effects, while the left frontal group showed a significant deficit of both effects. These findings show that automatic temporal preparation, as induced by a rhythm, can help frontal patients to make effective use of implicit temporal information to respond at the optimum time. Our neuropsychological findings also provide a novel suggestion for a neural model, in which automatic temporal preparation is left-lateralized and controlled temporal preparation is right-lateralized in the frontal lobes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Goghari, Vina M; Macdonald, Angus W; Sponheim, Scott R
2011-11-01
Temporal lobe abnormalities and emotion recognition deficits are prominent features of schizophrenia and appear related to the diathesis of the disorder. This study investigated whether temporal lobe structural abnormalities were associated with facial emotion recognition deficits in schizophrenia and related to genetic liability for the disorder. Twenty-seven schizophrenia patients, 23 biological family members, and 36 controls participated. Several temporal lobe regions (fusiform, superior temporal, middle temporal, amygdala, and hippocampus) previously associated with face recognition in normative samples and found to be abnormal in schizophrenia were evaluated using volumetric analyses. Participants completed a facial emotion recognition task and an age recognition control task under time-limited and self-paced conditions. Temporal lobe volumes were tested for associations with task performance. Group status explained 23% of the variance in temporal lobe volume. Left fusiform gray matter volume was decreased by 11% in patients and 7% in relatives compared with controls. Schizophrenia patients additionally exhibited smaller hippocampal and middle temporal volumes. Patients were unable to improve facial emotion recognition performance with unlimited time to make a judgment but were able to improve age recognition performance. Patients additionally showed a relationship between reduced temporal lobe gray matter and poor facial emotion recognition. For the middle temporal lobe region, the relationship between greater volume and better task performance was specific to facial emotion recognition and not age recognition. Because schizophrenia patients exhibited a specific deficit in emotion recognition not attributable to a generalized impairment in face perception, impaired emotion recognition may serve as a target for interventions.
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Sengupta, A.; Pangle, L.; Abramson, N.; Barron-Gafford, G.; Breshears, D. D.; Bugaj, A.; Chorover, J.; Dontsova, K.; Durcik, M.; Ferre, T. P. A.; Harman, C. J.; Hunt, E.; Huxman, T. E.; Kim, M.; Maier, R. M.; Matos, K.; Alves Meira Neto, A.; Meredith, L. K.; Monson, R. K.; Niu, G. Y.; Pelletier, J. D.; Rasmussen, C.; Ruiz, J.; Saleska, S. R.; Schaap, M. G.; Sibayan, M.; Tuller, M.; Van Haren, J. L. M.; Wang, Y.; Zeng, X.; Troch, P. A.
2017-12-01
Understanding the process interactions and feedbacks among water, microbes, plants, and porous geological media is crucial for improving predictions of the response of Earth's critical zone to future climatic conditions. However, the integrated co-evolution of landscapes under change is notoriously difficult to investigate. Laboratory studies are typically limited in spatial and temporal scale, while field studies lack observational density and control. To bridge the gap between controlled lab and uncontrolled field studies, the University of Arizona - Biosphere 2 built a macrocosm experiment of unprecedented scale: the Landscape Evolution Observatory (LEO). LEO consists of three replicated, 330-m2 hillslope landscapes inside a 5000-m2 environmentally controlled facility. The engineered landscapes contain 1-m depth of basaltic tephra ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a dense sensor network capable of resolving water, carbon, and energy cycling processes at sub-meter to whole-landscape scale. Embedded sampling devices allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers applied with the artificial rainfall. LEO is now fully operational and intensive forcing experiments have been launched. While operating the massive infrastructure poses significant challenges, LEO has demonstrated the capacity of tracking multi-scale matter and energy fluxes at a level of detail impossible in field experiments. Initial sensor, sampler, and restricted soil coring data are already providing insights into the tight linkages between water flow, weathering, and (micro-) biological community development during incipient landscape evolution. Over the years to come, these interacting processes are anticipated to drive the model systems to increasingly complex states, potentially perturbed by changes in climatic forcing. By intensively monitoring the evolutionary trajectory, integrating data with models, and fostering community-wide collaborations, we envision that emergent landscape structures and functions can be linked and significant progress can be made toward predicting the coupled hydro-biogeochemical and ecological responses to global change.
Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis.
Errington, J
1993-01-01
Bacillus subtilis sporulation is an adaptive response to nutritional stress and involves the differential development of two cells. In the last 10 years or so, virtually all of the regulatory genes controlling sporulation, and many genes directing the structural and morphological changes that accompany sporulation, have been cloned and characterized. This review describes our current knowledge of the program of gene expression during sporulation and summarizes what is known about the functions of the genes that determine the specialized biochemical and morphological properties of sporulating cells. Most steps in the genetic program are controlled by transcription factors that have been characterized in vitro. Two sporulation-specific sigma factors, sigma E and sigma F, appear to segregate at septation, effectively determining the differential development of the mother cell and prespore. Later, each sigma is replaced by a second cell-specific sigma factor, sigma K in the mother cell and sigma G in the prespore. The synthesis of each sigma factor is tightly regulated at both the transcriptional and posttranslational levels. Usually this regulation involves an intercellular interaction that coordinates the developmental programmes of the two cells. At least two other transcription factors fine tune the timing and levels of expression of genes in the sigma E and sigma K regulons. The controlled synthesis of the sigma factors and other transcription factors leads to a spatially and temporally ordered program of gene expression. The gene products made during each successive stage of sporulation help to bring about a sequence of gross morphological changes and biochemical adaptations. The formation of the asymmetric spore septum, engulfment of the prespore by the mother cell, and formation of the spore core, cortex, and coat are described. The importance of these structures in the development of the resistance, dormancy, and germination properties of the spore is assessed. Images PMID:8464402
Pragmatics in discourse performance: insights from aphasiology.
Ulatowska, Hanna K; Olness, Gloria Streit
2007-05-01
This article examines the preservation of pragmatic abilities of individuals with aphasia, as manifested in the discourse they produce. The construct of coherence is used as a framework for understanding this pragmatic preservation. Discourse coherence is largely derived from the structure, selection, and highlighting of information expressed in a discourse. Personal narratives, as one type of discourse, represent an extended turn-in-conversation on a topic of personal relevance to the speaker, common in everyday life. As such, they provide a valuable source of information about a speaker's pragmatic ability. Examples of personal narratives told by individuals with aphasia are used to illustrate and discuss the means by which discourse coherence is achieved. These include a tightly structured temporal-causal event line, development of theme, and evaluation of information. Possible approaches to clinical assessment are considered, including use of global rating systems.
Stochastic ice stream dynamics
Bertagni, Matteo Bernard; Ridolfi, Luca
2016-01-01
Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960
Computing the Envelope for Stepwise Constant Resource Allocations
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Clancy, Daniel (Technical Monitor)
2001-01-01
Estimating tight resource level is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with noises equal to the events and edges equal to the necessary predecessor links between events. The incremental solution of a staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. The staged algorithm has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible for use in the inner loop of search-based scheduling algorithms.
Computing the Envelope for Stepwise-Constant Resource Allocations
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Clancy, Daniel (Technical Monitor)
2002-01-01
Computing tight resource-level bounds is a fundamental problem in the construction of flexible plans with resource utilization. In this paper we describe an efficient algorithm that builds a resource envelope, the tightest possible such bound. The algorithm is based on transforming the temporal network of resource consuming and producing events into a flow network with nodes equal to the events and edges equal to the necessary predecessor links between events. A staged maximum flow problem on the network is then used to compute the time of occurrence and the height of each step of the resource envelope profile. Each stage has the same computational complexity of solving a maximum flow problem on the entire flow network. This makes this method computationally feasible and promising for use in the inner loop of flexible-time scheduling algorithms.
Spin diffusion and torques in disordered antiferromagnets
NASA Astrophysics Data System (ADS)
Manchon, Aurelien
2017-03-01
We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.
Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.
2004-01-01
In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .
Tight junctions and human diseases.
Sawada, Norimasa; Murata, Masaki; Kikuchi, Keisuke; Osanai, Makoto; Tobioka, Hirotoshi; Kojima, Takashi; Chiba, Hideki
2003-09-01
Tight junctions are intercellular junctions adjacent to the apical end of the lateral membrane surface. They have two functions, the barrier (or gate) function and the fence function. The barrier function of tight junctions regulates the passage of ions, water, and various macromolecules, even of cancer cells, through paracellular spaces. The barrier function is thus relevant to edema, jaundice, diarrhea, and blood-borne metastasis. On the other hand, the fence function maintains cell polarity. In other words, tight junctions work as a fence to prevent intermixing of molecules in the apical membrane with those in the lateral membrane. This function is deeply involved in cancer cell biology, in terms of loss of cell polarity. Of the proteins comprising tight junctions, integral membrane proteins occludin, claudins, and JAMs have been recently discovered. Of these molecules, claudins are exclusively responsible for the formation of tight-junction strands and are connected with the actin cytoskeleton mediated by ZO-1. Thus, both functions of tight junctions are dependent on the integrity of the actin cytoskeleton as well as ATP. Mutations in the claudin14 and the claudin16 genes result in hereditary deafness and hereditary hypomagnesemia, respectively. Some pathogenic bacteria and viruses target and affect the tight-junction function, leading to diseases. In this review, the relationship between tight junctions and human diseases is summarized.
Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner
2017-10-01
We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2 = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2 = 0.7, P = 0.00001 and r 2 = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2 = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Ma, Jie; Kanwal, Jagmeet S.
2014-01-01
The neural substrate for the perception of vocalizations is relatively well described, but how their timing and specificity are tightly coupled with accompanying physiological changes and context-appropriate behaviors remains unresolved. We hypothesized that temporally integrated vocal and emotive responses, especially the expression of fear, vigilance and aggression, originate within the amygdala. To test this hypothesis, we performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements (PMs). In a few locations, responses were constrained to vocalization and/or PMs despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses vs. social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid (KA) at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that localized clusters of neurons may simultaneously modulate the activity of multiple central pattern generators (CPGs) present within the brainstem. PMID:24624089
Ma, Jie; Kanwal, Jagmeet S
2014-01-01
The neural substrate for the perception of vocalizations is relatively well described, but how their timing and specificity are tightly coupled with accompanying physiological changes and context-appropriate behaviors remains unresolved. We hypothesized that temporally integrated vocal and emotive responses, especially the expression of fear, vigilance and aggression, originate within the amygdala. To test this hypothesis, we performed electrical microstimulation at 461 highly restricted loci within the basal and central amygdala in awake mustached bats. At a subset of these sites, high frequency stimulation with weak constant current pulses presented at near-threshold levels triggered vocalization of either echolocation pulses or social calls. At the vast majority of locations, microstimulation produced a constellation of changes in autonomic and somatomotor outputs. These changes included widespread co-activation of significant tachycardia and hyperventilation and/or rhythmic ear pinna movements (PMs). In a few locations, responses were constrained to vocalization and/or PMs despite increases in the intensity of stimulation. The probability of eliciting echolocation pulses vs. social calls decreased in a medial-posterior to anterolateral direction within the centrobasal amygdala. Microinjections of kainic acid (KA) at stimulation sites confirmed the contribution of cellular activity rather than fibers-of-passage in the control of multimodal outputs. The results suggest that localized clusters of neurons may simultaneously modulate the activity of multiple central pattern generators (CPGs) present within the brainstem.
RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes.
Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle
2016-01-01
Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation.
Schmitt, Michael
2004-09-01
We study networks of spiking neurons that use the timing of pulses to encode information. Nonlinear interactions model the spatial groupings of synapses on the neural dendrites and describe the computations performed at local branches. Within a theoretical framework of learning we analyze the question of how many training examples these networks must receive to be able to generalize well. Bounds for this sample complexity of learning can be obtained in terms of a combinatorial parameter known as the pseudodimension. This dimension characterizes the computational richness of a neural network and is given in terms of the number of network parameters. Two types of feedforward architectures are considered: constant-depth networks and networks of unconstrained depth. We derive asymptotically tight bounds for each of these network types. Constant depth networks are shown to have an almost linear pseudodimension, whereas the pseudodimension of general networks is quadratic. Networks of spiking neurons that use temporal coding are becoming increasingly more important in practical tasks such as computer vision, speech recognition, and motor control. The question of how well these networks generalize from a given set of training examples is a central issue for their successful application as adaptive systems. The results show that, although coding and computation in these networks is quite different and in many cases more powerful, their generalization capabilities are at least as good as those of traditional neural network models.
Amen, Melanie; Espinoza, Herbert M.; Cox, Carol; Liang, Xiaowen; Wang, Jianbo; Link, Todd M. E.; Brennan, Richard G.; Martin, James F.; Amendt, Brad A.
2008-01-01
Homeodomain (HD) transcriptional activities are tightly regulated during embryogenesis and require protein interactions for their spatial and temporal activation. The chromatin-associated high mobility group protein (HMG-17) is associated with transcriptionally active chromatin, however its role in regulating gene expression is unclear. This report reveals a unique strategy in which, HMG-17 acts as a molecular switch regulating HD transcriptional activity. The switch utilizes the Wnt/β-catenin signaling pathway and adds to the diverse functions of β-catenin. A high-affinity HMG-17 interaction with the PITX2 HD protein inhibits PITX2 DNA-binding activity. The HMG-17/PITX2 inactive complex is concentrated to specific nuclear regions primed for active transcription. β-Catenin forms a ternary complex with PITX2/HMG-17 to switch it from a repressor to an activator complex. Without β-catenin, HMG-17 can physically remove PITX2 from DNA to inhibit its transcriptional activity. The PITX2/HMG-17 regulatory complex acts independently of promoter targets and is a general mechanism for the control of HD transcriptional activity. HMG-17 is developmentally regulated and its unique role during embryogenesis is revealed by the early embryonic lethality of HMG-17 homozygous mice. This mechanism provides a new role for canonical Wnt/β-catenin signaling in regulating HD transcriptional activity during development using HMG-17 as a molecular switch. PMID:18045789
Insulin analogues in type 1 diabetes mellitus: getting better all the time.
Mathieu, Chantal; Gillard, Pieter; Benhalima, Katrien
2017-07-01
The treatment of type 1 diabetes mellitus consists of external replacement of the functions of β cells in an attempt to achieve blood levels of glucose as close to the normal range as possible. This approach means that glucose sensing needs to be replaced and levels of insulin need to mimic physiological insulin-action profiles, including basal coverage and changes around meals. Training and educating patients are crucial for the achievement of good glycaemic control, but having insulin preparations with action profiles that provide stable basal insulin coverage and appropriate mealtime insulin peaks helps people with type 1 diabetes mellitus to live active lives without sacrificing tight glycaemic control. Insulin analogues enable patients to achieve this goal, as some have fast action profiles, and some have very slow action profiles, which gives people with type 1 diabetes mellitus the tools to achieve dynamic insulin-action profiles that enable tight glycaemic control with a risk of hypoglycaemia that is lower than that with human short-acting and long-acting insulins. This Review discusses the established and novel insulin analogues that are used to treat patients with type 1 diabetes mellitus and provides insights into the future development of insulin analogues.
Srinivas, Vinayaka; Kitagawa, Mayumi; Wong, Jasmine; Liao, Pei-Ju; Lee, Sang Hyun
2015-11-24
Supernumerary centrosomes promote the assembly of abnormal spindles in many human cancers. The observation that modest changes in the centrosomal levels of Mps1 kinase can cause centrosome overduplication in human cells suggests the existence of a regulatory system that may tightly control its centrosomal stability. Here, we show that Cdkn3, a Cdk-associated phosphatase, prevents Mps1-mediated centrosome overduplication. We identify Cdkn3 as a direct binding partner of Mps1. The interaction between Mps1 and Cdkn3 is required for Mps1 to recruit Cdkn3 to centrosomes. Subsequently, Mps1-bound Cdkn3 forms a regulatory system that controls the centrosomal levels of Mps1 through proteasome-mediated degradation and thereby prevents Mps1-mediated centrosome overduplication. Conversely, knockdown of Cdkn3 stabilizes Mps1 at centrosomes, which promotes centrosome overduplication. We suggest that Mps1 and Cdkn3 form a self-regulated feedback loop at centrosomes to tightly control the centrosomal levels of Mps1, which prevents centrosome overduplication in human cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Time Perspective, Mood Disturbance, and Suicide Liberation.
ERIC Educational Resources Information Center
Lennings, C. J.
1994-01-01
Assessed 238 university students and 159 high school students on temporal and personality measures. Found that temporal extension, temporal attitude, and impulsivity had comparatively little effect on suicide ideation after controlling effects of mood disturbance. However, negative temporal attitudes appeared to have significant impact on suicide…
Moppett, Iain Keith; White, Stuart; Griffiths, Richard; Buggy, Donal
2017-07-25
Hypotension during anaesthesia for hip fracture surgery is common. Recent data suggest that there is an association between the lowest intra-operative blood pressure and mortality, even when adjusted for co-morbidities. This is consistent with data derived from the wider surgical population, where magnitude and duration of hypotension are associated with mortality and peri-operative complications. However, there are no trial to data to support more aggressive blood pressure control. We are conducting a three-centre, randomised, double-blinded pilot study in three hospitals in the United Kingdom. The sample size will be 75 patients (25 from each centre). Randomisation will be done using computer-generated concealed tables. Both participants and investigators will be blinded to group allocation. Participants will be aged >70 years, cognitively intact (Abbreviated Mental Test Score 7 or greater), able to give informed consent and admitted directly through the emergency department with a fractured neck of the femur requiring operative repair. Patients randomised to tight blood pressure control or avoidance of intra-operative hypotension will receive active treatment as required to maintain both of the following: systolic arterial blood pressure >80% of baseline pre-operative value and mean arterial pressure >75 mmHg throughout. All participants will receive standard hospital care, including spinal or general anaesthesia, at the discretion of the clinical team. The primary outcome is a composite of the presence or absence of defined cardiovascular, renal and delirium morbidity within 7 days of surgery (myocardial injury, stroke, acute kidney injury, delirium). Secondary endpoints will include the defined individual morbidities, mortality, early mobility and discharge to usual residence. This is a small-scale pilot study investigating the feasibility of a trial of tight intra-operative blood pressure control in a frail elderly patient group with known high morbidity and mortality. Positive findings will provide the basis for a larger-scale study. ISRCTN Registry identifier: ISRCTN89812075 . Registered on 30 August 2016.
USDA-ARS?s Scientific Manuscript database
CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signaling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem), and vascular cambium are tightly controlled by CLE signaling pathway...
10 CFR 36.61 - Inspection and maintenance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... for radioactive contamination in pool water required by § 36.59(b) using a radiation check source, if... emergency source return control required by § 36.31(c). (7) Leak-tightness of systems through which pool water circulates (visual inspection). (8) Operability of the heat and smoke detectors and extinguisher...
Distance Education and Corporate Training in Brazil: Regulations and Interrelationships
ERIC Educational Resources Information Center
Porto, Stella C. S.; Berge, Zane L.
2008-01-01
Distance education in Brazil has evolved more slowly than distance education offerings in other developing countries. This is because all aspects of Brazil's publicly-funded educational system are excessively regulated, highly bureaucratic, and tightly centralized. Such highly centralized bureaucracy and strict control has resulted in tremendous…
Yang, Tingting; Lin, Zhenzhou; Xie, Ling; Wang, Yao; Pan, Suyue
2017-07-13
Vasogenic edema induced by blood brain barrier disruption and neuronal loss play an important role in the epileptogenic process. 4,4'- diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) is a commonly used anion channel inhibitor that has been reported to exert an anticonvulsant effect in rat hippocampus in vitro. The present study aimed to investigate whether DIDS could prevent epileptogenic process in rat lithium-pilocarpine model of temporal lobe epilepsy. The tight junction proteins and serum extravasation were examined in the piriform cortex 3days after status epilepticus. The findings showed that status epilepticus induced vasogenic edema. Based on these findings, rats were intracerebroventricularly infused with saline and DIDS 1 week after surgery, DIDS reduced vasogenic edema and prevented neuronal loss following status epilepticus in the piriform cortex. Moreover, spontaneous recurrent seizures were recorded by continuous video monitoring. DIDS significantly reduced the frequency and duration of spontaneous recurrent seizures from day 28 to day 42 post status epilepticus. These findings demonstrated that DIDS attenuated vasogenic edema and neuronal apoptosis and might exert disease-modifying effect in animal model of temporal lobe epilepsy. These results explored a novel therapeutic strategy for treatment of epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Yongsheng; Zaas, Aimee K.; Rao, Arvind; Dobigeon, Nicolas; Woolf, Peter J.; Veldman, Timothy; Øien, N. Christine; McClain, Micah T.; Varkey, Jay B.; Nicholson, Bradley; Carin, Lawrence; Kingsmore, Stephen; Woods, Christopher W.; Ginsburg, Geoffrey S.; Hero, Alfred O.
2011-01-01
Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza. PMID:21901105
Wang, Yan; Law, Simon R.; Ivanova, Aneta; van Aken, Olivier; Kubiszewski-Jakubiak, Szymon; Uggalla, Vindya; van der Merwe, Margaretha; Duncan, Owen; Narsai, Reena; Whelan, James; Murcha, Monika W.
2014-01-01
In Arabidopsis (Arabidopsis thaliana), small gene families encode multiple isoforms for many of the components of the mitochondrial protein import apparatus. There are three isoforms of the TRANSLOCASE OF THE INNER MEMBRANE17 (Tim17). Transcriptome analysis indicates that AtTim17-1 is only detectable in dry seed. In this study, two independent transfer DNA insertional mutant lines of tim17-1 exhibited a germination-specific phenotype, showing a significant increase in the rate of germination. Microarray analyses revealed that Attim17-1 displayed alterations in the temporal sequence of transcriptomic events during germination, peaking earlier compared with the wild type. Promoter analysis of AtTim17-1 further identified an abscisic acid (ABA)-responsive element, which binds ABA-responsive transcription factors, acting to repress the expression of AtTim17-1. Attim17-1 dry seeds contained significantly increased levels of ABA and gibberellin, 2- and 5-fold, respectively. These results support the model that mitochondrial biogenesis is regulated in a tight temporal sequence of events during germination and that altering mitochondrial biogenesis feeds back to alter the germination rate, as evidenced by the altered levels of the master regulatory hormones that define germination. PMID:25253887
Transferable tight-binding model for strained group IV and III-V materials and heterostructures
NASA Astrophysics Data System (ADS)
Tan, Yaohua; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2016-07-01
It is critical to capture the effect due to strain and material interface for device level transistor modeling. We introduce a transferable s p3d5s* tight-binding model with nearest-neighbor interactions for arbitrarily strained group IV and III-V materials. The tight-binding model is parametrized with respect to hybrid functional (HSE06) calculations for varieties of strained systems. The tight-binding calculations of ultrasmall superlattices formed by group IV and group III-V materials show good agreement with the corresponding HSE06 calculations. The application of the tight-binding model to superlattices demonstrates that the transferable tight-binding model with nearest-neighbor interactions can be obtained for group IV and III-V materials.
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.
2014-12-01
Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the tightly packed regions and a shorter stage 1 evaporation period.
Hormone-dependent control of developmental timing through regulation of chromatin accessibility
Uyehara, Christopher M.; Nystrom, Spencer L.; Niederhuber, Matthew J.; Leatham-Jensen, Mary; Ma, Yiqin; Buttitta, Laura A.
2017-01-01
Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility. PMID:28536147
Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter; Sweet, Barbara
2010-01-01
Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.
Neural networks supporting autobiographical memory retrieval in post-traumatic stress disorder
Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.
2013-01-01
Post-traumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contribution of large-scale neural networks supporting cognition in PTSD is unknown. In the current functional MRI (fMRI) study we employ independent component analysis to examine the influence the engagement of neural networks during the recall of personal memories in PTSD (15 participants) compared to non-trauma exposed, healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to controls during AM recall, including default network subsystems and control networks, but there were group differences in the spatial and temporal characteristics of these networks. First, there were spatial differences in the contribution of the anterior and posterior midline across the networks, and with the amygdala in particular for the medial temporal subsystem of the default network. Second, there were temporal differences in the relationship of the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that spatial and temporal characteristics of the default and control networks potentially differ in PTSD versus healthy controls, and contribute to altered recall of personal memory. PMID:23483523
A clinically guided approach for improving performance measurement for hypertension.
Steinman, Michael A; Lee, Sei J; Peterson, Carolyn A; Fung, Kathy Z; Goldstein, Mary K
2012-05-01
Performance measures often fail to account for legitimate reasons why patients do not achieve recommended treatment targets. We tested a novel performance measurement system for blood pressure (BP) control that was designed to mimic clinical reasoning. This clinically guided approach focuses on (1) exempting patients for whom tight BP control may not be appropriate or feasible and (2) assessing BP over time. Trained abstractors conducted structured chart reviews of 201 adults with hypertension in 2 VA health care systems. Results were compared with traditional methods of performance measurement. Among 201 veterans, 183 (91%) were male, and the mean age was 71±11 years. Using the clinically guided approach, 61 patients (30%) were exempted from performance measurement. The most common reasons for exemption were inadequate opportunity to manage BP (35 patients, 17%) and the use of 4 or more antihypertensive medications (19 patients, 9%). Among patients eligible for performance measurement, there was little agreement on the presence of controlled versus uncontrolled BP when comparing the most recent BP (the traditional approach) with an integrated assessment of BP control (κ 0.14). After accounting for clinically guided exemptions and methods of BP assessment, only 15 of 72 patients (21%) whose last BP was ≥140/90 mm Hg were classified as problematic by the clinically guided approach. Many patients have legitimate reasons for not achieving tight BP control, and the methods used for BP assessment have marked effects on whether a patient is classified as having adequate or inadequate BP control.
Cronin, Michelle; Zomer, Aldert; Fitzgerald, Gerald; van Sinderen, Douwe
2012-01-01
Iron is an essential growth factor for virtually all organisms. However, iron is not readily available in most environments and microorganisms have evolved specialized mechanisms, such as the use of siderophores and high-affinity transport systems, to acquire iron when confronted with iron-limiting conditions. In general these systems are tightly regulated to prevent iron-induced toxicity and because they are quite costly to the microbe. Because of this tight regulation we chose to explore the response of Bifidobacterium breve UCC2003 to iron limitation. Through microarray and complementation analyses we identified and characterized a presumed ferrous iron uptake system, encoded by bfeUOB, from B. breve UCC2003 and exploited its regulated transcription to develop an inducible expression system for use in bifidobacteria. PMID:22179149
Temporal processing dysfunction in schizophrenia.
Carroll, Christine A; Boggs, Jennifer; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P
2008-07-01
Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the pathophysiology of schizophrenia, there remains a paucity of research directly examining overt timing performance in the disorder. Accordingly, the present study investigated timing in schizophrenia using a well-established task of time perception. Twenty-three individuals with schizophrenia and 22 non-psychiatric control participants completed a temporal bisection task, which required participants to make temporal judgments about auditory and visually presented durations ranging from 300 to 600 ms. Both schizophrenia and control groups displayed greater visual compared to auditory timing variability, with no difference between groups in the visual modality. However, individuals with schizophrenia exhibited less temporal precision than controls in the perception of auditory durations. These findings correlated with parameter estimates obtained from a quantitative model of time estimation, and provide evidence of a fundamental deficit in temporal auditory precision in schizophrenia.
High spatial and temporal resolution cell manipulation techniques in microchannels.
Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P
2016-03-21
The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.
White matter microstructural properties correlate with sensorimotor synchronization abilities.
Blecher, Tal; Tal, Idan; Ben-Shachar, Michal
2016-09-01
Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Helmy, Yosra A; Kassem, Issmat I; Kumar, Anand; Rajashekara, Gireesh
2017-01-01
Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter , there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni's invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni . The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni 's invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.
Tight junctions and the modulation of barrier function in disease
2008-01-01
Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease. PMID:18415116
Ichikawa-Tomikawa, Naoki; Sugimoto, Kotaro; Satohisa, Seiro; Nishiura, Keisuke; Chiba, Hideki
2011-01-01
Tight junctions are intercellular junctions localized at the most apical end of the lateral plasma membrane. They consist of four kinds of transmembrane proteins (occludin, claudins, junctional adhesion molecules, and tricellulin) and huge numbers of scaffolding proteins and contribute to the paracellular barrier and fence function. The mutation and deletion of these proteins impair the functions of tight junctions and cause various human diseases. In this paper, we provide an overview of recent studies on transmembrane proteins of tight junctions and highlight the functional significance of tight junctions, extracellular matrix, and nuclear receptors in epithelial differentiation. PMID:22162632
NASA Astrophysics Data System (ADS)
Fraggelakis, F.; Stratakis, E.; Loukakos, P. A.
2018-06-01
We demonstrate the capability to exercise advanced control on the laser-induced periodic surface structures (LIPSS) on silicon by combining the effect of temporal shaping, via tuning the interpulse temporal delay between double femtosecond laser pulses, along with the independent manipulation of the polarization state of each of the individual pulses. For this, cross-polarized (CP) as well as counter-rotating (CR) double circularly polarized pulses have been utilized. The pulse duration was 40 fs and the central wavelength of 790 nm. The linearly polarized double pulses are generated by a modified Michelson interferometer allowing the temporal delay between the pulses to vary from Δτ = -80 ps to Δτ = +80 ps with an accuracy of 0.2 fs. We show the significance of fluence balance between the two pulse components and its interplay with the interpulse delay and with the order of arrival of the individually polarized pulse components of the double pulse sequence on the final surface morphology. For the case of CR pulses we found that when the pulses are temporally well separated the surface morphology attains no axial symmetry. But strikingly, when the two CP pulses temporally overlap, we demonstrate, for the first time in our knowledge, the detrimental effect that the phase delay has on the ripple orientation. Our results provide new insight showing that temporal pulse shaping in combination with polarization control gives a powerful tool for drastically controlling the surface nanostructure morphology.
Katzka, David A; Tadi, Ravikanth; Smyrk, Thomas C; Katarya, Eesha; Sharma, Anamay; Geno, Deborah M; Camilleri, Michael; Iyer, Prasad G; Alexander, Jeffrey A; Buttar, Navtej S
2014-11-01
The allergic response associated with eosinophilic esophagitis (EoE) occurs when food antigens permeate tight junction-mediated epithelial dilated intercellular spaces. We assessed whether levels of tight junction proteins correlate with the dilation of intercellular spaces (spongiosis) and the effects of topical steroids on these parameters. We assessed esophageal biopsy samples from 10 patients with active EoE treated with topical fluticasone, 10 untreated patients, and 10 patients without esophageal disease (controls) for degree of spongiosis. Immunohistochemical assays were used to determine the levels of the tight junction proteins filaggrin, zonula occludens (ZO)-1, ZO-2, ZO-3, and claudin-1. Histology and immunohistochemistry results were assessed blindly, with levels of tight junction proteins and degree of spongiosis rated on scales of 0 to 3. The mean degrees of spongiosis in untreated and treated patients with EoE were 1.3 and 0.4, respectively (P = .016). Esophageal epithelia did not stain significantly for ZO-1 or ZO-2. Filaggrin was observed in a predominant cytoplasmic pattern, compared with the cytoplasmic and membranous patterns of ZO-3 and claudin-1. In biopsy specimens from patients with active EoE, the mean staining intensities for filaggrin, ZO-3, and claudin-1 were 1.6, 1.4, and 0.7, respectively. In biopsy specimens from patients treated with fluticasone, levels of filaggrin, ZO-3, and claudin-1 were 2.8 (P = .002 compared with untreated patients), 1.7 (P = .46 compared with untreated patients), and 1.3 (P = .25 compared with untreated patients), respectively. The correlation between the level of filaggrin and the degree of spongiosis was r = 0.23, and between ZO-3 staining and the degree of spongiosis was r = .016 (P = .001 for filaggrin vs ZO-3 staining). Filaggrin, ZO-3, and claudin-1 (but not ZO-1 or ZO-2) are detected in the esophageal mucosa of patients with EoE treated with steroids and individuals without esophageal disease. Without treatment, spongiosis increases, corresponding with reduced levels of filaggrin, ZO-3, and claudin-1. Loss of tight junction regulators and dilation of intercellular spaces appear to be involved in the pathophysiology of EoE and could be targets for treatment. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu
2015-07-01
Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.
Bernas, Antoine; Barendse, Evelien M; Aldenkamp, Albert P; Backes, Walter H; Hofman, Paul A M; Hendriks, Marc P H; Kessels, Roy P C; Willems, Frans M J; de With, Peter H N; Zinger, Svitlana; Jansen, Jacobus F A
2018-02-01
Autism spectrum disorder (ASD) is mainly characterized by functional and communication impairments as well as restrictive and repetitive behavior. The leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, which can be assessed using functional magnetic resonance imaging (fMRI). Even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic, or resting-state, connectivity. Global default connectivity in individuals with autism versus controls is not well characterized, especially for a high-functioning young population. The aim of this study is to test whether high-functioning adolescents with ASD (HFA) have an abnormal resting-state functional connectivity. We performed spatial and temporal analyses on resting-state networks (RSNs) in 13 HFA adolescents and 13 IQ- and age-matched controls. For the spatial analysis, we used probabilistic independent component analysis (ICA) and a permutation statistical method to reveal the RSN differences between the groups. For the temporal analysis, we applied Granger causality to find differences in temporal neurodynamics. Controls and HFA display very similar patterns and strengths of resting-state connectivity. We do not find any significant differences between HFA adolescents and controls in the spatial resting-state connectivity. However, in the temporal dynamics of this connectivity, we did find differences in the causal effect properties of RSNs originating in temporal and prefrontal cortices. The results show a difference between HFA and controls in the temporal neurodynamics from the ventral attention network to the salience-executive network: a pathway involving cognitive, executive, and emotion-related cortices. We hypothesized that this weaker dynamic pathway is due to a subtle trigger challenging the cognitive state prior to the resting state.
Temporal event structure and timing in schizophrenia: preserved binding in a longer "now".
Martin, Brice; Giersch, Anne; Huron, Caroline; van Wassenhove, Virginie
2013-01-01
Patients with schizophrenia experience a loss of temporal continuity or subjective fragmentation along the temporal dimension. Here, we develop the hypothesis that impaired temporal awareness results from a perturbed structuring of events in time-i.e., canonical neural dynamics. To address this, 26 patients and their matched controls took part in two psychophysical studies using desynchronized audiovisual speech. Two tasks were used and compared: first, an identification task testing for multisensory binding impairments in which participants reported what they heard while looking at a speaker's face; in a second task, we tested the perceived simultaneity of the same audiovisual speech stimuli. In both tasks, we used McGurk fusion and combination that are classic ecologically valid multisensory illusions. First, and contrary to previous reports, our results show that patients do not significantly differ from controls in their rate of illusory reports. Second, the illusory reports of patients in the identification task were more sensitive to audiovisual speech desynchronies than those of controls. Third, and surprisingly, patients considered audiovisual speech to be synchronized for longer delays than controls. As such, the temporal tolerance profile observed in a temporal judgement task was less of a predictor for sensory binding in schizophrenia than for that obtained in controls. We interpret our results as an impairment of temporal event structuring in schizophrenia which does not specifically affect sensory binding operations but rather, the explicit access to timing information associated here with audiovisual speech processing. Our findings are discussed in the context of curent neurophysiological frameworks for the binding and the structuring of sensory events in time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Investigating local controls on soil moisture temporal stability using an inverse modeling approach
NASA Astrophysics Data System (ADS)
Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry
2013-04-01
A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).
18 CFR 270.304 - Tight formation gas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... determination that natural gas is tight formation gas must file with the jurisdictional agency an application... formation; (d) A complete copy of the well log, including the log heading identifying the designated tight...
Enlarged temporal integration window in schizophrenia indicated by the double-flash illusion.
Haß, Katharina; Sinke, Christopher; Reese, Tanya; Roy, Mandy; Wiswede, Daniel; Dillo, Wolfgang; Oranje, Bob; Szycik, Gregor R
2017-03-01
In the present study we were interested in the processing of audio-visual integration in schizophrenia compared to healthy controls. The amount of sound-induced double-flash illusions served as an indicator of audio-visual integration. We expected an altered integration as well as a different window of temporal integration for patients. Fifteen schizophrenia patients and 15 healthy volunteers matched for age and gender were included in this study. We used stimuli with eight different temporal delays (stimulus onset asynchronys (SOAs) 25, 50, 75, 100, 125, 150, 200 and 300 ms) to induce a double-flash illusion. Group differences and the widths of temporal integration windows were calculated on percentages of reported double-flash illusions. Patients showed significantly more illusions (ca. 36-44% vs. 9-16% in control subjects) for SOAs 150-300. The temporal integration window for control participants went from SOAs 25 to 200 whereas for patients integration was found across all included temporal delays. We found no significant relationship between the amount of illusions and either illness severity, chlorpromazine equivalent doses or duration of illness in patients. Our results are interpreted in favour of an enlarged temporal integration window for audio-visual stimuli in schizophrenia patients, which is consistent with previous research.
Near-death experiences and the temporal lobe.
Britton, Willoughby B; Bootzin, Richard R
2004-04-01
Many studies in humans suggest that altered temporal lobe functioning, especially functioning in the right temporal lobe, is involved in mystical and religious experiences. We investigated temporal lobe functioning in individuals who reported having transcendental "near-death experiences" during life-threatening events. These individuals were found to have more temporal lobe epileptiform electroencephalographic activity than control subjects and also reported significantly more temporal lobe epileptic symptoms. Contrary to predictions, epileptiform activity was nearly completely lateralized to the left hemisphere. The near-death experience was not associated with dysfunctional stress reactions such as dissociation, posttraumatic stress disorder, and substance abuse, but rather was associated with positive coping styles. Additional analyses revealed that near-death experiencers had altered sleep patterns, specifically, a shorter duration of sleep and delayed REM sleep relative to the control group. These results suggest that altered temporal lobe functioning may be involved in the near-death experience and that individuals who have had such experiences are physiologically distinct from the general population.
Cohen, L; Sekler, I; Hershfinkel, M
2014-01-01
The intestinal epithelium is a renewable tissue that requires precise balance between proliferation and differentiation, an essential process for the formation of a tightly sealed barrier. Zinc deficiency impairs the integrity of the intestinal epithelial barrier and is associated with ulcerative and diarrheal pathologies, but the mechanisms underlying the role of Zn2+ are not well understood. Here, we determined a role of the colonocytic Zn2+ sensing receptor, ZnR/GPR39, in mediating Zn2+-dependent signaling and regulating the proliferation and differentiation of colonocytes. Silencing of ZnR/GPR39 expression attenuated Zn2+-dependent activation of ERK1/2 and AKT as well as downstream activation of mTOR/p70S6K, pathways that are linked with proliferation. Consistently, ZnR/GPR39 silencing inhibited HT29 and Caco-2 colonocyte proliferation, while not inducing caspase-3 cleavage. Remarkably, in differentiating HT29 colonocytes, silencing of ZnR/GPR39 expression inhibited alkaline phosphatase activity, a marker of differentiation. Furthermore, Caco-2 colonocytes showed elevated expression of ZnR/GPR39 during differentiation, whereas silencing of ZnR/GPR39 decreased monolayer transepithelial electrical resistance, suggesting compromised barrier formation. Indeed, silencing of ZnR/GPR39 or chelation of Zn2+ by the cell impermeable chelator CaEDTA was followed by impaired expression of the junctional proteins, that is, occludin, zonula-1 (ZO-1) and E-cadherin. Importantly, colon tissues of GPR39 knockout mice also showed a decrease in expression levels of ZO-1 and occludin compared with wildtype mice. Altogether, our results indicate that ZnR/GPR39 has a dual role in promoting proliferation of colonocytes and in controlling their differentiation. The latter is followed by ZnR/GPR39-dependent expression of tight junctional proteins, thereby leading to formation of a sealed intestinal epithelial barrier. Thus, ZnR/GPR39 may be a therapeutic target for promoting epithelial function and tight junction barrier integrity during ulcerative colon diseases. PMID:24967969
Cohen, L; Sekler, I; Hershfinkel, M
2014-06-26
The intestinal epithelium is a renewable tissue that requires precise balance between proliferation and differentiation, an essential process for the formation of a tightly sealed barrier. Zinc deficiency impairs the integrity of the intestinal epithelial barrier and is associated with ulcerative and diarrheal pathologies, but the mechanisms underlying the role of Zn(2+) are not well understood. Here, we determined a role of the colonocytic Zn(2+) sensing receptor, ZnR/GPR39, in mediating Zn(2+)-dependent signaling and regulating the proliferation and differentiation of colonocytes. Silencing of ZnR/GPR39 expression attenuated Zn(2+)-dependent activation of ERK1/2 and AKT as well as downstream activation of mTOR/p70S6K, pathways that are linked with proliferation. Consistently, ZnR/GPR39 silencing inhibited HT29 and Caco-2 colonocyte proliferation, while not inducing caspase-3 cleavage. Remarkably, in differentiating HT29 colonocytes, silencing of ZnR/GPR39 expression inhibited alkaline phosphatase activity, a marker of differentiation. Furthermore, Caco-2 colonocytes showed elevated expression of ZnR/GPR39 during differentiation, whereas silencing of ZnR/GPR39 decreased monolayer transepithelial electrical resistance, suggesting compromised barrier formation. Indeed, silencing of ZnR/GPR39 or chelation of Zn(2+) by the cell impermeable chelator CaEDTA was followed by impaired expression of the junctional proteins, that is, occludin, zonula-1 (ZO-1) and E-cadherin. Importantly, colon tissues of GPR39 knockout mice also showed a decrease in expression levels of ZO-1 and occludin compared with wildtype mice. Altogether, our results indicate that ZnR/GPR39 has a dual role in promoting proliferation of colonocytes and in controlling their differentiation. The latter is followed by ZnR/GPR39-dependent expression of tight junctional proteins, thereby leading to formation of a sealed intestinal epithelial barrier. Thus, ZnR/GPR39 may be a therapeutic target for promoting epithelial function and tight junction barrier integrity during ulcerative colon diseases.
NASA Astrophysics Data System (ADS)
Packalen, M.; Finkelstein, S. A.; McLaughlin, J.
2014-12-01
Current interglacial development of a nearly continuous peat cover in the Hudson Bay Lowlands, Canada has resulted in a globally significant carbon (C) reservoir. Yet, the fate of peatland C stores and related climate system feedbacks remain uncertain under scenarios of a changing climate and enhanced anthropogenic pressure. Here, we examine peatland development in the HBL in relation to Holocene C-dynamics, together with records of paleo- and modern climate, glacial isostatic adjustment (GIA) and paleoenvironmental change. We report that the timing of peat initiation is tightly coupled with GIA in the HBL, while peatland age, trophic status, and paleoclimate contribute to explaining some of the temporal variation in C accumulation rates (CARs). Our results show that CARs are greatest from younger, minerotrophic peatlands and in association with warmer Holocene climates. Peat initiation rates and CARs in the HBL were greatest during the mid-Holocene; however, model evidence indicates that two-thirds of the HBL C pool is stored in peat of late Holocene age, owing to long-term peatland expansion and development. Since mid-Holocene peat initiation, the HBL has been a net C-sink and currently stores ~ 30 Pg C, with spatial climate patterns accounting for up to half of the C-mass distribution. Yet, the HBL has also been a modest C-source since peat initiation, with 85% of the losses occurring during the late Holocene. Our results indicate that the HBL may have been a potential terrestrial source of 1 - 7 Tg CH4 y-1 to the late Holocene atmosphere, due to the decay of previously accrued peat, under wetter conditions than present, and from a landscape occupied by an abundance of minerotrophic peatlands. While the peatlands of the HBL may continue to function as a globally significant C reservoir, conservative climate scenarios predict a warmer and wetter HBL in the next century that may lie outside the range of past climate variability. Disproportionate hydroclimatic change may alter the net water balance in the HBL resulting in C losses that may have important implications for the global C budget and climate system. Further investigation regarding autogenic and allogenic controls on spatial-temporal C dynamics is warranted and may contribute to reducing the uncertainty concerning the HBL's potential to remain a long-term net C-sink.
Near infrared measurment of cotton fiber micronaire by portable near infrared instrumentation
USDA-ARS?s Scientific Manuscript database
Cotton production and usage is a global enterprise, and the export of U.S. cotton has increased dramatically. In the U.S., cotton is classed (and its primary quality parameters determined) by the Uster® High Volume Instrument (HVI), which must be maintained under tightly controlled laboratory envir...
A Model for Evaluating Programs for the Gifted under Non-Experimental Conditions.
ERIC Educational Resources Information Center
Carter, Kyle R.
1992-01-01
The article presents and illustrates use of an evaluation model for assessing programs for the gifted where tight experimental control is not possible. The model consists of four components: ex post factor designs including intact groups; comparative evaluation; strength of treatment; and multiple outcome assessment from flexible data sources. (DB)
The Role of Neuronal Signaling in Controlling Cerebral Blood Flow
ERIC Educational Resources Information Center
Drake, Carrie T.; Iadecola, Costantino
2007-01-01
Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…
Using Power to Influence Outcomes: Does Gender Matter?
ERIC Educational Resources Information Center
Shapiro, Mary; Ingols, Cynthia; Blake-Beard, Stacy
2011-01-01
The conventional definitions of power and masculinity are tightly conflated. The same words that are often used to describe power, such as authority, control, and decisiveness, are also often used to define masculinity. Where does that leave women in building and using power? Even as feminist scholars attempt to decouple the definition of power…
Universities and Government in Post-War Japan
ERIC Educational Resources Information Center
Yamamoto, Shinichi
2004-01-01
Japan's higher education system, in which private universities and colleges play an important part, has embarked on far-reaching reform in the 1990s. Its main objective was to free the national (public) universities from tight control by the central government and to give them more autonomy. In light of dramatic demographic changes, especially a…
Capko, Judy
2005-01-01
With rising costs and tight controls on reimbursement, physicians need to dig deeper into expenses and find ways to reduce costs while tapping into an equal or higher level of expertise. Outsourcing offers an attractive solution. This article identifies the areas where outsourcing is most valuable and effective, and provides some methodologies for achieving a successful result.
School Improvement through Government Agencies: Loose or Tight Coupling?
ERIC Educational Resources Information Center
Bush, Tony
2017-01-01
In seeking to improve student outcomes, governments may choose to exercise direct control over schools, as in many centralised systems, or to provide frameworks for intermediate bodies to engage in improvement activities. One such body is the National College for School Leadership (NCSL), now the National College for Teaching and Leadership (NCTL)…
Simhon, David; Halpern, Marisa; Brosh, Tamar; Vasilyev, Tamar; Ravid, Avi; Tennenbaum, Tamar; Nevo, Zvi; Katzir, Abraham
2007-01-01
Background: A feedback temperature-controlled laser soldering system (TCLS) was used for bonding skin incisions on the backs of pigs. The study was aimed: 1) to characterize the optimal soldering parameters, and 2) to compare the immediate and long-term wound healing outcomes with other wound closure modalities. Materials and Methods: A TCLS was used to bond the approximated wound margins of skin incisions on porcine backs. The reparative outcomes were evaluated macroscopically, microscopically, and immunohistochemically. Results: The optimal soldering temperature was found to be 65°C and the operating time was significantly shorter than with suturing. The immediate tight sealing of the wound by the TCLS contributed to rapid, high quality wound healing in comparison to Dermabond or Histoacryl cyanoacrylate glues or standard suturing. Conclusions: TCLS of incisions in porcine skin has numerous advantages, including rapid procedure and high quality reparative outcomes, over the common standard wound closure procedures. Further studies with a variety of skin lesions are needed before advocating this technique for clinical use. PMID:17245173
C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src
Samarasekera, G. D. N. Gayathri; Auld, Vanessa Jane
2018-01-01
Tricellular junctions (TCJs) are uniquely placed permeability barriers formed at the corners of polarized epithelia where tight junctions in vertebrates or septate junctions (SJ) in invertebrates from three cells converge. Gliotactin is a Drosophila TCJ protein, and loss of Gliotactin results in SJ and TCJ breakdown and permeability barrier loss. When overexpressed, Gliotactin spreads away from the TCJs, resulting in disrupted epithelial architecture, including overproliferation, cell delamination, and migration. Gliotactin levels are tightly controlled at the mRNA level and at the protein level through endocytosis and degradation triggered by tyrosine phosphorylation. We identified C-terminal Src kinase (Csk) as a tyrosine kinase responsible for regulating Gliotactin endocytosis. Increased Csk suppresses the Gliotactin overexpression phenotypes by increasing endocytosis. Loss of Csk causes Gliotactin to spread away from the TCJ. Although Csk is known as a negative regulator of Src kinases, the effects of Csk on Gliotactin are independent of Src and likely occur through an adherens junction associated complex. Overall, we identified a new Src-independent role for Csk in the control of Gliotactin, a key tricellular junction protein. PMID:29167383
Visual temporal processing in dyslexia and the magnocellular deficit theory: the need for speed?
McLean, Gregor M T; Stuart, Geoffrey W; Coltheart, Veronika; Castles, Anne
2011-12-01
A controversial question in reading research is whether dyslexia is associated with impairments in the magnocellular system and, if so, how these low-level visual impairments might affect reading acquisition. This study used a novel chromatic flicker perception task to specifically explore temporal aspects of magnocellular functioning in 40 children with dyslexia and 42 age-matched controls (aged 7-11). The relationship between magnocellular temporal resolution and higher-level aspects of visual temporal processing including inspection time, single and dual-target (attentional blink) RSVP performance, go/no-go reaction time, and rapid naming was also assessed. The Dyslexia group exhibited significant deficits in magnocellular temporal resolution compared with controls, but the two groups did not differ in parvocellular temporal resolution. Despite the significant group differences, associations between magnocellular temporal resolution and reading ability were relatively weak, and links between low-level temporal resolution and reading ability did not appear specific to the magnocellular system. Factor analyses revealed that a collective Perceptual Speed factor, involving both low-level and higher-level visual temporal processing measures, accounted for unique variance in reading ability independently of phonological processing, rapid naming, and general ability.
Pattyn, Alexandre; Vallstedt, Anna; Dias, José M; Samad, Omar Abdel; Krumlauf, Robb; Rijli, Filippo M; Brunet, Jean-Francois; Ericson, Johan
2003-03-15
Neural progenitor cells often produce distinct types of neurons in a specific order, but the determinants that control the sequential generation of distinct neuronal subclasses in the vertebrate CNS remain poorly defined. We examined the sequential generation of visceral motor neurons and serotonergic neurons from a common pool of neural progenitors located in the ventral hindbrain. We found that the temporal specification of these neurons varies along the anterior-posterior axis of the hindbrain, and that the timing of their generation critically depends on the integrated activities of Nkx- and Hox-class homeodomain proteins. A primary function of these proteins is to coordinate the spatial and temporal activation of the homeodomain protein Phox2b, which in turn acts as a binary switch in the selection of motor neuron or serotonergic neuronal fate. These findings assign new roles for Nkx, Hox, and Phox2 proteins in the control of temporal neuronal fate determination, and link spatial and temporal patterning of CNS neuronal fates.
Temporal processing deficit leads to impaired multisensory binding in schizophrenia.
Zvyagintsev, Mikhail; Parisi, Carmen; Mathiak, Klaus
2017-09-01
Schizophrenia has been characterised by neurodevelopmental dysconnectivity resulting in cognitive and perceptual dysmetria. Hence patients with schizophrenia may be impaired to detect the temporal relationship between stimuli in different sensory modalities. However, only a few studies described deficit in perception of temporally asynchronous multisensory stimuli in schizophrenia. We examined the perceptual bias and the processing time of synchronous and delayed sounds in the streaming-bouncing illusion in 16 patients with schizophrenia and a matched control group of 18 participants. Equal for patients and controls, the synchronous sound biased the percept of two moving squares towards bouncing as opposed to the more frequent streaming percept in the condition without sound. In healthy controls, a delay of the sound presentation significantly reduced the bias and led to prolonged processing time whereas patients with schizophrenia did not differentiate between this condition and the condition with synchronous sound. Schizophrenia leads to a prolonged window of simultaneity for audiovisual stimuli. Therefore, temporal processing deficit in schizophrenia can lead to hyperintegration of temporally unmatched multisensory stimuli.
NASA Technical Reports Server (NTRS)
Rhoads Stephenson, R.
1986-01-01
The Galileo Mission and Spacecraft design impose tight requirements on the Attitude and Articulation Control System (AACS). These requirements, coupled with the flexible spacecraft, the need for autonomy, and a severe radiation environment, pose a great challenge for the AACS designer. The resulting design and implementation are described, along with the discovery and solution of the Single-Event Upset problem. The status of the testing of the AACS in the Integration and Test Laboratory as well as at the spacecraft level is summarized.
Flexible timing by temporal scaling of cortical responses
Wang, Jing; Narain, Devika; Hosseini, Eghbal A.; Jazayeri, Mehrdad
2017-01-01
Musicians can perform at different tempos, speakers can control the cadence of their speech, and children can flexibly vary their temporal expectations of events. To understand the neural basis of such flexibility, we recorded from the medial frontal cortex of nonhuman primates trained to produce different time intervals with different effectors. Neural responses were heterogeneous, nonlinear and complex, and exhibited a remarkable form of temporal invariance: firing rate profiles were temporally scaled to match the produced intervals. Recording from downstream neurons in the caudate and thalamic neurons projecting to the medial frontal cortex indicated that this phenomenon originates within cortical networks. Recurrent neural network models trained to perform the task revealed that temporal scaling emerges from nonlinearities in the network and degree of scaling is controlled by the strength of external input. These findings demonstrate a simple and general mechanism for conferring temporal flexibility upon sensorimotor and cognitive functions. PMID:29203897
Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser
De Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija
2015-01-01
Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste. PMID:26290320
Xu, Weihui; Meng, Yan; Surana, Priyanka; Fuerst, Greg; Nettleton, Dan; Wise, Roger P.
2015-01-01
Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like peptides in barley, wheat, and rice, are highly induced by attack from fungal pathogens, in particular, the obligate biotrophic fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of barley powdery mildew. Previous research indicated that Blufensin1 (Bln1) functions as a negative regulator of basal defense mechanisms. In the current report, we show that BLN1 and BLN2 can both be secreted to the apoplast and Barley stripe mosaic virus (BSMV)-mediated overexpression of Bln2 increases susceptibility of barley to Bgh. Bimolecular fluorescence complementation (BiFC) assays signify that BLN1 and BLN2 can interact with each other, and with calmodulin. We then used BSMV-induced gene silencing to knock down Bln1, followed by Barley1 GeneChip transcriptome analysis, to identify additional host genes influenced by Bln1. Analysis of differential expression revealed a gene set enriched for those encoding proteins annotated to nuclear import and the secretory pathway, particularly Importin α1-b and Sec61 γ subunits. Further functional analysis of these two affected genes showed that when silenced, they also reduced susceptibility to Bgh. Taken together, we postulate that Bln1 is co-opted by Bgh to facilitate transport of disease-related host proteins or effectors, influencing the establishment of Bgh compatibility on its barley host. PMID:26089830
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.
Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.
Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle
2015-01-01
Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.
Interictal mood and personality disorders in temporal lobe epilepsy and juvenile myoclonic epilepsy.
Perini, G I; Tosin, C; Carraro, C; Bernasconi, G; Canevini, M P; Canger, R; Pellegrini, A; Testa, G
1996-01-01
BACKGROUND: Mood disorders have been described as the commonest psychiatric disorders in patients with temporal lobe epilepsy. Secondary depression in temporal lobe epilepsy could be interpreted either as an adjustment reaction to a chronic disease or as a limbic dysfunction. To clarify this issue, a controlled study of psychiatric disorders was conducted in different forms of epileptic and non-epileptic chronic conditions. METHODS: Twenty outpatients with temporal lobe epilepsy, 18 outpatients with juvenile myoclonic epilepsy--a primary generalised seizure disorder--20 matched type I diabetic patients, and 20 matched normal controls were assessed by a structured interview (SADS) and by self rating scales (Beck depression inventory (BDI) and the state and trait anxiety scales STAIX1 and STAIX2). RESULTS: Sixteen (80%) patients with temporal lobe epilepsy fulfilled the criteria for a psychiatric diagnosis at the SADS interview with a significantly higher frequency than patients with juvenile myoclonic epilepsy (22%) and diabetic patients (10%) (P < 0.0001). The most frequent disorder in temporal lobe epilepsy was a mood disorder: 11 (55%) patients with temporal lobe epilepsy had depression compared with three patients with juvenile myoclonic epilepsy and two diabetic patients (P < 0.001). Eight patients with temporal lobe epilepsy with an affective disorder also had a comorbid personality or anxiety disorder. Patients with temporal lobe epilepsy scored significantly higher on BDI, STAIX1, and STAIX2 than the three control groups (P < 0.001, P < 0.01, P < 0.001). CONCLUSIONS: Patients with temporal lobe epilepsy have a higher incidence of affective and personality disorders, often in comorbidity, than patients with juvenile myoclonic epilepsy and diabetic patients suggesting that these psychiatric disorders are not an adjustment reaction to a chronic disease but rather reflect a limbic dysfunction. PMID:8971108
NASA Astrophysics Data System (ADS)
Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao
2013-12-01
A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.
Measurement and Visualization of Tight Rock Exposed to CO2 Using NMR Relaxometry and MRI
Wang, Haitao; Lun, Zengmin; Lv, Chengyuan; Lang, Dongjiang; Ji, Bingyu; Luo, Ming; Pan, Weiyi; Wang, Rui; Gong, Kai
2017-01-01
Understanding mechanisms of oil mobilization of tight matrix during CO2 injection is crucial for CO2 enhanced oil recovery (EOR) and sequestration engineering design. In this study exposure behavior between CO2 and tight rock of the Ordos Basin has been studied experimentally by using nuclear magnetic resonance transverse relaxation time (NMR T2) spectrum and magnetic resonance imaging (MRI) under the reservoir pressure and temperature. Quantitative analysis of recovery at the pore scale and visualization of oil mobilization are achieved. Effects of CO2 injection, exposure times and pressure on recovery performance have been investigated. The experimental results indicate that oil in all pores can be gradually mobilized to the surface of rock by CO2 injection. Oil mobilization in tight rock is time-consuming while oil on the surface of tight rock can be mobilized easily. CO2 injection can effectively mobilize oil in all pores of tight rock, especially big size pores. This understanding of process of matrix exposed to CO2 could support the CO2 EOR in tight reservoirs. PMID:28281697
Baseline Industrial Hygiene Survey at the Coal Fired Heating Plant, Malmstrom AFB, Montana.
1987-12-01
hygiene concern. However, as observed, the flue gas system is fairly tight and seems to control the hazards well. The only exception may be during its...NOX and SO2 are produced during normal 1 operations. Most off-gassing is controlled , such as flue gas , and any gas that does escape, dissipates through...chemical and gas exposures during the desulfurization process, mixing of caustic solutions, and boiler off-gassing. Heat stress and noise exposura
Galileo battery testing and the impact of test automation
NASA Technical Reports Server (NTRS)
Pertuch, W. T.; Dils, C. T.
1985-01-01
Test complexity, changes of test specifications, and the demand for tight control of tests led to the development of automated testing used for Galileo and other projects. The use of standardized interfacing, i.e., IEEE-488, with desktop computers and test instruments, resulted in greater reliability, repeatability, and accuracy of both control and data reporting. Increased flexibility of test programming has reduced costs by permitting a wide spectrum of test requirements at one station rather than many stations.
Low Level RF Control for the PIP-II Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.; Cullerton, E.
The PIP-II accelerator is a proposed upgrade to the Fermilab accelerator complex that will replace the existing, 400 MeV room temperature LINAC with an 800 MeV superconducting LINAC. Part of this upgrade includes a new injection scheme into the booster that levies tight requirements on the LLRF control system for the cavities. In this paper we discuss the challenges of the PIP-II accelerator and the present status of the LLRF system for this project.
Solution of elastic-plastic stress analysis problems by the p-version of the finite element method
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Actis, Ricardo L.; Holzer, Stefan M.
1993-01-01
The solution of small strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus. Numerical examples which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors are presented.
Benchmarking Ada tasking on tightly coupled multiprocessor architectures
NASA Technical Reports Server (NTRS)
Collard, Philippe; Goforth, Andre; Marquardt, Matthew
1989-01-01
The development of benchmarks and performance measures for parallel Ada tasking is reported with emphasis on the macroscopic behavior of the benchmark across a set of load parameters. The application chosen for the study was the NASREM model for telerobot control, relevant to many NASA missions. The results of the study demonstrate the potential of parallel Ada in accomplishing the task of developing a control system for a system such as the Flight Telerobotic Servicer using the NASREM framework.
Buoyancy-corrected gravimetric analysis of lightly loaded filters.
Rasmussen, Pat E; Gardner, H David; Niu, Jianjun
2010-09-01
Numerous sources of uncertainty are associated with the gravimetric analysis of lightly loaded air filter samples (< 100 microg). The purpose of the study presented here is to investigate the effectiveness and limitations of air buoyancy corrections over experimentally adjusted conditions of temperature (21-25 degrees C) and relative humidity (RH) (16-60% RH). Conditioning (24 hr) and weighing were performed inside the Archimedes M3 environmentally controlled chamber. The measurements were performed using 20 size-fractionated samples of resuspended house dust loaded onto Teflo (PTFE) filters using a Micro-Orifice Uniform Deposit Impactor representing a wide range of mass loading (7.2-3130 microg) and cut sizes (0.056-9.9 microm). By maintaining tight controls on humidity (within 0.5% RH of control setting) throughout pre- and postweighing at each stepwise increase in RH, it was possible to quantify error due to water absorption: 45% of the total mass change due to water absorption occurred between 16 and 50% RH, and 55% occurred between 50 and 60% RH. The buoyancy corrections ranged from -3.5 to +5.8 microg in magnitude and improved relative standard deviation (RSD) from 21.3% (uncorrected) to 5.6% (corrected) for a 7.2 microg sample. It is recommended that protocols for weighing low-mass particle samples (e.g., nanoparticle samples) should include buoyancy corrections and tight temperature/humidity controls. In some cases, conditioning times longer than 24 hr may be warranted.
An efficient method for quantum transport simulations in the time domain
NASA Astrophysics Data System (ADS)
Wang, Y.; Yam, C.-Y.; Frauenheim, Th.; Chen, G. H.; Niehaus, T. A.
2011-11-01
An approximate method based on adiabatic time dependent density functional theory (TDDFT) is presented, that allows for the description of the electron dynamics in nanoscale junctions under arbitrary time dependent external potentials. The density matrix of the device region is propagated according to the Liouville-von Neumann equation. The semi-infinite leads give rise to dissipative terms in the equation of motion which are calculated from first principles in the wide band limit. In contrast to earlier ab initio implementations of this formalism, the Hamiltonian is here approximated in the spirit of the density functional based tight-binding (DFTB) method. Results are presented for two prototypical molecular devices and compared to full TDDFT calculations. The temporal profile of the current traces is qualitatively well captured by the DFTB scheme. Steady state currents show considerable variations, both in comparison of approximate and full TDDFT, but also among TDDFT calculations with different basis sets.
Web-based Visual Analytics for Extreme Scale Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Evans, Katherine J; Harney, John F
In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less
Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins
Yeeles, Joseph T.P.; Deegan, Tom D.; Janska, Agnieszka; Early, Anne; Diffley, John F. X.
2016-01-01
Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric MCM complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45, MCM, GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4 dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication. PMID:25739503
Regulated eukaryotic DNA replication origin firing with purified proteins.
Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X
2015-03-26
Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.
Time-resolved microscopy of fs-laser-induced heat flows in glasses
NASA Astrophysics Data System (ADS)
Bonse, Jörn; Seuthe, Thomas; Grehn, Moritz; Eberstein, Markus; Rosenfeld, Arkadi; Mermillod-Blondin, Alexandre
2018-01-01
Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient d n/d T. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser-matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials.
Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage
Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.
2014-01-01
Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604
Benthic exchange and biogeochemical cycling in permeable sediments.
Huettel, Markus; Berg, Peter; Kostka, Joel E
2014-01-01
The sandy sediments that blanket the inner shelf are situated in a zone where nutrient input from land and strong mixing produce maximum primary production and tight coupling between water column and sedimentary processes. The high permeability of the shelf sands renders them susceptible to pressure gradients generated by hydrodynamic and biological forces that modulate spatial and temporal patterns of water circulation through these sediments. The resulting dynamic three-dimensional patterns of particle and solute distribution generate a broad spectrum of biogeochemical reaction zones that facilitate effective decomposition of the pelagic and benthic primary production products. The intricate coupling between the water column and sediment makes it challenging to quantify the production and decomposition processes and the resultant fluxes in permeable shelf sands. Recent technical developments have led to insights into the high biogeochemical and biological activity of these permeable sediments and their role in the global cycles of matter.
Anomalous broadening and shift of emission lines in a femtosecond laser plasma filament in air
NASA Astrophysics Data System (ADS)
Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.; Mayor, A. Yu.; Proschenko, D. Yu.
2017-12-01
The temporal evolution of the width and shift of N I 746.8 and O I 777.4 nm lines is investigated in a filament plasma produced by a tightly focused femtosecond laser pulse (0.9 mJ, 48 fs). The nitrogen line shift and width are determined by the joint action of electron impact shift and the far-off resonance AC Stark effect. The intensive (I = 1.2·1010 W/cm2) electric field of ASE (amplified spontaneous emission) and post-pulses result in a possible LS coupling break for the O I 3p 5P level and the generation of Rabi sidebands. The blueshifted main femtosecond pulse and Rabi sideband cause the stimulated emission of the N2 1+ system. The maximal widths of emission lines are approximately 6.7 times larger than the calculated Stark widths.
Benefits and Barriers of E-Learning for Staff Training in a Medical University.
Franz, Stefan; Behrends, Marianne; Haack, Claudia; Marschollek, Michael
2015-01-01
Learning Management Systems (LMS) are a feasible solution to fulfill the various requirements for e-learning based training in a medical university. Using the LMS ILIAS, the Institute of Diagnostic and Interventional Radiology has designed an e-learning unit about data protection, which has been used by 73% of the department's employees in the first three months. To increase the use of e-learning for staff training, it is necessary to identify barriers and benefits, which encourage the use of e-learning. Therefore, we started an online survey to examine how the employees evaluate this learning opportunity. The results show that 87% of the employees had no technical problems and also competence of Information and Communication Technology (ICT) was no barrier. If anything, reported issues were time shortages and tight schedules. Therefore, short learning modules (less than 20 minutes) are preferred. Furthermore, temporal flexibility for learning is important for 83% of employees.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1992-01-01
A general optimization-based method for the design of large space platforms through integration of the disciplines of structural dynamics and control is presented. The method uses the global sensitivity equations approach and is especially appropriate for preliminary design problems in which the structural and control analyses are tightly coupled. The method is capable of coordinating general purpose structural analysis, multivariable control, and optimization codes, and thus, can be adapted to a variety of controls-structures integrated design projects. The method is used to minimize the total weight of a space platform while maintaining a specified vibration decay rate after slewing maneuvers.
The Network of Global Corporate Control
Vitali, Stefania; Glattfelder, James B.; Battiston, Stefano
2011-01-01
The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic “super-entity” that raises new important issues both for researchers and policy makers. PMID:22046252
Lesuis, N; Verhoef, L M; Nieboer, L M; Bruyn, G A; Baudoin, P; van Vollenhoven, R F; Hulscher, Mejl; van den Hoogen, Fhj; den Broeder, A A
2017-03-01
To assess the effects of education, guideline development, and individualized treatment advice on rheumatologist adherence to tight control-based treatment and biological dose optimization in rheumatoid arthritis (RA), psoriatic arthritis (PsA), and spondyloarthropathy (SpA) patients. This pilot study, among two rheumatologists and two specialized nurses in a general hospital, combined education, feedback, local guideline development, and individualized treatment advice. Outcomes (baseline and 1 year post-intervention) were the percentage of patients with a Disease Activity Score in 28 joints (DAS28) or Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) measured during the visit, mean DAS28/BASDAI, and the percentage of patients using a reduced biological dose. DAS28 outcomes only applied to RA and PsA patients, BASDAI outcomes only applied to SpA patients whereas outcomes on biological dose applied to all patients. A total of 232 patients (67% RA, 15% PsA, 18% SpA; 58% female, mean age 56 ± 15 years) were included in the study. The percentage of DAS28 and BASDAI measurements performed increased after the intervention [DAS28 15-51%, odds ratio (OR) 3.3, 95% confidence interval (CI) 2.1-5.5; BASDAI 23-50%, OR 2.2, 95% CI 1.0-5.5], with mean DAS28 and BASDAI scores remaining similar (DAS28: mean difference 0.1, 95% CI -0.3 to 0.5; BASDAI: mean difference 0.03, 95% CI -1.8 to 1.9). Use of a reduced biological dose increased from 10% to 61% (OR 3.9, 95% CI 2.4-6.5). A multicomponent intervention strategy aimed at rheumatologists can lead to improved adherence to tight control-based treatment and a reduction in the use of biologicals in RA, SpA, and PsA patients.
Dielectric response of molecules in empirical tight-binding theory
NASA Astrophysics Data System (ADS)
Boykin, Timothy B.; Vogl, P.
2002-01-01
In this paper we generalize our previous approach to electromagnetic interactions within empirical tight-binding theory to encompass molecular solids and isolated molecules. In order to guarantee physically meaningful results, we rederive the expressions for relevant observables using commutation relations appropriate to the finite tight-binding Hilbert space. In carrying out this generalization, we examine in detail the consequences of various prescriptions for the position and momentum operators in tight binding. We show that attempting to fit parameters of the momentum matrix directly generally results in a momentum operator which is incompatible with the underlying tight-binding model, while adding extra position parameters results in numerous difficulties, including the loss of gauge invariance. We have applied our scheme, which we term the Peierls-coupling tight-binding method, to the optical dielectric function of the molecular solid PPP, showing that this approach successfully predicts its known optical properties even in the limit of isolated molecules.
Hellsing, A L
1988-01-01
Muscular tightness and the therapeutic effect of stretching has been widely discussed during the last few years in sports training and physiotherapy. Within a prospective study of back function and pain before and after compulsory military service, tightness of hamstring- and psoas muscles was assessed. Around 600 young men were examined three times over a period of four years. Tight hamstring muscles were found to be very common in this group. Only 43% of the right and 35% of the left legs reached an angle of at least 80 degrees from the couch during the straight-leg-raising test (Lasegue's test). The test of muscular tightness showed a significant test-retest reliability over all examinations. Tight hamstring- or psoas muscles could not be shown to correlate to current back pain or to the incidence of back pain during the follow-up period.
Spatial attention does improve temporal discrimination.
Chica, Ana B; Christie, John
2009-02-01
It has recently been stated that exogenous attention impairs temporal-resolution tasks (Hein, Rolke, & Ulrich, 2006; Rolke, Dinkelbach, Hein, & Ulrich, 2008; Yeshurun, 2004; Yeshurun & Levy, 2003). In comparisons of performance on spatially cued trials versus neutral cued trials, the results have suggested that spatial attention decreases temporal resolution. However, when performance on cued and uncued trials has been compared in order to equate for cue salience, typically speed-accuracy trade-offs (SATs) have been observed, making the interpretation of the results difficult. In the present experiments, we aimed at studying the effect of spatial attention in temporal resolution while using a procedure to control for SATs. We controlled reaction times (RTs) by constraining the time to respond, so that response decisions would be made within comparable time windows. The results revealed that when RT was controlled, performance was impaired for cued trials as compared with neutral trials, replicating previous findings. However, when cued and uncued trials were compared, performance was actually improved for cued trials as compared with uncued trials. These results suggest that SAT effects may have played an important role in the previous studies, because when they were controlled and measured, the results reversed, revealing that exogenous attention does improve performance on temporal-resolution tasks.
NASA Astrophysics Data System (ADS)
Ukar, Estibalitz; Eichhubl, Peter; Fall, Andras; Hooker, John
2013-04-01
In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores <100 km away, thus offering an ideal opportunity to 1) evaluate the distribution and characteristics of opening mode fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity progressively decreases from the faulted cores of mesoscopic folds to their forelimbs, with lowest intensities within relatively undeformed backlimb strata. Fracture apertures locally increase adjacent to reverse faults without an overall increase in fracture frequency. Fluid inclusion analyses of crack-seal quartz cement indicate both aqueous and methane-rich inclusions are present. Homogenization temperatures of two-phase inclusions indicate synkinematic fracture cement precipitation and fracture opening under conditions at or near maximum burial of 190-210°C in core samples, and 120-160°C in outcrop samples. In comparison with the fracture evolution in other, less deformed tight-gas sandstone reservoirs such as the Piceance and East Texas basins where fracture opening is primarily controlled by gas generation, gas charge, and pore fluid pressure, these results suggest a strong control of regional tectonic processes on fracture generation. In conjunction with timing and rate of gas charge, rates of fracture cement growth, and stratigraphic-lithological controls, these processes determine the overall distribution of open fractures in these reservoirs.
NASA Astrophysics Data System (ADS)
Ukar, E.; Eichhubl, P.; Fall, A.; Hooker, J. N.
2012-12-01
In tight gas reservoirs, understanding the characteristics, orientation and distribution of natural open fractures, and how these relate to the structural and stratigraphic setting are important for exploration and production. Outcrops provide the opportunity to sample fracture characteristics that would otherwise be unknown due to the limitations of sampling by cores and well logs. However, fractures in exhumed outcrops may not be representative of fractures in the reservoir because of differences in burial and exhumation history. Appropriate outcrop analogs of producing reservoirs with comparable geologic history, structural setting, fracture networks, and diagenetic attributes are desirable but rare. The Jurassic to Lower Cretaceous Nikanassin Formation from the Alberta Foothills produces gas at commercial rates where it contains a network of open fractures. Fractures from outcrops have the same diagenetic attributes as those observed in cores <100 km away, thus offering an ideal opportunity to 1) evaluate the distribution and characteristics of opening mode fractures relative to fold cores, hinges and limbs, 2) compare the distribution and attributes of fractures in outcrop vs. core samples, 3) estimate the timing of fracture formation relative to the evolution of the fold-and-thrust belt, and 4) estimate the degradation of fracture porosity due to postkinematic cementation. Cathodoluminescence images of cemented fractures in both outcrop and core samples reveal several generations of quartz and ankerite cement that is synkinematic and postkinematic relative to fracture opening. Crack-seal textures in synkinematic quartz are ubiquitous, and well-developed cement bridges abundant. Fracture porosity may be preserved in fractures wider than ~100 microns. 1-D scanlines in outcrop and core samples indicate fractures are most abundant within small parasitic folds within larger, tight, mesoscopic folds. Fracture intensity is lower away from parasitic folds; intensity progressively decreases from the faulted cores of mesoscopic folds to their forelimbs, with lowest intensities within relatively undeformed backlimb strata. Fracture apertures locally increase adjacent to reverse faults without an overall increase in fracture frequency. Fluid inclusion analyses of crack-seal quartz cement indicate both aqueous and methane-rich inclusions are present. Homogenization temperatures of two-phase inclusions indicate synkinematic fracture cement precipitation and fracture opening under conditions at or near maximum burial of 190-210°C in core samples, and 120-160°C in outcrop samples. In comparison with the fracture evolution in other, less deformed tight-gas sandstone reservoirs such as the Piceance and East Texas basins where fracture opening is primarily controlled by gas generation, gas charge, and pore fluid pressure, these results suggest a strong control of regional tectonic processes on fracture generation. In conjunction with timing and rate of gas charge, rates of fracture cement growth, and stratigraphic-lithological controls, these processes determine the overall distribution of open fractures in these reservoirs.
Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing
NASA Technical Reports Server (NTRS)
Baker, Charles; Garrison, Matthew; Cottingham, Christine; Peabody, Sharon
2010-01-01
The theory shown here can provide thermal stability criteria based on physics and a goal steady state error rather than on an arbitrary "X% Q/mC(sub P)" method. The ability to accurately predict steady-state temperatures well before thermal balance is reached could be very useful during testing. This holds true for systems where components are changing temperature at different rates, although it works better for the components closest to the sink. However, the application to these test cases shows some significant limitations: This theory quickly falls apart if the thermal control system in question is tightly coupled to a large mass not accounted for in the calculations, so it is more useful in subsystem-level testing than full orbiter tests. Tight couplings to a fluctuating sink causes noise in the steady state temperature predictions.
Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field
NASA Astrophysics Data System (ADS)
Huang, Zhiming
2018-04-01
In this article, the dynamics of quantum memory-assisted entropic uncertainty relation for two atoms immersed in a thermal bath of fluctuating massless scalar field is investigated. The master equation that governs the system evolution process is derived. It is found that the mixedness is closely associated with entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty undergoes a slight increase and then declines to zero with evolution time. It is found that temperature can increase the uncertainty, but two-atom separation does not always increase the uncertainty. The uncertainty evolves to different relatively stable values for different temperatures and converges to a fixed value for different two-atom distances with evolution time. Furthermore, weak measurement reversal is employed to control the entropic uncertainty.
Ronaldson, Patrick T; Davis, Thomas P
2012-01-01
The blood–brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery. PMID:22468221
MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus
Vacca, Barbara; Sanchez-Heras, Elena; Steed, Emily; Balda, Maria S.; Ohnuma, Shin-Ichi; Sasai, Noriaki; Mayor, Roberto
2016-01-01
ABSTRACT Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus. MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis. PMID:27870636
Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio
2014-01-01
Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding. PMID:24910603
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Snell, M. A.; Barker, P. A.; Aftab, A.; Barber, N. J.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Quinn, P. F.; Surridge, B.
2016-12-01
Low order streams are spatially extensive, temporally dynamic, systems within the agricultural landscape. This dynamism extends to the aquatic communities within these streams, including the phytobentos, which demonstrates considerable resilience to diffuse anthropogenic nutrient pressures and changing climate dynamics. The phytobenthos community can substantially contribute to the food web, in particular diatoms, which dominate photo-autotrophic assemblages in low order streams. Diatoms are widely used in ecological monitoring because of their high sensitivity to environmental condition, but knowledge is limited on the ecological effects of winter disturbances and variance introduced by multiple and interacting pressures (N, P, sediment), introducing bias in understanding temporal dynamics in benthic diatom communities. Using the environmental time series data from long term monitoring within the River Eden Demonstration Test Catchment programme, we assess the impact of multiple hydro-chemical stressors on phytobenthic community resilience, and synthesize the impact of an extreme winter event. Monthly data from diatom communities collected in the Eden DTC from March 2011 to present show that river flow, strongly coupled to precipitation, is a key driver of these communities. Discharge has a direct effect on communities through scouring, but is also tightly correlated to nutrient delivery, such that 80% of the annual TP load arrives in 10% of the time. Trophic Diatom Index (TDI) values demonstrated considerable resilience by the stability of inter-monthly TDI scores over 5 seasonal cycles against the characterised highly variable hydrological regime. This research demonstrates that well characterised winter disturbances are critical to understanding drivers of aquatic dynamics. This has implications for catchment diffuse pollution policy, farm management and economics, given the climate projections of increases in frequency and intensity of extreme winter events, which may alter instream nutrient fluxes.
Baek, Hyekyung; Kim, Kwang Ho; Park, Min Young; Kim, Kyeongryun; Ko, Bokyeong; Seo, Hyung Seok; Kim, Byoung Soo; Hahn, Tae-Wook; Yi, Sun Shin
2017-08-31
With the increase in international human and material exchanges, contagious and infectious epidemics are occurring. One of the effective methods of epidemic inhibition is the rapid development and supply of vaccines. Considering the safety of the brain during vaccine development is very important. However, manuals for brain safety assays for new vaccines are not uniform or effective globally. Therefore, the aim of this study is to establish a positive-control protocol for an effective brain safety test to enhance rapid vaccine development. The blood-brain barrier's tight junctions provide selective defense of the brain; however, it is possible to destroy these important microstructures by administering lipopolysaccharides (LPSs), thereby artificially increasing the permeability of brain parenchyma. In this study, test conditions are established so that the degree of brain penetration or brain destruction of newly developed vaccines can be quantitatively identified. The most effective conditions were suggested by measuring time-dependent expressions of tight junction biomarkers (zonula occludens-1 [ZO-1] and occludin) in two types of mice (C57BL/6 and ICR) following exposure to two types of LPS ( Salmonella and Escherichia ). In the future, we hope that use of the developed positive-control protocol will help speed up the determination of brain safety of novel vaccines.
Advanced two-phase heat transfer systems
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Future large spacecraft, such as the Earth Observing System (EOS) platforms, will require a significantly more capable thermal control system than is possible with current 'passive' technology. Temperatures must be controlled much more tightly over a larger surface area. Numerous heat load sources will often be located inside the body of the spacecraft without a good view to space. Power levels and flux densities may be higher than can be accommodated with traditional technology. Integration and ground testing will almost certainly be much more difficult with such larger, more complex spacecraft. For these and similar reasons, the Goddard Space Flight Center (GSFC) has been developing a new, more capable thermal control technology called capillary pumped loops (CPL's). CPL's represent an evolutionary improvement over heat pipes; they can transport much greater quantities of heat over much longer distances and can serve numerous heat load sources. In addition, CPL's can be fabricated into large cold plates that can be held to tight thermal gradients. Development of this technology began in the early 1980's and is now reaching maturity. CPL's have recently been baselined for the EOS-AM platform (1997 launch) and the COMET spacecraft (1992 launch). This presentation describes this new technology and its applications. Most of the viewgraphs are self descriptive. For those that are less clear additional comments are provided.
Isolating Exogenous and Endogenous Modes of Temporal Attention
ERIC Educational Resources Information Center
Lawrence, Michael A.; Klein, Raymond M.
2013-01-01
The differential allocation of information processing resources over time, here termed "temporal attention," may be achieved by relatively automatic "exogenous" or controlled "endogenous" mechanisms. Over 100 years of research has confounded these theoretically distinct dimensions of temporal attention. The current…
Temporalis muscle hypertrophy and reduced skull eccentricity in Duchenne muscular dystrophy.
Straathof, C S M; Doorenweerd, N; Wokke, B H A; Dumas, E M; van den Bergen, J C; van Buchem, M A; Hendriksen, J G M; Verschuuren, J J G M; Kan, H E
2014-10-01
Muscle hypertrophy and muscle weakness are well known in Duchenne muscular dystrophy. Decreased muscle force can have secondary effects on skeletal growth and development such as facial and dental morphology changes. In this study, we quantified temporal muscle thickness, circumference, and eccentricity of the skull and the head on T1-weighted magnetic resonance imaging (MRI) scans of the head of 15 Duchenne muscular dystrophy patients and 15 controls. Average temporal muscle thickness was significantly increased in patients (12.9 ± 5.2 mm) compared to controls (6.8 ± 1.4 mm) (P < .0001), whereas the shape of the skull was significantly rounder compared to controls. Temporal muscle thickness and skull eccentricity were significantly negatively correlated in patients, and positively in controls. Hypertrophy of the temporal muscles and changes in skull eccentricity appear to occur early in the course of Duchenne muscular dystrophy. Further studies in younger patients are needed to confirm a causal relationship. © The Author(s) 2014.
1986-05-01
AD-ft?l 552 TIGHT BOUNDS FOR NININAX GRID MATCHING WITH i APPLICATIONS TO THE AVERAGE C.. (U) MASSACHUSETTS INST OF TECH CAMBRIDGE LAS FOR COMPUTER...MASSACHUSETTS LABORATORYFORNSTITUTE OF COMPUTER SCIENCE TECHNOLOGY MIT/LCS/TM-298 TIGHT BOUNDS FOR MINIMAX GRID MATCHING, WITH APPLICATIONS TO THE AVERAGE...PERIOD COVERED Tight bounds for minimax grid matching, Interim research with applications to the average case May 1986 analysis of algorithms. 6
Luo, Dan; Zhao, Jia; Rong, Jianhui
2016-12-01
The integrity and functions of blood-brain barrier (BBB) are regulated by the expression and organization of tight junction proteins. The present study was designed to explore whether plant-derived triterpenoid celastrol could regulate tight junction integrity in murine brain endothelial bEnd3 cells. We disrupted the tight junctions between endothelial bEnd3 cells by oxygen glucose deprivation (OGD). We investigated the effects of celastrol on the permeability of endothelial monolayers by measuring transepithelial electrical resistance (TEER). To clarify the tight junction composition, we analyzed the expression of tight junction proteins by RT-PCR and Western blotting techniques. We found that celastrol recovered OGD-induced TEER loss in a concentration-dependent manner. Celastrol induced occludin, claudin-5 and zonula occludens-1 (ZO-1) in endothelial cells. As a result, celastrol effectively maintained tight junction integrity and inhibited macrophage migration through endothelial monolayers against OGD challenge. Further mechanistic studies revealed that celastrol induced the expression of occludin and ZO-1) via activating MAPKs and PI3K/Akt/mTOR pathway. We also observed that celastrol regulated claudin-5 expression through different mechanisms. The present study demonstrated that celastrol effectively protected tight junction integrity against OGD-induced damage. Thus, celastrol could be a drug candidate for the treatment of BBB dysfunction in various diseases. Copyright © 2016 Elsevier GmbH. All rights reserved.
Bhardwaj, Ratan D; Mahmoodabadi, Sina Zarei; Otsubo, Hiroshi; Snead, O Carter; Rutka, James T; Widjaja, Elysa
2010-02-01
The aim of the study was to assess the connectivity between magnetoencephalographic (MEG) dipoles in the temporal lobe and Rolandic region in children with temporal lobe epilepsy using diffusion tensor imaging (DTI) tractography. Six pediatric patients with intractable focal epilepsy had MEG performed, which showed MEG dipoles over both temporal and Rolandic regions in a unilateral hemisphere. DTI tractography was performed on each patient. Six control subjects were studied for comparison. Two volumes of interest (VOIs) that encompassed the MEG dipoles were drawn, one placed in temporal lobe and the other in Rolandic region. Similar VOIs were placed in the contralateral side in the patients and on both sides in controls. Fractional anisotropy (FA) and trace of the external capsules were compared between patients and controls. In all patients, a tractography pathway traversing through the external capsule, connecting the temporal and Rolandic MEG dipoles, was visualized. However, on the contralateral hemisphere in each patient, there was no evidence of a similar fiber tract. There was no corresponding tractography pathway identified in either hemisphere within the controls. There were no significant differences in FA and trace between the seizure focus side and contralateral side in the patients. There was no significant difference in FA, but a difference in trace between patients and controls. We have found aberrant tractography pathway traversing through the external capsule, connecting two distant foci of epileptiform activity. Chronic interictal epileptogenic discharge could play a causal role in the de novo organization of these tracts.
Cao, Yiyun; Ni, Cheng; Li, Zhengqian; Li, Lunxu; Liu, Yajie; Wang, Chunyi; Zhong, Yanfeng; Cui, Dehua; Guo, Xiangyang
2015-02-05
The underlying mechanism of isoflurane-induced cognitive dysfunction in older individuals is unknown. In this study, the effects of isoflurane exposure on the hippocampal blood-brain barrier (BBB) in aged rats were investigated because it was previously shown that BBB disruption involves in cognitive dysfunction. Twenty-month-old rats randomly received 1.5% isoflurane or vehicle gas as control. Hippocampal BBB ultrastructure was analyzed by transmission electron microscopy and expression of tight junction proteins was measured by western blot analysis. BBB permeability was detected with sodium fluorescein extravasation and further confirmed by immunoglobulin G immunohistochemistry. Spatial learning and memory were assessed by the Morris water maze test. Isoflurane anesthesia resulted in reversible time-dependent BBB ultrastructure morphological damage and significant decreases in expression of the tight junction proteins occludin, which contributed to sodium fluorescein and IgG leakage. Rats with isoflurane exposure also showed significant cognitive deficits in the Morris water maze test. This in vivo data indicate that occludin down-regulation may be one of the mediators of isoflurane-induced hippocampus BBB disruption, and may contribute to hippocampus-dependent cognitive impairment after isoflurane exposure in aged rats. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.
Kim, Jeong-Gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon; Kim, Kyu-Won
2017-01-01
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality
Kim, Jeong-gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon
2017-01-01
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer’s vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development. PMID:28771527
Flow behavior of N2 huff and puff process for enhanced oil recovery in tight oil reservoirs.
Lu, Teng; Li, Zhaomin; Li, Jian; Hou, Dawei; Zhang, Dingyong
2017-11-16
In the present work, the potential of N 2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N 2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N 2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N 2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N 2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N 2 huff and puff has been found to increase as the N 2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N 2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.
Spatial-temporal migration laws of Cd in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Li, Haixia; Zhang, Xiaolong; Wang, Qi; Miao, Zhenqing
2018-02-01
Many marine bays have been polluted by various pollutants, and understanding the migration laws is essential to scientific research and pollution control. This paper analyzed the spatial and temporal migration laws of Cd in waters in Jiaozhou Bay during 1979—1983. Results showed that there were twenty spatial-temporal migration law for the migration processes of Cd. These laws were helpful for better understanding the migration of Cd in marine bay, providing basis for scientific research and pollution control.
Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.
Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto
2016-08-01
Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions. © 2016 UICC.
Organ failure and tight glycemic control in the SPRINT study.
Chase, J Geoffrey; Pretty, Christopher G; Pfeifer, Leesa; Shaw, Geoffrey M; Preiser, Jean-Charles; Le Compte, Aaron J; Lin, Jessica; Hewett, Darren; Moorhead, Katherine T; Desaive, Thomas
2010-01-01
Intensive care unit mortality is strongly associated with organ failure rate and severity. The sequential organ failure assessment (SOFA) score is used to evaluate the impact of a successful tight glycemic control (TGC) intervention (SPRINT) on organ failure, morbidity, and thus mortality. A retrospective analysis of 371 patients (3,356 days) on SPRINT (August 2005 - April 2007) and 413 retrospective patients (3,211 days) from two years prior, matched by Acute Physiology and Chronic Health Evaluation (APACHE) III. SOFA is calculated daily for each patient. The effect of the SPRINT TGC intervention is assessed by comparing the percentage of patients with SOFA ≤5 each day and its trends over time and cohort/group. Organ-failure free days (all SOFA components ≤2) and number of organ failures (SOFA components >2) are also compared. Cumulative time in 4.0 to 7.0 mmol/L band (cTIB) was evaluated daily to link tightness and consistency of TGC (cTIB ≥0.5) to SOFA ≤5 using conditional and joint probabilities. Admission and maximum SOFA scores were similar (P = 0.20; P = 0.76), with similar time to maximum (median: one day; IQR: 13 days; P = 0.99). Median length of stay was similar (4.1 days SPRINT and 3.8 days Pre-SPRINT; P = 0.94). The percentage of patients with SOFA ≤5 is different over the first 14 days (P = 0.016), rising to approximately 75% for Pre-SPRINT and approximately 85% for SPRINT, with clear separation after two days. Organ-failure-free days were different (SPRINT = 41.6%; Pre-SPRINT = 36.5%; P < 0.0001) as were the percent of total possible organ failures (SPRINT = 16.0%; Pre-SPRINT = 19.0%; P < 0.0001). By Day 3 over 90% of SPRINT patients had cTIB ≥0.5 (37% Pre-SPRINT) reaching 100% by Day 7 (50% Pre-SPRINT). Conditional and joint probabilities indicate tighter, more consistent TGC under SPRINT (cTIB ≥0.5) increased the likelihood SOFA ≤5. SPRINT TGC resolved organ failure faster, and for more patients, from similar admission and maximum SOFA scores, than conventional control. These reductions mirror the reduced mortality with SPRINT. The cTIB ≥0.5 metric provides a first benchmark linking TGC quality to organ failure. These results support other physiological and clinical results indicating the role tight, consistent TGC can play in reducing organ failure, morbidity and mortality, and should be validated on data from randomised trials.
Organ failure and tight glycemic control in the SPRINT study
2010-01-01
Introduction Intensive care unit mortality is strongly associated with organ failure rate and severity. The sequential organ failure assessment (SOFA) score is used to evaluate the impact of a successful tight glycemic control (TGC) intervention (SPRINT) on organ failure, morbidity, and thus mortality. Methods A retrospective analysis of 371 patients (3,356 days) on SPRINT (August 2005 - April 2007) and 413 retrospective patients (3,211 days) from two years prior, matched by Acute Physiology and Chronic Health Evaluation (APACHE) III. SOFA is calculated daily for each patient. The effect of the SPRINT TGC intervention is assessed by comparing the percentage of patients with SOFA ≤5 each day and its trends over time and cohort/group. Organ-failure free days (all SOFA components ≤2) and number of organ failures (SOFA components >2) are also compared. Cumulative time in 4.0 to 7.0 mmol/L band (cTIB) was evaluated daily to link tightness and consistency of TGC (cTIB ≥0.5) to SOFA ≤5 using conditional and joint probabilities. Results Admission and maximum SOFA scores were similar (P = 0.20; P = 0.76), with similar time to maximum (median: one day; IQR: [1,3] days; P = 0.99). Median length of stay was similar (4.1 days SPRINT and 3.8 days Pre-SPRINT; P = 0.94). The percentage of patients with SOFA ≤5 is different over the first 14 days (P = 0.016), rising to approximately 75% for Pre-SPRINT and approximately 85% for SPRINT, with clear separation after two days. Organ-failure-free days were different (SPRINT = 41.6%; Pre-SPRINT = 36.5%; P < 0.0001) as were the percent of total possible organ failures (SPRINT = 16.0%; Pre-SPRINT = 19.0%; P < 0.0001). By Day 3 over 90% of SPRINT patients had cTIB ≥0.5 (37% Pre-SPRINT) reaching 100% by Day 7 (50% Pre-SPRINT). Conditional and joint probabilities indicate tighter, more consistent TGC under SPRINT (cTIB ≥0.5) increased the likelihood SOFA ≤5. Conclusions SPRINT TGC resolved organ failure faster, and for more patients, from similar admission and maximum SOFA scores, than conventional control. These reductions mirror the reduced mortality with SPRINT. The cTIB ≥0.5 metric provides a first benchmark linking TGC quality to organ failure. These results support other physiological and clinical results indicating the role tight, consistent TGC can play in reducing organ failure, morbidity and mortality, and should be validated on data from randomised trials. PMID:20704712
The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter.
Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna
2015-02-01
Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight junction disruption and barrier dysfunction.
Inamura, Akinori; Adachi, Yasuhiro; Inoue, Takao; He, Yeting; Tokuda, Nobuko; Nawata, Takashi; Shirao, Satoshi; Nomura, Sadahiro; Fujii, Masami; Ikeda, Eiji; Owada, Yuji; Suzuki, Michiyasu
2013-08-01
The blood-brain-barrier (BBB) is formed by different cell types, of which brain microvascular endothelial cells are major structural constituents. The goal of this study was to examine the effects of cooling on the permeability of the BBB with reference to tight junction formation of brain microendothelial cells. The sensorimotor cortex above the dura mater in adult male Wistar rats was focally cooled to a temperature of 5 °C for 1 h, then immunostaining for immunoglobulin G (IgG) was performed to evaluate the permeability of the BBB. Permeability produced by cooling was also evaluated in cultured murine brain endothelial cells (bEnd3) based on measurement of trans-epithelial electric resistance (TEER). Immunocytochemistry and Western blotting of proteins associated with tight junctions in bEnd3 were performed to determine protein distribution before and after cooling. After focal cooling of the rat brain cortex, diffuse immunostaining for IgG was observed primarily around the small vasculature and in the extracellular spaces of parenchyma of the cortex. In cultured bEnd3, TEER significantly decreased during cooling (15 °C) and recovered to normal levels after rewarming to 37 °C. Immunocytochemistry and Western blotting showed that claudin-5, a critical regulatory protein for tight junctions, was translocated from the membrane to the cytoplasm after cooling in cultured bEnd3 cells. These results suggest that focal brain cooling may open the BBB transiently through an effect on tight junctions of brain microendothelial cells, and that therapeutically this approach may allow control of BBB function and drug delivery through the BBB.
Yıldırım, M S; Ozyurek, S; Tosun, Oç; Uzer, S; Gelecek, N
2016-03-01
The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m(-2)) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial-final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial-final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.
Ozyurek, S; Tosun, OÇ; Uzer, S; Gelecek, N
2016-01-01
The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m-2) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial–final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial–final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness. PMID:26929476